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Abstract: An adaptive backstepping algorithm is developed for a class of uncertain systems in
pure-feedback form. The control is based on a dynamic state feedback that allows to compensate
for parametric uncertainties which enter linearly into the system. As possible in the nominal case,
a dynamic extension of just order one is required, in addition to the dynamics of the identifiers
for the adaptation. The regularity of the control law only requires standard assumptions.
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1. INTRODUCTION

Backstepping is a powerful framework to design feedback
controllers for triangular systems (Krstić et al., 1995). In
the case of systems in strict feedback form the framework
has achieved great progress. However, backstepping has
only provided limited results for systems in pure feedback
form, which is due to the encountered implicit equations.
In this light, Zhang and Qian (2017) introduced a dynamic
extension to avoid implicit equations. Also Mazenc et al.
(2018) have investigated on a dynamic extension with
delay in the backstepping framework in order to define an
algorithm with bounded outputs. Reger and Triska (2019)
extended the procedure by Zhang and Qian (2017) to
arbitrary dimension, using a specific dynamic extension of
just order one while requiring standard assumptions only.
To the best of the authors knowledge, such dynamic ex-
tensions have not further been addressed in backstepping.

In a next step towards solving real-world application prob-
lems, uncertainties are addressed. To this end, we enhance
the dynamic extension approach by adaptive control to
tackle linear-parametric uncertainties. Our procedure en-
compasses a dynamic extension of order one like in (Reger
and Triska, 2019) and shapes an adaptive identifier for the
parametric uncertainty based on the certainty equivalence
principle. The latter involves further dynamics in view of
the adaptation law with respect to the parametric uncer-
tainty. We establish asymptotic convergence resorting to
standard Lyapunov arguments.

� The second author acknowledges funding from Fondecyt-Peru
2019-4 internship program. The third author has received financial
support from the European Union Horizon 2020 research and innova-
tion program, Marie Sk�lodowska-Curie grant agreement No. 824046.

2. PROBLEM STATEMENT

2.1 System Class

We consider the class of pure-feedback nonlinear systems
with linear uncertainties characterized by

ẋ1 = f1(x̄2) + ψ�
1 (x̄2)Θ

ẋ2 = f2(x̄3) + ψ�
2 (x̄3)Θ

}
Σ1

ẋ3 = f3(x̄4) + ψ�
3 (x̄4)Θ




Σ2

...
ẋk = fk(x̄k, u) + ψ�

k (x̄k, u)Θ




Σk−1 (1)

where x1 ∈ Rn and x2, . . . , xk ∈ R together are the
states, x̄�

i = (x�
1 , x2, . . . , xi), u ∈ R is the input, and

Θ ∈ Rr a vector of unknown parameters. Let the functions
f1 : Rn×R → Rn, fi : Rn×Ri → R, ψ1 : Rn×R → Rn×r,
ψi : Rn × Ri → Rr, with i = 2, . . . , k be continuously
differentiable of sufficient order. For the sake of notation
let xk+1 = u where appropriate. Further assume

fi(0) = 0, ψ�
i (0) = 0, ∀i ∈ {1, . . . , k} (2)

such that the origin is an equilibrium point.

2.2 Assumptions

Assumption 1. There is a known function α1(x1, ϑ
1), a

radially unbounded Lyapunov function V (x1, ϑ
1) and an

adaptation law for ϑ̇1 where ϑ1 is some first parameter
identifier of Θ such that for any ϑ1 the state x1 = 0 is a sta-
ble equilibrium with respect to ẋ1 = f1(x1, α1(x1, ϑ

1)) +
ϕ�
1 (x1, α1(x1, ϑ

1))Θ. Furthermore, the following condi-
tions shall be satisfied:
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ẋk = fk(x̄k, u) + ψ�

k (x̄k, u)Θ




Σk−1 (1)

where x1 ∈ Rn and x2, . . . , xk ∈ R together are the
states, x̄�

i = (x�
1 , x2, . . . , xi), u ∈ R is the input, and

Θ ∈ Rr a vector of unknown parameters. Let the functions
f1 : Rn×R → Rn, fi : Rn×Ri → R, ψ1 : Rn×R → Rn×r,
ψi : Rn × Ri → Rr, with i = 2, . . . , k be continuously
differentiable of sufficient order. For the sake of notation
let xk+1 = u where appropriate. Further assume

fi(0) = 0, ψ�
i (0) = 0, ∀i ∈ {1, . . . , k} (2)

such that the origin is an equilibrium point.

2.2 Assumptions

Assumption 1. There is a known function α1(x1, ϑ
1), a

radially unbounded Lyapunov function V (x1, ϑ
1) and an

adaptation law for ϑ̇1 where ϑ1 is some first parameter
identifier of Θ such that for any ϑ1 the state x1 = 0 is a sta-
ble equilibrium with respect to ẋ1 = f1(x1, α1(x1, ϑ
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ẋk = fk(x̄k, u) + ψ�

k (x̄k, u)Θ




Σk−1 (1)

where x1 ∈ Rn and x2, . . . , xk ∈ R together are the
states, x̄�

i = (x�
1 , x2, . . . , xi), u ∈ R is the input, and

Θ ∈ Rr a vector of unknown parameters. Let the functions
f1 : Rn×R → Rn, fi : Rn×Ri → R, ψ1 : Rn×R → Rn×r,
ψi : Rn × Ri → Rr, with i = 2, . . . , k be continuously
differentiable of sufficient order. For the sake of notation
let xk+1 = u where appropriate. Further assume

fi(0) = 0, ψ�
i (0) = 0, ∀i ∈ {1, . . . , k} (2)

such that the origin is an equilibrium point.

2.2 Assumptions

Assumption 1. There is a known function α1(x1, ϑ
1), a

radially unbounded Lyapunov function V (x1, ϑ
1) and an

adaptation law for ϑ̇1 where ϑ1 is some first parameter
identifier of Θ such that for any ϑ1 the state x1 = 0 is a sta-
ble equilibrium with respect to ẋ1 = f1(x1, α1(x1, ϑ

1)) +
ϕ�
1 (x1, α1(x1, ϑ

1))Θ. Furthermore, the following condi-
tions shall be satisfied:

Dynamic Extension for Adaptive
Backstepping Control of Uncertain

Pure-Feedback Systems �

Lukas Triska ∗ , Jhon Portella ∗∗ , and Johann Reger ∗∗∗

∗ Chair of Automatic Control, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Cauerstraße 7, D-91058, Erlangen, Germany

(e-mail:lukas.triska@fau.de)
∗∗ Mechatronics Engineering, Pontifical Catholic University of Peru,

1801 Avenida Universitaria, San Miguel, Lima, Peru
(e-mail:jportella@pucp.edu.pe)

∗∗∗ Control Engineering Group, Technische Universität Ilmenau, P.O.
Box 10 05 65, D-98684, Ilmenau, Germany

(e-mail:johann.reger@tu-ilmenau.de)

Abstract: An adaptive backstepping algorithm is developed for a class of uncertain systems in
pure-feedback form. The control is based on a dynamic state feedback that allows to compensate
for parametric uncertainties which enter linearly into the system. As possible in the nominal case,
a dynamic extension of just order one is required, in addition to the dynamics of the identifiers
for the adaptation. The regularity of the control law only requires standard assumptions.

Keywords: Backstepping Control, Adaptive Control, Dynamic Extensions, Lyapunov Methods

1. INTRODUCTION

Backstepping is a powerful framework to design feedback
controllers for triangular systems (Krstić et al., 1995). In
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ẋ2 = f2(x̄3) + ψ�
2 (x̄3)Θ

}
Σ1
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ẋ1 = f1(x̄2) + ψ�
1 (x̄2)Θ
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Backstepping is a powerful framework to design feedback
controllers for triangular systems (Krstić et al., 1995). In
the case of systems in strict feedback form the framework
has achieved great progress. However, backstepping has
only provided limited results for systems in pure feedback
form, which is due to the encountered implicit equations.
In this light, Zhang and Qian (2017) introduced a dynamic
extension to avoid implicit equations. Also Mazenc et al.
(2018) have investigated on a dynamic extension with
delay in the backstepping framework in order to define an
algorithm with bounded outputs. Reger and Triska (2019)
extended the procedure by Zhang and Qian (2017) to
arbitrary dimension, using a specific dynamic extension of
just order one while requiring standard assumptions only.
To the best of the authors knowledge, such dynamic ex-
tensions have not further been addressed in backstepping.

In a next step towards solving real-world application prob-
lems, uncertainties are addressed. To this end, we enhance
the dynamic extension approach by adaptive control to
tackle linear-parametric uncertainties. Our procedure en-
compasses a dynamic extension of order one like in (Reger
and Triska, 2019) and shapes an adaptive identifier for the
parametric uncertainty based on the certainty equivalence
principle. The latter involves further dynamics in view of
the adaptation law with respect to the parametric uncer-
tainty. We establish asymptotic convergence resorting to
standard Lyapunov arguments.

� The second author acknowledges funding from Fondecyt-Peru
2019-4 internship program. The third author has received financial
support from the European Union Horizon 2020 research and innova-
tion program, Marie Sk�lodowska-Curie grant agreement No. 824046.

2. PROBLEM STATEMENT

2.1 System Class

We consider the class of pure-feedback nonlinear systems
with linear uncertainties characterized by

ẋ1 = f1(x̄2) + ψ�
1 (x̄2)Θ

ẋ2 = f2(x̄3) + ψ�
2 (x̄3)Θ

}
Σ1

ẋ3 = f3(x̄4) + ψ�
3 (x̄4)Θ




Σ2

...
ẋk = fk(x̄k, u) + ψ�

k (x̄k, u)Θ




Σk−1 (1)

where x1 ∈ Rn and x2, . . . , xk ∈ R together are the
states, x̄�

i = (x�
1 , x2, . . . , xi), u ∈ R is the input, and

Θ ∈ Rr a vector of unknown parameters. Let the functions
f1 : Rn×R → Rn, fi : Rn×Ri → R, ψ1 : Rn×R → Rn×r,
ψi : Rn × Ri → Rr, with i = 2, . . . , k be continuously
differentiable of sufficient order. For the sake of notation
let xk+1 = u where appropriate. Further assume

fi(0) = 0, ψ�
i (0) = 0, ∀i ∈ {1, . . . , k} (2)

such that the origin is an equilibrium point.

2.2 Assumptions

Assumption 1. There is a known function α1(x1, ϑ
1), a

radially unbounded Lyapunov function V (x1, ϑ
1) and an

adaptation law for ϑ̇1 where ϑ1 is some first parameter
identifier of Θ such that for any ϑ1 the state x1 = 0 is a sta-
ble equilibrium with respect to ẋ1 = f1(x1, α1(x1, ϑ

1)) +
ϕ�
1 (x1, α1(x1, ϑ

1))Θ. Furthermore, the following condi-
tions shall be satisfied:
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1) α1(0, ϑ
1) = 0, ∂V (x1,ϑ

1)
∂x1

∣∣∣
x1=0

= 0, for any ϑ1,

2) V̇ = 0 ⇐⇒ x1 = 0.

3) x1 = 0 =⇒ ϑ̇1 = 0.

Remark 1. Assumption 1 assures that for x1 = 0 we have

V̇ = ∂V (x1,ϑ
1)

∂x1
(f1(x1, α1(x1, ϑ

1))+ϕ�
1 (x1, α1(x1, ϑ

1))Θ)+
∂V (x1,ϑ

1)
∂ϑ1 ϑ̇1 = 0 and ϑ̇1 = 0.

Assumption 2. For controllability assume that

∂

∂xi+1
(fi(x̄i+1) + ψ�

i (x̄i+1)Θ) �= 0 (3)

for any x̄i+1 ∈ Rn+i and Θ ∈ Rr, i = 1, . . . , k or at least
locally in a domain F including the origin. This extends
the assumption in (Reger and Triska, 2019). We also use:

Definition 1. Let the auxiliary functions Gi be given as

Gi =

∫ 1

0

∂

∂v
fi(x̄i, v)

∣∣∣∣
v=αi+λxi+1

∂λ (4)

for i = 1, . . . , k and for any scalar αi, such that it holds

fi(x̄i+1) = fi(x̄i, αi) +Gi(xi+1 − αi). (5)

In the case of adaptation laws for ϑ, later we will employ
the notation Hi, instead of Gi.

3. MAIN RESULT: ADAPTIVE BACKSTEPPING
WITH DYNAMIC EXTENSION

Equipped with these assumptions and definitions we are
in the position to state a dynamic state feedback with
adaptation law that stabilizes the origin asymptotically
against any parametric uncertainty.

Theorem 1. Let system (1) satisfy Assumptions 1-2 in a
domain F containing the origin. Let (x, u, ϑ) be initialized
inside a compact, positively invariant set Ω ⊂ F . Then the
following dynamic state feedback stabilizes the extended
system such that limt→∞(x, u) = 0 with any element of
the series of identifiers ϑ̄k+1 = (ϑ1, . . . , ϑk+1) bounded:

u̇ =
(

∂fk(x̄k,u)
∂u +

∂ϕ�
k (x̄k,u)ϑ

k

∂u − ∂ ˙̂αk−1(x̄k,u,ϑ̄k)
∂u

)−1

[
−Kk(u− αk(x̄k, u, ϑ̄

k))− (xk − αk−1(x̄k, ϑ̄
k−1))

+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂xi

(fi(x̄i+1) + ϕ�
i (x̄i+1)ϑ

k+1)

+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂ϑi ϑ̇i

]
. (6)

In this dynamic feedback, α1(x1, ϑ
1) is an initial function

that satisfies Assumption 1 and

α2(x̄3, ϑ̄
2) = x3 − ∂V (x1,ϑ

1)
∂x1

[
G1(x1, x2 − α1(x1, ϑ

1))

+H�
1 (x1, x2 − α1(x1, ϑ

1))ϑ2
]
− (f2(x̄3) + ϕ�

2 (x̄3)ϑ
2)

+ ˙̂α1(x̄2, ϑ̄
2)−K1(x2 − α1(x1, ϑ

1)). (7)

Furthermore, we have the adaptation law

ϑ̇2�= (x2 − α1(x̄1, ϑ̄
1))

[
∂V (x1,ϑ

1)
∂x1

H�
1 (x1, x2 − α1(x1, ϑ

1))

+ϕ�
2 (x̄3)− ∂α1(x1,ϑ

1)
∂x1

ϕ�
1 (x̄2)

]
Γ2 (8)

and update of an estimate described by

˙̂α1(x̄2, ϑ̄
2) = ∂α1(x1,ϑ

1)
∂x1

(f1(x̄2)+ϕ�
1 (x̄2)ϑ

2)+ ∂α1(x1,ϑ
1)

∂x1
ϑ̇1.

(9)

For the remaining i = 3, . . . , k, we have

αi(x̄i+1, ϑ̄i)= xi+1 − (xi−1 − αi−2(x̄i−1, ϑ̄i−2))

−(fi(x̄i+1) + ϕ�
i (x̄i+1)ϑ

i) + ˙̂αi−1(x̄i+1, ϑ̄
i), (10)

and for the further adaptation laws firstly

ϑ̇i� = (xi − αi−1(x̄i, ϑ̄
i−1))

[
ϕ�
i (x̄i+1)−

∑i
l=1

∂αi−1(x̄i,ϑ̄
i−1)

∂xl
ϕ�
l (x̄l+1)

]
Γi−1 (11)

and finally

ϑ̇k+1�= −(u− αk(x̄k, u, ϑ̄
k))

∑k
l=1

∂αk(x̄k,u,ϑ̄
k)

∂xl
ϕ�
l (x̄l+1)Γk.

(12)
For i = 2, . . . , k we have

˙̂αi(x̄i+2, ϑ̄
i+1) =

∑i
l=1

∂αi(x̄i+1,ϑ̄
i)

∂ϑl ϑ̇l

+
∑i+1

l=1
∂αi(x̄i+1,ϑ̄

i)
∂xl

(fl(x̄l+1) + ϕ�
l (x̄l+1)ϑ

i+1). (13)

The gains may be freely chosen as Kj > 0 and adaptations
gain matrices as Γj = Γ�

j > 0 ∈ Rr×r for j = 1, . . . , k. �

Remark 2. Dynamic feedback (6) works for any initializa-
tion. However, if xi(0) and some initial parameter esti-
mates ϑi(0) are available, convergence can be improved
by choosing u0 = u(0) as solution of the implicit equation

u0 − αk(x̄k(0), u0, ϑ̄
k(0)) = 0. (14)

4. PROOF OF THE MAIN RESULT

Proof. Step 1 : The first step will focus on Σ1 of (1).
Note that the indices in the following Va,i,j(x̄i+1, ϑ̄

j) shall
spot the dependency on x̄i+1 and ϑ̄j . The objective at this
stage is to obtain the stabilizing term α2(x̄3, ϑ

1, ϑ2) and

the adaptation law for the right-hand side of ϑ̇2.

We take the starting Lyapunov function candidate

Va,1,1(x̄2, ϑ
1) = V (x1, ϑ

1) +
1

2
(x2 − α1(x1, ϑ

1))2. (15)

Its time derivative reads

V̇a,1,1(x̄3, ϑ
1) = ∂V (x1,ϑ

1)
∂x1

(f1(x̄2) + ϕ�
1 (x̄2)Θ)

+ ∂V (x1,ϑ
1)

∂ϑ1 ϑ̇1 + (x2 − α1(x1, ϑ
1))

(
f2(x̄3)

+ ϕ�
2 (x̄3)Θ− α̇1(x̄2, ϑ

1)
)
. (16)

Assumption 1 may be employed using Definition 1 as per

f1(x̄2) = f1(x1, α1(x1, ϑ
1)) +G1(x1, x2 − α1(x1, ϑ

1))

(x2 − α1(x1, ϑ
1)) (17)

ϕ�
1 (x̄2) = ϕ�

1 (x1, α1(x1, ϑ
1)) +H�

1 (x1, x2 − α1(x1, ϑ
1))

(x2 − α1(x1, ϑ
1)). (18)

The use of these expressions in (16) yields

V̇a,1,1(x̄3, ϑ
1) = ∂V (x1,ϑ

1)
∂x1

[
f1(x1, α1(x1, ϑ

1))

+ ϕ�
1 (x1, α1(x1, ϑ

1))Θ
]
+ ∂V (x1,ϑ

1)
∂ϑ1 ϑ̇1

+ (x2 − α1(x1, ϑ
1))

(
∂V (x1,ϑ

1)
∂x1

[
G1(x1, x2 − α1(x1, ϑ

1))

+H�
1 (x1, x2 − α1(x1, ϑ

1))Θ
]

+ f2(x̄3) + ϕ�
2 (x̄3)Θ− α̇1(x̄2, ϑ

1)
)
. (19)

The terms between the big parentheses in (19) shall be
stabilized by choice of α2(x̄3, ϑ̄

2). This may be done letting
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˙̂α1(x̄2, ϑ̄
2) = ∂α1(x1,ϑ

1)
∂x1

(f1(x̄2)+ϕ�
1 (x̄2)ϑ

2)+ ∂α1(x1,ϑ
1)

∂x1
ϑ̇1.

(9)

For the remaining i = 3, . . . , k, we have

αi(x̄i+1, ϑ̄i)= xi+1 − (xi−1 − αi−2(x̄i−1, ϑ̄i−2))

−(fi(x̄i+1) + ϕ�
i (x̄i+1)ϑ

i) + ˙̂αi−1(x̄i+1, ϑ̄
i), (10)

and for the further adaptation laws firstly

ϑ̇i� = (xi − αi−1(x̄i, ϑ̄
i−1))

[
ϕ�
i (x̄i+1)−

∑i
l=1

∂αi−1(x̄i,ϑ̄
i−1)

∂xl
ϕ�
l (x̄l+1)

]
Γi−1 (11)

and finally

ϑ̇k+1�= −(u− αk(x̄k, u, ϑ̄
k))

∑k
l=1

∂αk(x̄k,u,ϑ̄
k)

∂xl
ϕ�
l (x̄l+1)Γk.

(12)
For i = 2, . . . , k we have

˙̂αi(x̄i+2, ϑ̄
i+1) =

∑i
l=1

∂αi(x̄i+1,ϑ̄
i)

∂ϑl ϑ̇l

+
∑i+1

l=1
∂αi(x̄i+1,ϑ̄

i)
∂xl

(fl(x̄l+1) + ϕ�
l (x̄l+1)ϑ

i+1). (13)

The gains may be freely chosen as Kj > 0 and adaptations
gain matrices as Γj = Γ�

j > 0 ∈ Rr×r for j = 1, . . . , k. �

Remark 2. Dynamic feedback (6) works for any initializa-
tion. However, if xi(0) and some initial parameter esti-
mates ϑi(0) are available, convergence can be improved
by choosing u0 = u(0) as solution of the implicit equation

u0 − αk(x̄k(0), u0, ϑ̄
k(0)) = 0. (14)

4. PROOF OF THE MAIN RESULT

Proof. Step 1 : The first step will focus on Σ1 of (1).
Note that the indices in the following Va,i,j(x̄i+1, ϑ̄

j) shall
spot the dependency on x̄i+1 and ϑ̄j . The objective at this
stage is to obtain the stabilizing term α2(x̄3, ϑ

1, ϑ2) and

the adaptation law for the right-hand side of ϑ̇2.

We take the starting Lyapunov function candidate

Va,1,1(x̄2, ϑ
1) = V (x1, ϑ

1) +
1

2
(x2 − α1(x1, ϑ

1))2. (15)

Its time derivative reads

V̇a,1,1(x̄3, ϑ
1) = ∂V (x1,ϑ

1)
∂x1

(f1(x̄2) + ϕ�
1 (x̄2)Θ)

+ ∂V (x1,ϑ
1)

∂ϑ1 ϑ̇1 + (x2 − α1(x1, ϑ
1))

(
f2(x̄3)

+ ϕ�
2 (x̄3)Θ− α̇1(x̄2, ϑ

1)
)
. (16)

Assumption 1 may be employed using Definition 1 as per

f1(x̄2) = f1(x1, α1(x1, ϑ
1)) +G1(x1, x2 − α1(x1, ϑ

1))

(x2 − α1(x1, ϑ
1)) (17)

ϕ�
1 (x̄2) = ϕ�

1 (x1, α1(x1, ϑ
1)) +H�

1 (x1, x2 − α1(x1, ϑ
1))

(x2 − α1(x1, ϑ
1)). (18)

The use of these expressions in (16) yields

V̇a,1,1(x̄3, ϑ
1) = ∂V (x1,ϑ

1)
∂x1

[
f1(x1, α1(x1, ϑ

1))

+ ϕ�
1 (x1, α1(x1, ϑ

1))Θ
]
+ ∂V (x1,ϑ

1)
∂ϑ1 ϑ̇1

+ (x2 − α1(x1, ϑ
1))

(
∂V (x1,ϑ

1)
∂x1

[
G1(x1, x2 − α1(x1, ϑ

1))

+H�
1 (x1, x2 − α1(x1, ϑ

1))Θ
]

+ f2(x̄3) + ϕ�
2 (x̄3)Θ− α̇1(x̄2, ϑ

1)
)
. (19)

The terms between the big parentheses in (19) shall be
stabilized by choice of α2(x̄3, ϑ̄

2). This may be done letting

x3 − α2(x̄3, ϑ̄
2) = ∂V (x1,ϑ

1)
∂x1

[
G1(x1, x2 − α1(x1, ϑ

1))

+H�
1 (x1, x2 − α1(x1, ϑ

1))ϑ2
]
+ f2(x̄3)

+ ϕ�
2 (x̄3)ϑ

2 − ˙̂α1(x̄2, ϑ̄
2) +K1(x2 − α1(x1, ϑ

1)) (20)

where ˙̂α1(x̄2, ϑ̄
2) is an estimate of α̇1 defined by

˙̂α1(x̄2, ϑ̄
2)= ∂α1(x1,ϑ

1)
∂x1

(f1(x̄2)+ϕ�
1 (x̄2)ϑ

2)+ ∂α1(x1,ϑ
1)

∂ϑ1 ϑ̇1.

(21)
The following notation is introduced for simplicity:

˙̃V1:=
∂V (x1,ϑ

1)
∂x1

[
f1(x1, α1(x1, ϑ

1)) + ϕ�
1 (x1, α1(x1, ϑ

1))Θ
]

+∂V (x1,ϑ
1)

∂ϑ1 ϑ̇1 (22)

With the expressions (20) and (22) in (19), we obtain

V̇a,1,1(x̄3, ϑ̄
2) = ˙̃V1 −K1(x2 − α1(x1, ϑ

1))2

+ (x2 − α1(x1, ϑ
1))(x3 − α2(x̄3, ϑ̄

2))

+ (x2 − α1(x1, ϑ
1))

[
∂V (x1,ϑ

1)
∂x1

H�
1 (x1, x2 − α1(x1, ϑ

1))

+ ϕ�
2 (x̄3)− ∂α1(x1,ϑ

1)
∂x1

ϕ�
1 (x̄2)

]
(Θ− ϑ2). (23)

To attenuate the influence of the estimation error Θ− ϑ2,
we further augment the Lyapunov function candidate, i.e.

Va,1,2(x̄2, ϑ̄
2) = Va,1,1(x̄2, ϑ

1) +
1

2
(Θ− ϑ2)�Γ−1

1 (Θ− ϑ2),

(24)
which first yields

V̇a,1,2(x̄2, ϑ̄
2) = V̇a,1,1(x̄2, ϑ

1)− ϑ̇2�Γ−1
1 (Θ− ϑ2) (25)

and can be rewritten with (23) as

V̇a,1,2(x̄2, ϑ̄2) =
˙̃V1 −K1(x2 − α1(x1, ϑ

1))2

+ (x2 − α1(x1, ϑ
1))(x3 − α2(x̄3, ϑ̄

2))

+
(
(x2 − α1(x1, ϑ

1))
[
∂V (x1,ϑ

1)
∂x1

H�
1 (x1, x2 − α1(x1, ϑ

1))

+ ϕ�
2 (x̄3)− ∂α1(x1,ϑ

1)
∂x1

ϕ�
1 (x̄2)

]
− ϑ̇2�Γ−1

1

)
(Θ− ϑ2). (26)

The adaptation law for ϑ̇2 is chosen to cancel the influence
of the estimation error Θ− ϑ2, thus we use

ϑ̇2�= (x2 − α1(x1, ϑ
1))

[
∂V (x1,ϑ

1)
∂x1

H�
1 (x1, x2 − α1(x1, ϑ

1))

+ϕ�
2 (x̄3)− ∂α1(x1,ϑ

1)
∂x1

ϕ�
1 (x̄2)

]
Γ1. (27)

With the notation ˙̃V2 := ˙̃V1 − K1(x2 − α1(x1, ϑ
1))2 the

time derivative of Va,1,2(x̄2, ϑ̄
2) can be expressed as

V̇a,1,2(x̄2, ϑ̄
2)= ˙̃V2+(x2−α1(x1, ϑ

1))(x3−α2(x̄3, ϑ̄
2)). (28)

The term (x2−α1(x1, ϑ
1))(x3−α2(x̄3, ϑ̄

2)) will be handled
in the following step.

Step 2: The procedure in this step is similar to Step 1.
However, the objective will be to calculate a stabilizing
function α3(x̄4, ϑ̄3) and the adaptation law for ϑ̇3. An
augmentation for the Lyapunov function candidate is

Va,2,1(x̄3, ϑ̄
2) = Va,1,2(x̄2, ϑ̄

2) +
1

2
(x3 − α2(x̄3, ϑ̄

2))2 (29)

leading to the time derivative

V̇a,2,1(x̄3, ϑ̄
2) = V̇a,1,2(x̄2, ϑ̄

2) + (x3 − α2(x̄3, ϑ̄
2))(

f3(x̄4) + ϕ�
3 (x̄4)Θ− α̇2(x̄4, ϑ̄

2)
)
. (30)

Using the expression for V̇a,1,2 from (28), (30) reads

V̇a,2,1(x̄3, ϑ̄
2) = ˙̃V2 + (x3 − α2(x̄3, ϑ̄

2))
(
x2 − α1(x1, ϑ

1)

+f3(x̄4) + ϕ�
3 (x̄4)Θ− α̇2(x̄4, ϑ̄

2)
)
. (31)

The terms between the big parentheses in (31) shall be
stabilized by a choice of α3(x̄4, ϑ̄

3), given by

x4 − α3(x̄4, ϑ̄
3) = x2 − α1(x1, ϑ

1) + f3(x̄4) + ϕ�
3 (x̄4)ϑ

3

− ˙̂α2(x̄4, ϑ̄
3) +K2(x3 − α2(x̄3, ϑ̄

2)) (32)

where ˙̂α2(x̄4, ϑ̄
3) is an estimate of α̇2 defined by

˙̂α2(x̄4, ϑ̄
3) =

∑3
i=1

∂α2(x̄3,ϑ̄2)
∂xi

(fi(x̄i+1) + ϕ�
i (x̄i+1)ϑ

3)

+
∑2

i=1
∂α2(x̄3,ϑ̄

2)
∂ϑi ϑ̇i. (33)

With expression (33) and (32), (31) can be expressed as

V̇a,2,1(x̄3, ϑ̄
2) = ˙̃V2 −K2(x3 − α2(x̄3, ϑ̄

2))2

+ (x3 − α2(x̄3, ϑ̄
2))(x4 − α3(x̄4, ϑ̄

3)) + (x3 − α2(x̄3, ϑ̄
2))[

ϕ�
3 (x̄4)−

∑3
i=1

∂α2(x̄3,ϑ̄2)
∂xi

ϕ�
i (x̄i+1)

]
(Θ− ϑ3) (34)

To attenuate the influence of the estimation error Θ− ϑ3,
we further augment the Lyapunov function candidate, i.e.

Va,2,2(x̄3, ϑ̄
3) = Va,2,1(x̄3, ϑ

2) +
1

2
(Θ− ϑ3)�Γ−1

2 (Θ− ϑ3),

(35)
which yields

V̇a,2,2(x̄3, ϑ̄
3) = V̇a,2,1(x̄4, ϑ̄

3)− ϑ̇3�Γ−1
2 (Θ− ϑ3) (36)

and with (34) then can be rewritten as

V̇a,2,2(x̄3, ϑ̄
3) = ˙̃V2 −K2(x3 − α2(x̄3, ϑ̄

2))2

+ (x3 − α2(x̄3, ϑ̄
2))(x4 − α3(x̄4, ϑ̄

3)) +
(
(x3 − α2(x̄3, ϑ̄

2))
[
ϕ�
3 (x̄4)−

∑3
i=1

∂α2(x̄3,ϑ̄2)
∂xi

ϕ�
i (x̄i+1)

]
− ϑ̇3�Γ−1

2

)
(Θ− ϑ3).

(37)

The adaptation law for ϑ̇3 is chosen to cancel the influence
of the estimation error Θ− ϑ3, hence

ϑ̇3�=(x3−α2(x̄3, ϑ̄
2))

[
ϕ�
3 (x̄4)−

∑3
i=1

∂α2(x̄3,ϑ̄2)
∂xi

ϕ�
i (x̄i+1)

]
Γ2

(38)

and introducing notation ˙̃V3 := ˙̃V2−K2(x3−α2(x̄3, ϑ̄
2))2,

the time derivative of Va,2,2(x̄4, ϑ̄
3) results in

V̇a,2,2(x̄4, ϑ̄
3) = ˙̃V3 + (x3 − α2(x̄3, ϑ̄

2))(x4 − α3(x̄4, ϑ̄
3)).
(39)

Step k-1: The procedures from Step 1 to Step k-1 are all
similar. The objective in this stage will be to calculate a
stabilizing function αk(x̄k, u, ϑ̄

k) and the adaptation law

for ϑ̇k. This leads to a new augmentation for the Lyapunov
function candidate, that is

Va,k−1,1(x̄k, ϑ̄
k−1) = Va,k−2,2(x̄k−1, ϑ̄

k−2)

+
1

2
(xk − αk−1(x̄k, ϑ̄

k−1))2 (40)

whose time derivative is

V̇a,k−1,1(x̄k, ϑ̄
k−1) = V̇a,k−2,2(x̄k, ϑ̄

k−2)

+ (xk − αk−1(x̄k, ϑ̄
k−1))

[
fk(x̄k, u) + ϕ�

k (x̄k, u)Θ

− α̇k−1(x̄k, u, ϑ̄
k−1)

]
. (41)
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The expression for V̇a,k−2,2(x̄k, ϑ̄
k−2) from Step k-2 is

V̇a,k−2,2(x̄k, ϑ̄
k−2) = ˙̃Vk−2

−Kk−2(xk−1−αk−2(x̄k−1), ϑ̄
k−2))2

+ (xk−1−αk−2(x̄k−1, ϑ̄
k−2))(xk−αk−1(x̄k, ϑ̄

k−1)). (42)

Using ˙̃Vk−1 := ˙̃Vk−2−Kk−2(xk−1−αk−2(x̄k−1)ϑ̄
k−2))2 we

may rewrite (41) in the following way:

V̇a,k−1,1(x̄k, ϑ̄
k−1) = ˙̃Vk−1 + (xk − αk−1(x̄k, ϑ̄

k−1))[
xk−1 − αk−2(x̄k−1, ϑ̄

k−2) + fk(x̄k, u)

+ ϕ�
k (x̄k, u)Θ− α̇k−1(x̄k, u, ϑ̄

k−1)
]
. (43)

The terms between the brackets in (43) shall be stabilized
by choice of αk(x̄k, u, ϑ̄

k). Note that here we choose

u− αk(x̄k, u, ϑ̄
k) = xk−1 − αk−2(x̄k−1, ϑ

k−2) + fk(x̄k, u)

+ ϕ�
k (x̄k, u)ϑ

k − ˙̂αk−1(x̄k, u, ϑ̄
k)

+Kk−1(xk − αk−1(x̄k, ϑ̄
k−1)) (44)

where ˙̂αk−1(x̄k, u, ϑ̄
k) is an estimate of α̇k−1 defined by

˙̂αk−1(x̄k, u, ϑ̄
k) =

∑k
i=1

∂αk−1(x̄k,ϑ̄
k−1)

∂xi
(fi(x̄i+1)

+ϕ�
i (x̄i+1)ϑ

k) +
∑k−1

i=1
∂αk−1(x̄k,ϑ̄

k−1)
∂ϑi ϑ̇i. (45)

Hence, with (45) and (44), we may express (43) as

V̇a,k−1,1(x̄k, u, ϑ̄
k) = ˙̃Vk−1 −Kk−1(xk − αk−1(x̄k, ϑ̄

k−1))2

+ (xk − αk−1(x̄k, ϑ̄
k−1)(u− αk(x̄k, u, ϑ̄

k))

+ (xk − αk−1(x̄k, ϑ̄
k−1))

[
ϕ�
k (x̄k, u)

−
∑k

i=1
∂αk−1(x̄k,ϑ̄

k−1)
∂xi

ϕ�
i (x̄i+1)

]
(Θ− ϑk). (46)

In order to attenuate the influence of the estimation error
Θ− ϑk, a new augmentation is introduced as

Va,k−1,2(x̄k, ϑ̄
k) = Va,k−1,1(x̄k, ϑ

k−1)

+
1

2
(Θ− ϑk)�Γ−1

k−1(Θ− ϑk) (47)

which leads to

V̇a,k−1,2(x̄k, u, ϑ̄
k) = V̇a,k−1,1(x̄k, u, ϑ̄

k)−ϑ̇k�
Γ−1
k−1(Θ−ϑk).

(48)
With (46) may now rewrite (48), that is

V̇a,k−1,2(x̄k, u, ϑ̄
k) = ˙̃Vk−1 −Kk−1(xk − αk−1(x̄k, ϑ̄

k−1))2

+ (xk − αk−1(x̄k, ϑ̄
k−1))(u− αk(x̄k, u, ϑ̄

k))

+
(
(xk − αk−1(x̄k, ϑ̄

k−1))
[
ϕ�
k (x̄k, u)

−
∑k

i=1
∂αk−1(x̄k,

¯ϑk−1)
∂xi

ϕ�
i (x̄i+1)

]
− ϑ̇k�

Γ−1
k−1

)
(Θ− ϑk).

(49)

The adaptation law for ϑ̇k is chosen to cancel the estima-
tion error Θ− ϑk, i.e.

ϑ̇k�
= (xk − αk−1(x̄k, ϑ̄

k−1))
[
ϕ�
k (x̄k, u)

−
∑k

i=1
∂αk−1(x̄k,

¯ϑk−1)
∂xi

ϕ�
i (x̄i+1)

]
Γk−1 (50)

Using notation ˙̃Vk := ˙̃Vk−1−Kk−1(xk −αk−1(x̄k, ϑ̄
k−1))2,

the time derivative of Va,k−1,2(x̄k, u, ϑ̄
k) reads

V̇a,k−1,2(x̄k, u, ϑ̄
k) = ˙̃Vk + (xk − αk−1(x̄k, ϑ̄

k−1))

(u− αk(x̄k, u, ϑ̄
k)). (51)

Finally, product (xk−αk−1(x̄k, ϑ̄
k−1))(u−αk(x̄k, u, ϑ̄

k)) is
compensated by the dynamic extension u̇ in the last step.

Step k: The explicit solution that ensures the equality
u−αk(x̄k, u, ϑ̄

k) = 0 in (51) cannot be assumed available.
Thus, the Lyapunov function candidate is augmented
again and introduces a single dynamic state feedback in
order to obtain V̇a,k,2(x̄k, u, ϑ̄

k) ≤ 0, and to attenuate the
estimation error Θ− ϑk+1. With this in mind, we use

Va,k,1(x̄k, u, ϑ̄
k)=Va,k−1,2(x̄k, ϑ̄

k) +
1

2
(u− αk(x̄k, u, ϑ̄

k))2

(52)
and its time derivative is

V̇a,k,1(x̄k, u, ϑ̄
k) = V̇a,k−1,2(x̄k, u, ϑ̄

k)

+ (u− αk(x̄k, u, ϑ̄
k))(u̇− α̇k(x̄k, u, u̇, ϑ̄

k)). (53)

Using the expression for V̇a,k−1,2(x̄k, u, ϑ̄
k) from (51), we

may rephrase (53) as

V̇a,k,1(x̄k, u, ϑ̄
k) = ˙̃Vk + (u− αk(x̄k, u, ϑ̄

k))[
xk − αk−1(x̄k, ϑ

k−1) + u̇− α̇k(x̄k, u, u̇, ϑ̄
k)
]
. (54)

The terms between the brackets are completing a square
when choosing

u̇− ˙̂αk(x̄k, u, u̇, ϑ̄
k+1) = −xk + αk−1(x̄k, ϑ

k−1)

−Kk(u− αk(x̄k, u, ϑ̄
k)). (55)

where ˙̂αk(x̄k, u, u̇, ϑ̄
k+1) is an estimate of α̇k defined by

˙̂αk(x̄k, u, u̇, ϑ̄
k+1) =

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂xi

(
fi(x̄i+1)

+ ϕ�
i (x̄i+1)ϑ

k+1
)
+ ∂αk(x̄k,u,ϑ̄

k)
∂u u̇+

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂ϑi ϑ̇i.
(56)

We have the difference α̇k − ˙̂αk given by

˙̂αk(x̄k, u, u̇, ϑ̄
k)− ˙̂αk(x̄k, u, u̇, ϑ̄

k+1) =
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂xi

ϕ�
i (x̄i+1)(Θ− ϑk+1) (57)

which with (56) yields

u̇
(
1− ∂αk(x̄k,u,ϑ̄

k)
∂u

)
= −Kk(u− αk(x̄k, u, ϑ̄

k))

− (xk − αk−1(x̄k, ϑ̄
k−1)) +

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂xi

(
fi(x̄i+1)

+ ϕ�
i (x̄i+1)ϑ

k+1
)
+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂ϑi ϑ̇i. (58)

We may analytically express the derivative ∂αk(x̄k,u,ϑ̄
k)

∂u via
(44) and substitute the result in (58) to obtain

u̇ =
(

∂
∂u (fk(x̄k, u) + ϕ�

k (x̄k, u)ϑ
k)− ∂ ˙̂αk−1(x̄k,u,ϑ̄

k)
∂u

)−1

[
−Kk(u− αk(x̄k, u, ϑ̄

k))− (xk − αk−1(x̄k, ϑ̄
k−1))

+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂xi

(fi(x̄i+1) + ϕ�
i (x̄i+1)ϑ

k+1)

+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂ϑi ϑ̇i

]
. (59)

Now with (57), equation (54) results in

V̇a,k,1(x̄k, u, ϑ̄
k+1) = ˙̃Vk −Kk(u− αk(x̄k, u, ϑ̄

k))2

− (u−αk(x̄k, u, ϑ̄
k))

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂xi
ϕ�
i (x̄i+1)(Θ− ϑk+1)

(60)

whose influence of the estimation error is canceled with
the last augmentation of the Lyapunov function candidate
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The expression for V̇a,k−2,2(x̄k, ϑ̄
k−2) from Step k-2 is

V̇a,k−2,2(x̄k, ϑ̄
k−2) = ˙̃Vk−2

−Kk−2(xk−1−αk−2(x̄k−1), ϑ̄
k−2))2

+ (xk−1−αk−2(x̄k−1, ϑ̄
k−2))(xk−αk−1(x̄k, ϑ̄

k−1)). (42)

Using ˙̃Vk−1 := ˙̃Vk−2−Kk−2(xk−1−αk−2(x̄k−1)ϑ̄
k−2))2 we

may rewrite (41) in the following way:

V̇a,k−1,1(x̄k, ϑ̄
k−1) = ˙̃Vk−1 + (xk − αk−1(x̄k, ϑ̄

k−1))[
xk−1 − αk−2(x̄k−1, ϑ̄

k−2) + fk(x̄k, u)

+ ϕ�
k (x̄k, u)Θ− α̇k−1(x̄k, u, ϑ̄

k−1)
]
. (43)

The terms between the brackets in (43) shall be stabilized
by choice of αk(x̄k, u, ϑ̄

k). Note that here we choose

u− αk(x̄k, u, ϑ̄
k) = xk−1 − αk−2(x̄k−1, ϑ

k−2) + fk(x̄k, u)

+ ϕ�
k (x̄k, u)ϑ

k − ˙̂αk−1(x̄k, u, ϑ̄
k)

+Kk−1(xk − αk−1(x̄k, ϑ̄
k−1)) (44)

where ˙̂αk−1(x̄k, u, ϑ̄
k) is an estimate of α̇k−1 defined by

˙̂αk−1(x̄k, u, ϑ̄
k) =

∑k
i=1

∂αk−1(x̄k,ϑ̄
k−1)

∂xi
(fi(x̄i+1)

+ϕ�
i (x̄i+1)ϑ

k) +
∑k−1

i=1
∂αk−1(x̄k,ϑ̄

k−1)
∂ϑi ϑ̇i. (45)

Hence, with (45) and (44), we may express (43) as

V̇a,k−1,1(x̄k, u, ϑ̄
k) = ˙̃Vk−1 −Kk−1(xk − αk−1(x̄k, ϑ̄

k−1))2

+ (xk − αk−1(x̄k, ϑ̄
k−1)(u− αk(x̄k, u, ϑ̄

k))

+ (xk − αk−1(x̄k, ϑ̄
k−1))

[
ϕ�
k (x̄k, u)

−
∑k

i=1
∂αk−1(x̄k,ϑ̄

k−1)
∂xi

ϕ�
i (x̄i+1)

]
(Θ− ϑk). (46)

In order to attenuate the influence of the estimation error
Θ− ϑk, a new augmentation is introduced as

Va,k−1,2(x̄k, ϑ̄
k) = Va,k−1,1(x̄k, ϑ

k−1)

+
1

2
(Θ− ϑk)�Γ−1

k−1(Θ− ϑk) (47)

which leads to

V̇a,k−1,2(x̄k, u, ϑ̄
k) = V̇a,k−1,1(x̄k, u, ϑ̄

k)−ϑ̇k�
Γ−1
k−1(Θ−ϑk).

(48)
With (46) may now rewrite (48), that is

V̇a,k−1,2(x̄k, u, ϑ̄
k) = ˙̃Vk−1 −Kk−1(xk − αk−1(x̄k, ϑ̄

k−1))2

+ (xk − αk−1(x̄k, ϑ̄
k−1))(u− αk(x̄k, u, ϑ̄

k))

+
(
(xk − αk−1(x̄k, ϑ̄

k−1))
[
ϕ�
k (x̄k, u)

−
∑k

i=1
∂αk−1(x̄k,

¯ϑk−1)
∂xi

ϕ�
i (x̄i+1)

]
− ϑ̇k�

Γ−1
k−1

)
(Θ− ϑk).

(49)

The adaptation law for ϑ̇k is chosen to cancel the estima-
tion error Θ− ϑk, i.e.

ϑ̇k�
= (xk − αk−1(x̄k, ϑ̄

k−1))
[
ϕ�
k (x̄k, u)

−
∑k

i=1
∂αk−1(x̄k,

¯ϑk−1)
∂xi

ϕ�
i (x̄i+1)

]
Γk−1 (50)

Using notation ˙̃Vk := ˙̃Vk−1−Kk−1(xk −αk−1(x̄k, ϑ̄
k−1))2,

the time derivative of Va,k−1,2(x̄k, u, ϑ̄
k) reads

V̇a,k−1,2(x̄k, u, ϑ̄
k) = ˙̃Vk + (xk − αk−1(x̄k, ϑ̄

k−1))

(u− αk(x̄k, u, ϑ̄
k)). (51)

Finally, product (xk−αk−1(x̄k, ϑ̄
k−1))(u−αk(x̄k, u, ϑ̄

k)) is
compensated by the dynamic extension u̇ in the last step.

Step k: The explicit solution that ensures the equality
u−αk(x̄k, u, ϑ̄

k) = 0 in (51) cannot be assumed available.
Thus, the Lyapunov function candidate is augmented
again and introduces a single dynamic state feedback in
order to obtain V̇a,k,2(x̄k, u, ϑ̄

k) ≤ 0, and to attenuate the
estimation error Θ− ϑk+1. With this in mind, we use

Va,k,1(x̄k, u, ϑ̄
k)=Va,k−1,2(x̄k, ϑ̄

k) +
1

2
(u− αk(x̄k, u, ϑ̄

k))2

(52)
and its time derivative is

V̇a,k,1(x̄k, u, ϑ̄
k) = V̇a,k−1,2(x̄k, u, ϑ̄

k)

+ (u− αk(x̄k, u, ϑ̄
k))(u̇− α̇k(x̄k, u, u̇, ϑ̄

k)). (53)

Using the expression for V̇a,k−1,2(x̄k, u, ϑ̄
k) from (51), we

may rephrase (53) as

V̇a,k,1(x̄k, u, ϑ̄
k) = ˙̃Vk + (u− αk(x̄k, u, ϑ̄

k))[
xk − αk−1(x̄k, ϑ

k−1) + u̇− α̇k(x̄k, u, u̇, ϑ̄
k)
]
. (54)

The terms between the brackets are completing a square
when choosing

u̇− ˙̂αk(x̄k, u, u̇, ϑ̄
k+1) = −xk + αk−1(x̄k, ϑ

k−1)

−Kk(u− αk(x̄k, u, ϑ̄
k)). (55)

where ˙̂αk(x̄k, u, u̇, ϑ̄
k+1) is an estimate of α̇k defined by

˙̂αk(x̄k, u, u̇, ϑ̄
k+1) =

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂xi

(
fi(x̄i+1)

+ ϕ�
i (x̄i+1)ϑ

k+1
)
+ ∂αk(x̄k,u,ϑ̄

k)
∂u u̇+

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂ϑi ϑ̇i.
(56)

We have the difference α̇k − ˙̂αk given by

˙̂αk(x̄k, u, u̇, ϑ̄
k)− ˙̂αk(x̄k, u, u̇, ϑ̄

k+1) =
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂xi

ϕ�
i (x̄i+1)(Θ− ϑk+1) (57)

which with (56) yields

u̇
(
1− ∂αk(x̄k,u,ϑ̄

k)
∂u

)
= −Kk(u− αk(x̄k, u, ϑ̄

k))

− (xk − αk−1(x̄k, ϑ̄
k−1)) +

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂xi

(
fi(x̄i+1)

+ ϕ�
i (x̄i+1)ϑ

k+1
)
+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂ϑi ϑ̇i. (58)

We may analytically express the derivative ∂αk(x̄k,u,ϑ̄
k)

∂u via
(44) and substitute the result in (58) to obtain

u̇ =
(

∂
∂u (fk(x̄k, u) + ϕ�

k (x̄k, u)ϑ
k)− ∂ ˙̂αk−1(x̄k,u,ϑ̄

k)
∂u

)−1

[
−Kk(u− αk(x̄k, u, ϑ̄

k))− (xk − αk−1(x̄k, ϑ̄
k−1))

+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂xi

(fi(x̄i+1) + ϕ�
i (x̄i+1)ϑ

k+1)

+
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂ϑi ϑ̇i

]
. (59)

Now with (57), equation (54) results in

V̇a,k,1(x̄k, u, ϑ̄
k+1) = ˙̃Vk −Kk(u− αk(x̄k, u, ϑ̄

k))2

− (u−αk(x̄k, u, ϑ̄
k))

∑k
i=1

∂αk(x̄k,u,ϑ̄
k)

∂xi
ϕ�
i (x̄i+1)(Θ− ϑk+1)

(60)

whose influence of the estimation error is canceled with
the last augmentation of the Lyapunov function candidate

Va,k,2(x̄k, u, ϑ̄
k+1) = Va,k,1(x̄k, u, ϑ

k)

+
1

2
(Θ− ϑk+1)�Γ−1

k (Θ− ϑk+1) (61)

with time derivative

V̇a,k,2(x̄k, u, ϑ̄
k+1) = V̇a,k,1(x̄k, u, ϑ̄

k+1)

− ϑ̇k+1�Γ−1
k (Θ− ϑk+1) (62)

leading with (60) to

V̇a,k,2(x̄k, u, ϑ̄
k+1) = ˙̃Vk −Kk(u− αk(x̄k, u, ϑ̄

k))2

+
(
(u− αk(x̄k, u, ϑ̄

k))
[
−
∑k

i=1
∂αk(x̄k,u,ϑ̄

k)
∂xi

ϕ�
i (x̄i+1)

]

− ϑ̇k+1�Γ−1
k

)
(Θ− ϑk+1). (63)

The final adaptation law for ϑ̇k+1 is chosen to cancel the
influence of the estimation error Θ− ϑk+1, i.e.

ϑ̇k+1�= (u−αk(x̄k, u, ϑ̄
k))

[
−
∑k

i=1
∂αk(x̄k,ϑ̄k)

∂xi
ϕ�
i (x̄i+1)

]
Γk

(64)
which substituted in (63) establishes

V̇a,k,2(x̄k, u, ϑ̄
k+1) = ˙̃Vk −Kk(u− αk(x̄k, u, ϑ̄

k))2, (65)

or to highlight the negative definiteness, equivalently

V̇a,k,2(x̄k, u, ϑ̄
k+1)= ˙̃V1−

∑k
i=2 Ki−1(xi−αi−1(x̄i, u, ϑ̄

i−1))2

−Kk(u− αk(x̄k, u, ϑ̄
k))2. (66)

Remark 3. In order to avoid singularities in (59), condition
∂
∂u (fk(x̄k, u) + ϕ�

k (x̄k, u)ϑ
k)− ∂ ˙̂αk−1(x̄k,u,ϑ̄

k)
∂u �= 0 must be

fulfilled on F . For this purpose, consider

τ̂i =
∂ ˙̂αi(x̄i+2,ϑ̄

i+1)
∂xi+2

(67)

which for i = 2, . . . , k − 1 in explicit terms reads

τ̂i =
∂

∂xi+2

[(
− ∂

∂xi+1
(fi(x̄i+1) + ϕ�

i (x̄i+1)ϑ
i) + 1 + τ̂i−1

)
(
fi+1(x̄i+2) + ϕ�

i+1(x̄i+2)ϑ
i+1

)]
(68)

and vanishes for i = 1, i.e. τ̂1 = 0. With (67) and (68), the
required condition can be rewritten as

∂
∂u (fk(x̄k, u) + ϕ�

k (x̄k, u)ϑ
k)− τ̂k−1 �= 0. (69)

For clarity in the analysis we drop the arguments. We have
∂
∂u (fk + ϕ�

k ϑ
k)− τ̂k−1 = ∂

∂u (fk + ϕ�
k ϑ

k)

− ∂
∂u

[(
− ∂

∂xk
(fk−1 + ϕ�

k−1ϑ
k−1) + 1 + τ̂k−2

)
(fk + ϕ�

k ϑ
k)
]

= ∂
∂u (fk + ϕ�

k ϑ
k)
(

∂
∂xk

(fk−1 + ϕ�
k−1ϑ

k−1)− τ̂k−2

)

= ∂
∂u (fk + ϕ�

k ϑ
k)
(

∂
∂xk

(fk−1 + ϕ�
k−1ϑ

k−1)

− ∂
∂xk

[(
− ∂

∂xk−1
(fk−2 + ϕ�

k−2ϑ
k−2) + 1 + τ̂k−3

)

(fk−1 + ϕ�
k−1ϑ

k−1)
])

= ∂
∂u (fk + ϕ�

k ϑ
k) ∂

∂xk
(fk−1 + ϕ�

k−1ϑ
k−1)(

∂
∂xk−1

(fk−2 + ϕ�
k−2ϑ

k−2)− τ̂k−3

)
...
= ∂

∂u (fk + ϕ�
k ϑ

k) ∂
∂xk

(fk−1 + ϕ�
k−1ϑ

k−1) · · ·
· · · ∂

∂x4
(f3 + ϕ�

3 ϑ
3)
(

∂
∂x3

(f2 + ϕ�
2 ϑ

2)− τ̂1
)

= ∂
∂u (fk + ϕ�

k ϑ
k) ∂

∂xk
(fk−1 + ϕ�

k−1ϑ
k−1) · · ·

· · · ∂
∂x3

(f2 + ϕ�
2 ϑ

2) �= 0. (70)

Hence by Assumption 2 we conclude that controller (59)
has no singularity.

Stability considerations: Va,k,2(x̄k, u, ϑ̄
k+1) in view of (66)

is only a weak Lyapunov function since its derivative is
only negative semi-definite in x1, · · · , xk, u, ϑ

1, . . . , ϑk+1.
We invoke Krasovskii-LaSalle’s invariance principle for
analyzing the asymptotic convergence of the states (Khalil,
1996). To formalize the analysis, let a compact positively
invariant set Ω ⊂ F with respect to the controlled system
be such that for some l > 0

Ω := {x̄k ∈ Rn+k−1, u ∈ R, ϑ̄k+1 ∈ Rr×(k+1) :

Va,k,2(x̄k, u, ϑ̄
k+1) ≤ l}. (71)

Furthermore, let E be the set of all points in Ω where

E := {(x̄k, u, ϑ̄
k+1) ∈ Ω : V̇a,k,2(x̄k, u, ϑ̄

k+1) = 0} (72)

and M be the largest invariant set in E, inspecting (66).

From Assumption 1 we have that x1 = 0 if and only if
˙̃V1 =∂V (x1,ϑ

1)
∂x1

[
f1(x1, α1(x1, ϑ

1))

+ ϕ�
1 (x1, α1(x1, ϑ

1))Θ
]
+ ∂V (x1,ϑ

1)
∂ϑ1 ϑ̇1 = 0.

From ˙̃V2 defined before (28), that is

˙̃V2 = ˙̃V1 −K1(x2 − α1(x1, ϑ
1))2,

and α1(0, ϑ
1) = 0 from Assumption 1 we conclude that

˙̃V2 = 0 implies x̄2 = 0.

Analyzing ˙̃V3 = 0, we shall inspect the last expression of
˙̃V3 = ˙̃V2 −K2(x3 − α2(x̄3, ϑ̄

2))2, (73)

recalled from (20):

x3 − α2(x̄3, ϑ̄
2) = ∂V (x1,ϑ

1)
∂x1

[
G1(x1, x2 − α1(x1, ϑ

1))

+H�
1 (x1, x2 − α1(x1, ϑ

1))ϑ2
]
+ f2(x̄3)

+ ϕ�
2 (x̄3)ϑ

2 − ˙̂α1(x̄2, ϑ̄
2) +K1(x2 − α1(x1, ϑ

1)).

Using again Assumption 1 and that x̄2 = 0, we see that

x3 − α2(0, x3, ϑ̄
2) = f2(0, x3) + ϕ�

2 (0, x3)ϑ
2. (74)

By Assumption 2, ∂
∂x3

(f2(0, x3) +ψ�
2 (0, x3)Θ) �= 0. Then,

with the implicit function theorem and (2) we have that
f2(0, x3) + ϕ�

2 (0, x3)ϑ
2 = 0 implies x3 = 0, achieving that

˙̃V3 = 0 ⇐⇒ x̄3 = 0.

In a similar way, but with somewhat different expressions,
we examine

˙̃V4 = ˙̃V3 −K3(x4 − α3(x̄4, ϑ̄
3))2. (75)

From (32) recall that

x4 − α3(x̄4, ϑ̄
3) =x2 − α1(x1, ϑ

1) + f3(x̄4) + ϕ�
3 (x̄4)ϑ

3

− ˙̂α2(x̄4, ϑ̄
3) +K2(x3 − α2(x̄3, ϑ̄

2)).

The analysis so far and Assumption 1 results in

x4 − α3(x̄4, ϑ̄
3) = f3(0, x4) + ϕ�

3 (0, x4)ϑ
3 − ˙̂α2(0, x4, ϑ̄

3)
(76)

in which via (13) we draw

˙̂α2(0, x4, ϑ̄
3) =

∑3
l=1

∂α2(x̄3=0,ϑ̄2)
∂xl

(fl(x̄l+1) + ϕ�
l (x̄l+1)ϑ

3)

+
∑2

l=1
∂α2(x̄3=0,ϑ̄2)

∂ϑl ϑ̇l. (77)

Then from x̄1 =⇒ ϑ̇1 = 0, x̄3 = 0 =⇒ ϑ̇2 = 0, and (74),
we may simplify (77) to get

˙̂α2(0, x4, ϑ̄
3) =

(
1− ∂

∂x3
(f2(x̄3 = 0) + ϕ�

2 (x̄3 = 0)ϑ2)
)

(
f3(x̄4) + ϕ�

3 (x̄4)ϑ
3
)

(78)
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which inserted in (76) leads to

x4 − α3(x̄4, ϑ̄
3) = ∂

∂x3
(f2(x̄3 = 0) + ϕ�

2 (x̄3 = 0)ϑ2)(
f3(x̄4) + ϕ�

3 (x̄4)ϑ
3
)
. (79)

From Assumption 2, ∂
∂x3

(f2(x̄3 = 0)+ϕ�
2 (x̄3 = 0)ϑ2) �= 0.

Then, ˙̃V4 = 0 requires that f3(x̄4) + ϕ�
3 (x̄4)ϑ

3 = 0. With
∂

∂x4
(f3(0, x4)+ϕ�

3 (0, x4)ϑ
3) �= 0 and the implicit function

theorem we conclude that ˙̃V4 = 0 ⇐⇒ x̄4 = 0.

A similar procedure can be performed for the other aug
mented Lyapunov functions up to

V̇a,k,2(x̄k, u, ϑ̄
k+1) = ˙̃Vk −Kk(u− αk(x̄k, u, ϑ̄

k))2. (80)

From the recursive analysis we have ˙̃Vk = 0. Hence, we
focus on u− αk(x̄k, u, ϑ̄

k) which from (44) has the form

u− αk(x̄k, u, ϑ̄
k) =xk−1 − αk−2(x̄k−1, ϑ

k−2) + fk(x̄k, u)

+ ϕ�
k (x̄k, u)ϑ

k − ˙̂αk−1(x̄k, u, ϑ̄
k)

+Kk−1(xk − αk−1(x̄k, ϑ̄
k−1)).

With the results of the analysis before, we may rewrite

u− αk(0, u, ϑ̄
k) = fk(0, u) + ϕ�

k (0, u)ϑ
k − ˙̂αk−1(0, u.ϑ̄

k)
(81)

in which resorting to (13) we have

˙̂αk−1(0, u, ϑ̄
k) =

∑k−1
l=1

∂αk−1(x̄k=0,ϑ̄k−1)
∂ϑl ϑ̇l

+
∑k

l=1
∂αk−1(x̄k=0,ϑ̄k−1)

∂xl
(fl(x̄l+1) + ϕ�

l (x̄l+1)ϑ
k). (82)

Then x̄1 = 0 =⇒ ϑ̇1 = 0, . . . , x̄k = 0 =⇒ ϑ̇k−1 = 0,
and αk−1(x̄k, ϑ̄k−1) derived from (10) and (67), we have

˙̂αk−1(0, u, ϑ̄
k) =

(
fk(0, u) + ϕ�

k (0, u)ϑ
k
)

(
1− ∂

∂xk

(
fk−1(x̄k = 0) + ϕ�

k−1(x̄k = 0)ϑk−1 + τ̂k−2

))
.

(83)

Substitution in (81) yields

u− αk(0, u, ϑ̄
k) = ∂

∂xk

(
fk−1(x̄k = 0)

+ ϕ�
k−1(x̄k = 0)ϑk−1 − τ̂k−2

)(
fk(0, u) + ϕ�

k (0, u)ϑ
k
)
.

(84)

In view of (70), term τ̂k−2 can be expanded, leading to

u− αk(0, u, ϑ̄
k) =

(
∂

∂xk
(fk−1 + ϕ�

k−1ϑ
k−1)

∂
∂xk−1

(fk−2 + ϕ�
k−2ϑ

k−2) · · · ∂
∂x3

(f2 + ϕ�
2 ϑ

2)
)∣∣∣∣

x̄k=0(
fk(0, u) + ϕ�

k (0, u)ϑ
k
)
. (85)

From Assumption 2, the expression in the big parentheses
taken at x̄k = 0 is nonzero. So fk(0, u) + ϕ�

k (0, u)ϑ
k = 0.

Moreover, ∂
∂xk+1

(fk(x̄k, u) + ϕ�
k (x̄k, u)ϑ

k)
∣∣
x̄k=0

�= 0. Then

inspecting u − αk(0, u, ϑ̄
k) = 0 with the implicit function

theorem we draw that V̇a,k,2(x̄k, u, ϑ̄
k+1) = 0 if and only

if both x̄k = 0 and u = 0, for which also ẋi = 0 and u̇ = 0.
In other words,

E = {(x̄k, u, ϑ̄
k+1) ∈ Ω : x̄k = 0, u = 0} (86)

itself is the largest positively invariant subset. Therefore,
according to KrasovskiiLaSalle’s invariance principle all
solutions starting in Ω eventually converge to E. Fur
thermore from Assumption 1 we inherit that (61) is also
radially unbounded. Consequently x̄k and u will converge
to E irrespective of their initial conditions.

However, we cannot conclude that the ϑi converge to Θ.
We only know that ϑi is bounded and takes a limit. This
can be seen as follows. From V̇a,k,2(x̄k, u, ϑ̄

k+1) ≤ 0 and
the lower bound of Va,k,2(x̄k, u, ϑ̄

k+1) we have that the
Lyapunov function in (47) is bounded at any time. Further
we have that the Lyapunov function Va,k,2(x̄k, u, ϑ̄

k+1)
is radially unbounded, hence, its level sets are compact.
Consequently, all variables in the respective squares are
bounded. This also includes that ϑi for any i = 2, 3, · · · , k
is bounded. Since Va,k,2(x̄k, u, ϑ̄

k+1) is bounded from be
low, does not increase and is continuous, it takes a limit.
As shown above, also x̄k and u take a limit. Therefore we
also conclude that ϑi for any i = 2, 3, · · · , k takes a limit.

Finally we comment on the existence and uniqueness of the
solution of the system in closed loop. Let the states x̄k, u,
ϑ̄k+1 be initialized on the compact set Ω. As shown above,
the states will remain there, consequently prohibiting any
finite escape. Then Lipschitz continuity on Ω with respect
to the functions fi, ψi, for all i = 1, . . . , k, the function α1

and the righthand side of ϑ̇1 implies a unique solution.

5. CONCLUSIONS

This paper has broadened the applicability of the dynamic
state extension approach for backstepping to systems
in purefeedback systems that show a linearparametric
uncertainty. Resorting to Lyapunov arguments we have
shown the asymptotic stability of the states and control
action in the closedloop system. The dynamic control law
devised does not show singularities. Future work will focus
on taking control saturation into account.
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