
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602

Vol 4, No 2, December 2021, pp. 105–116 eISSN 2597-4637

https://doi.org/10.17977/um018v4i22021p105-116

©2021 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id

This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

KEDS is Sinta 2 Journal (https://sinta.kemdikbud.go.id/journals/detail?id=6662) accredited by Indonesian Ministry of Education, Culture,

Research, and Technology

Similarity Identification of Large-scale Biomedical Documents

using Cosine Similarity and Parallel Computing

Merlinda Wibowo a, 1, *, Christoph Quix b, 2, Nur Syahela Hussien c, 3,

Herman Yuliansyah d, 4, Faisal Dharma Adhinata a, 5

a Faculty of Informatics, Institut Teknologi Telkom Purwokerto,
Jl. DI Panjaitan No.128, Karangreja, Purwokerto, Indonesia

b Information Systems & Data Science, Hochschule Niederrhein,
Adlerstraße 35, 47798 Krefeld, Germany

c Universiti Kuala Lumpur Malaysian Institute of Information Technology (UniKL MIIT)
1016, Jln Sultan Ismail, Bandar Wawasan, 50250 Kuala Lumpur, Malaysia

d Informatics Department, Universitas Ahmad Dahlan

Jl. Kapas No.9, Semaki,Umbulharjo, Yogyakarta, Indonesia
1 merlinda@iitelkom-pwt.ac.id*; 2 christoph.quix@hs-niederrhein.de; 3 syahela@unikl.edu.my;

4 herman.yuliansyah@tif.uad.ac.id; 5 faisal@ittelkom-pwt.ac.id

* corresponding author

I. Introduction

The number of articles added to the literature databases is proliferating. Large amounts of textual
data could be collected as a part of the research, such as scientific literature, transcripts in the
marketing and economic sectors, speeches in political discourse, such as presidential campaigns and
inauguration speeches, and meeting transcripts [1]. PubMed dataset of MEDLINE also has grown
enormously [2]. This large amount of textual information has created the problem of finding the
relevance level between documents. Besides, it has become challenging to manage and exploit them.
This difficulty is closely related to the semantic aspect of these documents. A large amount of data
brings about new opportunities for discovering new values, helps to gain an in-depth understanding
of hidden values, and incurs new challenges such as how effectively organized and recognized data
character [3][4]. There are two main parts for identifying PubMed documents to overcome the
challenges. The two parts are abstract and Medical Subject Heading (Mesh) heading. Mesh heading

ARTICLE INFO A B S T R A C T

Article history:

Submitted 7 December 2021

Revised 25 December 2021

Accepted 29 December 2021

Published online 31 December 2021

Document similarity computation is an important research topic in information
retrieval, and it is a crucial issue for automatic document categorization. The similarity
value is between 0 and 1, then the closest value to 1 is represented both documents is
considered more relevant, vice versa. However, the large scale of textual information
has created the problem of finding the relevance level between documents. Therefore,
the relevance between mesh heading text in the PubMed documents is higher than the
relevance of the abstract text in the PubMed documents. Furthermore, parallel
computing is implemented to speed up the large-scale documents similarity
identification process that automatically calculates in the PubMed application. The
execution time of mesh heading is 15.447 seconds, and the timely execution of abstract
is 74.191 seconds. The execution time of mesh heading is higher than abstract because
abstract contains more words than mesh heading. This study has successfully
identified the similarity between large-scale biomedical documents of the PubMed
documents that implemented a cosine similarity algorithm. The result has shown that
the cosine similarity of the mesh heading texts is higher than the abstract text in the
form of a graph and table shown in the PubMed application. The cosine similarity is
useful to measure the similarity between documents based on the TF*IDF calculation
result.

This is an open access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:

Biomedical Documents

Cosine Similarity

Keyword Extraction

Large Scale

Parallel Computing

Similarity Identification

http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
https://doi.org/10.17977/um018v4i22021p105-116
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://sinta.kemdikbud.go.id/journals/detail?id=6662
https://creativecommons.org/licenses/by-sa/4.0/

106 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116

is the thesaurus for indexing, cataloging, and searching biomedical and health-related information.
The relevance between mesh heading text in the PubMed documents is higher than the relevance of
the abstract text in the PubMed documents. Besides, the National Library of Medicine provides the
mesh heading.

Text mining in big data analytics is emerging as a powerful tool for harnessing the power of
unstructured textual data by analyzing it to extract new knowledge and to identify significant patterns
and correlations hidden in the data [1][5]. Furthermore, quickly detecting similar documents becomes
a fundamental problem as times go on [6]. This difficulty is closely related to the semantic aspect of
these documents. Indeed, manual operation is possible and gives good results. However, a manual
procedure is not possible with a large corpus. Therefore, document similarity computation is an
important research topic in information retrieval, and it is a crucial issue for automatic document
categorization. Moreover, parallel computing (for big data) reduces the processing time and quickly
detects similar documents [7][8]. Thus, the parallelization of big data is emerging as an essential
framework for large-scale parallel data applications.

Some research determines the similarity between text used extracted keywords generated based on
term frequency-inverse document frequency (TF*IDF) [9][10][11][12]. This research focuses on
detecting the similarity of the document. The method for calculating similarity is cosine similarity
then the result demonstrates that cosine similarity can calculate the difference of text document.
Keyword extraction is a vital algorithm to extract appropriate keywords that can easily choose which
document to read to learn the relationship between documents in the form of document retrieval, web
page retrieval, document clustering, summarization, text mining, and others. It will automatically
identify terms that best describe the keywords of a document [2][9][13]. Then, to obtain a suitable text
relevance algorithm to demonstrate relevance calculation between two documents, many studies have
been implemented the cosine similarity [9][14][15]. The cosine similarity is useful to measure the
similarity between documents based on the result of the keyword extraction. However, the large-scale
documents are needed extra time execution. Therefore, parallel computing is implemented to enhance
the computing speeds by running several different tasks simultaneously on the same data [7][8].
Parallel computing refers to the breaking process of a more significant problem into smaller,
independent parts. Often it can be executed concurrently by multiple processors communicating via
shared memory then the results are combined upon completion as part of the overall algorithm. The
main purpose of parallel computing is to increase the available computing power for faster application
processing and troubleshooting.

This research aims to develop a text mining application that adapts a text similarity algorithm for
the biomedical domain to identify the relationship and relevance between large-scale documents. The
implemented algorithms are run on a set of the published article from the biomedical documents to
which keyword annotations by experts exist to compare with automatically extracted keywords by a
parallel computing engine.

II. Methods

In this study, the similarity identification framework provided a guideline to conduct and organize
the research properly. The framework illustrated in Figure 1 showed the workflow divided into several
research phases that describe the action plan step by step as a guide to complete this study. Each phase
will require the output to ensure that the research goals are achieved successfully.

A. Master Data

PubMed is an open-access search engine launched in January 1996 and made freely available
online one year and a half years later. It has become one of the most commonly used search tools for
retrieving scientific data. An almost continuous increase in the performed searches has been observed
in Biomedical and Life Sciences [2][16][17][18]. PubMed is a search tool provided by the United
States National Library of Medicine (NLM). MEDLINE is a central bibliographic database
maintained by the United States National Library of Medicine (NLM), is the most commonly used
electronic database in applied, systematic reviews of biomedical research. It covers articles published
from 1946 to the present, primarily in a scholarly journal. This database is freely accessible via the
PubMed website for 24 million records. The sample of PubMed documents is depicted in Figure 2.

 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116 107

Figure 2(a) depicts the sample image of PubMed Document, and Figure 2(b) shows the dataset
represented in the XML format. Each XML file consists of different publication articles; more than
three thousand articles are in every XML file. Dataset will be stored in MongoDB to support the
parallel computing process for document similarity identification. MongoDB is the most popular
NoSQL database system [19].

MongoDB is a cross-platform document-oriented database system. As a NoSQL database,
MongoDB avoids traditional table-based relational database structures that support JSON documents
with dynamic schemes, making data integration in some application types easier and faster. Data is
stored in a document consisting of key and value with type and size variable (not set before). Figure 3
illustrates the sample of the PubMed documents stored in MongoDB. The data successfully inserted
in MongoDB will be used for the following process. This dataset will be in JSON format inside the
MongoDB collection with the same tag as data in XML format. This tag can be used for reading the
data for the following process. MongoDB does not use the query to read the data like a SQL database.

Fig. 1. The Similarity identification framework

 (a) (b)

Fig. 2. (a) Sample image of PubMed document, and (b) The image of a data set represented in XML format

108 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116

B. Documents Similarity Engine

Machine learning is a type of artificial intelligence that can learn from the data without explicit
instructions and follow the instructions programmed [4]. Machine learning will assist in finding a
solution optimizing performance by using sample data or previous experience to gain new insights,
reveal new patterns, and produce more accurate results. This research will implement machine
learning in the documents similarity engine to identify the similarity between large-scale documents
known as master data by automatically extracting keywords using node.js. JavaScript is a
programming language that runs on the client or browser side only, then Node.js exists to complete
the JavaScript role. It can also apply as a programming language running on the server-side, like PHP,
Ruby, or Perl. With parallel computing, the process will reduce the processing time and quickly detect
the relationship and relevance between large-scale documents.

1) Preprocessing

At this stage, the results obtained from the master data will automatically go through to preprocess.
The tag used in this study is Mesh Heading and Abstract. Both of the tags can represent the entire
contents of the article published as testing data. This preprocessing will reduce the number of words
that exist by removing stopwords and changing the words into the basic form (stemming) [9][20].
Stopword is words that are not a feature or unique word of a document like conjunctions. Taking into
stopword in-text transformation will make the whole text mining system depend on the language
factor. Therefore, it is a weakness of the stopword removal process. However, the stopword removal
process is still used because this process will significantly reduce the system workload. By removing
the stopword of a text, the system will only consider the considered important words.

Stemming reduces derived words to their word stem, base, or basic form. One of the most widely
used stemming algorithms is the Porter Stemmer [9][20]. The process of treating words with the same
stem as synonyms, e.g., query expansion for search engines, is called conflation. The stem does need
not be identical to the morphological root of a word since, for purposes of conflation, it is usually
sufficient that related words map to the same stem even if this stem is not in itself a valid root. For
example, the preprocessing depicts in Figure 4.

2) Representative Algorithm: TF*IDF

This phase is representative of algorithm TF*IDF. The TF*IDF-statistic short for term frequency
times inverse the document frequency can extract keywords from a document by considering a single
document and all documents from the corpus [2][21]. The promising candidate for a keyword in a
specific document if it shows up relatively often within the document and rarely in the rest of the

Fig. 3. Sample of PubMed documents stored in MongoDB

 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116 109

corpus is a word in the term of TF*IDF. The term frequency is given by the ratio of the number of
term occurrences in the document and the number of occurrences of the most frequent word in one
document. The formula of TF*IDF is shown in equation (1).

𝑇𝐹 ∗ 𝐼𝐷𝐹 =
𝑓𝑟𝑒𝑞(𝑃,𝐷)

𝑠𝑖𝑧𝑒(𝐷)
. 𝑙𝑜𝑔2 (

𝑁

𝑑𝑓(𝑃)
) (1)

where freq(P,D) is the number of times P occurs in document D, size(D) is the number of words in
document D, df(P) is the number of documents containing P in the global corpus, and N is the size of
the global corpus.

3) Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space
that measures the cosine of the angle between them [9][14][15]. Cosine Similarity measures the
similarity between two vectors in a dimensional space obtained from the cosine value of the angle
from the product of the two vectors being compared because the cosine of 0° is 1 and less than 1 for
other angles values. The similarity value of the two vectors is similar when the value of cosine
similarity is 1.

Cosine similarity is used in positive space, where the result is limited between values 0 and 1. If
the value is 0, then the document is similar. If the result is 1, then the value is said to be dissimilar
[9][14][15]. This limit applies to some dimensions. Therefore, cosine similarity is most often used in
high-dimensional positive spaces. For example, in Information Retrieval, each term is assumed to be
a different dimension. Furthermore, the document is marked with a vector where each dimension
corresponds and how many terms appear. Equation (2) depicts the formula of cosine similarity.

similarity = cos(𝜃) =
𝐴 .𝐵

||𝐴||||𝐵||
=

∑ 𝐴𝑖 𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

 (2)

where Ai and Bi are components of vectors A and B. A is the weight of each feature in vector A. B is
the weight of each feature in B. If it is associated with information retrieval, then A is the weight of
each term in document A, and B is the weight of each term in document B. In this study, cosine
similarity is used because large-scale PubMed documents are high-dimensional data. In large-scale
PubMed documents that contain many published articles, it also can be said that each document
consists of many different tags. Measurement of similarity can be done by comparing document 1
with document 2 then the system will calculate the similarity value. Ai.Bi is the value obtained from
term A and term B, then the two values are added together. The value of Ai

2 is all values of term-
document A, and all values are raised to the power of two, and term Bi

2, all values obtained are raised
to the power of two, then all values obtained are added up.

C. Similarity Identification Result

In this stage, the identification results of document similarities will be represented in a graph,
statistical table, and web application. The visualization data using a graph and statistical table are
intended to make it easier to present and understand the result [4][22]. Meanwhile, web application
development can enhance the end-user experience and real-time data collection and provide custom
content [22]. This study will show the graph and statistical table in the web application after the
document similarity engine process has finished. For example, the PubMed Application interface web
application depicts in Figure 5. The documents will be uploaded to the application. The application
will automatically calculate the similarity between biomedical documents with parallel computing,

Fig. 4. Preprocessing

110 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116

reducing the processing time and quickly detecting the relationship and relevance between large-scale
documents. Therefore, the results will be in the form of a graph and table that facilitate reading the
calculation results.

III. Results and Discussions

The PubMed application developed as an identification documents similarity engine as an
intelligent application that automatically calculated the similarity between biomedical documents then
visualized the identification result in the form of a graph and table. The calculation process is used
parallel computing that is reduced the processing time and quickly detects the relationship and
relevance between large-scale documents. The first process is storing the master data in MongoDB.
Then the punctuation will be removed, converted to lower case, implemented stop word removal, and
extracted the basic word using the Porter Stemming algorithm. Two tags were used in this study,
abstract and mesh heading. This tag can be used to read the data for the next process. Figure 6 depicts
the sample abstract dataset from PubMed publications captured from MongoDB. In addition, the
captured dataset is then transformed into the basic word. The basic word is the biomedical word,
including the chemical formulation, medicine name, and others. Therefore, this need is needed to be
considered.

Fig. 5. PubMed application

 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116 111

Fig. 6. Sample captured abstract dataset

The listing program to get the extracted keywords can be seen in preprocessing program. The input
in preprocessing program is all abstract data, and the output is the string of each word from the
abstract. The first step of preprocessing is removing all conjunction and punctuation in the abstract
then transforming the letter into lowercase. The next step is stemming the words into their roots.

Preprocessing program
Input: abs_all
Output: all_string
Initialization var abs_all, all_string, removed_conjuction, text_array, reg,
rm_punctutation, reg

removed_conjuction  abstrak_fix.replace(regex_rm_conjuction," ")
text_array  removed_conjuction.replace(/(\s)?\d\s+/g, ' ').replace(/\n+/g,'

').split(" ").filter((d) => { return d != '' &&
conjuction_list.indexOf(d.toLowerCase()) < 1

}).map((d) => {
reg  new RegExp(/\d/,'gi')
rm_punctuaction  d.replace(regex_rm_punctuaction,'')
return reg.test(d) ? d : stemmer.stem(rm_punctuaction)
 })

The sample of extracted keywords result is depicted in Figure 7.

112 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116

Fig. 7. Sample of extracted keyword results

Afterward, the extracted keyword weighting is carried out to calculate the frequency of occurrence
of each word of the testing document in each document in the dataset. This phase is representative of
algorithm TF*IDF. The TF*IDF can extract keywords from a document by considering a single
document and all documents from the corpus. Finally, the TF*IDF calculation result is used to
calculate the similarity of the documents testing with the PubMed documents using the cosine
similarity algorithm. The listing program to get the term frequency value can be seen in the TFIDF
program.

TFIDF program
Input: all_string
Output: tf
Initialization var all_string, tfidf, tf

TfIdf  natural.TfIdf
tfidf  new TfIdf()
 abs_all.forEach((dataa) => {
 tfidf.addDocument(dataa)
 })
all_string.forEach((as) => {
 tfidf.tfidfs(as, function(i, measure) {
 })

The sample of TF*IDF results stored in MongoDB is captured in Figure 8.

Cosine similarity is particularly used in positive space, where the outcome is neatly bounded in 0
and 1. This similarity calculation will result in a value between 0 and 1. The closer value to 1, then
both documents are more related, vice versa.

 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116 113

Fig. 8. Sample of captured TF*IDF results

From the similarity process that has been done, the cosine similarity produces similarity values
between one document compared to other documents. The document comparison focused on the
Abstract and Mesh Heading tag of the PubMed publications document as the testing data. The listing
code to measure the cosine similarity between documents can be seen in the cosine similarity program.

Cosine_similarity program
Input: tf
Output: cos_sim
Initialization var tf, cos_sim_all, l1, l2, tf1, tf2, sum, a, b, A, B, cos_sim, len_avg, len_avg2,
tf_sum

l1  tf[item.first].length
l2  tf[item.second].length
tf1  tf[item.first]
tf2  tf[item.second]
if (l1 > l2) {
len_avg  l1-l2
for (var j=0; j<len_avg; j++){
tf2.push({term : '-', tfdif : 0}) }}
else{
 len_avg2  l2-l1
 for (var k=0; k<len_avg2; k++){
 tf1.push({term : '-', tfdif : 0}) }}
 tf_sum  []
tf1.forEach((item) => {
a  tf2.filter((d) => {
return item.term == d.term && item.term != '-' && d.term != '-'})
if (a.length > 0) {
b  item.tfdif*a[0].tfdif
tf_sum.push(b) }})
sum  tf_sum.length > 0 ? tf_sum.reduce((accumulator, currentValue) => accumulator +

currentValue) : 0
A  tf1.map((data, index) => {return Math.pow(data.tfdif,2)}).reduce((accumulator,

currentValue) => accumulator + currentValue)
B  tf2.map((data, index) => {return Math.pow(data.tfdif,2)}).reduce((accumulator,

currentValue) => accumulator + currentValue)
Cos_sim sum / (Math.sqrt(A)*Math.sqrt(B))

114 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116

The cosine similarity results shown in Figure 9 illustrated the sample result of cosine similarity
between abstract text with different abstracts in other publications and mesh heading text with the
different mesh heading in other publications. For example, the cosine similarity between document 2
and document 1 between the mesh heading of published articles in the PubMed documents is 0.0045
and indicates that the cosine similarity is 0.45%.

Figure 10 illustrates the result of cosine similarity measurement between documents. In this case,
it is using abstract and mesh heading text in each PubMed document. The graph of the cosine similarity
result from this PubMed document is shown the mesh heading texts cosine similarity is higher than
the abstract text. The results showed that the relevance between mesh heading text in the PubMed
documents is higher than the relevance of the abstract text in the PubMed documents. Hence, the
relationship and correlation between published articles in PubMed documents can be known from the
mesh heading text. The number of words and terms in the abstract can affect text similarity results.
Besides, this mesh heading tag can be used for subsequent data processing, such as classifying or
clustering the PubMed documents.

Fig. 9. Cosine similarity results between biomedical documents

Fig. 10. Visualization of comparison of cosine similarity result between documents

 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116 115

Both visualizations of the calculation similarity result depicted in Figure 9 and Figure 10, known
as similarity identification results, make it easier to present and understand the comparison result. This
identification similarity result is shown in the PubMed application. In addition, this result is produced
by the parallel computing engine in the PubMed application that reduced the processing time and
quickly detected the relationship and relevance between large-scale biomedical documents.

Meanwhile, Figure 11 is shown the execution time of the similarity engine application. The
execution time of mesh heading is 15.447 seconds, and the timely execution of abstract is
74.191 seconds. The execution time of mesh heading is higher than abstract because abstract contains
more words than mesh heading.

Documents similarity identification application has successfully identified the similarity between
large-scale documents of the PubMed documents known as biomedical documents. The implemented
cosine similarity and parallel computing as the document similarity engine is executed the documents
faster. The execution time of mesh heading is 15.447 seconds, and the timely execution of abstract is
74.191 seconds. Based on the results, the mesh heading runtime is higher than the abstract because
the abstract contains more words than the mesh heading. In addition, using the abstract and mesh
heading tag can represent the similarity between documents. The result is shown that the cosine
similarity of the mesh heading texts is higher than the mesh abstract text.

IV. Conclusion

The documents similarity identification application has successfully identified the similarity
between large-scale documents of the PubMed documents known as biomedical documents. This
study implemented cosine similarity and parallel computing as the document similarity engine that
executed the documents faster. The execution time of mesh heading is 15.447 seconds, and the timely
execution of abstract is 74.191 seconds. The mesh heading runtime is higher than the abstract because
the abstract contains more words than the mesh heading. Therefore, using the abstract and mesh
heading tag can represent the similarity between documents—the result is shown that the cosine
similarity of the mesh heading texts is higher than the mesh abstract text. Besides, the results showed
that the relevance between mesh heading text in the PubMed documents is higher than the relevance
of the abstract text in the PubMed documents. On the other hand, the number of words and terms in
the abstract can affect the percentage of text similarity results. In the future, this mesh heading and
abstract tag can be used for the next data processing, such as classification or clustering datasets.

Declarations

Author contribution

All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no known conflict of financial interest or personal relationships that could have appeared to influence
the work reported in this paper.

Additional information

Reprints and permission information are available at http://journal2.um.ac.id/index.php/keds.

Publisher’s Note: Department of Electrical Engineering - Universitas Negeri Malang remains neutral with regard to
jurisdictional claims and institutional affiliations.

Fig. 11. Execution time of document similarity application

http://journal2.um.ac.id/index.php/keds

116 M. Wibowo et al. / Knowledge Engineering and Data Science 2021, 4 (2): 105–116

References

[1] H. Hassani, C. Beneki, S. Unger, and M. T. Mazinani, “Text Mining in Big Data Analytics,” Big Data Cogn. Comput.,
vol. 4, pp. 1–34, 2020.

[2] R. Islamaj et al., “PubMed Text Similarity Model and its application to curation efforts in the Conserved Domain
Database,” Database, vol. 1, pp. 1–13, 2019.

[3] S. F. Wamba, A. Gunasekaran, S. Akter, S. J. Ren, R. Dubey, and S. J. Childe, “Big data analytics and firm performance:
Effects of dynamic capabilities,” J. Bus. Res., vol. 70, pp. 356–365, 2016.

[4] M. Wibowo, F. Noviyanto, S. Sulaiman, and S. M. Shamsuddin, “Machine Learning Technique For Enhancing
Classification Performance In Data Summarization Using Rough Set And Genetic Algorithm,” Int. J. Sci. Technol. Res.,
vol. 8, no. 10, pp. 1108–1119, 2019.

[5] R. M. Packiam and V. S. J. Prakash, “An empirical study on text analytics in big data,” 2016.

[6] M. Erritali, A. Beni-hssane, M. Birjali, and Y. Madani, “An Approach of Semantic Similarity Measure between
Documents Based on Big Data,” Int. J. Electr. Comput. Eng., vol. 6, no. October 2017, pp. 2454–2463, 2016.

[7] L. A. Rahim, K. Mohan, K. Id, and S. Bahattacharjee, “Framework for parallelisation on big data,” PlosOne 14(5), pp.
1–19, 2019.

[8] B. Parhami, “Parallel Processing with Big Data,” pp. 1–7, 2018.

[9] R. Darmawan, R. S. Wahono, “Hybrid Keyword Extraction Algorithm and Cosine Similarity for Improving Sentences
Cohesion in Text Summarization,” J. Intell. Syst., vol. 1, no. 2, pp. 109–114, 2015.

[10] S. W. Iriananda, M. A. Muslim, and H. S. Dachlan, “Identifikasi Kemiripan Teks Menggunakan Class Indexing Based
dan Cosine Similarity Untuk Klasifikasi Dokumen Pengaduan,” Matics, vol. 10, no. 2, p. 30, 2019.

[11] D. A. R. Ariantini, A. S. M. Lumenta, and A. Jacobus, “Pengukuran Kemiripan Dokumen Teks Bahasa Indonesia
Menggunakan Metode Cosine Similarity,” J. Tek. Inform., vol. 9, no. 1, pp. 1–8, 2016.

[12] M. Z. Naf’an, A. Burhanuddin, and A. Riyani, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk
Mendeteksi Kemiripan Dokumen,” J. Linguist. Komputasional, vol. 2, no. 1, pp. 23–27, 2019.

[13] J. Wang and Y. Dong, “Measurement of text similarity: A survey,” Inf., vol. 11, no. 9, pp. 1–17, 2020.

[14] D. Kurniadi, S. F. C. Haviana, and A. Novianto, “Implementasi Algoritma Cosine Similarity pada sistem arsip dokumen
di Universitas Islam Sultan Agung,” J. Transform., vol. 17, no. 2, p. 124, 2020.

[15] D. Gunawan, C. A. Sembiring, and M. A. Budiman, “The Implementation of Cosine Similarity to Calculate Text
Relevance between Two Documents,” J. Phys. Conf. Ser., vol. 978, no. 1, 2018.

[16] J. Bian, M. Amin, S. Jonnalagadda, G. Luo, and G. Del, “Automatic identification of high impact articles in PubMed to
support clinical decision making,” J. Biomed. Inform., vol. 73, pp. 95–103, 2017.

[17] C. W. Halladay, T. A. Trikalinos, I. T. Schmid, C. H. Schmid, and I. J. Dahabreh, “Using data sources beyond PubMed
has a modest impact on the results of systematic reviews of therapeutic interventions,” in Journal of Clinical
Epidemiology, 2015, vol. 68, no. 9, pp. 1076–1084.

[18] K. Z. Vardakas, G. Tsopanakis, A. Poulopoulou, and M. E. Falagas, “An analysis of factors contributing to PubMed’s
growth,” J. Informetr., vol. 9, no. 3, pp. 592–617, 2015.

[19] MongoDB, “MongoDB,” 2017.

[20] P. dwi Nurfadila, A. P. Wibawa, I. A. E. Zaeni, and A. Nafalski, “Journal Classification Using Cosine
Similarity Method on Title and Abstract with Frequency-Based Stopword Removal ,” Int. J. Artif. Intell. Res., vol. 3,
no. 2, 2019.

[21] N. Ghasemi and S. Momtazi, “Neural text similarity of user reviews for improving collaborative filtering recommender
systems,” Electron. Commer. Res. Appl., vol. 45, no. October 2019, p. 101019, 2021.

[22] M. Wibowo, S. Sulaiman, S. Mariyam, and H. Hashim, “Mobile Analytics Database Summarization Using Rough Set,”
Int. J. Innov. Comput., vol. 7, no. 2, pp. 6–12, 2017.

https://doi.org/10.3390/bdcc4010001
https://doi.org/10.3390/bdcc4010001
https://doi.org/10.1093/database/baz064
https://doi.org/10.1093/database/baz064
https://doi.org/10.1016/j.jbusres.2016.08.009
https://doi.org/10.1016/j.jbusres.2016.08.009
https://www.ijstr.org/paper-references.php?ref=IJSTR-1019-23769
https://www.ijstr.org/paper-references.php?ref=IJSTR-1019-23769
https://www.ijstr.org/paper-references.php?ref=IJSTR-1019-23769
https://doi.org/10.1109/ICCIC.2015.7435747
http://doi.org/10.11591/ijece.v6i5.pp2454-2461
http://doi.org/10.11591/ijece.v6i5.pp2454-2461
https://doi.org/10.1371/journal.pone.0214044
https://doi.org/10.1371/journal.pone.0214044
https://doi.org/10.1007/978-3-319-63962-8_165-1
http://journal.ilmukomputer.org/index.php?journal=jis&page=article&op=view&path%5B%5D=44
http://journal.ilmukomputer.org/index.php?journal=jis&page=article&op=view&path%5B%5D=44
https://doi.org/10.18860/mat.v10i2.5327
https://doi.org/10.18860/mat.v10i2.5327
https://doi.org/10.35793/jti.9.1.2016.13752
https://doi.org/10.35793/jti.9.1.2016.13752
https://doi.org/10.26418/jlk.v2i1.17
https://doi.org/10.26418/jlk.v2i1.17
https://doi.org/10.3390/info11090421
http://dx.doi.org/10.26623/transformatika.v17i2.1613
http://dx.doi.org/10.26623/transformatika.v17i2.1613
https://doi.org/10.1088/1742-6596/978/1/012120
https://doi.org/10.1088/1742-6596/978/1/012120
https://doi.org/10.1016/j.jbi.2017.07.015
https://doi.org/10.1016/j.jbi.2017.07.015
https://doi.org/10.1016/j.jclinepi.2014.12.017
https://doi.org/10.1016/j.jclinepi.2014.12.017
https://doi.org/10.1016/j.jclinepi.2014.12.017
https://doi.org/10.1016/j.joi.2015.06.001
https://doi.org/10.1016/j.joi.2015.06.001
https://www.mongodb.com/
https://doi.org/10.29099/ijair.v3i2.99
https://doi.org/10.29099/ijair.v3i2.99
https://doi.org/10.29099/ijair.v3i2.99
https://doi.org/10.1016/j.elerap.2020.101019
https://doi.org/10.1016/j.elerap.2020.101019
https://ijic.utm.my/index.php/ijic/article/view/144
https://ijic.utm.my/index.php/ijic/article/view/144

	I. Introduction
	II. Methods
	A. Master Data
	B. Documents Similarity Engine
	1) Preprocessing
	2) Representative Algorithm: TF*IDF
	3) Cosine Similarity

	C. Similarity Identification Result

	III. Results and Discussions
	IV. Conclusion
	Declarations
	Author contribution
	Funding statement
	Conflict of interest
	Additional information

	References

