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Abstract: There are various different attitude representations that describe the orientation of a
rigid body in space and allow the transformation between different coordinate systems. Among
others, they differ in number of variables, uniqueness of the representation and their continuity.
However, in spite of some of them being based on angles, none of them constitutes a simple
representation of an angle between two arbitrary vectors. We tackle this issue by proposing a
novel attitude representation that directly incorporates the desired angle. The usefulness of this
representation is demonstrated in the attitude reconstruction from temperature data, which
then leads to an order reduction of a non-linear system.
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1. INTRODUCTION

The attitude defines the orientation of a rigid body in
space. The three dimensional set of attitudes is the set
of all 3 x 3 orthogonal matrices with determinant equal
to one. Since this space is non-euclidean and it uses nine
parameter to define a set of dimension three, there ex-
ists a number of other attitude representations Shuster
et al. (1993); Chaturvedi et al. (2011); Stuelpnagel (1964);
Markley and Crassidis (2014); Mortensen (1968); Wie and
Barba (1985); Wen and Kreutz-Delgado (1991). Finding
the most suitable representation depends on application
specific requirements, e.g. the number of variables, unique-
ness and the existence of singularities. Attitude represen-
tations of dimension three such as Euler angles have the
advantage of using the minimal number of variables. How-
ever, they suffer from singularities which in this context
is a phenomenon called gimbal lock. Furthermore, the
same attitude can be described by different Euler angle
representations and they do not establish a continuous
evolution of these angles if multiple full rotations occur.
Quaternions tackle these issues by introducing a fourth
variable and a norm constraint. This fixes the continuity
and singularity issue. Also, every attitude is represented by
(only) exactly two quaternions with opposite sign. There
exist many other attitude representations, each with ben-
efits and drawbacks with respect to the points previously
discussed. The choice of an attitude representation often
is a matter of preference.

* The second author gratefully acknowledges the financial support
from European Union Horizon 2020 research and innovation pro-
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In this paper, we introduce a novel attitude representation
which facilitates finding the solution of a non-linear system
incorporating quantities that depend on the angle of two
vectors given in different frames. The representation is
motivated by the temperature evolution of a spacecraft as
it depends on the angle between the surface normal and
the source of heat. This evolution is used in a variety of
works to determine the attitude of the spacecraft Labibian
et al. (2017, 2018); Khaniki and Karimian (2016). The
proposed transformation simplifies the reconstruction. The
motivating system is introduced in Section 3. The new
transformation is derived in Section 4. Major properties
are discussed in Section 5. The usefulness is shown resort-
ing to the motivating system in Section 6.

2. NOTATION

Throughout this paper we use quaternions and their al-
gebra to introduce the new attitude representation. Most
of the notation is borrowed from Markley and Crassidis
(2014). Let

S; == {x € R | ||z|| = 1}

denote the i-th unit sphere with [|-|| the Euclidean norm.
Let I,, denote the identity matrix of dimension n € N and
e; the i-th unity vector of appropriate size. With a slight
abuse of notation, we let ¢ denote either a unit quaternion,
i.e. ¢ € Sg, or the function ¢ : Sg X (—m, 7] — S3 mapping
a rotation vector r € Sy and angle ¢ € (—m,n| onto the
corresponding quaternion, i.e.

q(r,¢) = [rl sin(%) T sin(%) r3 sin(%) cos(%)]T .
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Let ¢1.3 denote the first three entries of ¢ and ¢4 the fourth
entry. We extend the definition to arbitrary vectors r € R3

with q( (b) q( IBRIE QS) The matrices
0 —Uu3z U2
= Is +
[UX] = ( us 0 —U1> , :(q) e <Q4 3_ [Q1 3X]>
—uz uy 0 ar. :3

represent the cross product matrix and the matrix used
later to introduce the quaternion multiplication and the
quaternion dynamics. We denote by A the function which
maps any attitude representation onto its rotation matrix
allowing to transform a vector from one coordinate system
into another. In particular, we use symbol A as a function
of ¢ with

A(q) = (5 — llars)®) s — 2qa[q1:3%] + 2q1:3a15 (1)

and also as a function of » € R3 and ¢ € (—m,7], i.e.
A(r, ¢) == A(q(r, ¢)). AT (q) marks the transpose of A(q).
We denote the quaternion multiplication as in Markley
and Crassidis (2014) as ® with ¢, € Sz and

q®q:=[=(q) dq (2)

ATqeq)=AT (@A (9). 3)

For every quaternion we denote its inverse with respect to
the quaternion multiplication as ¢! with

_ T
¢ "= [—al3 q (4)
Alg) ™t =AT(q). (5)
For two vectors r,n € Sg with e¢; x r # 0 and an angle
6 € [0, 7] the following equalities hold

rT A(e; x r,0) r = cos 0 (6)

A(n,0)n=n. (7)

Finally, we write arccos to denote the inverse of the cosine
function with the image [0, 7].

3. MOTIVATION: ATTITUDE RECONSTRUCTION
USING TEMPERATURE MEASUREMENTS

Determining the position or the attitude of a spacecraft
based on temperature data is a vivid subject of research
Labibian et al. (2017, 2018); Khaniki and Karimian (2016);
Gourabi et al. (2019). We focus on the problem of attitude
estimation and illustrate the advantages of the transfor-
mation to be proposed by considering an earth orbiting
spacecraft in the earth’s shadow. We follow the notations
and models used in Posielek (2019) and shall consider
only infrared irradiation acting on the spacecraft. Then
the temperature dynamics are governed by

) r2

T=- T OF ()H3 rT(t)AT (z)n — 6T (8)
where v,0 € R are parameters, rq € R is the earth mean
radius, r(t) € R? is the position of the spacecraft in earth-
centered inertial frame (ECI), n € Sy is the normal of
the spacecraft surface in body frame and T € R is the
temperature of the surface. The variable z denotes any
attitude representation of the body frame with respect to
the ECI. This might be any of the common representations
such as quaternions, Euler angles or rotation matrices. The
matrix A(z) € SOs denotes the corresponding rotation
matrix for the chosen attitude representation. In the
following sections, we often omit the argument of r(t) to
allow a more compact notation.

On the one hand, it can be seen that the common at-
titude representations yield cumbersome expressions for
7T AT (z)n which incorporate in general all variables of 2.
Indeed, using standard quaternion variables (1) leads to

rTAT(z)n =1 "((¢3—lq1:3)*) I3 —2q4[q1.3 X] +QQ1:3QI3)T( n)
9

On the other hand, expression ﬁAT (z)n is equivalent to
the cosine of the angle 6 between r and n in ECI coordi-
nates. Naturally, this raises the question if there exists an
attitude representation (0,491, v2) which incorporates 6 as
one of its variables in order to facilitate the dynamics by
using
rT AT (2)n = ||| cos(h)

instead of (9). This representation is introduced in the
next section.

4. MAIN CONTRIBUTION: IRRADIATION ANGLE
TRANSFORMATION

We derive the new attitude representation via the two
mappings 17" — (0,91,92) and 15" : (0,91,792) — q.
The superscripts shall suggest that these mappings change
dependent on the vectors r and n. We define the mappings
for normalised r, n € S,. For not normalised 7,7 € R3,
the mapplng " 15 defined by the mapping 7" w1th

r= HTH andn = ” T As motivated in the previous section,

this representation shall incorporate 6 as its first vari-
able, which is the angle between two normalised vectors
r,n € Sg given in different frames that form a linear space
of dimension two. Since the attitude space is of dimension
three, it is natural to define two additional angles ¥, 5
for allowing to describe every attitude by the three angles
(0,91,92). For a reference attitude representation we use
quaternions. Thus, in order to show that the three angles
(0,91,92) are a valid attitude representation, we need to
show that for every quaternion ¢ there exists one unique
angle triple (0,v1,93). Then the corresponding mapping
I7™ is bijective and an inverse mapping 5" exists. Addi-
tionally, these mappings need to fulfill certain continuity
conditions to render the attitude representation usable.

We start by deriving 15" : (6,91,92) — ¢, i.e. the function
that maps every angle set (6,11,93) onto its quaternion
q € S3. These steps are illustrated in Figure 1 and define

the function [5". First the rotation axis v : ﬁ and

the angle ¢ := arccos(n'r) are used to rotate n on 7, i.e.
r=A"(v,6)n (10)
with A as in (1). Then, a rotation is carried out to achieve
the desired angle 6. Define the vector
n?0 .= AT (e; x1,0) AT (v,4)n (11)
where e; is the first unit vector if r ¢ span{e; }, otherwise
it is the second unit vector. By definition and using (6), it

is clear that r"n%? = cos(#). The vector n??1 is defined
by a rotation of 9; around the r axis, hence

%% = AT (r,0,)n°.

Finally, rotation of ¥ around n
attitude ¢, i.e.

q:=q(v,0) @q(e; xr,0) @ q(r,9;) ® Q(n"’”l,ﬁz)(- :
13

(12)

091 gives the desired
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Definition 1. For two vectors r,n € Sy the attitude defined
by the angles 0, 1; and ¥ is represented as a quaternion
defined by the mapping 5" which has the form

l;’n(aa 7917 192) ::(J(Uv ¢)®q(ez X, 9)®Q(ra ﬁl)®q(n0ﬂ91; 192)

with the rotation axis and rotation angle v := 7\|:§:H’

¢ = arccos(n ') and axis n? 1= AT(r, 9,)AT (e; x 7,0) r

Note that we have so far deliberately not given the domain
and the image of [5". It is clear that the image is a
subset of the quaternion space because the definition of
15" (0,01,92) is merely a result of a quaternion product
which retains the norm condition. The domain is obtained
when deriving the inverse transformation. Recall that the
original motivation for these three angles is that the first
angle 6@ is the angle between r and n transformed into the
same frame as r . This property and a helpful equation for
the rotation axis n?Y1 are shown in the following lemma.

Lemma 2. The quaternion 15" (6,91, 92) described by the
rotation resulting from the three angles 6,1, 95 leads to
an angle 6 between r and transformed n, i.e.

T AT(I5™(6,91,92)) n = cos(6)
where
AT(I5™(0,91,92))n = nb",

(14)

Proof. We obtain with ¢ = 15" (6,91, 92) that

AT()n € AT 9,) AT (r,9) AT (e; 37, 0) AT (v, $) n
W AT (0 95) AT (r,01) AT (e; x 1,0) 7

01 95) A T(T ) n®°

EAT (0", 95) n?
(2 n??

AT (n
(11) AT(
(

By using the definition of n%?' we obtain

12
rT AT (qn =r"nb" (2 T AT (r,91)n%0
@ oo L cos(0)
which finishes the proof.
It remains to show that for every attitude ¢, there is one
unique angle set (6,91,92). We do so by introducing 1"
and show that it is the inverse mapping of I5".

For a quaternion ¢ we define the angle 6 along (14) as
0 := arccos(r' AT (q)n).

Consequently, the domain of € is chosen to be [0, 7]. It is
clear that for n? := AT (q)n the equations

rTnf0 = Tpd (15a)

T
n?0 pf0 = patpa (15b)
hold. Now we calculate the angle ¥, rotating n’° on n?

around the rotation axis 7, i.e. n9 = A" (r,91) n%°. Note
that this equation is equivalent to (12). Since (15) holds,
the angle 1; can be obtained using Rodrigues’ formula

T
¥ := atan2 ((r x n® 0T nf 0 na — (rTne’O)Q) .

Then 91 is obtained using the atan2 function which maps
the two arguments to an angle in (—7, 7| and defines the
domain of ;. Note that for # = 0 and 6§ = m, both

arguments are identical to zero which is where atan2 is

undefined. This singularity will be discussed in detail in

the next section. For our application, we define atan2

to be identical zero into order to allow a definition on

complete [0, 7]. For calculating 95, we use (13) and define
q:=q ' (rn0)®@q " (eixr0)@q  (v,0)@q.

It can be seen that this quaternion describes a rotation

around the +n? axis since

AT (@)t D AT (AT (g7 (v, 0)AT (g (s x 7, 0))
W AT (@A (g (v, 9)) 7
AT (g)n

=ni.
This makes the first three entries of the quaternion de-
scribe the n? axis, i.e. g%g'” = 4n? or the unit quaternion
and gi.3 = 0. The angle 95 results from

7 _q1:3
9y e {+2&rccos(q4), if Iq 3H € {0,n }

N - q
2arccos(qq), if qu 3H -

The result of this definition is an angle ¥ € (—2m, 27]
which is chosen to be the domain of 5. These steps define
the mapping [7"
Definition 3. For two vectors r,n € So the attitude given
by ¢ is transformed into the three angles using the map-
ping 17" : Sz — [0,7] x (—m, @] x (—2m,27] where
17" (q) = (0,91,92) is defined by
6 := arccos(r' A" (q)n)
-
91 = atan2((r x n?0)Tn? n?0 pd — (+Tnf0)?)
7 q
9y i +2arccos(qq), if th'sl\ =n
—2arccos(qq), otherwise
with the rotation axes n? := A(q) 'n, n%0 :== AT (e; x r,0)r
and the quaternion describing the rotation around the
nt axis as g = g1 (r,01) ® (e x 1,0) @ ¢ (v, 0) ® g
with rotation axis and angle v := Hn"ii’;”, ¢ = arccos(n 'r).

This allows to state the main theorem of the section.
Theorem 4. Consider the mappings

17" :S3 = [0, 7] X (—m, 7] x (=2, 27]
q— 17" (q)
and
15" [0, 7] x (—m, 7] x (=2m,27] — S5

(97 1917 ’02) — l;” (97 191) 192)

as defined in Definitions 3 and 1. Then [7"" is the inverse
of 13" for # ¢ {0,7} and vice versa. The first argument
of 15" describes the cosine of the angle between r and
transformed n, i.e.

T AT(I5™(0,91,92)) n = cos(h) . (16)

Proof. By the transparent way of defining the functions

I7™ and 15" it is clear that they are corresponding inverses
for 6 not identical to zero or .

5. PROPERTIES OF THE MAPPINGS

In this section we discuss some of the properties of the
attitude representation and their mappings.
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n
Step 1: Rotate with ¢ around v.
This rotates r on n.

Step 3: Rotate with ¢y around r.
This rotates n?? on nfv1.

0,0

This rotates r on n

n9,19

n

Step 4: Rotate with 95 around nf?1.
The result is the desired attitude.

Fig. 1. Tllustration of mapping Iy’ divided into four steps to map the three angles (6, 91,192) to a quaternion. Each step
changes the current attitude using a single rotation. The starting attitude for Step 1 corresponds to the identity
quaternion. In all steps the rotations are illustrated showing the resulting normal vector after the rotation. The
normal vector in Step 4 remains unchanged after the rotation. The explicit depiction of the current attitude using
a coordinate system is omitted to make the illustration clearer.

5.1 Underlying System of Equations

First, we summarise the three equations that are the basis
for the two mappings.

Remark 5. The attitude representation is based on the
three equations

rT AT (q) n=cos(0)
AT (Qn=AT(r,9)AT (e; x r,0)r
4=4q(v,8)©q (e; x1,0)@q(r, 1) @q(n""05)
with the rotation axis and angles as in Definition 3.

5.2 Singularities

It is well known that the attitude space is of dimension
three. Attitude representations that use only three vari-
ables come with the disadvantage of having singularities
while representations with more than three variable have
additional constraints. The proposed attitude representa-
tion has only three variables, but a singularity occurs when
the angle 6 is identical to zero or 7. In this case, ¥, and
15 have the same rotation axis, namely r.
Proposition 6. For # = 0 and 6 = 7 it holds
lg’"((), ¥ — 192, 192) = lg,n (0, 191, O)
lg’n(w, %1+ 192, 192) = l;’n(’fﬁ 191, 0) .
For 17", we obtain
l?n(lg,n (0, 191 — 1927 192)) = (O, 0, 191)
l?n(l;n(ﬂ-v 791 + 1927 192)) = (ﬂ-a Oa _191) .

Proof. For 6 = 0 the rotation axis n?"?! is identical to r.
Thus, we obtain

(0,9, — 92,92) = (v, ) Rq(r, 91 — 92)@q(r, 92)
= Q(Uv ¢)®q(r7 191)@(](7”, 0)
= l;’"(O,ﬂl,O) .

The second and third equation follow from the fact that
n? = n%0 = r and that we have defined atan2 to be zero
for two arguments identical to zero. The same calculations
can be made for § = 7w and —r.

Note that these singularities make [7" not surjective and
I5™ not injective which is why invertibility was only stated
for the sets without these singularities in the previous
section.

5.8 Augmentation of the Mappings

The mappings I7" and ;" can be augmented easily for
r € span{n}. In this case we define any vector which is
perpendicular to r as v = e; X r with any unity vector
e; ¢ span{n} and proceed as usual.

For reconstruction purposes it might be beneficial to
expand the domain of /5. This can avoid discontinuities
in the attitude representation. In this case, the periodicity
of the functions allows to distinguish equivalent attitude
representations.

Proposition 7. If we extend the domain of I3 to [0,7] x R xR,
we obtain the negative quaternions as

157(0,01,92) = —15" (0,91 — 2m,92) (19a)

15"(0,01,92) = —15" (0,091,092 — 27) (19b)
while for a shift in ©¢; and 5 the identities are

l;’”(G, 191, 192) = lg’"(ﬁ, 191 — 2m, 192 — 27‘() (20&)

157(0,91,92) = 15" (0,91, 92 — 4m). (20b)

Proof. With the identities g(n??1,95) = —q(n??1, 9, —27),
q(r,91)=—q(r,01—2m) and (13) we obtain (19a) and
(19b). Then, by using the identities
—l;’"(e, By, — 27‘(’) = lg’"(e, ¥ — 2, 192—27'(')
712‘7”(97191, o — 27'() = lg’”(ﬁ,ﬁl,ﬁg — 47T)
we obtain (20a) and (20b).
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On the other hand, the domain of 5" for ¥ is chosen in
the definition of the mappings to have the form (-2, 27].
This is done to achieve the bijectivity on the quaternion
space. However, restricting this domain to (—m, 7] is suffi-
cient to represent all orientations because +¢ describe the
same orientation and (19b) allows the transformation into
the reduced domain.

5.4 Smoothness

The smoothness properties of [7"" and 15" are inherited
from their defining functions. The function ;" is not
continuous on its complete domain. The points of discon-
tinuity are defined by the following subset

Q*~{qeSy |30 €0,7], 01 € (-], V3 € (~2r,2n]
q € {I7™(0,91,92), 177 (0, 7,92), 177 (0,91, 27) }
for 0 € {0,71’}} .

We summarise the smoothness properties as follows.

Proposition 8. The function 5" is smooth everywhere
while [7"" is only smooth on S3 \ Q4¢.

Proof. The definition of I is the result of a composition
of smooth functions. Thus /5" is smooth Amann and Es-
cher (2005). Also the smoothness of /7" is the result of the
individually composed functions. Possible discontinuities
are induced by atan2 and the piecewise definition of ¥5.
Indeed the discontinuities due to atan2 at 6 € {0, 27} can
be shown using two simple sequences and the property
(18). The same can be done for the singularities at ¢; = =
and Y2 = 27 and the properties (20).

5.5 Dynamics

Considering the three angles as functions of time we may
define their dynamics by using either of the functions
17", 15" and the quaternion dynamics from Markley and
Crassidis (2014), i.e.
R
i= 5= (@ (21)
By differentiating (0, 91,92) = 7" (¢) with respect to time

we obtain

9 ,n r,n
. o™ (157(0,91,92) 1+,
1?1 = 1 (2 (g ! 2))§:T(127 (9,191,’[92))&)
i q
n m;m(lg’na(iyﬁlﬂ%)) i

defined for all (6,9,,9,) with I5™(8,9;,9s) € S5\ Q.
Note that we also assume r to be time-varying in view
of the motivating system. These dynamics have the dis-
advantage that they are not defined for ¥¥; or ¥ at their
boundaries. This can be avoided using l5"" instead.
Proposition 9. For the functions of time (r, 8,91, 95) with
q =15"(0,91,92) and ¢ obeying the quaternion dynamics
(21), the dynamics of (6,11, 92) have the form

0 rn +

. aly" (0,91, 9 1 _+,rn

0| =Ry 5

U2 Y (22)

O (0.91,92) T 157(0,01,92)
8(9,191,192) or

Fig. 2. Contour map showing the image of the cost function
from the optimisation problem (29).

where At := (ATA)"!AT denotes the Moore-Penrose
inverse of a matrix A with full rank. The domain of the
dynamics is (0,7) X (—m, 7] X (=2, 27].

Proof. Differentiating ¢ = 15" (0,91, 02) yields

r,n 0. ™ n

. 017(0,91,92) | 157 (0,91,7) |
= ———" |9 e A 23
o |t e @Y

2
With 915" = % the product of the jacobians is
0.25 0 0
ool = 0 025 0.25cos6 | . (24)
0 0.25cosf 0.25

This was validated in a numerical fashion. The expres-
sion for dl5™ itself is rather complicated and computed
using computer algebra. The matrix (24) has full rank
for 8 € (0,7). It does not have full rank at the singulari-
ties # € {0, 7}. Consequently, the Moore-Penrose inverse
rn ¥
% exists on (0,7) X (—m, 7] X (=27, 27]. Mul-
s . AlT™(0,01,92) T
tiplying &95191;92)2)
the quaternion dynamics (21) leads to (22).

from the right to (23) and inserting

6. APPLICATION: ATTITUDE RECONSTRUCTION
USING TEMPERATURE MEASUREMENTS

Augmenting the motivating example with the attitude
dynamics we obtain
2

A R Tl n— 6T a
7=~y (AT () n =07 (25)
i= 1= ()w (25b)
W=J(~wx Jw) (25¢)

where J € R3*3 denotes the inertia matrix, ¢ € S3 the
attitude described by quaternions and w € R? the angular
velocity. Note that we start with the quaternion dynamics
and use the proposed attitude representation later in the
analysis.

An estimation of the attitude shall be achieved using only
the temperature measurement and its derivatives under
the assumption that the angular velocity w and time ¢t
are known via e.g. other measurements or estimations.

We denote by ng)h(m) the i-th Lie derivative of h with

respect to f and write x = [T,q¢",w', |7, h(z) = T
and f(z) for the right hand side of (25). This allows to

define the derivatives of y as La(q) := § = E;Q)h(a:) and
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Li(q) ==Y = E;B)h(:n). Note that we have defined the
derivatives of y as functions of only the attitude ¢, as
all the other states T, w and t are already assumed to
be available and do not need to be estimated from these
derivatives. Then the attitude can be reconstructed solving
the non-linear system of equations

2

TE:—WHJSHyJ(ﬂAT@Mz—6T4 (26a)
T = Lo(q) (26b)
T = Ls(q) (26¢)
q'q=0 (26d)

for ¢q. Note that the quaternion constraint must be added
to obtain attitudes as solutions of the system. It is not
clear whether the solution of the system is unique and
if an analytical expression for it exists. For the attitude
representations in quaternions all four equations contain
all four variables and no straightforward simplification can
be made to change that. Thus, if the solution is not unique,
all solutions solving the system are generally described by
a non-trivial function of all variables of g. This can be
changed by using the proposed attitude representation. For
q=15""(0,91,92) we see that (26) simplifies to
2

T=y—2_ it )”2 cos(#) — 6T* (27a)
T = Ly(13" (6,91, 92)) (27b)
= Ly(ly" (0,91, 02) (270)
which allows the calculation of 6 via
2
# = arccos ( Ir ” (T + 5T4)) (28)
v 7“@

Thus, the angle 8 can be uniquely calculated and we have
reduced the problem by two dimensions. The remaining
two angles 91,92 to describe the attitude may now be
obtained solving the remaining two non-linear equations
(27b)-(27c). Note that a benefit of a two dimensional
problem is that it is possible to visualise the state space.
We formulate (27b)-(27c) into the optimisation problem

min H OH3:4(V1,92) | [H3(91,92) — H
91,02 (01, 92) Hy(01,92) —

(29a)
s.t. [91,92] € (—7, 7] X (=7, @] . (29b)

with the definitions Hj(d1,02) := Lo(15" (6,91, 792)) and
Hy(01,92) := Ls(l5" (6, V1, ¥2)). Figure 2 show the image
of the cost function for 7" and T’ resulting from the sample
parameter configuration as seen in Table 1. The red cross
depicts the real attitude. We can see that the system
has four solutions for this parameter configuration. Which
of the solutions is found depends on the algorithm and
the chosen initial state and is discussed in another work.
The proposed attitude representation allows to reduce the
order of the system and the number of variables that need
to be numerically reconstructed.

7. CONCLUSIONS

We have proposed an attitude representation incorporat-
ing the angle between two vectors as its first variable.
We have given a detailed derivation and have derived
a bijective mapping to the quaternion space. Like every

three dimensional attitude representation, the proposed
one has singularities. Further, we have given the properties
necessary to augment the domain to allow continuous
angle estimations. Finally, the advantages of the proposed
attitude representation were presented for the application
of attitude reconstruction using solely a single temperature
measurement. The introduced representation yields an or-
der reduction of the non-linear system which reduces the
numerical effort for the reconstruction considerably and
also generates a better understanding of the solutions.

Table 1. Parameters and Constants

Parameter  Value Parameter  Value
v 0.0673 5 1.6 x 10~11
J diag[5.45.40.9] 71 3.1 x 106
ro —1.1 x 108 r3 —6.1 x 106
re 6371000 n e3
T 292 0 z
V1 0 o 0
w1 0.0058 wo 0.0058
w3 0.0058
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