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I. Introduction 

Segmentation is a process that partitions image into segments [1]. Segmentation is useful for 
changing image representation into something more meaningful and easier to analyze, e.g., finding 
objects and boundaries. One of the methods to perform image segmentation is image thresholding. 
The method partitions image into background and foreground using a given threshold. This process is 
also called binarization because the segmentation result is a binary image that maps “0” pixel as 
background and “1” pixel as foreground.  

In order to perform image thresholding, the threshold value can be determined manually by 
observation or experiment. However, in the adaptive image thresholding method, the threshold is 
generated using a specific algorithm. The algorithm involves per pixel operation, histogram 
calculation, and iterative procedure to search the optimum threshold. Therefore, it can be costly for a 
high-resolution image. 

Some well-known adaptive image thresholding algorithms are Otsu [2], Iterative Self-Organizing 
Data Analysis Technique (ISODATA) [3], and minimum cross-entropy (MCET) [4]. Otsu method 
iteratively searches threshold that minimizes inter-class variance. ISODATA method iteratively 
updates the threshold until the average inter-class distance is less than a given threshold or reaches the 
maximum number of iterations. MCET method searches optimal threshold by calculating the cross-
entropy for all possible thresholds and selecting the one with minimum cross-entropy. The methods 
have been used in many image processing applications [5][6][7][8][9][10][11][12] to perform 
automatic image segmentation. 
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In image processing, achieving real-time performance is necessary, especially when processing 
video streaming or image in high resolution. A high-resolution image is a common product of satellite, 
aerial, biometric, and medical imaging, which is also often used in the verification and segmentation 
process. It is crucial to analyze the algorithm's complexity to know where it should be optimized to 
achieve real-time performance. High-Performance Computing (HPC) advanced technology allows the 
algorithm to be parallelized on Graphics Processing Unit (GPU). Parallel computation can optimize 
the iterative and serial procedure in an algorithm.  

Researchers have been proposed parallel adaptive image thresholding methods for image 
segmentation. Kanungo et al. [13] proposed a parallel genetic algorithm-based adaptive thresholding 
for image segmentation in uneven lighting conditions. Sandeli and Batouche [14] proposed image 
thresholding using multilevel thresholding based on a parallel generalized island model (GIM). Nafaji 
et al. [15] use parallel local adaptive thresholding for binarization of documents. Upadhyay et al. [16] 
proposed an adaptive thresholding approach for image segmentation on GPU. All of them gained 
significant speedup in computational time than serial implementation.  

This research proposed a parallel implementation on GPU for three adaptive image thresholding 
methods: Otsu, ISODATA, and MCET. Our contribution lies in the parallel approach of the adaptive 
image thresholding method on GPU to optimize their computational times to deal with a high-
resolution image. This paper is organized as follows: Section 2 presents the proposed approach of 
parallel adaptive image thresholding methods, Section 3 presents the result and discussion, and 
Section 4 presents the conclusion of this work. 

II. Method 

Adaptive image thresholding is a method to segment images using a threshold generated from a 
specific algorithm. The algorithm has the purpose of obtaining an optimal threshold for segmentation. 
In this research, some well-known adaptive image thresholding algorithms, namely Otsu, ISODATA, 
and MCET are parallelized to optimize high-resolution image performance. 

A. Otsu Method 

Otsu method is proposed by [2] to perform automatic thresholding on the grayscale image. Otsu 
method iteratively searches the threshold that maximizes inter-class variance. The steps to apply Otsu 
threshold is described below: 

a) An image is converted into a normalized gray-level histogram using (1) and considered as the 

probability distribution where the number of pixels in 𝑖𝑡ℎ  gray-level is 𝑛𝑖 , the total number of 

pixels is 𝑁, and the probability of 𝑖𝑡ℎ gray-level is 𝑝𝑖. 

𝑝𝑖 = 𝑛𝑖/𝑁 (1) 

b) Suppose the pixels are distributed into two classes (commonly as background and foreground), for 
all possible thresholds 𝑖 = 1 … 𝑘, the probability of class occurrence 𝜔𝑖, the class mean level 𝜇𝑖, 

and the inter-class variance 𝜎𝐵
2(𝑘) can be calculated using (2), (3), and (4), respectively. Here, 

𝜔(𝑘) and 𝜇(𝑘) is the zeroth-order and first-order cumulative moments of the histogram and 𝜇𝑇 =
∑ 𝑖 ∙ 𝑝𝑖

𝐿
𝑖=1  is the total mean level of an image. 

𝜔𝑖 = ∑ 𝑝𝑖
𝑘
𝑖=1 = 𝜔(𝑘) (2) 

𝜇𝑖 = ∑ 𝑖 ∙ 𝑝𝑖/𝜔𝑖
𝑘
𝑖=1 = 𝜇(𝑘)/𝜔(𝑘) (3) 

𝜎𝐵
2(𝑘) =

[𝜇𝑇𝜔(𝑘)−𝜇(𝑘)]2

𝜔(𝑘)[1−𝜔(𝑘)]
 (4) 

c) The select threshold maximizes 𝜎𝐵
2 using (5). This threshold is the optimal threshold.' 

𝜎𝐵
2(𝑘) = 𝑚𝑎𝑥

1≤𝑘<𝐿
𝜎𝐵

2(𝑘) (5) 
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If 𝐿 is the number of gray levels and 𝑁 is the number of pixels in the image, the computational 
complexity of Otsu method for grayscale image segmentation is given by the following operations: 

a) Histogram initialization and histogram computation have a computational complexity of 𝑂(𝐿) and 
𝑂(𝑁), respectively. 

b) Search the optimum threshold by maximizing the inter-class variance has a computational 
complexity of 𝑂(𝐿).  

c) Implementation of the Otsu threshold on the image requires computational complexity of 𝑂(𝑁). 

B. ISODATA algorithm 

Iterative Self-Organizing Data Analysis Technique (ISODATA) is proposed by [3] to compute the 
global image threshold. The method uses an iterative procedure to update the threshold. Image 
segmentation using the ISODATA algorithm is described as follows: 

a) Compute gray-level histogram from the image. 

b) Create initial segments by splitting the histogram into background and foreground segments using 
the initial threshold value 𝑇0. 

c) Calculate the mean of background pixels 𝜇𝐵 and the mean of foreground pixels 𝜇𝐹. 

d) Calculate a new threshold 𝑇 by averaging the two means value using (6). 

𝑇 =
𝜇𝐵+𝜇𝐹

2
 (6) 

a) Repeat the procedures c and d until the threshold value 𝑇 is less than a given threshold or the 

maximum iteration number is reached. 

The computational complexity of ISODATA method for grayscale image segmentation, where 𝐿 is 
the number of gray levels and 𝑁 is the number of pixels in the image, is given by the following 
operations: 

a) Histogram initialization and histogram computation have a computational complexity of 𝑂(𝐿) and 
𝑂(𝑁), respectively. 

b) Update the threshold until the average inter-class distance is less than a threshold or the maximum 
number of iterations is reached requires computational complexity of 𝑂(𝑄),  where 𝑄  is the 
number of iteration required by the algorithm.  

c) ISODATA threshold Implementation on the image requires computational complexity of 𝑂(𝑁). 

C. Minimum Cross-Entropy method 

The minimum cross-entropy (MCET) method is proposed by [4] to select an optimal threshold. 
The method searches the optimal threshold by calculating the cross-entropy for all possible thresholds 
and selecting the one with minimum cross-entropy. The procedure to apply the minimum cross-
entropy method for image segmentation is described below: 

a) Compute normalized gray-level histogram from image using (7) where the number of pixels in 𝑖 
gray-level is 𝑛𝑖, the total number of pixels is 𝑁, and the probability of 𝑖 gray-level is 𝑝𝑖. 

𝑝𝑖 = 𝑛𝑖/𝑁 (7) 

b) Initialize the entropy of gray-level histogram using (8), where 𝑎  and 𝑏  are the minima and 
maximum gray-level intensity. 

𝐻𝐶𝐸 = ∑ 𝑖 ∙ 𝑝𝑖 ∙ log(𝑖)𝑏
𝑖=𝑎  (8) 

c) Suppose the pixel is distributed into two classes: background and foreground with a threshold 𝑇. 
If the mean of pixel distribution below the threshold (background) is 𝜇𝐵 and the mean of pixel 
distribution above the threshold (foreground) is 𝜇𝐹 , then for all possible thresholds, 𝑇 = 𝑎 … 𝑏 
calculate the cross-entropy of pixel distribution below and above the threshold using (9). 

𝐻𝐶𝐸(𝑇) = ∑ 𝑛𝑖𝜇𝐵(𝑇) log
𝜇𝐵(𝑇)

𝑖

𝑇
𝑖=𝑎 + ∑ 𝑛𝑖𝜇𝐹(𝑇) log

𝜇𝐹(𝑇)

𝑖

𝑏
𝑖=𝑇+1  (9) 
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d) Select the optimal threshold 𝜏corresponding to the minimum of the cross-entropy using (10). 

𝜏𝐶𝐸 = arg min
𝑎≤𝑇≤𝑏

𝐻𝐶𝐸(𝑇) (10) 

If 𝐿 is the number of gray levels and 𝑁 is the number of pixels in the image, the computational 
complexity of MCET method for grayscale image segmentation is given by the following operations: 

a) Histogram initialization and histogram computation have a computational complexity of 𝑂(𝐿) and 
𝑂(𝑁), respectively. 

b) Select the minimum cross-entropy from all possible thresholds has a computational complexity 

of 𝑂(𝐿2).  

c) Implementation of MCET threshold on the image requires computational complexity of 𝑂(𝑁). 

D. Parallel Computing on GPU 

GPU (Graphics Processing Unit) is a high-level parallel architecture used to do a fast operation in 
computer graphics, and now it can be used other than graphics, which is known as GP-GPU (General 
Purpose-Graphics Processing Unit) [17]. The well-known general-purpose parallel computing 
platform and programming model is Compute Unified Device Architecture (CUDA) from NVidia.  

GPU is highly parallel, multithreaded, has many cores processors, and has very high memory 
bandwidth. The difference between how CPU and GPU process the data is shown in Figure 1(a) and 
Figure 1(b). GPU devotes more transistors to data processing than caching and flow control. GPU is 
built on an array of Streaming multiprocessors (SM), and it is organized into grids, blocks, and threads. 

Data-parallel processing maps data elements to parallel processing threads. Figure 1(c) shows the 
parallel processing threads in GPU. A multithreaded program is partitioned into blocks of threads that 
execute independently from each other. Therefore, using GPU, the computation of adaptive image 
thresholding algorithms will be parallel processed, reducing computational time. 

Using the advantages of GPU's parallel architecture, the adaptive image thresholding methods that 
involve histogram calculation, cumulative sum, search the minimum or maximum value from an array 
can be optimized using parallel reduction and parallel prefix sum (scan) algorithms. 

1) Parallel Reduction Algorithm 

A parallel reduction algorithm can optimize the computation of an array's sum, minimum and 
maximum value. Parallel reduction allows iteration from half of the total number of bin histograms 
processed parallel with a computational complexity of 𝑂(log(𝑁)) in the shared memory. 

 
(a) 

 
(c) 

 
(b) 

Fig. 1. GPU devotes more transistors to data processing [17]; (a) CPU data process; (b) GPU data process; and (c) GPU 

parallel processing  
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Every half of the total number of bin histograms is summed (sum reduction) or compared (min or 
max reduction) to the other half. The process is reduced to half every iteration until all of the element 
is processed. Loop unrolling can optimize the thread when the processed data is within the thread 
warp. The illustration of the parallel sum reduction algorithm is shown in Figure 2. 

2) Parallel Prefix Sum (Scan) Algorithm 

A parallel prefix sum (scan) algorithm can be used to calculate the cumulative sum of the histogram 
on shared memory. The procedure of parallel prefix sum (scan) algorithm is described as follow: 

a) Up-sweep (reduction) phase, sum every bin in the histogram with the bin on its right according to 
its stride. This step has a computational complexity of 𝑂(log(𝑁)). The illustration of the up-sweep 
(reduction) phase is shown in Figure 3. 

b) Set the last bin in the histogram to zero.  

c) Down-sweep phase, sum every bin in the histogram with the bin on its right according to its stride. 
This step also has a computational complexity of 𝑂(log(𝑁)). The illustration of the down-sweep 
phase is shown in Figure 4. 

The parallel prefix sum (scan) algorithm has a computational complexity of 𝑂(2 log(𝑁)) where the 
𝑂(log(𝑁)) is in the up-sweep phase and the down-sweep phase. 

 

Fig. 3. Illustration of up-sweep (reduction) phase [19] 

 

Fig. 2. Illustration of parallel sum reduction algorithm [18]  
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III. Result and Discussion 

The computational time of adaptive image thresholding algorithms on GPU has been tested on 
FVC2004 (Fingerprint Verification Competition) dataset [20]. The dataset consists of several 
fingerprint images. Selected images in the dataset are resized into various sizes using the bi-cubic 
interpolation method. The proposed approach is built using C++ with an additional CUDA library and 
runs on Intel Core i7-7700HQ 2.8GHz processor, 16 GB of RAM, and NVidia GeForce GTX 1050. 
The GPU has Pascal architecture with five streaming multiprocessors and computes capability 6.1. 

A. Adaptive Image Thresholding Implementation 

In this research, three adaptive image thresholding algorithms are implemented on GPU: Otsu, 
ISODATA, and MCET. The parallel approach of the three methods is similar except finding the 
optimum threshold to perform binarization. First, image data must be copied from host to the device 
memory. Several kernels to compute histogram, probability histogram, and cumulative histogram to 
find the optimal threshold and apply the threshold in the image are used. Finally, the binary image 
result is copied back to the host from device memory. The implementation of Otsu, ISODATA, and 
MCET methods on GPU is shown in Algorithm 1. 

As shown in Algorithm 1, the parallel approach of the adaptive image thresholding method uses 
several kernels to perform a specific operation, will keep short computation runs on streaming 
multiprocessors and increase its availability. The number of threads per block and the block per grid 
can be configured to run the kernel effectively. It is also suitable for error handling because it can be 
monitored on each kernel execution.  

Algorithm 1. Implementation of adaptive image thresholding method on GPU. 

ENUM method ← OTSU = 1, ISODATA = 2, MCET = 3 
 
READ image data and method 
 
COPY image data from host (CPU) to device (GPU) 
 
SET threshold ← 0 
 
histogram ← compute histogram from image data 
probability histogram ← compute probability histogram from a histogram  
cumulative histogram ← compute cumulative sum histogram from probability histogram 
 
SWITCH (method) 
 CASE OTSU 
  threshold ← find threshold that maximizes inter-class variance from cumulative sum histogram 

CASE ISODATA 
  threshold ← update the threshold until the average inter-class distance is less than a given 

threshold or the maximum number of iteration is reached  
 CASE MCET 
  above-threshold and below-threshold means ← compute above-threshold and below-threshold means 

from cumulative sum histogram  

 

Fig. 4. Illustration of down-sweep phase [19] 
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  cross-entropy histogram ← compute cross-entropy histogram from above-threshold and below-
threshold means 

  threshold ← compute the index of minimum cross-entropy from cross-entropy histogram 
END SWITCH 
 
binary image ← apply threshold to image data 
 
COPY binary image from device (GPU) to host (CPU) 

 

The highest computational complexity is 𝑂(𝑁) which lies in the histogram computation and image 
thresholding step. The parallel implementation of these steps will reduce the computational 
complexity because the work is computed at once and distributed to the total number of threads used 
for computation. The parallel approach of histogram computation on GPU is shown in Algorithm 2. 

Histogram computation uses the atomic addition function from CUDA and utilizes shared memory 
to store the partial histogram, which will reduce the queue at the addition instruction level to the 
number of threads block. The partial histogram in shared memory is then merged parallel to the 
histogram in global memory. This operation also uses atomic addition, which will reduce the queue 
at the addition instruction level to the number of blocks in a grid.  

Without partial histogram computation in shared memory, the histogram computation is likely to 
have long queues and be forced to perform serial computation. All operations that equal the number 
of data need to access and performed in addition to one specific bin in the histogram. For the gray-
level histogram, the number of histogram bins is fixed to 256. The queue is proportional to the data 
and their distribution in the image. With partial histogram computation, the queue is reduced to the 
number of threads and blocks used.  

Algorithm 2. The computation of histogram on GPU. 

GPU CONFIGURATION 
 block ← 256 // block size 
 grid ← 256 // grid size 
 
FUNCTION compute the histogram 
 
READ image data and image size 
 
t ← threadIdx.x 
n ← the number of histogram bin  
 
// histogram initialization with zeros 
ALLOCATE shared memory (smem) to store the histogram 
 IF t < n THEN  
  the tth index of smem histogram ← 0 
 END IF 
SYNCHRONIZE the threads 
 
p ← threadIdx.x + blockIdx.x * blockDim.x 
q ← blockDim.x * gridDim.x 
 
// compute partial histogram in shared memory 
WHILE p < image size DO 
 r ← the pth index of image data 
 atomic addition of the rth index of smem histogram with 1 
 p ← p + q 
END WHILE 
SYNCHRONIZE the threads 
 
// merge the partial histogram in shared memory to histogram in global memory  
IF t < n THEN 
 atomic addition of the tth index of histogram with the tth index of smem histogram 
END IF 
 
END FUNCTION 
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After the histogram is obtained, the probability histogram is computed by simple division. Otsu 
method uses the probability of 0th order histogram, computed by dividing the value in every bin with 
the total number of data and the probability of 1st order histogram computed by multiplying 0th order 
histogram with the corresponding gray level. MCET method uses the probability of an entropy 
histogram computed by multiplying first-order histogram with the gray level log. ISODATA method 
uses the 0th order histogram and 1st order histogram. The kernel configuration is a block with 256 
threads to calculate the 256-bins histogram.  

The computation of the cumulative sum of histogram uses a parallel prefix sum (scan) algorithm. 
The computational complexity can be reduced to 𝑂(2 log(𝑁)) from 𝑂(𝑁). To avoid bank conflict, it 
utilizes half of the histogram bin's total number as thread block and some offsets. Bank conflict occurs 
when two or more threads want to access the same bank memory address, forcing serial access to 
memory. With proper offsets, bank conflict can be avoided. The computation of the cumulative sum 
of a histogram is shown in Algorithm 3.  

Algorithm 3. The computation of the cumulative sum of the histogram on GPU. 

GPU CONFIGURATION 
 block ← 256 / 2  
 grid ← 1 
 
FUNCTION compute the cumulative sum of histogram  
 
READ probability histogram 
 
t ← threadIdx.x 
n ← the number of histogram bin 
offset ← 1 
p ← t 
q ← t + n / 2 
offset1 ← p >> 4 
offset2 ← q >> 4 
 
// load data to shared memory 
ALLOCATE shared memory (smem) to store the cumulative sum of histogram  
 the (p + offset1)th index of smem cumulative sum of histogram ← the pth index of 

probability histogram  
 the (q + offset2)th index of smem cumulative sum of histogram ← the qth index of 

probability histogram  
SYNCHRONIZE the threads 
 
// up-sweep (reduction) phase 
FOR d = n >> 1 TO d > 0 DO 
 SYNCHRONIZE the threads 
 IF t < d THEN 
  p ← offset * (2 * t + 1) – 1 
  q ← offset * (2 * t + 2) – 1 
  p ← p + p >> 4 
  q ← q + q >> 4 
  the qth index of smem cumulative sum of histogram ← the qth index of smem cumulative 

sum of histogram + the pth index of smem cumulative sum of histogram 
 END IF 
 offset ← offset * 2 
 d ← d >> 1 
END FOR 
 
// set the last element to zero 
IF t = 0 THEN 
 the (n – 1)th index of cumulative sum of histogram ← the (n – 1 + (n – 1) >> 4)th index 

of smem cumulative sum of histogram  
 the (n – 1 + (n – 1) >> 4)th index of smem cumulative sum of histogram ← 0 
END IF 
 
// down-sweep phase 
FOR d = 1 TO d < n DO 
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 offset ← offset >> 1 
 SYNCHRONIZE the threads 
 IF t < d THEN 
  p ← offset * (2 * t + 1) – 1 
  q ← offset * (2 * t + 2) – 1 
  p ← p + p >> 4 
  q ← q + q >> 4 
  temp value ← the pth index of smem cumulative sum of histogram 
  the pth index of smem cumulative sum of histogram ← the qth index of smem cumulative 

sum of histogram 
  the qth index of smem cumulative sum of histogram ← the qth index of smem cumulative 

sum of histogram + temp value 
 END IF 
 d ← d * 2 
END FOR 
 
// copy data from shared memory to global memory 
the pth index of cumulative sum of histogram ← the (p + 1 + (p + 1) >> 4)th index of smem 
cumulative sum of histogram 
IF q < n – 1 THEN 
 the qth index of cumulative sum of histogram ← the (q + 1 + (q + 1) >> 4)th index of 

smem cumulative sum of histogram 
END IF 
 
END FUNCTION 

 

Computation to find the optimal threshold from the cumulative sum of the histogram is different 
for each method. However, a block with 256 threads is used to match the number of histogram bins 
because all methods are based on a histogram. Otsu method finds a threshold that maximizes inter-
class variance can be achieved using a parallel reduction algorithm to find the index of maximum 
inter-class variance. Algorithm 4 shows the computation of inter-class variance on GPU. 

Algorithm 4. The computation of inter-class variances on GPU 

GPU CONFIGURATION 
 block ← 256 
 grid ← 1 
 
FUNCTION compute the inter-class variances 
 
READ cumulative sum of 0th order and 1st order probability histogram 
 
t ← threadIdx.x 
n ← the number of histogram bin 
 
// load data to shared memory 
ALLOCATE shared memory (smem) to store the cumulative sum of 0th and 1st order probability 
histogram  
 smem cumulative sum of 0th order histogram ← cumulative sum of 0th order probability 

histogram 
 smem cumulative sum of 1st order histogram ← cumulative sum of 1st order probability 

histogram 
 smem value ← 0 
 smem index ← t  
SYNCHRONIZE the threads 
 
// compute inter-class variances 
numerator ← power of two of (the (n – 1)th index of smem cumulative sum of 1st order 

histogram * the tth index of smem cumulative sum of 0th order histogram – the tth index of 
smem cumulative sum of 1st order histogram) 

denominator ← the tth index of smem cumulative sum of 0th order histogram * (1 – the tth 
index of smem cumulative sum of 0th order histogram) + EPSILON) 

the tth index of smem value ← numerator / denominator 
SYNCHRONIZE the threads 



78 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 

 
// find the index of maximum value of inter-class variance using parallel reduction 
algorithm 
FOR s = blockDim.x / 2 TO s > 0 DO 
 IF t < s AND the (t + s)th index of smem value > the tth index of smem value THEN 
  the tth index of smem index ← the (t + s)th index of smem index  
  the tth index of smem value ← the (t + s)th index of smem value 
 END IF 
 SYNCHRONIZE the threads 
 s ← s >> 1 
END FOR 
 
// get the index of maximum value and copy to global memory 
IF t = 0 THEN 
 threshold ← the 0th index of smem index 
END IF 
 
END FUNCTION 

 

At each iteration in the ISODATA method, the threads compute the average data below and above 
the threshold, compute the new threshold, and compare the new threshold with the previous threshold. 
If the difference of the thresholds is less than a given threshold or the iteration is reached the maximum 
number of iterations, the optimum threshold is obtained. Algorithm 5 shows the ISODATA 
computation on GPU. 

Algorithm 5. The computation of ISODATA on GPU 

GPU CONFIGURATION 
 block ← 256 
 grid ← 1 
 
FUNCTION compute the ISODATA 
 
READ cumulative sum of 0th order and 1st order histogram and maximum number of iteration 
 
t ← threadIdx.x 
n ← the number of histogram bin 
 
// load data to shared memory 
ALLOCATE shared memory (smem) to store the cumulative sum of 0th order and 1st order histogram 
 smem cumulative sum of 0th order histogram ← cumulative sum of 0th order histogram 
 smem cumulative sum of 1st order histogram ← cumulative sum of 1st order histogram 
 smem means below threshold ← 0 
 smem means above threshold ← 0  
 smem value ← 0 
SYNCHRONIZE the threads 
 
// compute all possible means below-threshold and above-threshold 
IF t < n – 1 THEN 
 the tth index of smem means below-threshold ← floor ((the tth index of smem cumulative 

sum of 1st order histogram / (the tth index of smem cumulative sum of 0th order histogram 
+ EPSILON)) +  0.5) 

 numerator ← the (n – 1)th index of smem cumulative sum of 1st order histogram – the (t + 
1)th index of smem cumulative sum of 1st order histogram 

 denominator ← the (n – 1)th index of smem cumulative sum of 0th order histogram – the (t 
+ 1)th index of smem cumulative sum of 0th order histogram + EPSILON 

 the tth index of smem means above-threshold ← floor ((numerator / denominator) + 0.5) 
END IF 
SYNCHRONIZE the threads 
 
// compute the average inter-class means 
the tth index of smem value ← floor (((the tth index of smem means below-threshold + the tth 

index of smem means above-threshold) / 2) + 0.5) 
SYNCHRONIZE the threads 
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// compute the difference between the current threshold and the previous threshold  
IF t = 0 THEN 
 iteration ← 0 
 difference ← 1 
 T ← floor ((the (n – 1)th index of cumulative sum of 1st order histogram / (the (n – 1)th 

index of cumulative sum of 0th order histogram + EPSILON)) + 0.5) 
 WHILE difference > 0 AND iteration < maximum number of iteration DO 
  threshold ← the Tth index of smem value 
  difference ← absolute of (the Tth index of smem value – threshold) 
  T ← the Tth index of smem value 
  iteration ← iteration + 1  
 END WHILE 
END IF 
SYNCHRONIZE the threads 
 
END FUNCTION 

 

The cross-entropy computation uses a parallel sum reduction algorithm to compute the sum above-
threshold and below-threshold entropy from the histogram. The sum is used to compute the entropy 
histogram. To compute all possible thresholds in parallel (iterates through all possible thresholds while 
performing parallel sum reduction algorithm to compute the sum above-threshold and below-
threshold), the configuration is set to use a block with 256 threads and a grid with 256 blocks. 
Algorithm 6 shows the cross-entropy computation on GPU. 

Algorithm 6. The computation of cross-entropy on GPU. 

GPU CONFIGURATION 
 block ← 256 
 grid ← 256 
 
FUNCTION compute the cross-entropy 
 
READ 0th order probability histogram, cumulative sum of 0th order and 1st order probability 
histogram 
 
b ← blockIdx.x 
t ← threadIdx.x 
n ← the number of histogram bin 
 
// load data to shared memory 
ALLOCATE shared memory (smem) to store the sum and entropy below-threshold and above-
threshold  
 data below-threshold ← the bth index of cumulative sum of 1st order probability histogram 

/ (the bth index of cumulative sum of 0th order probability histogram + EPSILON) 
 data above-threshold ← (the (n-1)th index of cumulative sum of 1st order probability 

histogram – the bth index of cumulative sum of 1st order probability histogram) / (the 
(n-1)th index of cumulative sum of 0th order probability histogram – the bth index of 
cumulative sum of 0th order probability histogram + EPSILON) 

 the tth index of smem below-threshold entropy ← 0 
 the tth index of smem above-threshold entropy ← 0  
SYNCHRONIZE the threads 
 
// compute entropy above-threshold and below-threshold 
IF t > b AND data above-threshold > 0 THEN 
 the tth index of smem above-threshold entropy ← (t + 1) * the tth index of 0th order 

probability histogram * log of (data above-threshold) 
END IF 
 
IF t <= b AND data below-threshold > 0 THEN 
 the tth index of smem below-threshold entropy ← (t + 1) * the tth index of 0th order 

probability histogram * log of (data below-threshold) 
END IF 
SYNCHRONIZE the threads 
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// perform parallel sum reduction  
FOR s = b / 2 TO s > 0 DO 
 IF t < s THEN 
  the tth index of smem above-threshold entropy ← the tth index of smem above-threshold 

entropy + the (t + s)th index of smem above-threshold entropy 
   the tth index of smem below-threshold entropy ← the tth index of smem below-threshold 

entropy + the (t + s)th index of smem below-threshold entropy  
 END IF 
 SYNCHRONIZE the threads 
END FOR 
 
// compute cross-entropy 
IF t = 0 THEN 
 the bth index of cross-entropy histogram ← global entropy – the 0th index of smem above-

threshold entropy – the 0th index of smem below-threshold entropy 
END IF 
 
END FUNCTION 

 

Finding the index of minimum cross-entropy can be done using a parallel reduction algorithm that 
compares half of the histogram bins with the other half of the histogram bins. The number of histogram 
bins is reduced for every iteration. Algorithm 7 shows the computation to find the index of minimum 
cross-entropy on GPU. 

Algorithm 7. The computation to find the index of minimum cross entropy on GPU. 

GPU CONFIGURATION 
 block ← 256 
 grid ← 1 
 
FUNCTION find the index of minimum cross-entropy 
 
READ  cross-entropy histogram 
 
t ← threadIdx.x 
 
// load data to shared memory 
ALLOCATE shared memory (smem) to store the cross-entropy histogram 
 smem cross-entropy histogram ← cross-entropy histogram 
 smem index ← t  
SYNCHRONIZE the threads 
 
// find index of minimum value using reduction 
FOR s = blockDim.x / 2 TO s > 0 DO 
 IF t < s AND the (t + s)th index of smem cross-entropy histogram < the tth index of smem 

cross-entropy histogram THEN 
  the tth index of smem cross-entropy histogram ← the (t + s)th index of smem cross-

entropy histogram 
   the tth index of smem index ← the (t + s)th index of smem index 
 END IF 
 SYNCHRONIZE the threads 
 s ← s >> 1 
END FOR 
 
// copy the result to global memory 
IF t = 0 THEN  
 threshold ← the 0th index of smem index 
END IF 
 
END FUNCTION 

 

The implementation of image thresholding is parallelized using thread-level parallelism on GPU. 
The approach is practical because the operation is independent for each pixel. The result of image 
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thresholding is a binary image “1” for pixels above the threshold and “0” for pixels below the 
threshold. Algorithm 8 shows the implementation of image thresholding on GPU. 

Algorithm 8. The implementation of image thresholding on GPU. 

GPU CONFIGURATION 
 block ← 256 
 grid ← 256 
 
FUNCTION apply the threshold on image 
 
READ image data, image size and threshold 
 
t ← threadIdx.x + blockIdx.x * blockDim.x 
s ← blockDim.x * gridDim.x 
 
// create binary image using image thresholding  
WHILE t < image size DO 
 IF the tth index of image data < threshold THEN 
  the tth index of binary image ← 0 
 ELSE 
  the tth index of binary image ← 1 
 END IF 
 t ← t + s 
END WHILE 
 
END FUNCTION 

 

B. Adaptive Image Thresholding Result 

The parallel adaptive image thresholding method is tested on selected images from the FVC2004 
(Fingerprint Verification Competition) dataset [20]. The result of adaptive image thresholding 
implementation is the binary image as shown in Figure 5 where (a) is the fingerprint image, (b) is the 
binary image generated by the Otsu method with threshold = 154, (c) is the binary image generated 
by ISODATA method with threshold = 156 and (d) is the binary image generated by MCET method 
with threshold = 123. As shown in Figure 5, the methods produce a different optimal threshold because 
the algorithm to search the optimum threshold is also different.  

C. Computational Time Evaluation 

The test was conducted on selected images from FVC2004 (Fingerprint Verification Competition) 
dataset [20]. The images are resized to generate various image sizes, namely 256×256, 512×512, 
1024×1024, 2048×2048, and 4096×4096. The purpose of this experiment is to measure the 
computational time of the proposed parallel approach of adaptive image thresholding methods when 
dealing with a large number of data (pixels).  

The computational time evaluation on CPU and GPU is shown in Figure 6 where (a) Otsu method, 
(b) ISODATA method, and (c) MCET method. The proposed parallel approach gains speedup 4-6 
times than CPU implementation from implementing adaptive image thresholding methods on GPU. 

 

    

(a) (b) (c) (d) 

Fig. 5. The result of adaptive image thresholding implementation; (a) fingerprint image; (b) Otsu method with threshold = 

154; (c) ISODATA method with threshold = 156; and (d) MCET method with threshold = 123 
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The performance significantly increases when dealing with larger data. The result shows that the 
parallel approach of the adaptive image thresholding method on GPU allows image segmentation to 
be processed in real-time, even when dealing with a large resolution of the image. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6. Performance evaluation of adaptive image thresholding implementation; (a) performance comparison of Otsu 

method implementation on CPU and GPU; (b) performance comparison of ISODATA method implementation on CPU 

and GPU; and (c) performance comparison of MCET method implementation on CPU and GPU 
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IV. Conclusion 

Image processing applications, for example, perform segmentation, usually requiring high-
resolution images such as satellite, aerial, biometric, or medical images as the input. The segmentation 
method, which involves per pixel operation and iterative procedure, can be costly in handling many 
data/pixels in the high-resolution image. Therefore, this research proposed a parallel approach of 
adaptive image thresholding algorithms, namely Otsu, ISODATA, and minimum cross-entropy on 
GPU to deal with high-resolution images. The experiment was conducted on selected fingerprint 
images taken from FVC2004 (Fingerprint Verification Competition) dataset. From the experiment 
with the various scale of image resolutions, GPU implementation's computational time shows 4-6 
times more speed up than CPU implementation. The performance is significantly increased when 
dealing with larger image resolution. This result shows that the parallel approach allows image 
segmentation to be processed in real-time, even when dealing with large image resolution. The 
contributions are shown in the analysis result of the adaptive image thresholding algorithms that can 
be optimized using the parallel approach to produce a significant speedup in a computational time 
when dealing with a high-resolution image. In future work, the proposed parallel approaches will be 
further optimized using multi-GPUs and implemented in more complex cases such as the 
segmentation of aerial or medical images. 
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