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Turbulent convection processes in nature are often found to be organized in a hierarchy of plume structures
and flow patterns. The gradual aggregation of convection cells or granules to a supergranule which eventually
fills the whole horizontal layer is reported and analyzed in spectral element direct numerical simulations of
three-dimensional turbulent Rayleigh-Bénard convection at an aspect ratio of 60. The formation proceeds over
a time span of more than 10* convective time units for the largest accessible Rayleigh number and occurs only
when the turbulence is driven by a constant heat flux which is imposed at the bottom and top planes enclosing the
convection layer. The resulting gradual inverse cascade process is observed for both temperature variance and
turbulent kinetic energy. An additional analysis of the leading Lyapunov vector field for the full turbulent flow
trajectory in its high-dimensional phase space demonstrates that turbulent flow modes at a certain scale continue
to give rise locally to modes with a longer wavelength in the turbulent case. As a consequence, successively
larger convection patterns grow until the horizontal extension of the layer is reached. This instability mechanism,
which is known to exist near the onset of constant heat flux-driven convection, is shown here to persist into
the fully developed turbulent flow regime, thus connecting weakly nonlinear pattern formation with the one in
fully developed turbulence. We discuss possible implications of our study for observed, but not yet consistently
numerically reproducible, solar supergranulation which could lead to improved simulation models of surface

convection in the Sun.

DOI: 10.1103/PhysRevResearch.3.013231

I. INTRODUCTION

Turbulent convection, the essential mechanism by which
heat is transported in natural flows, manifests often in a hier-
archy of structures and flow patterns. Clusters of clouds over
the warm oceans in the tropics on Earth [1] or giant storm
systems in the atmospheres of the big gas planets Jupiter [2]
and Saturn [3] illustrate this phenomenon. One of the most
prominent astrophysical examples is the convection zone in
the outer 30% of the Sun [4]. Convection cells are termed
granules if they have an extension of £g ~ 10° km and a life-
time of about 10 min. These granules form the basic pattern
at the solar surface where a heat flux drives convection [5,6].
Spectral observations reveal supergranules with extensions of
£sg ~ 30£g and a lifetime of a day as the next larger building
block in this hierarchy, detected either by line shifts in optical
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observations [7], helioseismology [8], or granule tracking [9].
Between the granule and supergranule scale a whole range of
mesoscales exists, but without an additional prominent scale.
Giant cells that extend across the whole convection zone could
be a third stage in this hierarchy [10-12], but this is still an
open question. Different physical effects have been proposed
for the formation of supergranules, such as helium recombi-
nation in the upper convection zone [13], self-organization of
granules [9], or dynamical constraints by deeper convection
at scales £ > fgsg that are affected by the slow rotation of the
Sun [14]. Numerical simulations that model convection and
try to predict the spectral measurements have still been unable
to develop supergranules self-consistently [15,16].

Here, we demonstrate the aggregation of granules to a
large-scale supergranule in the simplest setting of convection
without additional physical processes such as radiation, ro-
tation, or magnetic fields involved in heat and momentum
transfer. This turbulent Rayleigh-Bénard convection (RBC)
case in the Boussinesq limit is often considered as the
paradigm for convective turbulence with its many facets
[17,18]. Our three-dimensional direct numerical simulations
(DNS) differ in three important ways from the majority of
numerical studies in RBC: (1) They are subject to constant

Published by the American Physical Society


https://orcid.org/0000-0001-7628-9902
https://orcid.org/0000-0002-1359-4536
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013231&domain=pdf&date_stamp=2021-03-11
https://doi.org/10.1103/PhysRevResearch.3.013231
https://creativecommons.org/licenses/by/4.0/

VIEWEG, SCHEEL, AND SCHUMACHER

PHYSICAL REVIEW RESEARCH 3, 013231 (2021)

heat flux boundary conditions at the top and bottom; (2) they
require simulations that are run on the order of 10* convective
free-fall time units and even more; and (3) they are conducted
in sufficiently extended layers. Layers with a fixed aspect ratio
I'=L/H = 60 with the horizontal length L and the layer
height H are considered in this paper. We observe the gradual
supergranule formation for all accessible Rayleigh numbers
up to Ra ~ 7.7 x 107, a dimensionless measure for the vigor
of convective turbulence. Their formation proceeds despite
the fact that the flow becomes fully time dependent and tur-
bulent. This is in a regime for which one would not expect
a pattern coherence across the whole domain, given that Ra
is far beyond the critical Rayleigh number Ra, for the onset
of the primary linear flow instability [19,20] or subsequent
secondary instabilities of the onset pattern [21,22].

We confirm the continued gradual aggregation trend into
the fully turbulent regime by the Lyapunov vector field of
the largest Lyapunov exponent [23] of the turbulent states
(see Refs. [24-27] for similar analyses to characterize pattern
defects in weakly nonlinear convection). The Lyapunov vector
analysis probes here the growth of linear instabilities and of
the corresponding scales of our high-dimensional nonlinear
dynamical system. In particular, we show that the leading Lya-
punov vector field becomes coarser as time proceeds, which
suggests that the turbulent flow remains unstable at a given
scale with respect to longer-wavelength instabilities until the
domain size has been reached. Indeed, such an ongoing in-
verse cascade of energy and thermal variance can be clearly
shown by the power spectra. The supergranule becomes better
visible in the velocity and temperature once a time-windowed
averaging is applied that suppresses the turbulent fluctuations
and the faster converging and diverging flows in the small-
scale convective granules. We find supergranules independent
of the boundary conditions of the velocity field.

Furthermore, we show that the supergranule is absent in
DNS with constant temperature boundary conditions at the
top and bottom planes of the RBC layer. For these cases,
the formation of the recently comprehensively investigated
turbulent superstructures [28—38]—well-ordered patterns of
temperature and velocity with characteristic convection roll
widths up to A/2 ~ 3 — 4H [36-38]—takes place. A is the
characteristic scale or wavelength of the pattern. Big veloc-
ity field condensates have been studied in two-dimensional
[39] and quasi-two-dimensional fluid turbulence [40-42] to
analyze the dependence of the inverse cascade on the energy
injection scale. These settings are different in comparison
to RBC where the driving of the fluid motion proceeds by
thermal plumes that have a typical width of the order of
the thermal boundary layer thickness §7 << H < L. A slowly
progressing clustering of thermal plumes in RBC has been
studied in von Hardenberg et al. [31] for L < 12w H reaching
roll widths of A/2 ~ 3H for similar Rayleigh and Prandtl
numbers. The generation of a large-scale anisotropy in turbu-
lent convection for free-slip velocity conditions at the walls
requires additional rotation about a horizontal axis in the
three-dimensional case as shown in Ref. [43].

Hurle ef al. [20] studied the linear stability of an infinitely
extended two-dimensional thermal convection layer at rest for
the constant flux case analytically. They detected a critical
wave number k. = 0 and a critical Rayleigh number Ra, =

6! = 720 for no-slip velocity conditions and Ra, = 5! = 120
for free-slip conditions. This implies that the pair of counter-
rotating convection rolls at the onset of convection will always
extend to the largest possible wavelength A =L < o0 in a
finite cell. Instabilities of finite-amplitude convection rolls for
Rayleigh numbers slightly above Ra, showed that each mode
is unstable to one longer wavelength [22]. Interestingly, this
gradual aggregation process has not been observed in previous
turbulent RBC simulations with constant flux boundary condi-
tions [44-46], most probably because they were conducted in
smaller aspect ratio domains and for shorter total integration
times.

Our study suggests that the mechanisms of supergranule
formation in a simple convection flow are related to linear
instabilities in the turbulent flow that give rise to longer-
wavelength structures. Even though the RBC flow operates
at Rayleigh numbers that are up to nearly five orders of mag-
nitude above the critical Rayleigh number for the onset of the
primary instability, a cell with the longest wavelength is still
formed without any additional physical mechanism at work in
the unstably stratified layer. Our investigation can thus shed
light on the fundamentals of solar granulation processes.

II. NUMERICAL ANALYSIS

We consider here the simplest turbulent convection config-
uration, the three-dimensional Boussinesq case which couples
the temperature field 7'(x,¢) and the velocity vector field
u(x, t)in an incompressible fluid [17,18] with u = (uy, u, u;)
and x = (x,y,z). In this case the mass density is a linear
function of the temperature deviation from the reference
value. The Cartesian domain V =L x L x H applies peri-
odic boundary conditions in both lateral directions x and y
for all fields. Regarding the vertical direction, the following
boundary conditions are applied at the bottom and top plates
at z = 0, H. For the velocity field, these are either no-slip (ns)
or free-slip or stress-free (fs) conditions. They are given by

(ns) ux = uy = u; =0, 1)
o, duy

(fs) =—=0 and u, =0. (2)
0z 0z

Thermal conditions are either of Dirichlet (D) or Neumann
(N) type,
D) TE=0)=Tha and T(z=H)="Te, 3)

oT
0z

a7

N) T

= _ﬁ’ (4)

z=H

with 8 > 0. We adopt as units of length and time the layer
height H and the free-fall time 1y = H/U; with the free-
fall velocity Uy to rescale the equations in a dimensionless
form. The latter is defined by Uy = ,/ag(Tpor — Tiop )H for the
Dirichlet (D) case with the characteristic temperature that is
given by the difference AT = Tyt — Tiop > 0. The quantity o
is the isobaric expansion coefficient and g is the acceleration
due to gravity. In the case of Neumann (N) boundary con-
ditions, one obtains U; = \/agBH? while the characteristic
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TABLE I. Parameters of the direct numerical simulation runs. We list the Rayleigh number Ra, the ratio to the critical Rayleigh number
Ra,, the Prandtl number Pr, the total number of spectral elements in the simulation domain N,, the polynomial order N on each spectral
element, the total dimensionless runtime of the simulation 7, in units of the corresponding free-fall times ¢;, the resulting Nusselt number
Nu, and the Reynolds number Re. All values correspond to the late state of the flow where the supergranule is completely established for
the Neumann cases. Nu and Re are determined from 50 snapshots within the last 500z, of each simulation. Error bars are determined by the

standard deviation.

Run Ra Ra/Ra, Pr N, N t, Nu Re

Nfsl 10430 87 1 160 000 7 4000 393 + 0.12 264 + 04
Nfs2 203 600 1697 1 160 000 11 6500 6.74 £ 0.10 814 + 0.7
Nfs3 3928000 32733 1 1280 000 7 10 000 12.30 £ 0.16 2290 + 1.4
Nfs4 76 890 000 640 750 1 11 022 400 7 19 000 23.50 + 0.24 6359 + 3.1
Dfs2 38500 58 1 160 000 11 1450 5.29 £+ 0.04 742 £ 0.2
Dfs3 385000 580 1 1280 000 7 1100 10.21 + 0.04 215.8 £ 0.5

temperature is SH. The dimensionless equations of motion
follow as

V.i=0, )

Vi +Te, (6)
VT, (7)

with the dimensionless pressure field p. Dimensionless quan-

tities are indicated by a tilde in the equations. The Prandtl and

Rayleigh numbers are given by
_ guATH®

v
Pr=—-, Rap=——,
K VK

gapH*

. @)

with the kinematic viscosity of the fluid v and the temperature
diffusivity «.

The equations of motion are solved numerically with the
spectral element method NEKS000 [47,48]. The polynomial
order N on each element and the total spectral element number
N, are chosen properly such that the steep gradients near
the top and bottom walls and the Kolmogorov scale nkx can
be resolved sufficiently (see Ref. [48] for more details). We
varied the order N at fixed Rayleigh and Prandtl numbers to
verify that the supergranule formation, the mean profiles of
temperature, and the temperature variance spectra are unaf-
fected (see Appendix A for further details on the resolution
tests).

The turbulent heat transfer across the convection layer is
determined by the dimensionless Nusselt number which is
given for constant flux boundary conditions (N) by (see also
Ref. [49] for a derivation)

and Ray =

1
Nuy = —=— =— ; ©))
(TE=0);; = (TEZ= D)z
and for the constant temperature conditions (D) by
oT oT

Nup = —( — =—(——= . 10
UD < 82 >~ f < az >~ f ( )

7=01 At =11 Az

The symbol {-); ; denotes a combined average over the hor-
izontal cross section A = I'> with the aspect ratio I' = L/H
and time 7. In comparison the global turbulent momentum

transport is quantified by the Reynolds number, which is for
numerical studies defined as

Rapn -0
- v i 11
U (1)

The boundary conditions (ns), (fs) for the velocity field
and (D), (N) for the temperature field can be combined to
four different sets of runs at several Rayleigh numbers. All
four groups of boundary conditions were investigated. The
main focus of our presentation will be on the series Nfs1 to
Nfs4 which is listed in Table 1. This combination of boundary
conditions comes closest to the solar convection case, that
motivates our study. Note also that the Rayleigh numbers for
cases Dfs and Nfs are related to each other by

RaN = Nu[) RaD. (12)

Re =

Since the runs with Dirichlet conditions served always as the
starting point, the values of Ray follow as given in Table 1.

In the remainder of this paper, we will drop the tildes on
all dimensionless quantities. The presentation of the results
is continued in dimensionless units, for example, 0 < z < 1.
Note also that our choice of the characteristic temperature in
the Neumann case can cause values of 7" smaller and larger
than [0,1], which again lead to a global mean (T)y, = 1/2 as
in case D. Here, we do not rescale these temperatures since
we do not directly compare the temperature statistics between
cases D and N.

III. SUPERGRANULE FORMATION

Figure 1 illustrates the final stages of the simulations Nfs1
to Nfs4 at four different Rayleigh numbers between 10* <
Ray < 108 (see Table I). The top row shows the temperature
contour snapshots taken in the final stages of the simulations
close to the upper surface of the layer. A pair of large square-
shaped convection cells, which we term supergranules, are
observed in all four cases. Due to the periodic boundary con-
ditions in x and y, they are partly distributed across the lateral
boundaries of the domain. These extended structures, which
are expected at and slightly above the onset of convection in
this setting [22], thus continue to exist into the fully developed
turbulent regime. They are clearly visible in all cases as a
hotter and colder background structure of the temperature
field. Superposed is a fine-scale granule pattern that would
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-1.5 0.5 2.5 -0.2 0.5 1.2 0.25 0.50 0.75 0.42 0.50 0.58
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e o

& #

‘«J‘.¢
"y

0.30 0.00 0.11

0.00 0.15

FIG. 1. Supergranule structure in the convection layer for different Rayleigh numbers Ray. The top row displays instantaneous snapshots
of the temperature field at zo = 1 — §7/2 where the dimensionless thermal boundary layer thickness is given by 87 = 1/(2Nuy). Snapshots
were taken at = 4010 in (a) and (e), 6400 in (b) and (f), 10 000 in (c) and (g), and 19 000 in (d) and (h). The bottom row shows time-averaged
plots of the streamlines viewed from the top. The color corresponds to the velocity magnitude. The averaging time interval of 500¢; is always
taken in the final phase of the simulation. Data are for Nfs1 in (a) and (e), Nfs2 in (b) and (f), Nfs3 in (c) and (g), and Nfs4 in (d) and (h) as

listed in Table 1. All fields are displayed for the whole cross section of size L x L = 60 x 60.

also be observable for other RBC cases. It is related to the
instability of fragments of the thermal boundary layer and the
related thermal plume formation. The bottom row displays
the corresponding surface velocity streamlines, again viewed
from the top. They are obtained after a time-averaging over
500 convective time units centered around the temperature
plots.

Figure 2 underlines the different character of the large-
scale patterns of the Dirichlet and Neumann cases at the
related Rayleigh numbers Ra ~ 10°-10°. We also decompose
the temperature into 7 (x,t) = (T (x)), + 6(x,t) where (-),
stands for a time average over an interval of 500 free-fall times
ts. The horizontal cuts which are always taken at the height
zo0 = 1 — 87 /2 decompose the data of the Dirichlet case into
a time-averaged superstructure pattern with a characteristic
wavelength that agrees with those in Refs. [36,37] and a fine
skeleton of plume ridges. This is in contrast to the Neumann
case, where the supergranule is now clearly revealed. Interest-
ingly, the instantaneous temperature fluctuation patterns for
the Neumann case are more similar to those of the correspond-
ing Dirichlet case. In Appendix B we demonstrate furthermore
that our observation is not altered by a substitution of free-slip
with no-slip conditions which is consistent with the behavior
at the onset of convection [20].

Figure 3 quantifies the gradual formation of the supergran-
ule by quantities in the physical and Fourier spectral space
for the case Nfs3 at Ray = 3.93 x 10°. We note here that all
simulations started with a perturbation of the linear diffusive
equilibrium profile with random noise where the fluid is at
rest. The very initial evolution where the flow relaxes into a

0.25 0.50 0.75 -=0.04 0.00 0.04
Qs  (h) L ——e——

i T
% A

FIG. 2. Comparison of Neumann and Dirichlet cases. The left
column shows the time-averaged temperature fields (T (x, y)), atzo =
1 — §7/2 while the right column plots the temperature fluctuations
0(x, y) at a given instant and the same height. The Rayleigh numbers
are Ray = Nup Rap = 3.93 x 10° (case Nfs3) in (a) and (b) and
Rap = 3.85 x 10° (case Dfs3) in (c) and (d). The whole cross section
of size L x L = 60 x 60 is displayed.
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(a) t=240 (b) t=1,540 (c) t=4,290 (d) t=10,000
30 : ’ | E 0.75
> 0.50
-30 0.25
10*
< 10!
-1 A
1072
10%
< 107! H - . .
5]
10-6 T T T T T T
1071 10! 1071 101 1071 10! 1071 10!
k k k k

FIG. 3. Gradual aggregation in wave-vector space. The process is shown for the supergranule that forms at Ray = 3.93 x 10° for a time
period of 10* free-fall times as an example. (a)-(d) Temperature contour plots close to the top plane at zo = 1 — 87 /2. Times for the snapshots
are indicated. The color bar applies for all panels in this row. (e)—(h) Corresponding Fourier spectra taken from temperature fluctuations at
the same horizontal plane with respect to the horizontal wave-vector components (k,, k). The wave-number range on both axes magnifies the
smallest value to demonstrate the variance accumulation in the largest possible modes. The color bar is again the same for all panels in this row.
(i)-() Additionally azimuthally averaged Fourier spectra with respect to k = (k? + kf.)l/ 2. The Fourier transform of three different quantities
is displayed as indicated in the legend in (j): temperature variance spectrum, cospectrum of the turbulent convective heat flux, and the kinetic

energy spectrum with respect to the vertical velocity component.

fully developed regime for the turbulent fields is discarded. In
the course of the nonlinear evolution, a growth of the scale of
the convection patterns, here the temperature field close to the
top plate, is observed in Figs. 3(a)-3(d) which shows similar-
ities to a phase separation process that has been analyzed in
binary-fluid mixtures [50,51]. The slow aggregation proceeds
over ~10* free-fall times; we find that the time this large-scale
structure formation takes grows with respect to the Rayleigh
number (see also Fig. 1). This time span is longer than a verti-
cal diffusion timescale t, = +/Pr Ra, but significantly shorter
than a horizontal diffusion scale t;, = I'%t,.

Figures 3(e)-3(h) plot the squared magnitude of the
two-dimensional Fourier transforms with respect to the hor-
izontal coordinates x,y of the temperature. We display
|f‘(kx, ky, 20, 1p)|?, in logarithmically increasing contour levels
at four different times ¢y for zo = 1 — 7 /2. The data corre-
spond to those in the top row of the figure. We observe the
slow transformation from the ringlike maximum, which is

also observed in the Dirichlet case [28,37,38], to a conden-
sate in the four (next-neighbor) discrete planar wave vectors
kl,g = (Z*kmin, 0) and k3,4 = (0, £kuin) around the horizon-
tally homogeneous mode with k = 0 [see Fig. 3(h)] which
cannot be accessed in a domain with a finite box or periodicity
of length L. The magnitudes of these four wave vectors cor-
respond to the largest wavelength a convection structure can
take in a domain, namely A = I'. Here, kyj, = 27/ =~ 0.1
and thus each of the two supergranules has an approximate
size of A /2 = 30. This is different from an infinitely extended
domain which would result in a continuum of possible wave
vectors and a critical wave number k. = 0. Thus we interpret
the accumulation of thermal variance and kinetic energy in
k1234 as the finite-size relic of the primary linear instability
mechanism which is not forgotten by the system. We have
verified that a similar, but faster, aggregation takes place in
boxes at a smaller aspect ratio and the behavior is the same
when the analysis is repeated in the midplane.
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—— Ran=1.04x10* —— Ray=3.93x10°
—— Ray=2.04x10> =—— Rany=7.69x107

Lo m

75% -m

50% - 6.5 b~y

0%_ T T T

0 5000 10,000 15,000 20,000
t

Nu

Turbulent heat transfer

FIG. 4. Supergranule contribution to heat transfer. The time evo-
lution of the turbulent convective heat flux across the midplane is
compared at different Ray. We show the time evolution of the relative
fraction of transport due to the supergranule (bottom curves) and
due to the rest of the turbulent structures (top curves). The inset
demonstrates for the run Nfs2 that the Nusselt number that comprises
both fractions remains on average constant over the whole time.
Equally colored curves correspond to the same Rayleigh number as
indicated in the legend.

The panels in the bottom row of Fig. 3 show the
azimuthally averaged spectra for different quantities: (i) tem-
perature Erp(k,z = 79) as in the top and middle row, (ii)
vertical velocity component E, , (k,z = zp), and (iii) con-
vective heat flux E, 7(k, z = z9). For all temperature fields,
that enter the spectral analysis, the area mean (7 (z9))a, iS
subtracted. Spectra are given by

1 2
Ey(k,t) = Z/o Nlack, ¢, 1)0"(k, ¢, ldp  (13)

for uv = {T'T, uu,, u,T}. All quantities display clearly an
accumulation of spectral density at the lowest wave number,
suggesting an inverse cascade process that leads to the forma-
tion of the supergranule.

Despite this strong aggregation in physical and Fourier
space, the global heat transfer and thus the Nusselt number
Nuy remain on average constant over the whole time period
of the simulation in all runs as shown in the inset of Fig. 4 for
one example. Figure 4 demonstrates, however, that the slow
formation of the supergranule shifts the relative fraction of
convective heat flux in the course of the evolution. We apply
a filter in Fourier space and define

—1 _ A
ka;n(Z = 05, t) = <F [MZT(|k| - kmm, t)]),q (14)
(uTha

and the rest 1 — Ji, (z = 0.5,¢) with kpin, = 27 /T as stated
already above. It can be seen in all cases how the contribution
of the supergranule structure gains importance for later times
and reaches a statistically steady transport regime which is
indicated in all runs (except Nfs3 which would eventually
also saturate if run longer). The share of the structure to the
global transport drops from nearly 40% for the lowest to about
25% for the highest Ra which underlines its relevance for the
turbulent heat transfer across the convection layer.

IV. LEADING LYAPUNOV VECTOR ANALYSIS

A better understanding of the physical mechanisms of the
aggregation can be obtained by applying a technique that is
well-established in dynamical systems—the Lyapunov anal-
ysis [23]. In this framework, the evolution of the turbulent
convection flow corresponds to a trajectory in a very high-
dimensional phase or state space (strictly speaking this state
space is infinite dimensional). The state of the fluid flow at
time ¢ is given by a column vector y(t) = [u(xy, 1), T (x, )]
whichhask = 1, ..., N,N? entries and thus Ngo; = 4N,N> >
1 is the number of degrees of freedom in the present numerical
model (see also Table I). The compact form of our Boussinesq
flow is thus

yo)=F(y,n). s)

The sensitivity of the trajectory with respect to infinitesi-
mal perturbations or in other words the tendency to develop
new instabilities out of the present (fully turbulent) state
can be probed by the strength of exponential separation of
two initially very close trajectories, y(¢) and y(¢) + dy(?),
of the present turbulent flow. The corresponding linearized
equations to (15) are given by Sy(t) = J[y(¢)]8y(t) with the
Jacobian J = 0F /dy. Here, Sy(t) = [Su(xy, 1), T (x, )] is
the infinitesimal perturbation field to the original trajectory
of the flow. In detail, this gives the following set of linearized
Boussinesq equations for our study,

V. su=0, (16)

98
a—t”+(u-V)5u+(3u.V)u

Pr _,
= —Vép+ V=8u + 8Te,, 17
Rapn

1
—— V3T, (18)
\/ RaD,N Pr

where the pressure perturbation field dp is determined by du
with a Poisson equation similar to the original incompressible
case (5)—(7). The determination of the spectrum of the first
n of the total of Ngor Lyapunov exponents, A; = Ay = -+ Ay,
and their corresponding Lyapunov vector fields requires the
simultaneous numerical solution of n versions of (16)—(18)
with different initial perturbations 8y, (0), 8y,(0), ..., 8y,(0)
in combination with the original Eqs. (5)—(7). The com-
putational complexity of this task in an extended turbulent
convection flow limits us here to the leading Lyapunov ex-
ponent A;(¢) and the corresponding leading Lyapunov vector
field which encodes the locations in the fluid volume and asso-
ciated scales of the flow patterns that become unstable first. As
pointed out by Levanger et al. [27], the local magnitude of the
components of the Lyapunov vector indicates the sensitivity
of these local regions with respect to perturbations. It thus
contains the essential information that we need to explain the
aggregation. The leading Lyapunov exponent A (¢) is given by

d ||8y1(t>||>
A =—1 — ], 19
0= °g<||8y1(0>|| (19)

38T
5 @ VT + (Gu- V)T =
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FIG. 5. Comparison of mean profiles. The vertical plane-
averaged profiles of the temperature field 7 (x, ¢) and the absolute
value of the temperature component of the leading Lyapunov vector
field |87 (x, t)| are compared for (a) simulation run Dfs2 at t = 750
and (b) Nfs2 at r = 6500. The local maxima in (a) are at zo ~ 2/36r
and 1 —2/367.

with a norm that is determined by

1
18y, (DIl = \/‘7/[51!1(02 +8Ti(t)*1dV.  (20)
Vv

The resulting spatial ridge patterns of the components of
the leading Lyapunov vector reflect a critical wavelength (or
scale) across which the instability is triggered. We have tested
our algorithm for a RBC flow in the weakly nonlinear regime
at Ra = 5 x 10° > Ra, where this technique has been estab-
lished [24-27] (see Appendix C).

Figure 5 compares the mean vertical profiles of the tem-
perature field (T (z, t))4 and the absolute value of temperature
component of the (renormalized) leading Lyapunov vector
field 8y, which is denoted as (|87 (z,t)|)a for cases with
Dirichlet and Neumann boundary conditions. For simplicity,
we denoted the fourth component of §y, again by 67. We take
the absolute value as we are interested in the magnitude only.
Here, (-)4 denotes an average over the whole cross-section
plane T'2. While the mean temperature profile of Dfs2 has
a zero slope in the bulk, the one for Nfs2 is slightly stably
stratified. Such a subadiabaticity of the temperature is consid-
ered as a possible origin of the emergence of supergranules
in the Sun [11,16]. The mean profiles of the Lyapunov vector
component are found to differ qualitatively as reported in the
same figure. In the case of Dirichlet boundary conditions,
the most sensitive region is located at the top of the thermal
boundary layer where plume mixing starts. This is in contrast
to the Neumann boundary condition case, where the bottom
and top planes are found to be by far most susceptible with
respect to small perturbations.

We select the plane that corresponds to one of the two local
maxima in Fig. 5(a) at zp ~ 0.94, i.e., where the instability
has the largest magnitude, and show in Figs. 6(a)-6(h) that
local instabilities and thus the maxima of |67 (x, y, 2o, )| are
found close to (but not at) the downflow regions in Dfs2.

They also remain connected to local creation or annihilation
of defects of the flow patterns for the turbulent and fully
time-dependent Dirichlet boundary case. Despite operating in
the turbulent regime of the flow, these instabilities are thus
very similar to what is found for the weakly nonlinear regime.
We display therefore a magnification of a short dynamical se-
quence in Figs. 6(b)-6(d) and 6(f)-6(h). In the corresponding
turbulent Neumann boundary case Nfs2 in Figs. 6(i)-6(p) at
Ray = 2.04 x 10°, the structure of the temperature pertur-
bation |87 (x, y, zo, t)| is different. The plane that was now
selected is taken close to the top wall at zo = 1 — 67/2 in
correspondence with Fig. 5(b). One observes a connected
pattern of high-amplitude ridges of 67 with a coarser spacing
indicating a larger scale of instability. It is also observed
now that the locally most unstable regions coincide with the
downflow regions thus stabilizing the bulk regions (see also
Refs. [11,52] for similar mechanisms in the solar case).
Figure 7 provides additional results on the instabilities as
well as on the corresponding scales. First, we show time series
of X(t) and Nu(z) for Dfs2 [Fig. 7(a)] and Nfs2 [Fig. 7(e)].
Both values vary with respect to time about the mean values
which is typical for the turbulent flow case. Furthermore,
Fourier spectra of the temperature, Er7(k), and the temper-
ature component of the leading Lyapunov vector, Esrsr(k),
are shown. Data are taken in planes close to the top where
maximum magnitudes of §7 are found. The Dirichlet case
displays a local maximum at k = k,, that coincides for both
spectra [see Figs. 7(b) and 7(c)]. This local spectral peak
corresponds to a characteristic wavelength which is given by

N 2

AsToT = P (21
which remains unchanged in time at a value of ):,;T(;T ~ 4 and
thus corresponds to the characteristic extension of the tur-
bulent superstructures which have been discussed in Pandey
et al. [37] and Fonda et al. [34]. The results differ for the
Neumann case as displayed in Figs. 7(f)-7(h) of the figure.
The spectrum Esrsr(k) has a large-wave-number bump at
ky, A~ 2 which is indicated by the dashed line in Fig. 7(h).
These instabilities correspond to the fine granule patterns
which are for example seen in Fig. 2(b). While this local
maximum remains unchanged in time, a second one moves
gradually towards larger wavelengths [see again Fig. 7(h)].
This suggests that the turbulent flow develops instabilities
at an increasingly larger wavelength. The process is ceased
when the system size is reached and the nonlinear process of
supergranule formation is completed. We stress once more
that this behavior is fundamentally different from the case
with Dirichlet boundary conditions for the temperature field.

V. DISCUSSION AND PERSPECTIVE

Our main motivation was to demonstrate the gradual
formation of a salient large-scale convection pattern on a
timescale larger than the vertical diffusion time 7, = v/PrRa
and that eventually fills the whole convection domain in a
Rayleigh-Bénard convection setup. Following solar convec-
tion, this structure is termed supergranule. We showed that
this formation proceeds only in case of constant heat flux
boundary conditions (also known as Neumann conditions)
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FIG. 6. Lyapunov vector fields for Dirichlet and Neumann boundary conditions. The time evolution of patterns in the temperature field
T (x,y, 20, 1) [(@)—(d), (1)—(1)] and the leading Lyapunov vector temperature perturbation field |57 (x, y, zo, t)| [(e)—(h), (m)—(p)] is visualized.
We show data for run Dfs2 at zo ~ 1 — 2/367 & 0.94 (a)—(h) and run Nfs2 at zo = 1 — &7 /2 (i)—(p). The value of zo ~ 0.94 in Dfs2 corresponds
with one of the two maxima in Fig. 5(a). (a) and (i) show T and (e) and (m) 8T over the whole cross section of size L x L = 60 x 60. The
remaining subplots enlarge a highlighted region of interest of size 10 x 10. The times of the corresponding snapshots are indicated above. See

also Appendix C for the same analysis of Dfs2 in the midplane.

at the top and bottom planes of the layer, independently of
no-slip or free-slip boundary conditions for the velocity field.
Surprisingly, the supergranule pair is still observed when the
flow is in the state of fully developed turbulence as being the
case, at least for runs Nfs3 and Nfs4. We mention here simu-
lations of compressible photospheric convection (with similar
boundary conditions) by Rincon et al. [53] at I" = 42.6. The
authors report the formation of a dominant convective mode
and conclude that the simulations could not be run long
enough to study a further aggregation. Our results confirm that
long simulation times are necessary and demonstrate that this
dominant convection mode is eventually a supergranule pair
which can be seen even in the simpler (incompressible) RBC
setup.

As discussed, the critical mode at onset of Rayleigh-
Bénard convection in an infinitely extended layer with
Neumann conditions at the top and bottom is k. = 0. This

implies that a pair of counter-rotating convection cells fills a
domain with a finite periodicity length L at the onset, a be-
havior which is found in this work to persist to Ray > Ray.
We confirm the behavior by detecting the accumulation of ki-
netic energy and thermal variance in the four next-neighboring
Fourier modes to the (critical) zero mode with wavelength L.
The determination of the leading Lyapunov vector field, and
the subsequent spectral analysis of its temperature component,
demonstrates clearly that the flow structures at a given scale
give rise to an instability at a next bigger wavelength and
thus to a spatially larger flow structure. This inverse cascade
continues until the horizontal periodicity length is reached for
the present setup. In the solar case a further physical process
will limit the supergranule size.

We thus demonstrate that the structure formation mech-
anism, which was described in Chapman and Proctor [22]
above the onset of convection in the weakly nonlinear regime,
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FIG. 7. Unstable scale extraction from the leading Lyapunov vector field. Time series of the leading Lyapunov exponent A; (green) and
the Nusselt number Nu (gray) vs time for run Dfs2 in (a) and for corresponding run Nfs2 in (e). The Fourier spectra of temperature Er7 and
temperature component of the leading Lyapunov vector Esrsr are analyzed for run Dfs2 at zo = 1 — 2/387 = 0.94 in (b) and (c) and for Nfs2
atzo = 1 — 67/2 in (f) and (g). Corresponding times for the analysis are indicated at the top of each panel. Time-averaged spectra are taken
over 50 subsequent snapshots centered around the one with time indicated at the top. The shaded regions represent fluctuations with respect
to the standard deviation. Also, Espsy is multiplied by 10* in (b) and (c) and 103 in (f) and (g) for a better comparison. (d) and (h) display the
temporal evolution of the wavelength 5757 that corresponds to the local maximum in the spectrum Esrs7 (k) at a wave number k < 1 (solid
lines). This wave number drifts towards L in Nfs2 while it remains at Asrsr &~ 4 in Dfs2. The dashed line in (h) stands for the second local

maximum at a smaller scale A ~ 3.

persists far into the turbulent range. A possible next step
would be to derive effective amplitude equations, now for
the perturbations about a fully turbulent state. This will in-
clude turbulent closures and certainly requires simplifying
assumptions, but could be done along the lines of a very
recent work by Ibbeken et al. [54]. Our Lyapunov vector
analysis answers furthermore a question left open in Ref. [37]:
The generation of turbulent superstructures in the Dirichlet
case is a local pattern instability with a scale of the size
of a pair of counter-rotating mean circulation rolls, here
)AL(;TST ~ 4. In contrast, the Neumann case proceeds slowly
to a global wavelength instability by a cascading process
with igT,gT — L.

Finally, we return to the initial example of solar con-
vection where the fixed heat flux at the top is connected
with the well-known solar luminosity Lg. This flux is the
main driver of convection and thus the formation of gran-
ules and supergranules in the upper convection zone. Our
study showed that already these boundary conditions alone
generate a large-scale convection roll pair, i.e., without ad-
ditional magnetic fields, changes in chemical composition,
and the strong compressibility effects. As the typical scale
ratio £sg/{g =~ 30 of the solar convection case is equal to
the diameter ratio of our supergranule to granule roll for the
prescribed layer extension, namely (A/2)/H = 30, we want

to compare now characteristic velocities and evolution times
of Nfs4 with the solar data given in the Introduction. We thus
decompose u(x,t) = U(x) + u'(x,t) with U(x) = (u(x, 1)),.
The ratio of the corresponding root-mean-square velocities
ul,.../Ums = 5.8 comes close to the velocity ratio of vg/vsg ~
6 [10]. When the lifetime of a granule is estimated by the
mean turnover time of a Lagrangian tracer across the layer
with a value of f, =~ f, ~ 20 [55], one arrives at fy /t, ~
10*/20 ~ 500 which is at least of the same order of magnitude
as tsg/1g ~ 144 [10].

Clearly, this approximate agreement should be taken with
caution as the solar convection zone contains a much more
complicated physics at a much larger Rayleigh number and an
extremely small Prandtl number, Pr < 1076 [4]. Nevertheless,
our simple convection model might still turn out to be fruitful
to better interpret the solar observations as we were able to
reveal a basic instability mechanism in this class of turbulent
flows that leads to a large-scale flow structure. It is thus also a
good starting point for a step-by-step increase of complexity
towards the solar case that can test how the supergranule
formation is affected by an inclusion of further physical pro-
cesses. A promising extension would be to include constant
rotation about the vertical axis into the present model as an
additional process that stops the horizontal growth of the
supergranules before reaching domain size L (see again
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FIG. 8. Spectral resolution study with respect to the polynomial
order N on each spectral element. Vertical profiles of plane-time-
averaged quantities of one simulation setup with Rap = 10°, Pr = 1,
and no-slip boundary conditions at the top and bottom are shown. We
use the same spectral element mesh as for simulations Dfs2, Nfs1,
Nfs2 with N, = 160 000 and plot the mean profiles of the convective
heat current /Rap Pr(u,T)4, (a), the kinetic energy dissipation rate
(€)a.; (b), and the thermal dissipation rate (€7)4, ().

Ref. [14]). These studies started very recently and will be
reported elsewhere.
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APPENDIX A: SPECTRAL RESOLUTION TESTS

In spectral element methods, the resolution depends on two
factors: the total number of spectral elements (N,) and the
polynomial order of the spectral expansion on each element
and in each spatial direction (N). The method belongs to
the bigger class of exponentially fast converging /p-FEM
(FEM=finite element method) where equations are solved
on elements that fill the volume by a piecewise polynomial

—— Rap=3.85x10% N.=10,000
Rap = 3.85 x 10%, N, = 80, 000
—— Ran=2.04 x 10%, N, =10, 000
Ray=2.04 x 105, N, = 80, 000
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FIG. 9. Spectral resolution study with respect to the number of
spectral elements N, at fixed polynomial order N = 11. A compar-
ison of Dirichlet and Neumann boundary conditions is shown as
indicated in the legend at the top. The aspect ratio is I' = 15, the
Prandtl number is fixed at Pr = 1, and free-slip boundary conditions
are applied at the plates for the velocity field in all simulations. The
lateral boundary conditions are periodic. The Rayleigh number for
the case of constant flux Ray is agrees with case Nfs2, whereas Rap
is equal to that of case Dfs2 (see Table I). Profiles in (a) show convec-
tive heat transfer (1,7 )4 ,. The data for the Neumann case have been
multiplied by a factor of 10 for better visibility. (b) and (c) display
the time- and azimuthally averaged Fourier spectra of temperature
and vertical velocity component in the midplane. The time average
is performed over a time span of 200 convective free-fall times in all
cases.

approximation of the solutions. One can vary the size of the
element & (here, N,) or the polynomial degree p (here, N). In
our flow, the polynomial order and spectral element number
has to be chosen properly such that the steep gradients near
the top and bottom walls and the Kolmogorov scale g can be
resolved sufﬁciently Sufficient resolution is established once,
dz(2)/ (nk(@))a: < /2 for Pr 2 1. Here, dz(z) is the vertical
spectral element extension. ThlS criterion was suggested and
tested in Ref. [48]. To show the convergence of our results,
we perform first a resolution test with respect to two different
polynomial orders N, as shown in Fig. 8. The production run
setup is at N, = 160000 and N = 11 (case Dns2). It can be
seen that the same results can be achieved already with lower
polynomial order of N = 7 and that the curves for both N col-
lapse. We conclude that the spectral resolution with N = 11 is
sufficient.

Furthermore, we demonstrate that the gradual supergran-
ule formation is not a resolution effect. This is done in a
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FIG. 10. Comparison of the impact of Neumann (N) and Dirichlet (D), as well as free-slip (fs) and no-slip (ns) boundary conditions on
the instant temperature field 7'(x, y, z = 1 — 87 /2, tp) in the upper boundary layer. The specific combination of thermal and velocity boundary
conditions is given at the top of each column. Lateral boundaries obey periodicity and Pr = 1 for all simulations. The Rayleigh number
increases from top to bottom, i.e., we plot case (Nfs1, Nfs2, Nfs3) in (a), (e), and (i)—other columns similarly. The corresponding Rayleigh

numbers in the figure are given in the text of Appendix B.

smaller cell of aspect ratio I' =15 to accelerate the for-
mation process. We use the parameters of simulation run
Nfs2 with Ray = 2.04 x 10° and the corresponding run Dfs2
with Rap = 3.85 x 10*. We apply the same spectral ele-
ment resolution as in the main text, which translates to
N, = 10000. In the corresponding comparison runs, we dou-
ble the number of elements in each space direction which
leads to N, = 80 000. The supergranule evolves in the long-
term dynamics in case of Neumann boundary conditions,
while there is no such effect for Dirichlet boundary condi-
tions. The results are summarized in Fig. 9. In Fig. 9(a),
it is seen that the convective heat flux profiles collapse on
each other for both pairs of runs. The Fourier spectra in
Figs. 9(b) and 9(c), which are taken for the Dirichlet run
from 750 to 950 ¢; and for the Neumann run from 2500
to 2700 ts, display the aggregation in the latter case which
agrees very well with the results for I' = 60. In the Neumann

boundary case, the supergranule is already fully developed in
both runs. Note that in most panels the curves collapse onto
each other.

APPENDIX B: VELOCITY BOUNDARY CONDITIONS

We compare in Fig. 10 four different combinations of tem-
perature and velocity field boundary conditions for snapshots
of the temperature field at z = 1 — §7/2 and at a late stage of
the dynamical evolution. The panels in the leftmost column
coincide with those in Fig. 1. It can be seen that the instanta-
neous temperature patterns have very different characteristics
for the Neumann and Dirichlet cases. It is also seen that the
change of temperature boundary conditions is the essential
one (and not the change of the velocity boundary conditions)
that leads to the supergranule. All fields are visualized for the
whole cross-section of size L x L = 60 x 60.
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FIG. 11. Lyapunov analysis in an RBC flow in the spiral defect chaos (a)-(h) and turbulent flow regimes (i)—(p). The time evolution
of the temperature field T'(x,y,z = 0.5, ¢) [see (a)-(d) and (i)—(1)], and the temperature perturbation field of the leading Lyapunov vector
[6T (x,y,z =0.5,1)] [see (e)—(h) and (m)—(p)]. Dirichlet and no-slip boundary conditions are shown here. Lateral boundaries are periodic, the
aspect ratio I' = 60, and the Prandtl number Pr = 1. The Rayleigh numbers are Rap, = 5 x 10° and 3.85 x 10* (case Dfs2). (a), (e), (i), and (m)
show the whole plane L x L = 60 x 60, while the remaining panels enlarge a marked region of size 10 x 10. The time of the corresponding

snapshots is indicated at the top of each column.

We start with Rap = 10*, 10°, and 10° for runs Dnsl,
Dns2, and Dns3, respectively. In order to have the same dis-
tance from the onset of convection, we take Rap = 3.85 x
103, 3.85 x 10*, and 3.85 x 10° for runs Dfsl, Dfs2, and
Dfs3, respectively. The corresponding two series with Neu-
mann boundary conditions follow by Eq. (12). Thus Ray =
2.23 x 10%, 4.34 x 10°, and 8.31 x 10° for runs Nns1, Nns2,
and Nns3, respectively. The corresponding Rayleigh numbers
for Nfs1, Nfs2, and Nfs3 are listed in Table I.

APPENDIX C: LYAPUNOV VECTOR DETERMINATION

We provide in Fig. 11 two series of snapshots that show
the evolution of the temperature field 7'(x,y, z,¢) together

with the temperature component of the corresponding leading
Lyapunov vector, §T (x, y, z, t), for a combination of Dirich-
let and no-slip boundary conditions. Figures 11(a)-11(h) are
taken in the weakly nonlinear regime at Rap = 5.0 x 10°.
This run is a test of our routine as it can be compared with
results in the listed references, e.g., Egolf er al. [24] or Scheel
et al. [25]. As in those references, the Lyapunov vector field
highlights the regions of instability, where the defect forma-
tion is observable as a bright spot. The time-averaged leading
Lyapunov exponent A; = 252 £ 1. Figures 11(i)-11(p) are
for the turbulent flow case Dfs2 which is also discussed in
the main text. Again, local maxima of the Lyapunov vector
field correspond to a defect generation. The time-averaged
leading Lyapunov exponent A; = 2703 £ 7. All data which
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are shown in this figure are taken in the midplane z = 0.5. The
appearance of the localized defect is clearly detectable in the

leading Lyapunov vector field for both cases [see Figs. 11(c),
11(g) 11(k), and 11(0)].
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