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Abstract: We investigate a model following control (MFC) design for nonlinear minimumphase
systems subject to model uncertainties. The model following control architecture is a two degrees-
of-freedom structure consisting of two control loops. The model control loop (MCL) includes
a nominal model of the process. The design of the process control loop (PCL) is based on the
error system resulting from the nominal design and the actual process. Both control loops are
designed using (partial) feedback linearisation. We analyse the robustness in view of the norm
of the uncertainty and the region of attraction compared to a single-loop (partial) feedback
linearisation control. It turns out that the proposed approach is able to stabilize significantly
larger uncertainties, shows better tracking performance, and exhibits a larger region of attraction
(based on a quadratic Lyapunov function).
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1. INTRODUCTION

The model following control structure is a well-established
control architecture that has been studied and used by prac-
titioners for several decades, e.g. see the papers of Erzberger
(1968); Ambrosino et al. (1985); Roppenecker (1990);
Durham and Lutze (1991); Li et al. (1998); Skoczowski
et al. (2003); Dworak et al. (2009); Osypiuk and Kröger
(2010); Pajchrowski (2011); Brzózka (2012). This scheme
represents a two-degrees-of-freedom structure shown in
Figure 1. Essentially it consists of a process model simulated
in a nominal control loop (model control loop) and a
process control loop (PCL) that works on the actual process.
It has been demonstrated that such control architecture
is very capable in compensating disturbances and model
uncertainties.

In the vast majority of publications on this topic, the model
used in the model control loop (MCL) is a linearisation
of the available process model leaving its approximation
error for compensation via the PCL. Often the controller
in the MCL and in the PCL are classical linear controllers.
Only a few studies consider nonlinear approaches in the
MCL or the PCL. Accordingly the robustness analysis
is mostly limited to linear approaches, e.g. (Sugie and
Osuka, 1993; Tsang and Li, 2001; Duan and Huang, 2008;
Dworak et al., 2009; Osypiuk, 2010). Ishitobi et al. (2010)
use a linear model in the MCL and an input-output
linearisation approach for the PCL. Only a few studies
include a nonlinear model in the MCL, e.g. (Brzózka, 2012;
Huber et al., 2013; Schaper et al., 2014). Willkomm et al.
(2018, 2019) let the model control loop (MCL) use a local
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model network (LMN), where the parameters of the linear
local models are interpolated. Brzózka (2012) use a flatness-
based control applied to the nonlinear model in the MCL.
Nonlinear model predictive approaches are used in the case
studies (Huber et al., 2013; Schaper et al., 2014). However,
to the best of the authors knowledge a systematic nonlinear
analysis of the potential of this approach cannot be found
in the literature.

The aim of this contribution is to provide a thorough
analysis of the robustness towards model uncertainties in
the nonlinear system using a nonlinear model and standard
nonlinear control approach in both MCL and PCL. We
consider a nonlinear system in Byrnes-Isidori-form and
design a standard feedback-linearisation controller for the
nominal model in the MCL as well as for the resulting error
dynamics. Based on a Lyapunov function for the nominal
design we estimate a bound on the model uncertainty.
The case study of an academic example shows that the
considered MFC control structure is able to compensate
much larger model uncertainties compared to single-loop
feedback linearisation. The case study also shows that the
region of attraction is significantly larger using this two-
degrees-of-freedom architecture.

The manuscript is structured as follows. In the next section
we give a formal description of the considered system class.
In Section 3 we design the controller for the proposed MFC
structure. Also a comparison design is described. In doing
so, we analyse the bounds for the perturbation for both
control architectures. An illustrative example which shows
the advantages of the MFC is given in Section 4. We draw
our conclusions in Section 5.
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Fig. 1. Model following control (MFC) blockdiagram with model control loop (MCL) and process control loop (PCL).

2. SYSTEM CLASS AND PRELIMINARY RESULT

We consider a nonlinear minimumphase (at least locally)
SISO system in normal form given by

η̇ = f0(η, ξ) (1)

ξ̇i = ξi+1 for 1 ≤ i ≤ r − 1 (2)

ξ̇r = a(ξ, η) + b(ξ, η)u+ φ(ξ) (3)

y = ξ1 (4)

where η(t) ∈ Rn−r and ξ(t) ∈ Rr denote the internal
and external states, respectively, and u(t), y(t) ∈ R are
the input and output, respectively. The relative degree
is 1 ≤ r ≤ n. The known functions f0 : Rn−r × Rr →
Rn−r, a : Rr × Rn−r → R, b : Rr × Rn−r → R and
model uncertainty φ : Rr → R are sufficiently smooth.
Furthermore, f0(0, 0) = 0 and b(ξ, η) �= 0 for all ξ and η.
The model uncertainty vanishes in the origin, i. e. φ(0) = 0.
We assume that all states ξ and η are available for control.
In case r = n the internal dynamics η and (1) are dropped
and the functions a(·), b(·) and φ(·) only depend on ξ.

For the stability analysis we shall resort to a well-known
result adapted from (Khalil, 2002).

Lemma 1. Consider the nonlinear system of the form

η̇ = f0(η, ξ)

ξ̇ = Acl ξ ,

where matrix Acl is Hurwitz. The origin of
(
ηT ξT

)
T is

• locally asymptotically stable if the origin of system
η̇ = f0(η, 0) is asymptotically stable,

• globally asymptotically stable if the internal dynamics
η̇ = f0(η, ξ) are input-to-state stable (ISS).

Proof. Proofs can be found in (Khalil, 2002, p. 531f). �

3. CONTROL DESIGN AND ESTIMATED REGION OF
ATTRACTION

In this section we present the considered control design
and compute a bound for the uncertainty φ based on a
quadratic Lyapunov function. The control is based on the
well-known model following control structure, see Fig. 1,
where a nominal model runs in the model control loop
(MCL). The control output obtained from the MCL is
used as feedforward control for the actual process. The
process control loop (PCL) caters for disturbances and
model uncertainties. In our approach the nominal model
in the model control loop is nonlinear and a (partial) state
feedback linearisation is applied to both, the model control
loop (MCL) as well as the process control loop (PCL). The
design of the latter is based on the resulting error dynamics
obtained from the deviation of the process with respect to
the nominal model.

3.1 Model following control

For the model control loop (MCL) we design a controller
using (partial) state feedback linearisation u� and pole
placement control law v� of the form

u� =
−a(ξ�, η�) + v�

b(ξ�, η�)
, v� = −

r∑
i=1

p�i−1ξ
�
i ,

where the parameters p�0, . . . , p
�
r−1 ∈ R are chosen such

that the polynomial

λr + p�r−1λ
r−1 + · · ·+ p�1λ+ p�0 (5)

is Hurwitz. This yields the closed MCL of the form

η̇� = f0(η
�, ξ�) (6)

ξ̇� = A�ξ� (7)

where A� is a Frobenius matrix with the characteristic
polynomial (5). Note that the model control loop (6)–(7)
does not exhibit any uncertainties or disturbances.

For the design of the PCL we define the error states
η̃ := η − η� and ξ̃ := ξ − ξ�, and ũ = u − u�. The error-
dynamics read

˙̃η = f̃0(η
�, η̃, ξ�, ξ̃)

˙̃
ξi = ξ̃i+1 for 1 ≤ i ≤ r − 1

˙̃
ξr = ã(ξ�, ξ̃, η�, η̃, u�) + b(ξ�+ξ̃, η�+η̃)ũ+ φ(ξ�+ξ̃) ,

where

f̃0(η
�, η̃, ξ�, ξ̃) := f0(η

�+η̃, ξ�+ξ̃)− f0(η
�, ξ�)

ã(ξ�, ξ̃, η�, η̃, u�) := a(ξ�+ξ̃, η�+η̃)− a(ξ�, η�)

+ (b(ξ�+ξ̃, η�+η̃)− b(ξ�, η�))u�.

The control law for the process controller is given by

ũ =
−ã(ξ�, ξ̃, η�, η̃, u�) + ṽ

b(ξ� + ξ̃, η� + η̃)
, ṽ = −

r∑
i=1

p̃i−1ξ̃i ,

where the parameters p̃0, . . . , p̃r−1 ∈ R are chosen such
that the characteristic polynomial

λr + p̃r−1λ
r−1 + · · ·+ p̃1λ+ p̃0 (8)

is Hurwitz. This leads to the closed loop MFC dynamcis
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 (9)

where er = (0 · · · 0 1)T denotes the r-th unit vector and

Ã is a Frobenius matrix with characteristic polynomial (8).

If y = ξ�1 + ξ̃1 ≡ 0, it follows ξ� = −ξ̃ and

y(r) = 0 = erA
�ξ� + erÃξ̃ + φ(ξ� + ξ̃)

= er(Ã−A�)ξ̃ + φ(0) ,
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Fig. 1. Model following control (MFC) blockdiagram with model control loop (MCL) and process control loop (PCL).

2. SYSTEM CLASS AND PRELIMINARY RESULT
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where matrix Acl is Hurwitz. The origin of
(
ηT ξT

)
T is
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• globally asymptotically stable if the internal dynamics
η̇ = f0(η, ξ) are input-to-state stable (ISS).

Proof. Proofs can be found in (Khalil, 2002, p. 531f). �

3. CONTROL DESIGN AND ESTIMATED REGION OF
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design of the latter is based on the resulting error dynamics
obtained from the deviation of the process with respect to
the nominal model.

3.1 Model following control

For the model control loop (MCL) we design a controller
using (partial) state feedback linearisation u� and pole
placement control law v� of the form
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−a(ξ�, η�) + v�

b(ξ�, η�)
, v� = −
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r−1 ∈ R are chosen such
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is Hurwitz. This yields the closed MCL of the form

η̇� = f0(η
�, ξ�) (6)

ξ̇� = A�ξ� (7)

where A� is a Frobenius matrix with the characteristic
polynomial (5). Note that the model control loop (6)–(7)
does not exhibit any uncertainties or disturbances.

For the design of the PCL we define the error states
η̃ := η − η� and ξ̃ := ξ − ξ�, and ũ = u − u�. The error-
dynamics read

˙̃η = f̃0(η
�, η̃, ξ�, ξ̃)

˙̃
ξi = ξ̃i+1 for 1 ≤ i ≤ r − 1

˙̃
ξr = ã(ξ�, ξ̃, η�, η̃, u�) + b(ξ�+ξ̃, η�+η̃)ũ+ φ(ξ�+ξ̃) ,

where

f̃0(η
�, η̃, ξ�, ξ̃) := f0(η

�+η̃, ξ�+ξ̃)− f0(η
�, ξ�)

ã(ξ�, ξ̃, η�, η̃, u�) := a(ξ�+ξ̃, η�+η̃)− a(ξ�, η�)

+ (b(ξ�+ξ̃, η�+η̃)− b(ξ�, η�))u�.

The control law for the process controller is given by

ũ =
−ã(ξ�, ξ̃, η�, η̃, u�) + ṽ

b(ξ� + ξ̃, η� + η̃)
, ṽ = −

r∑
i=1

p̃i−1ξ̃i ,

where the parameters p̃0, . . . , p̃r−1 ∈ R are chosen such
that the characteristic polynomial

λr + p̃r−1λ
r−1 + · · ·+ p̃1λ+ p̃0 (8)

is Hurwitz. This leads to the closed loop MFC dynamcis
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�, ξ�)

f̃0(η
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er φ(ξ
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where er = (0 · · · 0 1)T denotes the r-th unit vector and

Ã is a Frobenius matrix with characteristic polynomial (8).

If y = ξ�1 + ξ̃1 ≡ 0, it follows ξ� = −ξ̃ and

y(r) = 0 = erA
�ξ� + erÃξ̃ + φ(ξ� + ξ̃)

= er(Ã−A�)ξ̃ + φ(0) ,

where φ(0) = 0 holds by assumption. If the characteristic

polynomials of A� and Ã are not identical, it follows that
ξ� = −ξ̃ = 0. So the zero-dynamics of the closed loop
MFC (9) are given by(

η̇�

˙̃η

)
=

(
f0(η

�, 0)

f̃0(η
�, η̃, 0, 0)

)
(10)

and the internal dynamics of the closed loop MFC (9) are
given by (

η̇�

˙̃η

)
=

(
f0(η

�, ξ�)

f̃0(η
�, η̃, ξ�, ξ̃)

)
. (11)

Lemma 2. The internal dynamics of the MFC (11) are
ISS if and only if the internal dynamics (1) of the process
(1)–(4) are ISS.

Proof.

(⇐) If (1) is ISS, the first equation of (11)

η̇� = f0(η
�, ξ�)

is ISS because it is simply a copy of (1) with substituted
arguments. Furthermore,

η̇ = η̇� + ˙̃η = f0(η
� + η̃, ξ� + ξ̃)

is ISS and further it follows that
˙̃η = f0(η

� + η̃, ξ� + ξ̃)− f0(η
�, ξ�)

is ISS and hence (11) is ISS.

(⇒) Assuming that (11) is ISS. Then, the internal dynamics
(1) is ISS, since the first equation of (11) is a copy of (1)
only with other arguments. �

The following results provide an upper bound for the norm
of the uncertainty based on quadratic Lyapunov function for
the closed-loop system (9). The proof follows the analysis
for perturbed systems in (Khalil, 2002).

Theorem 3. Consider the system (1)–(4) with ISS internal
dynamics. The origin of the closed loop model following
control (MFC) dynamics (9) is globally asymptotically
stable if the uncertainty is bounded by

‖φ(ξ)‖2 < γ‖ξ‖2 (12)

with

γ <
1

(1 +
√
2)‖eTr P̃‖2

, (13)

where P̃T = P̃ > 0 and ÃTP̃ + P̃ Ã = −I .

Proof. We split the proof into two cases. The first case
deals with full-state feedback linearisable systems (r = n)
and the second case with partial feedback linearisable
systems (r < n).

If r = n, the internal dynamics can be dropped and the
MFC closed loop dynamics of (9) simplifies to(

ξ̇�

˙̃
ξ

)
=

(
A�ξ�

Ãξ̃ + φ(ξ� + ξ̃)

)
.

Choose the Lyapunov function candidate

V (ξ�, ξ̃) = ξ�TP �ξ� + ξ̃TP̃ ξ̃

where the symmetric and positive definite matrices P � and
P̃ are the solution of the respective Lyapunov equations

A�TP � + P �A� = −I (14)

ÃTP̃ + P̃ Ã = −I. (15)

Thereby, I denotes the identity matrix of appropriate
dimension (in this case Rr×r). Since A� and Ã are Hurwitz,

the unique solutions for P � and P̃ of (14) and (15) exist.

We calculate the derivative

V̇ (ξ�, ξ̃) = −ξ�Tξ� − ξ̃Tξ̃ + 2φ(ξ� + ξ̃)eTr P̃ ξ̃ . (16)

Using the bound (12) of the uncertainty

‖φ(ξ� + ξ̃)‖2 ≤ γ ‖ξ� + ξ̃‖2 ≤ γ
(
‖ξ�‖2 + ‖ξ̃‖2

)

we can calculate an upper bound for the derivative of the
Lyapunov function

V̇ (ξ�, ξ̃) ≤ −‖ξ�‖22 − ‖ξ̃‖22 + 2γ‖eTr P̃‖2‖ξ�‖2‖ξ̃‖2
+ 2γ‖eTr P̃‖2‖ξ̃‖22

V̇ (ξ�, ξ̃) ≤ −
(
‖ξ�‖2 ‖ξ̃‖2

)
M

(
‖ξ�‖2
‖ξ̃‖2

)
(17)

with

M =

(
1 −γ‖eTr P̃‖2

−γ‖eTr P̃‖2 1− 2γ‖eTr P̃‖2

)
.

For non-vanishing norms the derivative of V in (17) is
negative if M is positive definite, i.e. the eigenvalues of M

λ1,2 = 1− (1±
√
2)γ‖eTr P̃‖2

have to be positive and we require

γ <
1

(1 +
√
2)‖eTr P̃‖2

.

In case r < n, asymptotic stability of the external dynamics
is established by the same reasoning as before, yielding
condition (13). Since the internal dynamics of the process
(1)–(4) are ISS it follows by Lemma 2 that the internal
dynamics of (9) are ISS. Thus by Lemma 1 we obtain
global asymptotic stability for (9). �

Remark 4. If the uncertainty bound (12) is only satisfied
for some ξ in a compact neighbourhood of the origin,
Theorem 3 yields local asymptotic stability within the
respective region.

Remark 5. In case the zero-dynamics of the process (1)–(4)
are asymptotically stable but not ISS, Theorem 3 yields
local asymptotic stability of (9).

Remark 6. Choosing the identity matrix as right-hand
side of the Lyapunov equations (14),(15), maximizes the

inverses λ−1
max(P

�) and λ−1
max(P̃ ), (Patel and Toda, 1980).

3.2 Comparison control design

For a comparison we consider a standard single-loop
(partial) feedback linearisation with

u =
−a(ξ, η) + v

b(ξ, η)
, v = −

r∑
i=1

pi−1ξi ,

where the parameters p0, . . . , pr−1∈ R are chosen such that

λr + pr−1λ
r−1 + · · ·+ p1λ+ p0 (18)

is Hurwitz. This yields the closed loop dynamics

η̇ = f0(η, ξ) (19)

ξ̇ = Aξ + erφ(ξ). (20)

where A is a Frobenius matrix with characteristic polyno-
mial (18). Using Lemma 1 and the assumption that the
internal dynamics (1) are ISS, the origin of the closed loop
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dynamics (19)–(20) are asymptotically stable if and only
if the external dynamics (20) are asymptotically stable.

Choose the quadratic Lyapunov function

V (ξ) = ξTPξ ,

where P = PT > 0 is the solution of the Lyapunov equation
ATP + PA = −I. The derivative reads

V̇ (ξ) = −ξTξ + 2φ(ξ)eTrPξ.

The same calculations as in the proof of Theorem 3 show
that global asymptotic stability of the closed loop system
(19)–(20) is guaranteed if ‖φ(ξ)‖2 < γ‖ξ‖2 with

γ <
1

2‖eTrP‖2
. (21)

3.3 Discussion of the main results

The considerations leading to the result in Theorem 3
are essentially the same as for the singleloop feedback
linearisation. Comparing the bounds obtained for the gain γ
in (13) and (21) suggests that there is no benefit applying

the MFC scheme. Note however that P̃ in (13) represents
the Lyapunov function for the error dynamics whereas P
in (21) represents the Lyapunov function for the nominal
system without taking the impact of the uncertainty into
account. In the MFC design we can choose P̃ explicitly
with respect to the uncertainty. Thus it is possible to
choose P̃ such that ‖eTr P̃‖2 is minimised and therefore
obtain a significantly enlarged bound on γ.

Moreover, the controller for the error dynamics is usually
designed much more aggressively (compared to the nominal

design) as it only acts on the error state ξ̃ = ξ − ξ�, which
has usually much smaller values and thus is less likely to
cause large control signals. The example in the following
section shows that this may significantly reduce ‖eTr P̃‖2.
Observe also that the impact of the uncertainty φ on the
derivative of the Lyapunov function in (16) vanishes as

soon as ξ̃ = ξ − ξ� = 0. Thus the uncertainty has very
little impact on the stability of the overall system when
the trajectory is close to the nominal design even though
the impact of the uncertainty onto the system φ(ξ) may
be large indeed.

The two degreesoffreedom structure can also have a strong
impact on the region of attraction in case the uncertainty
does not satisfy (12) globally. This effect is demonstrated
and quantified by the example in following section.

4. ILLUSTRATIVE EXAMPLE

Consider the secondorder system from (Khalil, 2002):(
ẋ1

ẋ2

)
=

(
x2

u+ φ(x)

)
, y = x1

where the uncertainty is φ(x) = βx3
2 with unknown gain

β ≥ 0. Note that this uncertainty does not satisfy the bound
(12) globally, however, we can still establish asymptotic
stability locally using Theorem 3.

The model control loop (MCL) concerns the nominal system(
ẋ�
1

ẋ�
2

)
=

(
x�
2

u�

)

and the process control loop (PCL) deals with the error
dynamics (

˙̃x1
˙̃x2

)
=

(
x̃2

ũ+ φ(x� + x̃)

)
,

where φ(x� + x̃) = β(x�
2 + x̃2)

3.

The model controller is chosen such that the eigenvalues
of the MCL are given by λ�

1,2 = −1± j
√
3, such that the

model control equals the design of Example 9.2 in (Khalil,
2002, p. 342). The model control law is then

u� = −4x�
1 − 2x�

2 . (22)

For the PCL, the eigenvalues are placed at λ̃1,2 = −10,
such that the error dynamics exhibit a five times larger
bandwidth compared to the nominal system. Accordingly,
the process control law reads

ũ = −100x̃1 − 20x̃2 .

Solving the Lyapunov equations (14)–(15) for P � and P̃ ,
respectively, yields

P � =

(
24
16

1
8

1
8

5
16

)
, P̃ =

(
21
8

1
200

1
200

5
198

)
.

Note that ‖eTrP �‖2 ≈ 0.3366 and ‖eTr P̃‖2 ≈ 0.0257. The
composed Lyapunov function reads

V (x�, x̃) = x�TP �x� + x̃TP̃ x̃ . (23)

According to Theorem 3 the uncertainty has to satisfy

‖φ(x)‖2 < γ‖x‖2 with γ <
1

(1 +
√
2)‖eTr P̃‖2

.

However, in our case φ is a cubic function of x2. Therefore,
we can only apply Theorem 3 locally by predefining a region
of attraction. To obtain a parametrisation of this region of
attraction we consider

‖φ(x� + x̃)‖2 = β |x�
2 + x̃2|3 ≤ β (|x�

2|+ |x̃2|)3 ≤ . . .

. . . ≤ β (|x�
2|+ |x̃2|)2 (‖x�‖2 + ‖x̃‖2) ≤ . . .

. . . ≤ βk2 (‖x�‖2 + ‖x̃‖2) (24)

where k ≥ max(x�,x̃)∈Ω (|x�
2|+ |x̃2|), and Ω denotes the

region of attraction generated by V (x�, x̃):

Ω =

{(
x�

x̃

)
∈ R4

∣∣V (x�, x̃) ≤ c

}

with c > 0 to be chosen, e.g. depending on the initial state.

To estimate the bound k we determine the largest value
of |x�

2,max| and |x̃2,max| on the level set for V (x�, x̃) = c.
Differentiating V partially with respect to x�

1 and x̃1 gives

x�
1,max = − 1

12
x�
2,max, x̃1,max = − 1

525
x̃2,max

and substitution into (23) yields

V (x�
max, x̃max) =

29

96
x� 2
2,max +

328

12995
x̃2
2,max = c.

Since the Lyapunov function is composed of the nominal
and the error dynamics we may distinguish these influences
by defining c = c�+ c̃, where c� > 0 represents the nominal
part and c̃ ≥ 0 the error part. Thus, we may identify

x� 2
2,max =

96

29
c� , x̃2

2,max =
12995

328
c̃ ,
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dynamics (19)–(20) are asymptotically stable if and only
if the external dynamics (20) are asymptotically stable.

Choose the quadratic Lyapunov function

V (ξ) = ξTPξ ,

where P = PT > 0 is the solution of the Lyapunov equation
ATP + PA = −I. The derivative reads

V̇ (ξ) = −ξTξ + 2φ(ξ)eTrPξ.

The same calculations as in the proof of Theorem 3 show
that global asymptotic stability of the closed loop system
(19)–(20) is guaranteed if ‖φ(ξ)‖2 < γ‖ξ‖2 with

γ <
1

2‖eTrP‖2
. (21)

3.3 Discussion of the main results

The considerations leading to the result in Theorem 3
are essentially the same as for the singleloop feedback
linearisation. Comparing the bounds obtained for the gain γ
in (13) and (21) suggests that there is no benefit applying

the MFC scheme. Note however that P̃ in (13) represents
the Lyapunov function for the error dynamics whereas P
in (21) represents the Lyapunov function for the nominal
system without taking the impact of the uncertainty into
account. In the MFC design we can choose P̃ explicitly
with respect to the uncertainty. Thus it is possible to
choose P̃ such that ‖eTr P̃‖2 is minimised and therefore
obtain a significantly enlarged bound on γ.

Moreover, the controller for the error dynamics is usually
designed much more aggressively (compared to the nominal

design) as it only acts on the error state ξ̃ = ξ − ξ�, which
has usually much smaller values and thus is less likely to
cause large control signals. The example in the following
section shows that this may significantly reduce ‖eTr P̃‖2.
Observe also that the impact of the uncertainty φ on the
derivative of the Lyapunov function in (16) vanishes as

soon as ξ̃ = ξ − ξ� = 0. Thus the uncertainty has very
little impact on the stability of the overall system when
the trajectory is close to the nominal design even though
the impact of the uncertainty onto the system φ(ξ) may
be large indeed.

The two degreesoffreedom structure can also have a strong
impact on the region of attraction in case the uncertainty
does not satisfy (12) globally. This effect is demonstrated
and quantified by the example in following section.

4. ILLUSTRATIVE EXAMPLE

Consider the secondorder system from (Khalil, 2002):(
ẋ1

ẋ2

)
=

(
x2

u+ φ(x)

)
, y = x1

where the uncertainty is φ(x) = βx3
2 with unknown gain

β ≥ 0. Note that this uncertainty does not satisfy the bound
(12) globally, however, we can still establish asymptotic
stability locally using Theorem 3.

The model control loop (MCL) concerns the nominal system(
ẋ�
1

ẋ�
2

)
=

(
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2
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)

and the process control loop (PCL) deals with the error
dynamics (
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)
=

(
x̃2

ũ+ φ(x� + x̃)

)
,

where φ(x� + x̃) = β(x�
2 + x̃2)

3.

The model controller is chosen such that the eigenvalues
of the MCL are given by λ�

1,2 = −1± j
√
3, such that the

model control equals the design of Example 9.2 in (Khalil,
2002, p. 342). The model control law is then

u� = −4x�
1 − 2x�

2 . (22)

For the PCL, the eigenvalues are placed at λ̃1,2 = −10,
such that the error dynamics exhibit a five times larger
bandwidth compared to the nominal system. Accordingly,
the process control law reads

ũ = −100x̃1 − 20x̃2 .

Solving the Lyapunov equations (14)–(15) for P � and P̃ ,
respectively, yields

P � =

(
24
16

1
8

1
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5
16

)
, P̃ =

(
21
8

1
200
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)
.

Note that ‖eTrP �‖2 ≈ 0.3366 and ‖eTr P̃‖2 ≈ 0.0257. The
composed Lyapunov function reads

V (x�, x̃) = x�TP �x� + x̃TP̃ x̃ . (23)

According to Theorem 3 the uncertainty has to satisfy

‖φ(x)‖2 < γ‖x‖2 with γ <
1

(1 +
√
2)‖eTr P̃‖2

.

However, in our case φ is a cubic function of x2. Therefore,
we can only apply Theorem 3 locally by predefining a region
of attraction. To obtain a parametrisation of this region of
attraction we consider
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Differentiating V partially with respect to x�

1 and x̃1 gives

x�
1,max = − 1

12
x�
2,max, x̃1,max = − 1

525
x̃2,max

and substitution into (23) yields

V (x�
max, x̃max) =

29

96
x� 2
2,max +

328

12995
x̃2
2,max = c.

Since the Lyapunov function is composed of the nominal
and the error dynamics we may distinguish these influences
by defining c = c�+ c̃, where c� > 0 represents the nominal
part and c̃ ≥ 0 the error part. Thus, we may identify

x� 2
2,max =

96

29
c� , x̃2

2,max =
12995

328
c̃ ,
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Fig. 2. Simulation of the benchmark design (blue line) with
uncertainty βFL = 0.299 and the MFC design (red line)
with βMFC = 3.24. The error ei denotes the deviation
of the state xi from the nominal behaviour.

and obtain

k =

√
96

29
c� +

√
12995

328
c̃. (25)

We are now ready to calculate an upper bound for the
uncertainty gain β evaluating (13):

βMFCk
2 <

1

(1 +
√
2)‖eTr P̃‖2

⇒ βMFC <
1

(1 +
√
2)k2‖eTr P̃‖2

≈ 16.092
1

k2
. (26)

For comparison we consider the single-loop feedback
linearisation design in (Khalil, 2002) yielding the control
law (22). Thus, we have P = P � and the bound for the
uncertainty is

βFL <
1

2‖eTrP‖2
1

k2FL
≈ 1.4856

1

k2FL
, (27)

Note that kFL is computed as in (25), but without the
extra degree of freedom obtained by the error dynamics
such that c̃ = 0.

For comparison we choose also c̃ = 0 for the MFC design
which yields exactly the same region of attraction as in the
single-loop feedback linearisation. In this case the gain of
the uncertainty may be roughly 10 times larger when using
the proposed MFC structure compared to the benchmark
design.
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Fig. 3. Comparison for βFL = βMFC = 0.299. First 4 plots
with initial state x(0) = (0.9986 0), last plot only MFC
with x(0) = (3.2867 0).

Figure 2 shows a simulation of both designs. The dashed
line is the nominal design with no uncertainty acting. The
initial state of the system is x�(0) = x(0) = (0.9986 0)T

for all simulations. For the benchmark design (blue line)
we choose an uncertainty gain of βFL = 0.299 whereas the
MFC design (red line) is exposed to an uncertainty with
βMFC = 3.24. Both gains are chosen maximal according
to (26) and (27). We observe that the MFC design is well
able to compensate this considerably larger uncertainty.
Moreover, the error plots show that the convergence to
the nominal design occurs much faster in the MFC design
(about 2 seconds instead of 4). Of course, larger control
effort is needed. However, considering that the uncertainty
is 10 times larger while providing comparable performance,
the increase of the control signal appears moderate.

Figure 3 show simulations with equal uncertainty gains:
βMFC = βFL = 0.3. The first four plots are simulations of
the MFC design and the benchmark control with initial
condition x�(0) = x(0) = (0.9986 0)T. The MFC design
compensates the uncertainty remarkably well with almost
identical control effort (not shown here).

For a second investigation we reverse the analysis in (26).
Instead of fixing the region of attraction, we predefine
a bound βMFC = βFL = 0.3 and consider the region of
attraction obtained. Again we choose c̃ = 0 in the MFC
design for this comparison. Figure 4 shows the resulting
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Fig. 4. Simulation in phase plane with maximum estimated
region of attraction for β < 0.3 and some trajectories.

regions of attraction. The MFC design shows a much larger
region of attraction (purple) compared to the benchmark
design (blue).

The fifth plot in Figure 3 shows the state error for a
simulation of the MFC with initial condition x�(0) =
x(0) = (3.2867 0)T right at the boundary of the region
of attraction. While the magnitude of the error is larger
due to the increase of uncertainty, the state trajectory
converges to the nominal behaviour in less than 2 seconds.
The simulation of the single-loop feedback linearisation
(blue) with the same initial state in Figure 4 shows unstable
behaviour.

5. CONCLUSION

This study provides a robustness analysis for the model
following control architecture using nonlinear control
methods. The analysis shows clearly the benefits of this
structure and provides means to quantify its robustness
properties with respect to model uncertainties. We show
how these benefits of this structure can be maximised in
view of robustness and also region of attraction.
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