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Abstract: A model-based method for the detection and estimation of faults in dynamic systems is
proposed. The method is based on the combination of the parity space approach and the modulating
function framework for estimation. The parity space method is employed as an efficient geometric
procedure determining null subspaces for annihilating unknown terms and formulating residuals. With
the modulating functions technique the dynamic relation from output differentiation is reformulated as an
algebraic expression. This substantially reduces the noise sensitivity of the output derivatives required.
The design allows for the robust fault detection and isolation also for some nonlinear systems. The
robustness of the approach is demonstrated on a nonlinear model of a four-tank process.
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1. INTRODUCTION

Recognizing the faults in dynamic systems is a major task in
supervision architectures aiming at avoiding accidents and in-
corporating maintenance activities. Generally, methods for fault
diagnosis are classified as model-based, signal-based, and data-
based. Among those the first is widely studied, underscored by
numerous contributions dedicated to this matter, see (Blanke
et al., 2006) for a collection. In diagnosis, the main tasks range
from fault detection, which recognizes the occurrence of faults,
over fault isolation, which determines the set of faults, to a
precise identification of the fault signal. Estimating the faults
is decisive for assessing the magnitude and trend of faults, and
thus is crucial for designing fault tolerant systems (Gao, 2015).

In fault estimation, various techniques have been developed
for robust design (Zhaohui and Noura, 2013), (Maiying Zhong
et al., 2008) and for descriptor observers (Jiang et al., 2004),
(Gao, 2015) with the objective of increasing the fault-tolerance.
A particular model-based technique for fault detection is the
generation of parity space relations. Past research has shown
that this method can be difficult to implement in the continuous-
time setting. Despite the straight-forward design, which only
depends on linear algebra, it has some drawbacks such as sen-
sitivity to noise, as observed by Höfling and Pfeufer (1994),
Sun et al. (2019), and also Xue et al. (2018) where the parity
space generation is based on a stationary wavelet transform.
The approach requires time-derivatives of the output, prone
to measurement noise. For non-Lipschitz dynamical systems,
problems occur due to state differentiation that may lead to sin-
gularities. These challenges impose an obstacle for the practical
realization in the diagnosis scheme with low cost sensors.

In this context, the modulating function approach may play a
central role when generating and robustly solving a system of
residual equations. The approach was originally proposed by
Shinbrot (1957) for the identification of linear SISO systems.
It has recently been extended to a simultaneous parameter and

state estimation procedure (Jouffroy and Reger, 2015). In gen-
eral, the approach admits a non-asymptotic estimation and has
successfully been applied to several tasks in parameter, state,
and input estimation problems (Noack et al., 2018), (Liu et al.,
2014). The modulation of a dynamic input-output equation is
performed by applying an integral transform with respect to a
specified modulation kernel which allows to reformulate and
avoid time derivatives of measured signals, leading to algebraic
relations only. The smoothing property of the integral as well
as the avoidance of numerical differentiation mitigate noise
and disturbance effects. Early concepts of algebraic residual
generation were introduced by Fliess et al. (2004). Lately in
Li et al. (2018), other kernel based estimators are applied for
the purpose of fault detection and isolation, examining also the
influence of external disturbances.

Here the proposed technique uses modulating functions for
generating a set of algebraic equations that do not involve
time differentiation of the measurement signals. Resorting to
different modulation kernels a larger set of equations is gen-
erated when compared to just considering a certain number of
output derivatives. Based on this, parity space calculations are
performed and respective null spaces are generated. This allows
to purge the residual from undesired influences, for example,
from external disturbances. After that, the fault signals are
reconstructed, directly using the residual by modulation based
estimation of the unknown input. Furthermore, the approach
is extended to a certain class of nonlinear systems, which due
to modulation allows to avoid differentiation of non-Lipschitz
expressions to maintain a continuous-time perspective, and thus
to circumvent discrete filtering. In view of model-based pre-
processing, the real-time implementation of our algorithm is
efficient and shows significant robustness against sensor noise.

The paper is structured as follows: After presenting theoreti-
cal prerequisites for the modulating function approach in Sec-
tion II, the parity space formulation for diagnosis applications
is introduced in Section III. In Section IV the methodologies are
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In fault estimation, various techniques have been developed
for robust design (Zhaohui and Noura, 2013), (Maiying Zhong
et al., 2008) and for descriptor observers (Jiang et al., 2004),
(Gao, 2015) with the objective of increasing the fault-tolerance.
A particular model-based technique for fault detection is the
generation of parity space relations. Past research has shown
that this method can be difficult to implement in the continuous-
time setting. Despite the straight-forward design, which only
depends on linear algebra, it has some drawbacks such as sen-
sitivity to noise, as observed by Höfling and Pfeufer (1994),
Sun et al. (2019), and also Xue et al. (2018) where the parity
space generation is based on a stationary wavelet transform.
The approach requires time-derivatives of the output, prone
to measurement noise. For non-Lipschitz dynamical systems,
problems occur due to state differentiation that may lead to sin-
gularities. These challenges impose an obstacle for the practical
realization in the diagnosis scheme with low cost sensors.

In this context, the modulating function approach may play a
central role when generating and robustly solving a system of
residual equations. The approach was originally proposed by
Shinbrot (1957) for the identification of linear SISO systems.
It has recently been extended to a simultaneous parameter and

state estimation procedure (Jouffroy and Reger, 2015). In gen-
eral, the approach admits a non-asymptotic estimation and has
successfully been applied to several tasks in parameter, state,
and input estimation problems (Noack et al., 2018), (Liu et al.,
2014). The modulation of a dynamic input-output equation is
performed by applying an integral transform with respect to a
specified modulation kernel which allows to reformulate and
avoid time derivatives of measured signals, leading to algebraic
relations only. The smoothing property of the integral as well
as the avoidance of numerical differentiation mitigate noise
and disturbance effects. Early concepts of algebraic residual
generation were introduced by Fliess et al. (2004). Lately in
Li et al. (2018), other kernel based estimators are applied for
the purpose of fault detection and isolation, examining also the
influence of external disturbances.

Here the proposed technique uses modulating functions for
generating a set of algebraic equations that do not involve
time differentiation of the measurement signals. Resorting to
different modulation kernels a larger set of equations is gen-
erated when compared to just considering a certain number of
output derivatives. Based on this, parity space calculations are
performed and respective null spaces are generated. This allows
to purge the residual from undesired influences, for example,
from external disturbances. After that, the fault signals are
reconstructed, directly using the residual by modulation based
estimation of the unknown input. Furthermore, the approach
is extended to a certain class of nonlinear systems, which due
to modulation allows to avoid differentiation of non-Lipschitz
expressions to maintain a continuous-time perspective, and thus
to circumvent discrete filtering. In view of model-based pre-
processing, the real-time implementation of our algorithm is
efficient and shows significant robustness against sensor noise.

The paper is structured as follows: After presenting theoreti-
cal prerequisites for the modulating function approach in Sec-
tion II, the parity space formulation for diagnosis applications
is introduced in Section III. In Section IV the methodologies are
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combined to generate a residual with the appropriate null space
conditions, marking the major result of this paper. Section V
provides simulations of the proposed fault detection and esti-
mation on a nonlinear model of a four-tank system, including
parameter calibration. Conclusions are drawn in Section VI.

2. MODULATING FUNCTIONS APPROACH

The modulating function approach is based on a general inte-
gral transform, leading to a algebraic reformulation of a dy-
namic system, thus, to non-asymptotic estimation algorithms.

2.1 Parameter estimation

The modulating function framework formulated in (Jouffroy
and Reger, 2015) is devised for parameter and state estimation.
The central notion of the approach is an integration over a
moving horizon with respect to a predefined modulation kernel.
In order to formulate a regressor form for identifying constant
parameters, we define modulating functions as follows.
Definition 1. A sufficiently smooth function ϕ ∈ Ck([0, T ],R)
is called total modulating function of order k ∈ N if

ϕ(i)(0) = ϕ(i)(T ) = 0 ∀i = 0, 1, ..., k − 1 , (1)
where T > 0 is a fixed time-horizon.

When dealing with dynamic input-output equations, time-
derivatives of measurement signals occur which cannot be com-
puted directly due to sensor noise, biases, and other perturba-
tions. However, for some diagnosis approaches, as in Section 3,
several differentiations of the output signal need to be per-
formed for obtaining additional information. Here we may ben-
efit from a key property of a modulating signal f ∈ Ci(R+

0 ,R)
and its derivatives with a total modulating function from Defi-
nition 1 as kernel. Due to (1), integration by parts yields∫ T

0

ϕ(τ)f (i)(τ)dτ = (−1)i
∫ T

0

ϕ(i)(τ)f(τ)dτ , (2)

i.e., the derivative of a (measured) signal is shifted to a known
kernel function. For brevity, we shall use the modulating func-
tion operator L : Ci → R from (Noack et al., 2018) with

Li[f ] =

∫ t

t−T

(−1)iϕ(i)(τ − t+ T )f(τ)dτ. (3)

The integral is considered on the receding horizon [t−T, t]. No
virtual dynamic loop is introduced due to the non-asymptotic,
fixed-time algorithm, making control and fault detection easier.

2.2 Unknown input estimation

For reconstructing unknown external signals such as faults,
a signal-expansion based modulation approach is applied as
introduced by Liu et al. (2014) and applied by Noack et al.
(2018). Consider the following weighted scalar product with
φ1, φ2 ∈ L2([0, 1])

〈φ1, φ2〉w :=

∫ 1

0

w(τ)φ1(τ)φ2(τ)dτ, (4)

taken with respect to the weighting function w : [0, 1] → R+
0 .

Based on this, an orthonormal basis is chosen as Φ[0,1] =
span {φ0, φ1, φ2, . . .} for expanding the unknown signal g ∈
Φ[0,1] ⊂ L2([0, 1]) over the considered time horizon as per

g(τ) �
∞∑
i=0

λiφi(τ) =

∞∑
i=0

〈g, φi〉w φi(τ) . (5)

In view of the series formulation, a modulating function is
selected as ϕk(τ) := w(τ)φk(τ) with the resulting operator

Lj
k[f ] :=

(−1)j

hj

∫ 1

0

ϕ
(j)
k (τ) f(t+ (τ − 1)h)dτ, (6)

with horizon window length h > 0. The weighting function w
is chosen with respect to the desired modulation characteristics.
Here, the boundary conditions (1) are realized. Modulating the
function representation (5) of a shifted signal f leads to

L0
k[f ] = 〈φk, f〉w = λt,k , (7)

where the respective modal coefficient is isolated. This can be
applied for continuous signal identification by

f(t+ (τ − 1)h) ≈
N∑
i=0

〈φk, f(t+ (τ − 1)h)〉w︸ ︷︷ ︸
=:λ̂t,k

φi(τ) (8)

where N ∈ N is the approximation order. This is applied
to dynamic input-output equations by receding horizon inte-
gration. The application to systems with output derivatives is
sketched in (Noack et al., 2018). Liu et al. (2014), advocate
Jacobi Polynomials (JP) due to their robustness against sensor
noise. For selected α, β > 0 the basis functions are defined as
φk = P

(α,β)
k with

P
(α,β)
k (τ) :=

k∑
j=0

(
k + α
j

)(
k + β
k − j

)
(τ − 1)k−jτ j . (9)

The associated weighting function isw(τ) = τα(1−τ)β where
α and β are chosen according to the desired modulating func-
tion boundary conditions. Having implemented (6) for a given
dynamic system, an unknown signal may be reconstructed via

f̂(t+ (τ0 − 1)h) =

N∑
i=0

λ̂t,kP
(α,β)
k (τ0) (10)

for selected τ0 ∈ [0, 1). A delay δ = (1−τ0)h is imposed which
is tuned for mitigating measurement noise. Order N is chosen
with respect to the expected signal behavior over the moving
time horizon.

3. PARITY SPACE METHOD

The basic theory of the parity space approach is introduced
along the lines in (Blanke et al., 2006). Consider the LTI system{

ẋ(t) = Ax(t) +Bu(t) + Exd(t) + Fxf(t)

y(t) = Cx(t) +Du(t) + Eyd(t) + Fyf(t)
(11)

where x(t) ∈ Rn is the state, u(t) ∈ Rm the input, d(t) ∈ Rnd

the disturbance, y(t) ∈ Rp the output, and f(t) ∈ Rnf the fault.
By calculating q ∈ N successive derivatives of output y, q + 1
relations can be obtained:

y(t) = Cx(t) +Du(t) + Eyd(t) + Fyf(t) ,

ẏ(t) = CAx(t) + CBu(t) +Du̇(t) + CExd(t)+

Eyḋ(t) + CFxf(t) + Fy ḟ(t) , (12)
...

y(q)(t) = CAqx(t) + CAq−1Bu(t) + . . .+Du(q)(t)+

CAq−1Exd(t) + . . .+ Eyd
(q)(t)+

CAq−1Fxf(t) + . . .+ Fyf
(q)(t) .

These equations may be written in matrix form
ȳ = Ox+ Tuū+ Tdd̄+ Tf f̄ , (13)
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where ȳ =
[
y�, ẏ�, . . . , y(q)

]�
for the signals y, and for u, d,

and f correspondingly. The resulting matrices O ∈ R(q+1)p×n,
Td ∈ R(q+1)p×(q+1)nd , Tu ∈ R(q+1)p×(q+1)m and Tf ∈
R(q+1)p×(q+1)nf are given as

O =




C
CA...
CAq


 , (14)

Td =




Ey 0 . . . 0
CEx Ey . . . 0...

...
. . .

...
CAq−1Ex CAq−2Ex . . . Ey


 , (15)

Tu =




D 0 . . . 0
CB D . . . 0...

...
. . .

...
CAq−1B CAq−2B . . . D


 , (16)

Tf =




Fy 0 . . . 0
CEx Fy . . . 0...

...
. . .

...
CAq−1Fx CAq−2Fx . . . Fy


 . (17)

Terms related to states and perturbations are not known and they
shall not appear in the diagnosis criteria. For canceling them,
the existence of a null-space related to the extended matrix
(O Td) is required. The condition to satisfy this requirement
is expressed in terms of the complementary rank nW ∈ N, i.e.

nW = (q + 1) p− rank(O Td)
!
> 0 . (18)

Then the columns of annihilation matrixW ∈ R(q+1)p×nW can
be defined as basis spanning the left kernel related to (18) with

ker(O� T�
d )� = {w ∈ R(q+1)p |w�[O Td] = 0}

= span{w1, . . . , wnW
}

⇒ W = [w1 · · · wnW ] . (19)

As a consequence, left multiplication of (13) by W� yields

W�ȳ −W�Tuū = W�Tf f̄ . (20)
The left-hand side of (20) is employed to define residuals that
are zero whenever f(t) = 0 and non-zero once f(t) �= 0. Yet,
the implementation of residuals based on this approach requires
the numerical computation of derivatives of the signals u and
y which are usually subject to noise. There are workarounds
utilizing discrete-time system approximations (Blanke et al.,
2006), but these show significant sensitivity to high frequency
noise components. To attenuate this influence the parity space
method is enhanced with the modulating functions approach.

4. MODULATING FUNCTIONS APPLIED TO THE
PARITY SPACE RELATION

4.1 Main approach

For avoiding the time derivatives in the classical parity space
approach, a total modulating function from Definition 1 is
applied sequentially to (11) and its subsequent q derivatives in
(12). Using the modulation operator notation (3) leads to

L0[y] = CL0[x] +DL0[u] + FyL
0[f ] ,

L1[y] = CAL0[x] + CBL0[u] +DL1[u] + CExL
0[d]+

CFxL
0[f ] + FyL

1[f ] ,

...
Lq[y] = CAqL0[x] + CAq−1BL0[u] + . . .+DLq[u]+

CAq−1ExL
0[d] + . . .+ EyL

q[d]+

CAq−1FxL
0[f ] + . . .+ FyL

q[f ] .

Defining new substituted vectors in the form for L̄[y] =[
L0[y]�, L1[y]�, . . . , Lq[y]�

]�
for the signals y, and for u, d

and f , respectively, the integral transformed analog to (13) is

L̄[y] = OL0[x] + TuL̄[u] + TdL̄[d] + Tf L̄[f ]. (21)

The matrices are preserved due to linearity of the modulation
operation. Considering condition (18) with respect to (21), a
null-space matrix W is calculated similarly to (19).

However, inequality (18) can be unfeasible in many cases. A
remedy proposed by Nguang et al. (2011) is the use of linear
matrix inequalities (LMIs) to approximate the matrix W that
minimizes ‖WO‖ and ‖WTd‖ while maximizing ‖WTf‖:

Qo −W�O (W�O)� > 0 , (22)

Qd −W�Td (W
�Td)

� > 0 , (23)

Qf − (I −W�Tf )(I −W�Tf )
� > 0 , (24)

where Qo and Qd are diagonal matrices that can be conve-
niently selected for the optimization. Applying the Schur com-
plement, the following LMIs are to be solved subsequently:

[
−Qo W�O

(W�O)� −I

]
> 0 , (25)

[
−Qd W�Td

(W�Td)
� −I

]
> 0 , (26)

[
−Qf (I −W�Tf )

(I −W�Tf )
� −I

]
> 0 . (27)

Thus, with appropriate W the residuals are obtained via

r = W�L̄(y(t))−W�TuL̄(u(t)), (28)

equal to the right-hand side of the fault detection equation, i.e.

r = W�Tf L̄[f ] . (29)

To achieve exact fault identification, the function expansion
from Section 2 is applied to the fault signal components of f .
Hence, (5) with the use of modulation (6) for a set of M ∈ N
polynomials and plugging this into the residual (29) leads to

r = W�Tf




M∑
i=0

λ̂t,i

∫ 1

0

ϕk(τ)φi(τ)dτ

1

h

M∑
i=0

λ̂t,i

∫ 1

0

ϕ̇k(τ)φi(τ)dτ

...
1

hq

M∑
i=0

λ̂t,i

∫ 1

0

ϕ
(q)
k (τ)φi(τ)dτ




. (30)

By factorizing the coefficients that have to be estimated, i.e.
Λ̂t = (λt,1, · · · , λt,M )�, the following system of equations for
fault estimation is obtained:
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[
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L̄[y] = OL0[x] + TuL̄[u] + TdL̄[d] + Tf L̄[f ]. (21)

The matrices are preserved due to linearity of the modulation
operation. Considering condition (18) with respect to (21), a
null-space matrix W is calculated similarly to (19).

However, inequality (18) can be unfeasible in many cases. A
remedy proposed by Nguang et al. (2011) is the use of linear
matrix inequalities (LMIs) to approximate the matrix W that
minimizes ‖WO‖ and ‖WTd‖ while maximizing ‖WTf‖:

Qo −W�O (W�O)� > 0 , (22)

Qd −W�Td (W
�Td)

� > 0 , (23)

Qf − (I −W�Tf )(I −W�Tf )
� > 0 , (24)

where Qo and Qd are diagonal matrices that can be conve-
niently selected for the optimization. Applying the Schur com-
plement, the following LMIs are to be solved subsequently:

[
−Qo W�O

(W�O)� −I

]
> 0 , (25)

[
−Qd W�Td

(W�Td)
� −I

]
> 0 , (26)

[
−Qf (I −W�Tf )

(I −W�Tf )
� −I

]
> 0 . (27)

Thus, with appropriateW the residuals are obtained via

r = W�L̄(y(t))−W�TuL̄(u(t)), (28)

equal to the right-hand side of the fault detection equation, i.e.

r = W�Tf L̄[f ] . (29)

To achieve exact fault identification, the function expansion
from Section 2 is applied to the fault signal components of f .
Hence, (5) with the use of modulation (6) for a set of M ∈ N
polynomials and plugging this into the residual (29) leads to

r = W�Tf




M∑
i=0

λ̂t,i

∫ 1

0

ϕk(τ)φi(τ)dτ

1

h

M∑
i=0

λ̂t,i

∫ 1

0

ϕ̇k(τ)φi(τ)dτ

...
1

hq

M∑
i=0

λ̂t,i

∫ 1

0

ϕ
(q)
k (τ)φi(τ)dτ




. (30)

By factorizing the coefficients that have to be estimated, i.e.
Λ̂t = (λt,1, · · · , λt,M )�, the following system of equations for
fault estimation is obtained:

r = W�Tf




e�k
1

h
〈ϕ̇k, φ1〉 · · · 1

h
〈ϕ̇k, φM 〉

...
...

1

hq
〈ϕ(q)

k , φ1〉 · · · 1

hq
〈ϕ(q)

k , φM 〉




︸ ︷︷ ︸
=:A

Λ̂t . (31)

This result for matrix A in (31) considers one fault, but can
easily be extended to a multiple fault case by treating each com-
ponent individually, then matrixA∗ is obtained. The coefficient
vector Λ̂∗

t = (Λ̂1,t, · · · , Λ̂nf ,t)
� follows from inverting

r = W�TfA∗Λ̂∗
t , (32)

which parameterizes the estimated fault signal f̂ .

4.2 Nonlinear Case

Furthermore note that some nonlinear systems can be handled
naturally by this approach. For demonstrating the idea, assume{

ẋ(t) = Ax(t) + Âg(x(t)) +Bu(t) + Exd(t) + Fxf(t)

y(t) = Cx(t) +Du(t) + Eyd(t) + Fyf(t)

and apply the same procedure to successive q ∈ N derivatives.
Then a result similar to (21) is established:

L̄[y] = OL0[x] + Tg(x)L̄(g(x)) + TuL̄[u]
+TdL̄[d] + Tf L̄[f ]

(33)

where

Tg(x) =




0 0 . . . 0

CÂ 0 . . . 0...
...

. . .
...

CAq−1Â CAq−2Â . . . 0


 (34)

Equation (33) shows that nonlinear terms can be treated in-
dependently from linear terms due to the modulating operator
which avoids partial state-derivatives. Rearranging yields

L̄[y] = ŌL0[x] + TuL̄[u] + TdL̄(d̄) + Tf L̄[f ] (35)

with Ō = [O Tg(x)] and x̄ = [x� g(x)�]�. Thus, (19) may
be used to obtain the respective annihilator W . In cases where
such condition is too restrictive, one may resort to (25), (26)
and (27). Residuals are obtained using (28). For further fault
identification and estimation steps, (32) is employed.

4.3 Sensibility and threshold selection

The system sensibility to faults is governed by relation (29),
thus it partly depends in the annihilator matrix W which is a
design parameter and the matrix Tf that is derived from the
model. The third factor are the modulation functions applied to
the unknown signals f . In this article we aim at detection of
faults with magnitude larger than 1. Thus, thresholds J can be
calculated from

J = W�Tf L̄[H(t0)], (36)
where H(t0) is the unit step with respect to time t0, i.e.

H(τ, t0) =

{
0, for τ < t0
1, for τ � t0

(37)

with t0 selected close to t. We recommended to choose t0 ∈(
t− T

k , t
)
. For the corresponding modulation we get

Li[H(t, t0)] =

∫ t

t−t0

(−1)iϕ(i)(τ − t+ T )dτ. (38)

T4

T2T1

T3
LT4 LT3

LT1 LT2

Fig. 1. Sketch of four-tank system.

Then, for each residual ri in (29) the threshold is drawn from

Ji = coli
(
W�Tf

)�
L̄[H(t, t0)]. (39)

Moreover, for better optimization results using (25), (26) and
(27), for the corresponding ri an approximate threshold is

Ji ≈ Li[H(t, t0)]. (40)

5. APPLICATION EXAMPLE

The approach is applied to a non-linear model of a four-tank
system (Fig. 1). The four-tank system is a MIMO benchmark
model to evaluate FDI algorithms, first proposed by Johansson
(2000). It provides opportunities to test sensor and actuator
faults simultaneously and to implement fault-tolerant solutions.
It has been used for structural fault diagnosis for faults in the
order of 10 cm in magnitude (Sánchez-Zurita et al., 2019). In
this article, we analyze faults in the order of 1 cm of magnitude.
The four-tank system is described by

ḣ1(t) =
−a1

√
2gh1(t)

A1
+

a4
√
2gh4(t)

A1
+

γ1k1u1

A1

ḣ2(t) =
−a2

√
2gh2(t)

A2
+

a3
√
2gh3(t)

A2
+

γ2k2u2(t)

A2

ḣ3(t) =
−a3

√
2gh3(t)

A3
+

(1− γ1)k1u1(t)

A3

ḣ4(t) =
−a4

√
2gh4(t)

A4
+

(1− γ2)k2u2(t)

A4

y(t) = h(t) + ν(t) , x(t) = h(t)

with tank levels hi for i = 1, 2, 3, 4. The measurement y is
corrupted by noise ν. Parameters and operating points for the
plant in our laboratory are given in Table 1.

Table 1. Process Parameters and Operating Points.

Parameter Value Units
Bottom area, Ai, for i = 1, 2, 3, 4 706.85 cm2

Outlet pipe cross section, ai, for i = 1, 2 5.39 cm
Outlet pipe cross section, ai, for i = 3, 4 5.39 cm
Gravity constant, g 981 cm2/s
Pump constants, ki, for i = 1, 2 1 cm3/(Vs)
Main valve positions, γi for i = 1, 2 0.7
Heights 1 and 2, h1o, h2o 18.3 cm
Heights 3 and 4, h3o, h4o 25 cm
Inputs 1 and 2, u1o, u2o 1193.73 cm3/s
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Fig. 2. Excitation signal and measurements for calibration.

5.1 Calibration step

A challenging task is to continuously identify the pump con-
stants k1 and k2, and the main valve positions γ1 and γ2.
To this end, we use the parameter identification proposed in
(Jouffroy and Reger, 2015) with a total modulation function
from Definition 1. We obtain

L1[y1] = â1L
0[
√
y1] + â2L

0[
√
y4] + b̂1λ1k1L

0[u1]

L1[y2] = â3L
0[
√
y2] + â4L

0[
√
y3] + b̂2λ2k2L

0[u2]

L1[y3] = â5L
0[
√
y3] + b̂3(1− λ1)k1L

0[u1]

L1[y4] = â6L
0[
√
y4] + b̂4(1− λ2)k2L

0[u2].

(41)

Regrouping terms to estimate the pair k1 and γ1 we have the
regressor form[

L1[y1]− â1L
0[
√
y1]− â2L

0[
√
y4]

L1[y3]− â5L
0[
√
y3]

]
=

[
b̂1L

0[u1] 0

−b̂3L
0[u1] b̂3L

0[u1]

] [
k1γ1
k1

]
.

(42)

Similarly for the pair k2 and γ2 we get[
L1[y2]− â3L

0[
√
y2]− â4L

0[
√
y3]

L1[y4]− â6L
0[
√
y4]

]
=

[
b̂2L

0[u2] 0

−b̂4L
0[u2] b̂4L

0[u2]

] [
k2γ2
k2

]
.

(43)

Excitation signals and measurements subject to noise are de-
picted in Fig. 2, corresponding results are shown in Fig. 3.

5.2 Fault diagnosis

The system is affected by additive faults, i.e. one process fault
f1(t) in the first state and two sensor faults f2(t) and f3(t) in
measurements 2 and 3, respectively. In Fig. 4 the testing condi-
tions of the simulation are shown, including the input signals,
and the noisy / perturbed measurement with standard deviation
of 0.1 in the process. The loop is closed with a linear state-
feedback with gain K = [1100, 1000, 0, 0; 1000, 1000, 0, 0].
Note that fault f1 is active for t ∈ [3.5, 5] s, fault f2 for
t ∈ [10, 12] s, and fault f3 for t ∈ [13.5, 15] s.

Generating the residuals until order q = 2, with A = 0 we get

O =
[
C� 0 0

]�
. (44)

Considering C = I4 and Ex = [1, 0, 1, 0]�, the matrices
related to the perturbations and nonlinearities are
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Fig. 3. Parameter identification based on the data from Fig. 2
with the marked moving horizon length T = 2.
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Fig. 4. Simulation of the fault-scenario with inputs and mea-
surement outputs, affected by faults illustrated in Fig. 6.

Td =

[
0 0 0

CEx 0 0
CAEx CEx 0

]
, T√

x =




0 0 0

CÂ 0 0

CAÂ CÂ 0


 . (45)

In this case, using (25), (26), (27) and (28), nine residuals are
obtained. These residuals correspond to different orders of the
applied modulating functions, as presented in Fig. 5 with the
corresponding detection threshold. For the first and second-
order of modulating functions, three residuals are obtained,
respectively. Residuals of zero-order are less effective for this
specific case and are not presented. First-order residuals are
adequate for process faults, whereas, for sensor-fault detection,
it is more sensible to use second-order residuals.

For fault identification, we use a set of Jacobi Polynomials
with α = 3, β = 3 and approximation order N = 2
as introduced in Section 2.2. The modulating function has a
moving horizon length of T = 1 s and shift τ0 = 0.5 s from
(10). Fault isolation is an inherent part of fault identification
but is used in conjunction with fault detection; thus, estimation
is only performed when a fault is detected. The fault estimation
results obtained from (32) are demonstrated in Fig. 6. It can be
observed that the faults are tracked relatively smoothly under
noisy measurement conditions for this nonlinear plant. A time
delay can be seen as expected from Section 2.
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5.1 Calibration step

A challenging task is to continuously identify the pump con-
stants k1 and k2, and the main valve positions γ1 and γ2.
To this end, we use the parameter identification proposed in
(Jouffroy and Reger, 2015) with a total modulation function
from Definition 1. We obtain

L1[y1] = â1L
0[
√
y1] + â2L

0[
√
y4] + b̂1λ1k1L

0[u1]

L1[y2] = â3L
0[
√
y2] + â4L

0[
√
y3] + b̂2λ2k2L

0[u2]

L1[y3] = â5L
0[
√
y3] + b̂3(1− λ1)k1L

0[u1]

L1[y4] = â6L
0[
√
y4] + b̂4(1− λ2)k2L

0[u2].

(41)

Regrouping terms to estimate the pair k1 and γ1 we have the
regressor form[

L1[y1]− â1L
0[
√
y1]− â2L

0[
√
y4]

L1[y3]− â5L
0[
√
y3]

]
=

[
b̂1L

0[u1] 0

−b̂3L
0[u1] b̂3L

0[u1]

] [
k1γ1
k1

]
.

(42)

Similarly for the pair k2 and γ2 we get[
L1[y2]− â3L

0[
√
y2]− â4L

0[
√
y3]

L1[y4]− â6L
0[
√
y4]

]
=

[
b̂2L

0[u2] 0

−b̂4L
0[u2] b̂4L

0[u2]

] [
k2γ2
k2

]
.

(43)

Excitation signals and measurements subject to noise are de-
picted in Fig. 2, corresponding results are shown in Fig. 3.

5.2 Fault diagnosis

The system is affected by additive faults, i.e. one process fault
f1(t) in the first state and two sensor faults f2(t) and f3(t) in
measurements 2 and 3, respectively. In Fig. 4 the testing condi-
tions of the simulation are shown, including the input signals,
and the noisy / perturbed measurement with standard deviation
of 0.1 in the process. The loop is closed with a linear state-
feedback with gain K = [1100, 1000, 0, 0; 1000, 1000, 0, 0].
Note that fault f1 is active for t ∈ [3.5, 5] s, fault f2 for
t ∈ [10, 12] s, and fault f3 for t ∈ [13.5, 15] s.

Generating the residuals until order q = 2, with A = 0 we get

O =
[
C� 0 0

]�
. (44)

Considering C = I4 and Ex = [1, 0, 1, 0]�, the matrices
related to the perturbations and nonlinearities are
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Td =

[
0 0 0

CEx 0 0
CAEx CEx 0

]
, T√

x =




0 0 0

CÂ 0 0

CAÂ CÂ 0


 . (45)

In this case, using (25), (26), (27) and (28), nine residuals are
obtained. These residuals correspond to different orders of the
applied modulating functions, as presented in Fig. 5 with the
corresponding detection threshold. For the first and second-
order of modulating functions, three residuals are obtained,
respectively. Residuals of zero-order are less effective for this
specific case and are not presented. First-order residuals are
adequate for process faults, whereas, for sensor-fault detection,
it is more sensible to use second-order residuals.

For fault identification, we use a set of Jacobi Polynomials
with α = 3, β = 3 and approximation order N = 2
as introduced in Section 2.2. The modulating function has a
moving horizon length of T = 1 s and shift τ0 = 0.5 s from
(10). Fault isolation is an inherent part of fault identification
but is used in conjunction with fault detection; thus, estimation
is only performed when a fault is detected. The fault estimation
results obtained from (32) are demonstrated in Fig. 6. It can be
observed that the faults are tracked relatively smoothly under
noisy measurement conditions for this nonlinear plant. A time
delay can be seen as expected from Section 2.
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Fig. 5. Residual components generated from (28) with respec-
tive detection threshold caused by faults shown in Fig. 6.
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Fig. 6. Real and isolated faults, estimated with (32).

6. CONCLUSION

We present a fault diagnosis scheme based on the modulation
of a series of output derivatives, yielding a set of algebraic
equations only. For this purpose, the parity space method is
rearranged accordingly. The residual generation is improved,
and especially the sensitivity to signal noise is reduced. A
robust implementation procedure is sketched that is efficient
to compute and easy to tune by mainly adjusting the moving
horizon length. The continuous-time perspective allows for a
filtering setup, also for the nonlinear case. Singularities in the
state are avoided in the output relation due to early shifting
the time differentiation operation. Thus, the modified parity
space method is adjusted in a way that renders it feasible to
reconstruct time-varying fault trajectories directly.

The extension towards nonlinear systems will be pushed for-
ward to a broader class of problems. Also, state estimation can
be included in the framework for constructing additional resid-
ual and parity constellations. Different modulating functions
may also be utilized for distinct output signal projections that
result in a larger variety of residual information to be fused.
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