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Abstract

The exponential growth of online services and the data volume transferred over the
communication networks raises the need to change the structure of traditional networks to
a new paradigm that adapts to the development’s demands. Software-Defined Networking
(SDN) is an advanced network architecture aiming to evolve and transform the traditional
network into a more flexible network that responds to the new requirements. In contrast
to the traditional network, SDN allows decoupling of the control and data planes
functionalities to monitor, configure, and optimize network resources efficiently. It
has a centralized controller with a global network view to manage its resources using
programmable interfaces. The central control brings new security vulnerabilities and
acts as a single point of failure, which the malicious user might exploit to disrupt the
network functionality. Thus, the attacker launches massive traffic known as Distributed
Denial of Service (DDoS) attack from the SDN infrastructure layer towards the controller.
This DDoS attack leads to saturation of control channel bandwidth and destroys the
controller resources. Furthermore, the SDN architecture inherits some attacks types from
the traditional networks. Therefore, the attacker forges the packets to appear benign
and then targets the traditional DDoS objectives such as hosts, servers, applications,
routers. This work observes the behavior of malicious users. It then presents an
Intrusion Detection System (IDS) to safeguard the SDN environment against DDoS
attacks. The IDS considers three approaches to obtain sufficient feedback about the
ongoing traffic through the SDN architecture: the information from an external device,
the OpenFlow channel, and the flow table. Therefore, the proposed IDS consists of
three components; Inspector Device prevents the malicious users from launching the
saturation attack towards the SDN controller. Convolutional Neural Network (CNN)
Component employs the One-Dimensional Convolutional Neural Networks (1D-CNN)
to analyze the controller’s traffic through the OpenFlow Channel. The Deep Learning
Algorithm (DLA) component employs Recurrent Neural Networks (RNN) to detect the
inherited DDoS attacks. The IDS also supports distinguishing between malicious and
benign users as a new countermeasure. At the end of this work, the network emulator
Mininet and the programming language python model all the proposed components
to test their feasibility. The simulation results demonstrate that the proposed IDS
outperforms compared several benchmarking and state-of-the-art suggestions.
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Kurzfassung

Das exponentielle Wachstum der Online-Dienste und des über die Kommunikationsnetze
übertragenen Datenvolumens macht es erforderlich, die Struktur traditioneller Netzwerke
durch ein neues Paradigma zu ersetzen, das sich den aktuellen Anforderungen anpasst.
Software-Defined Networking (SDN) ist hierfür eine fortschrittliche Netzwerkarchitektur,
die darauf abzielt, das traditionelle Netzwerk in ein flexibleres Netzwerk umzuwandeln,
das sich an die wachsenden Anforderungen anpasst. Im Gegensatz zum traditionellen
Netzwerk ermöglicht SDN die Entkopplung von Steuer- und Datenebene, um Netz
werkressourcen effizient zu überwachen, zu konfigurieren und zu optimieren. Es ver-
fügt über einen zentralisierten Controller mit einer globalen Netzwerksicht, der seine
Ressourcen über programmierbare Schnittstellen verwaltet. Die zentrale Steuerung
bringt jedoch neue Sicherheitsschwachstellen mit sich und fungiert als Single Point of
Failure, den ein böswilliger Benutzer ausnutzen kann, um die normale Netzwerkfunk-
tionalität zu stören. So startet der Angreifer einen massiven Datenverkehr, der als
Distributed-Denial-of-Service Angriff (DDoS-Angriff) von der SDN-Infrastrukturebene
in Richtung des Controllers bekannt ist. Dieser DDoS-Angriff führt zu einer Sättigung
der Steuerkanal-Bandbreite und belegt die Ressourcen des Controllers. Darüber hinaus
erbt die SDN-Architektur einige Angriffsarten aus den traditionellen Netzwerken. Der
Angreifer fälscht beispielweise die Pakete, um gutartig zu erscheinen, und zielt dann
auf die traditionellen DDoS-Ziele wie Hosts, Server, Anwendungen und Router ab. In
dieser Arbeit wird das Verhalten von böswilligen Benutzern untersucht. Anschließend
wird ein Intrusion Detection System (IDS) zum Schutz der SDN-Umgebung vor DDoS-
Angriffen vorgestellt. Das IDS berücksichtigt dabei drei Ansätze, um ausreichendes
Feedback über den laufenden Verkehr durch die SDN-Architektur zu erhalten: die
Informationen von einem externen Gerät, den OpenFlow-Kanal und die Flow-Tabelle.
Daher besteht das vorgeschlagene IDS aus drei Komponenten. Das Inspector Device
verhindert, dass böswillige Benutzer einen Sättigungsangriff auf den SDN-Controller
starten. Die Komponente Convolutional Neural Network (CNN) verwendet eindimen-
sionale neuronale Faltungsnetzwerke (1D-CNN), um den Verkehr des Controllers über
den OpenFlow-Kanal zu analysieren. Die Komponente Deep Learning Algorithm (DLA)
verwendet Recurrent Neural Networks (RNN), um die vererbten DDoS-Angriffe zu
erkennen. Sie unterstützt auch die Unterscheidung zwischen bösartigen und gutartigen
Benutzern als neue Gegenmaßnahme. Am Ende dieser Arbeit werden alle vorgeschlage-
nen Komponenten mit dem Netzwerkemulator Mininet und der Programmiersprache
Python modelliert, um ihre Machbarkeit zu testen. Die Simulationsergebnisse zeigen
hierbei, dass das vorgeschlagene IDS im Vergleich zu mehreren Benchmarking- und
State-of-the-Art-Vorschlägen überdurchschnittliche Leistungen erbringt.

Ph.D. Dissertation of M.Sc. Abdullah Soliman Alshra’a iv



Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Principles of Software-Defined Networking 6
2.1. Overview of SDN Architecture . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1. Infrastructure Layer . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Control Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3. Application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4. SDN Application Programming Interfaces . . . . . . . . . . . . . 13
2.1.5. Benefits of Software-Defined Networking . . . . . . . . . . . . . . 15

2.2. OpenFlow Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1. OpenFlow Protocol Versions . . . . . . . . . . . . . . . . . . . . 18
2.2.2. OpenFlow Messages . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. OpenFlow Switch Architecture . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1. The Pipeline Process . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2. Group Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3. Meter Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4. SDN Controller Architecture . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Security Threats in Software-Defined Networking 30
3.1. Threat Vulnerabilities of SDN Paradigm . . . . . . . . . . . . . . . . . . 31
3.2. Distributed Denial of Service Attacks . . . . . . . . . . . . . . . . . . . . 34

3.2.1. Classifications of DDoS Attacks . . . . . . . . . . . . . . . . . . . 35

Ph.D. Dissertation M.Sc. Abdullah Soliman Alshra’a v



Contents

3.2.2. SDN as a Victim of DDoS Attacks . . . . . . . . . . . . . . . . . 37
3.3. Benefits of Using SDN Against DDoS Attacks . . . . . . . . . . . . . . . 39
3.4. Solutions to Address the DDoS Attack in SDN . . . . . . . . . . . . . . 42

3.4.1. Architecture-based Solutions . . . . . . . . . . . . . . . . . . . . 42
3.4.2. Statistics-based Solutions . . . . . . . . . . . . . . . . . . . . . . 44
3.4.3. Machine Learning-based Solutions . . . . . . . . . . . . . . . . . 48
3.4.4. Deep Learning-based Solutions . . . . . . . . . . . . . . . . . . . 49

3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Proposed Intrusion Detection System for SDN 53
4.1. The Proposed IDS Design Framework . . . . . . . . . . . . . . . . . . . 53
4.2. Inspector Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1. Using Inspector Device to Stop Packet Injection Attack in SDN . 57
4.2.2. Time Complexity of the Inspector . . . . . . . . . . . . . . . . . 58
4.2.3. Isolating the Inspector in case of a Malicious Attack . . . . . . . 59

4.3. Convolutional Neural Network to Detect Control Layer Saturation Attack 62
4.3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2. One-Dimensional Convolutional Neural Network Model . . . . . 63

4.4. Toward Applying IPSec Protocol to Counter DDoS Attacks . . . . . . . 71
4.4.1. Background: IP Security Protocol . . . . . . . . . . . . . . . . . 72
4.4.2. Background: Diffie–Hellman Key Exchange . . . . . . . . . . . . 73
4.4.3. Background: Problem Statement . . . . . . . . . . . . . . . . . . 74
4.4.4. Proposed Countermeasure . . . . . . . . . . . . . . . . . . . . . 76

4.4.4.1. Miss Table Architecture . . . . . . . . . . . . . . . . . . 76
4.4.4.2. Adaptive Threshold Algorithm Based on EWMA . . . . 77
4.4.4.3. Controller and User Countermeasure . . . . . . . . . . . 80

4.5. Recurrent Neural Networks to Classify Traffic . . . . . . . . . . . . . . . 81
4.5.1. Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 83
4.5.2. Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . 84
4.5.3. Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. Simulations and Experiments 89
5.1. Simulation Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2. Evaluation of the Inspector Device . . . . . . . . . . . . . . . . . . . . . 91

5.2.1. Feasibility of the Inspector Device . . . . . . . . . . . . . . . . . 91
5.2.2. Evaluating the Isolation of a Malicious Inspector . . . . . . . . . 95

Ph.D. Dissertation of M.Sc. Abdullah Soliman Alshra’a vi



Contents

5.3. The Performance Investigation of the Convolutional Neural Network
Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.1. CICDDoS2019 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2. Evaluation Criteria for One Dimension Convolutional Neural Net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.3. Effectiveness of One Dimension Convolutional Neural Network In

SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4. Performance Evaluation for Applying IPSec Concept . . . . . . . . . . 107

5.4.1. Effectiveness of the Proposed Method Against UDP Flood attack 107
5.4.2. Effectiveness of the Proposed Method Against SYN Flooding Attack110

5.5. Evaluation of the Recurrent Neural Networks Models . . . . . . . . . . . 113
5.5.1. InSDN Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.2. Evaluation Metrics and Experimental Results . . . . . . . . . . . 115

5.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6. Conclusions and Outlook 119
6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendices 123

A. Brief Description of the Mentioned Algorithms 124

B. The Selected Features for Recurrent Neural Networks 126

C. CICFlowMeter Features 128

Bibliography 131

List of Figures 146

List of Tables 149

Ph.D. Dissertation of M.Sc. Abdullah Soliman Alshra’a vii





Chapter 1

Introduction

A network consists of two or more computer systems that communicate to share resources.
The network nodes are linked through cables, telephone lines, radio waves, satellites,
infrared light beams, etc. Besides, the network nodes use standard communication
protocols over digital interconnections to communicate with each other. The networking
concept considers exchanging information and ideas among the network nodes with
common objectives or particular interests.

Over the past three decades, networks faced increased traffic demands since the orga-
nizations and users gradually depend on network connectivity for trade, user service,
communications, and resource sharing. That makes the traditional networks unsuitable
for managing the massive amount of exchanging data. Therefore, Software-Defined
Networking (SDN) confers reliable communication and emerges as a solution and
evolutionary approach to the traditional network structure and the growing trend in
networking.

This chapter illustrates the dissertation outlines and provides a preamble introduction
to the SDN concept, followed by the problem addressed in this work. Moreover, the
chapter highlights the objectives and the contribution of the dissertation. The chapter
presents a brief introduction and the motivation in section 1.1. Afterward, it explains the
problem statement in section 1.2. Section 1.3 lists the work objectives, and section 1.4
shows the contributions. Finally, section 1.5 presents the dissertation outline.
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1. Introduction

1.1 Motivation

Nowadays, the rapid increase in network traffic makes the communication networks
more complex than the networks three decades ago. By 2023, around two-thirds of
the world’s population will have access to the internet. In addition, there will be 5.3
billion active internet users compared to 3.9 billion in 2018 [Cis20]. Moreover, the new
technologies (e.g., Internet of Things (IoT), Machine Learning, and Deep Learning)
could increase the number of connected devices to be more than 70 billion worldwide by
2025 [Sta19].

The new technologies trends require a faster response, higher security, and easier
manageable networks adapting to the massive number of the connected user. However,
the conventional networks would no longer be able to meet the growing requirements.
Therefore, SDN appears as a new networking approach that can improve the network
performance and meet all these changes. SDN enables network operators to quickly
manage, configure and monitor their networks using programmable interfaces. It provides
central control of the network, which offers more flexibility. Also, SDN minimizes the
operating and maintaining costs and allows fine-grained traffic control or fast service
deployment [AMK+18,GBCMVVLV20].

In conventional networks, the control and data plane are situated together as a single
network entity (forwarding node). But, this forwarding node suffers from slow service
deployments and high operating costs due to the increased number of connected devices.
Therefore, SDN separates the controller plane from the data plane and presents a new
network structure comprising three isolated layers. On top of the SDN structure, the
application layer handles all the end-user activities and analyzes the network operation.
the application layer contains the high network policies and applies its decisions through
the underneath layers. In the middle of the SDN structure lies the control layer,
which consists of SDN controllers devices. The controller receives instructions from
the application layer, has a central view of the network, handles the ongoing traffics
and manages the network. The controller has applications configured according to the
administrator’s policies. These applications aim to manage the network traffic and
make a decision on behalf of the data plane in case a new flow reaches the switch with
new features. On the bottom of the SDN structure, The infrastructure layer contains
the forwarding nodes (e.g., routers, switches) and is responsible for forwarding and
processing the ongoing packets according to the rules and policies decided by the control
plane. Each switch has a flow table with the installed instructions. However, if the switch
receives a packet that does not match any entry in the flow table, the switch uses a Miss
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1. Introduction

Table entry which forwards the received packet as Packet_In message to the controller.
After that, the controller extracts the packet header and obtains the important features
for the routing algorithm to respond with a Packet_Out message containing the proper
rule to be installed in the requesting switch’s flow table [KDA19].

1.2 Problem Statement

Southbound Application Interface (Southbound API) is a bidirectional interface located
between the control and infrastructure layers. It allows the SDN controller to communi-
cate with the SDN switches to provide essential information like the current states of
links or switches. The most important task for the Southbound API is to transport the
Packet_In messages from the SDN switch to the controller and the Packet_Out reversely.
OpenFlow protocol is one of the first SDN standards that define the communication
methods between the SDN controller and switches over Southbound API. OpenFlow
protocol initially enables the SDN controller to directly interact with the forwarding
devices such as switches and routers. It facilitates adding, modifying, and removing
rules and instructions in the flow table. So, the OpenFlow protocol makes the network
more dynamic and responsive to real-time changes and traffic demands.

Although the communication process between the SDN controller and the switches is
effective and enhances the flexibility and programmability, it provides new vulnerabilities
and security challenges. The SDN controller is the brain of the network, and all
forwarding nodes depend on the SDN controller to manage the flow traffics. But, if the
controller is out of service, the entire network would be out of service. This problem is
known as a single point of failure.

Therefore, the adversary exploits this process and crafts a massive volume of packets
with different features (e.g., IP and MAC addresses). The crafted packets do not match
any installed flow entry when the adversary injects them through the switches. Hence,
the Miss Table will forward the unmatched packets to the controller. This type of attack
aims to consume control channel bandwidth and limited resources in both the control
and switches. It is recognized as a type of Denial of Service (DoS) attacks known as the
saturation or injection attack [DGLG17].

Moreover, SDN is susceptible to the inherited types of attacks from conventional networks.
This way, the adversary exploits the SDN architecture and performs different malicious
tasks. Also, the attack mainly uses the predefined flow rules in the flow table. The
adversary crafts the packets to have the appearance of benign packets. Then, the attack
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1. Introduction

utilizes the infrastructure layer to target the traditional DDoS objectives such as hosts,
servers, applications, routers, etc [Bha19].

1.3 Objectives

As the title of the dissertation states and conforms to the described motivations and
challenges in the previous sections. The main goal of this work is to develop an Intrusion
Detection System (IDS) framework. The proposed IDS addresses the DDoS attack
problem in the SDN environment in case of new vulnerabilities or inherited threats of
the legacy network structure. In more detail, the dissertation aims to:

1. Investigate the possibilities to launch DDoS attacks and define the vulnerable
aspects in the SDN structure.

2. Design an IDS framework dealing with all DDoS vulnerable aspects, whether new
or inherited threats.

3. Investigate the SDN controller ability to perform under the conditions of DDoS
attacks in presence of the proposed IDS component or without.

4. Define all available approaches to collect information about the traffic behavior in
the infrastructure layer and use the SDN controller to analyze them.

5. Make the SDN controller more intelligent by providing methods that grant the
SDN controller the ability to think and recognize new malicious attacks.

6. Determine the parameters that the controller can obtain from the network and
assign the suitable parameters as an input to the models and algorithms that
analyze the network behavior.

7. Enable the SDN switches to block DDoS attacks and recognize the benign packets
to forward them only.

1.4 Contributions

Throughout the dissertation, the contributions that have been realized towards the
objectives as mentioned earlier are briefly:

1. A review into SDN concept, its structure, associated problems, and the relevant
work.
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1. Introduction

2. A thorough overview and in-depth discussion of the SDN vulnerabilities and the
security threats caused by DDoS attacks.

3. The achievement of the IDS framework consisting of three components working
individually to prevent the network’s resource against DDoS attacks.

4. Evaluation of the proposed three components compared to the state-of-the-art.

5. The implementation of the Artificial Intelligence (AI) concept and statistical
methods on the SDN controller and applying them to recognize the malicious
behavior.

6. The suggestion toward the use of Internet Protocol Security (IPSec) to improve the
OpenFlow switch performance to differentiate between the benign and malicious
traffic flow.

1.5 Outline

This dissertation is organized as the following:

Chapter 2 provides a background of the SDN principle. It introduces an overview of the
SDN layers and the existing APIs. Moreover, chapter 2 presents the OpenFlow protocol,
its versions, and the exchange messages. Then, chapter 2 demonstrates the architecture
of the OpenFlow switches and SDN controller.

Chapter 3 highlights the threats that the SDN structure encounters, introduces the
problem statement, and classifies the DDoS according to the SDN environment. After
that, chapter 3 shows the advantages that SDN offers to detect and prevent DDoS
attacks and also provides insight into the state-of-the-art solutions to address DDoS
attacks.

In chapter 4, the proposed IDS framework is clarified with a detailed description of its
components and their functionalities. Besides, chapter 4 shows an overview to apply the
AI concepts and explain how the proposed IDS framework adopts them. A discussion
at the end of this chapter presents the essential ideas and various obstacles.

The simulation environments, network typologies, and evaluations are presented in
chapter 5. Additionally, chapter 5 provides and discusses details on the simulated
scenarios, AI models, and the obtained results. A brief discussion follows at the end
of the chapter. Finally, chapter 6 concludes the work contribution and addresses some
open issues and challenges for future works.
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Chapter 2

Principles of Software-Defined
Networking

Computer networks ordinarily aim to share information between all connected devices
from one endpoint to another. Internet acts as a great network example where users,
business foundations, industries, and other units exchange information to realize their
objectives. New complex issues invite the network administrations to modify the network
configurations dynamically because of the evolution in the computer systems and the
increasing of connected networks, .

The computer networks’ architecture needs forwarding devices, which is responsible
for transferring data under various standard protocols. The forwarding devices mainly
comprise data and control layers, as depicted in Figure 2.1. The control layer has a
CPU, memory routing table, and routing algorithms. The routing table (or more than
one routing table) contains routing information known as flow rules. The routing table
is calculated by routing algorithms or the developer’s configuration (connected routes,
statistical routes). Consequently, there could be more than one applicable rule for the
same flow. But, the best flow rule is installed in the forwarding table.

The infrastructure layer, called the forwarding or data layer, contains the input port
(Inport), output ports (Outport), the forwarding table, and the switch fabric. The
forwarding table has the definitive destination rule that routes the packet to given IP
prefix (or MAC address depending on the layer). When the Inport receives the packets,
it looks up the forwarding table for the applicable flow rules. Then, the switch fabric
forwards the packet to the proper Outport, which transmits the packet through the link
to the next hop. However, suppose there is no matching flow rule in the forwarding
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Figure 2.1. – Basic Router Architecture

table. In that case, the default flow rule pushes the packet through other functions
based on the routing algorithms (e.g., packet filtering) [MR17] [ASS18].

In such a legacy network, the infrastructure and control layers are combined in a single
physical device (forwarding device) as a standalone entity. This architecture brings
various challenges and drawbacks to the network administrators with increasing nodes’
number, adding a new network policy, incorporating network rules, or configuring
network policies. In the first Challenge, the forwarding nodes must be configured
individually for the entire network, which means more processing time and operating
costs [WL20]. Secondly, the vendors are forced to discover the internal work of their
network devices, such as routers, switches, and wireless access points. Thirdly, the
network scalability has to respond to the changing traffic demands. Last but not least,
there is a need for a network that has a holistic view of all the network resources due to
the new service-oriented requirements [EJNJ21].
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Traditional network protocols have been designed to work in a distributed control
environment. Each forwarding device transfers the data based on predefined algorithms.
However, the traditional networks are not flexible enough because the programming task
is challenging in such human-dependent architecture and distributed control environment
by multi-vendors and different protocols. This way, the developers should specify the
low-level operations of the routing algorithms in detail. [MBES16].

Based on the mentioned earlier, SDN solves the complexity problem by making the
network configuration more controllable, manageable, and centralized. SDN comes with
a new structure that is appropriate for today’s applications to perform well [HM21].
This chapter firstly indicates an overview of the SDN paradigm and introduces the
general SDN structure. Moreover, the chapter illustrates the OpenFlow protocol in
terms of its role and different versions. Afterward, the chapter explains the architecture
of both the OpenFlow switch and the SDN controller.

2.1 Overview of SDN Architecture

According to the Open Network Foundation (ONF), [ONF] The primary motivation
of SDN is to solve problems of the traditional networks and to accelerate innovation.
SDN physically dissociates the network control layer from the infrastructure layer,
which manages several forwarding devices by a single control layer. Consequently, SDN
presents a different architecture, makes the network devices manageable, programmable,
cost-effective, adaptable, dynamic, and suitable for high bandwidth, and enables today’s
applications to perform well. Moreover, the SDN concept supplies virtualized networks
with a different approach in network design and management.

The SDN architecture has physical devices that are just forwarding elements without
control functions in the infrastructure layer. All forwarding devices are dumb and
execute predefined instructions installed by the intelligent control, which is removed
from the forwarding layer to a separated control layer. Thus, the isolation of the control
layer promotes the network administrators and vendors to evaluate, debug, and test the
new SDN design before deploying it in the real network.

In other words, the SDN framework contains three layers (layers): the application
layer, control layer, and forwarding layer, as shown in Figure 2.2. The application
layer is located at the top of the SDN architecture, where specific applications handle
the abstract policy of the network and end-user activities. Also, the application layer
interacts with the control layer to configure the network services. The control layer
represents the intelligence part of the network because it contains the network operating
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Figure 2.2. – SDN Architecture.

system (the SDN controller) and has a comprehensive view of the network infrastructure
(forwarding layer). At the bottom of the SDN architecture, the infrastructure layer
includes dumb devices that execute actions installed by the control layer. The following
subsections introduce more details of these layers.

2.1.1 Infrastructure Layer

The infrastructure layer carries data traffic from one point to another within the
network by buffering, scheduling, and forwarding the data. The infrastructure layer
involves forwarding elements that receive the incoming data and transmit it through
the appropriate Outport according to the forwarding table entries (flow table).

As Figure 2.3 shows. Once the packet reaches the forwarding node, the forwarding node
looks up whether its forwarding table has the same data attributes (packet header) or
not. The Miss Table flow specifies how to process packets that do not match any flow
rule in the flow table. Therefore, in case there is no matching entry in the flow table,
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the Miss Table flow forwards the packet or part of the packet to the control layer.
Then, the control layer decides the appropriate conduct and responds by installing a
new flow rule. Eventually, the forwarding node forwards or drops the packet based on
the new flow rule. However, there are currently two available types of SDN switches.
Firstly, the physical switch is a hardware device used to connect devices and enable
communication across a network such as Pronto 3290 and 3780, IBM Rack, G8264, and
Juniper MX-Series. Secondly, the virtual switch, a software application, allows virtual
machines to connect to the outside world, such as Open vSwitch, Pica 8, Nettle, Panton,
Indigo, etc [XWX20,YY15].

2.1.2 Control Layer

The control layer is the brain of the SDN network. It acts as a bridge between the
network administration and the forwarding devices. Consequently, the control layer is
responsible for configuring the forwarding devices according to the potential network
policies in the application layer (e.g., routing, security, etc.). That means the control
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layer controls how the data packets are forwarded from one point to another by creating
flow rules and installing them into the forwarding device.

The intelligence of the control layer is provided by centralized SDN controller software
located on a server. The SDN controller plays this layer’s outstanding role because of
its global view and complete network knowledge. In other words, the developers and
researchers can install the network policies and their innovations into the infrastructure
layer through the control layer, which plays as an intermediate layer between them
[MBES16].

Controller Programming Language Further development
Ryu Python Yes
POX Python No

Floodlight Java Yes
OpenDaylight Java Yes

Beacon Java No
ONOS Java Yes
NOX C ++, Python No
Trema Ruby, C Yes

Table 2.1. – SDN Controllers

On the one side, various SDN controllers have been presented. They are often open-
source and under evolution. As Table 2.1 summarizes, which introduces brief information
about the best-known SDN controllers [MBES16]. In general, the developers consider
several factors in selecting an appropriate platform, such as programming language, cost,
complexity, the available options to scale and accommodate the network requirements,
etc.

Although all controller types have the same working concept, they differ in handling
the forwarding requests due to the various applied routing algorithms. For example,
when the OpenFlow switch receives a new packet that does not match any flow rule,
the Miss Table entry forwards the packet towards the control layer. Then, the SDN
controller inspects the sensitive fields (e.g., source addresses or destination addresses)
and uses them to make a decision [XWX20].

On the other side, the control layer could include one or many controllers. In the
one controller case (centralized architecture), the SDN controller manages all the
infrastructure requests overloading the controller resources, particularly the vast networks
(e.g., enterprise or data center networks). Furthermore, the one controller located in a
single server, a physically centralized method representing a single point of failure and a
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potential bottleneck. Thus, the single controller is not always appropriate for networks
due to a lack of reliability, scalability, security, performance, and availability.

As Figure 2.4 illustrates, a logically centralized control layer provides an alternative
structure. It physically includes distributed controller servers connects to the forwarding
devices through the Southbound interface. Thus, the forwarding devices see a single
control server as a centralized entity. As a sequence, several controllers might work in
flat architecture and perform the same tasks for either the whole network or a certain
domain. In other cases, the controllers may work together in a hierarchical architecture
to distribute the tasks and tune the controller performance [AR18].

2.1.3 Application layer

The application layer is located (also called the management layer) on the top of the
SDN structure. It contains network applications drawing the network features (e.g.,
network management, traffic engineering, network management, load balancing for ap-

Southbound Interface

Control Layer

Single Controller Server Logical Centralized  Controller Server

Infrastructure Layer

Figure 2.4. – Logical Centralized Control Layer
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plication servers, security, network access control, network virtualization, etc [SKBJ20]).
Furthermore, the application layer smoothly allows the developers to apply their ideas
and innovation. In this layer, the network applications are written by particular program-
ming languages. Moreover, specific compilers prepare (translate) the written application
to the correct Northbound interface. In fact, using this layer is not common because
most applications are written directly on the controller [MBES16].

The application layer receives feedback about the network status from the SDN con-
trollers. Therefore, the control layer retrieves all needed information from the infras-
tructure layer. Hence, the administration uses the received information to provide the
appropriate guidance to the control layer. Consequently, all the network information
must be available for the application layer to offer and enhance different network ap-
plications (e.g., network automation, network configuration and management, network
monitoring, network troubleshooting, network policies, and security).

A particular device achieves a specific objective in traditional networks, such as a
firewall or load balancer. Nevertheless, the SDN concept replaces these devices with an
application implemented in the control layer. Hence, the controller directly manages
the infrastructure layer. Recently, many applications have been evolving, and there
is initiative to have an application store support. The store would be under an SDN
environment, where the concerns might install and download the desired application
immediately [SKBJ20].

2.1.4 SDN Application Programming Interfaces

One of the essential objectives of SDN is to create centralized management that offers the
requested policies to all appliances in the infrastructure layer. Hence, the vendors do not
discover the product’s specifications. Therefore, Application Programming Interfaces
(APIs) enable the SDN architecture layers to be connected, as Figure 2.5 shows, even
though the network architecture is physically isolated.

There are mainly three APIs types in the SDN environment that ensure a full abstracted
communication as the following [LSL+20]:

1. Southbound Application Programming Interface: OpenFlow and other
protocols are proposed and used as Southbound APIs. These protocols transport
the configurations from the controllers to the forwarding devices such as switches
and routers. Southbound API is located between the control layer and the
infrastructure layer devices. Thus, this API facilitates the communication between
the controller and the forwarding devices. Also, the SDN controller adds, deletes,
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and modifies flow entries in the forwarding devices according to the predefined
algorithms.

OpenFlow protocol is deemed as a standard Southbound API and is typically the
most used API. The other proposals are often extensions to provide configuration
capabilities or dependent upon OpenFlow [LSL+20]. Generally, the Southbound
interface enables programmability and rapid reconfiguration. Thus, the controllers
can respond to the network changes and modify the network instruction at any
time. Furthermore, the controller uses Southbound APIs to retrieve all available
statistics regarding the network infrastructure states such as devices, ports, and
links.

The Southbound API transports notifications provided by the SDN controller to
the forwarding devices. Reversely, the Southbound API also transports information
from the forwarding devices to the SDN controller. Eventually, Transport Layer
Security (TLS) is applied to secure the communication between controller and

Control Layer

Routing Application IDS Application
Application Layer 

Load balance Other Applications
Other Applications

Other ApplicationsOther 
Applications

Northbound Interface

Applications - Controller Layer Interface

Infrastructure - Controller Layer Interface

Southbound Interface

East - West Bound Interface

Controller - Controller  Interface

Infrastructure Layer

Figure 2.5. – SDN Application Programming Interfaces
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switch. TLS is a technique to encrypt the communication between the controller
and switch using public and secret keys as is described in [LSL+20].

2. East-West bound API: East-West bound API is the physically distributed
control layer interface that allows data exchange between the SDN controllers.
Due to the presence of distributed controllers, the SDN controllers sometimes
need to exchange information about the inter-domain or intra-domain situation.
Consequently, the SDN controllers obtain the network state and bring scalability,
deployability, and interoperability to the control layer. In other words, East-West
bound is essential to achieving the benefits of the logically centralized controller.
However, East-West API is still considered an open research area, with no standard
East-West interface [BBMB16]. Many works proposed different interfaces, such as
the Software-Defined Networking interface (SDNi). SDNi is an East-West protocol
that contains different types of messages, e.g., Flow setup/tear-down/update and
Reachability update [YXT+12].

3. Northbound API: The main goal of Northbound API is to apply the ideas,
innovations of the developers or the administrator desired instructions on the
network infrastructure. Consequently, the Northbound API is the interface between
the control layer and the application layer. The Northbound API interacts
with the control layer devices once the applications need. For example, the
applications measure the Quality of Service (QoS), install a load-balancing solution,
force specific security settings, etc. However, that is not as easy as it should
be because of the lack of standardization of Northbound API proposals. In
contrast to the Southbound API, the Northbound API has no independent protocol
because the Northbound API has not been defined until now. But, the ONF has
started a Northbound Interface Working Group recently [HCA+20]. Currently, the
Northbound API is mostly software or programs. Therefore the SDN controllers
often use the Representational State Transfer (REST) API as the Northbound API
that provides a standardized interface for application development. Also, some
SDN controllers suggest their high-level interfaces referred to controller-based
APIs and other controllers use ad-hoc APIs [LSL+20].

2.1.5 Benefits of Software-Defined Networking

Recently, the interest in SDN increases and many methods have been presented to
realize an optimal structure. Also, different SDN technologies appear to support mobile,
enterprise, or data center networks. SDN becomes more popular, where the research
community pays attention to the potential benefits obtained from the SDN. In reality,
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the potential benefits of SDN are proved by granting a proper phase, particularly for
experimenting with new suggestions and boosting novel system plans. In this subsection,
the following points present the main benefits of SDN:

• SDN minimizes the network overhead since there is no need to control the network
traffic from forwarding device to forwarding device. Also, the change of the network
configuration is smoothly done over the centralized network controller [BGB18].

• The development of QoS is easier because of the central management. The SDN
controller is responsible for directing the data traffic and hence guarantees the
data delivery [BGB18].

• SDN is scalable and accepts new innovated units. So, the developers can apply
their ideas without needing to learn the complex features of the potential devices
[BGB18].

• SDN significantly minimizes and ends the downtime errors problem. The downtown
error comes during the manual interruption (human intervention) to configure the
individual networking devices. Consequently, the SDN maximizes the forwarding
device up-time [BGB18].

• SDN allows the administrator to define security network policies centrally through
the controller and harmoniously installs them into the whole network [BGB18].

• SDN reduces the operating costs for enterprises because the new policies or services
can be seamlessly integrated to all switches by the central controller. Thus, saving
time for individual node configurations. In addition, the SDN allows using virtual
resources and can reduce the need for traditional propriety hardware. Finally, due
to the central management, all the services might be monitored and managed,
which also saves administrative costs [AMK+18].

• Vendors do not need to expose the features of their devices [BGB18]. Furthermore,
the SDN protocols are pure and independent software. Therefore, the developer
can use them with different appliances instead of using over-featured appliances
running proprietary protocols [GBC16].

• Internet expansion shows a significant challenge. For example, increasing the
number of intelligent devices, sharing resources and massive amounts of the
manipulated data that are stored on different methods (e.g., data center and
clouds). Thus, the network operators, administrators, or service providers have to
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manage all the stored information. Readily, the SDN enables management and
control of the internet storage devices [GBC16].

• SDN provides the control of the entire network, which smooths the management
and configuration of networking resources. While the number of network nodes
grows every day, the separation between the control and infrastructure layer
provides efficient control over the network traffic and resources allocation. For
businesses that require integrating various services or applications, the SDN
allows a central point of control for all appliances in the network. For example,
the centralized SDN architecture supports an enterprise that has to host a new
application on many virtual machines together [AMK+18].

• Due to the existence of a single centralized point, SDN provides an efficient envi-
ronment for programmers using automation tools that orchestrate and automate
the SDN network. Using API such as REST API provides a common interface to
program and develop applications [GBC16].

• Running the SDN controller as a software program enables the controller to tune its
resource usage based on the necessary capability easily. Also, the SDN controller
can respond to any emergency case rapidly. As well, the SDN controller can
allocate its resources to increase the capabilities [HM21].

2.2 OpenFlow Protocol

As mentioned in subsection 2.1.4, the controller interacts with the infrastructure layer
devices using the Southbound API, which diverse proposed protocols have been intro-
duced. However, the available proposed protocols are mostly extensions to the OpenFlow
protocol, the commonly used protocol in SDN. Thereby, the SDN controller installs the
forwarding rules into the OpenFlow switch to control their behavior with all common
traffic types [GBC16].

According to the OpenFlow specifications, Figure 2.6 shows the OpenFlow protocol as
a middle-ware between the SDN controller and the OpenFlow switch [Oped]. Thus, the
SDN controller uses a secure channel and adds, edits, and removes any flow entry in the
flow tables with a proactive or reactive approach. Moreover, the controller can import
different statistics about the network behavior. That gives a complete overview of the
network stats and makes the proper decisions.

Once a packet reaches the Inport of the switch, the lookup process starts to find the
corresponding instruction in the flow table to execute. Nonetheless, in case no flow entry
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Figure 2.6. – OpenFlow Protocol Overview

matches the packet, the flow table has a Miss Table entry that forwards the packet
through the OpenFlow channel to the SDN controller. The SDN controller decides
the proper behavior to forward or drop the packet based on the predefined policies.
Thereby, the SDN controller replies with instructions to the switch, and hence the packet
is processed accordingly. The section presents a brief explanation of the OpenFlow
protocol, controller-to-switch messages, and OpenFlow protocol versions [Oped].

2.2.1 OpenFlow Protocol Versions

OpenFlow protocol facilitates the programming of the forwarding devices to manage and
direct the traffic according to the network policies. On the contrary, the vendors can
offer many switch types with different programmability levels. That might restrict the
administrator’s ability to control the traffic. It could also introduce the inconsistent of
traffic management between equipment from multiple vendors. Therefore, the OpenFlow
protocol developers target to improve functionality and consistency by issuing advanced
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OpenFlow versions. The table 2.2 shows a summarized comparison for different versions
of the OpenFlow protocol [ONF] [CHL15].

Version Amendments Target Application
1.1 Multiple table Avoid flow entry explosion (En-

try number is greater than the
table capacity)

–

Group table Enable applying action sets to
group of flows

Load balancing, failover, link
aggregation

Full Virtual Local Area
Network (VLAN) and
Multiprotocol Label
Switching (MPLS)
support

– –

1.2 OpenFlow Extensible
Match (OXM) match

Extend matching, flexibility –

Multiple controllers High availability/load balanc-
ing/scalability

Controller failover, controller
load balancing

1.3 Meter table Add QoS –
Table miss entry Provide flexibility –

1.4 Synchronized Table Better table scalability MAC learning/forwarding
Bundle Better switch synchronization Multiple switch configuration

1.5 Egress table Enabling packet processing in
Output port

–

Scheduled bundle Better switch synchronization –
2.0 Not formal yet Flexible packets switching/

Programmable switch /Other
proposals

Table 2.2. – Features Comparison for Various OpenFlow Versions

The table 2.3 describes the components of the flow table entries structure in OpenFlow
v1.0 [Opef]. The OpenFlow v1.0 is the first version published in December 2009 and
is widely used. The OpenFlow v1.0 has a single flow table only. Each entry in the
flow table has 12 options to match the header packet’s fields (Ingress Port, Ethernet
source, Ethernet destination, Ethernet type, VLAN ID, VLAN priority, IP source, IP
destination, IP protocol, IP ToS bits, TCP/UDP source port, TCP/UDP destination
port). For example, the entry could match the packet header based on source address,
destination address, TCP/UDP source, and destination port numbers [BM14].

Header Fields Counters Actions

Table 2.3. – Entry structure in OpenFlow Version 1.0

• Header Fields: To match against packet.

• Counters: Counts of the packets that matched the flow entry.
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• Actions: To apply on the matching Packet.

However, OpenFlow v1.1 was released in February 2011, which allows multiple flow tables
and the group table. In addition, matching packets in OpenFlow v1.1 is supporting
Multiprotocol Label Switching (MPLS) [Opeb]. After that, OpenFlow v1.2 was released
in December 2011. In this version, the flow entry can match the packet header of ICMPv6
and IPv6: source, destination by OpenFlow Extensible Match (OXM) match. Also,
OpenFlow v1.2 introduces the ability to modify the roles of the controllers (multiple
controllers as Master or Slave) and flow labels. As a consequence, the entry structure is
extended to include the new additions as shown in the table 2.4 [Opec].

Header Fields Counters Instructions

Table 2.4. – Entry Structure in OpenFlow Version 1.2

• Header Fields: To match against packets.

• Counters: Counts of the packets that matched the flow entry.

• Instructions: To modify the action set or pipeline processing.

In April 2012, OpenFlow v1.3 appeared with an extension of the QoS feature. Besides,
the meter tables have been the most important addition in OpenFlow v1.3. Furthermore,
the concept of the Table Miss entry as an extension for the flow table has been a second
major improvement, in addition, to support the IPv6 Extension Headers as a matching
field. Therefore the entry structure was upgraded as Table 2.5 [Oped].

Match Fields Priority Counters Instructions Timeouts Cookie

Table 2.5. – Entry Structure in OpenFlow Version 1.3

• Match Fields: To match rules of the flow entry.

• Priority: To match precedence of the flow entry.

• Counters: Counts of the packets that matched the flow entry.

• Instructions: To modify the action set or pipeline processing.

• Timeouts: The maximum amount of idle time (if no packet matched during idle
time, remove the entry) or hard time (if the hard time timeout is exceeded, remove
the entry) for the flow entry.

• Cookie: Flow entry identifier specified by the controller.
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In August 2013, OpenFlow v1.4 came with more attributes such as the Synchronized table
that improves the table scalability and the Bundle to release the switches synchronization,
especially in the configuration of multiple switches. Also, OpenFlow v1.4 added the
ability for flow monitoring and assigned the 6653 as the default OpenFlow channel
port [Opee]. Nevertheless, the next version, OpenFlow v1.5 (released in 2015), enables
the switches to process the packets on the Output port and enhances the synchronization
of the switches [Opea]. In both versions, 1.4 and 1.5, the entry structure has the same
fields to accommodate the new additions, as is clarified in Table 2.6.

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Table 2.6. – Entry Structure in OpenFlow Version 1.4 and 1.5

• Match Fields: To match rules of the flow entry.

• Priority: To match precedence of the flow entry.

• Counters: Counts of the packets that matched the flow entry.

• Instructions: To modify the action set or pipeline processing.

• Timeouts: The maximum amount of idle time (if no packet matched during idle
time, remove the entry) or hard time (if the hard time timeout is exceeded, remove
the entry) for the flow entry.

• Cookie: Flow entry identifier specified by the controller.

• Flags: Flags alter the way flow entries are managed.

2.2.2 OpenFlow Messages

The SDN controller and OpenFlow switches exchange different types of messages through
the OpenFlow interface. That enables the controller to configure the switches, receive
events from the switch, install the instructions to the switch Packet_Out, modify the
flows, monitor, and manage the network resources. Generally, the OpenFlow protocol
supports three main message types: controller-to-switch, asynchronous, and symmetric.
Each message type involves several sub-types [Oped], which are further explained the
essential OpenFlow Messages as the following:

• Controller-to-switch messages are initiated by the controller and used to
request statistics directly and also configure the switch to execute various other
tasks.
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– Features Message: This message reorganizes the identity and the basic
features of the attached switch. Once the OpenFlow channel is set up, the
controller transmits the OFPT_FEATURES_REQUEST message to the
OpenFlow switch. Consequently, the switch responds with the OFPT_FEA-
TURES_REPLY message containing information about the switch’s identity
and different statistics.

– Modify-State Message: The SDN controller is responsible for the flow table
entries in the switches. The Modify-State Message is used when the flow
table entries must be installed, modified, or deleted. Also, the Modify-State
Message modifies the switch port characteristics.

– Read-State Message: This message is sent to the switch to obtain the required
information about the current state, statistics, and configuration. For instance,
OFPMP_FLOW requests information about flow entries. Also, OFPMP_-
PORT_STATS obtains information about the switch ports statistics.

– Packet_Out or Flow-Mod Message: When the controller receives new request
(Packet_In message), the controller replies with a Packet_Out message,
which contains the required instruction to be implemented on the packet.

– Barrier Message: Sometimes, continuous operations reach the switch queues
with different priorities. Therefore, the controller issued the Barrier Request
message to request the OpenFlow switch to process all messages sent before
the Barrier Request message. After that, the OpenFlow switch will process
any messages sent after the Barrier Request message and notify about the
operation’s accomplishment.

– Role-Request Message: A controller defines its authority on the switch using
this message as a master or slave controller. Thus, the controller sets the
instructions or requests information of the switch according to its role.

• Asynchronous messages are change-dependent messages. The switch submits
the message based on a new network event, any change to the switch state, or in
case of errors. The four types of asynchronous messages are described below.

– Packet_In Message: The OpenFlow switch sends the Packet_In message
when there is a mismatch in the flow table for the newly received packet.
Therefore, the switch uses the Miss Table entry to transfer the task to
the controller by forwarding the encapsulated packet or some header fields.
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Furthermore, the developer can apply the same message as an action of any
entry.

– Flow-Removed Message: The flow entries are removed from the flow table
in two cases: (1) The predefined timeout is over. (2) The controller decided
to remove the entry according to its algorithms. Therefore, the controller
sends a Flow-Mod message to the switch, instructing the switch to delete
the entry. Then, the switch replies with a Flow-Removed message to confirm
the deletion of the entry from the flow table.

– Port-STATUS Message: Once the port is added, modified, or removed from
the switch, the controller must be informed by the PORT-STATUS message,
so the switch transmits the message to the controller.

– Error Message: The switch sends error messages to the controller with
unexpected events or errors.

• Symmetric messages are sent either by the controller or the switch without
any request needed.

– Hello Message: This aims to establish a connection between the controller
and the switch. Once the switch or the controller runs, the hello messages are
transmitted to notify the second part about the used version. However, if the
versions of both parts are not compatible, the Error message is transmitted
with the type (Hello failed) and code incompatible.

– Echo Message: After the connection is established correctly, both the con-
troller and the switch periodically send Echo messages to inform the second
part about latency, bandwidth, and liveliness.

2.3 OpenFlow Switch Architecture

The OpenFlow switch comprises various parts working to direct the traffic toward the
destination. The OpenFlow specification defines the architecture of the OpenFlow
switch implementation in four main blocks: the OpenFlow Channel (subsection 2.1.4),
the flow tables, meter table, and the group table as depicted in Figure 2.6. According
to the latest OpenFlow version, the components of flow tables, group tables, matching
fields, and action fields are covered in this section [Opea].
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2.3.1 The Pipeline Process

The Pipeline Process enables the OpenFlow switch to treat packets in many steps with
different flow tables and grants the OpenFlow switch more control on flow traffic. The
pipeline process is applied in two types of OpenFlow-compliant switches [AHMYR+17].
On the one hand, the OpenFlow-hybrid switch offers the pipelines for both the
OpenFlow and the traditional Ethernet switching. The hybrid OpenFlow switch contains
an OpenFlow instance and the traditional structure of the forwarding device. That
allows the administrator to deploy SDN traffic steering using the OpenFlow protocol
on the forwarding device infrastructure. Moreover, the OpenFlow-hybrid switch has
the traditional Ethernet switching processing such as layer two switching, layer three
routing, VLAN tagging, QoS, and ACL. On the other hand, the OpenFlow-only
switch supports the OpenFlow pipeline only.

Flow Table
 (1)

Flow Table
(2)

Flow Table
(N)

Packet In

Action set
= {}

Inport
Packet + Input port + Metadata

Flow Table 

2

1

3

Packet Out
Packet

Action set

Match fields:
Inport +
metadata+
Packet header

Match fields:
Inport +
metadata+
Packet header

(1) Find highest-priority matching flow entry
(2) Applying instructions:
I. Modify packet and update match fields
   (apply actions instructions)
II. Update action set
   (clear action and/or write action instructions)
III. Update metadata
(3) Send match data an action set to the following table.

Execute 
Action Set

Action set Action set

Figure 2.7. – Pipeline Process in OpenFlow Switch

Figure 2.7 demonstrates the pipeline processing sequence in the OpenFlow switch [Oped].
Each OpenFlow switch includes at least one flow table (see Figure 2.8 ), which keeps the
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installed instructions as entries. The switch uses the flow table to look up the packet
information by comparing the packet attributes to the Match field of the entry.

Occasionally, the packet could match diverse match fields. The switch executes the
action of the highest value in the Priority field. It is noteworthy that with updating
the OpenFlow versions, the developers often try to update the available matched fields
to be more flexible and suitable. That is evident in Table 2.7, which shows a sample
comparison among the different OpenFlow versions.

Match Priority Statistics

Miss Table Entry

Flow Table

Inport
Ethernet 

(Info)
IP

(Info)
Protocol

(Info)
Others

Outport Another table Modifying field    Drop Others

Packet + Byte Counters

Entry (2)

Entry (2)

Entry (N)

Instruction Cookie FlagTimeout

Figure 2.8. – OpenFlow Switch Table

Furthermore, every entry has a Counter field to count the number of packets that
have used the flow entry during the past time. The counter increases when the packet
executes the related action. The action is stored in the instruction field, which is
responsible for handling the matched packet. Thus, instruction could modify the packet
or change the related matched field or transmit the packet to another flow table for
more processing.

Ph.D. Dissertation of M.Sc. Abdullah Soliman Alshra’a 25



2. Principles of Software-Defined Networking

As the section 2.2 mentions, the Timeouts field is used for OpenFlow versions 1.3 and
up to define the maximum time before flow expiration by the switch. Also, the Cookie
field is a value used by the controller to filter flow entries. In OpenFlow version 1.5,
Flags manages the flow based on flag type, for example, the flag OFPFF_SEND_-
FLOW_REM. If this flag is set, the switch must send a flow removed message to
the controller. The message contains a complete description of the flow entry, such as
the reason for removal, the flow entry duration at the time of removal, and the flow
statistics.

Field 1.0 1.1 1.2 1.3&1.4&1.5
Ingress Port 3 3 3 3

Metadata 3 3 3

Ethernet: src, dst, type 3 3 3 3

IPv4: src, dst, proto, ToS 3 3 3 3

TCP/UDP: src port, dst port 3 3 3 3

MPLS: label, traffic class 3 3 3

OXM 3 3

IPv6 3 3

IPv6 Extension Headers 3

Table 2.7. – Match Fields’ Comparison for Various OpenFlow Versions

2.3.2 Group Tables

The flow entry is responsible for matching flows. It runs the proper action for relevant
incoming packets on logical OpenFlow interfaces. However, the action sometimes works
to direct the packets to a base action called a group action which executes a further
process on the packets. In other words, the Group Table represents sets of actions for
flooding and more complex forwarding semantics such as multi-path, fast reroute, and
link aggregation. Each group table includes a set of entries, where the entry has a list
of actions called buckets and a specific group type, as shown in the Table 2.8.

Group Identifier Group Type Counters Action Buckets

Table 2.8. – Group Table Fields in OpenFlow Version 1.3

• Group Identifier: To uniquely identify the group.

• Group Type: To identify the type of the group as there are required group types
and optional group types.

• Counters: Increased once a group processes a packet.
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• Action Buckets: A list of actions is stored in an action bucket.

Furthermore, Group tables have been using in OpenFlow protocol from version 1.2,
[Opec], and there are four types to execute the actions in the group tables:

1. All: To run all the action buckets in the group.

2. Select: To execute one action bucket in the group according to predefined roles
or algorithms such as round-robin.

3. Indirect: To execute only one defined bucket in this group.

4. Fast Failover: To execute the first live bucket. Therefore, if the switch should
forward a packet through port 1 but the port is down, the bucket uses the backup
action to forward the packet through port 2.

2.3.3 Meter Table

The Meter Table has been used since OpenFlow protocol version 1.3 [Oped]. It includes
different entries to determine a specific meter per flow. A meter entry enables QoS
operations, such as rate-limiting, by monitoring the meter to a specific port queue to
apply a complex QoS framework. The meter table fields are shown in 2.9.

Meter Identifier Meter Bands Counters

Table 2.9. – Meter Table Fields in OpenFlow Version 13

• Meter Identifier: To uniquely identify the Meter.

• Meter Bands : An unordered list of meter bands, where each meter band defines
the rate of the band and the method to treat the packet.

• Counters: Increased by one when a packet is processed by a Meter.

2.4 SDN Controller Architecture

Figure 2.9 depicts the basic architecture of the SDN controller, where the controller
usually has a set of pluggable applications or algorithms that work to achieve diverse
network tasks such as routing, security, load balancing, etc. In general, the routing
task is often the most important module because it is responsible for transferring
the data in the network. Therefore, all the basic controller architecture contains this
module. Furthermore, the controller architecture is developed by enhancing the exciting
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Routing Application IDS Application Load balance Other Applications
Other Applications

Other Applications
Other Applications

Northbound Interface

Southbound Interface

Built - Applications

Event Dispatcher

Open-Flow Parser Non Open-Flow Parser
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Figure 2.9. – The Basic Controller Architecture

module or inserting new modules. Thus, the SDN controller can perform analytics and
orchestrate new rules throughout the network.

The SDN controller architecture enables many companies to form the SDN controller
together. Each company can add its modules as a standalone unit that supports
interoperability and flexibility. For example, Cisco provides a controller platform
constructed by OpenDaylight. This open-source controller is interoperable with several
different proprietary applications [IIAR20].

The SDN controller is a logical entity that receives instructions or requirements from
the SDN application layer and applies them to the infrastructure layer’s networking
elements. Moreover, the SDN controller obtains network information from the hardware
devices in the infrastructure layer and then transfers them back to the SDN applications
with an abstract view of the network, including statistics and events. In addition to
the developers’ required applications, the basic SDN controller consists of four main
components [AGS18]:
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• Built-in applications that act as the basic applications for any controller to
work, such as topology discovery or routing algorithms.

• Parser is responsible for recognizing the OpenFlow version or non Open Flow
protocols such as XFlow (Netflow and Sflow), OF-Config, NETCONF.

• Event Dispatcher works to receive any incoming event as a packet and respond
with creating a proper packet.

• Libraries support packet processing operations.

2.5 Discussion

As this chapter describes, the SDN has three layers. Each layer performs different duties,
but all layer’s duties are compatible. Firstly, the infrastructure layer is responsible for
transferring the data between the connection parts. Secondly, the control layer manages
the forwarding devices according to the predefined algorithms. Finally, the application
layer draws the high policies of the network based on the administration’s willingness.
However, the application layer does not have a definitive standard yet, although there
is some initiative to construct it. Therefore, the seen efforts mainly concentrate on
developing the control and infrastructure layers.

In addition to what this chapter discussed, two other definitions should be mentioned,
Although the work does not rely on them directly. But, understanding them provides
a comprehensive view of the SDN principle. Firstly, SDN orchestration is a type of
networking technology that enables automated processes in a network. It coordinates all
the hardware and software components needed to support a given application or service.
Secondly, Network Functions Virtualization (NFV) is a new structure concept that
allows an organization to divide a physical network into various virtual networks. Both
SDN and NFV concentrate on network abstraction. SDN separates the control plane
from the Infurstracture plane. At the same time, NFV separates network forwarding and
other functions from the hardware employing them. When SDN executes on an NFV
infrastructure, SDN routes data packets from one network node to another. Moreover,
SDN’s control functions for routing, policy definition, and applications run in a virtual
machine somewhere on the network. Thus, NFV provides essential networking functions
while SDN manages and orchestrates them for particular applications [GTV+14].
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Chapter 3

Security Threats in Software-Defined
Networking

According to chapter 2, the SDN has superiority over traditional networks in terms of
network management because of the separation between the control and infrastructure
layers. Despite all SDN advantages, the SDN is susceptible to new security threats and
inherited types from legacy networks. This way, the attackers could exploit the SDN
architecture to perform different malicious tasks.

In recent years, multiple studies about SDN security have reported the new security
challenges and the SDN vulnerabilities that appear in the SDN architecture. Some
researchers categorize the SDN vulnerabilities according to the fundamental functional
layers as the application layer, control layer, and infrastructure layer [SB20]. Other
researchers spoke about the potential type of attacks that the attackers can execute
in these three layers of SDN architecture [EDP21] [ELKJ20]. However, the centralized
control is still one of the most critical problems since it causes a single point of failure
in the SDN architecture, especially when the control layer does not have a technique to
sense the abnormal behavior.

This chapter describes the security threats that counter the SDN layers. It also covers
the common dreadful attacks in the SDN, organizes state-of-the-art solutions addressing
the DDoS attacks, and discusses the countermeasures.
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3.1 Threat Vulnerabilities of SDN Paradigm

In the SDN, the idea of centralized control facilitates the programmable network process.
It creates new vulnerabilities that provide different points to launch various types
of security threats [BEFEE16]. Furthermore, all SDN layers have vulnerable aspects
susceptible to different types of attacks. The SDN might counter the traditional methods
that attack the legacy network elements such as the applications or infrastructure
devices.

The side-effect of the traditional attacks could be more dangerous in the SDN than the
legacy network, where these attacks are common and have a mild or moderate side-effect
on the legacy networks. For example, once the malicious user promiscuously accesses a
vulnerable machine or application in the legacy network, the side-effect would mostly
be on the machine or a particular port. Therefore, the malicious user should maximize
the privilege or exploits the victim machine to launch another attack against different
machines or networks [DSR17]. In addition, other attack types exploit the new SDN
architecture and work under the SDN environment only due to the separation between
the data and control layer functionality. The malicious user directs the attack towards
the SDN controller or the Southbound channels, which destroys the whole network.
In general, four attack dimensions conclude the significant attacks against the SDN
network as Figure 3.1 depicts.

1. Attacks on the infrastructure layer elements: The infrastructure layer
consists entirely of connected dumb devices (OpenFlow switches) responsible for
transferring information from the source to the destination. Thereby, the attacker
strives to obtain unauthorized access to a machine or application in the SDN
network to launch the attack. For example, the attacker sends many malicious
traffics to exhaust the goal resources such as memory or CPU [ELKJ20].

When the first packet arrives at the OpenFlow switch, the switch looks up the
flow table to match the packet header information. In case there is no flow rule
to match, the OpenFlow switch uses the Miss Table flow to forward the packet
to the SDN controller as a Packet_In. Eventually, the controller installs a new
flow rule in the flow table. Due to the space constraint, the limited resources
of the switch become a problem; for instance, the OpenFlow switch memory is
limited. Therefore, the attacker exploits this scenario to destroy the OpenFlow
switch performance by installing more false flow rules.
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Figure 3.1. – SDN Attack Dimensions

Furthermore, the detection of false flow rules is a significant security challenge for
the infrastructure layer. But, the OpenFlow switches are only packet forwarding
devices, which means the OpenFlow switches do not have a process to distinguish
between genuine and malicious flow entries. So, the OpenFlow switches depend
on the SDN controller to ensure the security of the infrastructure layer. Hence, if
the network controller is compromised, all infrastructure layer elements would be
influenced and compromised [AS19b] [SB20].

2. Attacks on the Southbound interface: In the SDN network, The OpenFlow
channel is the primary and only artery that the SDN controller uses to configure
the devices of the infrastructure layer and supply the flow rules. Although all
OpenFlow switches physically share the same channel, even though they logically
seem to have a separate channel to the SDN controller.

The attacker can generate malicious traffic, which forces the switch to launch a
massive volume of Packet_In to the controller. Thus, a flooding attack causes
congestion in the OpenFlow channel links and may expend high-data bandwidth
[DAJ19]. That means the attack destroys the SDN network entirely because the
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OpenFlow channel breaks down. Furthermore, the communication between the
SDN controller and the switches would be unavailable. Finally, the SDN controller
trusts information that comes from the switches through the OpenFlow channel.
The attacker exploits the controller’s trust to launch other attack types, such
as sniffing valuable information or obtaining full unauthenticated access to the
control layer [LBJ+17] [AS19a].

3. Attacks on the control layer: The controller acts as the the brain of the
SDN network and is mainly responsible for managing the network traffic in the
infrastructure layer. Generally, the control layer is the center of the SDN network.
It might be the most dangerous point in SDN security because it is a single point of
failure. The adversary usually uses three methods to attack the control layer: (1)
exploiting the Northbound interface, (2) exploiting the Southbound interface, or
(3) using specific applications to control all infrastructure layer activates [DAJ19].

The SDN network would be disrupted as long as the adversary made the SDN
controller down or has unauthenticated access. Therefore, the attacker will try
to focus all available malicious methods on the SDN controller. Significantly, the
SDN controller has the same vulnerabilities as the installed operating system on it.
Once the adversary successfully manages the SDN controller, the attack exploits
the controller to forward traffics based on the rules that adversary sets up. In
addition, the adversary can put his policy when the attack successfully exploits
the vulnerable Northbound interface [ELKJ20].

4. Attacks on the application layer: The SDN applications implement various
network-related functionalities, such as applying security methods and routing
policies, performing network management, or running services. The application
layer is located on the top of SDN network architecture. It is responsible for
drawing the network’s policies by interacting with the SDN controller through the
Southbound interface.

In addition, the application layer monitors the performance of the control layer and
could decide to change the controller roles. As well, the control layer reports the
infrastructure layer situation to the application layer to produce a high decision
related to the network by the SDN applications. Once the intruder illegally accesses
one of the SDN applications, all activities managed by the penetrative application
would violate the network policy without any reaction from the SDN network.

Moreover, the penetrative application could influence another application that
is not the main objective of the attack and cause genuine security breaches in
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SDN [ELKJ20] [DAJ19]. The attacker follows two approaches to attack the
application layer. Firstly, the attack concentrates on specific applications to
exhaust its resources. Secondly, the attack concentrates on the SDN Northbound
interface to stop the communication between the SDN controller and the application
layer [LBJ+17] [LSL+20].

Generally, the adversary aims to control the system by obtaining illegal access to
the SDN resources. After that, the adversary tries to gain important information or
destroy the network operations. The adversary explores the network machines and
applications to start the attack, understands their activities, and gathers information
about the aimed subject, such as the addresses (IP, MAC), its applications, and the
used operating system. After finishing the reconnaissance, the adversary exploits the
obtained information to scan the weak points (vulnerabilities). Thereby, the adversary
attempts diverse attack scenarios against the target object. Once the adversary discovers
the existing vulnerabilities, the illegal access is done.

When the adversary controls the victim machine using a remote shell (e.g. Trojans,
Backdoors, Rootkits, etc.) to keep the victim under control as long as possible. Also,
the adversary obtains more critical information or launches another attack against a
different target in the network. Finally, the adversary should cover all signatures guiding
the administrator or the security system to detect the attacker’s identity. For instance,
the attacker removes all the system logs or at least the relevant logs [ELKJ20].

3.2 Distributed Denial of Service Attacks

The DDoS attack is a spatial type of DoS attack that overwhelms the target machine
by malicious traffics. Therefore, the attacker uses multiple connected devices, known
as a botnet, to increase the traffic volume as much as possible. In contrast to other
cyberattack types, the DDoS attack does not need to breach or control the target. But,
the DDoS attack exploits the fact that the target has limited resources. Thus, the
attacker aims to exceed the resources’ capacity by sending a tremendous volume of
malicious requests.

Consequently, the target will be unavailable to legitimate users or functioning incorrectly.
Moreover, the attacker makes the DDoS attacks in short, long, continuous, or repeated
bursts. Likewise, the attack could impact the target for hours, days, weeks, and even
months. As a result, the targeted organization suffers from long-term reputation damage,
works to recover, and spends fortunes compensating [SLHG19].
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3.2.1 Classifications of DDoS Attacks

Generally, there is no standard method to classify the DDoS attack types. But, each
research tries to introduce its vision based on the used criteria. This subsection organizes
the DDoS attack classifications into several groups based on the targeted Open Systems
Interconnection (OSI) layers, the methods to launch the DDoS attack, the volume of
generated traffic, and finally, based on the attack rate dynamics.

Firstly, the DDoS classification is presented according to the target layer in OSI, where
the attacker aims to destroy the top layer, which is known as the application layer attack.
Like this, the DDoS attack affects the functionality of the applications and provides a
grave experience to legitimate users. Generally, the attacker uses different protocols to
execute this attack type. For instance, Hypertext Transfer Protocol (HTTP), Hypertext
Transfer Protocol Secure (HTTPS), with the help of the Create, Read, Update and
Delete (CRUD) operations. Typically, a web browser (zombie) interacts with the target
machine by transmitting HTTP requests. Moreover, the HTTP requests are a "GET"
retrieving statistical content such as images or "POST" requesting the target machine
to perform some processing such as looking up items in a database.

Therefore, the attack imposes the target machine to allocate resources that serve the
attack. Consequently, legitimate users would be denied to get the service because of the
shortage of resources. However, the attacker directly concentrates the DDoS attack on
the links or resources of the network devices located on the network or transport layer.
Furthermore, the attacker could use a malicious program installed on a device (zombie)
to send vast amounts of traffic to the victim through the transport or the network layer.
Also, the attacker considers the protocols as vulnerabilities such as ICMP, UDP, and
TCP [SDR21].

Secondly, the attacker could directly launch the DDoS attack towards the victim or use
innocent intermediate nodes that reflect malicious requests. This classification defines
the DDoS attack as direct and reflector-based DDoS attacks. In the direct type, the
adversary’s zombies launch the DDoS attack to the target immediately. But, in the
reflection or amplification type, the adversary depends on the machine used to launch
the DDoS attacks. For example, the adversary uses the servers running UDP-based
services to reflect a huge volume of DDoS attacks by crafting the source addresses to be
looking like the victim.

Thereafter, the adversary sends malicious requests to the server that replies to the
victim by sending messages which its volume is too huge. For example, in Domain
Name System (DNS) amplification attacks, the attacker sends many queries about some
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web server addresses. Still, the attacker spoofs the victim’s IP addresses as the source
address. Thus, the DNS server directs the replies to the victim. Another example,
Network Time Protocol (NTP); the attacker also spoofs the victim’s IP address as a
source address and then sends many requests to the NTP server to adjust the victim’s
local time. Finally, the server will replay the response to the victim [BSS17].

In some cases, the DDoS attack could be classified into Direct and Indirect DDoS Attacks.
The adversary does not target the victim directly but attacks the links or other essential
services that support the victim’s functionalities to remain working. This indirect attack
degrades the victim machine performance at the highly paramount services of the victim.
For example, crossfire (Many attackers flood a specific link with a massive volume of
false requests ) [ASAR16]. Another example is coremelt (To flood a specific link, the
attackers only send traffic between each other) [uRWA+20] attacks.

In addition to the classifications as mentioned earlier, the DDoS attack might be classified
based on the used traffic volume into High-Rate and Low-Rate DDoS Attacks. Typically,
the adversary submits extremely malicious traffic (high-rate DDoS attacks) to flood the
victim. Sometimes, not all high-rate traffics is recognized as attacks because it could be
a flash crowd. However, the attacker can send malicious traffic at a low rate to match
the legitimate traffic behavior. This malicious traffic requests the victim resource to
perform intensive processes (e.g., CPU-intensive queries) [AT21].

Ultimately, the traffic characteristics could be considered to classify the DDoS attack,
such as the dynamics of the attack traffic rate. Generally, the malicious traffic charac-
teristics exploited in the DDoS attacks have four categories (Constant-rate, increasing,
pulsing, and sub-group attacks).

In the constant rate attack, the attacker launches malicious traffic and maximizes the
rate in a short time. Besides, the used zombies launch the attack after receiving a
command from an attacker, which makes a sudden packet flood at the victim resources.
Hence, the DDoS attack is easily detected. Therefore, the attacker changes the used
strategy to gradually increase the malicious rate, which gives the attacker more time to
understand the victim’s response.

In a pulsing attack, the attacker uses bots intermittently instructed to launch malicious
traffic towards the victim. So, the pulsing attack prevents the attacker from being
detected. In the last category, the sub-group controls several zombie sets to attack the
same victim. The attacking groups are activated and deactivated arbitrarily. Therefore,
the attacker stays disguised and attacks for a long time [Bha19].
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3.2.2 SDN as a Victim of DDoS Attacks

Although the SDN concept brings many benefits (see subsection 2.1.5), the SDN ar-
chitecture introduces compromised aspects to different security issues. For instance,
unauthorized access, data leakage, flow rule modification, malicious application imple-
mentation, etc [DAJ19].

Recently, the DDoS attack is the most challenging threat that faces the SDN because
the adversary exploits the separation between the control and infrastructure layers to
target the SDN components. Moreover, the new architecture contains a single point of
failure in some vulnerable points that spoils the SDN architecture and is a potential
point for the attackers [PPS19]. This segment demonstrates five DDoS attack types that
the intruder launches by exploiting either the SDN paradigm or the inherited attributes
from the traditional networks as the following:

1. Control Layer Saturation: The SDN controller machine has limited resources
and acts as a single point of failure. So, the attacker directs the DDoS attack
towards the SDN controller resources such as the memory and CPU. To launch this
type of DDoS attack (which is known as saturation attack, Packet_In Injection
attack or Packet_In flooding attack) in the SDN, the attacker exploits the Miss

Table to force the OpenFlow switch to send malicious Packet_In messages towards
the SDN controller. Once the attacker crafts the packet header to be convenient
for the Miss_Table entry, the attacker floods the crafted packets towards the
switches.

Thereafter, the switch uses the Miss Table to forward all the received packets as
Packet_In to the centralized controller. As a consequence, the controller would
be busy to satisfy the false Packet_In request and prepare a forwarding rule for
the new flows. Thereby, the false Packet_In exhausts the centralized controller
resources and processing power. In the end, the saturation attack overloads the
SDN controller and makes the SDN controller unreachable to legitimate users
because the SDN controller works only on the false Packet_In requests. Resultantly,
the Saturation Attack downgrades the whole SDN architecture [XWX20] [DGLG17]
[SB20]

2. Congestion of Southbound APIs: Once the attacker launches the saturation
attack toward the controller, the switch forwards bulk Packet_In messages to the
controller because there is no entry matching that crafted packets. In fact, the
OpenFlow switch sends some part of the packet as Packet_In message, and the
remaining parts are buffered in the switch.
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If the buffer space is insufficient to keep more packets, the switch transmits the
entire packet through the Southbound API. That leads to creating a curtailment
in the channel and hence making the channel a bottleneck for the legitimate
Packet_In messages [Opea] [AS19b].

3. Buffer Saturation: The attacker targets the OpenFlow switch buffers, in addition
to the SDN controller resources and the Southbound channel. Each switch’s port
has two queue buffers, one for incoming packets and the second for outgoing
packets. The switch uses them to wait for the busy resource such as the switch’s
CPU. The adversary aims to make the queues buffer full by flooding the switch
with a rapid and massive volume of packets. Furthermore, when the malicious
packets target the SDN controller, the OpenFlow switch sends the complete packet
as a request to the controller as long as the memory buffer is full.

The SDN controller receives and buffers the Packet_In messages through port of
the OpenFlow channel until the routing algorithm becomes available to process
them as Packet_Out or Flow-Mod messages. But, the Packet_In messages are
automatically removed from the buffer after some time (expired time) if the routing
algorithm is busy [SB20] [Opea].

4. Table-Miss Striking or Flow Table Overflow: In the SDN environment, the
standard method to forward the packet towards a suitable port is realized by
matching the packet with the flow rules of the flow table. But, when the OpenFlow
switch does not find the proper entry, the switch requests a new flow rule from
the SDN controller. Hence the new flow rule is stored in the flow table. The flow
rule reserves a part of the memory space for a fixed time before the OpenFlow
switch removes the flow rule [AS19b]. The OpenFlow switch uses Ternary Content-
Addressable Memory (TCAM) to store the flow rules given by the SDN controller
in the flow table. The TCAM has a limited capacity to store the flow table entries,
in addition to its high cost and power consumption [PDFN17] [AS19b].

The adversary exploits the TCAM drawbacks by overwhelming the flow table
with false flow rules. It either floods the controller with Packet_In or launches
a slow DDoS attack to overtake the controller’s defense mechanism [SPT+18].
Consequently, the attack would quickly run out of the flow table memory, and
the false flow rules fill the flow table. Also, the attack removes the normal entries,
and hence the OpenFlow switch’s performance downgrades until being out of the
service.
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5. The Inherited DDoS attacks from the Legacy Network.

In addition to the aforementioned DDoS attacks, the adversary can use the
infrastructure layer to target the traditional DDoS objectives such as hosts, servers,
applications, routers, etc [Bha19]. Throughout the history of Communication
networks, the adversary always develops different approaches to inject the network
with crafted packets. As long as the adversary can scan the necessary information
and then use it to craft the packet, the traditional network objectives will stay
under the threat of the DDoS attack.

Moreover, the attacker might be selfish, surreptitiously piggybacked on authenti-
cated user’s resources to reduce costs and even obtain free services known as a
Freeloading attack. This way, the attacker might maliciously damage the target
by launching DoS or DDoS attacks on the remote target. To set up the freeloading
attack, the attacker eavesdrops on the transmitted packets using the promiscuous
mode to obtain sufficient information about the traffic flows, users, and route
entries in the network. Thereafter, the attacker sends malicious packets with
crafted addresses pretending to be a legitimate user. As a result, the attacker
exploits the available resources illegally and may exhaust available resources and
services in the infrastructure layer [CLMR19] [PCK16].

3.3 Benefits of Using SDN Against DDoS Attacks

In the traditional network, the DDoS attack grows and increases in size, frequency,
severity, and also become more sophisticated. The available IDSs are limited to detect
DDoS attacks or alleviate their side effects. While the attackers constantly refined new
approaches to exceed the existing IDSs [BS16]. Even though the SDN architecture is
compromised to the DDoS attack, as mentioned in the previous subsection, the SDN
has distinct features assisting in defeating DDoS attacks. Therefore, the SDN platform
shows superiority over traditional network paradigms in detecting and mitigating DDoS
attacks.

The separation between the control and the infrastructure layer is a perfect solution to
large-scale experiments that are difficult and complex in legacy networks. That means
the SDN concept facilitates the investigation of extensive mechanisms since the dynamic
configuration promotes the experiment environments. For instance, once the developers
need to examine a new algorithm, they update every forwarding node individually
because the control logic is embedded in the forwarding node of the legacy network.
Consequently, the advanced initiative is easily deployed and transferred from the trial
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phase to reality [WGH+14]. Furthermore, the SDN controller contains written intelligent
scripts (e.g., IDSs) that direct the infrastructure layer traffic and obtain information
about the ongoing traffics. In addition, written scripts can process and analyze the
traffic to define the malicious traffic and its source; thus, the SDN controller maintains
the network’s performance.

Network intelligence is logically centralized and located in the SDN controller that
maintains a global network view. Therefore, the controller can analyze and monitor
the network’s traffic. In other words, the controller smoothly installs the appropriate
security policies preventing threats based on the global view of the network. Moreover,
the SDN controller distinguishes between the compromised and benign hosts by the
given information about hosts [UJ20].

Besides, the SDN controller or the application layer contains various application util-
ities that can analyze the network traffic based on different software tools, modules,
algorithms, and databases. So, the traffic analysis-based software allows the innovation
and minimizing the switch’s load to parse the traffic.

The SDN architecture is open and programmable because the application layer draws
the network policies by programming the algorithms in the SDN controller. The
programmability of the SDN network supports the control layer to quickly responds to
abnormal events or sudden problem and readily resolves the problem at any point of
the network [CIV20].

The SDN network dynamically updates the policy based on the traffic analysis. Therefore,
when the SDN controller responds to abnormal traffic behavior such as the DDoS attack,
it installs a new flow rule or modified the pre-installed rule. Also, the SDN concept
instantly facilitates propagating new innovative algorithms across the network to detect
and mitigate malicious traffic. On the contrary, the legacy network applies the mitigating
flow rule on the target host only. Likewise, the network engineers manually configure
the legacy switches to change a particular network policy [UJ18].
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In dependence on the aforementioned discussion, Table 3.1 briefly summarizes why
the SDN architecture is suitable for combating DDoS attacks or even other security
threats.

The reasons Benefits

Separation of the control layer and infrastructure
layer

Operating the new algorithms and innovation on
the large-scale experiments easily

Global view of network Supports the traffic monitor and prevent the secu-
rity threats

Traffic analysis based on software Using the written application to control and ana-
lyze the network behavior

Network Programmability Rapid response to abnormal events or sudden prob-
lems

Dynamic network policy update Dynamically and instantly updates the policy
based on the traffic analysis

Table 3.1. – The SDN Reasons to Effectively combat the DDoS Attack
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3.4 Solutions to Address the DDoS Attack in SDN

Recently, the detection and mitigation of the DDoS attack in the SDN environment
have been an active area of research, and various approaches are carried out as potential
solutions for the DDoS attacks. The related work could be categorized into several
categories according to the detection metric and the used mechanism.

This section discusses the four classifications for the suggestions that address the DDoS
attack in SDN. In the first category, the intrinsic suggestions concentrate on the SDN
components and their functional elements. Secondly, the statistical solutions depend on
information theory-based DDoS defense solutions. The third and fourth categories are
introduced using Machine Learning or Artificial Neural Network(ANN)-based defense
solutions that concentrate on the network traffic and the flow characteristics.

3.4.1 Architecture-based Solutions

Generally, the researchers often work to decouple some of the SDN controller functions
to reach better performance. For example, decoupling the monitoring and controlling
utilities of the SDN controller will extend the SDN architecture by adding new devices.
FloodGuard, in [WXG15], is a clear example of the SDN controller decoupling where
it adds two modules to the SDN architecture: a proactive flow rule analyzer and a
packet migrator. Both modules would be silent until the SDN controller detects a
DoS attack situation. Hence, the proactive flow rule analyzer creates and installs flow
rules proactively to the affected OpenFlow switches. Besides, the migration module
simultaneously directs the Table Miss packets to the infrastructure layer’s cache device.
As a result, the work decouples two essential parts, the controlling and monitoring, to
obtain a better reaction in the DoS attack conditions. In fact, this solution has no
mechanism for recognizing the DoS/DDoS attack, but the work’s design provides more
stability and resistance to operate when the DoS attack is detected. Also, the work
could introduce delay to the network response.

In [JASD12] Jafarian presents the OpenFlow random host mutation method, where the
SDN controller assigns random and dynamic IP addresses to the hosts under its domain.
The SDN controller protects the hosts from external and internal attacks and scans.
To do that, the SDN controller connects to a Dynamic Host Configuration Protocol
(DHCP) server that provides the requested IP addresses. After that, the translation to
actual IP addresses is executed. The solution effectively covers the host’s location due
to continuously changing the IP addresses, making forwarding the DDoS attack toward
the target partially hard. But, it would be hard to manage the situation when multiple
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attackers request multiple hosts simultaneously, particularly how the DHCP server can
react and respond.

Avant-Guard, in [SYPG13], protects the TCP servers in the infrastructure layer against
the SYN flooding attack inspired by the SYN proxy, which handles TCP connections
in a middlebox. The Avant-Guard adds a new device to the infrastructure layer to
be intermediate between the OpenFlow switch and the controller. The Avant-Guard
has two modules, the connection migration to filter the malicious SYN request before
forwarding any notification to the control layer. Suppose the switch receives a TCP
SYN packet from a new address, and the packet does not match any flow rule in the
flow table. In that case, the infrastructure layer answers with a TCP SYN/ACK packet
to the sender. Once the sender submits a TCP ACK packet to complete the TCP
handshaking process session, the controller is notified and completes the process. The
second module is the actuating trigger, enabling the switches to asynchronously report
network status and payload information to the SDN controller. Also, actuating triggers
activates a predefined flow rule under some conditions; hence it supports the SDN
control to manage network traffics without delay. Although the solution prevents the
suspicious hosts from accessing the network, it does not handle the other transmission
protocols such as ICMP or UDP. Moreover, the use of connection migration adds more
delay to the network connections.

Wang et al. [WC17] introduce SGuard as a security application on top of the SDN
controller. SGuard includes three modules: (1) Access control module that tracks the
identity of the connected users, collects user’s information (such as MAC, IP, Port, and
Switch ID), and binds the collected information in Hashtable. (2) Classification module
that requests flow entries from flow tables and extracts certain features immediately.
Each sample is classified either as normal or attack traffic based on Self-Organizing
Maps (SOM) (SOM is explained in Appendix A). (3) Infrastructure layer cash which is
located between the infrastructure layer and the SDN controller. It temporarily caches
the Miss Table packets classified as malicious traffic during the saturation attack from
the switch. However, the cost of the memory is expensive, and the SGuard could be a
bottleneck under the Miss Table saturation attack.

Chen et al. [CJS+16] propose SDNShield, a device connected to certain OpenFlow
switch to protect both the edge switches and the SDN controller from DDoS attacks.
Once the Packet_In messages exceed 80% of the link rate, the controller transfers the
Miss Table packets to the SDNShield. The SDNShield has two units; the first unit
is the attack mitigation unit which executes two stages. The first stage, statistical
differentiation, identifies legitimate flows with low complexity by building profiles for
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the normal predictive behavior compared to the suspicious behavior by a conditional
legitimate probability and a Bayesian-theoretic metric (statistical approach derives
probability distributions for sets of variables). Finally, the first stage decides to reject
the flow or forward it to the SDN controller. The second stage aims to decrease the
false positives of the rejected flows by TCP connection verification to ensure that all
legitimate flows are accepted. Nonetheless, the solution proposed is to connect attack
mitigation units to every edge switch. Also, the second stage does not include the other
transmission protocols such as UDP and ICMP.

Manso and others also suggest adding IDS as standalone units in [MMS19]. The work
relies on three essential architecture components, the infrastructure layer, the SDN
controller, and the IDS unit (called snort). The IDS receives a copy from all packets
reaching the monitored port. Then, it uses the snort’s rules to analyze the exchanged
traffic. Eventually, it ensures that the traffic does not exceed the statistical threshold.
When the IDS detects malign traffic, it sends an alert to the SDN controller, which
installs the new rule to block the source of the DDoS attack. In general, mirror all
packets is helpful with small or home networks. Still, it is not successful with the
extensive network because the snort unit will be a bottleneck point, primarily when the
administrator monitors many ingress ports in the network.

Safe-Guard Scheme, in [WHT+19], are suggested to protect the control layer against
the DDoS attacks. When the OpenFlow switch submits abnormal traffic to the affected
controller, the attack mitigation scheme transfers the traffic to another SDN controller.
Multiple SDN controllers reduce the burden on the attacked controller and make the
control layer more scaleable. The responsible controller detects anomaly behavior using
the switches’ byte rate and variable rate of asymmetric flows. The other controllers
successfully identify the affected controller based on the anomaly detection alert message
about a specific switch. But this technique would fail if one of the controllers is hacked
and making false rules in the switches. Then, the switches would not recognize the
malicious behavior.

3.4.2 Statistics-based Solutions

Analyzing and evaluating the imported information from the network traffics is the
fundamental material for the statistics-based approaches. In the SDN environment, the
objective of this type is to increase the immunity of the SDN controller against malign
attacks by analyzing and collecting statistics related to traffic flows. Commonly, the
researchers use either (1) information theory-based entropy (E) according to equation
3.1, where a variable x defines a specific feature of a new incoming packet and P is
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the appearance’s probability of x (subsection 4.3.2 presents the entropy in details), or
(2) mathematical equations (e.g., rate average, fixed boundaries, load percentage, etc).

E = −
n∑
i=1

P (xi)log(P (xi)) (3.1)

The entropy shows the randomness level in the network features and represents uncer-
tainty measurement. Moreover, the entropy discovers the difference’s value between
the current and expected network conduct. The researchers introduce the similarity of
two probability distributions as the divergence metrics (a statistical equation that uses
two probability distributions as input and returns a number. This number measures to
what extent they are different. The number must be non-negative and equal to zero
if and only if the two distributions are identical. Bigger numbers indicate a greater
dissimilarity. Many equations represent the information distance among the traffic flows
to capture the abnormal traffic behavior).

In fact, using statistics-based approaches to handle the DoS/DDoS attacks is efficient
because it provides a lightweight solution to defines the network conditions. Furthermore,
the statistics-based approaches obtain accumulative information about the incoming
requests and level of the resources consumption. As well, it has very little computing
overhead and can handle a large number of packets. However, the statistics-based
approaches cannot always guarantee to detect the DDoS attack. Still, they are adequate
for assessing network traffic behavior. Additionally, the entropy does not consider
various factors when calculating the probability distribution of a specific traffic feature
[EDP21].

In [DDZX16], the work suggests collecting information from the incoming flow in the
edge switches. Thereafter, the work calculates the number of packets that use the
same flow rule to classify flows as low-traffic or normal-traffic flows according to the
threshold. The low-traffic flow is what had few data packets and needs high consumption
of the SDN controller resources. Consequently, the low-traffic flow could lead to making
the SDN controller unreachable. The work applies the Sequential Probability Ratio
Test (SPRT) to minimizes the false-positive rates. SPRT better defines the ingress
ports connected to a large number of low-traffic flows. (SPRT is a hypothesis test for
Sequential sampling that works in a very non-traditional method; instead of fixed sample
size, SPRT chooses one item or more every time and then test the hypothesis).

PacketChecker module is suggested in [DGLG17], where the controller stores the users’
information in a mapping table that includes the switch port and user’s addresses. Once
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the SDN controller receives a new Packet_In message that has part of its information in
the mapping table, the SDN controller drops the message. But, if all the information is
new, the controller accordingly adds a new row in the mapping table. Hence, this work
alleviates the consumption of the SDN controller resources. Nevertheless, the attacker
can use this approach to saturate the SDN controller memory by targeting the mapping
table. Alternatively, the attacker could overtake the SDN controller by spoofing the
complete information requested of the authenticated user and then launching the DDoS
attack on the infrastructure layer elements.

Giotis et al. [GAA+14] depend on extracting the features from the packets reached to a
specific host (e.g., Server) to analyze the randomness level using the entropy method.
sFlow device collects the traffic of the monitored host as a unit embedded in the SDN
controller. The SDN controller calculates the entropy of the ports and IP addresses
for both destination and source to detect the anomalies. Then, the anomaly detection
module inspects all flow entries for every time window and identifies the malicious flows
to detect the anomalies. In the end, the controller installs a flow rule to block the
attacker.

Swami et al. [SDR19] consider entropy as the main value to deal with Packet_In under
malicious traffic. Furthermore, the window size to calculate the entropy is equal to a
certain number of Packet_In messages and their respective destination IP addresses.
Xu et al. [XWX20] propose SDNGuardian. The author defines the sensitive fields of
the Packet_In messages that influence the performance of controller applications. So,
the statistical analysis approach verifies which fields are essential to the applications to
generate flow rules. Hence, the entropy of the sensitive fields is calculated to determine
if a DDoS attack occurs based on the entropy result. Thereby, the work determines the
attacked ports based on the information gain (which port has the biggest influence on
the entropy value) and limits the rate of these ports. In the last step, a frequency-based
filter is applied to the packets coming through the attacked ports. Hence, the SDN
controller would delete the malicious flow rules based on the asymmetric characteristics
of attack traffic.

Cui et al. [CWLZ19] introduce a work for detection of the DDoS attack using cognitive-
inspired computing with dual address entropy. Two modules are used; the Statistic
collection module gathers and calculates the frequency of each source and destination IP.
Also, the feature computing module obtains two entropy values according to destination
and source addresses. The DDoS attack is confirmed if the destination entropy is
lower than a threshold and the source entropy value is higher than the normal traffic
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threshold. Then the SDN controller removes all relevant table entries to mitigate the
DDoS attack.

Wang et al. [WJJ15] implement the entropy theory to detect the DDoS attack. The
work depends on obtaining the traffic statistics and analyzes the network traffic arriving
at the network devices. As IDS, the proposal locates the used algorithm in the edge
switch connected to the hosts directly. The work calculates the entropy-based on IP
and switches identity; to announce the DDoS attack when the entropy is less than a
predefined threshold. Nevertheless, this solution needs to modify a switch which is not
feasible.

Joint Entropy-based DDoS Defense Scheme in SDN (JESS) is described in [KAGA18]
as a new method to protect SDN networks using joint entropy. The research sugges-
tion includes three phases, (1) nominal, (2 ) preparatory, and (3) active mitigation
stage. The nominal is supposed to be the attack-free phase to calculate the baseline
information. Afterward, the SDN controller generates the nominal pair profiles for all
traffic converted to the SDN controller. To prepare the profiles, the controller uses
the obtained information from the transmitted packet by the hosts. The second phase
detects the congestion if the bandwidth rate of the link between the one host and the
connected switch is higher than a threshold. So, the SDN controller would activate
the preparatory phase. Then, the OpenFlow switch starts transmitting packet header
information to the SDN controller again. The SDN controller initiates a new pair profile
and then calculates the joint entropy of pair profiles to compare the results with the
predefined value in the nominal phase. Once the SDN finds the difference between the
entropy’s exceeds that threshold, the DDoS attack is confirmed. In the last phase, the
controller installs flow rules to drop the attack packets. In fact, this method would
increase more burden on the SDN controller, particularly when the attacker launches
DDoS from multiple sources using bots.

Jiang et al. [JZZC16] present Entropy-based DDoS Defence Mechanism (EDDM ) to
handle DDoS attacks. The EDDM is an extended SDN controller. The solution is
divided into three stages: window construction, DDoS detection, and DDoS mitigation.
The method calculates the entropy metric to differentiate the network traffic into normal
or malicious traffic. Then, the solution finds the relevant edge switch Inport to block
the attacker. Still, the entropy is not sufficient to differentiate between the flash crowd
and the DDoS attacks.
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3.4.3 Machine Learning-based Solutions

Machine Learning algorithm (MLA) aims to make the software application predicates
the outcome based on learning from the previous discrete values. With the MLA, the
machine obtains an experience from the historical information patterns to distinguish
between normal and abnormal behavior. Therefore, MLAs have been applied in the
SDN security to detect DDoS attacks. MLAs have a high accuracy in recognizing the
attributes of the traffic conduct better than statistics-based detection solutions [BS19].
Typically, MLA must be first trained on attack-free flows to detect anomalies in traffic
more accurately. It is noteworthy that Appendix A has a short description of the
algorithms mentioned in this subsection to make it more readable.

In [PP18], the K-Nearest Neighbor (KNN) algorithm has been implemented. The used
features are (number of hosts connected to the requested host, number of packets, delay
in millisecond, protocol, throughput, source IP, destination IP). The system model
collects information from the switches every 10 seconds to check whether the attack
is present or not. Thereafter, the KNN algorithm learns how to determine the malign
and benign behavior to be ready as an IDS unit in the controller to detect and classify
anomaly traffic.

Other authors present solutions based on hybrid MLAs, for example, in [PBP16]. The
normal and abnormal flow behavior information is extracted from the OpenFlow table
to check whether there is an attack or not. Thereby, the IDS unit in the SDN controller
is responsible for collecting information from the flow tables periodically and extracting
the requested features. The Support Vector Machine (SVM) and a self-organizing map
(SOM) are combined to detect and mitigate attacks in two phases. Firstly, SVM classifies
flow rules into a malign or benign flow. But, when the flow’s position is located between
two margin lines or a vague region in the linear SVM representation (which means
that the decision could be false positive). Therefore, the same features are forwarded
to SOM to make a final decision. In the end, the DDoS attack classifier and a policy
enforcement module are executed on the malign flows to mitigate the attack.

In [DSB21], the author presents a method to detect DDoS attacks in an SDN through
MLA and a statistical method. The method comprises three sections: collector, entropy-
based, and classification sections based on MLA algorithms (BayesNet, J48, Random
Tree, logistic regression, REPTree classification algorithms). The work achieves good
results in terms of the accuracy in detecting DDoS attacks in SDN, where several
datasets are applied: the UNB-ISCX, CTU-13, and ISOT datasets.
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Prasath et al. [PP19] proposed an agent program framework that protects the OpenFlow
switches against external attacks. Furthermore, they used a meta-heuristic bayesian
network classification algorithm to classify the incoming packets into benign or malicious.
Santos et al. [SSS+20] implemented and analyzed four MLA (multiple layer perceptron,
SVM, Decision Tree, and Random forest Algorithm(RFT)) to classify DDoS attacks in
an SDN environment. They adopted the Scapy tool to produce traffic in their simulation.
As an outcome, they claim that the Random Forest algorithm showed the best accuracy
and the Decision Tree algorithm had the best processing time. Myint et al. [MOKKV19]
propose a solution that applies advanced SVM to detect the DDoS attack with minimum
overhead. Moreover, the proposal depends on volumetric and asymmetric features to
minimize training and testing time. This approach successfully deals with two types of
flooding attacks: UDP flood and ICMP flood.

To recognize the malicious traffics conduct, the graph model is implemented by Bing
Wang et al. [WZLH15]. The algorithm has relational graphs for different traffic patterns
that allow the model to determine whether the traffic is malicious or normal. The
algorithm creates a relation graph for the new traffic and compares the graph to the
stored graphs. In the end, the SDN controller installs flow rules to block the source
IP of malicious traffic. However, the MLA models mainly exhaust time, device power,
and processing resources when the model aims to make the correct decision about
the malign traffics through grouping flows, clustering, and redirecting. In addition,
machine learning-based solutions need to be trained against a wide range of traffic
patterns. In the SDN environment, the management’s challenge appears to organize the
communications between the SDN controller and the located MLA, which surly imposes
more delay in treating the benign requests [EDP21].

3.4.4 Deep Learning-based Solutions

Deep Neural Network Algorithm (DLA) is a subset of MLA. It uses a specific technique
to improve a machine’s ability to recognize and amplify minor patterns. The deep neural
network algorithms mostly contain three-layer types to shape the hierarchical structure
of the model as input, hidden, output layers. The following Figure 3.2 represents an N
layered Deep Neural Network.

In the input layer, the model receives values of the unlabeled features. Each feature
enters the model through a neural node that applies a mathematical equation (activation
function) on the feature value. Then, the neural node submits the result as input for the
neural nodes in the next layer (hidden layer). According to the developer adjustment,
the input layer nodes could be connected to the subsequent hidden layer nodes either
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Figure 3.2. – Neural Network

fully or partially. In other words, the neural node might submit the result to all the
subsequent hidden layer nodes or specific nodes. Once the hidden layer node receives
the submitted values and applies its activation functions, it submits the new result to
the next layer. Which is another hidden layer or the output layer provides the final
prediction.

It is noteworthy that all neural nodes have a threshold to compare with the received value
to pass the output or ignore when the value is greater than the threshold. Moreover, the
neural node could receive many values from different nodes in the successive layer that
acts as the input layer for the predecessor layer. Each value has an associated weight
that defines the input’s influence on the activation function. In DLA, the developers
initially assign random weights for the received values. Still, the assigned weights would
be automatically adjusted during the model training and even during the work, which
is known as the back-propagation. Ultimately, the DLA enhances its performance and
predicts a correct output based on the updated weights.

Although MLAs achieve a perfect improvement in the DDoS attacks detection, DLAs
presents better treatment and solve the shortcoming aspects of the MLAs. In MLAs,
human intervention is highly required compared to DLAs, which are more complex
to launch and require minimal human intervention. Also, DLAs need more complex
devices to work, such as the Graphics processing unit (GPU), which is wildly executed
to optimize matrix operations efficiently. Conversely, the MLA can work in conventional
devices like the Central processing unit (CPU). As a result, DLAs need more time and
samples to train the model perfectly than the MLAs that can work with small samples.
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However, DLAs work faster during the test and require very little time to predicate the
result.

Moreover, the DLAs treat the data features at a high level, such as video, pixels, audio,
etc., and do not need an external intervention to transfer the data to numerical values.
Therefore, the accurate result of the MLAs depends on how the features are chosen and
extracted. But, DLAs can enhance their performance with more samples, although the
features’ lack [XKL+18].

Moreover, DLAs also have more advantages paying the scientists and researchers
attention to use against the DDoS attacks. For instance, the DLAs are self-learning, self-
organization, better fault tolerance and robustness, and parallel performance. Besides,
the DLAs identifies unknown attack patterns in addition to not only existing attack
patterns. For the remaining of this subsection and to make it more readable, Appendix A
has a short description of the algorithms mentioned.

SD-Anti DDoS mechanism is introduced et al. [CYL+16] to detect the DDoS attacks in
SDN. The proposed framework contains four modules: (1) Attack Detection Trigger,
which is responsible for verifying if the Packet_In messages number reaches a predefined
threshold. Then, the module calculates the velocity Using exact-STORM, (2) Attack
Detection works once the velocity result denotes an abnormal behavior. So, the SDN
controller requests the flow table and starts extracting five parameters (number of
packets per flow, number of bytes per flow, duration, packet rate per flow, byte rate per
flow) to use them as input to Back-Propagation Neural Networks (BPNN) algorithm.
After that, (3) Attack Trace-back defines the source of the DDoS attack, and (4) Attack
Mitigation module blocks the attacker and deletes all relevant flow rules from the flow
tables.

Li et al. [LWY+18] present Convolutional Neural Network (CNN), RNN, and Long Short-
Term memory (LSTM) as detection models for the DDoS attack based on extracted
features (source port, destination port, source IP, destination IP). The Detection models
are trained using ISCX 2012 dataset and collect all packets received by the OpenFlow
switch. Hence, the model decides whether the packets entered in the current OpenFlow
switch are malignant packets or not. Consequently, the switch forwards the malignant
packet to the Information Statistics module, which helps the Flow Table Generator
module. Finally, the Flow Table Generator module determines the flow entries and
priorities removed from the OpenFlow switch.

In [NPK+18], the SDN controller periodically requests the flow table from the switches
and extracts six features (entropy of source IP, entropy of source port, entropy of
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destination port, entropy of packet protocol, total number of packets). The trained
SOM and KNN algorithms use the six features to classify the network state as normal or
under attack. In the attack presence, the used algorithm alerts the mitigation module.
As a result, the mitigation module prepares and installs the combating flow rules to the
switches.

Novaes et al. [NCLP20] use a hybrid scheme to detect DDoS and Port scan attacks
in SDN networks. The suggested solution has three phases: (1) Characterization that
extracts four features from the flow tables. It calculates entropy metrics to quantify
the network attribute (source IP entropy, destination IP entropy, source port entropy,
destination port entropy). In the detection phase (2), the LSTM model identifies the
normal traffic signature. Also, fuzzy logic detects the anomaly in the network. The
last module is the mitigation (3) creates the new flow rules for mitigating the DDoS
attack.

3.5 Discussion

This chapter specifies two directions that the adversary follows to attack the SDN
architecture. Firstly, the adversary targets the SDN controller because it is a single-
point failure. Secondly, the traditional targets are inherited from the legacy network.
All solutions concentrate on the first direction and try to counter it. But, few solutions
attempt to face the second direction. Also, it is rare to find a solution that introduces
IDS dealing with both together, according to our knowledge.

Recently, many works implement MLAs and DLAs as an IDS to detect DDoS attacks
in the SDN environment. Each solution depends on several features to analyze the
network traffic. Also, the proposed IDSs cover particular conditions according to the
used dataset. The trade-off between the MLAs and DLAs still needs more work and
enhancements, especially since their implementation in SDN is a partially new and hot
research topic.

In both machine and deep learning, engineers use software tools that enable the SDN
controller to identify the trends and characteristics of the network traffic by learning
from an example dataset. In MLAs, the model uses the training data to train. Then, the
controller can classify the test data, and ultimately real-world data. The development
of features is essential by adding other metrics derived from the raw data, enabling the
model to be more accurate. In DLAs, engineers and scientists skip the manual step of
creating features. Instead, the data are fed into the DLA, which automatically learns
the most valuable features to determine the output.
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Chapter 4

Proposed Intrusion Detection System for
SDN

This chapter describes the proposed IDS methodology to safeguard the SDN against
DDoS attacks. Accordingly, the proposed IDS considers the new and inherited vulnera-
bilities in the SDN architecture that the adversary exploits to launch the DDoS attacks.
Thus, The proposed solution handles the attacks that target the control and infrastruc-
ture layers’ resources. Three new components are implemented to monitor the entire
network behavior individually. Besides, the SDN controller obtains the components’
feedback and makes the security decisions regarding the network status.

Section 4.1 introduces the proposed IDS framework to show the performance’s integration
among the used components. Afterward, section 4.2 clarifies the external device role,
while section 4.3 explains the CNN component. Besides, section 4.4 describes the
suggested method to utilize the IPSec concept. As well, section 4.5 presents the
functions of the used RNN models to detect DDoS attacks.

4.1 The Proposed IDS Design Framework

Initially, the SDN controller can obtain information about the network conditions in
three approaches. Firstly, the data is carried by the Packet_In messages (discussed
in subsection 2.2.2). Each Packet_In transports information; such as the packet
source (e.g., sender’s ports, MAC and IP addresses), the used protocol, information
about the switch that sent the Packet_In, the packet destination (e.g., destination’s
ports, MAC and IP addresses) and the match fields [Opea]. In the second approach,
the SDN controller requests the flow table statistic from the switches (discussed in
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subsection 2.2.2) such as the flow tables, meter table, group table, and ports statistics
(packet numbers or the data amount). Thirdly, the administrator could depend on
external devices to collect information and report them to the SDN controller about
the network status (as mentioned in 3.4.1). Consequently, the SDN controller depends
on accumulative knowledge to build statistical information and its perception about the
ongoing traffic.

Depending on the above, the proposed IDS employs these available approaches to monitor
the network status. Figure 4.1 depicts the three components of the proposed IDS; the
first component is the (Inspector device) that is located between the edge switches
and the SDN controller. It prevents unauthenticated users from launching saturation
attack towards the SDN controller. The second component (CNN component) and the
third component (RNN component) work as parts of the SDN controller to analyze the
ongoing traffic in the infrastructure layer and the OpenFlow channel traffic.
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Figure 4.1. – The Proposed IDS Framework

Generally, the Inspector device handles networks that have a known number of users. The
Inspector contains a database for all necessary information about the authenticated users.
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The application layer could store the database from engineers and administrators, or the
Inspector collects the users’ information of the initial lifetime. The essential objective
of using the Inspector is to prevent unauthenticated users from forcing the connected
switch (edge switch) to submit Packet_In messages to the SDN controller. Therefore,
when the user sends the packet for the first time, the connected switch forwards the
packet to the Inspector. Thereafter, the Inspector verifies the user information compared
to the stored information table (database). If there is a match, the Packet_In message
is forwarded to the SDN controller to install a specific Miss Table. When the Inspector
does not find any matching entry, the Packet_In message is dropped, and the Inspector
notifies the SDN controller about the attack to block the attacker.

The second component (CNN component) monitors the Packet_In messages behavior
by capturing the packet and calculating the entropy value based on the MAC addresses.
Once the entropy value exceeds a predefined threshold, the One-Dimensional Convolu-
tional Neural Network (1D-CNN) detects an injection attack in an SDN environment as
the central part of the second component. Therefore, the 1D-CNN model reads the saved
information about the network traffics (CSV file) to verify if there is a malicious attack
or not. If there is an attack, the SDN controller installs a blocked rule. To prepare
the CSV file, another tool known as CICFlowMeter that is responsible for extracting
information for each bidirectional packet [CIC]. CICFlowMeter defines the first packet,
no matter whether it is in the forward (source to destination) or backward (destination
to source) direction. Consequently, the CICFlowMeter provides statistical information
in a CSV format file. Each record in the file has more than 80 features that describe
each network traffic such as duration, length of packets, number of packets, number of
bytes, etc. Appendix C provides complete information about the features extracted by
CICFlowMeter.

In the third component (RNN component), the SDN controller monitors the network
performance by requesting the flow table from the OpenFlow switch and then analyzes
the flow rules information using DLAs such as RNN, LSTM, and Gated Recurrent
Unit (GRU). The RNN component periodically requests the flow table rules using the
Flow_State_Requestmessage. Thereby, the OpenFlow switch directly responds with
the Flow_State_Reply message that contains the flow table. Once the component
receives the replay message, some statistical equations extract 48 features to be inputs
to the RNN models (Appendix B shows the selected 48 features). Hence, the model
verifies if there is any malicious flow rule to define the connected Inport.

Finally, the third component has a dedicated unit to initiate the countermeasure
procedure. Once the connected Inport is determined, the concept of IPSec protocol is
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applied to exchange the public keys between the SDN controller and the authenticated
user who uses the connected Inport. After that, the SDN controller uses the received
public key to generate a secret key. Then, the SDN controller installs flow rules containing
the key as a specific field. At the same time, the user’s machine uses the received public
key to generate its encrypted key and add the key to the packet header. Eventually, the
OpenFlow switch forwards the matched packets only.

According to the above illustration, we present the suggested IDS in five consistent
papers [AS19b,AS19a,AS21,AFS,AS]. The followed methodology implements the ideas
step by step. Each idea continues the previous work and introduces a solution for the
main shortcoming. In detail, the remaining sections of this chapter clarify each step
individually.

4.2 Inspector Device

The SDN concept supports dynamic and adaptive network management and minimizes
the complexity of the forwarding elements [RR16]. Moreover, the SDN architecture
enables the developer’s innovations, policies, and applications to customize the SDN
controller tasks. The OpenFlow protocol organizes the data exchange between the
SDN controller and the OpenFlow switches. Thus, the SDN controller manages the
traffic flows in the infrastructure layer by installing instructions into the switch’s flow
table.

The adversary exploits the OpenFlow channel to destroy the SDN controller by injecting
a massive number of packets that overloads the SDN controller resources. Therefore,
the adversary forges the packet header fields (e.g., IP or MAC address) to force the
OpenFlow switch to direct the packets towards the SDN controller. After that, the
SDN controller installs instructions into the switches, although the network does not
need them. Also, the SDN controller establishes a wrong topology view because the
crafted Packet_In Messages include untruthful addresses for non-existing devices. At
the end, the adversary harms the network resources and destroys the network devices’
functionalities.

Typically, the date exchanging between the SDN controller and the OpenFlow switches
does not possess a method to prevent illegal access. Moreover, the SDN controller mostly
installs temporary instructions to stop the attack. However, installing a new instruction
for each new address is not efficient since the SDN switch has limited memory (TCAM
stores between 1500 to 3000 entries) [PDFN17], [Oped] [ASS18].
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4.2.1 Using Inspector Device to Stop Packet Injection Attack in SDN

This subsection explains the Inspector, while subsection 5.2.1 presents the simulation
setup and the relevant results.

Packet Analyzer

Decision Maker Database

 Authorized?

Drop

No

1

Match fields Action

No match To Inspector

2

4

Match fields Action

 Match Outport

5

No match To the controller

3

SDN Controller 

Inspector

Flow Table

Edge Switch

1

2

3

4

5

Sending Packet with new source address 

  No Matching Entry

Matching information for the user

Forwarding the packet to the controller

Installing relevant Miss Table +
 Entry to the current destination

Yes

Figure 4.2. – Inspector Role

Figure 4.2 shows the proposed solution that adds a new hardware device verifying if
the packet’s source address has the authentication to send a Packet_In message to the
SDN controller. The new hardware component (the Inspector ) is an isolated machine
that receives the Packet_In from the edge switches. Moreover, the Inspector solution
considers that the complex network logic should exist only at the edge switches (ingress
and egress switches). In contrast, the core switches should be kept as simple as possible.
The edge switch is responsible for complex network services, such as network security,
while the core switch provides basic packet forwarding. Forwarding elements are different
in core compared to the edge switches because the core switch is not always required to
use end-host addresses for forwarding [CHC18].
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The Inspector is equipped with a database to store the users’ information(e.g., Data Path
Identifier of the connected edge switch (DPID), source addresses, and Inport number).
It Additionally has a CPU to execute a comparison algorithm. The database enables
the CPU to verify the user’s information in the packet header. When the user sends a
packet for the first time, the OpenFlow forwards the packet to the Inspector due to the
packet contains a new source address. Thereby, the Inspector inspects the packet header
to ensure that the user has the authentication to use the network resources.

This way, the Inspector looks up to match the packet header in the stored database.
It decides whether the packet has authentication to access the SDN controller or not.
Then, it notifies the SDN controller. Finally, the SDN controller installs a specific Miss

Table containing the new source address. So, the other packets will use the OpenFlow
channel directly. Thus, the proposed Inspector distributes the packet load between
the SDN controller and the Inspector , especially during packet injection attacks. In
contrast, when the Inspector does not find a matching entry in the database, it drops
the packet. It then notifies the SDN controller about the attack.

4.2.2 Time Complexity of the Inspector

To calculate the time complexity T that the Inspector needs to respond to Packet_In.
The assumption considers all devices and processes that transfer the Packet_In message
to the SDN controller when the source address is new. So, the switches’ number (S) is
the summation of all switches on the path, where each switch is either core switch (Sc)
or edge switch (Se). That means

S = Sc+ Se. (4.1)

The Inspector directly connects to the edge switch, which means the T only considers
the edge switch time. In the Inspector , the time complexity to compare one Packet_In
to the stored database containing n records is O(n) at the worst because the Inspector
compares the Packet_In information to all the records stored in the database. Afterward,
it sends the Packet_In message to the SDN controller using the OpenFlow Channel
(of). Otherwise, the Inspector drops the Packet_In message

Inspector(n) = O(n) (4.2)

O(of) =

0, if an attack

O(of), if matching
(4.3)
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To conclude,
T (n) = Se+ Inspector(n) +O(of). (4.4)

However, the OpenFlow channel uses TCP to transfer the data between the switch and
the controller [Opef] [Opea]. As a result of that, the time to use the OpenFlow channel
is mainly a constant time or ineffective.

O(of) = O(1). (4.5)

In addition, the consumed time to switch the packet out of a switch is near to null (in
ns) [SB16].

S ' null. (4.6)

In the end, the consumed time depends on the comparison process in the Inspector .

T (n) = Inspector(n) =⇒ T (n) = O(n). (4.7)

Generally, this extra complexity time affects as long as there is a new source address
only. In two cases, the OpenFlow switch forwards the packet to the Inspector , either for
the first time or the relevant Miss Table is deleted by timeout. In contrast, the switch
forwards the packet to the SDN controller directly when the source address passed
the Inspector before. Therefore, the complexity of our approach does not influence
the network performance when the user obtained authentication to access the network
resources.

4.2.3 Isolating the Inspector in case of a Malicious Attack

Unlike the traditional network structure, the physical separation between the infras-
tructure and control layers grants the researchers more ability to control the network
operations. The researchers currently modify and assign new control layer components
according to the network needs [DGL+19] [HJT+20]. The SDN controller is the net-
work’s brain that manages the network based on the coming instructions from the
application layer. Hence, the intruder might exploit the Northbound API to harm the
control layer’s operations and disrupt its components.

Furthermore, the intruder pursues to control (hacking) a network device such as a
controller, switch, or host. Then, the attack uses the device as a vulnerable point to
launch malicious behavior to control the entire network or change the entries in one of
the switches forwarding tables [AMK+18].
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The Inspector device is an external hardware unit monitoring the incoming Packet_In
messages to the SDN controller. Also, the Inspector is realized by the SDN application
layer. That means there is a possibility to be hacked and controlled by the intruder.
Thus, the Inspector could introduce a new vulnerability, mainly when the malicious
host exploits to start up an attack on one of the infrastructure or control layer resources.
Therefore, the SDN controller is extended with more functionalities to (1) monitor the
Inspector performance, (2) update the external database, and (3) isolate the Inspector
once the SDN controller notices an odd number of packets comes through a particular
Inport [AS19a].

Mostly, when the attacker cannot corrupt the control layer, the attack is directed towards
other users, and network servers (e.g., web server applications) [HTY+19]. Consequently,
the targeted server throughput becomes very low and the service is unavailable for other
users. For example, the HTTP protocol makes the service available for web server users.
Therefore, the attacker triggers malicious HTTP requests to make the server resources
busy. This kind of attack is easy to execute because the rented botnets can attack the
server. The botnets generate thousands of spoofed HTTP requests in a short period
and with minimal bandwidth [HTY+19].

The Inspector device should be located beside the SDN controller to ensure that the
controller performance will not be affected [AS19a]. Furthermore, the Inspector connects
to the edge switches directly to provide a rapid response to the edge switch requests. In
addition, we assume that the complex network logic only exists at the edge switches. In
contrast, the core switches should be kept as simple as possible [CHC18] [AS19b].

Based on the above, the Inspector contains several units to interact with the edge
switches and the SDN controller, as is visible in Figure 4.3.

The Inspector uses East-West API to communicate with the SDN controller. The
Packet Analyzer unit receives the Packet_In messages to obtain the packet header
information (IP and MAC address, labels, port number, and DPID). After that, the
Decision Maker unit implements a comparison to verify if the header information is
included in the database. Besides, the Controlling Messages unit receives the SDN
controller instructions and updates the database based on these instructions.

The connection between the controller and the Inspector has two channels: the first
channel forwards the Packet_In messages to the SDN controller, while the second
channel transfers the instructions from the SDN controller to update the database in the
Inspector . Still, the SDN controller is responsible for managing the whole controlling
tasks.
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The Inspector would be the target when it is used to protect the SDN controller against
DDoS attacks. Therefore, the work adds two units into the SDN controller for the
second level of protection: Traffic Data Collection and Statistics Extraction. In
SDN, the switches have a flow table and store traffic statistics [MOKKV19]. So, once
the controller requests the switch’s statistics, the switch sends them to the controller.
As shown in Figure 4.3, the Traffic Data Collection unit periodically requests the
statistical information from the edge switches over the OpenFlow channel. Also, the
Statistics Extraction unit analyzes the edge switches statistics and compares the
results to a threshold.

When the statistics extraction unit finds that the Inport’s traffic is beyond a given
threshold, the controller suspects that the Inspector or the OpenFlow switch is hacked.
So, the SDN controller instructs the switch to delete all entries related to the suspected
port and blocks the host. Moreover, the controller sends a message to the Inspector
for updating the information related to the port in the database. But, if the same

InspectorSDN Controller

Packet Analyzer

Decision Maker Database

 Authorized?

Drop

Yes

No

East - West Bound Interface 

Statistics extraction

Unit 1

Unit 2

Units 3

Database

Traffic Data Collection

Updating the database

Forwarding Packet_In 
messages to the controller

Southbound API
(Open-Flow )

Requesting and receiving the 
statistics from the edge switches

Receiving the Packet_In messages 
from the edge switches

C
o

n
tro

llin
g

 M
ess

a
g

e
s
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Inport represents abnormal behavior after the interval, the SDN controller isolates the
Inspector and works independently. As a result, the improved version protects the
controller against hacking Inspector and a packet injection attack. The investigations of
the improved Inspector are discussed in subsection 5.2.2

4.3 Convolutional Neural Network to Detect Control Layer
Saturation Attack

4.3.1 Overview

The suggested Inspector device is effective when the user’s information is known or
there is an ability to enquire about the new user’s information (e.g., cloud database).
In contrast, some networks serve unlimited numbers and receive requests from different
sub-networks through gateway devices such as the internet. As well, after repeating
the suspect behavior from the same Inport, the SDN controller will dispense with the
Inspector. Therefore, the SDN controller should have another component to handle the
unlimited user’s numbers or work as a second defense line after the Inspector.

Furthermore, subsection 4.2.3 exhibits the enhancement work on the Inspector perfor-
mance, which uses a fixed threshold in the SDN controller to monitor the Inspector.
Once the controller detects suspicious behavior, it starts the countermeasures. The CNN
model offers a dynamic threshold to work with the Inspector instead of the fixed thresh-
old. Therefore, this section employs the CNN model as the central part of the second
component. Still, the results of the setup scenarios are presented in section 5.3.

Generally, the communication process between the controller and the switches is effective
and enhances the flexibility and the programmability of the network. But, it provides
new vulnerability and security challenges. The adversary exploits the communication
by crafting numerous packets with different features (e.g., IP and MAC addresses).
Thus, the crafted packets will not match any installed flow entry. Consequently, the
Miss Table will forward the unmatched packets to the controller. This attack is a type
of DoS attack known as the saturation or injection attack. It consumes the channels’
bandwidth and limited resources in both of the control and switches [DGLG17].

Furthermore, the legacy approaches for detecting DDoS attacks are either human
intervention or IDSs. The human intervention includes access control and relatively high
labor cost. The IDSs might not be capable of differentiating benign traffic from malicious
traffic perfectly. Likewise, the IDSs might have a high false alarm rate unsuitable for
handling the SDN injection attack. Besides, with the scaling up of the internet or any
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other network type, the possibility of launching a malicious attack increases. That leads
to destroying the performance of the network’s components such as end devices, servers,
mobile devices, electronic systems, and even the transmitted data [AS21] [WL20].

Therefore, the network administrators should develop an IDS to protect their networks.
As well, the IDSs must efficiently classify the network traffic flows as benign or malicious
by extracting and analyzing the traffic features based on predefined rules [EJNJ21].
Nevertheless, the attackers always enhance their methods to defeat the IDSs rules and
generate traffic with the same benign traffic characteristics. As a result, the used IDS
might not detect new malicious traffic.

Typically, MLAs and DLAs are efficient in understanding and classifying activities due
to their features and many IDSs patterns used them. However, MLAs are mostly shallow
learning where the algorithms have predefined characteristics for benign or malicious
traffic. Furthermore, MLAs depend on the linear conduct of the data to have a perfect
basis for classification. So, MLAs do not perfectly work with non-linearity behavior
which leads to low accuracy. On the contrary, DLAs are the ideal solution presenting
high accuracy for traffic classification. DLAs can extract the features and classify the
traffics without previous knowledge or identifying the traffic behavior before executing
the DLA. The 1D-CNN is a part of the second component in the IDS framework.
The second component consists of the entropy calculation and CNN unit to detect an
injection attack in an SDN environment as Figure 4.5, Figure 4.6, and Figure 4.7 declare.
Also, The following subsection 4.3.2 explains the second component in detail.

4.3.2 One-Dimensional Convolutional Neural Network Model

CNN is a popular DLA for image processing applications. In addition, it is proving its
success compared to other application areas that rely on sequential data such as audio,
time series, and natural language processing. The convolution term is a mathematical
equation working to combine two functions to produce a third function that aims to
merge two sets of information [DSB21]. The CNN functions are in three different types:
First type is one-dimensional convolutional is primarily utilized in sequential input, such
as text or audio. Second type is two-dimensional convolutional is used where the input is
an image. Third type is three-dimensional convolutional is applied to three-dimensional
medical imaging or detecting.

In the suggested framework, the 1D-CNN is applied to time-series information describing
a traffic flow at a specific port, device, or application. Figure 4.4 depicts the 1D-CNN
methodology. In the first step, the traffic flow contains many packets creating the flow’s
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Figure 4.4. – One-Dimension convolutional Neural Network Technique

features. Every feature is an input value for the 1D-CNN algorithm. In the second
step, the 1D-CNN scans the values with a kernel size filter (A × B) where A is the
height and B is the width. The filter slides over the feature values to calculate the dot
product between the filter and the features’ parts meeting the filter (A × B). In the
third step, the pooling layer uses another filter, obtaining either the maximal value or
the average value (The second component selects the maximal value). Consequently,
The filter decreases the input size and the computational power required to process the
data through dimensional reduction [YNDT18]. Also, the most influential features are
defined, which effectively maintains the model training [EJNJ21].

In fourth step, the outcome is either used as input for another convolutional and pooling
layer or distributed to all neural nodes in a fully connected layer. The fully connected
layer is a perfect method for treating non-linear values and learning a possibly non-linear
function in that space. In the fully connected layer, each input’s value has a percent
wight. For example, if the value (X = 20) and the percent weight is 20%, the real value
is (20 ∗ 0.2 = 4). Nevertheless, the 1D-CNN flattens the result of the last pooling layer
into a column vector to feed all neural nodes in the fully connected layer. Thereby, the
neural node obtains the value’s summation and uses the result (x) in the used equation
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based on trial (ReLU (rectified linear unit)) in Equation 4.8).

f(x) =

0, if x ≤ 0

x, if x > 0.
(4.8)

In the end, the output layer classifies the flow as benign or malicious according to the
Sigmoid classification technique as stated in the equation 4.9.

Sigmoid(x) = 1
1 + e−x . Where e = 2.71828. (4.9)

Moreover, the final results support a feed-forward neural network and back-propagation
is applied to every iteration in the training time. The 1D-CNN model compares the
final result to the correct value. Then, the difference between them is sent back to
the neural nodes (output and fully connected layers) to adjust the percent weight of
the inputs. Over a series of epochs, the model can distinguish diverse network flow
traffics [DSB21].

The proposed 1D-CNN architecture comprises two convolutional layers with 32 and 16
filters. Each filter has a size of 1x3 and a stride of 1. The same padding is used in the
convolutional layers to make the output the same as the input (adding zeros as inputs
when the filter does not match enough inputs’ number). Each convolutional layer is
followed by a max-pooling layer with a size of 1x2. After that, the model uses two fully
connected layers with neural nodes equal to 16 and 8, respectively. The final layer is
one neural node that applies the Sigmoid function classifying the network traffic into
benign (0) or malicious traffic (1). Furthermore, the 1D-CNN model uses a Nadam
optimizer and a mean squared error (MSE). The hyper-parameter configuration is 100,
10, and 0.001 for the batch size, epoch, and learning rate. At the same time, the output
layer uses binary cross-entropy as the loss function. In contrast, all layers except the
last layer use the non-linear ReLU as the activation function.

To investigate the suitability for the SDN environment, the 1D-CNN model is applied as
a unit of the second component. However, using the model for every packet or traffic is
not acceptable because of the high computational complexity [WL20]. Therefore, three
units are required before the SDN controller decides to mitigate any malicious attack.
Figure 4.5, Figure 4.6, and Figure 4.7 explains the sequence of their performance in case
of attack, suspicious, and normal behavior:

1. CICFlowMeter Unit: CICFlowMeter is a network tool that analyzes all bidirec-
tional packets to generate specific information about the network traffic flow for a
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particular port, device, or network application. The CICFlowMeter captures the
first packet of the flow, whether the packet is in the forward (source to destination)
or backward (destination to source) direction. In the second component, the
CICFlowMeter version 3 [CIC] tool captures all bidirectional packets of the SDN
controller port number 6653. Thus, it provides statistical information in a CSV
format file with more than 80 features for each network traffic. For instance,
duration, length of packets, number of packets, number of bytes, etc. Appendix C
shows all the extracted features [LDGMG17, fC19].

2. Entropy Information Unit: The entropy unit monitors the randomness of
the Packet_In messages. In the injection attack, the adversary floods the SDN
controller or the network with false header packet information (e.g., source or
destination addresses). Once the adversary launches the attack, the Miss Table
entry submits Packet_In messages through the OpenFlow channel to the SDN
controller. As a result, the randomness value becomes higher than the predefined
threshold, which signifies suspicious behavior. However, a flash crowd situation
mostly behaves like malicious packets (e.g., packets per second, bits per second,
and flows per second). Hence, the entropy information is not sufficient to identify
whether there is an attack or not [WL20,CLMR19]. The entropy calculation is
real-time capable and treats different traffic flows with a low computing overhead
[XWX20]. Once the SDN controller receives the Packet_In message, the sensitive
features are extracted and stored in the entropy window buffer. When the window
is full, the unit calculates the randomness. If the entropy threshold is broken, the
1D-CNN unit is transferred from silent into the active state (see Figure 4.6).

Generally, two components are essential to detect the DDoS using entropy, (a) the
window size and (b) the entropy threshold value. Therefore, when the new Packet_-
In messages reach the unit, the entropy window caches the sensitive features and
the Inport information. Thereby, the entropy units value calculates the entropy
as long as the window reaches the limit (This work uses 100 Packet_In messages
based on the trials compared to 30, 50, 150, and 200). Entropy is calculated
after this limit to measure the randomness in receiving packets. Equation 4.10
shows a window W , where f represents its frequency of occurrence. The entropy
unit counts the repeated appearances for every single sensitive feature φ. It then
calculates the occurrence’s probability P (φ) based on the entropy window size
Wsize (where n is the last sensitive features and i is the number of the sensitive

Ph.D. Dissertation of M.Sc. Abdullah Soliman Alshra’a 67



4. Proposed Intrusion Detection System for SDN

feature) like the following:

W = (φ1, f1), (φ2, f2), (φ3, f3), ..., (φn, fn) (4.10)

P (φi) = fi/Wsize (4.11)

and the Entropy value E of the full window is calculated in equation 4.12:

E =
n∑
i=1
−P (φi)log2P (φi) (4.12)

Once the entropy threshold is violated, the 1D-CNN finds an attack in the last
50 flows of information (50 is based on the trial). The controller determines the
malicious ports by calculating the port probability (P (φ)) in the entropy window.
Hence, the port of the highest P (φ) is blocked. The entropy value is recalculated
by dividing the blocked port probability by its entropy slots in the threshold
window. If the entropy value is less than the threshold or equal, the block port
process stops. Otherwise, the controller will block the port of the second weight
and so on.

3. Dynamic Threshold Unit: It calculates the dynamic threshold by considering
the network traffic characteristics. The network traffic is always changeable and
does not have the same conduct, and hence the threshold value should be adaptive.
According to the algorithm 4.1, the size of the threshold window is changeable.
If no suspicious Packet_In traffic, the SDN controller inserts the new entropy
value into the threshold window. After that, the unit obtains the variance (V )
for the window values twice; The first one is without the newly inserted entropy
value (V ariance_old) and the second one is without the oldest entropy value in
the threshold window (V ariance_new) as defined by equation 4.13 where n is
the number of considered entropy values.

V =
n∑
i=1

(E − µ)2/n. (4.13)

As a rule, a minor variance value indicates that the newly inserted entropy is
close to the Mean (µ). On the contrary, a high variance value indicates that
the new entropy value is apart from µ. Additionally, the algorithm calculates
the quantity (Q), which is the largest variance inside of a subset of all entropy
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values. Q aims to quantify the maximum V in the new window according to the
following equation

Q = (µ− S)(G− µ)
V

(4.14)

Where S is the smallest entropy value, and G is the greatest entropy value in
the threshold window. In addition, the unit uses the direct and inverse values
to calculate the DiffRatio of the change. Direct measures the Mean’s differences
between the current window and the last window. In contrast, the Inverse

represents its inverse and measures the Mean’s differences between the previous
window and the current window.

Input:
• Mean of the current window values (µnew),
• Mean of the previous window values (µold),
• Current dynamic window size (CWsize), smallest value (S), greatest value (G)

Result: Next Window Size (NWsize)
initialization
V ariancenew =

∑i
1(valuei − µnew)2/n

V arianceold =
∑i

1(valuei − µold)2/n

Quantity = (µnew − S) ∗ (G− µnew)/V ariancenew
Direct = V ariancenew/V arianceold

Inverse = V arianceold/V ariancenew

DiffRatio =
√

(Direct− Inverse)2

if DiffRatio > 1 + β then
if V ariancenew > V arianceold then

NWSize = CWsize+ bQuantitye
else

NWSize = CWsize− bQuantitye
end

end
return NWsize

Algorithm 4.1 – Dynamic Window Sizing

Direct = V ariancenew/V arianceold (4.15)

Inverse = V arianceold/V ariancenew (4.16)

DiffRatio =
√

(direct− inverse)2. (4.17)
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Once DiffRatio is greater than (1 + β) and the V ariance_old greater than
the V ariance_new, the algorithm increases the window size by rounding the
quantity Q to the nearest integer. Nevertheless, when DiffRatio is greater than
(1+β) and the V ariance_old less than the V ariance_new, the algorithm reduces
the window size by rounding the quantity to the nearest integer. The unit uses
β to cancel excessive overhead, which equals 5% and represents a 95% confidence
interval.

As is depicted in Figure 4.8, the unit uses the standard normal distribution to
calculate the entropy threshold. The work follows the coverage theorem of normal
distribution ( what is well known as the empirical rule, also referred to as the three-
sigma rule or 68-95-99.7 rule) [CLMR19]. The standard deviation (σ) represents
68% of the normal distribution values in the area between µ − σ and σ + µ. Also,
95% of the values are in the area between µ − 2σ and 2σ + µ. However, 99.7%
of the values lie in the area between µ − 3σ and 3σ + µ. Therefore, the SDN
controller has all entropy values in the threshold window after a specific time.
The unit calculates the Mean of the threshold window (µ) to obtain the value of
the σ according to equation 4.18. In the end, the next point in the threshold is
calculated by equation 4.19.

σ =

√∑
(E − µ)2

CWsize
(4.18)

Threshold = µ− 3σ (4.19)

0.68

0.95

0.99.7
µ− 3σ µ− 2σ µ− σ µ

x

Figure 4.8. – 3-Sigma Rule
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4.4 Toward Applying IPSec Protocol to Counter DDoS
Attacks

The current networks are more complex than the networks three decades ago because of
the massive number of end-users, connected devices, and modern applications. Therefore,
the SDN enhances the legacy networking methods to respond to these changing requests
[GBCMVVLV20].

Additionally, the malicious user exploits the available devices, such as advanced PCs or
Botnets, to launch attacks towards different points in the network. For instance, the
attacker transmits many messages to a specific address to exhaust its resources, such as
link bandwidth, CPU usage, memory, etc.

In the previous sections, the IDS counters the DDoS attacks against the SDN controller.
However, this section shows a novel idea to apply the IPSec protocol concept against
the DDoS attack in SDN. At the same time, the experiment’s results are presented in
section 5.4.

The DDoS attack is a significant challenge when the attacker falsifies the IP and MAC
addresses simultaneously. That means the attacker adopts an authenticated user role
to exploit the pre-installed entries. This way, the attacker can target other end users,
servers, or other network resources, which is known as a freeloading attack [PCK16].
The freeloading attack is possible in all communication network environments, especially
in wireless and local area networks.

In such a freeloading attack, the malicious user eavesdrops on the transmitted packets
using the promiscuous mode to obtain information about the traffic flows, sender, receiver,
and route entries in the network. Subsequently, the attacker sends spoofed packets
pretending to be benign. So, the attacker exploits the available resources illegally and
exhausts the available resources and services in the infrastructure layer [CLMR19].

The attacker will direct the DDoS attack to the infrastructure layer in the SDN envi-
ronment when the attack failed to attack the SDN controller. This section proposes
an initial and novel approach to protect the SDN resources against freeloading and
controller saturation attacks. Moreover, the solution introduces a unique method to
distinguish between benign users and the attacker. The solution calculates a threshold
for the expected amount of transmitted packets based on the Exponential Weighted
Moving Average (EWMA). Furthermore, the solution adapts the IPSec concept between
the end-users and edge switches in the SDN. Thus, the end-user adds a metadata field
in the packet header as a signature during the DDoS attack. Moreover, the end-users
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and the controllers have a predefined algorithm for exchanging public keys, which assists
both of them in generating secret keys for the signature. Ultimately, the switch inspects
the secret key and then matches it to a specific field in the flow rule to differentiate
between forged and correct packets.

4.4.1 Background: IP Security Protocol

The IP Security Protocol (IPSec) aims to secure and encrypt network traffic between the
source and the destination over an unsecured network (e.g., two hosts, two gateways, or
host - gateway). Hence, unauthorized users or applications cannot access or understand
private data transmitted over the network. Also, IPSec protects IP packets against
overhearing and enhances the defense technique against network attacks [KK05].

The unauthorized user or application can access or intercept the transmitted data
as long as the two peer nodes exchanging data without encryption. When the user
connects to a local or corporate network over the internet, the traffic is accessible for
many unauthenticated users. Therefore, configuring IPSec on both communication
sides makes the transferring date more secure. To implement IPSec, the sender uses
an algorithm encrypting the data before sending; that means the transmitted data
can only be understandable by an authorized user who knows how to decrypt the
data. Moreover, the IPSec adds a signature to the transmitted data to ensure the data
source [LMMLPG19] [HSI+21].

Permanently, IPSec works based on two security methods:

1. The Authentication Header (AH): which ensures the data’s source (authen-
tication/ origin/integrity). The AH ensures that the packet’s source, payload, and
header were not modified before reaching the destination. The equipped system
with IPSec adds a new header between the IP header and before an upper layer
security protocol or before the payload, which could be encrypted data according
to IPSec [ZZ20]. AH contains several fields that are used or ignored due to the
process need, such as next header, payload length, security parameters index,
sequence number, and integrity check value. Finally, the packet could be sent by
encapsulating the entire packet with AH (Tunnel Mode ) or inserting AH between
the IP header and the payload (Transport Mode) as the following :

AH in Transport Mode
IP AH Hedear TCP Payload
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2. The Encapsulation Security Payload (ESP): offers data encryption and
decryption. It encapsulates the entire packet between ESP’s header and trailer
except for the IP header (Transport Mode) or encapsulates the whole packet by
adding a new IP header on top of that (Tunnel Mode). Both sides of communication
should have a way to negotiate the encryption method and private keys. Besides,
AH could be implemented independently or works alongside ESP protocol together
according to the network needs [ZZ20].

ESP in Transport Mode
IP ESP Header TCP Payload ESP Trailer ESP Authentication

The network layer is the targeted layer to implement the IPSec, but this does not conflict
to apply its concept with other layers if it is possible. Therefore, the administrators
should configure the end-user with the IPSec.

4.4.2 Background: Diffie–Hellman Key Exchange

IPSec involves various technologies and encryption methods. The most crucial step is
the key exchange, known as Internet Key Exchange (IKE). The peers must be equipped
either by a secret signature or a pre-shared algorithm such as the Diffie–Hellman key
exchange algorithm.

Diffie–Hellman securely enables both authenticated peers to establish and exchange keys.
In addition, the Diffie–Hellman uses the pre-shared prime modulus and a generator with
random bits from a pool. In the beginning, each peer produces a public key and then
sends it to the second peer. Hence, the peers use the received public key to calculate a
shared secret key using the pre-shared algorithm. The secret key enables to set up of a
secure tunnel and negotiate the parameter of IKE phase 2 parameters.

The purpose of IKE phase 2 is to negotiate with IPSec security association to set up
the IPSec tunnel. The second phase of IKE is to negotiate IPSec security association
parameters protected by an existing IKE security association and periodically renegoti-
ates IPSec Security Association to ensure more security. Optionally, if there is a need,
the users might perform an additional Diffie-Hellman exchange. Moreover, in the IKE
Phase 2 negotiations, peers could select between ESP and AH, where ESP only does
the encryption. In other words, when data is sent with AH, the transmitted data is
unencrypted [Eas21].
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To make a better understanding, let’s suppose that Host X and Host Y launch an
exchanging secret key procedure using the Diffie–Hellman key exchange Algorithm.

1. Both peers agree to use the same parameters, P is a prime number, and G (also
known as a generator) is an integer fewer than P .

2. Host X chooses a private key A, then sends a public key
(APK = GA mod P ) to Host Y .

3. Host Y Chooses a private key B, then sends a public key
(BPK = GBmod P ) to Host X.

4. Host X calculates the shared secret key
S = BPKA mod P

5. Host Y calculates the shared secret key
S = APKB mod P

6. Finally, X and Y has the same shared-secret key.

4.4.3 Background: Problem Statement

The adversary always develops new approaches to target the network resources. The
adversary might be selfish and surreptitiously piggybacks on authenticated user’s network
resources to reduce costs and even obtain free services. In addition, the adversary
might be malicious and damages the target, such as DoS or DDoS attacks on remote
servers, malware propagation into the network, spam, exploitation of remote hosts,
etc [PCK16].

The adversary exploits the controller intervention in the SDN environment and starts
launching many packets with different addresses. In other words, the adversary firstly
sniffs neighbor information and then uses neighbor IP addresses to launch a large amount
of traffic at the target resources. Therefore, the attack is difficult to be detected because
the malicious traffic does not pass through the SDN controller, the intelligent network
part. However, the adversary could launch the attack in SDN using the active flow rules
in the switch table. Also, the adversary can piggyback its packets on the existing flow
rules used as benign hosts. Although all users pay to upload and download data, the
adversary obtains a freeloading for its malicious data.

This type is a freeloading attack that leads to consuming network resources, e.g., switches
and links. The benign user has to pay more than its actual utilization because the
attacker spoofs the benign user source addresses. Besides, once the attacker floods the
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network with high data-rate traffic, it fills the OpenFlow switch buffers, increases the
loss packets, and minimizes the end-to-end delay.

Figure 4.9. – Target SDN Network Topology

Inport SRC/MAC DST/MAC SRC/IP DST/IP ... ACTIONS
1 00-00-00-00-00-07 00-00-00-00-00-01 10.0.0.7 10.0.0.1 ... 2
1 00-00-00-00-00-07 00-00-00-00-00-05 10.0.0.7 10.0.0.5 ... 2
1 00-00-00-00-00-07 00-00-00-00-00-03 10.0.0.7 10.0.0.3 ... 2
1 00-00-00-00-00-08 00-00-00-00-00-03 10.0.0.8 10.0.0.3 ... 2

Table 4.1. – Flow table of S4

Figure 4.9 clarifies the freeloading attack where Table 4.1 has a brief example of the
forwarding table at OpenFlow switch (let’s say it is S4). The S4 has flow rules installed
by the SDN controller (see Table 4.1). Port 1 would forward all the packets received
with source addresses of H7 and destination addresses of H3 to output port 2. Also,
the OpenFlow switch forwards all packets received from port 1 with source addresses of
H7 and destination addresses of H1 to port 2. The same result with H5. H8 is under a
malicious user control, and as per the entries in the second table, it can only send data
to host 3.

Both H7 and H8 are connected to the same switch. In this scenario, the adversary
(H8 ) crafts the addresses of H7 since both of them are in the same local area network.
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Consequently, H8 exploits the spoofed addresses to launch malicious traffics to all
destinations that H7 uses through port 1. That means the adversary can obtain a free
service, and H7 pays for the service. The adversary would also be capable of launching
a DoS attack toward all of H1, H5, and H3 with bearing no legal consequences.

4.4.4 Proposed Countermeasure

The IDS framework applies a novel solution to distinguish between the malicious and
benign users under the DoS, DDoS attack circumstances, to address the problems
mentioned in 4.4.3 section. The IDS relies on the AH technique to provides the benign
user a secret key (signature). Like this, the edge switch drops the malicious packets
only. In this section, the solution considers UDP, ICMP, and TCP protocols and their
differences. But, in the next section 4.5, the IDS proposes to enhance the solution to be
compatible with the other IDS proposals.

4.4.4.1 Miss Table Architecture

The OpenFlow switch would forward no packet to the SDN controller as long as the
adversary crafts packets to match active flow rules. Thereby, the controller cannot count
the new SYN request or inspecting the packet attributes. Therefore, the edge switch
uses two Miss_Tables. The first table monitors SYN requests, and the second table
monitors the amount of the sent data.

Table 4.2. – SYN Table
Priority = 1 Match(Flags = SYN) Action = Controller
Priority = 0 Match(Otherwise, anything) Action = Table1

The SYN table 4.2 enables the SDN controller to monitor SYN requests. So, the edge
switch sends the new SYN request to the SDN controller as a Packet_In. The controller
then inspects the packet to decides the forwarding behavior. Finally, the controller
installs a flow rule containing complete information about the source addresses and the
Inport number.

If the same SYN request comes through the same Inport, the first table immediately
forwards the request through the proper Outport. It then increases the related counter
of the match field by 1. Every 3 seconds (the best time period based on the experiments
used different suggestion periods), the SDN controller requests the flow states from
the SYN table to analyze the flow rules statistics. The controller uses the match field
and the corresponding packet number to define the TCP user’s behavior. After that,
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the controller compares the TCP user’s behavior to all other users in the network
history.

Table 4.3. – The Second Table
Priority = 0 Match= (anything) Action = Controller

The second table 4.3 acts as the Miss_Table to treat all packets coming from the SYN
Table (the packets without SYN Flag). The new packet that does not match any flow
rule, the Miss_Table entry forwards it to the controller as a Packet_In. Thus, the SDN
controller makes a decision and installs a suitable entry to the second table. Furthermore,
the SDN controller requests the flow states of the second table every round and monitors
the amount of the sent data in the edge switches.

4.4.4.2 Adaptive Threshold Algorithm Based on EWMA

The EWMA statistically monitors the target’s behavior during the last time. To do
that, EWMA calculates multiple points of the averages in a particular way to provide
less and less weight of the data because they are further removed in time [GD21].

In this work, the EWMA unit provides a pointer about the sent data during the previous
lifetime. Therefore, The SDN controller has a threshold for each table in the edge
switches. Hence, there is a threshold for SYN requests, and the second one monitors the
sent data. When the user data exceeds the threshold, the unit issues an alarm about a
suspicious user.

Let us assume Xi is the number of the SYN requests for a certain Inport. Also, the
average value of all SYN requests in the previous rounds (from the beginning until now)
is Tt−1. That means the threshold is obtained by the equation 4.20.

Threshold = (p+ 1) ∗ Tt−1 (4.20)

Where (t) is the round number, and the percentage parameter (p) observes any notable
increase for the SYN requests or the sent data. Thereby, the controller alarms at round
number t when.

Xi ≥ (p+ 1) ∗ Tt−1 where, p > 0 (4.21)

Typically, The controller uses two units to verifies the traffic’s behavior. The first unit
periodically requests the flow states (3 seconds in this work). The second unit receives
the flow states and counts the sent packets for each Inport in both tables. Figure 4.10
shows a flowchart for the second unit, where the second unit has two values for the
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Figure 4.10. – Flow Chart of the Second Unit

same Inport. The first value counts the SYN packets using the SYN table. As well,
the second value counts the sent packet using the second table. After that, the unit
compares each number to the relevant threshold; if it is greater than the threshold, the
unit alarms the controller about the suspect user. Otherwise, the unit considers the
highest number for all flow tables as the Xi. It is worth mentioning the SDN controller
has two thresholds for both SYN packets and the amount of data.

Xi acts one point on the timeline, and it is unreasonable to consider it like 50% in the
new average value. Therefore, The new average value (Tt) can be calculated over time
by the EWMA formula 4.22, which considers α (the value’s percentage).

Tt = (α ∗ Tt−1) + ((1− α) ∗Xt) Where, 0 ≥ α ≥ 1. (4.22)

Furthermore, the network could be silent for some consecutive rounds. Therefore, the
Xt value would be around zero, which leads to getting down the threshold less than
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the network’s normal behavior. Therefore, the equation 4.23 adds an Adaptive baseline
b.

Threshold = (p+ 1) ∗ Tt−1 + b (4.23)

Adaptive baseline b is the window average for the last round. Algorithm 4.1 in the
end of subsection 4.3.2 describes the operation to predicates the Dynamic-Window Size
when there is no suspicious user. The second unit calculates the Mean value (µ) for all
flow states of the edge switches every round.

In other words, the controller periodically retrieves the number of sent SYN flags from
the SYN table and the number of sent packets from the second table for every Inport.
Thereby, the controller calculates µ for both tables to insert them to the previous results
in their dynamic window.

Moreover, the variance (V ) is calculated twice for all available values in the dynamic
window. The first time is without the new value in the window (V arianceold), and the
second time is without the oldest value (V ariancenew).

V =
n∑
i=1

(valuei − µ)2/n (4.24)

n is the number of considered values. The small V indicates that the new added value
is close to µ. If V is a high value, the added value is passing away from µ (Mean of
the window values). While quantity (Q) is the biggest variance inside a subset of all
values. The algorithm 4.1 calculates the Q to quantify the maximum V of the current
Dynamic window and know the variation of the window size,

Q = (µ− S) ∗ (G− µ)/V (4.25)

S is the smallest value, and G is the greatest value in the targeted window. Moreover,
the algorithm needs to obtain the direct and inverse values to calculate the ratio’s
difference of the change (DiffRatio). direct measures the mean changes between the
current and last windows, and inverse represents its inverse and measures the mean
changes between the last and current windows.

direct = V ariancenew/V arianceold (4.26)

inverse = V arianceold/V ariancenew (4.27)
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If DiffRatio greater than (1 + β) and the V arianceold greater than V ariancenew

increasing the window size by quantity. But, in case the DiffRatio is greater than (1
+ β) and the V arianceold less than V ariancenew, then decreasing the window size by
quantity value.

DiffRatio =
√

(direct− inverse)2 (4.28)

The algorithm uses β to cancel superfluous overhead, β equals 0.05, representing a 95%
confidence interval. In other words, confidence interval relates to a boundary value for
the population values. So, the difference between the current value and the mean of the
last window is not significant at the 5% level.

4.4.4.3 Controller and User Countermeasure

The OpenFlow Protocol offers secure communication between the SDN controller and
the forwarding nodes. This communication provides an excellent transporter to transfer
the table information, network nodes status, and user requests for routing. Besides,
the controller sends instructions to manage the network, and the OpenFlow protocol
transfers the flow state from the table to the controller based on the controller’s request.
Also, the controller can define a particular flow entry by its attributes (priority, match,
table number, etc.) [Nip21].

Figure 4.11. – Controller Mitigation Producer

In this proposed method, the controller periodically sends requests to all flow tables
(SYN table and the second table) in the edge switches to obtain complete information
about the flow state. Subsequently, the SDN controller counts the packets passed the
Inports, compares the numbers to the threshold, adds the greatest value to the dynamic
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window values, and verifies the need to increase or decrease the window size. After that,
the controller calculates the baseline.

The mitigation unit would be silent until one of the values exceeds the predefined
threshold, triggering the controller to launch the mitigation procedure. Figure 4.11
depicts the mitigation procedure after the controller detects a suspicious user. Using
IPSec protocol and Diffie-Hellman concepts, the controller calls the shared prime and
generator numbers. Hence, the mitigation unit generates a public key and sends it to
the edge switch, which forwards it to the user through the connected port. Afterward,
the controller launches the mitigation by sending an instruction to the edge switch to
delete all flow states related to the suspicious user and its connected Outport.

Finally, the controller installs two entries. The first one blocks any packet without key.
The second one has the higher priority to forward the tagged packet with a key to the
controller. Meanwhile, the controller would not answer any request to install a new
flow for this user unless it receives a Packet_In that has the public key which used
to generate a secret key. Thus, the controller uses the secret key to verifies from the
Packet_In source by comparing it to the signature produced by the user.

Likewise, the user uses its prim and generator number to send another public key back
to the controller. Furthermore, the user generates its encrypted key based the received
public key from the controller and uses it as a signature according to the AH concept
from the IPSec protocol. When the controller receives the first packet containing the
signature, the controller installs the requested entry into the edge switch. The flow
entry has higher priority and a metadata field to match the signature in the packet
header. In addition, the entry removes the signature and forwards the packet to the
proper Outport.

Eventually, the controller updates the previous two installed entries to forward the
packet to the controller if the packet has the secret key or drops the packet that comes
through the Outport without the secret key.

4.5 Recurrent Neural Networks to Classify Traffic

The SDN controller would be out of service when the received number of requests
exceeds its abilities. Also, the benign user sometimes behaves similarly to a malicious
user. Especially when the number of requests is increasing because of temporary
reasons (e.g., free services on some servers), which is known as flash crowd [YWLW20]
[CLMR19].
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Thus, implementing robust security regulations is essential to protect the controller
against DDoS attacks. Furthermore, the solution has to distinguish between malicious
and benign users with a high accuracy that ensures the lowest false alarm rate and
minimizes the associated computational cost as much as possible.

The section 4.1 presents the third component in the suggested IDS framework. The
third component depends on the flow table to detect the network behavior. In case of
an attack, the third component notifies the mitigation unit. Then, the mitigation unit
exchanges the key with the users. Hence, the third component enables the OpenFlow
switch to differentiate between the malicious and benign packets. However, section 4.4
presents how the third component handles the TCP, ICMP, and UDP packets.

In this section, the IDS framework applies RNN models as an enhanced solution to the
third IDS component in section 4.4 to perform as the flow chart in Figure 4.12. Moreover,
the RNN models can achieve high accuracy, detects more attack types, minimizes the
number of flow tables, and cancel all complex statistical procedures. Therefore, in this

Attack

Mitigation Unit

N = 1

No

Receiving the Flow Table

Yes

DLA Model N = N + 1

Extract Features of the Flow Rule N

Figure 4.12. – Flow Chart of Third component to Detect the Malicious Behavior
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section, the performance of RNN, LSTM, and GRU is explained for the IDS-based on
flow states. The relevant implementation and results of this section are presented in
section 5.5.

4.5.1 Recurrent Neural Networks

Different research depends on the RNN and development areas such as image pro-
cessing, reading handwriting, and speech recognition. Also, RNN is a neural network
algorithm designed to capture information from sequence points. Therefore, RNN can
solve a problem that requires processing a sequence of data to feed-forward neural
networks.

tanh

ht−1

Hidden Node

xtInput

ht

Hidden Node

ytOutput

Figure 4.13. – Basic Architecture of an RNN Neuron

Furthermore, RNN has a recurrent structure because the output of one step is fed as an
input to the next step [JFG+18]. For a better understanding, assume the input to the
model over time t given by the vector X = (x1, x2, x3, ..xt). Moreover, the neural nodes
in the layers between the input and output nodes (hidden nodes) can be computed as
the vector sequence H = (h1, h2, h3, ..ht). The output nodes are considered as the vector
sequence Y = (y1, y2, y3, ..yt). The RNN model, as depicted in Figure 4.13, calculates
the hidden node ht at time t according to the following equation:

ht = σ(Wxhxt +Whhht−1 + bh); (4.29)

Where σ is the activation function, W are different weights, bh is the bias and ht−1 is
the hidden node at time t− 1. Also, in the end, the output yt at time t is defined in the
next equation:

yt = Whyht + by (4.30)
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Finally, RNN enhances the output by learning from the treated data, which is known as
back-propagation. Every time the RNN receives data, it produces an output, and then
the output is compared to that of the desired result by a loss function. Repeatedly, the
RNN adjusts the weights based on the difference between the output and the target
result. However, initial weights are assigned at the beginning with the random values
close to zero. When the RNN starts the back-propagation by multiplying a tiny number
by the weight values, the result becomes less and less called the vanishing gradient
problem. Therefore, LSTM and GRU appear to solve this problem.

4.5.2 Long Short-Term Memory

LSTM is an enhanced architecture of RNN used for deep learning applications, such
as IDSs, speech recognition, and connected handwritten applications. Also, the LSTM
architecture solves the vanishing gradient and learns from experience to classify a time
series [TMM+18]. In general, an LSTM has a similar control flow as an RNN. But the
differences are the operations inside the LSTM’s cell. Figure 4.14 shows the architecture
of LSTM’s cell.

σ σ tanh σ

× +

× ×

tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Current state

ht

Hidden

ytOutput

Figure 4.14. – Long Short Term Memory Cell

The LSTM’s cell memorizes the values over arbitrary time intervals. Also, three gates
adjust the data in the cell: an input gate, an output gate, and a forget gate. In general,
the essential functionality of the LSTM cell is to decide which information should be
deleted or memorized. The forget gate is responsible for information coming from a
prior hidden state (ht−1) and from the input (xt). It combines them and applies the σ
function to get values between 0 and 1. If the value is closer to 0, the forget gate would
remove the information. Otherwise, the forget gate would pass the value to the next
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step to process with the previous cell state (ct−1). Moreover, the result of (ht−1 + xt)
passes through another σ and tanh function respectively. Thereafter, the result of both
σ and tanh would be multiplied. Eventually, the current state (ct) is calculated by the
next equation:

ct = ct−1 ⊗ ft ⊕ It (4.31)

where, ft is the forget gate

ft = σ(Wf (xt + ht−1)) (4.32)

and It is the input gate, which consists of two equations:

it1 = σ(Wi2(xt + ht−1)) (4.33)

it2 = tanh(Wi1(xt + ht−1)) (4.34)

With the previous two equations, we obtain the input gate It value as

It = it1 ⊗ it2 (4.35)

The output gate decides which information in the cell state should send to the network
as input in the following time step. The output gate’s activation is given by.

ht = σ(Wo(xt + ht−1))⊗ tanh(It) (4.36)

LSTM solved the problem of the vanishing ingredient. Still, it is more complex than
RNN because LSTM needs more resources and time to train and be ready for real-world
applications.

4.5.3 Gated Recurrent Unit

GRU is another advanced type of RNN similar to LSTM. It needs less time to train
because the gates’ structure is simple compared to LSTM because it lacks an output
gate.

GRU contains two Sigmoid gates and one hidden state. The computation can be
summarized as:

ht = (1− zt)⊗ ht−1 ⊕ zt ⊗ it (4.37)
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Figure 4.15. – Gated Recurrent Unit Cell

where zt , rt and it are obtained as the result of the next equations according to the
depicted gates in Figure 4.15:

zt = σ(Wz(ht−1 + xt)) (4.38)

rt = σ(Wr(ht−1 + xt)) (4.39)

it = tanh(Wi(rt ⊗ (ht−1 + xt))) (4.40)

Figure 4.15 shows the architectural details of a single GRU cell, which replaces the
forget and input gates with an update gate it, adds a reset gate rt in order to modify
ht−1 and removes the internal memory of LSTM cell ct.

In other words, the main differences between GRU and LSTM are the gates number and
the maintenance of cell states. In contrast to GRU, LSTM has three gates (input, forget,
and output) and maintains an internal memory cell state. Consequently, LSTM is more
flexible but less efficient memory and time-wise. Although GRU and LSTM are perfect
for resolving the vanishing gradient problem, both need to track long-term dependencies.
Moreover, it is recommended to extensively train an LSTM initially because it has more
parameters and is a bit more flexible. Nevertheless, in case there are no quantifiable
differences in their performance, GRU would be better because it is simpler and more
efficient [HOC+20].
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4.6 Discussion

The flexibility and agility of the traditional networks are the essential goals of SDNs.
Therefore, many researchers and projects evolve SDN to reach the optimal structure.
Still, the SDN structure suffers from vulnerable aspects allowing the malicious attacks
to threaten the network architecture in addition to the threats that are already existing
in the traditional network.

The suggested IDS framework considers three methods that gather the traffic information:
the OpenFlow channel, external device, and flow tables. Each method is the input for
three different techniques detecting the DDoS attacks, as Table 4.4 demonstrates their
objectives generally. Thus, the main feature of the suggested IDS is the flexibility, where
the network’s administration can depend or dispense with the IDS components according
to the network requirements. Furthermore, the network’s administration can easily
insert any enhancement in the suggested IDS because each component independently
works and acts as a second defense line for the other component.

This IDS employs the DLAs (CNN, RNN, LSTM, and GRU), which succeeded in many
applications. The DLAs can analyze both training and test data and use any ongoing
data to correct the understanding for the upcoming data. That way, the SDN controller
is ideal for gathering traffic information and extracting features from the data without
any human intervention. That offers a ready output to feed the used DLAs.

The IDS framework presents a new countermeasure relying on IP Security protocol.
Through the IPSec protocol concept, the IDS framework offers a new approach as the
first step-stone toward a full immunization by using IPSec protocol between the edge
switches and end-users. Therefore, the Mitigation unit implements the AH method to
differentiate between benign and attacker during the freeloading or DDoS attack.

However, the dump devices might work against the SDN objectives and minimize the
network response. Some projects have started developing new approaches providing
more abilities to the forwarding devices. For instant, BEBa-project [BEB21] implements
the Finite State Machine (FSM) in the OpenFlow switch. Still, FSM is limited to
change the flow entry from state to another and execute different action. FSM cannot
compare simple computation processes, as it is dependent on the controller to change
the entry fields. Initial projects begin adding more power to the OpenFlow switches to
enable simple computations and memory operations [RBN+19].

Finally, the edge switches act as the connecting point between the network and the
end-users. Thus, the first defense line against the threats mostly comes from connected
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unauthenticated or hacked devices. Therefore, the edge switches should be more
compatible and extended to run more computation processes.

Changing the entry fields depending on data analysis or traffic behavior would make the
network more sensitive to changes and make better decisions. Furthermore, the small
comparison could allow the switches to read the encryption data and rebuild it as the
original or extend the area to apply other security algorithms and protocols.

The component The Objective

Inspector Device First component that handles the networks with a known
number of users (e.g., local network). It prevents the mali-
cious users from launching the saturation attack towards the
SDN controller

CNN Component Second component that handles the networks that serve an
unlimited number of users. It might also act as the second
defense line after the Inspector in the local networks and
introduce an adaptive threshold instead of the fixed threshold
inInspector Deveice

RNN models Third component that handles the inherited DoS/DDoS types
from legacy networks. It also presents a new method to
countermeasure by distinguishing between the malicious and
the benign users

Table 4.4. – Overall Functions of the Proposed IDS
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Chapter 5

Simulations and Experiments

This chapter describes the simulation environment, the modeled networks, and the con-
ducted scenarios used to evaluate the proposed IDS framework by different components.
Furthermore, it provides details regarding the network’s typologies and setup. Besides,
the chapter grants information about the hardware and software tools used to create
the SDN typologies and simulate the DDoS attacks behavior in SDN.

5.1 Simulation Environments

The Mininet emulator and Ryu controller successfully conducted the simulations. Firstly,
Mininet is a Linux-based network emulator that allows the network engineer to create
a realistic virtual SDN. Mininet creates virtual hosts, switches, controllers, and links.
In addition, it supports the OpenFlow protocol and runs a real kernel and application
codes on a machine. Mininet uses Command Line Interface (CLI) and API to interact
with the simulated network. In addition to the Miniedit capabilities that create and
configure network typologies, and allow to create, interact, and customize prototypes
for SDN applications [Min21]. Mininet offers many advantages as following :

1. Easy-to-learn and inexpensive network testbed.

2. Easy installation, either with simple commands or using pre-build virtual machine.

3. Provides a Python API.

4. Support integration with real environments.

5. Easy integration with known SDN controllers.
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6. Support inter-controllers communications between different controllers [dOSSP14].

Secondly, Ryu Controller is entirely a python-based and open-source SDN controller.
It supports the OpenFlow protocol and all available SDN controllers. Moreover, Ryu
exchanges messages with OpenFlow switches to manage the infrastructure layer [Nip21].
In addition to the Ryu controller and Mininet Emulator, the investigation processes
need to launch various traffic types and craft the packet according to the scenario
requirements. Therefore, the experiments use several available tools that are summarized
as following:

1. Scapy: is an excellent interactive packet manipulation software tool. It can forge
or decode packets for different protocols before transmitting them through the
wire. Also, Scapy captures the packets, matches requests and replies, and much
more. It can easily handle most classical tasks; Scapy can scan, traceroute, probes,
tests unit, attacks, or network discovery [Sca].

2. Hping, Hping3: Hping supports TCP, UDP, ICMP, and RAW-IP protocols. It
is a network tool, assembler, and analyzer orienting and customizing TCP/IP
packets. Moreover, Hping can trace route, send files between a covered channel,
and many other features. Hping3 is an updated version of Hping [San06] [Too19].

3. Nping: is response analysis and response time measurement. It is a network tool
that generates IP packets: header or raw packet. Nping virtually tunes any field
of the protocol headers. Besides, Nping is a simple ping utility able to detect
active hosts. Nping performs stack stress tests, ARP poisoning, DoS attacks, route
tracing, and other purposes. [Lyo14].

4. CICFlowMeter: is a network tool that generates bidirectional flows and is able
to extract more than 80 statistical network traffic features [CIC].

5. Tensorflow: is an open-source software for machine learning. It allows the
creation of large-scale neural networks with many layers [SF18].

6. Keras: is a python library that helps to create deep learning models [Ket17].

7. Pandas: is a python library that uses for open-source, data analysis, and manip-
ulation tools [M+11].
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5.2 Evaluation of the Inspector Device

Two works introduce the Inspector device, where section 4.2 explains how the work is
completed step by step. So, this section shows the investigation work and simulation
result In two subsections.

5.2.1 Feasibility of the Inspector Device

The work in subsection 4.2.1 compared to the PacketChecker module [DGLG17] to
investigate the feasibility and the effect of existing the Inspector in the SDN controller.
PacketChecker module deals with a flow of packets having the same forged addresses
(e.g., 100 packets). But, in this experiment, every single packet has a different address.
To do that, the Ryu controller manages a Fat-Tree topology [dSASZ17] with a server.
Figure 5.1 illustrates the experimental topology and the Inspector. Each edge switch
(from S1 to S8) connects up to 10 hosts. One of these 10 hosts acts as the attacker and
periodically injects 10 forged packets (in an inter-packet interval of 0.01s) with different
MAC and IP addresses based on Scapy [Mon18]. The network hosts send 76,000 request
packets (ICMP) to the server in the experiment, including 40,000 forged packets.

   80 Hosts

S1 S2 S3 S4 S5 S6 S7 S8

Figure 5.1. – The Experimental Topology

The implementation uses the Mininet emulator [Min21] to examine the Inspector’s
performance in a virtual machine working on Ubuntu 14.04 that has one process, an
Intel Core i5-8400 2.80 GHz CPU and 12 GB memory. The experiment measures
the number of TCAM entries, CPU usage, memory usage, and OpenFlow channel as
following:
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1. TCAM: The controller installs flow rule as Packet_Out Messages to the request-
ing switch as a response to the switch’s Packet_In Messages. The implementation
counts the flow table entries installed in the TCAM during the experiment. There-
fore, the experiment uses CLI to instruct all hosts to send PingAll before the
attack starts. Consequently, the OpenFlow switches have the completed flow rules
that our topology needs to contact each other. Figure 5.2 manifests the number of
created flow rules compared to that of the PacketChecker module in all the edge
switches of the topology. That shows the Inspector can keep the TCAM’s usage at
the same level in case of no attack. Obviously, the improvement rate is between
200% and 400% and increases according to the number of attack attempts.
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Figure 5.2. – TCAM Usage

2. OpenFlow Channel Workload: The OpenFlow channel is a secure channel to
exchange transmitting messages between the Ryu controller and the OpenFlow
switches [Oped]. The experiment measures the packets’ number use the OpenFlow
channel during the attack. Therefore, Figure 5.3 depicts the difference between the
two models. Each point in the figure lines is the packets’ number per 10 seconds
interval.

The Inspector can handle all the sent packets within 50% of the time used in
the PacketChecker module. In this experiment, the Inspector spends 340 seconds
while the PacketCkecker needs 670 seconds. This is because the PacketChecker
module launches a procedure to deal with the incoming malicious packets. On the
contrary, the Inspector drops them before they reach the controller.
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Figure 5.3. – OpenFlow Channel Workload

By comparing the number of dropped spoofing packets, the results show the
Inspector could deal with almost all spoofing packets. The experiment transmits
76,000 packets, including 40,000 spoofing packets, and the Ryu controller received
36,000 packets (the legal packets only). Figure 5.3 presents the difference in
the presence of the attack, which reaches around 85%. Efficiently, the Inspector
neutralizes the Packet_In Messages and hence mitigates the load on the OpenFlow
channel.

3. CPU and Memory Usage: The experiment evaluates the CPU usage and
memory usage of the Ryu controller under attack using Psutil library [Psu].

The implementation starts with a PingAll instruction to install the necessary flow
rules into the switches. Then, the experiment launches the attack. Figure 5.4
presents a comparison of CPU usage between the Inspector and the PacketChecker
module during the attack duration only.

The Inspector minimizes the CPU usage to approximately null or 2% at the worst
case because the Inspector denies the forged packets entering the controller. Still,
the PacketChecker needs to deal with all the forged packets.

Figure 5.5 depicts the memory usage during the attack duration only. In general,
the PacketChecker module processes the topology management information from
the attacker for the first time. After that, it denies other attempts with the same
information. On the contrary, the Inspector does not allow any forged packet to
enter the topology management service, hence the memory usage stays constant.
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Figure 5.4. – CPU Usage
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Figure 5.5. – Memory Usage

In the experiment, the Inspector decreases the memory usage between 22% and
38% compared to the PacketChecker.

4. Delay Time: According to carrier-grade recovery requirements in [SSC+13], the
time to send a packet from a source to a destination has to be less than 50 ms.
That means the network performs in normal conditions to ensure that the Inspector
does not influence the network performance. After the Pingall instruction, the
network hosts sent 76,000 request packets to the server without attack. As a result,
the round trip time’s average for all sent packets has been around 13 ms, less than
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50 ms. That means the Inspector does not influence the network performance
badly.

5.2.2 Evaluating the Isolation of a Malicious Inspector

Subsection 4.2.3 presents the possibility to exploit the Inspector as a vulnerable point.
This subsection shows the experiments regarding the effectiveness of the Inspector
device against the DoS attack. The experiment uses the Mininet emulator [Min21]
running on Ubuntu 18.04, an Intel Core i5-8400 2.80 GHz CPU, and 16 GB memory. In
addition, the simulation implements the topology in Figure 5.1, where the Ryu controller
1.3 [Nip21] manages 20 OpenFlow switches in a Fat-Tree topology with a simple HTTP
Server.

Therefore, the experiment assumes that the attacker controls the Inspector device to
provide one malicious host an excellent chance to launch the attack towards the server.
The topology has 80 hosts that respectively send TCP SYN packets to obtain the service
from the server. Meanwhile, the attacker uses the NPING tool to generate a TCP SYN
attack between 20 and 25 seconds. During the attack time, the attacker sends flow
traffic with a high rate reach 3,000 packets/second [Lyo14]. This subsection shows the
result of the experiments in terms of the workload of the controller resources, server
bandwidth, and server CPU usage as the following:

1. Workload Overhead Assessment

Figure 5.6. – The OpenFlow Channel Workload

To prove that the additional components do not cause a higher workload on the
SDN controller, the experiment compares the previous Inspector approach with
the improved version in terms of CPU usage, memory usage, and the workload
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of the secure channel. The Ryu controller collects traffic information every five
seconds, where the controller receives the statistics of the edge switches. The
implementation launches ICMP packets (PingAll) to compare the old version
to the upgraded version in normal conditions. Then the hosts send TCP SYN
packets to the web server. Figure 5.6 demonstrates the packets’ number that hosts
sent through the OpenFlow channel during the simulation. The behavior of the
network is not much different because the amount of the statistics data is small
and hence does not affect the secure channel.

Figure 5.7. – CPU Usage of the Controller

Likewise, Figure 5.7 also shows the CPU usage for the two versions, and the
Figure 5.8 presents the memory usage as well. Both figures show identical results
in the different versions (difference 0.30%). The implementation shows that there
is almost no noticeable change in CPU and memory usage.

Figure 5.8. – Memory Usage of the Controller
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2. Server Bandwidth

After the experiment showed that the improvements do not lead to a high load
on the Inspector, the simulation observed the attack web server. Therefore, we
monitor the communication link utilization and the CPU usage. The experiment
scenario introduces the attack’s impact when the Inspector allows one malicious
user to use the network. Figure 5.9 displays a comparison of the amount of data
sent over open connections to the web server in the two versions. Thereby, the
results appear the difference and demonstrate the need to enhance the Inspector’s
performance.

Figure 5.9. – Workload on the web server (MegaBits Per Second (Mbps))

Once the Ryu controller detects that a particular port of the edge switch exceeds
the threshold, the controller triggers the countermeasures. Therefore, the improved
version mitigates the effect of the DDoS attack and keeps the server in the same
conditions as before the DDoS attack. On the contrary, the previous version does
not consider that the hacker controls the Inspector and then makes the possibility
to attack the OSI application layer. Consequently, the attacker manages to make
the channel between the server and the switch very busy.

3. Server CPU Usage

The implementation uses the Psutil library to measure the CPU usage of the server
by monitoring its process ID [Psu]. So, Figure 5.10 clarifies the attack’s impact
on the web server in terms of CPU usage. The simulation results demonstrate
that the improved version can effectively block the DDoS attacks and allow the
web server to sustain its regular operation. In contrast, CPU usage is always high
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Figure 5.10. – CPU Usage of the Server

in the old version during the attack. The improved version can keep the server
resources in satisfactory condition.

5.3 The Performance Investigation of the Convolutional
Neural Network Component

Subsection 4.3 exhibits the second component that relies on entropy equation to monitor
the traffic of the OpenFlow channel. Moreover, the second component depends on the
CICFlowMeter tool to extract the traffic feature. In a suspicious behavior, the 1D-CNN
model uses the extracted features as an input to ensure the suspicious traffic.

This section presents the details of the experimental setup to analyze the performance
of the proposed method. Therefore, the experiments are separated into two subsections.
The subsection 5.3.2 discusses the experimental results of the proposed model (1D-CNN).
In addition, the subsection 5.3.3 discusses the model’s implementation on the SDN
environment. But, the next subsection 5.3.1 firstly explains the used dataset to train
and test the 1D-CNN model.
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5.3.1 CICDDoS2019 Dataset

DDoS Attacks

Exploitation  AttacksReflection Attacks

TCP based   AttacksUDP based Attacks

SYN FlooUDP-LAGUDP Flood

TCP / UDP
based Attacks

TCP based 
Attacks

UDP based   Attacks

SSDPMSSQL

DNSSNMPPortMAP LDAP NETBIOS

NTPTFTPCharGen

Figure 5.11. – The Taxonomy of DDoS Attacks in CICDDoS2019

CICDDoS2019 is one of the most significant modern DDoS datasets and includes many
attacks types and benign traffic [fC19]. The dataset is available in both CSV and PCAP
formats. The researchers used the CICFlowMeter tool [CIC] to generate the CSV files
that contain the traffics along with more than 80 extracted features (see Appendix C).
The PCAP file is the real-world captured date and helps to resend the traffic if needed.
The researchers used real machines to generate the CICDDoS2019 dataset in two days.
The first day was dedicated for the training and contained 12 types of DDoS attacks as
follows: SYN, WebDDoS, MSSQL, UDP, SNMP, NetBIOS, DNS, LDAP, TFTP, NTP,
UDP-Lag, and SSDP DDoS based attack. On the second day, the testing data ware
collected and included seven DDoS attacks: SYN, MSSQL, LDAP, UDP, Port Scan,
UDP-Lag, and NetBIOS. In addition, they used 25 users to simulate the benign traffic
based on HTTP, HTTPS, File Transfer Protocol (FTP), Secure Shell (SSH), and email
protocols [fC19] [SLHG19].
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Figure 5.11 shows a full list for all available DDoS attacks in CICDDoS2019 and intro-
duces a new DDoS taxonomy dividing the DDoS attacks into two groups [SLHG19]:

1. Reflection-based DDoS: which means that the attacker’s identity stays hidden
and the attacker exploits a legitimate third-party component (subsection 3.2.1
explains the method). As Figure 5.11 shows under reflection attacks category,

Firstly, the TCP based attacks include:

• Microsoft SQL Server (MSSQL): The attacker exploits an SQL injection
vulnerability to go around the application security and authenticate as the
administrator.

• A Simple Service Discovery Protocol (SSDP): The attacker exploits Universal
Plug and Play (UPnP) networking protocols to direct a volume amount of
traffic to the targeted victim. The attacker spoofs the victim’s address and
requests the server. So, the server sends the response to the victim.

Secondly, UDP based attacks include:

• CharGen: The attacker submits small packets (queries) carrying a crafted
IP of the target to internet-enabled devices running CharGEN. Then, the
UDP server uses the crafted queries to send UDP floods as responses from
these devices to the target.

• NTP: The attacker exploits publically accessible NTP servers to overwhelm
the targeted by UDP traffic.

• Trivial File Transfer Protocol (TFTP): the attacker sends a request using
the victim address. Therefore, the server responses with big size files than
the original request.

While the attacker can carry out some attacks using either TCP or UDP like:

• Domine Name System (DNS): DNS server is responsible for transferring
the website’s name into IP addresses. The attacker sends a huge number of
requests to the DNS server to overwhelm it.

• Lightweight Directory Access Protocol (LDAP): When an application fails to
sanitize user input properly, the attacker modifies LDAP statements through
techniques similar to SQL Injection.
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• NETBIOS: The attacker views or accesses (delete, copy, modify, ..etc.)
any shared file on an accessible computer by utilizing the NetBIOS service
port139.

• Simple Network Management Protocol (SNMP): The attacker sends enormous
volumes of requests, which can be directed at victim targets from multiple
networks.

2. Exploitation-based Attacks: The attacker controls applications, networks,
operating systems, or hardware through their vulnerabilities advantages. Then,
the attacker sends a vast amount of packets towards the victim. According to the
Figure 5.11, TCP-based exploitation attacks include SYN flood, and UDP-based
attacks include UDP flood and UDP-Lag.

In UDP flood attack, the attacker sends a large volume of UDP packets to the
victim at a very high rate. In TCP SYN attack, the attacker consumes server
resources by exploiting three-way handshake. The attacker sends repeated SYN
packets to the target machine until the server crashes/malfunctions. In the UDP-
Lag attack, the attacker disrupts the connection between the client and the server.
The attacker primarily uses the UDP-Lag attack in online gaming. Therefore, the
attacker uses a hardware switch known as a lag switch or a software program that
runs on the network and hogs the bandwidth of other users.

5.3.2 Evaluation Criteria for One Dimension Convolutional Neural
Network

The experiments use four metrics to evaluate the 1D-CNN model, namely Accuracy,
Precision, Recall, and F1 score. Consequently, the experiment has a systematic bench-
marking analysis with other related approaches. The mathematical representation of
these indicators are clarified based on the following equation:

Accuracy = TP + TN

TP + TN + FP + FN
(5.1)

Precision = TP

TP + FP
(5.2)

Recall = TP

TP + FN
(5.3)

F1 Score = 2 · Precision ·Recall
Precision+Recall

(5.4)
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True Positive (TP) and True Negative (TN) represent the values that are correctly
predicted. In contrast, False Positives (FP) and False Negatives (FN) are wrongly
classified events. All four metrics compare the experiments against the four machine
learning models (ID3, random forest, Naïve Bayes, and logistic regression) proposed
in [SLHG19] with CICDDoS2019 for performance validation. The experiments use the
Python programming language to build all models by TensorFlow, and Keras framework
[AAB+16, Ker]. Moreover, the experiments consider the best practice and trial to
construct 1D-CNN with the best values for hyper-parameters [ELKJ20]. The experiments
were performed on Ubuntu 20.04 LTS 64-bit operating system with Intel®Core™ i5-8400,
CPU @ 2.80GHz × 6, 16 GB of RAM, and AMD® Rv635 Graphics.
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Figure 5.12. – Receiver Operating Characteristic (ROC)

Firstly, the Receiver Operating Characteristic (ROC) curve evaluates the model’s ability
to perform accurately. The ROC curve plots the relation between True and False classes.
The Area Underneath the ROC Curve (AUC) measures the separability between false
positive and true positive rates. Figure 5.12 depicts that the 1D-CNN model provides
an AUC of 99.49%, which means the ability to separate 99.49% of positive and negative
classes correctly. Moreover, the 1D-CNN model introduces a notable enhancement
compared to other machine learning models. 1D-CNN provides 12% 22%, 10%, and
12% enhancement compared to Random Forest, Logistic regression, Naïve Bayes, and
ID3, respectively.
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Learning Model accuracy precision recall F1 score

Random Forest 0.90 0.92 0.78 0.84

Logistic Regression 0.80 0.73 0.72 0.72

Naïve Bayes 0.91 0.92 0.82 0.87

ID3 0.90 0.92 0.78 0.85

1D-CNN 0.9945 0.9884 0.9962 0.9923

Table 5.1. – Detection Performance Comparison

Table 5.1 shows more details about the superiority of the 1D-CNN model over the other
models. The enhancements are presented in terms of accuracy, precision, recall, and F1
score. 1D-CNN achieves better results with around (10% - 20%) accuracy enhancements
compared to the other models. Additionally, the 1D-CNN model shows the best results
in terms of precision with (6% - 25%) enhancements. In terms of recall parameter with
(17% - 27%), and (12% - 27%) in terms of F1 score. Table 5.2 illustrates the confusion
matrix information to describe the classification performance of 1D-CNN. The table
shows the correct and false predictions. The table proves that the 1D-CNN model
outperforms all other machine learning models in four different events (TP, FP, TN,
FN).

Learning Model TN FP FN TP

Random Forest 0.96 0.04 0.21 0.79

Logistic Regression 0.86 0.14 0.28 0.72

Naïve Bayes 0.96 0.04 0.17 0.83

ID3 0.97 0.03 0.21 0.79

1D-CNN 0.99 0.006 0.003 0.99

Table 5.2. – Confusion Matrix

5.3.3 Effectiveness of One Dimension Convolutional Neural Network
In SDN

The experiment uses the Mininet emulator to investigate the performance of the used
1D-CNN model based on entropy information. Also, the investigation evaluates a small
network with two switches (S1, S2) managed by Ryu Controller [Nip21]. S1 connects to
four normal users and four attackers. Also, S2 connects to four servers. The normal
users use Scapy [Sca] to read benign UDP PCAP files, which have numbers from 500
to 749 in the CICDDoS2019 dataset, and send these packets to the servers. After a
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short time, the attackers also start reading the malicious UDP PCAP files, which have
numbers from 750 to 818 in CICDDoS2019, spoofing the MAC address for every packet.
The experiment executes the simulation twice to check out the entropy behavior for
crafted packets with MAC source or destination in both cases.
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Figure 5.13. – Destination Entropy Value

Figures 5.13 and 5.14 depict the behavior of the entropy values during the simulation
time. the figures show the entropy behavior when the attacker crafts MAC source
address or destination source address. In the beginning, the threshold value started
from the highest value for log2 of the window size(100), which is equal to 6.643. Once
the packets start entering the network, the threshold will change because of the new
Packet_In messages. The simulation monitors the last entropy value. The entropy value
will not change when the users’ communications do not need to request the controller
for intervention. That is clear from 19 until the beginning of the attack, around 140.
The controller stops the attack until the end. The entropy value crosses the threshold
more than once in both figures because the attacker started the attack after reading
the PCAP files, launching the attack at different times. However, the features could
be different, where the switch table identifies the packet according to the used SDN
controller instructions. For example, IP addresses, MAC addresses, protocol, output or
input port, VLAN, MPLS, etc. [XWX20].

Figure 5.15 clarifies the behavior of the CPU usage in three states: (1) with 1D-CNN
controller structure based on entropy information, (2) normal without DDoS attack and
(3) attack state without defense mechanism. In the normal state, the CPU usage rate is
high between 0 and 25. The reason that normal traffic is sent through the network for

Ph.D. Dissertation of M.Sc. Abdullah Soliman Alshra’a 104



5. Simulations and Experiments

0 25 50 75 100 125 150 175 200 225 250 275
0

1

2

3

4

5

6

7

Time in Seconds

En
tr
op
y
va
lu
e

Entropy
Threshold

Figure 5.14. – Source Entropy Value
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Figure 5.15. – CPU Usage

the first time, and the OpenFlow switch triggered a relatively large number of Packet_In
messages to establish flow entries. In the attack state, a very high rate of CPU usage is
notable when the simulation launched the malicious traffic (after around 135 seconds)
in addition to the high rate in the beginning. However, this does not occur with our
proposed method. The CPU usage is high at the start only, increasing slightly before
the controller blocks the connected ports. The controller needs a short time to read
the last 100 traffic flows saved as a CSV file to verify any attack towards the controller
during the past time.
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Figure 5.16. – OpenFlow Channel Bandwidth

Figure 5.16 introduces the amount of Packet_In messages through the OpenFlow channel
during the simulation time. In the presence of the attack, the channel is crowded. But,
with the second component, the channel returns to behave in a normal state quickly.
Finally, the controller installs instructions by Packet_Out messages to respond to the
switch’s Packet_In message.
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Figure 5.17. – Number of Installed Flow Entries
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Figure 5.17 measures the number of the flow table entries installed in the flow table
during the experiment. To count the number of entries that the topology needs, users
sent PingAll packets before the attack started. As a result, the number of installed
entries is enormous in the absence of the defense mechanism, making the switch unable
to forward the packets because of the lack of resources. On the contrary, the second
component prevents the attack. It minimizes the effect, which is evident with the
installed entries in both normal states and our proposed method.

5.4 Performance Evaluation for Applying IPSec Concept

Section 4.4 clarifies how the IPSec concept could be helpful to distinguish between the
attacker and benign user. Moreover, how the suggested statistical methods perform to
detect the attack on the SDN controller or the Infrastructure layer.

This section shows details about the implementation results and the simulations sce-
narios. Then, the section analyzes the effectiveness of the implemented attacks and
the performance of the proposed countermeasures. Therefore, the experiments are
applied on ubuntu 18.04.5 LTS with 6 core Intel Core i5-8400 and 16 GB RAM size.
Besides, the experiments use the Mininet emulator to implement all the target scenarios.
Mininet provides a realistic virtual environment to create the network scenario, and the
Ryu controller as the SDN controller [Min21,Nip21]. Furthermore, Python configures
the users with the requested algorithms, and Scapy is the primary tool responsible for
crafting and generating the packets [Sca].

Figure 4.9 (see subsection 4.4.3 ) describes the implemented topology consisting of 11
OpenFlow switches and one Ryu controller. The simulation also uses different numbers
of users in several scenarios. This way, the experiment tries to explain the effect of
the proposed countermeasures on the different types of protocols (TCP, ICMP, and
UDP) and various network environments (Ethernet, wireless). The link bandwidth is
100 Mbps for the connected ports in the edge switches and 1 Gbps for all core links
between switches. Eventually, the link delay is 5 ms, and 100 is the max buffer queue
size for all non-edge ports.

5.4.1 Effectiveness of the Proposed Method Against UDP Flood at-
tack

UDP flooding is a DoS attack, where the attacker sends numerous UDP packets toward
a targeted receiver (user, server). Thereby, the attack overloads the victim’s resources,
which is limited, to destroy them such as forwarding nodes and the link’s bandwidth.
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Moreover, the UDP flooding primarily exploits the action taken by the receiver to
respond to a UDP packet sent to one of its ports. Once the user receives a UDP packet
at a particular port, it responds with two proceedings, either with the requested service
or ICMP packet, to inform the sender that the destination is unreachable. That means
more work on the network resources because each malicious UDP packet generates an
ICMP packet.

The experiment simulates the Proposed method to evaluate the impact of UDP flooding
in a normal situation in terms of the delivery ratio, bandwidth usage, and packet delay.
Furthermore, the implemented scenario configures both the sender and servers. 12 hosts
are distributed on 4 edge switches, where each switch has three users: client (benign
user), server, and attacker. The benign user randomly sends one of the servers not
connected with the same edge between (5-35) of size 512 bytes packet per second. But,
the attackers use the Hping3 tool to transmit huge volume packets (Size = 1024 bytes)
to a server that is not connected with the same edge switch to spread the packets
through the network.

1. Packet delivery ratio: Packet delivery ratio is the rate of the packets’ number
that the server received compared to that the client sent. The core switches drop
the packet because of a buffer overflow caused by the high-speed attacker traffic.
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Figure 5.18. – Packet Delivery Ratio

In Figure 5.18, the attack’s effect is evident on the packet delivery ratio. When
the normal packets increase, the chance to lose more packets is higher. So, if
the benign packets increase under attack conditions, the packet delivery ratio
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decreases. The switches drop more packets because the malicious traffic overloads
the switch buffers.

In the presence of the IPSec countermeasure, the controller rapidly detects ma-
licious users, removes all exploited flow entries, and blocks non singed packets.
As a result, the behavior of the packet delivery ratio under the IPSec controller
management is very close to the normal situation.

2. Bandwidth usage : Bandwidth usage is the impact ratio of malicious traffic
on the bandwidth consumption at UDP server links. Figure 5.19 introduces the
average of the bandwidth usage in KBps. If there is an attack, the traffic increases
because of increasing the sent packets. Also, the packet number would not lead
to congestion over the connected links and the OpenFlow Switches buffers. The
bandwidth usage is around 50% of the link bandwidth (100 Mbps). Thus, it causes
more congestion and adds long delays for sent packets.
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Figure 5.19. – Bandwidth Rate
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3. Delay Time: In Figure 5.20, the delay has the same conduct as the previous
metrics. The delay increased when the sent packets increase because of the limited
queue buffers or link congestion. In addition, the attacker crafts the malicious
packet with proper headers, which means the exploited flow entries transferred
all packets. However, the IPSec controller blocks the malicious packets, and their
influence would disappear from the network. Finally, additional delays in data
delivery would also be disappeared by blocking the malicious traffics.
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Figure 5.20. – End to End Delay

5.4.2 Effectiveness of the Proposed Method Against SYN Flooding
Attack

SYN flood attack overwhelms the target to make it unavailable to benign users traffic.
So, the attacker aims to locate all available server resources with a half-open connection.
Generally, the TCP connection needs to determine whether the receiving host is ready
to receive the data or not. Therefore, TCP user uses a three-way handshake. TCP starts
the process when the user sends a request packet that has the SYN flag. In response,
the server replies with the SYN-ACK. Finally, the TCP user sends an ACK back to the
server and starts sending or receiving the data.

When the attacker malignantly sends tremendous SYN packets to locate all available
ports on the victim’s machine. Consequently, the victim would heavily answer the
legitimate traffic or cannot answer at all. The evaluation compares the IPSec controller
to the entropy-based detection (EBD) technique [CLMR19]. EBD Suggests a solution
to count micro traffic in a modified edge switch. If the number exceeds a fixed number,
the edge switch alarms the controller to block the malicious Inport.
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Moreover, the evaluation compares the IPSec controller to SLICOTS, which counts the
uncompleted TCP connection and then blocks the malicious Inport, which exceeds a
fixed number (10 - 100). The target scenario is similar to the EBD and the SLICOTS
paper [CLMR19,MJC17]. So, the number of the attacker is 120, while the benign hosts
are two and the topology is introduced in Figure 4.9. Each benign user sends one or
two requests per second and each request sends between two-five packets.

Based on those mentioned earlier, the experiment evaluates the detection time in
response speed (scalability) and the FPR (the percentage of malicious packets wrongly
identified as a benign packet) or 1-specificity ( is the percentage of malicious SYN
packets which the OpenFlow switch incorrectly identified as benign during the attack
time (sensitivity)). Thus, the attacker performs a dataset (The Center for Applied
Internet Data Analysis (CAIDA) has released DDoS Attack 2007) thst contains the
attack traffic to the victim nodes [Too07]. The Scapy tool reads the DDoS Attack 2007
Dataset. Then, it generates the DDoS flooding attack traffic from the attackers to the
TCP server. The dataset includes around one hour of anonymized traffic traces from a
DDoS attack (TCP, UDP, and ICMP). The traces include only attack traffic to the
victim and responses from the victim. The researchers distributed the one-hour trace in
5-minute pcap files, where the data’s size is 5.3 GB (21 GB uncompressed). Also, they
removed the payload from all packets.

The experiment configured the EBD technique with the same parameters used with the
target scenario. 6 seconds as monitoring and M = 3 (M is the repeat of exceeding the
threshold). The dedicated algorithm calculates the threshold entropy in work [CLMR19].
At the same time, for the SLICOTS, the fixed number for the uncompleted TCP
connection is varied between 10 and 100. In this subsection, the experiments evaluate the
ability of the Proposed method to counter the SYN flooding attack as the following:

1. Detection time: After 40 iterations of the experiments, the results of the
detection time, in Figure 5.21, show that the IPSec controller has the best response
time on average compared to the other proposal. The reason behind this result
is that the attack sometimes starts in the middle of the round, so the controller
does not need to wait for 3 seconds to note the attack and make a decision. In
addition, the IPSec controller needs to directly compare the imported numbers to
the predefined threshold before deleting the exploited entries without doing more
prior tasks.

2. 1-specificity: IPSec reaches almost 100% TPR (the percentage of benign packets
correctly identified as benign packets) when it has approximately 0.087 FPR.
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Figure 5.21. – Detection Time

IPSec EBD SELICOTS

0.1

0.15

0.2

8.7 · 10−2

0.13

0.21

Fa
lse

Po
sit

iv
e
pe

rc
en
ta
ge

Figure 5.22. – False Positive Rate before the Countermeasure

Figure 5.22 depicts how much it is essential to detect the attack and stop it early.
On the contrary, the EBD gets 100% TPR with 0.132 FPR while 0.214 for the
SLICOTS results.Consequently, the FPR of the IPSec’s proposal is lower than the
EBD and SELICOTS FPR by 34% and 60% respectively.

3. Bandwidth usage with freeloading attack: The scenario has minor changes
to verify the ability of the IPSec proposal to handle the crafted packet compared
to the previous work. Four benign users are connected to edge switches by the
wireless access point. They begin transmitting a TCP packet toward a TCP server.
Each user can send 1 or 2 requests per second and between 2 - 10 data packets
for the request randomly. After 60 seconds from launching the simulation, four
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Figure 5.23. – IPsec’s Effectiveness against the Freeloading Attack

attackers start using the dataset mentioned above (CAIDA 2007) to launch the
TCP server’s attack.

Figure 5.23 demonstrates the effect of this type on the TCP server where the
attacker exploits the installed flow entries to attack the network resources. The
bandwidth has been normal for the first time of the attack. But, when the attackers
craft a massive volume of packets and send them to the victim node, the connected
link bandwidth increases. Distinctly, it is noticeable that the EBD controller
prevents the attack by blocking the Causative In_Port. Still, this way would block
the benign user from reaching the network services. SELICOTS behaves like the
standard controller because both of them have no way to detect the freeloading
attack. So the increase in the link bandwidth is perspicuous enough to stop the
TCP server and other forwarding resources in the data plane. Nevertheless, the
IPSec proposal distinguishes between benign users and malicious users. Using AH
is sufficient to make the switch enables to prevent the attack and foreword the
benign user.

5.5 Evaluation of the Recurrent Neural Networks Mod-
els

The section 4.5 confers a suggestion to enhance the way to detect the DDoS attacks
when the framework uses the IPSec concept as a countermeasure. The RNN models
Depend on request the flow table from the OpenFlow switches to analyze the traffic
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behavior. This means the models are an enhanced solution to the third IDS component
in section 4.4. This section uses the InSDN Dataset to evaluate the ability of the DLAs
to detect. Therefore, the section introduces the used dataset and explains detection
evaluation metrics. Afterward, the section describes the experimental setup. In the end,
the suggested work is compared to another state-of-the-art approach.

5.5.1 InSDN Dataset

The InSDN dataset is one of the state of the art datasets for IDS evaluation in the
context of SDNs. The dataset includes benign traffic and various attack categories that
can occur in the different elements of the SDN platform [ELKJ20].
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Figure 5.24. – InSDN Dataset Distribution

Figure 5.24 explains the dataset distribution that has different types of attacks and
includes seven attack classes:

1. DoS attack: (1) DoS attack towards the SDN controller. (2) DoS attack to affect
benign users, network bandwidth or any network device using protocols such as
UDP, TCP or ICMP. (3) DoS attacks that overflow a server or the application
layer on the victim device using the HTTP protocol.

2. DDoS Attacks: TCP-SYN Flood, UDP Flood, and ICMP Flood attacks from
different sources towards the same victim in parallel.

3. Probe: The probing attack obtains information about the victim using scanning
the operation system, discovering the open ports, etc.

4. Botnet: The attacker controls some benign users by malware and runs different
malicious activities. For instance, they are stealing information, fraud attack,
launching DDoS attacks against victim servers or web applications servers.

5. Web Attack: When the user accesses a website, the attacker installs a malicious
code. As, the malicious code executes, the attacker obtains information from
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the client machine, such as session tokens, cookies, etc. Moreover, the attacker
could access the database of a server by injecting malicious SQL code into the
web application server. Thereby, the attacker has the power to change, delete,
misuse, and steal information stored in the database.

6. Password Brute-Force Attack (BFA): The attacker creates a dictionary for
all user names and password credentials and tries all of them.

7. Exploitation User-to-Root (U2R): A normal user illegally accesses either
root’s or super user’s privileges (such as admin) in the network.

5.5.2 Evaluation Metrics and Experimental Results

This experiment extends the previous approach with GRU to work with RNN and
LSTM. Firstly, the suggested model selects 48 features (as the Appendix B clarifies)
to be input for the used algorithms [ELKJ20]. Then, the experiment compares the
result to the suggested six features in [TMM+18] who only applied the GRU Model.
Furthermore, the SDN controller can retrieve all the considered features from the flow
statistics features of the OpenFlow Switches.

For the evaluation of the methodologies above, the experiments follow the same criteria
that subsection 5.3.2 introduces. Thereby, the experiments consider four measures
(TP, TN, FP, and FN) to calculates the metrics: Accuracy, Precision, Recall, and F1
score. In the experiments, TensorFlow and Keras framework are used [Ker,AAB+16] to
implement RNN, LSTM, and GRU in Python programming language. For selecting the
best values of hyper-parameters and build the neural network structure. The experiment
considers the best practice, trial, and error, or human knowledge [ELKJ20] alongside
testing different values and recording the corresponding results in each test experiment.
Consequently, the experiments identify the values providing the highest accuracy in
trade-off with training time. All DLA models include two hidden layers with 32 and 16
neural nodes that apply ReLu activation function. The dense layer has two units as an
output layer that work with the Sigmoid function. Additionally, the experiments use a
Nadam optimizer [Doz16] and a MSE for the model. The hyper-parameter configuration
is 100, 10, and 0.001 for the batch size, epoch, and learning rate. Table 5.3 shows the
models’ details for 48 and 6 features. The experiments were performed on Ubuntu
18.04.5 LTS 64-bit operating system with Intel®Core™ i5-8400, CPU @ 2.80GHz × 6,
16 GB of RAM, and AMD® Rv635 Graphics. In the end, the attack samples used during
the testing phase has different distribution in the training phase. The data records were
mixed and then divided 80% and 20% for training and testing, respectively. Firstly, the
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48 Features 6 Features

Algorithm Input
Layers

Hidden
Layers

Output
Layers

Input
Layers

Hidden
Layers

Output
Layers

RNN, LSTM, GRU 48 32, 16 2 6 6, 4, 2 2

Table 5.3. – Neural Network Model Structure

detection performance of RNN, LSTM, and GRU with 48 features are presented in terms
of accuracy, precision, recall, f1 score. As shown in Table 5.4, all models achieve good
results with around 10% enhancements in comparison to the models with 6 features.
Moreover, LSTM shows the best results in term of precision and accuracy, although
the training time is always faster for RNN and GRU according to Table 5.5. Secondly,
the Receiver Operating Characteristic (ROC) curve is introduced for both numbers of
features in order to estimate how correctly the models work. The ROC curve depicts
the relation between false positive rate and true positive rate which provides the Area
Underneath the ROC Curve (AUC) that is useful to define which classifier predicts the
classes best. Therefore, Figure 5.25 show that our models with 48 features grant 13%
AUC enhancement for LSTM, and around of 15% for both of RNN and GRU compared
to the models with 6 features. Considering 48 features, LSTM is able to classify 98% of
positive and negative classes successfully, while RNN and GRU are able to correctly
classify 96.2% and 96.4% respectively.

with 48 Features with 6 Features
Algorithm Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy

RNN 0.97899 0.99658 0.98771 0.980946 0.89941 0.99577 0.94514 0.91117

LSTM 0.98842 0.99702 0.99270 0.98874 0.92130 0.98771 0.95335 0.92573

GRU 0.97948 0.99757 0.98844 0.98208 0.90175 0.99544 0.94628 0.91315

Table 5.4. – Detection Performance Comparison for All Attacks

In addition to the foreseen results, the experiments analyze different attacks and compare
the models’ performance with RNN, LSTM, and GRU. All models show outstanding
performance in terms of accuracy. The precision is also perfect for the detection of
DDoS, DoS, and Probe. Besides, LSTM provides the best result for detecting botnet,
web-attack, brute force attacks, and U2R attacks compared to RNN and GRU, as seen
in Table 5.5. Generally, all models consistently have good scores on all metrics for
DDoS, DoS, and probe classes. But, the performance notably declined on the botnet,
web attack, and U2R classes due to the low number of samples in the dataset. The
models can detect these attacks better when they work with the entire dataset because
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Figure 5.25. – ROC Curves.

Learning Model DDoS DoS Probe Botnet Web-
Attack BFA U2R

Accuracy Score.
LSTM 0.99940 0.98131 0.98192 0.99897 0.96633 0.99584 0.99802
RNN 0.99936 0.98975 0.98333 0.99876 0.96320 0.99126 0.9989
GRU 0.99943 0.98332 0.98189 0.99584 0.96342 0.99334 0.99948

Precision Score.
LSTM 0.99925 0.97793 0.97403 0.70212 0.07444 0.99476 0.074074
RNN 0.99911 0.99536 0.97395 0.66000 0.068518 0.85972 0.13333
GRU 0.99918 0.97565 0.97356 0.36666 0.06890 0.98958 0.28571

Recall Score.
LSTM 0.99959 0.97957 0.99628 1.00000 0.94871 0.67615 0.50000
RNN 0.99966 0.98125 0.99842 1.00000 0.94871 0.67615 0.50000
GRU 0.99972 0.98666 0.99587 1.00000 0.94871 0.67615 0.50000

F1 score.
LSTM 0.99942 0.97875 0.98189 0.8250 0.13805 0.80508 0.12903
RNN 0.99938 0.98826 0.98603 0.79518 0.12780 0.75697 0.21052
GRU 0.99945 0.98113 0.98483 0.53658 0.12847 0.80338 0.36363

Training Times. All Types
LSTM 21.2022 18.53204 24.26479 19.42383 19.30129 11.52263 19.59553 41.39506
RNN 14.70538 12.73099 16.70782 13.21762 13.37479 8.08346 13.3889 28.74049
GRU 21.13238 18.36072 23.72825 18.99140 19.18356 11.55337 11.51159 40.94993

Table 5.5. – Evaluation of LSTM, RNN, and GRU with 48 Features

the records of the attack classes often have mutual features. Besides, recall and f1 score
for RNN and GRU are relatively low on web and U2R attacks. Finally, we compared
the performance of LSTM, RNN, and RNN in terms of training time. Table 5.5 shows
that GRU and RNN needed less training time than LSTM, whereas RNN is always the
fastest model dueusing one gate, which makes it vulnerable to the problem of vanishing
gradients. Moreover, GRU is faster than LSTM, but its results are comparable to the
LSTM results or even better when the number of samples gets lower. However, with an
increasing sample number, LSTM is performing better, although it needs more time
than the others for training or responding because LSTM has three gates.
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5. Simulations and Experiments

5.6 Discussion

The presented measurements demonstrate that the suggested IDS framework is realistic
and can be applied. Moreover, the suggested IDS shows superiority over other bench-
marking work regarding the attack’s detection or countermeasures. Although the solution
depends on three components working individually, the measurements introduce the
enhancements in different aspects. Besides, the researchers can easily improve the
performance of suggested IDS and add more innovations according to the administration
requirements. For example, the used DLAs need more training on new attack types
with different datasets.

Furthermore, the Major issue that limits the performance of the MLA/DLA is the
overfitting problem. The model perfectly functions during the training time, but it
is unable to show a great outcome with different data types due to several possible
reasons. For example, the model complexity and the low amount of data samples used
in training. Still, MLAs are data-hungry, which means they often request massive
training data, which is another significant issue, particularly in the network security
field. Also, the dataset’s availability is subjected to several challenges, such as privacy
or illegal issues, because this dataset has sensitive information to reveal to the public.
The existing works in the SDN security area used the same distribution of testing
data similar to the training. Therefore the evaluation of such methods is unreliable for
anomaly detection since the simple algorithm would provide high accuracy. Besides,
once the same model runs through zero-day attacks, it causes very high false rates
and lousy performance. Based on this discussion, the best approach for examining the
proposed IDS is to evaluate the IDS’s ability to analyze data that were not used in the
training time as this work investigate and successfully achieve [EJNJ21].
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Chapter 6

Conclusions and Outlook

This chapter firstly concludes the dissertation and provides the main results. Afterward,
an outlook manifests open issues and possible future extensions of this work.

6.1 Conclusions

This dissertation highlights the SDN concept, which has emerged as a new intelligent
architecture to reduce the hardware limitations of traditional networks. The essential
improvement of introducing SDN is dissociating the control plane outside the forwarding
nodes and enabling external data management by a logical software component called
the controller. Consequently, the SDN smoothly abstracts the components description,
the network nodes functions, and the protocols responsible for controlling the forwarding
devices. Thereby, the controller monitors network flow traffics, publishes administration
policies, and handles errors based on the monitoring outcomes.

Furthermore, the dissertation concentrates on the security aspects. It proposes an IDS
framework treating the vulnerabilities that the malicious user (the adversary) exploiting
to launch DoS/DDoS attacks towards the SDN resource. The first vulnerability appears
with the adversary’s ability to exploit the Southbound API between the SDN controller
and the OpenFlow switch. The adversary submits a massive number of spoofing
packets towards the edge switch. But, the switch table has no flow rule matching them.
Therefore, the switch forwards the crafting packets to the controller. Thus, the packets
exhaust the switch and controller resources. In the second vulnerability, the adversary
exploits the pre-installed instructions in the flow table. After the adversary obtains
information about the existing flow rules, a submitted packet is forged to fit the flow
rule. Hence, the switch forwards the malicious traffic toward the attack target.
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6. Conclusions and Outlook

An overview of the SDN environments has been introduced in chapter 2 with focuse on
the SDN architecture, the tasks of the SDN layers, and the available APIs to ensure
communication among them. Furthermore, the overview clarifies the superiority of the
SDN concepts over the conventional network through demonstrating the SDN advantages.
Thereafter, necessary technical details about the OpenFlow protocol are also provided.
These details show the OpenFlow role, different OpenFlow versions, and the exchanging
messages between the SDN controller and switches. Accordingly, chapter 2 explains the
design of both the controller and switch.

Following an overview discussed the security threats and comprehensive view of the
problem statement in chapter 3. The discussion illustrated the DDoS attack problem
on its hazard on both SDN and legacy networks. Additionally, the SDN vulnerabilities
are highlighted and the challenge value to prevent the adversary from exploiting them.
Also, what makes the SDN environment is a perfect opportunity to address DDoS
attacks. chapter 3 highlighted the state of the art to counter DDoS in SDN and classified
the existing mechanisms according to four categories: Architecture-based solutions,
Statistical-based solutions, Machine learning-based solutions, and Deep Learning-based
solutions.

chapter 4 thoroughly presented the proposed IDS framework, its individual components
and the relationship between the components. In addition, chapter 4 details clarified
the relationship among the IDS components with the illumination of each component
goal. Following this, chapter 4 also described each work that has been completed to
achieve the proposed IDS framework individually. Firstly, it introduced the Inspector
device and its goal and analyzed adding a new device to the SDN architecture. Also, the
penetration probability of the Inspector is discussed. Then, the method to maintain the
situation or isolate the Inspector. Secondly, the 1D-CNN is proposed based on entropy
information as IDS to tackle the security issues of the SDN controller. Then, chapter 4
presented a new suggestion relying on the IPSec protocol concept. The countermeasure
uses the AH method to prevent DoS and DDoS attacks and differentiate between a
benign user and an attacker during the freeloading attack.

Moreover, a new dynamic window size methodology is suggested. However, detecting
the DDoS attack (before applying the countermeasure in the third component) suffers
from some drawbacks. It is a complex statistical process that depends on multiple
tables and includes three attack types: TCP SYN, ICMP, and UDP flooding attacks.
Therefore, the utilization of the third component from recurrent neural networks is also
given.
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The simulation and measurement parts investigated the performance of the suggested
work in chapter 5, which provided preamble information about the simulation environ-
ments (Mininet), Ryu controller, and tools to launch the malicious traffic. Subsequently,
chapter 5 gradually demonstrated the IDS components’ evaluation. The evaluation
considered the Inspector device in two phases; The Inspector device was first compared
to one of the state-of-the-art work simulation studies modeled by Mininet emulator.
The simulation concentrated on studying the impact of the Inspector on the network
performance. The evaluation clarified the high ability of the Inspector to enhance the
switch performance under the attack conditions in terms of switches’ TCAM, OpenFlow
Channel workload, and controller CPU and memory usages. In the second phase, the
evaluation investigates the enhancements handling if the attacker controls the Inspector
device to enable a malicious host to launch the DDoS attack towards the server. The
evaluation showed that the enhancements do not negatively impact the OpenFlow
channel workload or the controller’s CPU usage. It also improved the target server in
terms of server workload and CPU usage.

Moreover, the evaluation detailed the experimental setup and the used dataset (CI-
CDDoS2019) to analyze the performance regarding the 1D-CNN model. The work
compared to four MLA (ID3, random forest, Naïve Bayes, and logistic regression)
proposed in state of the art. The result proved the superiority of the proposed model
according to ROC, AUC, accuracy, precision, recall, and F1 score numbers. Afterward,
the mininet setup topology to verify the model effectiveness as a fundamental unit in
the second component of the proposed IDS. Also, the results showed the component’s
ability to detect the DDoS attack and produced good results compared to the attack
condition in respect of TCAM, the controller’s CPU usage, and OpenFlow channel
bandwidth. Concerning the third component, chapter 5 detailed the implementation
results and the simulations scenarios. Then, the section analyzed the effectiveness of
the implemented attacks and the performance of the proposed countermeasures using
IPSec protocol concepts. The result proved the enhancements under DDoS attack terms
of packet delivery ratio, bandwidth rate, and delay time. Also, the result demonstrated
the comparison to three previous works in detection time, 1-specificity, and bandwidth
usage with the freeloading attack. In addition, chapter 5 explained the InSDN Dataset
and evaluated the ability of the recurrent neural networks to detect both the controller
injection inherited attacks in SDN. Afterward, the results compared to another existing
approach, which revealed the advancements in ROC, AUC, accuracy, precision, recall,
and F1 score numbers.
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6.2 Outlook

Along with the progress of the dissertation work to investigate the particular problems
and their corresponding solutions, several issues have been addressed. Therefore,
additional investigations are recommended to improve the proposed IDS framework and
make it better suited to the realization.

Regarding the proposed IDS framework, more investigations on the reality might be
helpful to obtain more information about the method that the IDS should follow. Hence,
the proposed IDS would have more accurate outcomes. Furthermore, the AI algorithms
should be trained with other datasets and the model architectures could be enhanced
by adding more functions or combining with other AI algorithms.

A part of the assumption is to deal with the Northbound API and the application layer.
The complete IDS must consider the expected effects coming from the application layer
and the relevant API. Although both have no standard and several projects started
working to offer their fundamentals, the expected security threats are primarily obvious
and applicable. Moreover, the IDS must consider the ability of the application layer to
have complete knowledge about the whole network activities and domains. This way,
part or complete IDS might be located on the application layer instead of the controller,
which could help to reduce the controller workload.

The future work could depend on multiple controllers to manage the network. These
controllers could work cloudy in a grid network. Consequently, the IDS framework uses
the grid structure to avoid exploiting the penetrated controller. Therefore, the IDS
framework must present SDN controllers that monitor the other controllers’ performance
or network domains to isolate the malicious controller.

Towards reaching the best network immunity against the security risks, the OpenFlow
switch should be more intelligent to read the Cryptography’s signs from the SDN
controller or the equipped users. Moreover, the IPSec suites protocol could be modified
to be more suitable for the SDN networks. Thus, the OpenFlow switch can differentiate
between the benign and malicious packets without blocking the whole traffic coming
from the malicious ports.
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Appendix A

Brief Description of the Mentioned Algo-
rithms

The Algorithm Brief Description
kNN Stores the dataset without training. So, when new data comes, KNN

compares it to the stored data to classify it according to a much similar
category.

SVM Finds a hyperplane in N-dimensional space (N, the number of features)
to classifies the data based on the distance to the hyperplane.

BayesNet Gives every attribute a probabilistic value (Weight). The result is the
summation of the feature value multiply the probabilistic weight. The
high result is the classification(e.g.,79% Winter, 21% Summer).

J48 Selects a certain attribute to be at the root node, and then J48 goes to
the next branch for each possible attribute value. Finally, the leaf node
has the classification result.

Random Tree Feeds each specific tree by a different feature. Each tree will vote. the
prediction with higher votes is the classification.

Logistic Re-
gression

Uses sigmoid function 1/(1+e−x), if the output given by Sigmoid function
is more than 0.5, the output is classified as 1. Otherwise, the output is
classified as 0.

REPTree Reduces the size of decision trees by removing parts of the tree that do
not provide power to classify instances.

Fuzzy logic Obtains a likelihood (Degrees of truth) for each input and produces
outputs that depend on the states of the inputs.
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A. Brief Description of the Mentioned Algorithms

RFA Selects random subsets of variables for each tree and uses the most
frequent tree output as the overall classification.

SOM Each input is distributed to all nodes to be trained. The closest weight
node to the current object becomes the winning or active unit, which
provides the classification.

CNN Arranges the available inputs to groups to apply some equations on every
group individually. Thereby, arranges the result as new inputs to groups
to apply some equations on every group individually. Repeat the same
until obtaining the final result.

Exact-
STORM

It calculates and stores the summary of the current window (a set of
values). The stored summary contains the information of velocity of
the Packet_In messages. The relevant information in the node such as
the velocity of Packet_In messages, the identifier, and the number of
succeeding neighbors of the node, and list that contains the identifiers of
the most recent preceding neighbors.

BPNN ANN algorithm has three layers: input layer, hidden layer, and output
layer. In the output layer, If the outcome matches the expected outcome,
it will be output. But, the error back-propagation starts, where the
algorithm would adjust each layer’s weight according to the gradient
descent algorithm.

RNN, LSTM ANN algorithms that use sequential or time-series data. They are DLAs
used for ordinal or temporal problems. They learn based on training
data. Moreover, their memory distinguishes them as they take informa-
tion from prior inputs to influence the current input and output. Their
output depends on the pre elements within the sequence. While future
events would also help determine the output of a given sequence, unidi-
rectional recurrent neural networks cannot account for these events in
their prediction (RNN, LSTM, and GRU explained in section 4.5 )

Table A.1. – Brief Description of the Mentioned MLAs and DLAs
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Appendix B

The Selected Features for Recurrent Neu-
ral Networks

Feature Name Description
Total Fwd Packets The total number of packets sent
Protocol The used connection protocol
Fwd IAT Min The minimum time between two packets
Fwd IAT Max The maximum time between two packets
Fwd IAT Mean The mean time between two packets
Fwd IAT Std The standard deviation time between two packets
Fwd IAT Total The total time between two packets
Fwd Header Length The total bytes used for headers
Total Length of Fwd
Packet

The total size of the packet

Fwd Packet Length Min The minimum size of packet
Fwd Packet Length Max The maximum size of packet
Fwd Packet Length
Mean

The Mean size of packet

Fwd Packet Length Std The standard deviation size of packet
FWD Packets/s Number of forward packets per second
Total Bwd Packets The total number of packets
Bwd IAT Min The minimum time between two packets
Bwd IAT Max The maximum time between two packets
Bwd IAT Mean The mean time between two packets
Bwd IAT Std The standard deviation time between two packets
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B. The Selected Features for Recurrent Neural Networks

Bwd IAT Total The total time between two packets
Bwd Header Length The total bytes used for headers
Total Length of Bwd
Packet

The total size of the packet

Bwd Packets/s number of backward packets per second
Bwd Packet Length Min The minimum size of packet
Bwd Packet Length Max The maximum size of packet
Bwd Packet Length
Mean

The mean size of packet

Bwd Packet Length Std The standard deviation size of packet
Flow duration The flow’s duration measured in microseconds
Flow Bytes/s number of flow bytes per second
Flow Packets/s number of flow packets per second
Flow IAT Mean The Mean time between two packets
Flow IAT Std The standard deviation time between two packets
Flow IAT Max The maximum time between two packets
Flow IAT Min The minimum time between two packets
Packet Length Min Minimum length of a packet
Packet Length Max Maximum length of a packet
Packet Length Mean Mean length of a packet
Packet Length Std Standard deviation length of a packet
Packet Length Variance Variance length of a packet
Average Packet Size The packet average size
Active Min Minimum time a flow was active before becoming idle
Active Mean Mean time a flow was active before becoming idle
Active Max Maximum time a flow was active before becoming idle
Active Std Standard deviation time a flow was active before becoming

idle
Idle Min Minimum time a flow was idle before becoming active
Idle Mean Mean time a flow was idle before becoming active
Idle Max Maximum time a flow was idle before becoming active
Idle Std Standard deviation time a flow was idle before becoming

active

Table B.1. – The selected features for SDN environment
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Appendix C

CICFlowMeter Features

Feature Name Description
In the forward direction

Total Fwd Packets The total number of packets sent
Fwd IAT Min The minimum time between two packets
Fwd IAT Max The maximum time between two packets
Fwd IAT Mean The mean time between two packets
Fwd IAT Std The standard deviation time between two packets
Fwd IAT Total The total time between two packets
Fwd PSH flags Number of times the PSH flag was set in packets
Fwd URG Flags Number of times the URG flag was set in packets
Fwd Header Length The total bytes used for headers
Total Length of Fwd Packet The total size of the packet
Fwd Packet Length Min The minimum size of packet
Fwd Packet Length Max The maximum size of packet
Fwd Packet Length Mean The Mean size of packet
Fwd Packet Length Std The standard deviation size of packet
FWD Packets/s Number of forward packets per second
Fwd Segment Size Avg Average size observed in the forward direction
Fwd Bytes/Bulk Avg Average number of bytes bulk rate
Fwd Packet/Bulk Avg Average number of packets bulk rate
Fwd Bulk Rate Avg Average number of bulk rate
Subflow Fwd Packets The average number of packets in a sub flow
Subflow Fwd Bytes The average number of bytes in a sub flow
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Fwd Init Win bytes The total number of bytes sent in initial window
Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data payload
Fwd Seg Size Min Minimum segment size observed

In the backward direction

Total Bwd Packets The total number of packets
Bwd IAT Min The minimum time between two packets
Bwd IAT Max The maximum time between two packets
Bwd IAT Mean The mean time between two packets
Bwd IAT Std The standard deviation time between two packets
Bwd IAT Total The total time between two packets
Bwd PSH Flags Number of times the PSH flag was set in packets
Bwd URG Flags Number of times the URG flag was set in packets
Bwd Header Length The total bytes used for headers
Total Length of Bwd Packet The total size of the packet
Bwd Packets/s Number of backward packets per second
Bwd Packet Length Min The minimum size of packet
Bwd Packet Length Max The maximum size of packet
Bwd Packet Length Mean The mean size of packet
Bwd Packet Length Std The standard deviation size of packet
Bwd Segment Size Avg Average number of bytes bulk rate in the backward direction
Bwd Bytes/Bulk Avg Average number of bytes bulk rate
Bwd Packet/Bulk Avg Average number of packets bulk rate
Bwd Bulk Rate Avg Average number of bulk rate
Subflow Bwd Packets The average number of packets in a sub flow
Subflow Bwd Bytes The average number of bytes in a sub flow
Bwd Init Win bytes The total number of bytes sent in initial window

Direction independent

Flow duration The flow’s duration measured in microseconds
Flow Bytes/s Number of flow bytes per second
Flow Packets/s Number of flow packets per second
Flow IAT Mean The Mean time between two packets
Flow IAT Std The standard deviation time between two packets
Flow IAT Max The maximum time between two packets
Flow IAT Min The minimum time between two packets
Packet Length Min Maximum length of a packet
Packet Length Mean Mean length of a packet
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Packet Length Std Standard deviation length of a packet
Packet Length Variance Variance length of a packet
FIN Flag Count Number of packets with FIN Flag
SYN Flag Count Number of packets with SYN Flag
RST Flag Count Number of packets with RST Flag
PSH Flag Count Number of packets with PUSH Flag
ACK Flag Count Number of packets with ACK Flag
URG Flag Count Number of packets with URG Flag
CWR Flag Count Number of packets with CWR Flag
ECE Flag Count Number of packets with ECE Flag
Down/Up Ratio Download and upload ratio
Average Packet Size The packet average size
Active Min Minimum time a flow was active before becoming idle
Active Mean Mean time a flow was active before becoming idle
Active Max Maximum time a flow was active before becoming idle
Active Std Standard deviation time a flow was active before becoming idle
Idle Min Minimum time a flow was idle before becoming active
Idle Mean Mean time a flow was idle before becoming active
Idle Max Maximum time a flow was idle before becoming active
Idle Std Standard deviation time a flow was idle before becoming active

Table C.1. – CICDDoS2019 Features and their Description
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