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I. Introduction 

The number of articles added to the literature databases is proliferating. Large amounts of textual 
data could be collected as a part of the research, such as scientific literature, transcripts in the 
marketing and economic sectors, speeches in political discourse, such as presidential campaigns and 
inauguration speeches, and meeting transcripts [1]. PubMed dataset of MEDLINE also has grown 
enormously [2]. This large amount of textual information has created the problem of finding the 
relevance level between documents. Besides, it has become challenging to manage and exploit them. 
This difficulty is closely related to the semantic aspect of these documents. A large amount of data 
brings about new opportunities for discovering new values, helps to gain an in-depth understanding 
of hidden values, and incurs new challenges such as how effectively organized and recognized data 
character [3][4]. There are two main parts for identifying PubMed documents to overcome the 
challenges. The two parts are abstract and Medical Subject Heading (Mesh) heading. Mesh heading 
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Document similarity computation is an important research topic in information 
retrieval, and it is a crucial issue for automatic document categorization. The similarity 
value is between 0 and 1, then the closest value to 1 is represented both documents is 
considered more relevant, vice versa. However, the large scale of textual information 
has created the problem of finding the relevance level between documents. Therefore, 
the relevance between mesh heading text in the PubMed documents is higher than the 
relevance of the abstract text in the PubMed documents. Furthermore, parallel 
computing is implemented to speed up the large-scale documents similarity 
identification process that automatically calculates in the PubMed application. The 
execution time of mesh heading is 15.447 seconds, and the timely execution of abstract 
is 74.191 seconds. The execution time of mesh heading is higher than abstract because 
abstract contains more words than mesh heading. This study has successfully 
identified the similarity between large-scale biomedical documents of the PubMed 
documents that implemented a cosine similarity algorithm. The result has shown that 
the cosine similarity of the mesh heading texts is higher than the abstract text in the 
form of a graph and table shown in the PubMed application. The cosine similarity is 
useful to measure the similarity between documents based on the TF*IDF calculation 
result. 
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is the thesaurus for indexing, cataloging, and searching biomedical and health-related information. 
The relevance between mesh heading text in the PubMed documents is higher than the relevance of 
the abstract text in the PubMed documents. Besides, the National Library of Medicine provides the 
mesh heading. 

Text mining in big data analytics is emerging as a powerful tool for harnessing the power of 
unstructured textual data by analyzing it to extract new knowledge and to identify significant patterns 
and correlations hidden in the data [1][5]. Furthermore, quickly detecting similar documents becomes 
a fundamental problem as times go on [6]. This difficulty is closely related to the semantic aspect of 
these documents. Indeed, manual operation is possible and gives good results. However, a manual 
procedure is not possible with a large corpus. Therefore, document similarity computation is an 
important research topic in information retrieval, and it is a crucial issue for automatic document 
categorization. Moreover, parallel computing (for big data) reduces the processing time and quickly 
detects similar documents [7][8]. Thus, the parallelization of big data is emerging as an essential 
framework for large-scale parallel data applications.  

Some research determines the similarity between text used extracted keywords generated based on 
term frequency-inverse document frequency (TF*IDF) [9][10][11][12]. This research focuses on 
detecting the similarity of the document. The method for calculating similarity is cosine similarity 
then the result demonstrates that cosine similarity can calculate the difference of text document. 
Keyword extraction is a vital algorithm to extract appropriate keywords that can easily choose which 
document to read to learn the relationship between documents in the form of document retrieval, web 
page retrieval, document clustering, summarization, text mining, and others. It will automatically 
identify terms that best describe the keywords of a document [2][9][13]. Then, to obtain a suitable text 
relevance algorithm to demonstrate relevance calculation between two documents, many studies have 
been implemented the cosine similarity [9][14][15]. The cosine similarity is useful to measure the 
similarity between documents based on the result of the keyword extraction. However, the large-scale 
documents are needed extra time execution. Therefore, parallel computing is implemented to enhance 
the computing speeds by running several different tasks simultaneously on the same data [7][8]. 
Parallel computing refers to the breaking process of a more significant problem into smaller, 
independent parts. Often it can be executed concurrently by multiple processors communicating via 
shared memory then the results are combined upon completion as part of the overall algorithm. The 
main purpose of parallel computing is to increase the available computing power for faster application 
processing and troubleshooting. 

This research aims to develop a text mining application that adapts a text similarity algorithm for 
the biomedical domain to identify the relationship and relevance between large-scale documents. The 
implemented algorithms are run on a set of the published article from the biomedical documents to 
which keyword annotations by experts exist to compare with automatically extracted keywords by a 
parallel computing engine. 

II. Methods 

In this study, the similarity identification framework provided a guideline to conduct and organize 
the research properly. The framework illustrated in Figure 1 showed the workflow divided into several 
research phases that describe the action plan step by step as a guide to complete this study. Each phase 
will require the output to ensure that the research goals are achieved successfully.  

A. Master Data 

PubMed is an open-access search engine launched in January 1996 and made freely available 
online one year and a half years later. It has become one of the most commonly used search tools for 
retrieving scientific data. An almost continuous increase in the performed searches has been observed 
in Biomedical and Life Sciences [2][16][17][18]. PubMed is a search tool provided by the United 
States National Library of Medicine (NLM). MEDLINE is a central bibliographic database 
maintained by the United States National Library of Medicine (NLM), is the most commonly used 
electronic database in applied, systematic reviews of biomedical research. It covers articles published 
from 1946 to the present, primarily in a scholarly journal. This database is freely accessible via the 
PubMed website for 24 million records. The sample of PubMed documents is depicted in Figure 2. 
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Figure 2(a) depicts the sample image of PubMed Document, and Figure 2(b) shows the dataset 
represented in the XML format. Each XML file consists of different publication articles; more than 
three thousand articles are in every XML file. Dataset will be stored in MongoDB to support the 
parallel computing process for document similarity identification. MongoDB is the most popular 
NoSQL database system [19].  

MongoDB is a cross-platform document-oriented database system. As a NoSQL database, 
MongoDB avoids traditional table-based relational database structures that support JSON documents 
with dynamic schemes, making data integration in some application types easier and faster. Data is 
stored in a document consisting of key and value with type and size variable (not set before). Figure 3 
illustrates the sample of the PubMed documents stored in MongoDB. The data successfully inserted 
in MongoDB will be used for the following process. This dataset will be in JSON format inside the 
MongoDB collection with the same tag as data in XML format. This tag can be used for reading the 
data for the following process. MongoDB does not use the query to read the data like a SQL database.  

 

Fig. 1. The Similarity identification framework 

 

   

 (a) (b) 

Fig. 2. (a) Sample image of PubMed document, and (b) The image of a data set represented in XML format 
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B. Documents Similarity Engine 

Machine learning is a type of artificial intelligence that can learn from the data without explicit 
instructions and follow the instructions programmed [4]. Machine learning will assist in finding a 
solution optimizing performance by using sample data or previous experience to gain new insights, 
reveal new patterns, and produce more accurate results. This research will implement machine 
learning in the documents similarity engine to identify the similarity between large-scale documents 
known as master data by automatically extracting keywords using node.js. JavaScript is a 
programming language that runs on the client or browser side only, then Node.js exists to complete 
the JavaScript role. It can also apply as a programming language running on the server-side, like PHP, 
Ruby, or Perl. With parallel computing, the process will reduce the processing time and quickly detect 
the relationship and relevance between large-scale documents.  

1) Preprocessing 

At this stage, the results obtained from the master data will automatically go through to preprocess. 
The tag used in this study is Mesh Heading and Abstract. Both of the tags can represent the entire 
contents of the article published as testing data. This preprocessing will reduce the number of words 
that exist by removing stopwords and changing the words into the basic form (stemming) [9][20]. 
Stopword is words that are not a feature or unique word of a document like conjunctions. Taking into 
stopword in-text transformation will make the whole text mining system depend on the language 
factor. Therefore, it is a weakness of the stopword removal process. However, the stopword removal 
process is still used because this process will significantly reduce the system workload. By removing 
the stopword of a text, the system will only consider the considered important words. 

Stemming reduces derived words to their word stem, base, or basic form. One of the most widely 
used stemming algorithms is the Porter Stemmer [9][20]. The process of treating words with the same 
stem as synonyms, e.g., query expansion for search engines, is called conflation. The stem does need 
not be identical to the morphological root of a word since, for purposes of conflation, it is usually 
sufficient that related words map to the same stem even if this stem is not in itself a valid root. For 
example, the preprocessing depicts in Figure 4. 

2) Representative Algorithm: TF*IDF 

This phase is representative of algorithm TF*IDF. The TF*IDF-statistic short for term frequency 
times inverse the document frequency can extract keywords from a document by considering a single 
document and all documents from the corpus [2][21]. The promising candidate for a keyword in a 
specific document if it shows up relatively often within the document and rarely in the rest of the 

 

Fig. 3. Sample of PubMed documents stored in MongoDB 
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corpus is a word in the term of TF*IDF. The term frequency is given by the ratio of the number of 
term occurrences in the document and the number of occurrences of the most frequent word in one 
document. The formula of TF*IDF is shown in equation (1). 

𝑇𝐹 ∗ 𝐼𝐷𝐹 =  
𝑓𝑟𝑒𝑞(𝑃,𝐷)

𝑠𝑖𝑧𝑒(𝐷)
. 𝑙𝑜𝑔2 (

𝑁

𝑑𝑓(𝑃)
)   (1) 

where freq(P,D) is the number of times P occurs in document D, size(D) is the number of words in 
document D, df(P) is the number of documents containing P in the global corpus, and N is the size of 
the global corpus. 

3) Cosine Similarity 

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space 
that measures the cosine of the angle between them [9][14][15]. Cosine Similarity measures the 
similarity between two vectors in a dimensional space obtained from the cosine value of the angle 
from the product of the two vectors being compared because the cosine of 0° is 1 and less than 1 for 
other angles values. The similarity value of the two vectors is similar when the value of cosine 
similarity is 1.  

Cosine similarity is used in positive space, where the result is limited between values 0 and 1. If 
the value is 0, then the document is similar. If the result is 1, then the value is said to be dissimilar 
[9][14][15]. This limit applies to some dimensions. Therefore, cosine similarity is most often used in 
high-dimensional positive spaces. For example, in Information Retrieval, each term is assumed to be 
a different dimension. Furthermore, the document is marked with a vector where each dimension 
corresponds and how many terms appear. Equation (2) depicts the formula of cosine similarity. 

similarity = cos(𝜃) =  
𝐴 .𝐵

||𝐴||||𝐵||
=

∑ 𝐴𝑖 𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

  (2) 

where Ai and Bi are components of vectors A and B. A is the weight of each feature in vector A. B is 
the weight of each feature in B. If it is associated with information retrieval, then A is the weight of 
each term in document A, and B is the weight of each term in document B. In this study, cosine 
similarity is used because large-scale PubMed documents are high-dimensional data. In large-scale 
PubMed documents that contain many published articles, it also can be said that each document 
consists of many different tags. Measurement of similarity can be done by comparing document 1 
with document 2 then the system will calculate the similarity value. Ai.Bi is the value obtained from 
term A and term B, then the two values are added together. The value of Ai

2 is all values of term-
document A, and all values are raised to the power of two, and term Bi

2, all values obtained are raised 
to the power of two, then all values obtained are added up. 

C. Similarity Identification Result 

In this stage, the identification results of document similarities will be represented in a graph, 
statistical table, and web application. The visualization data using a graph and statistical table are 
intended to make it easier to present and understand the result [4][22]. Meanwhile, web application 
development can enhance the end-user experience and real-time data collection and provide custom 
content [22]. This study will show the graph and statistical table in the web application after the 
document similarity engine process has finished. For example, the PubMed Application interface web 
application depicts in Figure 5. The documents will be uploaded to the application. The application 
will automatically calculate the similarity between biomedical documents with parallel computing, 

 

Fig. 4. Preprocessing 
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reducing the processing time and quickly detecting the relationship and relevance between large-scale 
documents. Therefore, the results will be in the form of a graph and table that facilitate reading the 
calculation results.  

III. Results and Discussions 

The PubMed application developed as an identification documents similarity engine as an 
intelligent application that automatically calculated the similarity between biomedical documents then 
visualized the identification result in the form of a graph and table. The calculation process is used 
parallel computing that is reduced the processing time and quickly detects the relationship and 
relevance between large-scale documents. The first process is storing the master data in MongoDB. 
Then the punctuation will be removed, converted to lower case, implemented stop word removal, and 
extracted the basic word using the Porter Stemming algorithm. Two tags were used in this study, 
abstract and mesh heading. This tag can be used to read the data for the next process. Figure 6 depicts 
the sample abstract dataset from PubMed publications captured from MongoDB. In addition, the 
captured dataset is then transformed into the basic word. The basic word is the biomedical word, 
including the chemical formulation, medicine name, and others. Therefore, this need is needed to be 
considered. 

 

 

 

Fig. 5. PubMed application 
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Fig. 6. Sample captured abstract dataset 

The listing program to get the extracted keywords can be seen in preprocessing program. The input 
in preprocessing program is all abstract data, and the output is the string of each word from the 
abstract. The first step of preprocessing is removing all conjunction and punctuation in the abstract 
then transforming the letter into lowercase. The next step is stemming the words into their roots. 

 
Preprocessing program 
Input: abs_all 
Output: all_string 
Initialization var abs_all, all_string, removed_conjuction, text_array, reg, 
rm_punctutation, reg 
 

removed_conjuction  abstrak_fix.replace(regex_rm_conjuction," ") 
text_array  removed_conjuction.replace(/(\s)?\d\s+/g, ' ').replace(/\n+/g,' 

').split(" ").filter((d) => { return d != '' && 
conjuction_list.indexOf(d.toLowerCase()) < 1  

}).map((d) => { 
reg  new RegExp(/\d/,'gi') 
rm_punctuaction  d.replace(regex_rm_punctuaction,'') 
return reg.test(d) ? d : stemmer.stem(rm_punctuaction) 
 }) 
 

 
The sample of extracted keywords result is depicted in Figure 7. 
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Fig. 7. Sample of extracted keyword results 

Afterward, the extracted keyword weighting is carried out to calculate the frequency of occurrence 
of each word of the testing document in each document in the dataset. This phase is representative of 
algorithm TF*IDF. The TF*IDF can extract keywords from a document by considering a single 
document and all documents from the corpus. Finally, the TF*IDF calculation result is used to 
calculate the similarity of the documents testing with the PubMed documents using the cosine 
similarity algorithm. The listing program to get the term frequency value can be seen in the TFIDF 
program. 

 
TFIDF program 
Input: all_string 
Output: tf 
Initialization var all_string, tfidf, tf 

 
TfIdf  natural.TfIdf 
tfidf  new TfIdf() 
 abs_all.forEach((dataa) => { 
 tfidf.addDocument(dataa) 
 }) 
all_string.forEach((as) => {  
 tfidf.tfidfs(as, function(i, measure) { 
 }) 
 

 
The sample of TF*IDF results stored in MongoDB is captured in Figure 8.  

Cosine similarity is particularly used in positive space, where the outcome is neatly bounded in 0 
and 1. This similarity calculation will result in a value between 0 and 1. The closer value to 1, then 
both documents are more related, vice versa.  
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Fig. 8. Sample of captured TF*IDF results 

From the similarity process that has been done, the cosine similarity produces similarity values 
between one document compared to other documents. The document comparison focused on the 
Abstract and Mesh Heading tag of the PubMed publications document as the testing data. The listing 
code to measure the cosine similarity between documents can be seen in the cosine similarity program.  

 
Cosine_similarity program 
Input: tf 
Output: cos_sim 
Initialization var tf, cos_sim_all, l1, l2, tf1, tf2, sum, a, b, A, B, cos_sim, len_avg, len_avg2, 
tf_sum 

 
l1  tf[item.first].length 
l2  tf[item.second].length 
tf1  tf[item.first] 
tf2  tf[item.second] 
if ( l1 > l2 ) { 
len_avg  l1-l2 
for (var j=0; j<len_avg; j++){  
tf2.push({term : '-', tfdif : 0}) }} 
else{ 
 len_avg2  l2-l1 
 for (var k=0; k<len_avg2; k++){ 
 tf1.push({term : '-', tfdif : 0}) }} 
 tf_sum  [] 
tf1.forEach((item) => { 
a  tf2.filter((d) => { 
return item.term == d.term && item.term != '-' && d.term != '-'}) 
if (a.length > 0) { 
b  item.tfdif*a[0].tfdif 
tf_sum.push(b) }}) 
sum  tf_sum.length > 0 ? tf_sum.reduce((accumulator, currentValue) => accumulator + 

currentValue) : 0 
A  tf1.map((data, index) => {return Math.pow(data.tfdif,2)}).reduce((accumulator, 

currentValue) => accumulator + currentValue) 
B  tf2.map((data, index) => {return Math.pow(data.tfdif,2)}).reduce((accumulator, 

currentValue) => accumulator + currentValue) 
Cos_sim sum / (Math.sqrt(A)*Math.sqrt(B)) 
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The cosine similarity results shown in Figure 9 illustrated the sample result of cosine similarity 
between abstract text with different abstracts in other publications and mesh heading text with the 
different mesh heading in other publications. For example, the cosine similarity between document 2 
and document 1 between the mesh heading of published articles in the PubMed documents is 0.0045 
and indicates that the cosine similarity is 0.45%.  

Figure 10 illustrates the result of cosine similarity measurement between documents. In this case, 
it is using abstract and mesh heading text in each PubMed document. The graph of the cosine similarity 
result from this PubMed document is shown the mesh heading texts cosine similarity is higher than 
the abstract text. The results showed that the relevance between mesh heading text in the PubMed 
documents is higher than the relevance of the abstract text in the PubMed documents. Hence, the 
relationship and correlation between published articles in PubMed documents can be known from the 
mesh heading text. The number of words and terms in the abstract can affect text similarity results. 
Besides, this mesh heading tag can be used for subsequent data processing, such as classifying or 
clustering the PubMed documents. 

 

 

Fig. 9. Cosine similarity results between biomedical documents 

 

Fig. 10. Visualization of comparison of cosine similarity result between documents  
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Both visualizations of the calculation similarity result depicted in Figure 9 and Figure 10, known 
as similarity identification results, make it easier to present and understand the comparison result. This 
identification similarity result is shown in the PubMed application. In addition, this result is produced 
by the parallel computing engine in the PubMed application that reduced the processing time and 
quickly detected the relationship and relevance between large-scale biomedical documents.  

Meanwhile, Figure 11 is shown the execution time of the similarity engine application. The 
execution time of mesh heading is 15.447 seconds, and the timely execution of abstract is 
74.191 seconds. The execution time of mesh heading is higher than abstract because abstract contains 
more words than mesh heading. 

Documents similarity identification application has successfully identified the similarity between 
large-scale documents of the PubMed documents known as biomedical documents. The implemented 
cosine similarity and parallel computing as the document similarity engine is executed the documents 
faster. The execution time of mesh heading is 15.447 seconds, and the timely execution of abstract is 
74.191 seconds. Based on the results, the mesh heading runtime is higher than the abstract because 
the abstract contains more words than the mesh heading. In addition, using the abstract and mesh 
heading tag can represent the similarity between documents. The result is shown that the cosine 
similarity of the mesh heading texts is higher than the mesh abstract text.  

IV. Conclusion 

The documents similarity identification application has successfully identified the similarity 
between large-scale documents of the PubMed documents known as biomedical documents. This 
study implemented cosine similarity and parallel computing as the document similarity engine that 
executed the documents faster. The execution time of mesh heading is 15.447 seconds, and the timely 
execution of abstract is 74.191 seconds. The mesh heading runtime is higher than the abstract because 
the abstract contains more words than the mesh heading. Therefore, using the abstract and mesh 
heading tag can represent the similarity between documents—the result is shown that the cosine 
similarity of the mesh heading texts is higher than the mesh abstract text. Besides, the results showed 
that the relevance between mesh heading text in the PubMed documents is higher than the relevance 
of the abstract text in the PubMed documents. On the other hand, the number of words and terms in 
the abstract can affect the percentage of text similarity results. In the future, this mesh heading and 
abstract tag can be used for the next data processing, such as classification or clustering datasets.  
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