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ABSTRACT Studies of oscillations in the frequency band between 80 Hz and 250 Hz for EEG (Electroen-
cephalogram) andMEG (Magnetoencephalogram) have achieved fruitful results of detecting and interpreting
both normal and pathological activities in the brain. This contribution presents a new description of the
200 Hz band activity in somatosensory evoked electrical potentials (SEPs) and somatosensory evoked
magnetic fields (SEFs) with the help of tensor decompositions. The SEPs and SEFs elicited by electrical
stimulation of the median nerve were measured in eight healthy volunteers. A time-frequency analysis of the
SEPs and SEFs produced the time-dependent spectra of the signals that were arranged into three-dimensional
EEG and MEG data tensors, respectively. We then propose a novel multi-way component analysis approach
by employing a tensor decomposition known as the multi-linear rank-(Lr , Lr , 1) decomposition. Featuring
the ability to extract channel-dependent spectral signatures, this method is able to separate the 200 Hz
band activity-related signal components in SEPs and SEFs. Via a coupled version of the multi-linear
rank-(Lr , Lr , 1) decomposition, a joint processing of these simultaneous EEG and MEG recordings has
been achieved. The advantages of the joint processing over the separate processing of EEG or MEG alone
have been both qualitatively and quantitatively validated in seven out of eight subjects.

INDEX TERMS Somatosensory cortex, EEG,MEG, tensor decompositions, multi-way component analysis.

I. INTRODUCTION
For somatosensory evoked electrical potentials (SEPs)
and somatosensory evoked magnetic fields (SEFs) which
are EEG (Electroencephalogram) and MEG (Magnetoen-
cephalogram) recordings of signals in the human somatosen-
sory cortex produced by peripheral nerve stimulations [1],
respectively, activity in multiple frequency bands has been
described [1], [2]. This includes separate spectral components
at around 600 Hz [3]–[7] and spectral components at around
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200 Hz [1]. The spectral components at around 600 Hz are
often termed high frequency oscillations (HFOs).

The term HFOs is also used to describe normal or patho-
logical EEG andMEG signals in the frequency band between
80 Hz and 250 Hz [8]. Non-pathological spontaneous
HFOs occur during sleep and are associated with various
sleep-specific transient signals [9], [10]. Pathological HFOs
are considered new biomarkers for epilepsy and seem better
biomarkers for epileptogenic tissue than spikes [11], [12].
HFOs appear to be more focal than spikes and are possibly
linked to initializing epileptic activity in childhood absence
epilepsy [13]. HFOs can be detected in the periictal state
using MEG [14].
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Both, HFOs around 600 Hz [3], [15], [4]–[7] and between
80 Hz and 250 Hz [16] are thought to reflect population
spike bursts paced and synchronized by recurrent inhibition.
Physiological HFOs are likely linked to memory consolida-
tion during sleep [17]. Data on spontaneous high frequency
activity suggest that the frequency range >500 Hz is most
specific for cortical populations spiking [18], [19].

This contribution presents a new approach for the separa-
tion of signal components related to 200 Hz band oscillations
in SEPs and SEFs by using tensor decompositions. The suc-
cessful application of multi-linear processing in diverse sci-
entific fields has recently sparked interest in the use of tensor
decompositions for MEG and EEG data analysis [20]–[28].
EEG and MEG data are low-SNR and multi-dimensional in
nature. Therefore, tensor decompositions, featuring effective
denoising and multi-dimensional structure preserving abili-
ties, are indeed an intriguing choice for the processing of EEG
and MEG signals. For instance, the Canonical Polyadic (CP)
decomposition, also known as Parallel Factor (PARAFAC)
analysis, has been applied to space-time-frequency trans-
formed EEG or MEG data with an approximate trilinear
structure [24]. This tensor-based preprocessing technique
achieves satisfactory source separation in numerical simula-
tions with synthetic EEG and MEG data [24]. On the other
hand, the coupled CP decomposition has been reported as a
powerful tool for the joint processing of simultaneous EEG
and MEG recordings [22], [23]. Regarded as a generalization
of the three-way PARAFAC, the PARAFAC2 decomposi-
tion [29] has been employed in multi-way component analy-
sis of measured visual evoked potentials [25] as well as SEPs
and SEFs [26]. A coupled version of the PARAFAC2 decom-
position has been developed and enables the joint processing
of simultaneously measured SEPs and SEFs, which further
supports the benefits of coupled tensor decompositions [27].

The aforementioned multi-linear processing-based stud-
ies of SEPs and SEFs corroborate the argument on the
multiplicity of signals within the latency range of the ini-
tial cortical responses [1]. Nevertheless, they do not lead
to an improved description of the 200 Hz band activity
compared to that in [1]. We, therefore, propose to employ
the multi-linear rank-(Lr , Lr , 1) decomposition [30], [31],
a special case of the block term decomposition [32], and
develop a novel multi-way component analysis method, tar-
geting at the extraction of signal components related to the
200 Hz band activity in SEPs and SEFs. In the literature,
the application of the multi-linear rank-(Lr , Lr , 1) decom-
position in blind source separation and analysis has been
addressed especially for atrial fibrillation ECG (Electrocar-
diogram) recordings [33], [34], [35]. To the best of our
knowledge, the only results of using the multi-linear rank-
(Lr , Lr , 1) decomposition in EEG data analysis [36] rely on
the assumption that EEG signals can be modeled as a sum
of exponentially damped sinusoids [37], [38]. Decomposing
the Hankel expansion-based data tensors constructed with
EEG recordings during epileptic seizures into rank-(Lr , Lr ,
1) terms models more variability in the data compared to the

CP decomposition and is therefore able to extract complex
seizure characteristics [36]. By contrast, we propose to first
conduct a time-frequency analysis of the SEPs and SEFs by
using the smoothed pseudo Wigner-Ville distribution-based
(SPWV) method [39] and then arrange the resulting time-
dependent spectra into a three-dimensional tensor withmodes
corresponding to frequency, space (channels), and time. Then
the multi-linear rank-(Lr , Lr , 1) decomposition is computed
on these EEG and MEG magnetometer (MAG) tensors,
respectively. By rearranging the factor matrices, we intro-
duce, for the first time, the concept of channel-dependent
spectral signatures, giving rise to the extraction of a 200 Hz
signal component. The corresponding temporal and spatial
features are plausible, which justifies the validity of the
approach.

It has been shown that analyzing simultaneously measured
SEFs and SEPs leads to interesting findings on mutual infor-
mation transfer, precortical and cortical activities [40], [41],
which provide insight into human brain functions. Inspired by
these findings, we then propose to use a coupled version of the
multi-linear rank-(Lr , Lr , 1) decomposition [42] that couples
the time mode of the EEG and the MEGMAG data tensors to
achieve a joint multi-linear processing of simultaneous SEPs
and SEFs. To quantify the advantages of the coupled decom-
position in this application, we propose two effective metrics
based on the correlation and the Hausdorff distance [43] of
the extracted spectral signatures, respectively.

II. NOTATION
To facilitate the distinction between scalars, vectors, matrices,
and tensors, the following notation is used throughout this
paper: scalars are represented by italic letters, vectors by
lower-case bold-faced letters, matrices by upper-case bold-
faced letters, and tensors as bold-faced calligraphic letters.
We use the superscript T for transpose and ◦ to denote the
outer product operation. The i-th row and the j-th column
of a matrix A ∈ CI×J is symbolized by A(i, :) ∈ CJ and
A(:, j) ∈ CI , respectively, where i = 1, . . . , I and
j = 1, . . . , J .
An R-way tensor with size Ir along mode r = 1, 2, . . . ,R

is represented as A ∈ CI1×I2×...×IR . In addition, we denote
the higher-order norm of a tensor A by ‖A‖H. It is defined
as the square root of the sum of the squared magnitude of all
elements inA.

III. DATA ACQUISITION AND DATA TENSOR
CONSTRUCTION
The SEPs and SEFs analyzed in this paper were recorded
with a 60-channel EEG cap and a 306-channel helmet-shaped
MEG system [41], respectively. The experiments were con-
ducted at the Biomagnetic Center of the University Hospital
in Jena, Germany. Electrical monophasic square wave con-
stant current pulses with a duration of 200 µs delivered from
a clinical constant current stimulator (DS7A, Digitimer Ltd.,
Welwyn Garden City, United Kingdom) were used for the
stimulation of the right median nerve. The electrode pair was
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FIGURE 1. Time traces of all channels, time-frequency representation of the signals averaged over all channels for a single subject (all
amplitudes are normalized and the color scale is given on the right side), and example spatial distributions of EEG and MEG
magnetometer (MAG). (a) EEG (b) MEG MAG (c) spatial distributions of EEG at 21 ms (top) and MEG MAG at 21 ms (bottom) after the
stimulation.

attached to the wrist of the right hand of each volunteer.
Current amplitude was adjusted individually according to
the recommendations of International Federation of Clinical
Neurophysiology motor plus sensory threshold [44]. Stimu-
lation was performed with 2 Hz repetition rate (6000 trials).
We ensured enduring attention to the stimulus by includ-
ing stimulation pauses after approximately every 15 minutes.
During a 15-minute session, stimulation paused randomly for
2 seconds. Participants were requested to count these pauses.
A 3D Digitizer (3SPACE FASTRAK; Polhemus Inc., Colch-
ester, VT) was used to locate electrode positions, anatomi-
cal locations (nasion and preauricular points), and the MEG
localization coil sets. For a more detailed description of
the experimental setup, the reader is referred to [41]. Here
we focus on measured data recorded from eight volunteers.
The sampling frequency is 5 kHz. Raw MEG data were
filtered with Maxfilter Version 2.0.21 (Elekta Neuromag Oy,
Helsinki, Finland) using the time-domain extension [45]. A
constant interpolation was used to minimize artifacts right
following the stimulation.

Then using the FieldTrip toolbox [46], we segmented the
data into trials according to the trigger information such
that the time window of interest was from 80 ms before
stimulation to 100 ms after it. The signals were obtained
with a band pass filter (forth order Butterworth) from 10 to
300 Hz. Taking subject 1 as an example, after two bad EEG
channels were identified and removed, data under analysis
were from the remaining 58 EEG channels and 102 MEG
MAG channels. Averaged over all trials, the time behaviors
are depicted in Figure 1(a) and Figure 1(b) (top). The spatial
distributions of EEG and MEG MAG at 21 ms after stimula-
tion are presented in Figure 1(c).

Due to the time-variant property of the SEPs and SEFs,
we employed the smoothed pseudoWigner-Ville distribution-
based (SPWV) method [39] to obtain the time-dependent
spectra of these signals with a frequency resolution of 20 Hz.
The resulting time-frequency representation is illustrated

in Figure 1(a) and Figure 1(b) (bottom). We observe a power
increase around 20 ms after stimulation in several frequency
bands.

For both EEG and MEGMAG, a three-dimensional tensor
is constructed, respectively. The time-frequency represen-
tation of each channel is taken as one lateral slice of the
corresponding tensor of sizeNF×NC×NT, whereNF denotes
the number of frequency bins,NC the number of channels, and
NT the number of samples. Note that a time window from
10 ms to 40 ms after stimulation was taken (cf. Figure 1(a)
and Figure 1(b)), resulting in 151 samples. Taking subject 1
as an example, the dimensions of the EEG and MEG MAG
data tensors analyzed using the multi-linear rank-(Lr , Lr ,
1) decomposition later on are of size 14 × 58 × 151 and
14× 102× 151, respectively.

IV. MULTI-WAY COMPONENT ANALYSIS VIA THE
MULTI-LINEAR RANK-(Lr , Lr , 1) DECOMPOSITION
The multi-linear rank-(Lr , Lr , 1) decomposition on the
three-way data tensors with modes corresponding to fre-
quency, channels, and time described in Section III is written
as

X =
d∑
r=1

(
Ar · BT

r

)
◦ C(:, r)+N ∈ RNF×NC×NT , (1)

whereAr ∈ RNF×Lr ,Br ∈ RNC×Lr , andC ∈ RNT×d represent
the factor matrices. The number of components, also called
model order, is denoted by d , and the residuals are collected
in N ∈ RNF×NC×NT . As mentioned in the introduction, the
multi-linear rank-(Lr , Lr , 1) decomposition is a special case
of the block term decomposition [32]. On the other hand, the
multi-linear rank-(Lr , Lr , 1) decomposition of a three-way
tensor with tensor rank d can be written into the form a
PARAFAC decomposition of rank

∑d
r=1 Lr with collinearity

in one factor matrix. These interesting observations shed light
on the computation of this decomposition [31].

106234 VOLUME 9, 2021



Y. Cheng et al.: Using Multi-Linear Rank-(Lr , Lr , 1) Decomposition for Detection of 200 Hz Band Activity

The 200 Hz band activity in the SEPs and SEFs have been
observed in the time-frequency representation with respect
to some channels [1]. The spatio-temporal overlap observed
in [1] especially for channels with a high SNR should be
modelled via the decomposition methods. Inspired by this
observation, we define

Gr = Ar · BT
r ∈ RNF×NC (2)

to represent channel-dependent frequency signatures, i.e.,
the `-th column of Gr (` = 1, 2, . . . ,NC) corresponds to the
spectral signature of the `-th channel of the r-th component
(r = 1, . . . , d).
Consequently, the multi-linear rank-(Lr , Lr , 1) decompo-

sition of the data tensors given in (1) now takes the following
form

X =
d∑
r=1

Gr ◦ C(:, r)+N ∈ RNF×NC×NT , (3)

as illustrated in Figure 2 (assuming zero residual for simplic-
ity). The  -th row of Gr ( = 1, 2, . . . ,NF) is identified as
the spatial signature of the r-th component (r = 1, . . . , d)
with respect to the  -th frequency bin. The temporal signature
of the r-th component is represented by the r-th column
(r = 1, . . . , d) of the factor matrix C ∈ RNT×d of the time
mode.

FIGURE 2. Illustration of the multi-linear rank-(Lr , Lr , 1) decomposition.

Similarly as many other tensor decompositions, the block
term decomposition is unique up to scaling and permu-
tation ambiguities [32]. As the scaling of the resulting
signatures is then irrelevant, we have normalized the sig-
nature of each component such that the signatures of the
d signal components are comparable in the plots. Interest-
ing future work is to devise a way to compute the ‘‘ampli-
tudes’’ of the signal components in order to determine
the influence of each component like those computed for
the PARAFAC2 decomposition-based component analysis of
event-related EEG data in [25].

The most prominent feature of the proposed multi-way
component analysis is that it is able to extract
channel-dependent frequency signatures. Introducing the def-
inition of the channel-dependent frequency signatures is one
of the major contributions of this work.

It is worth noting that the PARAFAC2 decomposition [29]
of the data tensors can be written in a similar form as
that in (3) [26]. However, the Harshman constraint [29] is
required to guarantee the uniqueness of PARAFAC2, and
Gr in PARAFAC2 would have full rank. These character-
istics hinder this decomposition from fully exploiting the

variability inherent in the SEPs and SEFs. By comparison,
the multi-linear rank-(Lr , Lr , 1) decomposition features a
higher flexibility. Tuning the parameters such as the number
of components d and the multi-linear ranks Lr contributes to
a good match between the data and the decomposition model,
achieving the extraction of interesting and significant signal
features.

Naturally the question follows: how to determine d and Lr
from noise-corrupted measurements. So far an ‘‘automatic’’
model selection scheme for the block term decomposition
proved to be universally applicable to measurement data in
different contexts is not available in the literature. For the
computation of the multi-linear rank-(Lr , Lr , 1) decomposi-
tion, we use the structured data fusion nonlinear least-squares
(SDF-NLS) implementation by the Tensorlab [42], which is
so far the most widely employed computation scheme for
the block term decomposition. When using this algorithm, a
common practice is to select d and Lr that lead to reasonable
decomposition results according to the existing knowledge
of the signal features [33], [35]. Further discussions are pre-
sented in Section VI where the results are shown.

Note that there exist other approaches to compute
an approximate block term decomposition. Among them,
the alternating least squares method with enhanced line
search [47] determines d and Lr in the same trial-and-error
fashion as the SDF-NLS algorithm. Recently as the research
interest in using the block term decomposition for data anal-
ysis in various contexts increases, new progress in develop-
ing advanced computation algorithms has emerged. In [48],
the parameters d and Lr are first estimated from an over-
estimated initialization based on the group sparsity property
of the loading (GSL) matrices in an iterative manner. Then
the loading matrices (referred to as factor matrices in this
paper) are computed using the alternating directionmethod of
multipliers (ADMM) [49]. The performance of the resulting
GSL-BTD algorithm has been evaluated on synthetic data
and simulated epileptic EEG data. Instead of separating the
estimation of d and Lr from the computation of the factor
matrices, an alternating group lasso (AGL) scheme has been
proposed in [50] that achieves the joint estimation of the
parameters and the factor matrices. Regarded as a regularized
version of the alternating least squares scheme in [47], the
AGLmethod still requires a random initialization of the factor
matrices but is shown to bemore robust compared to the SDF-
NLS algorithm [42] for synthetic data. Its application in the
analysis of ECG recordings during atrial fibrillation episodes
is also addressed.

A detailed investigation of the suitability of each state-
of-the-art computation algorithm for the block term decom-
position is beyond the scope of this paper. Further devising
intelligent and enhanced computation schemes is challeng-
ing and critical enough to be taken as a separate research
topic. In spite of these facts, we point interested readers
to the following aspects concerning the computation of the
block term decomposition to the best of our knowledge and
experience:
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• Applicability
The specific structure of the data may have impact
on the applicability of a computation algorithm of the
block term decomposition. The aforementioned AGL
scheme [50] and the GSL-BTD algorithm [48] have
been applied for the source separation of the sum of
complex exponentials, which features a Hankel source
model [50]. In other words, a constrained version of
the block term decomposition is pursued in this context.
On the other hand, their performances have been evalu-
ated on synthetic data, where the complicated structure,
e.g., collinearity, inherent in real-worldmeasurements of
various applications can hardly be modelled. Therefore,
although a more systematic way of choosing d and Lr
has been introduced in these algorithms, it remains
unclear whether they are applicable to the analysis of the
SEPs and SEFs. For future work, extensive numerical
simulations can be conducted to assess the suitability of
the AGL scheme [50] and the GSL-BTD algorithm [48].
The outcomemay also shed light on how to further adapt
these approaches to better describe the features of the
SEPs and SEFs.

• Initialization
The existing computation algorithms for the block term
decomposition require a random initialization of the
factor matrices. As mentioned earlier, we have used the
SDF-NLS implementation [42] for the numerical simu-
lations in this paper. For each case, 20 trials each with a
random initialization have been conducted as suggested
in [35]. We have observed and shown via the results in
Section VI that with these 20 Monte Carlo runs, the out-
come of the proposed multi-way component analysis is
satisfactory, reasonable, and meets our expectation.
New advances in developing computation algorithms for
the block term decomposition may further enhance the
stability of the proposed multi-way component analysis
strategy. Endeavours have been made to alleviate the
sensitivity of a computation algorithm to the initializa-
tion, e.g., the AGL scheme [50] for ECG source separa-
tion, while its applicability to the analysis of SEPs and
SEFs should be first investigated. Alternatively, through
the exploitation of the aforementioned link between
the multi-linear rank-(Lr , Lr , 1) decomposition and the
PARAFAC decomposition, many advanced computation
approaches of the latter can be employed where a ran-
dom initialization of the factor matrices is not required,
e.g., via simultaneous matrix diagonalizations as in [51].

• Computational complexity
Although very crucial for a variety of applications
especially with large-scale high-dimensional data sets
involved, so far the complexity issue of existing com-
putation algorithms for the block term decomposition
has not been addressed in the literature. According to
our observation and experiences through the numerical
simulations that we have carried out with the SDF-NLS
approach [42], its computational complexity appears

to be acceptable for the proposed analysis strategy of
the SEPs and SEFs. When employing the block term
decomposition for other applications, one may take into
account the computation load and decide which compu-
tation algorithm is suitable.

Furthermore, investigating the model order selection for
the block term decomposition, e.g., based on existing works
for other models [52] and [53], may facilitate the selection of
the parameters.

V. COUPLED MULTI-LINEAR RANK-(Lr , Lr , 1)
DECOMPOSITION
To achieve the joint processing of simultaneously recorded
SEPs and SEFs, we propose to employ a coupled multi-linear
rank-(Lr , Lr , 1) decomposition. In light of the observation
that the temporal behaviors of the SEPs and SEFs are compa-
rable, we couple the three-mode (temporal mode) of the EEG
data tensor and the MEG MAG data tensor, now denoted by
X (1)

∈ RNF×N
(1)
C ×NT and X (2)

∈ RNF×N
(2)
C ×NT , respectively.

The coupled decomposition is then written as

X (1)
=
∑d

r=1

(
A(1)
r · B

(1)T
r

)
◦ C(:, r)+N (1) (4)

X (2)
=
∑d

r=1

(
A(2)
r · B

(2)T
r

)
◦ C(:, r)+N (2), (5)

where the EEG data tensor and the MEG MAG data tensor
share the same three-mode factor matrix C ∈ RNT×d . Let us
denote the multi-linear rank ofX (1) andX (2) as L(1)r and L(2)r ,
respectively. Note that it is not required that L(1)r is equal to

L(2)r . The one-mode factor matrix and the two-mode factor
matrix of X (1) are denoted by A(1)

r ∈ RNF×L
(1)
r and B(1)

r ∈

RNC×L
(1)
r , respectively, whereas A(2)

r ∈ RNF×L
(2)
r and B(2)

r ∈

RNC×L
(2)
r represent the corresponding factor matrices ofX (2).

The residuals are collected inN (1) andN (2) for the EEG and
the MEG MAG data tensors, respectively.

It is worth noting that there exist other ways of coupling the
EEG and the MEG MAG data tensors. Taking the one-mode
as the common mode yields

X (1)
=
∑d

r=1

(
Ar · B(1)T

r

)
◦ C(1)(:, r)+N (1) (6)

X (2)
=
∑d

r=1

(
Ar · B(2)T

r

)
◦ C(2)(:, r)+N (2), (7)

which demands the same multi-linear rank for the decompo-
sition of both data tensors, i.e., L(1)r = L(2)r . This requirement
might have impact on the flexibility of the decomposition,
although some similarity can be observed in the spectral
behaviors of the SEPs and SEFs.

A further alternative is to couple both the one-mode and
the three-mode, which can be expressed via

X (1)
=
∑d

r=1

(
Ar · B(1)T

r

)
◦ C(:, r)+N (1) (8)

X (2)
=
∑d

r=1

(
Ar · B(2)T

r

)
◦ C(:, r)+N (2). (9)

It is not difficult to deduce that coupling two modes might
constrain the decomposition too much, against the natural
connection of the EEG and MEG MAG data tensors.
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FIGURE 3. Residual versus model order d obtained by computing the
multi-linear rank-(Lr , Lr , 1) decomposition of the EEG and MEG MAG data
tensors of subject 1, respectively, for Lr = 7.

Hence, coupling the temporal mode of the EEG data tensor
and the MEG MAG data tensor described via (4) and (5)
appears to be the most reasonable way of jointly analyzing
the simultaneous SEPs and SEFs. For the results shown in
this paper, we have used the Tensorlab [42] for the compu-
tation of the coupled multi-linear rank-(Lr , Lr , 1) decom-
position. The intriguing benefits of coupled decompositions
motivate the design of advanced computation algorithms for
the coupled multi-linear rank-(Lr , Lr , 1) decomposition as
future work. For instance, an interesting link has been dis-
covered between the multi-linear rank-(Lr , Lr , 1) decompo-
sition and the PARAFAC decomposition [31] as addressed in
Section IV. Then recent studies of semi-algebraic approaches
for the computation the coupled PARAFAC decomposition
[22], [23] may provide insight into the development of new
schemes to compute the coupled multi-linear rank-(Lr , Lr ,
1) decomposition.

VI. RESULTS AND DISCUSSION
A. RESIDUAL AND SIGNAL SIGNATURES
Let us denote the reconstructed tensor with the factormatrices
of the multi-linear rank-(Lr , Lr , 1) decomposition as X̂ . Then
the residual is computed as

ER =

∥∥∥X̂ −X
∥∥∥2
H

‖X‖2H
. (10)

It is a basic measure of howwell a tensormodel fits the data
under analysis [25]. Figure 3 shows the residual obtained by
computing the multi-linear rank-(Lr , Lr , 1) decomposition of
the EEG and MEG MAG data tensors of subject 1, respec-
tively, for a model order ranging from two to ten. As the
model order d increases, the residual decreases drastically,
indicating that themulti-linear rank-(Lr , Lr , 1) decomposition
fits the structure of the SEPs and SEFs well.

Figure 4 indicates that as Lr increases, the residual stays
almost constant. Similar results have been obtained for other
model orders investigated and for other subjects as well.
On the other hand, we have observed that the choice of Lr has

FIGURE 4. Residual versus the multi-linear rank Lr obtained by
computing the multi-linear rank-(Lr , Lr , 1) decomposition of the EEG and
MEG MAG data tensors of subject 1, respectively, with d = 2.

impact on the resulting signal signatures. This then implies
that a suitable value for Lr can be determined according to
the resulting signal signatures instead of the residual, which
complies with existing works on the application of the multi-
linear rank-(Lr , Lr , 1) decomposition [33].

In the following, the signal signatures defined in Section IV
are presented and discussed. In the spectral signatures of sub-
ject 1 with d = 2 shown in Figure 5, the difference between
the spectral signature of component 2 and that of component 1
is evident. As an ascending slope is observed from around
100 to 200 Hz solely in the former, it is interpreted as a suc-
cessful separation of the 200 Hz component. Component 2 is
thus identified as the signal component related to the 200 Hz
band activity. Hence, Figure 5 shows that the multi-linear

FIGURE 5. Extracted spectral signatures of the EEG data tensor of
subject 1 via the multi-linear rank-(Lr , Lr , 1) decomposition (top) and via
the coupled version (bottom) that decomposes the EEG and the MEG
MAG data tensors jointly, with d = 2 and Lr = L(1)

r = L(2)
r = 7.
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FIGURE 6. Temporal signatures extracted by applying the multi-linear
rank-(Lr , Lr , 1) decomposition on the EEG data tensor of subject 1 with
d = 2 and Lr = 7.

rank-(Lr , Lr , 1) decomposition as well as its coupled version
is able to extract a 200 Hz component (component 2) related
to the 200 Hz band activity. Note that for d = 3, the spectral
signatures of two of the extracted components have a similar
envelope with an ascending slope from around 100 to 200 Hz
for certain channels. Choosing d = 2 appears to be sufficient
for the separation of the 200 Hz band activity-related signal
components.

Jointly examining the temporal signatures extracted by
applying the multi-linear rank-(Lr , Lr , 1) decomposition on
the EEG data tensor of subject 1 in Figure 6 and the corre-
sponding spectral signatures in Figure 5 (top), we can see that
the component with a higher frequency precedes the one with
a lower frequency. Some examples of the extracted spatial
signatures are presented in Figure 7. Please note the distinct
spatial signatures for the lower and the higher frequency
components. The spatial signature at 140 Hz marks the tran-
sition, and the spatial signatures at 200 Hz and 260 Hz are
similar. For component 1 (upper row in Figure 7), the spatial
signatures at 200 Hz and 260 Hz are more focal than the

spatial signatures at 20 Hz and 80 Hz. This effect is less
pronounced for component 2 (lower row in Figure 7).
We present the common temporal signatures and separate

spectral signatures for the EEG data tensor and the MEG
MAG data tensor of subject 1 extracted via the coupled
multi-linear rank-(Lr , Lr , 1) decomposition for various com-
binations of L(1)r and L(2)r in Figure 8(a), Figure 8(b), and
Figure 8(c), respectively. Note that to guarantee the unique-
ness of the multi-linear rank-(Lr , Lr , 1) decomposition, it

is required that Lr ≤ min
{
NF
2 ,

NC
2

}
[32] , i.e., Lr ≤ 7 in

this work. In all three cases, the 200 Hz component has been
extracted in both the SEPs and the SEFs. It is also indicated
that L(1)r and L(2)r are not required to be equal. Our observation
regarding the choice of the multi-linear rank is that with a
higher value, it appears to be more likely that the 200 Hz band
activity-related signal component is separated. Nevertheless,
there are occasions where choosing the multi-linear rank as
four leads to satisfactory results. Choosing Lr = 2 or 3 seems
to be insufficient to capture the variability inherent in the
data. In addition, the common temporal signatures extracted
via the coupled multi-linear rank-(Lr , Lr , 1) decomposition
is consistent with that in Figure 6 obtained by the separate
processing subject to a scaling ambiguity inherent in the
decomposition.

As mentioned in Section IV, the SDF-NLS algorithm [42]
was used in numerical simulations of this work. Due to the
fact that the initialization plays a significant role in determin-
ing the performance of the block term decomposition [35],
it is suggested that Monte Carlo runs should be applied such
that a suitable initialization can be found. Therefore, for each
case, 20 trials with a random initialization were conducted.
How to identify a good initialization for the computation of
the block term decomposition in a more intelligent way, in
particular for its application in the analysis of the SEPs and
SEFs, is still an open question [35].

Although employing the same tensor decomposition, the
approach proposed here is fundamentally different from that

FIGURE 7. Spatial signatures extracted by applying the multi-linear rank-(Lr , Lr , 1) decomposition on the EEG data tensor of subject 1
with d = 2 and Lr = 7. Top row: component 1; bottom row: component 2.
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FIGURE 8. Common temporal signatures (first sub-figure of each row) and respective spectral signatures for the EEG data tensor (second and third
sub-figures of each row, corresponding to component 1 and 2, respectively) and the MEG MAG data tensor (fourth and fifth sub-figures of each row,
corresponding to component 1 and 2, respectively) of subject 1 extracted via the coupled multi-linear rank-(Lr , Lr , 1) decomposition with d = 2 and
various combinations of L(1)

r and L(2)
r . (a) L(1)

r = L(2)
r = 7 (b) L(1)

r = 7, L(2)
r = 6 (c) L(1)

r = L(2)
r = 6.

in [36]. In this contribution, the data tensors were constructed
from the time-frequency representation of the signals. Com-
pared to [36], this leads to an additional dimension, the fre-
quency dimension, to exploit. Only the temporal and spatial
features of the seizures are extracted in [36]. By contrast, our
target is the separation of 200 Hz band activity-related signal
components, for which obtaining the spectral signatures is
essential. Moreover, we have proposed the concept of the
channel-dependent spectral signatures, giving rise to a new
way of interpreting the outcome of the decomposition.

B. COMPARISON BETWEEN SEPARATE AND JOINT
PROCESSING OF EEG AND MEG
Examining the spectral signatures of the subjects, we observe
that the coupled version of the multi-linear rank-(Lr , Lr , 1)
decomposition seems to better achieve the extraction of

200 Hz band activity-related signal components compared
to the separate processing of the EEG and the MEG data.
To quantify the superiority of the coupled decomposition,
we propose to compare the similarity of the two components,
i.e., a lower degree of similarity indicates a better separation.
An investigation has been carried out to identify a suitable
metric for the similarity. Both the correlation and the Haus-
dorff distance [43] of the extracted frequency signatures of
the two components have been considered. The Hausdorff
distance is defined as the greatest of all the distances from
a point in one set to the closest point in the other set. It is
usually used to assign a scalar score to the similarity between
two trajectories, data clouds or any sets of points [43].

To ensure that the resulting degree of similarity really
reflects how well the 200 Hz component has been separated,
we have normalized the spectral signatures and have taken
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FIGURE 9. Spectral signatures with respect to channel 38 extracted from
the EEG data tensor of subject 1 with d = 2 and L(1)

r = L(2)
r = Lr = 7 and

the corresponding correlation between the two signal components.

FIGURE 10. Spectral signatures with respect to channel 45 extracted from
the EEG data tensor of subject 1 with d = 2 and L(1)

r = L(2)
r = Lr = 7 and

the corresponding correlation between the two signal components.

only the frequency range in which the spectral signatures of
the two components are most likely to have different shapes,
i.e., from 80 to 280 Hz.

Figure 9 and Figure 10 present the spectral signatures of
the EEG data tensor of subject 1 with respect to channel
38 and 45, respectively. The results of the joint processing
are compared to those of the separate processing. When a
200 Hz component is extracted, the correlation of the spectral
signatures of the two components is low. Otherwise, it is

FIGURE 11. Comparison between the coupled multi-linear rank-(Lr , Lr ,
1) decomposition and a separate processing for the EEG data tensor of
subject 1 with d = 2 and L(1)

r = L(2)
r = Lr = 7 using the correlation of the

spectral signatures of the two components as a metric.

high and close to one if the spectral signatures are very
similar. Hence, using the correlation for the assessment of
the separation of the 200 Hz component seems plausible.
Although not presented here, similar observations have been
obtained for the case of the Hausdorff distance, implying that
it is an effective metric as well. However, it should be noted
that the larger the Hausdorff distance, the better the separation
of the two signal component is. Moreover, these results reveal
that a 200 Hz component can be extracted in some channels
but not all. It becomes more convincing that introducing the
concept of channel-dependent spectral signatures is the key
of extracting the 200 Hz component.

FIGURE 12. Violin plots each with colored dots as a scatter plot of the input data (the correlation between the spectral signatures of the two
components with respect to all channels) showing the comparison between the coupled multi-linear rank-(Lr , Lr , 1) decomposition and a
separate processing for the EEG data tensor of all eight volunteers with d = 2 and L(1)

r = L(2)
r = Lr = 7 using the correlation as a metric. First

row from left to right: subject 1 to 4; second row from left to right: subject 5 to 8.
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FIGURE 13. Violin plots each with colored dots as a scatter plot of the input data (the Hausdorff distance between the spectral signatures of
the two components with respect to all channels) showing the comparison between the coupled multi-linear rank-(Lr , Lr , 1) decomposition
and a separate processing for the EEG data tensor of all eight volunteers with d = 2 and L(1)

r = L(2)
r = Lr = 7 using the Hausdorff distance as a

metric. First row from left to right: subject 1 to 4; second row from left to right: subject 5 to 8.

For subject 1, we present a comparison between the cou-
pled multi-linear rank-(Lr , Lr , 1) decomposition and a sep-
arate processing for the EEG data tensor with d = 2 and
L(1)r = L(2)r = Lr = 7 using the correlation as a metric in
Figure 11, where the superiority of the coupled decompo-
sition can easily be observed. For all eight subjects, violin
plots are presented in Figure 12 and Figure 13, where the
correlation and the Hausdorff distance of the two extracted
components have been used as the metric, respectively. These
two batches of results match, both showing that, except for
subject 2, the joint processing via the coupled multi-linear
rank-(Lr , Lr , 1) decomposition outperforms the separate pro-
cessing. Through these results, one can also see that the
individual difference plays a role, in the sense that for the
recordings of some volunteers, it appears to be more difficult
to extract the 200 Hz component. It is worth noticing that
in addition to the individual difference, certain parameters
for computing the metrics have impact on the results, e.g.,
the frequency range.

The twometrics studied here, the correlation-based and the
Hausdorff distance-based, are only two examples showing
how the advantage of the joint processing can be assessed
quantitatively. With them, only relative results are shown,
i.e., only for the comparison of the joint and the separate
processing. In other words, the value of the correlation or the
Hausdorff distance does not necessarily reflect the absolute
ability of the proposed approach in extracting the 200Hz band
activity-related signal components. For instance, the corre-
lation being high in the case of some volunteers as shown
in Figure 12 does not really imply that the proposed strategy
fails to extract the 200 Hz component at all. This is justified
in Figure 14, where the spectral signatures of the EEG data

FIGURE 14. Comparison of the extracted spectral signatures via the
coupled multi-linear rank-(Lr , Lr , 1) decomposition and a separate
processing for the EEG data tensor of subject 2 with d = 2 and
L(1)

r = L(2)
r = Lr = 7.

tensor of subject 2 are presented. The separation of the 200Hz
component is achieved, though the correlation-based metric
appears to be higher in general compared to, e.g., subject 1, 3,
and 7. Again it justifies the importance of having a component
analysis strategy that is able to extract channel-dependent
spectral signatures. It is also possible that for some chan-
nels and for all channels of certain volunteers as well, it is
more difficult to extract a 200 Hz component which might
be very weak especially in comparison with the dominant
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signal component. In such a case, for example, the joint
processing succeeds in separating the 200 Hz component,
while the separate processing fails (or more rarely the other
way around as for subject 2 as shown in Figure 14). The
proposed multi-way component analysis via the multi-linear
rank-(Lr , Lr , 1) decomposition opens up the possibility of
using tensor decompositions for the analysis of 200 Hz band
activity in EEG and MEG and at the same time motivates fur-
ther development of more powerful multi-linear processing
tools.

Although beyond the scope of this work, devising an
effective evaluation approach for the performance of this
multi-way component analysis may facilitate the extraction
of the 200 Hz component, considering that parameter tuning
is required for the decomposition, e.g., the multi-linear rank,
and the initialization.

VII. CONCLUSION
The proposed multi-way component analysis approach based
on the multi-linear rank-(Lr , Lr , 1) decomposition and its
coupled version is able to extract channel-dependent spectral
signatures and therefore achieves the separation of the 200 Hz
band activity-related signal components in SEPs and SEFs.
Computing the coupled multi-linear rank-(Lr , Lr , 1) decom-
position of the SEP and SEF data tensors enables a joint
processing of these simultaneous EEG and MEG recordings.
The resulting three physiologically relevant signal signatures,
i.e., temporal, spectral, and spatial signatures, will help neu-
roscientists to gain better insight into brain functions. Our
approach can be straightforwardly applied to other combined
evoked potential and field recordings. Extensive numerical
simulations have been performed to thoroughly assess the
performance of the proposed method. The superiority of the
joint processing over the separate processing of EEG orMEG
has been observed in seven out of eight subjects. For future
work, the potential application of the proposed multi-way
component analysis approach in the extraction and descrip-
tion of other normal or pathological EEG and MEG signals
could be investigated.
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