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“A computer is an educational device, it’s in fact a direct reflection of your own

imagination, your own intelligence, your own programming skills and once

you’re given the freedom, in which to create things and to see the immediate

response on the screen, then it becomes a very enjoyable experience and you

go on to involve yourself in many other things.”

Computer store manager[1]
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1 Introduction

Breakthroughs in chemistry have always shaped our world, to the better or the worse.

From its prescientific, alchemical origins, chemistry continuously evolved into a modern

science. By providing many key technologies, some of them outlined below, chemistry

enables our present standard of living.

For most of the human existence, infections with particular bacteria meant certain

death, even for the most powerful people of their times.1 Today, many bacterial infections

are routinely treated with a variety of sophisticated antibiotics, e.g., penicillins, discovered

by Fleming, Florey and Chain.[13, 14]

Artificial nitrogen fixation through the Haber-Bosch-Process facilitated an unprece-

dented growth of the world population, by sustaining large-scale fertilizer production.[15]

A main product of the chemical industry are plastics. Ranging from unwanted mi-

croplastics in the food we consume,[16–20] to its packaging and many everyday items,

plastics are omnipresent in modern society.[21–23]

Chemistry is also expected to play a crucial role in mitigating climate change, by

providing new ways to generate and store energy, e.g., in the form of molecular hydrogen,

generated via artificial photosynthesis.[24–31]

While early chemical discoveries where predominantly made in classical laboratories,

where chemists meticulously carried out experiments by hand, modern chemistry is

increasingly supported by computational methods. Nowadays, predictive quantum

chemical and derived methods, like force fields[32–39], can be applied to more and more

complex systems.[40–48]

The Haber-Bosch process is assumed to consume 1% of the world’s energy production

and to account for 1.4% of global CO2 emissions.[49] Computational methods are now

routinely applied to investigate and evaluate greener alternatives, e.g., by electrocatal-

ysis.[50–53] Similarly, quantum chemical methods enable rational catalyst design for

1Henry VIII, (1491 – 1547), King of England, presumably died of sepsis.[10, 11] Napoleon Bonaparte
(1769 – 1821) and Ivan the Terrible (1530 – 1584) presumably died of syphilis.[12]
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1 Introduction

plastic manufacturing, e.g., polyurethane materials,[54] and ethylene polymerization.[55]

Computational methods are now also commonly used to study degradation pathways of

antibiotics,[56–58] or to design and evaluate entirely new drugs.[59–61]

In silico approaches are especially attractive to characterize short-lived species, such as

transition states (TSs) or molecular systems in excited states (ESs). Besides the chosen

level of theory, two complementary computational approaches can be distinguished: time-

dependent and time-independent ones. Time-dependent approaches explicitly propagate

the system under study in time, e.g., by integrating Newton’s law of motion (molecular

dynamics) or the time-dependent Schrödinger equation (TDSE) (quantum dynamics).[62,

63] In the following, this thesis will outline the time-independent approach in more detail.

1.1 Exploring Potential Energy Surfaces

When not employing molecular or quantum dynamics, computational studies of chemical

transformations are conducted by evaluating and comparing energies and molecular

properties at stationary points (SPs) of the potential energy surface (PES), where the

gradient of the potential V (x) vanishes.

dV (x)

dx
= 0 (1.1)

SPs are distinguished by their index l, given by the number of significant negative

eigenvalues of the potential’s Hessian,[64] the matrix of second partial derivatives. Minima

on the PES with l = 0 represent possible educts, products or stable intermediates of

chemical transformations and are connected through TSs with l = 1. Involvement of

higher index SPs (l > 1) is also discussed by some authors.[65–68] The eigenvector

belonging to the single negative eigenvalue present at a TS with l = 1 is called the

transition vector. Going downhill from a TS along the transition vector in both directions

yields a minimum energy path (MEP) and leads to the two SPs that are connected

by this TS. A common choice for MEP calculation starting from a TS is the intrinsic

reaction coordinate (IRC), the path of steepest descent in mass-weighted coordinates.[69]

Or, put differently: the gradient component perpendicular to the MEP vanishes, only

the parallel component along the MEP remains.

Parts of this chapter are based on:
Steinmetzer, J.; Kupfer, S.; Gräfe, S. pysisyphus: Exploring potential energy surfaces in ground

and excited states. International Journal of Quantum Chemistry 2020, 121, DOI: 10.1002/qua.
26390

Open Access publication, licensed under Creative Commons - Attribution 4.0 International (CC
BY 4.0).
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1.1 Exploring Potential Energy Surfaces

Instead of initial TS optimization by surface-walking[70] and subsequent MEP calcula-

tion, both can be obtained simultaneously by chain-of-states (COS) optimization. A COS

can be regarded as approximation of the true MEP and comprises several geometries,

called images. The most widespread used COS are the nudged elastic band (NEB) and

the string method (SM).[71, 72] COSs methods are especially interesting when no suitable

TS guess is available, as they are often started from an interpolated path between two

minima on the PES, e.g. known educts and products of a chemical transformation.[73]

Both approaches, surface-walking and COS optimization, are outlined exemplarily

for the two-dimensional Müller–Brown-PES (MB-PES) in Figures 1.1 to 1.2.[74] The

MB-PES is obtained as linear combination of four Gaussian potentials.

V (x, y) =
4∑︂

i=1

Ai exp
(︁
ai(x− xi,0)2 + bi(x− xi,0)(y − yi,0) + +ci(z − zi,0)2

)︁
A = (−200,−100,−170, 15), x0 = (1, 0,−0.5,−1), y0 = (0, 0.5, 1.5, 1)

a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7)

(1.2)

It features three minima, two corresponding TSs of index l = 1 and was employed

numerous times for benchmarking (reaction path) optimization algorithms.[75–82] Even

though the potential is quite simple, it exhibits several characteristics, also found in

real chemical systems, e.g., normal modes of highly varying stiffness and TSs with small

basins of attraction.[76]

Figure 1.1 outlines the surface-walking approach. Starting from a guess geometry (I),

the first SP (II, minimum) is obtained. Modification of II yields TS guess (III), which is

subsequently refined to a true TS (IV) of index l = 1. IRC integration confirms that TS

IV connects II to the formerly unknown SP V. The same process can be repeated, to

discover the two remaining SPs (not numbered in Figure 1.1).

PES exploration by COS optimization is shown in Figure 1.2. There, knowledge of

a second SP (IV) is required. An initial COS (grey line with dots) is constructed by

linear interpolation between II and IV and gradually relaxed towards the true MEP.

Later COS optimization cycles are given in a darker shade. In the end, the final COS in

Figure 1.2 coincides with the IRC in Figure 1.1. A COS in Cartesian coordinates and

an IRC carried out in mass-weighted Cartesians only coincide when all atoms have unit

mass, which is usually not true for real molecular systems. While SP geometries are

independent of the chosen coordinate system, intermediate geometries along an IRC are

not.[83]
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1 Introduction

The surface-walking approach is usually computationally less demanding and requires

only knowledge of one SP, e.g., II or V in Figure 1.1, but manual construction of a suitable

TS guess may be difficult. The COS approach requires knowledge of two SPs, connected

by a presumed TS, but manual construction of a TS guess is usually avoided, as the

highest energy image (HEI) of a COS can be employed instead. A clear disadvantage

of the second approach is its high computational cost, as many energy and gradient

evaluations are required for COS optimization.

Reviews on TS searches and COS methods are given by Schlegel, Dewyer and

Ásgeirsson.[82, 84, 85]

Figure 1.1: Surface-walking approach for exploring the MB-PES.[74] SPs are given as
bigger circles (purple = minima, green = TSs; white outline), non-SPs as
smaller circles. Initial (TS)-optimizations, starting from non-SPs, are given
in the color of the targeted SP. Values f(x, y) ≥ 25 are shown with the same
red color. The order, in which the respective points are obtained, is indicated
by roman numerals.

Starting at I, minimum II at (-0.044, 0.465) is obtained by optimization.
Based on II, a TS guess (III) is constructed, leading to TS IV at (-0.822,
0.624). Finally, an IRC is integrated, yielding minimum V (-0.558, 1.442).
Unit mass was assumed for IRC integration. By passing the inflection points
(yellow circles), the curvature of the the PES changes its sign.

6



1.2 Photochemistry

Figure 1.2: PES exploration by COS optimization. Please see the first paragraph
of Figure 1.1 for a general comment on the plot and the employed color scheme.

Starting from I and III, minima II and IV are obtained. Subsequently, an
initial, interpolated COS is gradually relaxed to the true MEP. Earlier cycles
are shown in a lighter shade, COS images are shown as small dots. Evolution
of the HEI (small green circle) towards the actual TS is shown by a dashed
green line.

1.2 Photochemistry

Traversing the PES of the electronic ground state (GS) by means of surface-walking or

COS optimization is usually not hampered by state crossings, as the remaining (excited)

electronic states are energetically well separated. This changes in photochemical and

photophysical studies, were the state of interest is an electronically ES and multiple

electronic states are considered simultaneously.

Although ES-PESs are often explored using molecular or quantum dynamics,[86–89]

localizing SPs in ESs is still important, e.g., for Marcus theory or to rationalize ES

relaxation pathways for emission (fluorescence, phosphorescence).[8, 90–92]

Typical, competing processes to be taken into account when studying ES-PESs are

summarized in Figure 1.3. There, two SPs, for instance, educts and products of a

hypothetical reaction, are separated by a barrier in the GS. Depending on its height,

7



1 Introduction

Figure 1.3: Schematic depiction of different photochemical processes that may take place
after initial excitation from the vibrational GS at a SP. Same symmetry
(spin and wavefunction) is assumed for all electronic states. Arrows indicate
possible wavepackage evolution along the different electronic states.

the barrier may not be crossed in the GS, thus the reaction is prevented. By exciting

a molecule into a higher lying electronic state, new pathways can become accessible,

allowing crossing of otherwise insurmountable barriers.

Starting from the vibrational and electronic GS at an equilibrium geometry, a molecule

is excited by light into a higher lying electronic state. According to their electronic

structure, ESs may be bound (S1 in Figure 1.3) or repulsive (S2 in Figure 1.3). Fol-

lowing the excitation, the molecule begins to evolve on the ES-PES, as it is not at

a SP anymore. If another ES comes energetically close, radiationless internal conver-

sion (IC) to this ES may occur. IC takes place at conical intersections, which were

found to be important regions in ES relaxation pathways.[93–99] Alternatively, relax-

ation to the GS can also proceed by photon emission (fluorescence). Compared to

the irradiating light, the emitted light is redshifted, as some of the initial energy was

already dissipated into the environment or other internal degrees of freedom. If ESs of

different multiplicities have to be considered, e.g., because of strong spin-orbit coupling,

additional process like intersystem crossing and phosphorescence may take place.[100–103]
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1.2 Photochemistry

A physiologically highly relevant and well studied reaction involving ESs, exhibiting

several of the just discussed processes, is the photoisomerization of 11-cis-retinal to

11-trans-retinal.

11-cis-retinal acts as chromophor in the light-sensitive G protein-coupled receptor

rhodopsin, which facilitates light perception in dim conditions. Together with photore-

ceptor proteins photopsins I–III that allow color perception, rhodopsin enables the vision

process in vertebrates.

The retinals are conjugated polyenes, covalently bound in their protonated Schiff-base

form to a rhodopsin lysine residue. Photoisomerization of 11-cis-retinal to 11-trans-

retinal in rhodopsin occurs very fast in about 200 fs after initial excitation, with a

high quantum yield of 0.67.[104, 105] The protein environment greatly facilitates the

isomerization reaction, as the same photoisomerization takes places much slower (4 ps),

with decreased quantum yield (0.22) in MeOH. It was proposed that the protein modulates

the accessibility of different retinal GS conformers.[106]

Figure 1.4: Schematic potential energy curves (PECs) for the photoisomerization of 11-
cis-retinal to 11-trans-retinal in their protonated Schiff-base forms. PECs
were adapted from fig 2a in [105], licensed under CC BY 4.0.

Rhodopsin exhibits an absorption maximum at λmax = 498 nm.[107] Following irradia-

tion between 550 nm to 650 nm, a wavepackage is excited from the GS to the S1, where

it evolves towards a conical intersection (see Figure 1.4).[105, 108–110] Pump-probe
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1 Introduction

experiments revealed greatly extended ES lifetimes at low temperatures, indicating the

presence of a small barrier in the ES.[105]

At the conical intersection, radiationless decay to the S0 occurs, ultimately yielding

11-trans-retinal.[111] The retinal isomerization induces further conformational changes

in the rhodopsin photopigment, which activate the G protein transducin. Transducin

activates a phosphodiestrase, that degrades and thereby lowers the intracellular cyclic

guanosine monophosphate concentration, blocking cation influx into the cell.[104] Finally,

the photoreceptor cells are hyperpolarized, leading to neuron excitation and the vision

process.[112]

Reviews on photochemistry and calculation of ESs are found in [113–120].

1.3 Goals and Outline of this Thesis

Computational photochemistry often requires effective ES-tracking, as multiple electronic

states may be energetically close to a state of interest, e.g., in optimizations. When

moving along the PES, root-flips may occur and state-tracking by energy ordering alone

becomes unreliable.

Currently, ES-tracking is not universally available in popular quantum chemistry (QC)-

packages, or if present, poorly documented and only usable in a black box fashion.

ORCA only recently gained ES-tracking capabilities in version 4.1.0.[121] In Turbomole,

ES-tracking is available, but undocumented.[122, 123] State-tracking is enabled by default

in the Gaussian program suite, but only usable in a black-box fashion, for instance, the

reference step in an optimization is restricted to the previous cycle.

All QC packages just mentioned are closed-source program and their source code is

not freely available, making changes to them impossible. An attractive route to add the

required functionality, is to create wrappers for these packages that expose a common

interface and then implement ES-tracking for the common interface. The feasibility of

the wrapper approach was already demonstrated impressively by the Atomic Simulation

Environment (ASE) project, although ASE is more tailored to solid-state applications and

lacks support for internal coordinates, which are required for efficient optimizations.[124]

One goal of this thesis is to implement an external, state of the art optimizer that is

aware of ESs and supports efficient and effective ES tracking, for further photochemical

applications, e.g., optimization of transition metal complex relaxation pathways. Sec-

ondly, this thesis provides computational insights for an elegant biaryl coupling reaction

discovered by Kloss et al.[2, 125]
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1.3 Goals and Outline of this Thesis

The remainder of this thesis is split in two parts. Part II briefly introduces several

approaches to solve the Schrödinger equation and presents the theoretical foundations of

ES-tracking, surface-walking, COS methods and internal coordinates.

Results of this thesis are found in Part III. The biaryl coupling reaction is discussed in

chapter 12. Implementation of the external optimizer pysisyphus and its application in

the context of ES optimizations and the biaryl coupling reaction is discussed in chapter 13.

Finally, the thesis is summarized in chapter 14.
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Part II

Theoretical Background and

Methods
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2 Schrödinger Equation

Optimizing stationary points on a PES requires, at least, the ability to calculate the

energy of a given atomic configuration (system). To this end, many methods have been

proposed, most of them are based on solving the TDSE

iℏ
∂

∂t
|Ψ(t, r,R)⟩ = Ĥ |⊖(⊔,∇,R)⟩ . (2.1)

The system under study is characterized by its Hamiltonian Ĥ and a corresponding wave

function Ψ(t, r,R), depending on time t, electronic coordinates r and nuclear coordinates

R. For stationary Ĥ, a time-independent form of eq. (2.1) is derived as

Ĥ |⊖(∇,R)⟩ = Etot |⊖(∇,R)⟩ (2.2)

with Etot denoting the systems total energy. The Hamiltonian Ĥ comprises all interactions

between the constituents of the system. For a system of N electrons (subscript e) and

M nuclei (subscript nuc) it is

Ĥ = T̂ e + T̂ nuc + V̂ nuc,nuc + V̂ nuc,e + V̂ e,e⏞ ⏟⏟ ⏞
V̂

(2.3)

with the kinetic energy operator T̂ e (T̂ nuc) of the electrons (nuclei). Coulombic interactions

are taken into account by the potential energy operator V̂ . In atomic units, Ĥ is given by

Ĥ = − 1

2

N∑︂
n

∇2
n⏞ ⏟⏟ ⏞

T̂ e

− 1

2

M∑︂
m

1

Mm
∇2

m⏞ ⏟⏟ ⏞
T̂ nuc

+
M∑︂

m>m′

qmqm′

Rm,m′⏞ ⏟⏟ ⏞
V̂nuc,nuc

−
M,N∑︂
m,n

qm
rm,n⏞ ⏟⏟ ⏞

V̂nuc,e

+
N∑︂

n>n′

1

rm,m′⏞ ⏟⏟ ⏞
V̂e,e

. (2.4)
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A commonly employed approximation for |Ψ(r,R)⟩ is the Born-Oppenheimer ansatz

(BOA), where the electronic wave function |Ψe(r,R)⟩ only depends parametrically on

the nuclear coordinates R.[126]

|Ψ(r,R)⟩ ≈ |Ψe(r,R)⟩ |Ψnuc(R)⟩ (2.5)

This approximation is justified, as the light electrons can adapt nearly instantaneously

to positional changes of much heavier nuclei. The electronic wave function Ψe(r,R) is

obtained by solving the electronic Schrödinger equation

ĤeΨe(r,R) = E |Ψe(r,R)⟩ (2.6)

with

Ĥe = T̂ e + V̂ (2.7)

where E denotes the electronic energy of the system. In the following, application of

the BOA is assumed throughout and nuclear coordinates will be denoted without the

overline, just as R.

3 Solving the Electronic Schrödinger

Equation

Eq. (2.6) can be solved analytically only for small systems, like H2
+. Treating larger

systems requires additional approximations. Given an approximate wave function Ψe,

a lower bound for its energy E is provided by the Rayleigh-Ritz method (variational

principle),[127] as the expectation value of Ĥ

E =
⟨Ψe|Ĥ|⊖e⟩
⟨Ψe|Ψe⟩

. (3.1)

Based on eq. (3.1), wave function Ψe can be varied, until a minimum energy E is obtained.

As the wave function Ψe describes fermionic particles, it must fulfill the Pauli exclusion

principle, which requires the wave function to change sign, under the exchange of two

fermions.[128] Assuming the expansion of Ψe into a set of N orthogonal spin orbitals
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3.1 Hartree-Fock

{ϕi}, the Pauli exclusion principle is satisfied, by employing a Slater determinant (SD)

as wave function.

Ψe(1, 2, ...N) =
1√
N !

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
ϕ1(x1) ϕ2(x1) · · · ϕN (x1)

ϕ1(x2) ϕ2(x2) · · · ϕN (x2)
...

...
. . .

...

ϕ1(xN ) ϕ2(xN ) · · · ϕN (xN )

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ (3.2)

Here, ϕa(xi) denotes electron i in spin orbital a. Spin orbitals are composed of a spatial

orbital ψa and a spin part, depending on spin coordinate ωi.

ϕa(xi) = |ψa(ri)⟩ ·

⎧⎨⎩|α(ωi)⟩

|β(ωi)⟩
(3.3)

3.1 Hartree-Fock

The computational bottleneck of solving eq. (2.6) is the accurate treatment of the electron-

electron interaction (V̂ e,e, see eq. 2.4). A basic approximation to V̂ e,e is introduced in

the Hartree-Fock (HF) method, by considering merely the interaction of electrons with

the average field of the remaining electrons.[129] Minimizing the energy of a SD, while

requiring the spin orbitals to stay orthonormal, yields the HF equations.

f̂(xi)ϕa(xi) = εaϕa(xi) i = 1, 2...N (3.4)

The Fock operator f̂(xi) comprises a one-electron part ĥ(xi), describing electron-nuclear

attraction and electronic kinetic energy and a two-electron part υ̂HF(xi), describing

Coulomb interactions between electrons.

f̂(xi) = ĥ(xi) + υ̂HF(xi) (3.5)

Whereas orbital-free, fully numerical solution of the HF equations (3.4) is restricted to

small systems up to tri-atomics, [130–133] larger systems can be treated by expanding

spatial orbitals ψa into atomic orbitals φµ (linear combination of atomic orbitals (LCAO)).

ψa =

η∑︂
µ=1

dµaφµ a = 1, 2...η (3.6)
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3 Solving the Electronic Schrödinger Equation

Parameter η denotes the number of basis functions used in the contraction of spatial

orbital ψa and dµ denote contraction coefficients. Historically, Slater-type orbitals (STOs)

φSTO(r) ∝ e−αr (3.7)

have been employed as basis functions, as they are analytical solutions to the hydrogen

atom Schrödinger equation. Their use in quantum chemical calculations was superseded

by Gaussian-type orbitals (GTOs)

φGTO(r) ∝ e−αr2 , (3.8)

as Boys recognized that molecular integrals can be calculated much more efficiently using

GTOs.[134–138] Compared to GTOs, evaluation of molecular integrals over STOs requires

more elaborate algorithms, even for simple integrals like basis function overlaps.[139–144]

In contrast to STOs, GTOs show incorrect asymptotic behavior for big r and their

derivative vanishes at the nucleus (r = 0), hence multiple GTOs are summed to approxi-

mate a STO.[145] Many different GTO basis sets have been proposed until now.[146–148]

Basis set choice depends on the chemical nature of the system at hand, as well as on the

employed quantum chemical method.[149, 150]

Expanding spatial orbitals into atomic orbitals allows transforming the differential HF

equations (3.4) into a set of algebraic equations

f̂(ri)
∑︂
µ

Cµaφµ(ri) = εa
∑︂
µ

Cνaφν(ri) , (3.9)

also known as the Roothaan-Hall equations

FC = SCε (3.10)

with Fock matrix F , molecular orbital (MO) coefficients C, overlap matrix S and MO

energies ε.[151, 152] The Roothaan-Hall equations (3.10) are solved iteratively, until

self-consistency of C is achieved.

If a sufficiently sized basis set is employed, HF is able to account for 99% of the total

energy. The difference between the exact, non-relativistic total energy Eexact and the HF

energy EHF is known as the correlation energy

Ecor = Eexact − EHF . (3.11)
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3.2 Density Functional Theory

Two types of electron correlation are distinguished: static correlation, arising from

from different, energetically (nearly) degenerate electronic configurations and dynamic

correlation, arsing from the correlated motion of electrons, as they repel each other.

3.2 Density Functional Theory

Except for the exchange interaction, electron correlation is mostly neglected in HF. A

computationally efficient way to partially incorporate dynamical correlation at similar

computational cost, is density functional theory (DFT). Whereas a N electron wave

function depends on 3N spatial and N spin coordinates, the electronic density

n (r) = N

∫︂
dr2 ...

∫︂
drN Ψ∗(r, r2, ... rN )Ψ(r, r2, ... rN ) (3.12)

depends on only 3 spatial coordinates, independent of N . Hohenberg and Kohn showed

that a GS wave function Ψ0(r1, r2, ...rN ) is an exact functional of the GS electronic

density n0 (r) and that the GS density can be determined from the GS energy functional

E[n0 (r)] by the variational principle.[153, 154]

Originally, DFT was formulated orbital-free, thus making it computationally very

efficient, as the dimensionality of the electronic density is only 3, but the accurate con-

struction of the electronic kinetic energy functional proved difficult.[155–160] Nowadays,

DFT is mostly used in the framework of Kohn and Sham (KS), where orbitals are

reintroduced and used to expand the electronic density.[161, 162]

n (r) =
∑︂
a

|ψa(r)|2 (3.13)

KS-DFT simplifies the calculation of the electronic kinetic energy

T0[n (r)] = −
1

2

∑︂
a

∫︂
dr ψa(r)

∗∇2ψa(r) (3.14)

but also increases the computational costs, as the original dimensionality of the problem

is restored. The energy functional comprises several terms

E[n (r)] = T0[n (r)] + J [n (r)] + EXC[n (r)] + Vext[n (r)] (3.15)

with the electron-electron Coulomb potential J , the exchange-correlation (XC) functional

EXC and an arbitrary external potential Vext, e.g., the Coulomb potential of the electrons
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3 Solving the Electronic Schrödinger Equation

in the field of nuclear charges. The only unknown term in eq. (3.15) is EXC and its choice

is crucial for the accuracy of DFT calculations.[163]

The simplest XC functional is given by the local density approximation (LDA), derived

from an homogeneous electron gas. It only depends on the electronic density n (r).[164]

A first improvement over LDA is given by the generalized gradient approximation (GGA)

that also considers the electronic density gradient ∇n (r).[165] By incorporating exact

HF exchange, (global) hybrid functionals are obtained. A popular hybrid functional

is B3LYP,[166] consisting of the exchange-functional B88 of Becke and the correlation-

functional of Lee, Yang and Parr.[163, 167]

EB3LYP
xc = ELDA

xc + a0
(︁
EHF

x − ELDA
x

)︁
+ ax∆E

B88
x

+ ac
(︁
ELYP

c − EVWN-LDA
c

)︁ (3.16)

Parameters a0 = 0.2, ax = 0.72 and ac = 0.81 were fitted, to reproduce atomization

energies and ionization potentials from the G2 data set.[168]

More recent developments include meta-(hybrid)-GGAs, relying also on the second

derivative of the electronic density ∇2n (r) and double hybrid functionals, which include

a perturbative second-order correlation part.[169–172]

Common XC functionals, like B3LYP, have several shortcomings, especially in the

treatment of ESs in time-dependent DFT (TD-DFT) calculations (see section 3.3). Plain

GGA and hybrid XC functionals often greatly underestimate excitation energies of charge

transfer (CT) states and completely fail in the description of double excitations, based

on the single reference nature of DFT.[171, 173–177]

Parts of these deficiencies can be traced to a wrong behavior in the long-range part

of the interelectronic exchange potential. In B3LYP, it decays only as −0.2r−1
12 , instead

of the correct −r−1
12 and the amount of exact HF exchange is independent of r12.[178,

179] By making the amount of exact exchange depend on the interelectronic distance r12,

greatly improved results for CT states are obtained. To this end, Yanai et al. proposed

the coulomb attenuated method (CAM), where r−1
12 is split into

1

r12
=

1− [α+ β erf(µr12)]

r12⏞ ⏟⏟ ⏞
short range

+
α+ β erf(µr12)

r12⏞ ⏟⏟ ⏞
long range

. (3.17)

Optimal values were determined as α = 0.19, β = 0.46 and µ = 0.33.[179] Eq. (3.17) is

used to interpolate the exact exchange ratio between 19% for short and 65% for long
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3.3 Time-Dependent Density Functional Theory

interelectronic distances. In the CAM framework B3LYP uses α = 0.2 and β = 0.0. XC

functionals incorporating eq. (3.17) are called range-separated hybrids.[180–183]

Alternatively, local hybrid XC functionals, where the amount of exact exchange is

real-space position dependent, also show promising performance for CT states.[184–186]

3.3 Time-Dependent Density Functional Theory

Excited states, arsing from a time-dependent external potential, e.g., an oscillating

electric field with frequency ω, field strength F and dipole operator µ

Vext(t) = µF cos (ωt) (3.18)

can’t be treated by classic Hohenberg-Kohn-Sham DFT, as the Hohenberg-Kohn theorems

are restricted to electronic densities, describing time-independent GSs. Runge and

Gross extended the time-independent DFT formalism and proved a unique one-to-one

correspondence between a time-dependent external potential and the electronic density

n (r, t).[187–189]

The time-dependent electronic density is calculated similar to the Kohn-Sham (KS)

ansatz in eq. (3.13) as

n (r, t) =
∑︂
a

|ψa(r, t)|2 , (3.19)

in which the orbitals ψa(r, t) are obtained from the time-dependent KS-equations

i
∂

∂t
ψa(r, t) =

[︃
−1

2
∇2 + Vs(r, t)

]︃
ψa(r, t) (3.20)

with the time-dependent KS potential Vs(r, t).

While there exist real-space formulations of TD-DFT,[190–193] that explicitly propa-

gate the electronic density in time, TD-DFT calculations are mostly conducted in the

linear response (LR) formulation.[194, 195] Assuming a small time-dependent perturba-

tion, the electronic density is given as

n (r, t) = n0(r) + n1(r, t) , (3.21)

where n1(r, t) is the linear response. Its Fourier transformation is given as

n1(r, ω) =

∫︂
dr′ χ(r, r′, ω) υ1(r, ω) (3.22)
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3 Solving the Electronic Schrödinger Equation

with the density-density response function χ(r, r′, ω), whose poles correspond to the

excitation energies of the system under study.[196, 197]

Practically, excitation energies ω and ES wave functions, expressed as linear combina-

tion of singly excited SDs, are obtained by solving the Casida equations [194, 195][︄
A B

A∗ B∗

]︄(︄
X

Y

)︄
= ω

[︄
1 0

0 −1

]︄(︄
X

Y

)︄
. (3.23)

Explicit expressions for the matrices A and B are found in the literature.[195, 198] The

eigenvectors
(︁
X
Y

)︁
correspond to the transition density matrices (see section 4.2).

3.4 Density Functional Tight-Binding

Naive HF and DFT both scale as N4, with N denoting the number of basis functions.[189]

This unfavorable scaling makes them unsuitable for quick, explorative calculations and

for treating large systems, with thousands of atoms. On the other hand, force fields (FFs)

enable molecular dynamic simulations of many nanoseconds for several hundred thousands

of atoms.[199–201] Drawbacks are their complicated setup and the absence of a wave

function, for further analysis or the calculation of ESs. The realm between high scaling ab

initio methods and FFs is given by semi-empirical quantum chemistry methods (SQMs).

They allow treating large systems, while still providing a wave function.[202, 203] A SQM

closely related to DFT is density functional tight-binding (DFTB).[204–206]

Starting from the DFT energy functional in eq. (3.15) and assuming n (r) is the sum of

an unperturbed reference density n0 and a small fluctuation ∆n, the XC energy functional

can be expanded in a Taylor series around n0.[207]

EXC[n0 +∆n] = EXC[n0] +

∫︂ [︃
δEXC[n]

δn

]︃
n0

∆n+
1

2

∫︂ ′ ∫︂ [︃δ2EXC[n]

δn2

]︃
n0,n′

0

∆n∆n′

+
1

6

∫︂ ′′ ∫︂ ′ ∫︂ [︃δ3EXC[n]

δn3

]︃
n0,n′

0,n
′′
0

∆n∆n′∆n′′ + . . .

(3.24)

For simplicity, the dependence of n on r has been dropped in eq. (3.24) and integration

occurs over r, r′ and r′′. Based on the expansion order in eq. (3.24) different DFTB

approaches are distinguished, ranging from DFTB1 to DFTB3, with the latter being the

most accurate one.[205]
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3.4 Density Functional Tight-Binding

The general energy expression for self-consistent charge (SCC) DFTB comprises three

terms[207]

ESCC-DFTB =
∑︂
iab

ni
∑︂
µ∈a

∑︂
ν∈b

cµicνiH
0
µν⏞ ⏟⏟ ⏞

EH0

+
1

2

∑︂
ab

∆qa∆qbγab⏞ ⏟⏟ ⏞
Eγ

+
1

2

∑︂
ab

V rep
ab⏞ ⏟⏟ ⏞

Erep

(3.25)

where i runs over all KS orbitals, a and b over all atoms and the greek indices µ and ν

over basis functions at the respective atom.

EH0 contains energy contributions from an atomic orbital Hamiltonian and depends

entirely on precomputed reference densities,[208] making the approach, in combination

with a minimal valence basis, computationally extremely efficient. Diagonalization of H0

is the dominant step in DFTB calculations. Pair-wise repulsive terms are gathered in Erep.

Considering only EH0 and Erep leads to the non-self consistent DFTB1 method.[205]

Including Eγ yields the self-consistent methods (DFTB2, DFTB3). [207, 209] ∆qi is the

net charge of atom i

∆qi = qi − q0i (3.26)

and γab describes the electron-electron interaction. It is given as integral over two

normalized Slater-type spherical charge densities.[207] To obtain meaningful geometries,

a dispersion correction is often added to eq. (3.25), which also proved crucial for reliable

DFT geometries.[210–213]

A major drawback of the DFTB approach is its element-pair-wise parametrization,

resulting in a very tedious fitting process.[214, 215] The recently proposed extended

tight-binding (XTB) methods by Grimme alleviate the parametrization problem, as they

avoid pair-wise parameters and are parametrized up to radon (Z = 86).[212, 216, 217]
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4 Excited State Tracking in Optimizations

In contrast to GS optimizations, where the state of interest is usually energetically well

separated from other electronic states and crossings are unlikely, the picture is different for

ES optimizations. Given an initial ES geometry there may be a plethora of energetically

close states that may cross with the state of interest over the course of an optimization. To

overcome this problem, robust algorithms for ES tracking are of vital importance. Until

now, many different techniques for state-tracking have been proposed, i.e., comparison of

attachment- and detachment densities,[218] quantified natural transition orbital (NTO)

analysis,[219, 220] overlaps between transition density matrices in the MO basis[221, 222]

and the NTO basis[223, 224], overlaps between wavefunctions comprised of arbitrarily

excited SDs[225] and overlaps between wavefunctions constructed from singly excited

SDs.[226] As the latter two methods calculate overlaps between SDs, they are compu-

tationally much more expensive than the former methods. Exclusively, actual overlaps

between wavefunctions – comprised of arbitrarily excited SDs – can capture crossings

between ground- and excited electronic states, as the other methods rely on quantities

that are only defined for ESs, like transition density matrices and NTOs derived from

the former.[227]

ES tracking in optimizations is realized by calculating excited state overlaps between

a given molecular geometry and a reference geometry with the overlaps being stored

in an overlap matrix S. The exact expressions for S depend on the employed tracking

algorithm. In the following, three different methods for ES tracking will be discussed

briefly.

Parts of this chapter are based on:
Steinmetzer, J.; Kupfer, S.; Gräfe, S. pysisyphus: Exploring potential energy surfaces in ground

and excited states. International Journal of Quantum Chemistry 2020, 121, DOI: 10.1002/qua.
26390

Open Access publication, licensed under Creative Commons - Attribution 4.0 International (CC
BY 4.0).
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4 Excited State Tracking in Optimizations

4.1 Wavefunction Overlaps

Wavefunction overlaps (WFO) between two sets of electronic states given by the wave-

functions {|ΨI⟩} and {|Ψ′
J⟩}, calculated at molecular geometries RI and RJ , can be

expanded into SDs:

SIJ = ⟨ΨI |Ψ′
J⟩ =

NCI,I∑︂
k=1

NCI,J∑︂
l=1

dIkdJl ⟨Φk|Φ′
l⟩ , (4.1)

with d being (configuration interaction) CI-coefficients, NCI their number and {⟨Φ|}
denote SDs. Overlaps between Slater determinants ⟨Φk|Φ′

l⟩ are reduced to MO overlaps.

⟨Φk|Φ′
l⟩

=⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

⟨ϕk(1)|ϕ′l(1)⟩ · · · ⟨ϕk(1)|ϕ′l(nα)
⟩ ⟨ϕk(1)|ϕ̄

′
l(nα+1)⟩ · · · ⟨ϕk(1)|ϕ̄

′
l(n)⟩

...
. . .

...
. . .

...

⟨ϕk(nα)|ϕ′l(1)⟩ · · · ⟨ϕk(nα)|ϕ′l(nα)
⟩

... ⟨ϕ̄k(nα+1)|ϕ̄
′
l(nα+1)⟩ · · · ⟨ϕ̄k(nα+1)|ϕ̄

′
l(n)⟩

. . .
...

. . .
...

⟨ϕ̄k(n)|ϕ′l(1)⟩ · · · ⟨ϕ̄k(n)|ϕ′l(nα)
⟩ ⟨ϕ̄k(n)|ϕ̄

′
l(nα+1)⟩ · · · ⟨ϕ̄k(n)|ϕ̄

′
l(n)⟩

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

=⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⟨ϕk(1)|ϕ′l(1)⟩ · · · ⟨ϕk(1)|ϕ′l(nα)
⟩

...
. . .

... 0

⟨ϕk(nα)|ϕ′l(1)⟩ · · · ⟨ϕk(nα)|ϕ′l(nα)
⟩
⟨ϕ̄k(nα+1)|ϕ̄

′
l(nα+1)⟩ · · · ⟨ϕ̄k(nα+1)|ϕ̄

′
l(n)⟩

0
...

. . .
...

⟨ϕ̄k(n)|ϕ̄
′
l(nα+1)⟩ · · · ⟨ϕ̄k(n)|ϕ̄

′
l(n)⟩

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

(4.2)

The MO overlap matrix is block diagonal, as MOs of different spin are orthogonal and

their overlap vanishes.[225] Overlaps between alpha MOs (Skl) and beta MOs (S̄kl) can
be calculated separately.
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4.2 Transition Density Overlaps

⟨Φk|Φ′
l⟩ =⃓⃓⃓⃓

⃓⃓⃓⃓ ⟨ϕk(1)|ϕ′l(1)⟩ · · · ⟨ϕk(1)|ϕ′l(nα)
⟩

...
. . .

...

⟨ϕk(nα)|ϕ′l(1)⟩ · · · ⟨ϕk(nα)|ϕ′l(nα)
⟩

⃓⃓⃓⃓
⃓⃓⃓⃓

⏞ ⏟⏟ ⏞
Skl

×

⃓⃓⃓⃓
⃓⃓⃓⃓ ⟨ϕ̄k(nα+1)|ϕ̄

′
l(nα+1)⟩ · · · ⟨ϕ̄k(nα+1)|ϕ̄

′
l(n)⟩

...
. . .

...

⟨ϕ̄k(n)|ϕ̄
′
l(nα+1)⟩ · · · ⟨ϕ̄k(n)|ϕ̄

′
l(n)⟩

⃓⃓⃓⃓
⃓⃓⃓⃓

⏞ ⏟⏟ ⏞
S̄kl

(4.3)

MO overlaps are ultimately obtained in a straightforward fashion from atomic orbital (AO)

overlaps

⟨ϕp|ϕ′q⟩ =
NMO∑︂
µ=1

NMO∑︂
ν=1

CpµC
′
qν ⟨χµ|χ′

ν⟩ , (4.4)

with {|ϕp⟩} and {|ϕ′q⟩} being two distinct sets of MOs with coefficients C and C ′. The

AO sets {|χµ⟩} and {|χ′
ν⟩} are centered at their respective coordinates, RI and RJ ,

and their overlap matrix SAO can be obtained from a calculation comprising all basis

functions, or, if the difference between both geometries is small, recovered from the MO

coefficients C (C ′) at RI (RJ):[228, 229]

SAO = (C−1)⊺C−1 . (4.5)

Application of eq. (4.5) in geometry optimization is justified, as the geometries between

two optimization cycles are very similar. The reader is referred to the original publication

for a full discussion of the wavefunction overlap (WFO) algorithm.[225]

4.2 Transition Density Overlaps

Another option for ES tracking are transition density matrix (TDEN) overlaps. Given

two MO coefficient matrices CI and CJ obtained at different molecular geometries RI

and RJ , their overlap matrix SMO is defined according to eq. (4.4) as

SMO = CISAOC
⊺
J . (4.6)

Assuming No occupied and Nv virtual MOs, the overlaps between two one-electron

transition density matrices TI and TJ of dimensions (No ×No +Nv) in their respective
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4 Excited State Tracking in Optimizations

MO bases CI and CJ are calculated as:

SIJ =

No∑︂
σ=1

No∑︂
τ=1

No+Nv∑︂
µ=1

No+Nv∑︂
ν=1

TI,τµTJ,σνSMO,στSMO,µν . (4.7)

Equation (4.7) is efficiently implemented using matrix-matrix products.

SIJ =

No∑︂
σ=1

No∑︂
τ=1

SMO,τσTISMOT
⊺
J (4.8)

Compared to WFOs, the evaluation of TDEN overlaps is computationally less challenging,

as no determinant calculations are involved.

4.3 Natural Transition Orbital Overlaps

A third option for ES tracking are NTO overlaps.[223] Natural transition orbitals ψ allow

a more compact representation of ESs through a basis transformation of the occupied

and virtual MOs ϕ and ϕ′.

(ψ1, · · · , ψNo) = (ϕ1, · · · , ϕNo)U (4.9)

(ψ′
1, · · · , ψ′

Nv
) = (ϕ′1, · · · , ϕ′Nv

)V (4.10)

(4.11)

Here, the matrices U and V are conveniently calculated by a singular value decomposition

(SVD) of the one-electron transition density matrix T

T = UΣV ⊺ , (4.12)

with Σ being a diagonal matrix containing the singular values {λi}.[227] Often, only a

few singular values differ significantly from zero, thus T is well captured by a low-rank

approximation and only few NTOs are needed for the ES description.

Given two one-electron transition density matrices TI and TJ , calculated at nuclear

geometries RI and RJ , NTOs {ψI} and {ψJ}, their overlap is calculated as

SIJ =

NNTO∑︂
k=1

λI,k

⃓⃓⃓
CNTO

I,k SAOC
NTO,⊺
J,k

⃓⃓⃓
, (4.13)
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4.4 Choosing a Reference Cycle

with CNTO containing the respective NTO coefficients for excited state I or J and λI,k

being the k-th singular value obtained from the SVD of TI . NNTO is determined from

the number of singular values above a prescribed threshold (e.g. 0.3). A full derivation

of the NTO overlap algorithm is presented in ref.[224].

4.4 Choosing a Reference Cycle

While tracking ESs in geometry optimizations, one of the two nuclear geometries RI and

RJ is given by the current optimization cycle, whereas the remaining one is given by

a reference cycle. Different types of reference cycles can be chosen. Overlaps between

the ESs at the current cycle can either be calculated with the ESs at the first cycle

or with the previous optimization cycle. Alternatively, an adaptive algorithm can be

employed, where the reference cycle is only updated when two conditions are met. A

new reference cycle is only chosen when the highest overlap of the current excited states

and the reference state is above a certain threshold (e.g. 0.5), indicating that there

is a well defined correspondence between one of the current ESs and the reference ES.

Furthermore, the ratio between the second highest and highest overlaps must be between

0.3 and 0.6. Low values indicate easily distinguishable states, therefore no update is

needed. High values indicate very similar overlaps, consequentially an update may not

be appropriate as multiple states at the current cycle are very similar to the reference

state.
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5 Obtaining Minima on Potential Energy

Surfaces

5.1 The Quadratic Approximation

Searching for minima on PESs is an optimization problem

min
R∈Rn

E(R) (5.1)

with R denoting a set of (nuclear) coordinates and E(R) the electronic energy. A

suitable step pk to minimize E(R) at optimization cycle k can be obtained from the

Taylor expansion of E(R) to second-order around Rk, with gradient gk and Hessian Hk

E(Rk + pk) = Ek + p⊺
kgk +

1

2
p⊺
kHkpk . (5.2)

By differentiating eq. (5.2) with respect to pk and equating the result to zero, the step is

given as

pk = −(Hk)
−1gk . (5.3)

For minimizations it has to be ensured that Hk has no negative eigenvalues, otherwise

eq. (5.3) will result in an erroneous step. Transformed to the Hessian eigenvector basis,

eq. (5.3) is rewritten as ˜︁pk,i = − ˜︁gk,i˜︁Hk,ii

(5.4)

with i denoting the eigenvector index and the tilde denotes transformed quantities. For

negative eigenvalues ˜︁Hk,ii < 0, the step produced by eq. (5.4) will be uphill along the

gradient, instead of downhill, against the gradient.

Parts of this chapter are based on:
Steinmetzer, J.; Kupfer, S.; Gräfe, S. pysisyphus: Exploring potential energy surfaces in ground

and excited states. International Journal of Quantum Chemistry 2020, 121, DOI: 10.1002/qua.
26390

Open Access publication, licensed under Creative Commons - Attribution 4.0 International (CC
BY 4.0).
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5 Obtaining Minima on Potential Energy Surfaces

Downhill steps can be obtained by determining a suitable shift parameter λ, e.g., from

root-finding algorithms.[230] ˜︁pk,i = − ˜︁gk,i˜︁Hk,ii − λ
(5.5)

Alternatively, valid downhill directions are ensured by rational function optimization

(RFO) where

E(Rk + pk) = Ek +
p⊺
kgk +

1
2p

⊺
kHkpk

1 + p⊺
kSpk

(5.6)

instead of eq. (5.2) is minimized.[70, 231, 232] Matrix S is usually chosen as the unit

matrix. The RFO step pk for minimizations is obtained by solving the eigenvalue equation[︄
Hk gk

g⊺
k 0

]︄[︄
pk

1

]︄
= ν

[︄
S 0

0⊺ 1

]︄[︄
pk

1

]︄
(5.7)

and scaling the eigenvector corresponding to the lowest eigenvalue ν, so its last element

equals to 1.

5.2 Hessian Update and Initial Choice

Depending on the Hessian employed to calculate the step pk, e.g., by eqs. (5.3) and (5.7),

several methods are distinguished. With a simple unit Hessian (Hk = I) the method of

steepest descent is obtained from eq. (5.3), where pk is simply given by

pk = −(Hk)
−1gk = −(I)−1gk = −gk . (5.8)

Performance of the steepest descent method is often very poor, as coordinate coupling is

fully neglected.[233]

Using the exact Hessian in every cycle eq. (5.3) gives rise to Newton’s method.[234]

If the PES is well described by a quadratic model, Newton’s method shows fast local

convergence. Obtaining the exact Hessian in every optimization cycle is often not

feasible while searching for SPs, as its calculation is computationally very demanding.

A compromise between the computationally cheap, but badly performing method of

steepest descent and the performant, but computationally expensive Newton method is

provided by quasi-Newton (QN) methods. In QN methods, an approximate Hessian Ak

is used to obtain the step

pk = −(Ak)
−1gk . (5.9)
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5.2 Hessian Update and Initial Choice

Based on the secant equation

Ak+1sk = yk (5.10)

an initial Hessian is updated along the optimization, using only coordinate differences

sk = Rk+1 −Rk and gradient differences yk = gk+1 − gk, obtained at two successive

cycles k and k+1. As eq. (5.10) is under-determined, additional constraints like enforcing

certain symmetry and positive definiteness of Ak+1 are employed, to devise actual update

formulas. One of the most popular formulas for minimizations is the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) update.[235–238]

Ak+1 = Ak −
Aksks

⊺
kAk

s⊺kAksk
+

yky
⊺
k

y⊺
ksk

(5.11)

The need to invert Ak in every optimization cycle is overcome, by directly updating the

inverse of Ak:

A−1
k = (I − ρksky⊺

k)A
−1
k (I − ρkyks

⊺
k) + ρksks

⊺
k (5.12)

with ρk = 1/y⊺
ksk. Other popular update formulas are the symmetric rank 1 (SR1)

update, Powell’s symmetric Broyden (PSB) update, and especially for optimizing saddle

points, Bofills update.[234, 239, 240] Instead of always updating Ak the exact Hessian

could, if feasible, be recalculated periodically and used as starting point for further Hessian

updates, thus mixing Newton and QN steps for improved optimization performance.

Besides the update formula, optimization outcome is greatly affected by the initial

Hessian choice (or its inverse). If calculating an initial Hessian is infeasible or not

desired, an approximate model Hessian can be estimated. For the purpose of geometry

optimization, several model Hessians were proposed, e.g., by Lindh,[241] Fischer[242],

and Swart.[243] The only requirement for calculating a model Hessian from the previously

mentioned models, is the existence of a set of primitive internal coordinates (stretches,

bends, dihedrals, see also Figure 6.1), defining the connectivity of the system under study.

See chapter 6 for an overview on internal coordinates.

In the following, Fischers model Hessian is presented exemplarily.[242] By fitting

data from reference molecules obtained at the HF/6-31G** level of theory, Fischer gave

empirical formulas for the individual force constants k. Eqs. (5.13) to (5.15) are specified

using the atomic labels (M,N,O, P ) shown in Figure 6.1 on page 42. The bond length

between two atoms M and N is denoted by rMN . The sum of their covalent radii is

denoted by rMN
cov .
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5 Obtaining Minima on Potential Energy Surfaces

kstretch = Ae−B(rMN−rMN
cov )

A = 0.3601, B = 1.944
(5.13)

kbend = A+
B

(rOM
cov r

ON
cov )

D
e−C(rOM+rON−rOM

cov −rON
cov )

A = 0.089, B = 0.11, C = 0.44, D = −0.42
(5.14)

kdihedral = A+
BLD

(rOP rOP
cov )

E
e−C(rOP−rOP

cov )

A = 0.0015, B = 14.0, C = 2.85, D = 0.57, E = 4.00

(5.15)

Parameter L in eq. (5.15) denotes the number of bond stretches connected to the central

atoms O and P of the dihedral, without the central O − P bond. Calculating a model

Hessian by eqs. (5.13) to (5.15) yields a diagonal Hessian in internal coordinates. If the

optimization is to be conducted in Cartesian coordinates, the estimated Hessian has to

be converted to Cartesian coordinates by eq. (6.10).

5.3 Conjugate Gradient and Limited-Memory BFGS

For big molecules, solving the RFO eigenvalue problem eq. (5.7) may become prohibitively

expensive.[244–246] A popular algorithm to determine pk, avoiding any matrix operations

and requiring minimal storage, is the nonlinear conjugate gradient (CG) method.[75] In

CG methods, the search direction is given as

pk+1 = −gk+1 + βk+1pk . (5.16)

The algorithm is initialized with a steepest descent step p0 = −α0g0. Many variants for

β have been proposed, a popular one was given by Polak and Ribière[247, 248]

βPRk+1 =
g⊺
k+1(gk+1 − gk)

g⊺
kgk

. (5.17)

Hager and Zhang offered a more complex definition[249]

βHZ
k+1 =

(︃
yk − 2pk

y⊺
kyk

y⊺
kpk

)︃⊺
gk+1

y⊺
kpk

. (5.18)
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5.4 Trust Radius

As CG methods employ no Hessian information, their performance is expected to be

inferior for molecular optimizations.

Limited-memory methods like limited-memory BFGS (LBFGS) offer the best of both

worlds: Low storage requirements and computational efficiency similar to CG methods,

while implicitly keeping an Hessian approximation.[250] By storing the latest m vector

pairs {si,yi} for i = k −m, . . . , k − 1, the matrix-vector product A−1
k gk is calculated in

a two-loop recursion, using only vector-vector products (see Algorithm 1).[234, 251]

Algorithm 1 LBFGS two-loop recursion

1: q ← gk
2: for i = k − 1, . . . , k −m do
3: αi ← ρis

⊺
i q ▷ Store αi

4: q ← q − αiyi

5: r ← (H0
k)

−1q ▷ (H0
k)

−1 = preconditioner or vector
6: for i = k −m, . . . , k − 1 do
7: βi ← ρiy

⊺
i r

8: r ← r + si(αi − βi)
9: return A−1

k gk = r

Two QN optimizations, using either a BFGS update or the LBFGS approach, yield the

exact same results for the first m cycles. The LBFGS method usually outperforms CG

methods in molecular optimizations, despite slightly increased storage and computational

costs.[252, 253]

Care has to be taken that skyk > 0 is ensured, otherwise Ak may lose its positive-

definiteness. As the Hessian is never explicitly constructed in the LBFGS method,

determination of an appropriate shift factor as in eq. (5.5) is not easily achieved. If

skyk > 0 is violated, the Hessian update may be skipped, but this is usually not advised,

as valuable curvature information is neglected.[234] By using a damped BFGS update,

positive-definiteness of Ak can be guaranteed.[254] Recently, Goldfarb proposed a double

damping procedure that modifies the (sk,yk) pair (Algorithm 2).[255]

The A−1y term in Algorithm 2 is conveniently calculated using the two-loop recursion

in Algorithm 1, so double damping is easily utilized in LBFGS optimizations.

5.4 Trust Radius

Given a search direction pk, a suitable step length has to be determined. To this end,

several approaches exist, with the simplest being the trust radius method. If the length

of a proposed step pk is below or equal to a prescribed trust radius ∆, it is accepted,
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5 Obtaining Minima on Potential Energy Surfaces

Algorithm 2 Double damping procedure, adapted from [255].

1: Given s← sk,y ← yk,A
−1 ← A−1

k and parameters µ1, µ2

2: if s⊺y < µ1y
⊺A−1y then θ1 =

(1−µ1)y⊺A−1y
y⊺A−1y−s⊺y

3: else θ1 = 1

4: s̃ = θ1s+ (1− θ1)A−1y

5: if s̃⊺y < µ2s̃
⊺s̃ then θ2 =

(1−µ2)s̃
⊺s̃

s̃⊺s̃−s̃⊺y
6: else θ2 = 1

7: ỹ = θ2y + (1− θ2)s̃
8: return s̃, ỹ

otherwise it can either be simply downscaled or determined from more sophisticated

methods like the restricted step (RS) algorithm, as well as the level-shifted Newton

method.[232, 256] The trust radius ∆ is updated according to the agreement between

predicted energy changes ∆Epred, e.g., through eq. (5.6) or eq. (5.2), and actual energy

changes ∆Eact over the course of an optimization.[234, 239]

r = ∆Eact
∆Epred

r < 0.25?

Decrease ∆

r > 0.75?

Increase ∆

Keep ∆

yes

no

yes

no

Figure 5.1: Trust radius update flowchart. Depending on the agreement between actual
energy changes ∆Eact and predicted energy changes ∆Epred, the trust radius
∆ is either decreased or increased.

5.5 Line searches

A more rigorous approach for step length determination is given by line searches that

may involve multiple energy and gradient evaluations in every optimization cycle. The

line search problem is formulated as

min
α>0

E(Rk + αpk) (5.19)

with the goal to determine α for a given pk. Line searches are usually carried out

iteratively, until a set of prescribed conditions is satisfied. One popular condition is to

require a sufficient decrease of the function value (Armijo condition)[234]

E(Rk + αpk) ≤ E(Rk) + c1αg
⊺
kpk . (5.20)
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5.5 Line searches

Parameter c1 controls the degree of required energy decrease and is usually chosen quite

small (10−4), thus allowing line search convergence even for minor energy decreases.

Enforcing the Armijo condition only requires additional energy calculations. As eq. (5.20)

may allow very short steps (depending on c1), a second condition (curvature condition)

can be enforced, guaranteeing that sufficient optimization progress is made:

g(Rk + αkpk)
⊺pk ≥ c2gkpk . (5.21)

Similar to c1 in eq. (5.20), the parameter c2 ∈ (c1, 1) controls how strongly the left-hand

side (LHS) of eq. (5.21) must be reduced, until the curvature condition is satisfied.

Typical values for c2 are 0.9, if pk was obtained from a (quasi)-Newton method and 0.1,

if pk was obtained from a conjugate gradient method. Enforcing the curvature condition

requires additional gradient calculations. Applied together, the Armijo and curvature

conditions are known as the Wolfe conditions.[234] An example for valid minimizers of

a function, obeying the Wolfe conditions, is shown in Figure 5.2. Popular line search

algorithms are those provided by Moré and Thuente[257] and by Hager and Zhang.[249]

Figure 5.2: Illustration of valid steps from x0 = −7 (red dot) towards a minimizer of
f(x) = (x − 1)(x + 1)(x + 4)(x + 7)(x − 5)(x − 9), satisfying the Wolfe
conditions. p0 was chosen as the direction of steepest descent. The thin
black line indicates points that satisfy the Armijo condition (c1 = 0.0001),
the dashed black line indicate points that satisfy the curvature condition
(c2 = 0.1). Their union, indicated by thick black dots, represent points that
satisfy the Wolfe conditions.
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5 Obtaining Minima on Potential Energy Surfaces

Conducting exact line searches satisfying the Wolfe conditions may become compu-

tationally very demanding, as additional energy and gradient evaluations are needed

in every optimization cycle. Computationally cheaper, albeit less robust, are partial

line searches, which are usually employed in the geometry optimizers of QC codes, as

additional gradient evaluations are often costly. In practice, partial line searches are

performed by fitting a polynomial between two coordinates Rk and Rt. Utilizing energies

and projected gradients (gk · αtpk) obtained at Rk and Rt, a constrained polynomial

of fourth degree, or an unconstrained polynomial of third degree can be fitted.[75] The

resulting inter- or extrapolated data (coordinates, energy and gradient) is then used to

compute a new step direction pk+1 for the next optimization cycle, so only one energy

and gradient evaluation is needed per optimization cycle. Differences between partial

and full line searches are illustrated in Figure 5.3.

Set k = 0, αt = α0,

Evaluate Ek, gk

Partial line search

Compute pk

Take trial step to

Rt = Rk + αtpk,

evaluate Et, gt

Inter-/extrapolate

using (Rk, Ek, gk)

and (Rt, Et, gt),

yielding α,E, g

Step to Rk + αpk,

set inter-/extrapolated

E, g, (αt = α)

k
+

=
1

Set k = 0, Evaluate Ek, gk

Full line search

Compute pk

Obtain αt from line

search algorithm

Take trial step to

Rt = Rk + αtpk,

Evaluate Et, (gt)

Line search

converged?

Step to Rk + αpk,

evaluate E, g

Yes

N
o

k
+

=
1

Figure 5.3: Flowcharts for partial (left) and full line searches (right). While partial line
searches require only one energy and gradient evaluation per cycle, full line
searches may require multiple energy (and gradient) evaluations per cycle,
until convergence is achieved.
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5.6 Direct Inversion in the Iterative Subspace

To the best knowledge of the author, line searches in the context of molecular optimiza-

tions are exclusively used for minimizations, but they may also be used for maximizations,

e.g., maximizing the energy along the imaginary mode in partitioned rational function

optimization (PRFO), presented in chapter 9.

5.6 Direct Inversion in the Iterative Subspace

Instead of fitting polynomials, the geometric direct inversion in the iterative subspace

(GDIIS) method can be used for inter- and extrapolation.[258] In GDIIS, a set of k

coordinates {Ri} is linearly combined to minimize the length of an error vector ∥x∗∥2.

R∗ =
k∑︂
i

ciRi , with
k∑︂
i

ci = 1 (5.22)

The error vector x∗ is obtained as linear combination of respective error vectors ei

associated with each structure Ri.

x∗ =

k∑︂
i

ciei (5.23)

Common choices for ei are the gradient gi, or the predicted quadratic step −H−1
i gi,

recall eq. (5.3).[246] Coefficients ci are obtained by solving the least-squares problem⎛⎜⎜⎜⎜⎝
a1,1 · · · a1,k 1
...

. . .
...

...

ak,1 · · · ak,k 1

1 · · · 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
c1
...

ck

λ

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
...

0

1

⎞⎟⎟⎟⎟⎠ (5.24)

with ai,j = e⊺i ej and the Lagrangian multiplier λ.[259] As regular GDIIS is prone to

converge to the nearest SP or an inflection point, several safeguards have been proposed

by Farkas and Schlegel, yielding the controlled GDIIS method.[259]

Similar to R∗, a corresponding gradient g∗ is obtained that can be used to predict new

coordinates for the next optimization cycle.

Rk+1 = R∗ −H−1g∗ (5.25)

In GDIIS, coefficients |ci| > 1 are possible, thus allowing extrapolation. Far from

convergence, extrapolation may yield erroneous steps. A closely related method allowing
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5 Obtaining Minima on Potential Energy Surfaces

only interpolation, is the energy represented direct inversion in the iterative subspace

(GEDIIS).[260] Based on a first-order energy expansion

E(R∗) = Ek + (R∗ −Rk)
⊺gk , (5.26)

the GEDIIS energy expression is obtained by multiplying with ci and summing over N

points

E(R∗) =

N∑︂
i=1

ci
[︁
E(Ri) +

N∑︂
j=1

cjRjgi −Rigi
]︁
. (5.27)

Coefficients ci are obtained by direct minimization of eq. (5.27) under the constraint

0 ≤ ci ≤ 1. Compared to GDIIS, GEDIIS can be enabled earlier in an optimization and

has been shown to result in smooth optimizations, with less erroneous, energy increasing

steps.[260]
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6 Internal Coordinates

Coordinate system choice greatly affects the outcome of geometry optimizations. The

simplest choice are Cartesian coordinates, as they are, disregarding translation and

rotation, unambiguously defined and always available. A big disadvantage, preventing

efficient optimizations in Cartesians, is their strong coupling, exemplified in a strongly

non-diagonal Hessian.[261] By employing an optimizer that utilizes Hessian information,

the coupling can be taken into account to some degree. For this, the Hessian would have

to be calculated, as it is not possible to estimate an approximate Hessian using Cartesian

coordinates alone (see section 5.2).

An improved coordinate choice is given by normal mode coordinates (NMC), obtained

from diagonalizing the mass-weighted Hessian.[262, 263] While keeping the big advantage

of being unambiguously defined, they are orthogonal to each other and don’t couple.

Nonetheless, a Hessian is needed for their definition.

A third choice is given by redundant internal coordinates (RIC), composed of bond

stretches, bends, linear bends and dihedrals.[232, 239, 264–266] In the following, the

definition and usage of RICs for molecular optimizations is summarized. Many more

coordinate systems have been proposed over the years, including the Z-Matrix[75],

natural internal coordinates,[267–269], delocalized internal coordinates (DLC),[270] hybrid

DLC,[271] and translation-rotation internal coordinates,[272] from which only DLC will

be briefly discussed.

6.1 Definition of Redundant Internal Coordinates

Redundant internal coordinates for a set of atoms are assigned, based on atomic con-

nectivity.[232] See Figure 6.1 for an illustration, how common internal coordinates are

defined. A bond stretch qs between two atoms is assigned, when their distance is equal

or smaller than the scaled sum of their covalent radii. A factor of 1.2 or 1.3 is usually

employed for scaling. For every pair of bond stretches sharing an atom, a bend qb is

defined. Similarly, a dihedral qd is defined for every consecutively bonded set of four

atoms. Care has to be taken that no dihedral is defined, when three of the four atoms
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6 Internal Coordinates

Figure 6.1: Definition of commonly used primitive internal coordinates: a) bond bond-
stretch qs, b) bend qb c) linear bend qlb and its orthogonal complement qlb,c
d) dihedral qd.

are (nearly) collinear, as then qd becomes undefined. For a set of three (nearly) collinear

atoms, a linear bend qlb and its orthogonal complement can be defined.[273–275]. In

contrast to regular bends, the second derivative of a linear bend, with respect to the

Cartesian coordinates making it up, is defined even for collinear atomic arrangements.

If several disconnected fragments are present, it has to be ensured that coordinates

connecting them are defined.

Furthermore, additional coordinates can be defined, e.g., explicit hydrogen bonds,

out-of-plane angles,[276] and/or auxiliary bond stretches that use an increased scaling

factor for the summed covalent radii.[232]

The choice of the initial scaling factor in the bond stretch definition and the different

types of internal coordinates actually used, make their overall definition highly ambiguous.

It was recognized that including too many (auxiliary) bond stretches is detrimental for

the optimization outcome and hampers the back-transformation of a step in internal

coordinates to Cartesian coordinates (vide infra).[232, 277]
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6.2 Wilson’s B-Matrix

6.2 Wilson’s B-Matrix

The central quantity when working with internal coordinates, is the Wilson B matrix.

It relates changes in Cartesian coordinates R, to changes in internal coordinates q.[232,

278]

Bij =
∂qi
∂Rj

(6.1)

Matrix B is rectangular, with one row per internal coordinate qi and one column per

Cartesian coordinate Rj . ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1 R2 Rn

q1

q2

qn

stretches

bends

dihedrals

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.2)

Explicit expressions for eq. (6.1) are given, e.g., by Wilson and Bakken.[232, 278] With B,

small Cartesian displacements are transformed to displacements in internal coordinates.

BδR = δq (6.3)

As the matrix inverse is only defined for quadratic matrices, the pseudo-inverse B+ is

used for the inverse operation.

δR = B+δq (6.4)

B+ is readily obtained from a SVD of G = BB⊺ by inverting only singular values above

a certain threshold.

G = BB⊺ = UΣV ⊺ (6.5)

B+ = B⊺(V ′Σ′−1U ′⊺) (6.6)

The prime indicates that only singular values above a threshold and corresponding

singular vectors are used for the inversion. A suitable threshold for the singular values

is 3.16× 10−4, when G was calculated in atomic units (corresponding to a threshold of

1× 10−7 for the eigenvalues of G).[264]
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6 Internal Coordinates

Similar to the coordinates, the Cartesian gradient gR and the gradient in internal

coordinates gq are transformed.

gR = B⊺gq (6.7)

gq = (B⊺)+gR (6.8)

Transforming the Cartesian Hessian HR and the Hessian in internal coordinates Hq

requires gq and derivatives of B, with respect to Cartesian coordinates.

HR = B⊺HqB +K (6.9)

Hq = (B⊺)+(HR −K)B+ (6.10)

Kjk =
∑︂
i

[gq]iB
′
ijk =

∑︂
i

[gq]i
∂2qi

∂Rj∂Rk
(6.11)

When the chosen set of internal coordinates is redundant, matrix B is rank-deficient

and has linearly dependent rows. To ensure a step is only taken in the non-redundant

subspace of B, the gradient gq is projected by P .

P = BB+ (6.12)˜︁gq = Pgq (6.13)

Additionally, the elements of Hq belonging to the redundant subspace (I−P ) orthogonal

to P , are shifted to high values (α = 1000).

˜︂Hq = PHqP + α(I − P ) (6.14)

Constraints are easily implemented by means of a projector P ′.[265] Given a diagonal

matrix C, with ones on the diagonal for the constrained primitives and zeros elsewhere,

P can be modified to

P ′ = P − PC(CPC)−1CP . (6.15)

This approach even allows constraining Cartesian coordinates of (single) atoms, which

may appear counterintuitive at first. But Cartesian coordinates are well supported in

the framework of internal coordinates, as their first and second derivatives with respect

to Cartesian coordinates are easily calculated (∂qi/∂Rj = δij , ∂
2qi
/︁
∂Rj∂Rk = 0).

Alternatively, constraints can be implemented by means of Lagrange multipliers or

penalty functions. [84, 279–281]
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6.3 Internal-Cartesian Back-Transformation

A step in internal coordinates has to be iteratively transformed to a step in Cartesian

coordinates.[232] Starting from internals q0 and step ∆q0, the desired target coordinates

qT = q0 +∆q0 are obtained from multiple evaluations of

Rl+1 = Rl +B+∆ql , (6.16)

as eq. (6.4) is only valid for small displacements δq. Figure 6.2 shows the flowchart for

the iterative back-transformation.

Initial Cartesians R0,

target internals

qT = q0 + ∆q0

Back-transformation

Rl+1 = Rl + B+∆ql

New internals

ql+1 from Rl+1

Remaining step

∆ql+1 = qT − ql+1

rms(Rl+1 −Rl)

small?
Converged

l = 0

YesNo

l
=
l
+
1

Figure 6.2: Flowchart for the iterative back-transformation of a desired step in internal
coordinates ∆q0, starting from Cartesian coordinates R0 and corresponding
internals q0.

It has to be noted that not all possible sets of internal coordinates q have a valid

Cartesian representation. The triangle equality states for every triangle that the summed

length of two sides must be greater or equal to the third side. It is easy to propose three

bond stretches between three atoms that violate the triangle equality, thus this set of

internals can’t have a Cartesian representation.[282] Given the restriction of eq. (6.4) to

small displacements and the possibility of invalid internals, the back-transformation in
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6 Internal Coordinates

Figure 6.2 occasionally fails. In such cases, optimizations are continued with R1, the

Cartesian coordinates obtained in the first cycle of the back-transformation. A more

robust approach for the back-transformation using high-order derivatives of B based on

automatic differentiation was proposed by Rybkin.[283]

6.4 Delocalized Internal Coordinates

With a computationally cheap method to evaluate energies and gradients, handling RIC

can become the computational bottleneck for big molecules. Especially the number of

possible dihedrals grows immensely with the molecular size, leading to big Hessians and

Wilson’s B-matrices. Matrix diagonalization and inversion scale cubically with matrix size

(O(n3)). Both operations are needed, e.g., to calculate a RFO step in internal coordinates

and back-transform it to Cartesians. Furthermore, RIC still show some coupling, even

though it is greatly reduced compared with Cartesian coordinates.

Both problems are overcome with DLC. Diagonalizing G = BB⊺ yields two sets of

eigenvectors. For nonlinear molecules, a set of 3N − 6 eigenvectors U with eigenvalues

λ > 0 spanning the non-redundant subspace of internals and the remaining eigenvectors

V with vanishing eigenvalues spanning the redundant subspace, is obtained.[270]

G(UV ) = (UV )

(︄
Σ 0

0 0

)︄
(6.17)

Eigenvectors U (active set) are used to obtain the active (DLC) coordinates qDLC and

for transforming the original B matrix.

qDLC = U⊺q (6.18)

BDLC = U⊺B (6.19)

When substituting BDLC for B in eqs. (6.8), (6.11) and (6.16), the same equations

can be used to transform Cartesian gradient and Hessian as well as for the iterative

back-transformation.[270] For a nonlinear molecule of N atoms with m = 3N − 6 internal

degrees of freedom, the DLC Hessian has size (m×m). Thus, Hessian diagonalization

will be much faster in DLC compared to RIC for big N . As the eigenvectors U are

orthogonal to each other, DLCs show no coupling, at least for the coordinates at which

they were obtained.

DLCs have two drawbacks. First, they are complicated linear combinations of RIC

and not easily interpretable. Second, they are only strictly orthogonal at the geometry
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6.4 Delocalized Internal Coordinates

they were defined at. Consequently, DLCs defined at the beginning may not be suitable

in later stages of an optimization, requiring repeated diagonalization of G, therefore

defeating the purpose of avoiding expensive operations on big matrices. Usually G is only

calculated once and the same set of eigenvectors U is used throughout an optimization.

For a set of small molecules, DLC and RIC showed similar performance with respect to

required optimization cycles.[270] Choosing DLCs may become favorable for big molecules,

when matrix operation (diagonalization of H, inversion of B) become costly and the

overall optimization time is considered.
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7 Preconditioning

The optimization problem

min
R∈Rn

E(R) (7.1)

is well conditioned, if its solution is not greatly perturbed by small changes of its input

values.[234] Molecular optimizations are often ill-conditioned, as molecular degrees of

freedom (e.g. bond stretches, dihedrals, interfragment stretches) have force constants of

different magnitudes. While a small change of a bond length greatly affects the energy, a

small rotation around a dihedral leaves the energy nearly unaffected.

As already discussed in section 5.1, E(R) can be linearized and minimized by solving

Hkpk = −gk for pk. Ill-conditioning makes pk susceptible to small inaccuracies inHk and

gk, e.g., arising from numerical integration in DFT, impeding efficient optimizations.[284]

Furthermore, step restriction may become difficult, as steps for the different internal

coordinates may be of different magnitudes, preventing the use of a simple maximum

value for all step elements.

The conditioning of a problem or a matrix is measured by its condition number κ. For

a normal matrix,1 e.g., the Hessian, κ is defined as

κ =
|λmax|
|λmin|

, (7.2)

with λmax (λmin) being the greatest (smallest) matrix eigenvalue.[285]

Preconditioning can be seen as transformation to a set of coordinates R′ = P 1/2R,

where the corresponding Hessian has an improved eigenvalue distribution {λ′i}, through
a preconditioner matrix P .[286] The eigenvalues of the preconditioned Hessian {λ′i} are
defined as

λ′i =
u⊺
iHkui

u⊺
iPkui

, (7.3)

with ui denoting the i-th eigenvector of the unconditioned Hessian Hk. Well-conditioned

optimizations are expected to converge much faster, compared to ill-conditioned opti-

mizations.[234, 287] The effect of preconditioning for a quadratic potential is shown in

Figure 7.1.

1Matrix A is normal if AA∗ = A∗A
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Figure 7.1: Effect of preconditioning for an ill conditioned quadratic potential obtained

from x⊺Ax with A =

[︃
63 62
62 63

]︃
(eigenvalues λ1 = 125, λ2 = 1) and x =

[︃
x1
x2

]︃
.

Left: Original problem. Progress along the valley towards the minimizer
requires large step sizes, as the potential is shallow, but small steps perpen-
dicular to this direction lead to steep potential increases, making step scaling
difficult. Right: Preconditioned problem with optimal condition number
κ = 1, allowing easy step scaling, as the potential is isotropic. In the present
case the “optimal” preconditioner P = A−1 was used, which is usually not
available in real applications, e.g., searches for SPs on molecular PESs.

Optimizations are then carried out in the new coordinate system, e.g., using the method

of steepest descent.

R′
k+1 = R′

k − αkg
′
k (7.4)

P 1/2Rk+1 = P 1/2Rk − αkP
−1/2gk (7.5)

Back-transformation of eq. (7.5) to the original coordinate system recovers the equation

for a quasi-Newton step, as already given in eq. (5.9). In this sense, steepest descent

in the transformed coordinate system and a QN in the original coordinate system are

identical, when P = Ak.

Rk+1 = Rk − αkP
−1gk (7.6)

For P = I the steepest descent method in the original coordinates R is recovered, and

for P = Hk, eq. (7.6) yields the original Newton step.[286] Similarly, preconditioning can
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be applied to a QN method, e.g., the LBFGS algorithm (see line 5 in Algorithm 1 on

page 35), for improved optimization performance compared to preconditioned steepest

descent.[234, 288]

A useful preconditioner P must fulfill several requirements: a) it must be easy to

construct, b) cheap to invert, e.g., by exploiting sparsity, and c) must be positive definite

to ensure a descent direction is obtained, see eq. (5.4).[287]

Mones et al. proposed a force field based scheme to construct effective preconditioners

P for molecular systems, fulfilling the above requirements.[286] Starting from a surrogate

force field potential VFF

VFF =
∑︂
i

Vi(qi(R)) (7.7)

comprising individual potential energy terms Vi, e.g., quadratic potentials

Vi,Quadratic =
1

2
ki(qi − qi,0)2 (7.8)

the corresponding Hessian

HFF =
∂2VFF
∂R2

=
∑︂
i

∂2Vi
∂R2

=
∑︂
i

Hi (7.9)

is calculated. When long-range interactions are neglected while constructing VFF, e.g.,

only bonding interactions are considered, HFF will be sparse and is easily stored and

inverted. Depending on R and the actual potential energy terms {Vi}, HFF may not be

positive definite. Mones suggested modifying the local Hessian contributions to ensure

overall positivity.[286]

Hi =
∂2Vi
∂R2

=
∂qi
∂R
⊗ ∂qi
∂R

∂2Vi
∂q2i⏞ ⏟⏟ ⏞

H
(1)
i

+
∂2qi
∂R2

∂Vi
∂qi⏞ ⏟⏟ ⏞

H
(2)
i

(7.10)

For quadratic potentials ∂2Vi
/︁
∂q2i = ki > 0, so H

(1)
i will be positive-semi-definite,

whereas the definiteness of H
(2)
i is ambiguous. By dropping the second term H

(2)
i and

using the absolute value of ∂2Vi
/︁
∂q2i , positive-definiteness of P is ensured even for

non-quadratic potentials and the following, general formula for P is obtained:

P =
∑︂
i

H̃
(1)
i =

∂qi
∂R
⊗ ∂qi
∂R

⃓⃓⃓⃓
∂2Vi
∂q2i

⃓⃓⃓⃓
. (7.11)
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The ∂qi/∂R terms are elements of Wilson’s B-Matrix discussed in section 6.2 and are

easily computed. A particular attractive, black-box way, for calculating ∂2Vi
/︁
∂q2i was

given by Lindh.[241]

VLindh(q) = Vlinear(q) + Vstretch(q) + Vbend(q) + Vdihedral(q) (7.12)

The linear term assumes the availability of energy and gradient at a newly computed

point q0.

Vlinear(q) = VLindh(q0) + (q − q0)
∂VLindh(q0)

∂q
(7.13)

Quadratic expressions are used for the remaining terms.

Vstretch =
1

2

∑︂
j>i

kij(qij − q0,ij)2 (7.14)

Vbend =
1

2

∑︂
k>j>i

kijk(qijk − q0,ijk)2 (7.15)

Vdihedral =
1

2

∑︂
l>k>j>i

kijkl(qijkl − q0,ijkl)2 (7.16)

Depending on the number of subscript indices, different internal coordinates are distin-

guished (2: stretches, 3: bends, 4: dihedrals). Lindh suggested to use all possible terms,

besides repeated and reversed index combinations. Force constants k are calculated from

the equations below.

ρij = exp
(︁
αij(q

2
ref,ij − q2ij)

)︁
(7.17)

kij = ks ρij (7.18)

kijk = kb ρij ρjk (7.19)

kijkl = kd ρijρjk ρkl (7.20)

Parameters {αij , qref,ij , ks, kb, kd}, obtained from calculations on water and hydroxysul-

phane at the HF/STO-3G level of theory, are given in Table 7.1. Figure 7.2 shows

the effect of preconditioning using the Lindh model Hessian for 2-pentene. Improved

preconditioners may be estimated from more sophisticated force fields like Amber,[32]

CHARMM[33], or the universal force field (UFF),[289] at the cost of having to provide a

suitable molecular topology to the force field engine.
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Figure 7.2: Effect of preconditioning on force constants and condition number κ. a)
Unconditioned Cartesian Hessian and b) preconditioned Cartesian Hessian
for 2-pentene, obtained at the HF/def2-SVP level of theory. The precon-
ditioner was obtained as outlined in [286], using the Lindh model Hessian
(vide infra).[241]. Preconditioning leads to a markedly improved eigenvalue
distribution and greatly reduced condition number κP . The six smallest eigen-
values belonging to the eigenvectors describing translational and rotational
motions have been removed.

Table 7.1: Lindh model Hessian parameters in atomic units for the first three periods of
the periodic table. The parameter for an atom pair depends entirely on their
periods i, j in the periodic table. Force constants ks = 0.45, kb = 0.15 and
kd = 0.005 are employed in eqs. (7.18) to (7.20).[241]

i

αij j
1 2 3

1 1.0000 0.3949 0.3949
2 0.3949 0.2800 0.2800
3 0.3949 0.2800 0.2800

i

qref,ij j
1 2 3

1 1.35 2.10 2.53
2 2.10 2.87 3.40
3 2.53 3.40 3.40
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8 Chain-of-States Methods

Computational studies of reaction mechanism are conducted by locating SPs on the

PES of the reactants and the MEPs connecting them. Whereas educts and products

of a reaction may be known beforehand and are easily optimized, the TSs connecting

them are often less accessible. Unfortunately, the comprehensive description of reaction

energetics requires the TS, as it is essential for the prediction of reaction barriers.

Optimizing TSs poses several challenges: Most methods like PRFO[290] or the image

method (IM)[256] require a computationally demanding Hessian calculation and the

Hessian must have at least one significant negative eigenvalue with a corresponding

eigenvector, suitable for the description of the reaction under study. Costly Hessian

calculations may be sped up by employing techniques like resolution of identity (RI)[291,

292], however, providing a good initial guess geometry is far more difficult. Often, guesses

for TSs are constructed manually, nevertheless such TS guesses may yield Hessians with

wrong eigenvalue structure, or without a suitable eigenvector to describe the reaction

coordinate, resulting in a laborious process of trial and error. Suitable TS guesses for

further refinement can be obtained from COS methods.

In COS methods, a MEP is discretized by a set of tangents {τi} defined at a set of

molecular geometries (images) given by coordinates {Ri}. The simplest tangent is given

by the normalized distance vector between two adjacent images

τi =
Ri+1 −Ri

|Ri+1 −Ri|
, (8.1)

but often a more sophisticated definition like an upwinding tangent is used.[72, 293, 294]

A COS is usually spanned between two pre-optimized minima on the PES, while passing

through a point close to the TS.[73]

Parts of this chapter are based on:
Steinmetzer, J.; Kupfer, S.; Gräfe, S. pysisyphus: Exploring potential energy surfaces in ground

and excited states. International Journal of Quantum Chemistry 2020, 121, DOI: 10.1002/qua.
26390

Open Access publication, licensed under Creative Commons - Attribution 4.0 International (CC
BY 4.0).
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8 Chain-of-States Methods

The initial path is iteratively refined until it coincides with a MEP, or represents a

sufficient approximation to it. An image i is considered converged to the MEP, when the

perpendicular component f⊥
i of the force fi acting on it vanishes or is below a prescribed

threshold

f⊥
i = fi − (fi · τi)τi ≈ 0 (8.2)

that is, the remaining force fi acts only along the tangent τi.

Common examples for COS methods are the NEB and the growing string method

(GSM).[71, 295] Both methods differ in how the image distribution along the path is

achieved and in their initial path setup (see section 8.2).

8.1 Nudged Elastic Band

The NEB method introduces artificial spring forces, acting parallel to the path

f
∥
i = ki(|Ri+1 −Ri| − |Ri−1 −Ri|)τi , (8.3)

so the total force fNEB
i acting on image i is given by

fNEB
i = f⊥

i + f
∥
i . (8.4)

If the same spring constant ki is used throughout all images, an equal image distribution

along the band is achieved, as f
∥
i vanishes for equidistant images.

8.2 Interpolating Initial Paths

An initial COS path is generated by interpolation between two minima. The quality of

the initial path is crucial for the successful outcome of COS optimizations.[296] Given

two images R0 and RN−1, intermediate images Ri are linearly interpolated as

Ri = R0 + i
RN−1 −R0

N − 1
(8.5)

with N denoting the desired total number of images in the path and i is running from 0

to N − 1. Linear interpolation in Cartesian coordinates often yields poor paths, as the

curvilinear nature of bends and dihedrals is neglected, leading to artificially compressed

bonds and frequent atom clashes.
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8.2 Interpolating Initial Paths

Improved paths are obtained from interpolating atomic distance matrices D0 and

DN−1, defined at R0 and RN−1. The distance between atoms j and k for Cartesian

coordinates R is

Djk =

√︄∑︂
σ

(Rjσ −Rkσ)2 (8.6)

with σ running over the Cartesian axes x, y, z. Analogous to eq. (8.5), interpolated

distance matrices are obtained as

Di = D0 + i
DN−1 −D0

N − 1
. (8.7)

Typically, there are many more atomic distances than internal degrees of freedom, so a

desired distance matrixDi can only be approximated by a set of Cartesian coordinates in a

least-squares sense. Halgren and Lispcomb proposed the linear synchronous transit (LST)

method, to determine a suitable set of Cartesian coordinates via minimization of an

objective function SLST.[297–299]

SLST
i (Ri) =

∑︂
k>j

(Djk −D
(i)
jk )

2

(D
(i)
jk )

4⏞ ⏟⏟ ⏞
SIDPP

+10−6
∑︂
j,σ

(Ri,jσ −R(i)
i,jσ)

2

⏞ ⏟⏟ ⏞
STR

(8.8)

Indices j and k denote atoms. Terms D(i) and R
(i)
i , determined from eq. (8.7) and

eq. (8.5), remain fixed throughout the minimization of SLST
i . The small term STR in

eq. (8.8) was introduced to penalize excessive translation and rotation, with respect to a

reference geometry. Full LST paths are obtained by subsequent minimizations of SLST
i

for all intermediate images (0 < i < N − 1).

The LST approach was improved by Smidstrup in the image dependent pair potential

(IDPP) method. By only using the first term SIDPP from eq. (8.8) and optimizing all

images simultaneously as a NEB, overall convergence is improved.[296]

While LST and IDPP usually greatly improve upon naive linear interpolation, both

methods can yield discontinuous paths, as the minimization(s) may fail to converge. The

computational effort to evaluate the objective function S and its gradient ∇S is usually

negligible, compared to the actual electronic structure calculations in the subsequent

COS optimizations.

If it is feasible to define internal coordinates at R0 and RN−1, then linear interpolation

in DLC is the preferred interpolation method, as the curvilinear nature of bends and

dihedrals is correctly taken into account, while lengthy minimization as in LST and
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8 Chain-of-States Methods

Figure 8.1: Different interpolated paths for rotation around the central dihedral in
CH2BrCHFCl. a) Initial and final geometries, b) linearly interpolated Carte-
sians and c) linearly interpolated DLCs. Linearly interpolated Cartesians
yield artificially compressed bond lengths, as the curvilinear nature of di-
hedrals is neglected, while linearly interpolated DLCs take it correctly into
account.

IDPP are avoided.[300] A discussion of the different interpolation algorithms is given by

Zhu.[301] Figure 8.1 illustrates the differences between linear interpolation in Cartesian

and internal coordinates.

8.3 Growing String Method

If none of the former interpolation methods yields a reasonable initial path, a growing

COS method like the GSM can be used.[300] In this case, initial construction of a full path

is avoided and new images are added on-the-fly, when sufficient convergence is achieved

on the innermost images of the two disconnected sub-strings. In string methods (SMs), a

prescribed image distribution along the string is achieved by periodical reparametrization.

Depending on the employed coordinate system of the string images, a cubic spline is

used for Cartesian coordinates and linear interpolation is done for delocalized internal

coordinates.[300, 302] No spring constants are needed in the string method, and the

forces acting on the images in a string are given by eq. (8.2).

8.4 NEB and String Variants

When the initial path is poor, tight convergence is required or many images are employed,

COS optimizations can become computationally very costly, as one gradient evaluation

per image is needed in every optimization cycle. To this end, several COS variants have

been developed.

If the goal is to obtain a suitable TS guess, there is no need to tightly converge images

far from the HEI. Rather, it may be beneficial, to increase the resolution around the

HEI by zooming-in around it.
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8.4 NEB and String Variants

Originally proposed by Maragakis, this is implemented in the adaptive NEB (ANEB)

variant.[303] The full NEB is optimized until a looser convergence threshold is fulfilled,

then all but the energetically highest lying images are dropped and new images are

interpolated between. This strategy can be applied recursively, zooming in further and

further, until the ANEB is converged. Maragakis reported computational savings of up

to 60%.[303] An illustration of the ANEB method is given in Figure 8.2.

Figure 8.2: Illustration of NEB variants, aiming at reducing the computational costs
of NEB optimizations. The original NEB has poor resolution around the
presumed TS and features a long tail with only minor energetic differences
between the images. a) Black inset in the upper part: adaptive NEB. Only the
highest energy images are kept and new images are interpolated in between,
leading to increased resolution around the TS. b) Grey inset in the lower
part: free-end NEB. Images in the long tail are cut off and only the previous
images are relaxed further. The frontier image is constrained to a contour
line of the PES.

Similarly, if the NEB exhibits a long tail of energetically close images, computational

resources may be wasted. Zhu suggested the free-end NEB (FENEB) variant, where the

path is cut off after a selected image and the image is constrained to an isocontour line

of the energy.[304] Both variants, ANEB and FENEB were later combined by Zhang into

to free-end adaptive NEB (FEANEB) method.[305]
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8 Chain-of-States Methods

8.5 Optimizing Chain-Of-States

As briefly mentioned in section 8.1, COS paths are optimized by minimizing f⊥. Many

different algorithms have been employed for COS optimizations, with CG and LBFGS

appearing most promising (see section 5.3).[306, 307]. Sheppard and Henkelman recog-

nized a global version of LBFGS as especially effective.[306] By optimizing the whole

COS as one super-molecule with LBFGS, the inter-image coupling via the tangents τ is

included to some degree.

It was shown by Melander and Herbol that removal of translational and rotational

degrees of freedom, either via quaternions or the Kabsch algorithm, is crucial for the

success of COS optimizations.[307, 308]

8.6 Climbing Image

Improved TS guesses can be obtained by employing either one or two climbing images

(CIs).[309, 310] After a few optimization cycles, the HEI can be converted to a CI. When

two CIs are desired, the two images bracketing the HEI are converted. The force acting

on CI i is reversed along its tangent τi, so a CI moves uphill along the COS-path and

eventually converges to the true TS.

fCI
i = fi − 2(f⊺

i τi)τi (8.9)

8.7 Highest Energy Image

Given a converged COS, its HEI can be selected and used as guess in a subsequent TS-

optimization. If the chosen TS-optimizer employs Hessian information and the Hessian

has multiple negative eigenvalues, the HEI tangent can be used to select the initial

eigenvector to follow uphill by an overlap criterion.

Starting TS searches in internal coordinates from a previous COS calculation also

provides an additional benefit that is easily overlooked: By considering the union of

internal coordinates from the first and last image in a COS, an improved set of internal

coordinates can be generated for the TS search, compared to automated procedures that

only consider the molecular geometry at the TS guess. As broken or not yet formed

bonds are common in TSs, automated procedures can easily miss some bond definitions,

resulting in an artificial restriction of the geometries degrees of freedom.

Overall, the choice of the coordinate system is extremely important for the success of

(TS) optimizations, as can also be seen from Table III in ref. [270]. Depending on the

chosen coordinate system, a TS guess may or may not have an imaginary frequency.
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9 Obtaining Transition States on Potential

Energy Surfaces

Given a suitable guess, e.g., the HEI from a COS optimization, TSs are obtained most

efficiently by optimizers utilizing Hessian information. In contrast to minimizations,

where the energy is minimized along all Hessian eigenvectors, the energy along one mode

(transition vector) is maximized, when searching for first-order saddle points.

Suitable steps for TS optimizations are obtained from the PRFO method, where two

eigenvalue equations similar to eq. (5.7) are solved. By transforming gradient gk and

Hessian Hk into the eigenvector basis of the latter, the two eigenvalue equations are[︄ ˜︁Hk,11 ˜︁gk,1˜︁gk,1 0

]︄[︄˜︁pk,1
1

]︄
= νmax

[︄˜︁pk,1
1

]︄
(9.1)⎡⎢⎢⎢⎢⎣

˜︁Hk,22 0 ˜︁gk,2
. . .

...

0 ˜︁Hk,nn ˜︁gk,n˜︁gk,2 · · · ˜︁gk,n 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
˜︁pk,2
...˜︁pk,n
1

⎤⎥⎥⎥⎥⎦ = νmin

⎡⎢⎢⎢⎢⎣
˜︁pk,2
...˜︁pk,n
1

⎤⎥⎥⎥⎥⎦ , (9.2)

with the tilde denoting transformed quantities and assuming the energy is to be maximized

along eigenvector 1. Whereas the eigenvector with the smallest eigenvalue is scaled in

eq. (9.2), the eigenvector belonging to the largest eigenvalue is scaled in eq. (9.1). As

both eigenvalue equations are solved independently, PRFO neglects the coupling between

both subspaces.

This problem is solved by the image method (IM). Given the Taylor expansion E(R)

in eq. (5.2), an image function E(R) is constructed in a way, such that the TSs of E(R)

Parts of this chapter are based on:
Steinmetzer, J.; Kupfer, S.; Gräfe, S. pysisyphus: Exploring potential energy surfaces in ground

and excited states. International Journal of Quantum Chemistry 2020, 121, DOI: 10.1002/qua.
26390

Open Access publication, licensed under Creative Commons - Attribution 4.0 International (CC
BY 4.0).
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9 Obtaining Transition States on Potential Energy Surfaces

coincide with the minima of E(R).[232, 256] By applying a Householder transformation

P = I − 2viv
⊺
i , (9.3)

with identity matrix I and transition vector vi, to gradient and Hessian at cycle k

gk = Pgk (9.4)

Hk = PHk (9.5)

(9.6)

the image function E(R) is defined as

E(Rk + pk) = Ek + p⊺
kgk +

1

2
p⊺
kHkpk . (9.7)

Now minima of E(R) can be obtained according to the approach outlined in section 5.1

using RFO, while correctly taking into account the coupling between both subspaces.

62



10 Dimer Method

When Hessian calculations become computationally infeasible, e.g., for large systems, or

when analytical Hessian implementations are unavailable, TSs can be obtained by means

of the dimer method (DM).[311] As it only utilizes first derivatives, any unfavorable

O(N3)-scaling matrix operations like diagonalization or inversion are avoided.

Figure 10.1: Illustration of the DM: a) The dimer comprises two images, R1 and R2,
displaced by ∆R from a common midpoint R0 along N (dimer orientation).
The rotational force f⊥ acts on image R1. Midpoint R0 is displaced uphill,
against the parallel force f †, towards the TS. b) One dimer rotation step:
images R1 and R2 are rotated around R0 towards the lowest curvature
mode, indicated by a dashed line.

A dimer consists of two images R1 and R2, displaced into opposite directions by ∆R

from a common midpoint R0, along an orientation vector N . The dimer is optimized

towards a TS by repeated application of two steps: rotation and translation. Dimer

rotation is achieved by minimizing the rotational force

fR = (f1 − f2)− ((f1 − f2)N)N (10.1)

and aims at bringing its orientation N into maximum coincidence with the lowest

curvature mode of the system, thus approximating the imaginary mode to follow uphill.
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10 Dimer Method

Several approaches for minimization of fR have been proposed, ranging from direct

minimization through LBFGS[312], the constrained Broyden method[313], or direct

inversion in the iterative subspace (DIIS)[314], to rotations based on a Fourier series

expansion of the curvature C.[290] The curvature is calculated numerically as

C =
(f2 − f1)N

2∆R
. (10.2)

Dimer translation moves it closer towards the TS. Similar to climbing images in COS

optimizations, a modified force f † is employed: In the convex region of positive curvature

(C > 0), the dimer is translated using only the reversed force component along N ,

whereas in regions of negative curvature (C < 0) the perpendicular component of f0 is

minimized simultaneously.

f † =

⎧⎨⎩−(f
⊺
0N)N C > 0

f0 − 2(f⊺
0N)N C < 0

(10.3)

While Hessian-based TS-optimizers require only one gradient evaluation per optimization

cycle, multiple evaluations are needed for the DM, as repeated rotations may be necessary.

Kästner reported an average of 2.81 gradient calculations per dimer cycle for converging

the Baker-TS benchmark set.[312, 315] Depending on the system, increased costs of

additional gradient evaluations may be offset by not having to calculate the Hessian.

In a comparison between PRFO and DM,[290] Heyden et al. determined the DM to be

computationally more efficient for systems consisting of 1.5X atoms, when the exact

Hessian is calculated every X cycles in the PRFO method.1

1If the Hessian is calculated every 10th cycle, the DM becomes more efficient than PRFO for molecules
with ≥ 15 atoms.[290]
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11 Intrinsic Reaction Coordinate

Given a successfully optimized TS, it may not be obvious which reactants it connects on

the PES, e.g., just by examining the imaginary mode, or when the optimized TS is quite

different from the initial guess structure. Actually connected reactants can be obtained

by integrating a MEP, originating from the TS.

An uniquely defined MEP is the IRC,[316] the path of steepest descent in mass-weighted

coordinates x, along reaction coordinate s:

dx(s)

ds
= − g(x)

|g(x)|
. (11.1)

Starting at the educts with s = −∞, the reaction coordinate s passes the TS at s = 0

and becomes s = +∞ for the products. Calculating an IRC can also be regarded as

integrating Newton’s equations of motion with fully damped kinetic energy, yielding an

infinitely slow moving, imaginary minimum energy trajectory.[317] The resulting IRC does

not exhibit any complicated rotational or vibrational motions and is easily interpreted.[69,

318] As the kinetic energy is fully neglected, dynamical effects like PES-bifurcations are

not captured by an IRC,[318, 319] although multiple techniques have been developed to

capture such events along an IRC.[320–322]

The TS is a stationary point with vanishing gradient, therefore eq. (11.1) cannot

be used to define a direction of steepest descent at the TS. An initial step towards a

geometry with non-vanishing gradient is done by displacing the TS along its imaginary

mode (transition vector) by a prescribed length ∆x. Alternatively, ∆x can be calculated

from a quadratic potential, by requiring a certain energy lowering ∆E (e.g. 5× 10−4 Eh)

∆E =
1

2
q∆x2 , (11.2)

with q being the force constant of the transition vector.

Parts of this chapter are based on:
Steinmetzer, J.; Kupfer, S.; Gräfe, S. pysisyphus: Exploring potential energy surfaces in ground

and excited states. International Journal of Quantum Chemistry 2020, 121, DOI: 10.1002/qua.
26390
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11 Intrinsic Reaction Coordinate

Eq. (11.1) is a stiff differential equation (see chapter 7), making its accurate integration

difficult.[323–325] Algorithms to solve eq. (11.1) can be broadly categorized in explicit and

implicit methods. Explicit methods require only evaluation of quantities (e.g. energy and

gradient) at the initial point, whereas implicit methods also require quantities evaluated

at intermediate points of the integration.[325] The simplest explicit scheme is the Euler

method

xk+1 = xk − αg . (11.3)

For stiff problems, the Euler method allows only small integration lengths, before

the accuracy degrades. Implicit methods allow for greater integration step lengths at

increased computational costs, as multiple energy and gradient evaluations are needed in

every IRC cycle.[326, 327] Two examples for implicit methods will be briefly discussed in

the following. Historical surveys of different integration algorithms are given by Melissas,

Deng and Gonzalez,[328–330] while a more recent overview is presented by Maeda.[318]

11.1 Gonzalez-Schlegel 2nd-Order Algorithm

A widely implemented IRC integrator, utilizing Hessian information and sustaining longer

step lengths was proposed by Gonzalez and Schlegel.[83, 331] Starting at point xk, a

half-step of length 1
2∆s is taken against the gradient towards pivot point x∗

k+1

x∗
k+1 = xk −

1

2
∆s

gk
|gk|

. (11.4)

Subsequently, a constrained optimization is carried out on a hypersphere of radius
1
2∆s, by minimizing the Lagrangian function

L(λ) = E′
k+1 +∆x′⊺g′

k+1 +
1

2
∆x′⊺H ′

k+1∆x′ − 1

2
λ[p′⊺

k p
′
k − (

1

2
∆s)2] . (11.5)

No energy and gradient evaluation is needed at the pivot point, but at the successive

points on the hypersphere {x′
k+1}. Primes indicate quantities evaluated on the hyper-

sphere, p′
k denotes a vector pointing from the pivot point towards x′

k+1. See Figure 11.1

for an illustration. The Hessian is updated using BFGS.[235–238] Depending on the

chosen step length, multiple additional energy and gradient evaluations are needed in

every IRC cycle.
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11.2 Predictor-Corrector Integration

Figure 11.1: IRC step determination in the Gonzalez-Schlegel second-order algorithm
(GS2) and Hessian predictor-corrector algorithms.[83, 325, 331–333] Large,
filled circles indicate points, where energy and gradients are evaluated.
a) Gonzalez-Schlegel 2: After an initial half step from xk to a pivot point
x∗
k+1, a constrained optimization is carried out on a hypersphere with radius

1
2∆s, yielding the next point on the IRC xk+1. b) Hessian predictor-corrector
integrator: After an initial predictor step to x∗

k+1, an analytical surface
is fitted by distance-weighted interpolants (DWIs) using energy, gradient
and Hessian data. Multiple corrector integrations with decreasing step sizes
are carried out on the DWIs surface and their results are combined using
Richardson extrapolation, yielding the the next point on the IRC. In cycle
k no energy and gradient evaluation is needed at xk+1.

11.2 Predictor-Corrector Integration

Expanding g(x) to first-order around x0 and substituting into eq. (11.1) yields

dx(s)

ds
= − g(x0) +H(x0)∆x

|g(x0) +H(x0)∆x|
. (11.6)

Introducing an independent variable t allows separation of eq. (11.6) into

dx(t)

dt

dt

ds
= −(g(x0) +H(x0)∆x) · 1

|g(x0) +H(x0)∆x|
(11.7)

yielding the equations[325, 334, 335]

dx

dt
= −(g(x0) +H(x0)∆x) (11.8)

and
ds

dt
= |g(x0) +H(x0)∆x| . (11.9)
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11 Intrinsic Reaction Coordinate

For quadratic potentials, eq. (11.8) is solved by

x(t) = x0 +A(t)g(x0) . (11.10)

Matrix A(t) is defined as

A(t) = U0α(t)U⊺
0 (11.11)

with U0 being the eigenvector matrix of H(x0) and the diagonal matrix α(t) with

elements

αii =
e−λit − 1

λi
, (11.12)

where {λi} are the eigenvalues of H(x0). Eq. (11.9) is integrated until a t is obtained

that produces the desired step length ∆s = s− s0. The integration is carried out in the

basis of the Hessian eigenvectors by the Euler method.

ds

dt
=

√︄∑︂
i

g′2
0ie

−2λit (11.13)

Please see Appendix A.1 for a full derivation of eq. (11.13). An initial step size for the

Euler integration is calculated as

δt =
1

NEuler

s− s0
|g(x0)|

, (11.14)

with NEuler = 5000. Given a suitable t, corresponding coordinates are obtained from

eq. (11.10).

Based on eqs. (11.6) to (11.14), Hratchian proposed the Hessian predictor-corrector

(HPC) method.[325, 336]

Starting from xk, an initial predictor step to x∗
k+1 is determined by the procedure just

outlined and the gradient is evaluated. Subsequently, the predictor step is refined by

modified Bulirsch-Stoer integration.[337–339]

As the corrector integration requires many energy and gradient evaluations, actual

electronic structure calculations would be too costly. Instead, corrector integrations are

carried out, using an analytical DWI surface, obtained from energies and derivatives at

xk and x∗
k+1.[340–344]
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11.2 Predictor-Corrector Integration

The DWI energy is defined as

EDWI =
N∑︂
i

wiTi (11.15)

with Ti being a Taylor expansion to second-order

Ti(∆xi) = E(xi) + ∆x⊺
i g(xi) +

1

2
∆x⊺

iH(xi)∆xi , (11.16)

and ∆xi = x − xi. Assuming N = 2, e.g., interpolation between two geometries,

coordinate dependent weights w1 and w2 are given as

w1(x) =
|∆x2|n

|∆x1|n + |∆x2|n
, w2(x) =

|∆x1|n

|∆x1|n + |∆x2|n
. (11.17)

Integer n is commonly chosen as 4.[345] The DWI energy expression eq. (11.15) can be

differentiated with respect to Cartesian coordinates, allowing fast energy and gradient

calculations in O(N2) operations. Explicit expressions for the gradient of EDWI are given

by Meisner.[346, 347]

The Bulirsch-Stoer method comprises repeated cycles of numerical integrations with

decreasing step sizes and subsequent Richardson extrapolation to zero step size, until a

prescribed extrapolation error is satisfied, e.g. 1×10−6 a0. Given a function that returns

the corrector integration endpoint xk+1 for a given integration step size ∆s = ∆s0/2
j ,

depending on integer j

R(j, 0) = xk+1(∆s0/2
j) , (11.18)

an extrapolation table can be formulated (see Table 11.1).[348–350] Entries in the first

Table 11.1: Richardson extrapolation table for function R(j, k). Entries in the first
column R(j, k = 0) are obtained by Euler integration on a DWI surface with
step size ∆s = ∆s0/2

j . All remaining entries R(j, k > 0) can be calculated
from the recursion defined in eq. (11.19).

R(0, 0)
R(1, 0) R(1, 1)
R(2, 0) R(2, 1) R(2, 2)
R(3, 0) R(3, 1) R(3, 2) R(3, 3)
. . . . . . . . . . . . . . .

O(∆s0) O(∆s20) O(∆s30) O(∆s40)
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column (k = 0) are obtained by actual corrector integrations with decreasing step sizes.

All remaining entries with k > 0 are obtained by extrapolation, based on the recursion

R(j, k) =
2kR(j, k − 1)−R(j − 1, k − 1)

2k − 1
(11.19)

and previously calculated values. See Figure 11.1 for an illustration of the step determi-

nation in the HPC method.

While modified-midpoint integration is employed in the original Bulirsch-Stoer method,

it was found to magnify the stiff character of eq. (11.1).[325] Instead, Hratchian proposed

to use simple Euler integration, resulting in a modified Bulirsch-Stoer method.[325]

Additionally, the backward differentiation formula (BDF) and Radau IIA methods were

found to be suitable corrector integrators.[3, 351, 352]

Determining the corrector step requires a O(N3)-scaling Hessian diagonalization, which

may become a computational bottleneck for large molecules. To this end, Hratchian also

suggested the simplified Euler predictor-corrector (EulerPC) integrator,[332, 333] where

the predictor step is obtained as

x∗
k+1 = xk −∆s

gk
|gk|

. (11.20)

Alternatively, Hessian information can be considered in the predictor step by directly

integrating
dx

ds
= − g0 +∆xH0

|g0 +∆xH0|
, (11.21)

while avoiding matrix diagonalization, which was already recognized by Page and McIver

and pointed out again by Meisner.[335, 346] Compared to GS2, HPC and EulerPC only

need two energy and gradient evaluations per IRC cycle.
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12 Biaryl Cross-Coupling

12.1 Introduction

Biaryl motifs play a key role in many pharmaceutical compounds[353] like antihypertensive

sartans[354], non-steroidal anti-inflammatory drugs[355, 356], natural products[357] like

cannabinol[358] and many alkaloids.[359–361]. Selective cross-coupling of aryl-residues is

usually achieved by employing transition metal catalysts.[362–369] As transition metal

catalysts are often toxic and expensive, metal-free aryl cross-coupling reactions have been

proposed, as more sustainable alternatives.[370–379]

Recently, Kloss reported a novel metal-free cross-coupling reaction, where two phenyl

groups tethered by a sulfonamide linker can be fused with high regio- and chemoselectivity

in a single coupling product through irradiation by ultraviolet light.[2, 125]

This chapter presents computational insights and suggests an ES reaction mechanism

for the biaryl cross-coupling reaction. Computational investigations were carried out

for two substrates: 1a, a p-methyl carboxylate substituted biaryl-sulfonamide, affording

good reaction yields and the unsubstituted reference biaryl-sulfonamide 1b, for which

only traces of the biphenyl photoproduct are detected (Figure 12.1).

For each substrate a conformer search was conducted, to identify important GS

conformations. Subsequently, GS TSs were obtained and the corresponding IRCs were

integrated. ESs of both substrates were calculated and analyzed for several geometries

along the IRC.

12.2 Computational Details

Ground state potential energy surfaces of 1a and 1b were sampled by means of relaxed

scans and conformer analysis. All ground state DFT calculations were carried out, using

Parts of this chapter are based on:
Haensch, V. G.; Neuwirth, T.; Steinmetzer, J.; Kloss, F.; Beckert, R.; Gräfe, S.; Kupfer, S.;

Hertweck, C. Metal-Free Aryl Cross-Coupling Directed by Traceless Linkers. Chemistry – A European
Journal 2019, 25, 16068–16073, DOI: 10.1002/chem.201903582

Open Access publication, licensed under Creative Commons - Attribution 4.0 International (CC
BY 4.0).
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12 Biaryl Cross-Coupling

Figure 12.1: General scheme for the biaryl cross-coupling photoreaction, starting from
biaryl-sulfonamides and yielding coupled biaryls, after irradiation at 254 nm
(4.88 eV). Two substrates were investigated: 1a (R1=Me, R2=COOMe)
and the unsubstituted biaryl-sulfonamide 1b (R1=R2=H), yielding the
photoproducts 2a and 2b. The species NHCH2 can hydrolyze to ammonia
and formaldehyde.[125, 380]

the range-separated XC functional CAM-B3LYP[179] and the all-electron def2-TZVP

triple-ζ basis set.[381] Dispersion interactions were taken into account by Grimme’s

D3-model with Becke-Johnson damping.[382, 383]

Relaxed scans were performed with Gaussian 16, Revision B.01[384] at the DFT

level (CAM-B3LYP/def2-TZVP) by varying the central (C-N-S-C)-dihedral angle in the

sulfonamide-linker from -180° to 180° with a step size of 10◦, while equilibrating the

remaining degrees of freedom at each step.

Possible conformers of the biaryl sulfonamide substrates were generated by a simulated

annealing procedure, as implemented in Grimme’s extended tight binding code GFN-XTB

5.8 using the GFN2-parametrization.[212] Effects of solvation by acetonitrile (ACN) on

the conformer geometries were taken into account by the generalized Born solvent area

(GBSA) continuum solvation model.[217]

Improved energies[385] for the conformers (generated by XTB) were calculated with

domain based local pair-natural orbital (DLPNO) singles and doubles coupled cluster

with triples correction (CCSD(T)), as implemented in ORCA 4.0.1.2.[386–388] The

def2-QZVPP and corresponding auxiliary basis sets were utilized.[381, 389, 390] Solvent

effects (ACN, ε = 36.6, n = 1.344) on the coupled cluster single point energies were

considered by the conductor-like polarizable continuum model (CPCM).[391, 392] Tight

criteria were used for convergence and truncation thresholds in the DLPNO procedure

(TightPNO, TCutPairs = 1× 10−5, TCutPNO = 1× 10−7, TCutMKN = 1× 10−4).[393]

To visualize the correlation between conformer bonding parameters and their coupled

cluster energies, a principal component analysis (PCA) was conducted, using a set of

eight primitive internal coordinates as features, describing the relative orientation of the

two phenyl rings. All features were shifted to zero mean and scaled to unit variance.

Conformers above a certain energy threshold (30.0 kJmol−1 higher, than the minimum

energy conformer, based on the DLPNO-CCSD(T) energies) were excluded from the
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PCA. The PCA was carried out using the python package scikit-learn.[394, 395]

Care has to be taken when dealing with dihedrals, as they are periodic.1 Dihedrals were

correctly taken into account for the PCA by employing their sine and cosine values.[396]

Figure 12.2: Atom labels, used for defining the internal coordinate features of the PCAs
for the conformers of 1a and 1b.

Table 12.1: Employed internal coordinates in the PCA.

# Coordinate type Indices

1 Bond C6 – C7
2 Bond C5 – C1
3 Bend C5 – S4 – N3
4 Bend S4 – N3 – C2
5 Bend N3 – C2 – C1
6 Bend C5 – N3 – C2
7 cos(Dihedral) C5 – S4 – N3 – C2
8 sin(Dihedral) C5 – S4 – N3 – C2
9 cos(Dihedral) S4 – N3 – C2 – C1

10 sin(Dihedral) C5 – S4 – N3 – C2

Transition state optimizations, subsequent vibrational analysis, and reaction path

calculations were carried out at the DFT level. The nature of the first-order saddle

points was confirmed by vibrational analysis. Minimum energy paths were obtained

by IRC integration using the HPC method,[325, 336] as implemented in Gaussian, to

verify that the optimized TSs connect the presumed educts sand products of the biaryl

coupling reaction. Exact Hessians were recalculated every seventh IRC step. Equally

spaced geometries were sampled from both sides of the IRC every sixth step, yielding

reaction paths for subsequent ES calculations.

1Two dihedrals of 179◦ and −179◦ are nearly identical, even though their naively calculated (Euclidean)
distance is big.
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All ES calculations were carried out in Gaussian 16, using TD-DFT along the sampled

IRC geometries. The same basis set and dispersion correction model as for the preliminary

ground state DFT calculations was applied. This computational setup allows a balanced

description of local, as well as of CT excitations among the π-systems of educt and product

states.[397] Vertical excitation energies and oscillator strengths of the six lowest singlet

ESs were calculated for the sampled geometries along the IRC. Solvent effects (ACN) on

the vertical excitation energies and oscillator strengths were taken into account by the

CPCM. Excited state characters were interpreted in terms of NTOs (see section 4.3), as

calculated by Multiwfn 3.5.[227, 398] All calculations were carried out, assuming neutral

charge and singlet multiplicity. If not noted otherwise, all orbital plots were created using

an isovalue of 0.04 au.

12.3 Preferred Ground State Conformation

Molecules posses many different internal degrees of freedom. Rigid degrees, like the

framework of (covalent) bonds, are not easily altered and stay close to their equilibrium

values. Flexible degrees, like dihedrals, are altered more easily and may span a broad

range of values, some of them far from equilibrium values, e.g., obtained at a stationary

point.

This high flexibility can give rise to many different conformers, each one corresponding

to a local minimum on the molecular PES. Naive calculation of full, 3N−6(5) dimensional

PESs and subsequent determination of all local minima is infeasible for all, except the

smallest molecules. Efficient conformer search is a topic of ongoing research and to this

date, many different methods have been proposed.[399–407]

Presence of multiple, energetically accessible and interconvertible conformers com-

plicates computational studies, as their results may depend strongly on the studied

conformers. Whereas determining energetically low-lying conformers may be feasible by

one of the methods mentioned above, studying their interconversion is usually out of

scope, as this would require
∑︁N−1

i i additional TS optimizations, for N conformers.

In the present study, energetically low-lying conformers of 1a and 1b have been obtained

by means of simulated annealing and were interpreted in terms of corrected energies from

coupled cluster calculations and PCA (see section 12.2).
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12.3 Preferred Ground State Conformation

1a

Simulated annealing conformer search yielded 38 geometries for the educt 1a, 34 re-

mained below 30.0 kJmol−1 above the minimum energy conformer (see Figure 12.3 and

Figure 12.5). Two conformer motifs could be identified: linear conformers with increased

C1 – C5 distances (e.g. Figure 12.3e) and horseshoe conformers featuring decreased C5 –

C1 distances and (nearly) parallel phenyl rings (e.g. Figure 12.3a) facing each other.

The minimum energy geometry for 1a (conformer 2) belongs to the horseshoe motif

with a C5 – C1 distance of 310 pm. In typical linear conformers, e.g., conformer 19, the

C5 – C1 distance is about 500 pm. Small C5 – C1 distances are expected to facilitate the

bond formation, between these two carbon atoms.

(a) Conformer 2,
+0.0 kJmol−1

(b) Conformer 7,
+5.9 kJmol−1

(c) Conformer 33,
+9.5 kJmol−1

(d) Conformer 37,
+19.8 kJmol−1

(e) Conformer 19,
+20.3 kJmol−1

Figure 12.3: Selected 1a conformers and energies obtained at the DLPNO-CCSD(T)/def2-
QZVPP/CPCM(ACN) level of theory, with respect to minimum energy at
conformer 2.

PCA results for 1a are shown in Figure 12.5. The first two principal components PC1

and PC2 capture 54.7% of the total variance. PC1 corresponds mainly to reduced C – C

distances in both, C6 – C7 (−0.49) and C5 – C1 (−0.52) (see Table 12.2), allowing to

distinguish between linear (negative PC1 contribution, increased distances) and horseshoe

motifs (positive PC1 contribution, decreased distances). Similarly, decreases of the angle

C5 – N3 – C2 (−0.52) contribute to PC1. Indeed, conformers 1 to 7, 12 and 33 in

Figure 12.5 with strong positive contributions of PC1 correspond to the horseshoe motif,
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12 Biaryl Cross-Coupling

while conformers 19 and 16 with strong negative contributions of PC1 correspond to the

linear motif (see also Figure 12.3). A more detailed depiction of conformers 2 and 19

including values of selected internal coordinates is found in Figure 12.4.

(a) Conformer 2, horseshoe
motif.

(b) Conformer 19, linear motif.

Figure 12.4: Detailed display of prototypical horseshoe and linear motifs for 1a, including
structural parameters that make up the first principal component PC1 (C5 –
C1, C6 – C7 and C5 – N3 – C2). The units in conformer 19 (pm) have been
omitted for clarity.

Table 12.2: First two principal components PC1 and PC2 in terms of scaled and shifted
internal coordinates for conformers of 1a and 1b.

1a 1b

# Coordinate PC1 PC2 PC1 PC2

1 C6 – C7 −0.49 −0.08 −0.44 −0.01
2 C5 – C1 −0.52 −0.07 −0.49 −0.04
3 C5 – S4 – N3 −0.03 0.52 −0.05 0.56
4 S4 – N3 – C2 −0.06 0.48 −0.07 0.53
5 N3 – C2 – C1 0.29 −0.20 0.39 −0.03
6 C5 – N3 – C2 −0.52 −0.04 −0.49 −0.03
7 cos(C5 – S4 – N3 – C2) 0.21 0.50 0.17 −0.03
8 sin(C5 – S4 – N3 – C2) −0.05 −0.11 −0.08 −0.43
9 cos(S4 – N3 – C2 – C1) 0.26 −0.40 0.34 0.21
10 sin(C5 – S4 – N3 – C2) −0.10 −0.15 0.15 −0.42

1b

Simulated annealing conformer search yielded 17 geometries for 1b that can similarly

be assigned to either linear or horseshoe motifs. In contrast to 1a, the minimum energy
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12.3 Preferred Ground State Conformation

Figure 12.5: Scatter plot of DLPNO-CCSD(T)/def2-QZVPP/CPCM(ACN) energies for
the first two principal components (PC1, PC2), obtained from a PCA on a
subset of primitive internals coordinates of 1a. All energies are given with
respect to the minimum energy at conformer 2. The first principal component
PC1 allows distinguishing between horseshoe and linear motif. Conformers
33, 12, 2, 1, 7, and 6 exhibit a horseshoe motif, whereas conformers 19, 16,
25, and 29 belong to the linear motif.

geometry is linear for 1b (conformer 8) with a high C5 – C1 distance of 471 pm. Horseshoe

conformers have slightly higher energies: +4.6 kJmol−1 for conformer 1 and +8.0 kJmol−1

for conformer 4 (see Figure 12.7 and Figure 12.6).

By considering the first two principal components PC1 and PC2, 58.2% of the total

variance is captured. As expected, this is slightly more compared with 1a, as 1b has

overall fewer degrees of freedom. The analysis of the 1a PCA also applies to the 1b

PCA, as PC1 and PC2 are very similar in both cases (see Table 12.2). Notably, as the

minimum conformer 8 does not belong to the horseshoe motif, contribution of PC1 is

negligible (Figure 12.7).
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12 Biaryl Cross-Coupling

(a) Conformer 8,
+0.0 kJmol−1

(b) Conformer 1,
+4.6 kJmol−1

(c) Conformer 4,
+8.0 kJmol−1

(d) Conformer 9,
+12.9 kJmol−1

(e) Conformer 12,
+22.7 kJmol−1

Figure 12.6: Selected 1b conformers and energies obtained at the DLPNO-CCSD(T)/def2-
QZVPP/CPCM(ACN) level of theory with respect to minimum energy
conformer 8.

Figure 12.7: Scatter plot of DLPNO-CCSD(T)/def2-QZVPP/CPCM(ACN) energies for
the first two principal components (PC1, PC2) obtained from a PCA on
a subset of primitive internals coordinates of 1b. All energies are given
with respect to the minimum energy at conformer 8. The first principal
component PC1 allows distinguishing between horseshoe and linear motif.
Conformers 1–4 exhibit a horseshoe motif, whereas conformers 9, 12, 13,
and 17 belong to the linear motif.
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12.3 Preferred Ground State Conformation

In summary, the conformer search results for 1a and 1b give a first hint on the different

photoreaction yields. The minimum energy conformer 2 for 1a belongs to the horseshoe

motif, exhibiting a small C5 – C1 distance (310 pm), which facilitates efficient C – C bond

formation. However, the minimum energy conformer 8 for 1b belongs to the linear motif

exhibiting an increased C5 – C1 distance (471 pm), hindering efficient bond formation in

the photoreaction, while its lowest horseshoe conformer was predicted at slightly higher

energy (4.4 kJmol−1).

Relaxed Scan Around the Central Dihedral Angle

Additionally, the GS PES of 1a and 1b were sampled by relaxed scans around the central

dihedral angle ϕ(C5 – S4 – N3 – C2) at the DFT (CAM-B3LYP/def2-TZVP) level of

theory.

For 1a, results from the relaxed scan are in line with the conformer search. Both

approaches predict a horseshoe conformer as minimum energy geometry (see Figure 12.8).

The horseshoe conformer at ϕ = −80◦ exhibits a small C5 – C1 distance of only 326 pm

and is 10 kJmol−1 more stable, compared to the linear conformer at ϕ = 70◦, with an

increased C5 – C1 distance of 480 pm.

Figure 12.8: Energy differences and C5 – C1 distances for the relaxed scan around the
central dihedral (C5 – S4 – N3 – C2) in 1a at the CAM-B3LYP/def2-TZVP
level of theory. A horseshoe conformer is predicted as minimum energy
geometry at a) ϕ = −80◦ with b) a C5 – C1 distance of 326 pm. The second
marked minimum corresponds to a linear conformer with increased C5 – C1
distance.
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12 Biaryl Cross-Coupling

In contrast to the conformer search, the relaxed scan predicts a horseshoe conformer

as minimum for 1b, but it is only 5.2 kJmol−1 more stable, compared to the linear

conformer at ϕ = 70◦ (see Figure A.1).

Overall, sampling the GS PES of 1a and 1b revealed two distinct, structural motifs:

horseshoe conformations with shorter C5 – C1 distances, pivotal for efficient bond

formation and linear conformations with increased C5 – C1 distances, rendering efficient

bond formation unlikely.

12.4 Ground State Reaction Coordinate and Electronic

Structure

To evaluate the potential course of the biaryl coupling, formation of photoproducts 2a

and 2b (fig. 12.1) was assessed along a GS IRC, obtained at the CAM-B3LYP/def2-

TZVP/CPCM(ACN) level of theory. The IRC connects educt and product states via a

cyclic (C1 – C2 – N3 – S4 – C5)-containing TS (see Figure 12.9a).

Figure 12.9: Selected distances along the IRC, describing the formation of 2a from 1a
by photosplicing, obtained at the CAM-B3LYP/def2-TZVP/CPCM(ACN)
level of theory. a) Atomic distances with significant changes when going
from the educt to the TS and b) distances that change significantly in the
second IRC half, when going from TS to the photoproducts.

Towards the five-membered TS of the reaction from 1a to 2a, the C5 – C1 distance

decreases from 348 pm to 164 pm, which is associated with C5 – C1 bond formation.
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12.4 Ground State Reaction Coordinate and Electronic Structure

Simultaneously, partial cleavage of the C5 – S4 bond is indicated by a distance increase

from 176 pm to 239 pm (see Figure 12.9). In stark contrast, changes within the sulfonamide

linker are less pronounced until the TS is reached. Only on relaxation towards the product

state and thus formation of photoproduct 2a increased S4 – N3 (169 pm to 257 pm) as

well as C1 – C2 distances (165 pm to 355 pm) are observed, indicating extrusion of SO2

and NHCH2. The latter species can hydrolyze to ammonia and formaldehyde.[125, 380]

Similar results are obtained for the formation of 2b from 1b, which are omitted here

(see Figure A.2 on page 138). Selected atomic distances for educts, TSs and products of

both photoreactions are given in Table 12.3.

Table 12.3: Selected distances in educts, transition states and products in the biaryl
coupling reactions of 1a and 1b in pm. While the C5 – C1 bond is formed
along the IRC, the remaining bonds are broken.

1a 1b

Educt TS Products Educt TS Products

Bond Change Distance / pm Distance / pm

C5 – C1 formed 348 164 148 340 170 148
C5 – S4 broken 176 239 352 177 241 354
S4 – N3 broken 165 169 257 164 170 256
C1 – C2 broken 150 165 355 151 163 347

According to the calculations, TS-formation requires an activation energy of 4.08 eV in

the GS for 1a, and 4.07 eV for 1b. Irradiation of the biaryl sulfonamides is carried out

at 254 nm (4.88 eV), energetically well above the obtained GS barrier heights of about

4.0 eV. Even though the barriers are presumably not crossed in the electronic GS, but

in an ES, the obtained pathways are consistent with the experimental conditions and

energetically feasible, as the GSs barrier heights are below the irradiation energy.

The electronic structure of the biaryl sulfonamides is briefly discussed, at the example

of a 1a horseshoe conformer. Its frontier MOs (HOMO−3 to LUMO+3) have mainly π

and π∗ character (see Figure 12.12) and are expected to be major contributors, to the

low-lying ESs of 1a. Whereas, the orbital lobes at C5 and C1 in the HOMO of 1a have

opposite signs and thus, are antibonding, the C5 – C1 interaction is bonding in the LUMO.

A simplified scheme is shown in Figure 12.11. All investigated biaryl sulfonamides have

high HOMO-LUMO gaps of about 8.0 eV. In contrast to 1b, the conjugated π-system in

1a is extended by a methyl carboxylate residue, nearly coplanar to the connected phenyl
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12 Biaryl Cross-Coupling

ring (rotated by 2.3◦). Extending π-systems is known to modulate excitation energies

and oscillator strengths, usually resulting in redshifted and brighter excitations.[408–412]

(a) MO 81 (b) MO 82 (c) MO 83 (d) HOMO 84

(e) LUMO 85 (f) MO 86 (g) MO 87 (h) MO 88

Figure 12.10: Isocontour plots of the frontier MOs of 1a obtained at the CAM-
B3LYP/def2-TZVP/CPCM(ACN) level of theory.

(a) MO 84, HOMO. (b) MO 85, LUMO.

Figure 12.11: Simplified illustration of the orbital lobes centered at C5 and C1 for HOMO
and LUMO in 1a. Whereas the interaction in the HOMO is antibonding,
it is bonding in the LUMO. The nodal plane between C5 and C1 in the
HOMO is indicated by a dashed line.

12.5 Excited State Reaction Mechanism

To elucidate a potential reaction mechanism, low-lying ESs in the Franck-Condon region

of 1a and 1b were calculated. In the following, π-orbitals located on the S-linked phenyl

residue are denoted by a S-subscript (πS), and π-orbitals located on the CH2 –NH-linked

phenyl residue are denoted with a N-subscript (πN).

The simulated absorption spectrum of 1a (see Figure 12.13a and Table 12.4) shows

several bright ESs in the vicinity of the irradiating light source centered at 4.88 eV
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12.5 Excited State Reaction Mechanism

Figure 12.12: Energies and isocontour plots of the HOMO and LUMO for horseshoe and
linear conformations of 1a and 1b, obtained at the CAM-B3LYP/def2-
TZVP/CPCM(ACN) level of theory.

(254 nm) that is S2 at 5.30 eV (234 nm, oscillator strength f = 0.0664) and S3 at 5.40 eV

(230 nm, f = 0.3611). In terms of NTOs, the S3 is well described by one πN/π
∗
N NTO pair

with a contribution of 70%. Considering the original MO basis, the biggest contribution

(41%) to the S3 arises from a HOMO-LUMO transition (MOs 84 and 85 in Figure 12.10),

corresponding to depopulation of a C5 – C1 antibonding orbital and subsequent population

of a C5 – C1 bonding orbital.

Similar ESs are obtained for 1b, albeit hypsochromically blue-shifted and with lower

oscillator strengths. Compared to the S3 in 1a at 5.30 eV, the similar S4 in 1b is found

at 6.02 eV with a decreased oscillator strength f = 0.0550 (see Figure 12.13). It is well

described by one NTO pair (74%) and corresponds to a transition from a πN into a

strongly C5 – C1 bonding π orbital. The brighter S3 of 1b at 5.81 eV with f = 0.1169

is also well captured by one πS/π
∗
S NTO pair (86% contribution). It is not expected to

participate effectively in the photoreaction, as the transition density is constrained to

the S-linked phenyl residue. Due to a mismatch between the energetic location of S3 and

S4 with the available irradiation energy (centered at 4.88 eV), population of these ESs is

unlikely. Therefore, disadvantageous ES properties at the Franck-Condon geometry of

1b prevent an efficient photoreaction at 254 nm irradiation, which is in agreement with

the experiment, as only traces of the photoproduct biphenyl are detected for 1b.
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12 Biaryl Cross-Coupling

Table 12.4: Calculated low-lying excited singlet states, excitation wavelengths (λ/nm),
excitation energies (∆E/eV), oscillator strengths f and leading NTO pairs
of 1a for a horseshoe conformation at the educt side of the IRC, obtained at
the CAM-B3LYP/def2-TZVP/CPCM(ACN) level of theory.

State λ/nm ∆E/eV f NTOs Weight / %

S1 242 5.12 0.0157 πN → π∗N 74
πN → π∗N 25

S2 234 5.30 0.0664 πS → π∗S, σ
∗
CC 57

πS → π∗S 28
S3 230 5.40 0.3611 πN → π∗N 70

πS → π∗S 16
S4 228 5.44 0.0158 nO → π∗N 98
S5 217 5.73 0.2116 πS → π∗S 82
S6 196 6.33 0.0444 πS → π∗N, σ

∗
CC 58

πS, πN → π∗S 24

Analyzing the ESs of 1a along the GS IRC (Figure 12.13) corroborates the results

obtained at the Franck-Condon geometry. Product formation in the GS is prevented

by a high barrier (4 eV) that is reduced to only 0.69 eV in the S1 at 5.12 eV. Assuming

a most likely initial population of the energetically higher lying, bright S3 (5.40 eV)

and subsequent adiabatic evolution, the barrier is further reduced to 0.41 eV,2 allowing

efficient product formation. The calculated excitation energy of the S3 also coincides with

the experimentally determined maximum substrate turnover at 5.32 eV (233 nm).[125]

Noteworthy, an even further reduced activation energy or even a barrier-free reaction

is expected along a suitable excited state reaction pathway; however, determining such

coordinate is far from trivial.

In contrast to 1a, the ES barrier height in the S1 of 1b is slightly higher (0.77 eV).

However, efficient photoreaction is already prevented by the hypsochromically shifted

ESs and low oscillator strengths, as reflected by the photochemical experiment yielding

merely traces of photoproduct 2b at the applied conditions.

12.6 Summary

The computational results are in full accordance with the experimental observations and

thus allowed elucidating the mechanism of photosplicing. Quantum chemical simulations

show that electron-withdrawing and electron-donating groups are a prerequisite for the

2∆E(S1)+ ES barrier height −∆E(S3) = 5.12 eV + 0.69 eV − 5.40 eV = 0.41 eV
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12.6 Summary

Table 12.5: Calculated low-lying excited singlet states, excitation wavelengths (λ/nm),
excitation energies (∆E/eV), oscillator strengths f and leading NTO pairs
of 1b for a horseshoe conformation at the educt side of the IRC, obtained at
the CAM-B3LYP/def2-TZVP/CPCM(ACN) level of theory.

State λ/nm ∆E/eV f NTOs Weight / %

S1 231 5.38 0.0125 πS → π∗S 67
πS → π∗S 33

S2 227 5.47 0.0007 πN → π∗N 52
πN → π∗N 48

S3 213 5.81 0.1169 πS → π∗S 86
S4 206 6.02 0.0550 πN → π∗N, π

∗
S, σ

∗
CC 74

πN → π∗N 19
S5 200 6.19 0.0028 πN → π∗S 87
S6 195 6.37 0.0172 πN → π∗S 94

photoreaction, because these substituents control the energy of the ESs and determine the

overlap with the applied light source. The course of the photoreaction can be illustrated

by means of the frontier orbitals of 1a (Figure 12.11) contributing to S3. Specifically, the

HOMO exhibits antibonding character between C5 and C1, whereas the LUMO shows

bonding character between these two carbon atoms. The photoinduced population of

the LUMO lowers the activation energy substantially and enables the photochemical

formation of 2a. The small energy gap (1.0 eV) between GS and ES S1 in the vicinity of

the TS facilitates the relaxation into the product state.
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13 Pysisyphus

13.1 Introduction

This chapter discusses the implementation of pysisyphus, an external optimizer written in

python,[413, 414] that also accounts for ESs. Pysisyphus allows localizing SPs in ground-

and excited states, using surface-walking, COS methods and IRC calculations. Several

algorithms for effective state-tracking are available. Although already several external

optimizers with impressive functionalities like ASE or DL-FIND exist,[124, 415] none of

them is tailored to the optimization of ESs. Only recently, Garćıa et al. presented their

SDNTO[223] approach for localizing minima in ESs, but the program is restricted to a

steepest descent optimizer and a rather limited selection of QC packages for ES gradient

calculations, e.g., the programs ORCA and Gaussian.[121, 384]

The chapter is organized as follows: section 13.2 verifies the correct implementation of

pysisyphus and analyzes its performance by optimizing several test sets. Pysisyphus’ ES

tracking capabilities are demonstrated exemplarily for ES optimizations of cytosin and

three transition metal complexes in section 13.3. The process of obtaining full reaction

paths starting from only educts and products is shown in section 13.4 exemplarily for

a GS reaction coordinate. Section 13.5 gives the list of QC programs, interfaced by

pysisyphus and contains a short comment on its general structure. Implementation of

RIC is discussed briefly.

13.2 Benchmarks and Verification

Effectiveness and efficiency of a geometry optimizer depend strongly on the careful

selection of employed algorithms and the tuning of many parameters. Considering only

initial Hessian choice and subsequent Hessian update in pysisyphus (see Table 13.1),

Parts of this chapter are based on:
Steinmetzer, J.; Kupfer, S.; Gräfe, S. pysisyphus: Exploring potential energy surfaces in ground

and excited states. International Journal of Quantum Chemistry 2020, 121, DOI: 10.1002/qua.
26390

Open Access publication, licensed under Creative Commons - Attribution 4.0 International (CC
BY 4.0).
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13 Pysisyphus

already gives rise to 7 · 8 = 56 possible algorithmic combinations. Also including

convergence accelerators, which are either enabled or disabled, yields a total of 23·56 = 448

possible combinations. If further important decisions, like coordinate system or initial,

minimum and maximum trust radius are considered, scanning the full space of possible

algorithm and parameter combinations quickly becomes infeasible. Therefore, only some

appropriate combinations are usually tested.[245]

To this date, several molecular benchmark sets have been put forward, allowing

unambiguous evaluation of optimizer performance and its specific implementation. The

most frequently employed test set for ground state optimizations was proposed by

Baker and comprises 30 small molecules, containing 3 to 29 atoms (Figure 13.1).[268]

The intended level of theory is HF/STO-3G, although often different basis sets are

employed.[159, 232, 241, 246, 416, 417]

Subsequently, Baker also released a test set for evaluating TS optimizers at the HF/3-

21G level of theory.[315] It includes 25 geometries from 3 to 16 atoms, close to a TS

geometry. Notably, two cases (10 and 11) start in the convex region of the PES and

exhibit no imaginary frequencies at the given geometry.

Accompanying the test sets, Baker proposed the following convergence criteria: no

gradient component greater than 3.0 × 10−4 Eh · a0−1 (rad−1) and either an energy

difference, compared to the previous cycle, below 1.0× 10−6Eh, or no step component

greater than 3.0× 10−4 a0 (rad). 1

In the following, correct implementation of pysisyphus and its performance for molecular

and reaction path optimization is verified for several benchmark sets and compared, if

possible, to established optimizers and literature data.

1Using RIC usually results in different units for individual coordinates, e.g., lengths for stretches, and
radians for angles (bends, dihedrals). Certain definitions for out-of-plane angles and linear bends even
result in unitless coordinates.[276] Mixed units are denoted as a0 (rad) in the present work.
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Table 13.1: Possible keywords, controlling the behavior of the default optimizer for
minimizations and TS searches in pysisyphus.

Keyword Comment Reference

Initial Hessian

calc Calculate exact Hessian. Expensive, not available

always.

-

unit Unit matrix. -

simple Fixed force constants: 0.5 for bonds, 0.2 for bends

and 0.1 for dihedrals.

[232]

fischer MH, parametrized against HF/6-31G**, default

(see eqs. (5.13) to (5.15)).

[242]

lindh MH, parametrized against HF/STO-3G. [241]

swart MH, similar to lindh. [243]

xtb/xtb1 Calculation at GFN2/GFN1-xtb level of theory. [418]

Hessian update

bfgs Default, see eq. (5.11). [235–238]

damped bfgs Modifies gradient difference y, when curvature con-

dition is not satisfied (sy < 0).

[234]

sr1 Suitable for TS-optimization. [419]

psb Suitable for TS-optimization. [420]

bofill Suitable for TS-optimization, combines SR1 and

PSB.

[240]

flowchart Switches between SR1, BFGS and PSB. [239]

(hessian recalc) See calc, recalculation of exact Hessian every n-th

cycle.

-

Convergence acceleration/stabilization

gediis Disabled by default. [260]

gdiis Enabled by default. At most 5 gradients are used

as error vectors.

[258, 259]

line search Fitting of 1d quartic/cubic polynomials, enabled

by default. Fallback if GDIIS/GEDIIS failed or

disabled.

[75]
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13.2.1 Baker Test Set

Aiming at determining most suitable default options for the pysisyphus optimizer, different

choices for initial Hessian, its update, and convergence acceleration (Table 13.1) have

been tested. A similar survey was already conducted by Bakken.[232]

Energies and gradients were obtained with ORCA 4.2.1 at the HF/STO-3G level of the-

ory, enforcing tight self-consistent field (SCF) convergence criteria (keyword tightscf),

to reduce numerical noise in the gradients.[388] Neutral charge and singlet multiplicity

were assumed throughout. Optimizations were conducted by RFO in RIC. If the proposed

RFO step exceeded a prescribed trust radius (initial value 0.5 a0 (rad), maximum value

1.0 a0 (rad)), it was scaled to the trust radius.

Table 13.2: Required cycles to converge Baker’s test set using pysisyphus, for different
keyword choices (see Table 13.1). If not noted otherwise, the initial Hes-
sian is calculated according to Fischer, updated by the BFGS formula and
convergence is accelerated by partial line searches and GDIIS.

Initial Hessian Cycles

fischer 207
lindh 212
simple 254
swart 228

Hessian update Cycles

bfgs 207
damped bfgs 207
flowchart 225
bofill 232

Convergence acceleration

line search gdiis Cycles

yes yes 207
no yes 208
no no 208

Results of the initial survey are shown in Table 13.2. The smallest number of required

cycles (207), to converge Baker’s test set at the HF/STO-3G level of theory, is achieved

by combining Fischers model Hessian,[242] BFGS updating, partial line searches, and

GDIIS.[75, 258, 259] In the following, this combination is referred to as the standard

method.
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Initial Hessian choice has the biggest influence on the number of cycles. The highest

number of cycles (254) is obtained with a simple model Hessian, using fixed values of

0.5/0.2/0.1 for stretches, bends and dihedrals. Only 228 cycles are required with Swarts

model Hessian.[243] Using Lindh’s model Hessian yields results (212 cycles) close to the

optimal choice (Fischer, 207 cycles).[241]

Whether the BFGS Hessian update is damped or not, has no influence for the Baker

test set. Damping is only important when the curvature condition is violated, which is

never the case for these well behaved optimizations. Using the flowchart update, which

selects between SR1, BFGS and PSB updates, requires 225 cycles.[239] Bofills update,

originally proposed for TS optimizations, needs even more cycles (232).

Disabling convergence accelerators like partial line searches and GDIIS, leaves the

number of required cycles nearly unaffected, which is consistent with the findings of

Bakken.[232] As the test set geometries are already close to a stationary point, the local

quadratic expansion seems to approximate the true PES well and produces reasonable,

hardly improvable steps. GDIIS is only activated, after the root mean square (RMS) of

the step falls below 2.5× 10−3 a0 (rad), which usually happens quite late in the course

of an optimization, so GDIIS is employed only a few times.[259] Enabling GEDIIS led to

inferior results in many cases, even though it appears to be correctly implemented. It is

disabled by default in pysisyphus.[260]

The number of 207 cycles in pysisyphus compares favorably to the original 240 cycles

reported by Baker,[268] but is slightly higher than the 185 cycles reported by Fischer.[232]

Bakken’s result was obtained using a set of extra-redundant coordinates, which may

lead to problems in the internal-Cartesian back-transformation (see section 6.3) of the

optimization step, even though no such problems were reported by Bakken. Similar

results are obtained when the bigger 6-31G* basis is employed. Bakken reported 198

cycles, whereas 215 cycles are needed in pysisyphus. Distributed over the whole test

set, most optimizations differ only in one or two cycles. Recently, Raggi reported 262

cycles for Baker’s test set using RFO, without any step size restriction at the HF/6-

31G level of theory in OpenMolcas.[417, 421, 422] Using the same convergence criteria,

pysisyphus needs only 209 cycles, showing a marked improvement. Especially, three cases

converged slowly in Raggis work: histidine (case 27, 29 cycles), 2,3-dimethylpentane

(case 28, 27 cycles) and menthone (case 30, 32 cycles). This highlights the fact that

optimization performance is probably highly sensitive to numerous (implementation)

details and can differ greatly from software to software, even for simple cases. The

present implementation is also competitive with results reported by Meyer (232 cycles,

Baker’s convergence criteria), who used a novel Gaussian process regression approach

and internal coordinates.[159]
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Table 13.3: Optimization cycles, required to converge the Baker test set (Figure 13.1),
according to Baker’s criteria (see section 13.2) for different basis sets.[268]
Convergence to the correct geometry was ensured by comparing the final
energy to the published values (only for STO-3G basis). Bakken’s results
correspond to their most efficient method, using extra-redundant internal
coordinates, as presented in Table X in [232]. Code to reproduce the results
of this work is given in Listing A.1 on page 139.

HF/STO-3G HF/6-31G*

# Molecule This
work

Baker
[268]

Bakken
[232]

This
work

Bakken
[232]

1 Water 4 6 4 4 5
2 Ammonia 7 6 5 7 5
3 Ethane 4 5 3 4 4
4 Acetylene 4 6 4 4 4
5 Allene 4 5 4 5 5
6 Hydroxysulphane 7 8 7 8 6
7 Benzene 3 4 3 3 3
8 Methylamine 5 6 4 5 5
9 Ethanol 6 6 4 6 5

10 Acetone 6 6 4 6 4

11 Disilyl ether 10 8 8 14 11
12 1,3,5-Trisilacyclohexane 8 8 9 7 8
13 Benzaldehyde 6 6 4 7 5
14 1,3-Difluorobenzene 6 5 4 7 5
15 1,3,5-Trifluorobenzene 5 5 4 4 5
16 Neopentane 4 5 4 4 4
17 Furan 7 8 5 7 5
18 Naphthalene 6 5 5 6 5
19 1,5-Difluoronaphthalene 7 6 5 7 5
20 2-Hydroxybicyclopentane 10 15 9 11 9

21 ACHTAR10 8 12 8 9 9
22 ACANIL01 8 8 7 7 6
23 Benzidine 8 9 9 9 9
24 Pterin 9 10 8 8 9
25 Difuropyrazine 8 9 6 8 7
26 Mesityl oxide 6 7 5 6 5
27 Histidine 14 19 16 16 16
28 Dimethylpentane 10 12 9 8 9
29 Caffeine 7 12 6 7 7
30 Menthone 10 13 12 11 13

Sum 207 240 185 215 198
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Figure 13.1: Initial geometries, contained in Baker’s test set, comprising 30 small
molecules.[268] A color code is given in the last row.
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13.2.2 Hobzas S22 Test Set - Noncovalent Interactions

Compared to Baker’s test set, the more challenging S22 set (Figure 13.2) was proposed by

Hobza and coworkers.[423] Originally, it was compiled to provide reference energies at the

Møller-Plesset perturbation theory (MP2) and CCSD(T) levels of theory in the complete

basis set (CBS) limit, for benchmarking lower level computational methods.[424]

Figure 13.2: Initial geometries, contained in the S22 test set, comprising 22 dimers.[423]
A color code is given in the last row.
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S22 comprises 22 small molecule dimers, dominated by hydrogen bonds and dispersion

interactions, see Table 13.4. Such interactions give rise to very flat PESs that are often

insufficiently described by simple quadratic approximations (eq. (5.2) and eq. (5.6) on

page 31). As molecular optimizers are usually based on quadratic models, searching SPs

on flat PESs is especially challenging. For this reason, optimizing the S22 set should be

a better test of optimizer robustness, compared to Baker’s test set.[268]

Energies and gradients were obtained from ORCA 4.2.1 at the RI-MP2/6-31G** level

of theory. [388, 425–429] As no correlation fitting basis, explicitly optimized for 6-31G**

is available, the def2-SVP/C correlation fitting basis set was used instead.[430] Tight

SCF convergence criteria were enforced (keyword tightscf), to reduce numerical noise

in the gradients. Neutral charge and singlet multiplicity were assumed throughout.

Optimizations were carried out with pysisyphus, using the standard method outlined

in section 13.2.1. Initial geometries of the S22 set were taken from the original publica-

tion.[423]

Convergence was indicated when all absolute values of the gradient were equal or

less than 4.5× 10−4 Eh · a0−1 (rad−1), the RMS of the gradient was equal or less than

3.0× 10−4 Eh · a0−1 (rad−1), all absolute values of the proposed step were equal or less

than 1.8× 10−3 a0 (rad) and the RMS of the step was equal or less than 1.2× 10−3 a0

(rad). These thresholds conform to the defaults in the Gaussian program suite and will

be denoted as Gaussian convergence criteria from now on.[384]

Results for the S22 set are given in Table 13.4 and compared to reference results

published by Lindh.[417] Optimization success was judged according to the RMSD

between the final geometries of this work and Lindh’s work. Some geometries in the

latter work exhibit a different atom ordering with respect to the original geometries of

Hobza employed in this work, therefore, complicating the RMSD calculation. Before the

RMSD calculations, the atoms were automatically reordered using the Hungarian method,

trying to bring both atom orderings into maximum coincidence.[431, 432] Pysisyphus

implements the Hungarian method according to Allen and Wagner.[433, 434] Cases 2, 8,

9, 11, 17 and 18 exhibit high RMSD values (> 0.1 a0, corresponding to > 5.3 pm), even

after resorting. They were examined and aligned manually in the visualization system

UCSF Chimera (Figure A.3).[435]

Pysisyphus obtains SPs for all cases of the S22 set. All geometries, beside case 17

(benzene · water dimer) are virtually indistinguishable from the reference geometries, as

evident from small RMSDs (≪ 0.1 a0) or perfect superposition in Figure A.3. The benzene

· water dimer converged to a higher lying (0.2 kJmol−1) SP.[417] Pysisyphus required only

310 energy and gradient evaluations, whereas Lindh reported 358 evaluations. Without
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case 17, pysisyphus required 260 evaluations, a marked improvement over Lindh’s 323

evaluations. Overall, pysisyphus shows a promising performance for the S22 test set,

even though one case converged to an energetically, slightly higher lying SP.

Table 13.4: Number of optimization cycles required to converge the S22 test set
(Figure 13.2) at the RI-MP2/6-31G** level of theory.[423] Lindh’s
results are taken from the restricted step RFO (RS-RFO) column of
Table 3 in [417]. Convergence to the correct geometry was ensured
by calculating the RMSD with geometries published by Lindh.[417,
436] Code to reproduce the results of this work is given in Listing A.2
on page 140.

# Molecule This

work

Lindh

[268]

RMSD / a0

Hydrogen bonded complexes
1 ammonia dimer 5 5 0.0034
2 water dimer 13 6 1.0579a

3 formic acid dimer 9 7 0.0045
4 formamide dimer 5 7 0.0090
5 uracil dimer 5 7 0.0105
6 2-pyridoxine · 2-aminopyridine 16 15 0.0097
7 adenine · thymine WC 6 18 0.0981

Dispersion dominated complexes
8 methane dimer 7 20 1.4933a

9 ethene dimer 3 5 2.8812a

10 benzene · methane 4 4 0.0054
11 benzene dimer C2h 9 7 0.1071a

12 pyrazine dimer 10 8 0.0144
13 uracil dimer stack 18 24 0.0196
14 indole · benzene 44 61 0.0247
15 adenine · thymine stack 33 29 0.0177

Mixed complexes
16 ethene · ethine 4 6 0.0077
17 benzene · water 50 35 0.1383a,b

18 benzene · ammonia 17 33 0.7585a

19 benzene · hydrogen cyanide 14 31 0.0245
20 benzene dimer C2v 7 5 0.0218
21 indole · benzene, T-shape 12 4 0.0073
22 phenole dimer 19 21 0.0690

Sum 310 358

a Overlays of both geometries are given in Figure A.3 at page 138.
b Converged to a higher lying SP
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13.2.3 External Validation

The RFO implementation of pysisyphus was also employed by Ahuja et al., as one

of multiple references, in an effort to benchmark a new reinforcement-learning-based

optimization approach.[437] Starting from a set of perturbed organic molecules, they

found their approach to be superior, requiring on average 94 cycles until convergence,

whereas pysisyphus required 105. The next best optimizer (LBFGS) already required

129 cycles on average. In a second test set, pysisyphus seemed competitive with their

new method, as it required the fewest cycles for 2 out of 12 cases, and the same cycle

number for one case (table 1 in [437]).2

13.2.4 Baker Transition State Test Set

Compared to the optimizations just described, where the energy was minimized along

all Hessian eigenvectors, TS searches are more challenging, as they require energy

maximization along one eigenvector. Foremost, this necessitates selecting an appropriate

eigenvector and keeping track of it, along the optimization.

Besides a test set for GS minimizations, Baker also proposed a set, concerning TS

searches.[315] This section investigates the performance of pysisyphus for the Baker

TS test set, using two different approaches: Hessian based TS optimization and TS

optimizations using only first-derivatives, by means of the DM (see chapter 10).

Hessian-based Optimizer

All calculations were carried out using ORCA 4.2.1 at the HF/3-21G level of theory.[388]

Singlet multiplicity was assumed throughout, except for cases 4, 5 and 8, which were

calculated as doublets. Total charges were chosen according to Table 13.6. The initial

(maximum) trust radius was decreased to 0.1 a0 (rad) (0.3 a0 (rad)). Analytical Hessian

were calculated in the first optimization cycle and the imaginary mode belonging to the

most negative eigenvalue, if present, was followed uphill. The Hessian was subsequently

updated with Bofills formula.[240]

Converging cases 10 and 11 (Figure 13.3), which start in the convex region of the PES,

requires additional measures. Case 10 is supposed to yield a TS for the dissociation of

1,2,4,5-tetrazine into two HCN molecules and N2, whereas case 11 is supposed to yield

the TS for the isomerization of trans-butadiene to cis-butadiene. Even though various

authors reported successful optimizations for one or both cases, they never discussed how

the initial root was obtained.[232, 256, 315]

2The author of this thesis did not contribute in any way to the work by Ahuja et al.
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Figure 13.3: Initial geometries of the Baker TS test set, comprising 25 small molecules
and ions.[315] A color code is given in the last row.

Pysisyphus offers an elegant way (keyword rx mode), for initial root selection, requiring

minimal user input. By specifying a list of primitive internals and an additional number,

an approximate eigenvector is constructed. For tetrazine (Figure 13.4) rx mode: [[[0,

2], 1], [[1, 3], 1]] yields a vector, suitable for describing in-phase change of

the two CN-bonds, stretched at the TS.
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Figure 13.4: Starting geometries for cases 10 and 11 from Baker’s TS test set. a) 1,2,4,5-
tetrazine and b) trans-butadiene. Bonds, stretched at the TS, are crossed
by a dashed line. Atom labels start at 0, to be consistent with the actual
pysisyphus input.

In this example, the exact signs of the additional numbers do not matter, as long as

both are the same. Swapping one sign to a negative number would result in a vector,

describing stretching of one and compression of the other bond. After normalization,

overlaps between the approximate mode and Hessian eigenvectors are calculated and the

eigenvector corresponding to the highest overlap is select as initial root (Listing 13.1).

Care has to be taken that only overlaps within the non-redundant subspace are considered.

In the present implementation, pysisyphus defines 28 primitive internals for tetrazine.

Listing 13.1: Python code for the rx mode root selection algorithm.

def r o o t s e l e c t ( e i gva l s , e i gvec s , rx mode , thresh=1e−8):
# Construct approximate mode/ e i g enve c t o r
mode = np . z e r o s l i k e ( e i g v a l s ) # I n i t i a l i z e zero−vec to r
for prim coord , number in rx mode : # Loop over rx mode input

# Determine l o c a t i o n o f p r im i t i v e i n t e r n a l in mode
index = ge t i ndex o f p r im coo rd ( prim coord )
mode [ index ] = number # Set number at appropr ia t e l o c a t i o n

mode /= np . l i n a l g . norm(mode) # Normalize to un i t l ength

# Take abso lu t e value o f over laps , because e i g enve c t o r s i gn i s ambiguous .
ov lps = np . abs (np . einsum ( ” i j , i−>j ” , e i gvec s , mode ) )
# Only con s id e r ove r l ap s in non−redundant subspace by ze ro ing ove r l ap s
# in the redundant subspace .
sma l l i nd s = np . abs ( e i g v a l s ) < thresh
ov lps [ sma l l i nd s ] = 0 .0
root = ov lps . argmax ( ) # Se l e c t root with h i ghe s t over lap
return root

Using the aforementioned rx mode input, the algorithm determines the 16th Hessian

eigenvector for maximization. If a TS for a bond breaking reaction is sought one cannot

just blindly maximize along the lowest (first) Hessian eigenvector, as the lowest modes

usually describe dihedrals motions. For the cis-trans isomerization of butadiene (case

11), specification of one dihedral is enough (rx mode: [[[2, 0, 1, 3], 1]], see
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Figure 13.4). In this case, maximization is actually carried out along the first Hessian

eigenvector, with a non-vanishing eigenvalue.

Overall, the presented approach allows easy, initial root selection. By controlling the

sign of the additional number, even complicated phase relationships between different

internal coordinates can be expressed, if required.

Pysisyphus implements three TS optimizers that utilize Hessian information: restricted

step partitioned RFO (RS-PRFO), restricted step image method RFO (RS-IRFO), and

the trust-region image method (TRIM) (see eq. (9.7) on page 62 and eq. (5.7) on page 32).

TRIM combines the IM with step determination through eq. (5.5). [256, 438] All three

optimizers were applied to Baker’s TS test set. Additionally, the use of line searches,

that is maximization in one subspace and minimization in the other, was investigated for

RS-PRFO.

Contrary to the published value of−242.255 29Eh, a lower final energy of−242.256 96Eh

is used as reference energy for case 22. The former value corresponds to a planar, sym-

metry constrained solution, which relaxes to the latter value without constraints.

Results for the different optimizers are shown in Table 13.5. RS-PRFO, with enabled

line search is the only optimizer that converged all 25 investigated test cases, requiring

325 cycles. Disabling line search yields a failure for case 2 and a total of 326 cycles are

required to converge the remaining 24 test cases. RS-IRFO fails for case 15 and requires

a total of 297 cycles. TRIM fails for five cases (10, 11, 14, 16, 22), while the remaining

cases require 254 cycles.

Considering only the 18 cases that converged for all optimizers (excludes 2, 10, 11, 15,

14, 16, 22), then RS-IRFO needs the fewest cycles (221), closely followed by RS-PRFO

with enabled line search (224). Disabling line search increases the required cycles to 238

for RS-PRFO. TRIM requires a total of 227 cycles.

Table 13.5: Performance of different TS optimizers in pysisyphus for converging Baker’s
TS test set. The numbers in parentheses give the required cycles, to converge
the 18 cases that did not fail with any optimizer (excludes cases 2, 10, 11, 14,
15, 16 and 22), recall Figure 13.3.

Optimizer Converged Failed cases Cycles

RS-PRFO with line search 25 - 325 (224)
RS-PRFO without line search 24 2 326 (238)
RS-IRFO 24 15 297 (221)
TRIM 20 10, 11, 14, 16, 22 254 (227)

102



13.2 Benchmarks and Verification

Table 13.6: Number of optimization cycles required to converge Baker’s TS test set (Fig-
ure 13.3), according to Baker’s criteria (see section 13.2).[315] Convergence to
the correct geometry was ensured by comparing the final energy to the pub-
lished values. Bakken’s results correspond to their most efficient method, as
presented in Table XV in [232]. Besalu’s results correspond to the RS-PRFO
column in Table 1 in [256], whereas Baker’s original results are taken from
Table IV in [315]. Code to reproduce the results of this work is given in
Listing A.3 on page 141.

# Reaction This

work

Bakken

[232]

Besalu

[256]

Baker

[268]

1 HCN −−→←−− HNC 12 9 - 9

2 HCCH −−→←−− CCH2 13 7 - 8

3 H2CO −−→←−− H2 +CO 13 13 - 13

4 CH3O −−→←−− CH2OH 9 - - 11

5 cyclopropyl ring opening 20 - - 11

6 bicyclo[1.1.0]butane

ring opening

8 - - 7

7 bicyclo[1.1.0]butane

ring opening

11 - - 9

8 1,2-migration (formyloxy)ethyl 10 - - 26

9 butadiene + ethylene −−→←−− cyclo-

hexene

18 15 x 13

10 s-tetrazine −−→←−− 2HCN+N2 11 9 32 14

11 trans-butadiene −−→←−− cis-butadiene 10 - - 8

12 CH3CH3 −−→←−− CH2CH2 +H2 11 8 15 12

13 CH3CH2F −−→←−− CH2CH2 +HF 15 15 - 11

14 vinyl alcohol −−→←−− acetaldehyde 23 19 - 13

15 HCOCl −−→←−− HCl + CO 15 - - 12

16 H2O+PO3
– −−→←−− H2PO4

– 15 - - 23

17 Claisen rearrangement 13 - 36 8

18 SiH2 +CH3CH3 −−→←−− SiH3CH2CH3 12 12 - 7

19 HNCCS −−→←−− HNC+CS 13 13 - 10

20 HCONH3
+ −−→←−− NH4

+ +CO 15 - 14 10

21 rotational TS in acrolein 5 5 - 4

22 HCONHOH −−→←−− HCOHNHO 14 5 10 5

23 HNC+H2 −−→←−− H2CNH 7 8 22 8

24 H2CNH −−→←−− HCNH2 23 18 20 14

25 HCNH2 −−→←−− HCN+H2 9 8 56 9

Sum 325 162 205 275
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A more detailed listing of the RS-PRFO results with enabled line search is given in

Table 13.6. Compared with Baker’s original work, the most efficient method in this

work requires more cycles (325 cycles versus 275 cycles).[315] However, the present

implementation can be used mostly in a black box way, whereas Baker’s results were

obtained with manually constructed Z-matrices. Comparisons with other published

results is difficult, as often only results for a subset of the 25 cases are reported. In

contrast to the present work, Bakken found TRIM to provide the best performance

for 15 tested cases. Similarly, Besalu found the IM based optimizers more stable (see

Table 13.5).[256] But it must be kept in mind that both studies employed only a subset

of Baker’s TS test set. Considering only cases that converged for all optimizers in this

work, then RS-IRFO also compares favorably to RS-PRFO (221 versus 224 cycles).

In summary, RS-PRFO with enabled line searches shows robust performance on Baker’s

TS test set. In case, a TS search is started from a convex region on the PES, pysisyphus

offers a simple way to select an appropriate root for uphill following, by means of the

rx mode keyword.

Dimer method

While utilizing Hessian information enables efficient and effective TS optimization, com-

putational demand of obtaining and handling Hessian matrices (diagonalization/inversion,

see chapter 10) grows quickly with system size.[439] Recently, Hermes showed that QN-

methods easily loose track of the leftmost Hessian eigenvector and accumulate significant

error in the Hessian, when standard update methods (SR1, BFGS) are employed.[440]

Only one Hessian calculation at the beginning may be sufficient to converge well-behaved

TS optimizations, as in Baker’s TS set. But more challenging TS searches may re-

quire additional, intermediate Hessian calculations, to circumvent aforementioned error

accumulation, which may become prohibitive for big systems.

Pysisyphus implements the DM, which requires only gradients, thus avoiding the

problems outlined above. In every optimization cycle, the dimer is converged onto the

leftmost Hessian eigenvector, up to a prescribed tolerance, by means of dimer rotations.

Translation steps move the whole dimer closer towards the TS.

Energies and gradients were calculated at the same level of theory as previously outlined.

The DM (chapter 10) was employed for converging dimer orientation N to the leftmost

Hessian eigenvector, corresponding to the smallest eigenvalue, in every optimization cycle.

A reasonable choice for the initial dimer orientation N is crucial for a successful outcome

of the TS search. Starting from optimized TSs, obtained with a Hessian based optimizer,

IRCs were integrated towards the educts and products, connected by the TSs. Initial
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guesses for N were calculated as normalized difference between the Cartesian coordinates

of aligned educt and product geometries. If no initial N is provided to pysisyphus, a

random orientation is chosen. In general, picking a random orientation should be avoided,

as the dimer rotations may fail to converge for bad initial guesses. An example for this is

found in Table 1 of [312], where even simple cases like the HCN isomerization failed to

converge for a random initial orientation.

A dimer separation of ∆R = 0.0189 a0 was chosen (Figure 10.1 on page 63). Rotations

were carried out as described by Kästner, with a tolerance of ϕtol = 5◦ and steps obtained

from a LBFGS optimizer.[312] Performance of LBFGS has proven superior to the CG and

steepest descent approaches outlined elsewhere.[290, 311] For cases 10 and 11, starting in

the convex PES region, dimer rotations were disabled until the convex region was left

and the curvature became negative. In contrast to the original proposal by Jonsson,[311]

it was critical for the convergence of case 10, to use parallel and perpendicular force

components, even in the convex PES region, recall eq. (10.3). These choices correspond

to the default settings for the DM in pysisyphus.

Dimer translation was carried out by a (preconditioned) LBFGS optimizer. Precondi-

tioners P were constructed as outlined in chapter 7, using Lindh’s model Hessian.[241,

286] All stretches, bends and dihedrals, automatically defined by the internal coordinate

setup algorithm in pysisyphus, are used for constructing P . The present implementation

utilizes the sparse linear algebra capabilities of the SciPy package.[441] As some of the

molecules are quite small, using all primitive internals resulted in dense preconditioners.

For large molecules, care has to be taken for P to be actually sparse, otherwise the

computational benefits of preconditioning may not be realized.

Gas-phase Hessians are at least six fold degenerate, so P was regularized (P → P +cI)

with c = 0.103Eh a0
−2.[286] If the absolute value of any element in the proposed step

exceeded 0.25 a0, the whole step was scaled accordingly, so the absolute values are equal

to or less than the threshold. Cartesian coordinates and Baker’s convergence criteria

were used throughout.

Results obtained with and without preconditioner are given in Table 13.7. The DM

in combination with (preconditioned) LBFGS, as implemented in pysisyphus, managed

to converge 24 out of 25 cases from Baker’s TS set. Only case 11 failed, regardless of

whether a preconditioner was used. Employing preconditioning is clearly superior, as only

358 optimization cycles (dimer translations) are needed, while 577 cycles are required

without preconditioner. Disregarding the additional energy and gradient evaluations

required for dimer rotations, the present implementation nearly rivals the performance of

optimizations that utilized Hessian information (325 cycles, Table 13.6). For a total of
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1092 evaluations, an average of 46 energy and gradient evaluations are needed to converge

24 cases with preconditioner. Without preconditioner, the total (average) is significantly

higher 1706 (71).

Table 13.7: Number of optimization cycles required to converge Baker’s
TS test set (Figure 13.3) according to Baker’s criteria (see
section 13.2), using the DM and (preconditioned) LBFGS.[234,
251, 286, 315] Required energy and gradient evaluations are
given in parentheses. Convergence to the correct geometry
was ensured by comparing the final energy to the published
values. Code to reproduce these results is given in Listing A.4
on page 142.

Preconditioning

# Reaction yes no

1 HCN −−→←−− HNC 12 (42) 13 (44)
2 HCCH −−→←−− CCH2 13 (45) 11 (36)
3 H2CO −−→←−− H2 +CO 10 (32) 12 (38)
4 CH3O −−→←−− CH2OH 10 (25) 10 (24)
5 cyclopropyl ring opening 14 (46) 32 (95)
6 bicyclo[1.1.0]butane

ring opening

12 (40) 25 (79)

7 bicyclo[1.1.0]butane

ring opening

14 (49) 42 (131)

8 1,2-migration (formyloxy)ethyl 18 (47) 34 (73)
9 butadiene + ethylene −−→←−− cyclo-

hexene

17 (57) 31 (105)

10 s-tetrazine −−→←−− 2HCN+N2 12 (43) 21 (63)
11 trans-butadiene −−→←−− cis-butadiene - -
12 CH3CH3 −−→←−− CH2CH2 +H2 12 (29) 16 (37)
13 CH3CH2F −−→←−− CH2CH2 +HF 14 (35) 19 (45)

14 vinyl alcohol −−→←−− acetaldehyde 17 (51) 29 (80)
15 HCOCl −−→←−− HCl + CO 12 (50) 29 (114)
16 H2O+PO3

– −−→←−− H2PO4
– 15 (50) 31 (104)

17 Claisen rearrangement 19 (58) 38 (113)
18 SiH2 +CH3CH3 −−→←−− SiH3CH2CH3 23 (53) 43 (109)
19 HNCCS −−→←−− HNC+CS 22 (67) 29 (90)
20 HCONH3

+ −−→←−− NH4
+ +CO 16 (61) 21 (74)

21 rotational TS in acrolein 11 (36) 22 (69)
22 HCONHOH −−→←−− HCOHNHO 27 (75)a 18 (56)b

23 HNC+H2 −−→←−− H2CNH 12 (30) 16 (42)
24 H2CNH −−→←−− HCNH2 18 (52) 22 (56)
25 HCNH2 −−→←−− HCN+H2 8 (19) 13 (29)

Sum 358 (1092) 577 (1706)

a Final energy −242.256 96Eh, relaxed TS geometry.
b Final energy −242.255 30Eh, published value.[315]
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Comparison to other implementations is difficult. Heyden also used the DM for Baker’s

TS set, but the starting geometries were obtained as interpolated HEI from a previous

GSM run.[290] Kästner directly started from the test set geometries, but used a random

initial dimer orientation N , resulting in failures for several cases. He reported between

2211 to 2689 energy and gradient evaluations to converge on average 22 of the 25 test

cases.[312] Shang et al. employed a different level of theory3, direct dimer rotation

using constrained Broyden minimization, a more complex force definition, and different

convergence criteria. They achieved an average of 35 energy and gradient evaluations,

while converging all 25 cases, which appears superior to the present implementation.[313]

But is has to be noted that looser convergence criteria were employed in this study, as

convergence was already indicated, when the maximum absolute value of the gradient

entries fell below 6.9× 10−3Eh a0
−1.

13.2.5 Chain-Of-States Test Set

Pysisyphus offers several ways for obtaining TS guesses, e.g., by means of COS methods

like NEB or the GSM. Here, the performance of the GSM implementation in pysisyphus

is investigated for a diverse test set, comprising 20 reactions (Figure 13.5).

The set is mostly based on a set presented by Birkholz and Schlegel.[265, 315, 442–444]

It includes educt, TS and product geometries obtained at the PM6[445] and B3LYP/6-

31G(d,p) level of theory.[446–449] For the present benchmark, the given TSs were

reoptimized at the GFN2-XTB level of theory, using pysisyphus. Subsequently, IRCs

were integrated towards educts and products of the reactions, to obtain a consistent set

of structures. The IRC endpoints were then employed as initial geometries for the GSM.

Two cases were excluded from the original set: the SN2 reaction of fluoride and methyl

chloride (case 19) does not have a TS at the GFN2-XTB level of theory, which was also

noted by Birkholz for the B3LYP/6-31G(d,p) PES. Similarly, explorative calculations

for the addition of difluorocarbene to ethylene (case 9) revealed the same absence of a

TS at the tight-binding level of theory. These cases were replaced by two hydride shift

reactions (cases 14 and 30) from the MOBH35 test set (metal-organic barrier heights

with 35 members).[450]

The ability of the GSM to yield useful TS guesses for the MOBH35 set was recently

probed by Grimme, using the original GSM implementation of Zimmerman.[300, 451]

Unfortunately, no details on the GSM calculations (number of images, optimization

algorithm, threshold for growing images, among others) were reported by Grimme.

3Numerical double-ζ basis and GGA-PBE XC-functional
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Figure 13.5: Investigated reactions in the COS test set.

Some geometries in the present set differ significantly from the originals. Notably, the

educts for the two Cope-rearrangements (cases 4 and 16 in Figure 13.5) exhibit a different

conformation (see Figure 13.6). When a GSM is initiated from the original conformers,

subsequent optimization of the HEI yields a wrong TS. If the GSM is initiated from

the IRC endpoints, the correct TS is obtained. Starting from reasonable conformers is

crucial for the successful outcome of COS optimizations, as already noted by Birkholz

and others.[442, 451]
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Figure 13.6: Different educt (a, c) and TS geometries (b, d) for the Cope rearrangement
of 1,4-hexadiene (case 4 in the COS test set). a) Conformer, as published in
[442], b) (wrong) TS, obtained from GSM started from a) and subsequent
TS optimization. c) Conformer used in this benchmark and d) correct TS,
obtained when starting GSM from the conformer c).

Likewise, the high symmetry of HCN and CNH (case 3) was broken slightly, to allow

successful interpolation. A similar approach was recently discussed by Palenik.[282]

Interestingly, correct TSs are obtained by the connectivity transition state (CTS) ap-

proach, also available in pysisyphus, even when starting from the original conformers (see

Listing A.6).[442]

Energies and gradients were obtained at the GFN2-XTB level of theory using XTB

6.3.3.[212] Singlet multiplicity and neutral charge was assumed throughout, except for case

15 (charge -1). Initial educt and product geometries were preoptimized for a maximum

of 5 cycles, using the standard method in pysisyphus (see section 13.2.1). Starting from

the preoptimized geometries, a string in DLC was grown to a total of 12 images (10 inner

images).[300] New images were added, when the RMS of the perpendicular force acting on

the frontier images fell below 0.05 Eh · a0−1 (rad−1). String reparametrization occurred

every other cycle during the growth phase, and every third cycle after the string was

fully grown. Originally, Behn and Zimmerman proposed a reparametrization approach,

where every image is shifted many times along the string using very small steps.[299,

300] Pysisyphus uses a different approach: The required step is estimated and taken

directly for every image that needs reparametrization. This is repeated iteratively, until

the desired string parametrization is achieved. Usually, only one or two steps are needed

per image and thus, excessive internal-Cartesian back-transformations are avoided. While

still in the growth phase, the DLC were reset after every reparametrization, and a new

active set U was calculated for every image (see section 6.4). Resetting of DLCs was

stopped after the string was fully grown, to not interfere with the LBFGS optimizer,

which relies on a history of previous steps and gradient differences.

When the RMS of the perpendicular force dropped below 0.0075 Eh · a0−1 (rad−1)

and the string was fully grown, the HEI was converted to a CI, aimed at yielding an

improved TS guess. During the growth phase, string optimization was achieved via
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steepest descent steps after reparametrizations and CG (Fletcher-Reeves) otherwise.

[234, 300] After the string was fully grown, optimization continued with LBFGS. A

history of 10 previous cycles was retained and a doubly damped BFGS update was used

(Algorithm 2 on page 36).[255] To the best knowledge of the author, a doubly damped

BFGS update was not yet applied in the context of COS optimization. The whole step

vector was scaled accordingly, if the absolute value of any element in it exceeded 0.2 a0

(rad). All optimizers were employed in their global variant, that is the whole COS was

optimized as super-molecule, instead of optimizing every image on its own. While this

makes no difference for steepest descent, as image-coupling is neglected, Sheppard found

global LBFGS superior over per-image LBFGS.[306]

GSM convergence was signaled, when the RMS of the perpendicular force fell below

or was equal to 0.005 Eh · a0−1 (rad−1). In the present study, GSM is employed to

obtain a reasonable TS guess, so there is no need for overly tight convergence. Finally,

after convergence an interpolated HEI was obtained by means of cubic splining, which

is superior over just picking the HEI without interpolation.[309] It was ensured that all

primitive bond stretches that are either present in the educt or the product geometry,

are also defined for the HEI derived TS guess. In the following and in the context of

COS optimizations, this approach will be referred as the standard method.

Two of the twenty cases required slight adjustments, to ensure convergence: The GSM

for case 3 (HCN isomerization) was optimized in Cartesian coordinates instead of DLC

and for case 20, the convergence criterion was tightened to 0.003 Eh · a0−1 (rad−1).

Subsequent TS optimizations were started from the splined HEI in RIC, using RS-IRFO.

An exact Hessian was calculated before the first optimization cycle and the eigenvector

for energy maximization was selected according to its overlap with the HEI tangent. The

trust radius was restricted to 0.5 a0 (rad), to avoid overly long steps, which can result in

a loss of the correct eigenvector.[440] Convergence of the TS optimization was indicated

when the standard Gaussian criteria were fulfilled (see section 13.2.2). A Hessian was

calculated at the final geometry to verify the nature of the SP as first-order TS. Success of

the TS optimizations was verified by calculating the RMSD with a reference TS geometry.

Results for the COS test set are summarized in Table 13.8. The correct TS is obtained

for all twenty cases in the test set by the standard method with only two minor adjustments.

Similarly, all previous GSM optimizations converged. String optimizations of cases 11

(formaldehyde decomposition) and 14 (H2 addition to formaldehyde) required the most

cycles (26 and 22) until convergence, even though they belong to the smallest test cases.

Overall, a total of 204 GSM cycles are required, each cycle comprising multiple energy

and gradient evaluations. Subsequent TS optimizations required a total of 228 cycles
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(minimum 2, median 10, maximum 26 cycles). In nearly all cases, the overlap of the

HEI tangent with the eigenvector, belonging to the most negative eigenvalue of the HEI

Hessian, was close to 1.

Disabling LBFGS and relying only on steepest descent and CG steps for string opti-

mization, leads to a failure in the subsequent TS optimizations of cases 11 and 19. For

case 11, already the GSM optimization failed, as it did not converge in 50 cycles. For case

19 it required only 7 cycles, but converged to a wrong TS, as the eigenvector selection

fails and the vector belonging to the second, most negative eigenvalue is chosen for uphill

following. Compared to the standard method disabling LBFGS results in 54 additional

COS optimization cycles (225 vs. 171), if the two failing cases are neglected.

Turning off the doubly damped BFGS update leads to 45 additional COS optimization

cycles (249), compared to the standard method. COS optimization of case 11 terminates

prematurely, as the coordinates of two images became too similar. The number of

required TS optimization cycles increases to 278, corresponding to 50 additional cycles,

compared to the standard method. Nonetheless, all 20 TS optimizations converged to

the correct TSs.

Only the combination of LBFGS and doubly damped update appears to sustain long

optimization step lengths (maximum absolute element 0.2 a0 (rad)). The influence of

whether LBFGS with double damping is enabled or not, could probably be decreased by

using smaller step lengths, at the cost of additional energy and gradient evaluations.

The present setup also allows to investigate the influence of the chosen primitive

internals at the TS guess, on the outcome of the TS optimization. When bends and

dihedrals, defined at educt and product geometries, are also included in the coordinate

set at the TS guess, 2 additional cycles (230) are required compared to the standard

method that only considers the bonding skeleton. Fully neglecting, which primitives are

defined at educt and product, leads to deteriorated TS optimization performance, as

overall 256 cycles are required. Care must be taken, not to include superfluous linear

bends at the TS guess, which can lead to spurious eigenvectors with strongly negative

eigenvalues, as observed for case 1 in Figure 13.7. Even though the Cartesian Hessian at

the TS guess has one significant imaginary mode, retaining the linear bend results in

two imaginary modes in RIC (Table 13.9). If the linear bend is omitted at the TS guess,

only one imaginary mode is present. At least for this case, the spurious eigenvector is

easily detected, as its overlap with the HEI tangent is basically zero (Table 13.9).

In summary, the present GSM implementation offers a robust way to obtain TS guesses

in a black-box fashion, while requiring only educt and product geometries as input. By
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Table 13.9: Negative eigenvalues and overlaps of the corresponding eigenvectors with the
HEI tangent, depending on whether a linear bend is defined at the HEI or
not (see Figure 13.7).

linear bend no linear bend

# eigenvalue overlap eigenvalue overlap

1 -0.371532 0.000041 -0.019199 0.974726
2 -0.016751 0.974867

Figure 13.7: Case 1 from the COS test set. Whereas a linear bend is a suitable coordinate
for the educt a) (∢ONN = 179.6◦), it isn’t suitable anymore at TS geometry
b) (∢ONN = 143.7◦). Including the linear bend at b) leads to a spurious
imaginary mode.

taking into account the union of bonds defined at educt and product geometries for the

TS guess, improved optimization performance is achieved. LBFGS combined with double

damping appears to be a promising strategy for COS optimization, whereas using plain

LBFGS seems less suitable.

13.3 Excited State Optimization

The performance of pysisyphus for optimizing and tracking ESs is verified against two

previously published systems: the optimizations of the first two excited singlet states of cy-

tosin (Cy) and the S9 of the ruthenium nitrosyl complex cis−(Cl,Cl)[RuCl2](NO)(tpy)]+

(RuNO).[223] Additionally, two exemplary optimizations of excited triplet states for

two platinum complexes ([Pt(C≡C-Tol)2(phen-TPA-R)]; R = OMe, CN) investigated

by Shillito et al., are presented.[8] Structural formulas for all compounds are given in

Figure 13.8.

All optimizations were carried out in RIC using the standard method outlined in

section 13.2.1, with enabled GDIIS and quartic line search. Initial Hessians were estimated

according to Fischer and updated with the BFGS formula.[234, 242] ESs were tracked by

the WFO approach. The reference cycle for the overlap calculation was updated using
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Figure 13.8: Compounds investigated in this chapter. a) 1H-amino-keto tautomer of
cytosin (Cy), b) reaction of N -benzylbenzenesulfonamide (1b) to biphenyl
(2b), c) ruthenium nitrosyl complex cis –(Cl, Cl)[RuCl2](NO)(tpy)]+

(RuNO) and d) two platinum complexes [Pt(C–––C–Tol)2(phen–TPA–R)]
(Pt-TPA-OMe with R = OMe, Pt-TPA-CN with R = CN).

the adaptive formalism described in section 4. Convergence was indicated when the

Gaussian criteria were fulfilled (see section 13.2.2).

13.3.1 Cytosin

As one of the five canonical nucleobases making up nucleic acids (NAs), the photochemistry

of cytosin received considerable scientific interest.[452–458] Absorption of ultraviolet light

through nucleic acids may lead to their degradation and can induce harmful processes like

cell apoptosis.[458, 459] Extensive photo-degradation of nucleic acids is avoided by very

fast nonradiative decay, as the excitation energy is dissipated in the surroundings.[460–

462] Cytosin shows fast IC from a bright π → π∗ to a dark n→ π∗ state.[456] Its small

size makes it suitable for benchmarking ES tracking algorithms, as shown by Garćıa et

al.[223] Here, similarly the performance of pysisyphus for optimizing the first two singlet

ES of the 1H-amino-keto-tautomer of cytosin (Cy, Figure 13.8a) was investigated.

All calculations at the DFT and TD-DFT level of theory were carried out via Turbomole

V7.3.[122] Excited state properties (such as vertical excitation energies and oscillator

strengths) for the first two excited singlet states were obtained from TD-DFT calculations

at the PBE0/def2-SVP[381, 463] level of theory, using the starting geometry provided by

Garćıa.[223] The RIJ approximation with corresponding auxiliary basis set was used to

speed up the calculations.[389, 464]

Optimization results are shown in Figure 13.9. Pysisyphus successfully optimizes

both ESs to SPs, while correctly tracking their diabatic character. In both cases,
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the state crossings occur shortly after the start of optimization. The charge density

differences (CDDs) along the optimization paths stay nearly constant. Garćıa reported

160 steps for the S1 optimization and ca. 324 steps for the S2 optimization, until a SP

was reached. In pysisyphus only 9 (10) gradient calculations are needed for the S1 (S2)

optimization, showing a remarkable, although unsurprising, improvement. Enhanced

performance of internal coordinates in combination with an optimizer, utilizing Hessian

information, was already recognized many years ago by Schlegel.[75]

Figure 13.9: Electronic energies of the ground and the first two excited singlet states of
cytosin (Cy) along the optimization of the a) bright S1 and b) dark S2, with
respect to the ground state energy at the first cycle. The tracked excited
state is indicated by a dashed black line. Every marker corresponds to an
optimization cycle and missing markers indicate root flips. CDDs illustrate
the excited state character at the start and the end of the optimization;
electron density is excited from blue to red.

13.3.2 Ruthenium Nitrosyl Complex

Besides carbon monoxide and hydrogen sulfide, nitric oxide (NO) is an important

physiologically relevant gasotransmitter.[465] In the human body, NO acts as strong
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vasodilator and can activate macrophages.[466–470] Even long before its important

physiological role was understood, NO-precursor drugs like nitroglycerin and amyl nitrate

were in wide use.[471, 472] Direct and targeted application of gaseous NO in humans

is difficult, resulting in the development of transition metal complexes, where the NO

release can be triggered by light.[473–478] Transition metal nitrosyls exhibit a complex

photochemistry, as NO may undergo either photo-release or photo-isomerization.[479–481]

By computing the relaxation pathways of ESs, the photochemistry of transition metal

nitrosyls can be rationalized.[482–484]

As a challenging example, Garćıa recently presented the optimization of the bright S9

of RuNO (see Figure 13.8c) using NTO overlaps.[223] Similar to the Cy example, the

performance of pysisyphus in the scope of ES optimizations in the singlet manifold is

investigated.

All calculations at the DFT and TD-DFT level of theory were carried out by Turbomole

V7.3.[122] Excited state properties for the first ten excited singlet states were obtained

from TD-DFT calculations using the BHandLYP exchange-correlation functional and

the starting geometry provided by Garćıa.[163, 223, 447, 485]. The double-ζ basis

6-31G(d)[486] was employed for hydrogen, carbon, oxygen and nitrogen, the augmented

6-31+G(d)[487, 488] basis set for chlorine and the LANL2DZ basis with corresponding ef-

fective core potential for ruthenium.[489, 490] The RIJ approximation with corresponding

auxiliary basis set was used to speed up the calculations.[389, 464] Initial and maximum

trust radius ∆ were set to 0.3 a0 (rad).

The optimization was started in the bright S9 state (∆E = 4.08 eV, f = 0.1251),

corresponding to a ligand-to-metal-charge-transfer (LMCT) excitation from πtpy and

pCl,ax orbitals into an antibonding π∗Ru,NO orbital; results are shown in Figure 13.10. The

NO group tilts down, and the Ru-N-O angle decreases from 176.4◦ to 145.5◦ along the

optimization. Several root flips occur and the final ES, e.g., the respective LMCT at the

SP is the S6. Garćıa reported the need for 619 optimization cycles, whereas pysisyphus

only needs 28 cycles to reach a SP, while overachieving on the RMS (maximum) of the

Cartesian gradient with 3× 10−6Eh a0
−1 (1.9× 10−5Eh a0

−1), again showing a marked

improvement.[223]

Just by visually inspecting, the CDDs of the initial S9 and the final S6 in Figure 13.10,

seem quite different and it may be assumed that the ES tracking failed. But analyzing

the overlaps reveals that they never drop below 0.85 and are usually well above 0.90,

confirming a successful state-tracking. This example clearly shows that small differences

in ES character between successive optimization cycles may amount to big differences
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between the first and the final cycle, highlighting again the need for a robust automated

state tracking procedure.

If desired, pysisyphus offers easy CDD visualization along the optimization, as it is also

interfaced to Multiwfn[491] and Jmol[492], allowing automated calculation and rendering

of CDDs for Gaussian, ORCA and Turbomole.[121, 122, 384]

Figure 13.10: Electronic energies of the ground and the first ten excited singlet states
of a ruthenium nitrosyl complex (RuNO) along the optimization of the
bright S9, with respect to the ground state energy at the first cycle. The
tracked excited state is indicated by a dashed black line. Excited states
that do not cross with the state of interest are shown with reduced opacity.
Every marker corresponds to an optimization cycle, and missing markers
indicate root flips. CDDs illustrate the excited state character at the start
and the end of the optimization; electron density is excited from blue to
red.

13.3.3 Platinum Complexes

Modifying ligands in transition metal complexes, e.g., by substitution with electron-

donating or electron-withdrawing groups, influences their photophysical properties con-

siderably. By adding such electron donating or withdrawing groups to the triphenylamine

(TPA) moiety in a rhenium complex, Larsen reported the effective emission energy
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tuning from a short-lived 1ILCT state (intra-ligand-charge-transfer).[493] In an effort

to adjust the interaction of ILCT and metal-to-ligand-charge-transfer (MLCT) states

in fac-[Re(L)(CO)3(α-diimine)]n+, Shillito investigated the role of the ancillary ligand

L.[494] The α-diimine ligand corresponds to 1,10-phenanthroline, with TPA appended

in 5 position (phen-TPA). Recently, the effect of further modifying TPA in the phen-

TPA ligand by electron-donating methoxy or electron-withdrawing cyano-groups on

the photophysics of two rhenium and platinum complexes was analyzed by a combined

experimental and computational study.[8]

Herein, optimizations of two excited triplet states for the two platinum complexes

Pt-TPA-OMe and Pt-TPA-CN (see Figure 13.8d) are presented, thus, expanding the

application of pysisyphus to excited state optimizations of triplet nature.

All quantum chemical calculations were performed using Gaussian 16.[384] Ground

state equilibrium structures were obtained at the DFT level of theory utilizing the

B3LYP35 functional,[495–498] comprising 35% of exact-exchange, 58.5% of non-local

B88[163] exchange and the LYP correlation.[447] The effective core potential MWB-

60[499] and its corresponding valence basis set were used for platinum, the 6-31G(d) basis

set was employed for all other atoms.[486] Excited state properties for the first 10 triplet

states of Pt-TPA-OMe and the first 25 triplet states of Pt-TPA-CN were obtained

by TD-DFT from a singlet reference state. Solvent effects (CH2Cl2 ϵ = 8.93, n = 1.4070)

were considered by means of the integral equation formalism of the polarizable continuum

model.[500] Dispersion interactions were taken into account by the D3-model with Becke-

Johnson damping.[382, 383] The initial (maximum) trust radius ∆ was set to 0.05 a0

(rad) (0.3 a0 (rad)).

Results of both optimizations are shown in Figure 13.11. Optimizing the T9 of Pt-

TPA-CN to a SP took 43 optimization cycles, as the initial ES becomes the T8 at the

SP. Compared to RuNO with 34 atoms and 384 basis functions, where only the first 10

excited states were considered, Pt-TPA-CN is a much larger system with 89 atoms, 872

basis functions and 15 additional excited states, showing that pysisyphus in conjunction

with WFOs can also be employed to optimize sizeable molecular systems. Optimizing

the T3 of Pt-TPA-OMe to a SP point took 35 cycles, and no state switching occurred.

Successful state tracking is confirmed by the CDDs shown in Figure 13.11, as they are

very similar between the start and the end of the optimizations in both cases.
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13.3 Excited State Optimization

Figure 13.11: Electronic energies of the singlet ground state and a) the first ten triplet
states of Pt-TPA-CN along the optimization of the T9 and b) the first
five triplet states of Pt-TPA-OMe along the optimization of the T3, with
respect to the ground state energy at the first cycle. The tracked excited
state is indicated by a dashed black line. Excited states that do not cross
with the state of interest are shown with reduced opacity. Every marker
corresponds to an optimization cycle, and missing markers indicate root
flips. CDDs illustrate the excited state character at the start and the end
of the optimization; electron density is excited from blue to red.
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13 Pysisyphus

13.4 Ground State Calculations - Biaryl Cross-Coupling

Pysisyphus’ capabilities to obtain reaction coordinates was already outlined in sec-

tion 13.2.5. Here, the calculation of a GS reaction coordinate for the photoreaction

discussed in chapter 12 is presented, as it is an example for a complex and computationally

challenging reaction, where three bonds are broken and one bond is formed. Even though

the true reaction coordinate involves ESs, the GS coordinate is a good approximation to

it. The unsubstituted N -benzylbenzenesulfonamide 1b (compound 1p in [2]) was chosen,

as this allows all calculations to be performed in a timely manner, even on common

desktop hardware.

All DFT calculations were performed in ORCA 4.2.0[121] with the range-separated

exchange correlation functional CAM-B3LYP and the def2-SVP double-ζ basis set.[381,

501] The RIJCOSX approximation was employed to speed up the calculations.[291]

Dispersion interactions were taken into account by the D3-model with Becke-Johnson

damping.[382, 383] To reduce noise in the calculated gradients arsing from the numerical

integration in DFT, tight convergence criteria for the self consistent field iterations

and finer integration grids were used (keywords tightscf, grid4, finalgrid5,

gridx6).

The GSM in DLC, as implemented in pysisyphus, was used to obtain a suitable

TS guess for the biaryl cross-coupling reaction (see Figure 13.8b). Initial molecular

geometries for the GSM were taken from the endpoints of an IRC, calculated in an earlier

study[2] of the system at the CAM-B3LYP/def2-TZVP level of theory. Both molecular

geometries were pre-optimized for 5 cycles in RIC using the standard method, outlined in

section 13.2.1. A conjugate gradient optimizer[300] was employed to relax the string to

the MEP. The string was grown to a total length of 13 images (11 inner images). First

and last image of the string remained fixed over the course of the optimization. After

the string was fully grown, optimization was terminated and the HEI was used as initial

guess for a TS optimization.

Subsequent TS optimization in RIC was carried out using RS-IRFO. Analytical

Hessians were recalculated at every 5th optimization cycle. The nature of the obtained

TS as first-order saddle point was verified by a Hessian calculation.

IRCs in mass-weighted Cartesian coordinates were traced from the TS to confirm that

the TS connects presumed educts and products of the biaryl cross-coupling reaction.

A predictor-corrector integrator utilizing Hessian information was used to integrate an

IRC (eq. (11.1)) with a step length of 0.1 a0.[332, 346] Corrector integration on the DWI

surface was carried out using the Radau integrator, as provided by SciPy.[352, 441]

120



13.4 Ground State Calculations - Biaryl Cross-Coupling

Analytical Hessians were recalculated every 10th IRC cycle. After the IRCs converged

to a Cartesian gradient RMS of 1.0 × 10−3 Eh a0
−1, its endpoints were optimized to

SPs. Along the IRC towards the products of the reaction, the TS fragments into three

separate molecules. If requested by the user, pysisyphus can automatically detect the

fragments and optimize them separately after convergence of the IRC is achieved.

Figure 13.12: Image energies of the growing string, describing the biaryl cross-coupling
reaction over the course of the string optimization, with respect to the
energy of the first image in the first cycle. Earlier cycles are shown in a
lighter shade, later cycles in a darker shade. Images are enumerated by
blue numbers. Inner images are introduced (grown) in later cycles. Image
1 and 13 remained fixed, while the other images were allowed to relax.
The HEI was employed as guess for a subsequent TS optimization and is
highlighted in orange.

Results of the calculations are shown in Figures 13.12 to 13.14. The two starting images

were pre-optimized for 5 cycles, lowering their RMS Cartesian gradient from 6.4× 10−3

Eh a0
−1 to 2.0 × 10−4 Eh a0

−1 for image 1 and from 6.8 × 10−3 Eh a0
−1 to 3.9 × 10−4

Eh a0
−1 for image 13. As educts and products will be optimized later on, starting from

the IRC endpoints, it is not necessary to optimize the starting images tightly. If one of

the starting images consists of multiple weakly bound fragments, the optimization may

even fail, as such optimizations are notoriously difficult to converge.[272] Figure 13.12

displays the energy profile of the string images over the course of the optimization. The

RMS of the DLC gradient of the string images quickly drops from 7.7× 10−3 Eh a0
−1

in the first cycle and never exceeds 6.0× 10−3 Eh a0
−1 after cycle 6, showing that the

121



13 Pysisyphus

gradual growing of new images avoids any high energy geometries. Image 7 is the last

one to be grown and image 8 is finally selected as HEI and used for the TS optimization.

Calculation of a Hessian in RIC at the HEI revealed three significant negative eigenval-

ues. The overlap between the HEI tangent τ and the eigenvector belonging to the most

negative eigenvalue was 0.93, indicating that the string was converged well enough for τ

to be a good approximation to the reaction coordinate. In this case, the DM would also

be expected to allow a successful TS optimization, as τ would be a very good guess for

the initial dimer orientation N .[290] An overlay of the HEI geometry and the optimized

TS is given in Figure 13.13a, confirming that the HEI is already a good approximation

to the true TS. The TS optimization converged in 16 cycles; besides the initial Hessian

at the HEI, three additional Hessians were calculated. An optimization starting from the

same HEI without additional Hessian calculations took 50 cycles to converge the correct

TS, but still needed roughly 10% less computational time compared to the optimization

with Hessian recalculations (73min vs. 65min). If analytical Hessians are available for

the chosen level of theory, it is usually beneficial to recalculate them periodically for

effective optimizations.

Starting from the TS, an IRC calculation (see Figure 13.14) confirmed that the

optimized TS indeed connects the sulfonamide 1b educt and the biaryl coupling product.

Without taking into account any thermochemical corrections, the reaction barrier in

the GS, as calculated in the IRC, is 335 kJmol−1 and thus the cross-coupling reaction

cannot proceed in the GS. If the involvement of ESs is considered, the barrier height is

substantially lowered in the S1 and the coupling reaction can take place. A full discussion

of the reaction mechanism is found in chapter 12 and reference [2].

The example presented here exemplifies that full reaction paths can be obtained

in pysisyphus with minimal user intervention, by using robust and efficient algorithms.

Starting from the pre-optimization and ending with the optimization of the IRC endpoints,

all calculations took 9.6 h on a desktop computer equipped with 8 physical CPU cores

(Ryzen 1700X CPU).
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13.4 Ground State Calculations - Biaryl Cross-Coupling

Figure 13.13: TS optimization of the biaryl cross-coupling reaction started from HEI
guess using RS-IRFO: a) Energy change between HEI and optimized TS
and b) RMS of the Cartesian gradient over the course of the optimization.
The molecular geometries of HEI guess (in orange) and the optimized TS
is shown in the upper panel.

Figure 13.14: Forward and backward IRCs of the biaryl cross-coupling reaction started
from the optimized TS, using a predictor-corrector integrator: a) Energy
profile with respect to the educt energy at the start of the IRC and b)
RMS of the Cartesian gradient along the IRC.
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13.5 Implementation

Pysisyphus is licensed under GNU GPL 3 and implemented in python 3.[413, 414, 502]

Python is a popular, interpreted, high-level programming language that found widespread

adoption in the chemistry community.[124, 272, 503–507] It features a rich ecosystem of

mature, well tested and versatile libraries for scientific computing.[441, 508]

Inputs to pysisyphus can be given via simple to create YAML files or it can be used as

a python library, to implement custom workflows, tailored to the users needs.

Required electronic energies and their derivatives are not calculated by pysisyphus

itself, but by calling external QC packages. ES gradients and ES-tracking are currently

available for Gaussian 16[384], ORCA 4[121], TURBOMOLE 7[122] PySCF[504] and

the tight-binding code DFTB+.[206] GS calculations are possible with the already

mentioned packages, Psi 4[503] and the fast semiempirical packages MOPAC2016[509]

and xtb.[418] An even broader variety of QC packages is available through the QCEngine

project, however with varying degree of supported features.[510] QCEngine provides

basic wrappers for many additional codes, for instance NWChem,[511] GAMESS[512] and

Q-Chem[513]. Advanced features like reusing wavefunction information from previous

calculations and ES tracking is currently only possible with native pysisyphus calculators,

nonetheless the applicability of pysisyphus is greatly increased through QCEngine.

Parallel execution of the many required gradient calculations for COS methods is possible

through the dask library, thus available resources like HPC clusters can be utilized

efficiently.[514]

Quick testing and rapid prototyping of new methods in pysisyphus is possible through

analytical implementations of many potentials like the Lennard-Jones potential or the

London-Eyring-Polanyi-Sato (LEPS) method, as their evaluation time is negligible com-

pared to ab initio calculations and even semiempirical methods.[71] New 2D-potentials for

testing can be easily specified just by their energy expression. First and second derivatives

are then automatically determined by the sympy computer algebra system.[515]

Using internal coordinates requires the calculation of the so called Wilson-B matrix

that relates changes of Cartesian coordinates to changes in internal coordinates.[232,

278] Transforming a Cartesian Hessian to internal coordinates also requires derivatives

of the B matrix-elements with respect to the Cartesian coordinates. Pysisyphus uses

code generation to avoid error-prone hand coding of these lengthy expressions. Algebraic

expressions for the first and second derivatives of stretches, (linear) bends and dihedrals

with respect to Cartesian coordinates were generated with sympy, simplified using

common subexpression elimination and translated in a python module. Figure 13.15
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13.5 Implementation

shows valid python code that generates all expressions for the first and second derivatives

of a dihedral coordinate with respect to Cartesian coordinates of the atoms making up

the dihedral. Linear bends are implemented as given by Hoy.[273–275]

Figure 13.15: Python code for the sympy computer algebra system to generate first and
second derivatives for a primitive dihedral coordinate with respect to the
Cartesian coordinates of the atoms making up the dihedral.

The code is developed mainly in an object-oriented way with superclasses for (TS)

optimizations, IRC calculations, COS methods, line searches and interpolation, providing

commonly needed functionality. Actual algorithms like optimizers and IRC integrators

are implemented as subclasses, specifying only the functionality specific to the respective

method. This way, pysisyphus is extended easily with new methods, as the existing

infrastructure from the superclasses can be reused.

Interoperability with the well-established ASE package is possible by an automated

conversion of the central Geometry class from pysisyphus to the central Atoms class in

ASE.[124] Hence, functionality unique to pysisyphus, e.g., ES-tracking can be combined

with ASE optimizers, increasing the applicability of pysisyphus.

While interfacing to ASE requires the user to write additional python code, pysisy-

phus also offers a socket-interface, supporting a superset of the i-PI communication

protocol.[516, 517] The original protocol is restricted to simultaneous sending of energy

and forces. Pysisyphus extends it to also support sending Hessians or energies only, as

required for TS-optimizations and line searches. According to the ASE documentation, a
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13 Pysisyphus

variety of quantum chemical codes implement the (original) i-PI protocol, e.g., Quantum

Espresso,[518, 519] Siesta,[520] DFTB+[206] and NWChem.[511, 521] Communication

via sockets was successfully tested with DFTB+, for which pysisyphus can act as external

optimizer.

The present ES-tracking functionality is easily accessible, as interfaces to new programs

only have to provide the MO coefficients and the one-electron transition density matrix.

Care was taken to allow a quick and easy visualization of running and completed

calculations via the pysisplot command. A subset of possible visualizations is shown

in Figure 13.16.

Fully automated interpolation of molecular geometries with the methods discussed in

section 8.2, including interpolation in DLC, is available through a simple to use command

line interface. This way interpolated paths, e.g. for Marcus theory, are easily obtained.[90]

Pysisyphus is developed using continuous integration and features an extensive test suite,

to ensure that further code development does not break existing functionality and intro-

duces new bugs.[522] The code is fully available at https://github.com/eljost/pysisyphus

and is easily installed from the python Package index with pip install pysisyphus.

Comprehensive documentation and examples are found online.4 Contributions and bug

reports are welcome. To this date, pysisyphus already received a code contribution from

an external researcher.[523]

4 https://pysisyphus.readthedocs.io
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13.5 Implementation

(a) (TS)-optimization progress. (b) IRC progress.

(c) ES-optimization, including followed root.
(d) ES-overlaps between two cycles and CDD of

followed root.

(e) Energies of COS images. (f) Perpendicular forces of COS images.

Figure 13.16: Selection of possible visualizations available via the pysisplot command.
Besides removing superfluous whitespace, figures were used, as produced
by pysisyphus. While not intended for direct inclusion into publications,
these visualizations allow a quick control of (running) calculations.
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13 Pysisyphus

13.6 Summary

This chapter described the capabilities and implementation of pysisyphus – an external

optimizer for stationary points and reaction coordinates in ground and ESs. By providing

ES tracking capabilities and optimization in internal coordinates, pysisyphus allows

highly efficient ES optimizations. The performance of pysisyphus was verified extensively

against several test sets and previously published results for ES optimizations of cytosin

and a ruthenium nitrosyl complex. Furthermore, it was applied to the optimization of

excited triplet states of two sizeable platinum complexes, (long-lived) key states in their

ES relaxation cascades.[8] The ability of pysisyphus to obtain full reaction paths by means

of COS methods and IRC calculations was demonstrated for a real world example in the

electronic ground state, but all presented methods are also applicable in ES calculations.

Besides the already mentioned platinum complexes, pysisyphus was already successfully

applied for elucidating the reaction mechanisms of (metal-free) biaryl cross-couplings and

iron(0) mediated (3+2) cycloaddition of thiochalcones.[2, 524]

Possible extensions of pysisyphus would be the generalization of ES tracking to arbitrary

multiplicities and support for wavefunctions beyond CIS, as they occur in complete active

space self consistent field (CASSCF) calculations. By combining the interpolation and

ES optimization capabilities of pysisyphus, the automated calculation of rate constants,

e.g. in the scope of electron transfer processes using semi-classical Marcus theory, could

be realized. A pure python implementation of Plassers wfoverlap[225] program is already

underway.[525] By incorporating changes of the WFO algorithm proposed by Sapunar,

overlap calculations for configuration interaction singles (CIS) type wavefunction could

be made even more efficient.[226]
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Chemical reactivity of atoms, molecules and ions is governed by their underlying potential

energy surface (PES). N atoms in the gas-phase give rise to a PES with 3N−6 degrees of

freedom (3N − 5 for linear arrangements). Calculating the whole PES within reasonable

bounds, is impossible for all but the smallest N . Usually, only parts of the full PES

can be studied, namely stationary points (SPs) and the minimum energy paths (MEPs)

connecting them. By comparing energies of SPs and their separating barriers, conclusions

regarding possible reactions mechanism, or their infeasibility, can be drawn. Taking

excited states (ESs) into account leads to further complications, as now multiple PESs

have to be considered and root flips between different ESs may occur, requiring effective

ES-tracking.

Part II describes the required methods to locate SPs and MEPs on PESs, by using

surface-walking, chain-of-states (COS) optimization and intrinsic reaction coordinate

(IRC) integration.

Special focus was set on ES-tracking in chapter 4, where three approaches are outlined

and an adaptive formalism to update the reference cycle is presented. State-tracking by

wavefunction overlaps is the most general approach, but computationally also the most

demanding, as many determinant calculations may be required.

Different coordinate systems, including their advantages and disadvantages are dis-

cussed in chapter 6. The most promising coordinates for molecular optimizations are

redundant internal coordinates (RIC), as they usually exhibit small coupling and al-

low easy estimation of initial model Hessians. Drawbacks of internal coordinates in

general, are that they are not unambiguously defined and their need for an iterative

internal-Cartesian back-transformation that may fail to converge.

Chapter 7 briefly reviews preconditioning. Preconditioning shows a different route to

the omnipresent Newton step (eq. (5.3) on page 31) in molecular optimizations, apart

from the usual derivation via Taylor expansion. Convergence of optimizations carried

out in Cartesian coordinates is often greatly improved by preconditioning. Optimizing

Baker’s transition state (TS) set using the dimer method (DM) and preconditioned
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limited-memory BFGS (LBFGS) (section 13.2.4, Table 13.7) showed that preconditioning

can rival the performance of optimizations carried out in internal coordinates.

A COS comprises several images, discretizing a MEP, onto which it can be gradu-

ally relaxed. The highest energy image (HEI) of a relaxed COS is often a good guess

for subsequent TS optimizations. If converged tightly, a COS may even be a good

approximation to the true MEP. Commonly employed COS methods (nudged elastic

band (NEB) and string method (SM)), including their variants are discussed in chap-

ter 8. Obtaining TSs by utilizing Hessian information is outlined in chapter 9. TS

optimization using only first derivatives of the energy by means of the DM is reviewed

in chapter 10. Chapter 11 describes how to integrate an IRC, the path of steepest

descent in mass-weighted Cartesian coordinates. IRCs are usually easily interpreted, as

they don’t exhibit complicated rotational and vibrational motions. Similar to normal

optimizations, IRC integrators (Gonzalez-Schlegel second-order algorithm (GS2) and

Euler predictor-corrector (EulerPC)) utilizing Hessian information can sustain longer

step lengths, compared to integrators relying only on the energy gradient.

Results of this thesis are presented in Part III. This thesis makes two contributions to

the field of photochemistry: chapter 12 provides a possible ES reaction mechanism for

the biaryl cross-coupling reaction shown in Figure 14.1 and offers a plausible explanation

for its high regioselectivity.

Figure 14.1: Biaryl cross-coupling photoreaction.

The coupling reaction was investigated for two substrates: 1a, affording significant

photoproduct yields and the unsubstituted 1b, providing only photoproduct traces.

Their ground state (GS) PESs were sampled by simulated annealing conformer searches

and relaxed scans, leading to the identification of two major structural motifs: Linear

conformers, characterized by increased distances between the C5 – C1 carbons supposed

to couple and horseshoe conformers exhibiting decreased C5 – C1 distances. According

to the conformer search, the horseshoe motif is preferred for 1a, while a linear minimum

energy conformer is predicted for 1b. A five-membered TS in the GS was obtained

for both substrates. IRC integration revealed high barriers, preventing a GS reaction.

ES calculations along selected IRC geometries confirmed the existence of several ESs
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that facilitate the photoreaction with greatly reduced barriers. Compared to 1a, the

relevant ESs in 1b are shifted hypsochromically and exhibit lower oscillator strengths,

thus impeding the photoreaction which is in full accordance with the experimental results.

The second contribution is the development pysisyphus (chapter 13), an external

optimizer implemented in python, aware of ESs and thus the core of this thesis. Besides

the recently proposed SDNTO program by Garćıa et al.,[223] which is restricted to a

steepest descent optimizer and does not support RIC, the author of this thesis is not

aware of other external optimizers tailored to deal with ESs. All ES-tracking approaches

outlined in chapter 4 (wavefunction overlaps, transition density matrix (TDEN) overlaps

and natural transition orbital (NTO) overlaps) are implemented in pysisyphus.

Pysisyphus features comprehensive documentation and is developed using contemporary

practices like continuous integration and unit testing, to assert the correctness of the

software.

Chapter 13 presents extensive benchmarks, confirming that pysisyphus is ahead of,

or at least competitive with similar implementations. Optimization of minima was

benchmarked for Baker’s test set and the more challenging S22 set of Hobza.[268, 423]

TS optimization performance was investigated for Baker’s TS test set,[315] using two

different approaches: utilizing-Hessian information and utilizing only first derivatives,

by means of the DM. Finally, pysisyphus’ ability to obtain TSs from preceding COS

optimizations was verified against a diverse test set, containing educts and products of

20 reactions.

Results for several ES optimizations are presented in section 13.3. Compared to SDNTO,

pysisyphus shows greatly improved performance for ES optimizations. Optimizing the

bright S9 of RuNO required only 28 cycles, compared to 619 cycles reported for

SDNTO.[479] Applicability of the ES-optimizer to triplet states of sizable systems was

demonstrated for two Pt-complexes in section 13.3.3.

Care was taken to integrate pysisyphus into the bigger ecosystem of computational

chemistry software, by providing an Atomic Simulation Environment (ASE) interface

and supporting an extended version of the i-PI socket protocol, allowing users to leverage

the many thousand development hours already spent on these projects.

Internal coordinates were implemented using code generated by the sympy computer

algebra system, to avoid error prone manual coding of the lengthy but necessary internal

coordinate derivatives.

Besides the calculation of energies and their derivatives, which are carried out using

external quantum chemistry (QC) software, pysisyphus is self-contained. It does not rely
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on optimization algorithms implemented in the QC packages, thus offering full control,

if required by the user. Pysisyphus implements a multitude of relevant algorithms for

surface-walking, COS optimizations and IRC integration. All algorithms discussed in

chapters 5 to 11, and many more, are available in pysisyphus. Further development of

pysisyphus is especially attractive, as it would expand the applicability of all interfaced

QC packages.
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15 Zusammenfassung

Die chemische Reaktivität von Atomen, Molekülen und Ionen wird durch ihre unter-

liegende Potentialhyperfläche (PES) bestimmt. N Atome in der Gasphase werden durch

eine PES mit 3N − 6 Freiheitsgraden beschrieben (3N − 5 für lineare Anordnungen).

Berechnung der vollständigen PES, in angemessenen Grenzen, ist nur für kleinste Sys-

teme möglich. Überlicherweise können nur Ausschnitte der PES untersucht werden:

Stationäre Punkte (SPs) und die sie verbindenen Minimal-Energie-Pfade (MEPs). Durch

Vergleich der Energien von SPs und der sie trennenden Barrieren können Aussagen

über die Möglichkeit, oder Unmöglichkeit, von Reaktiosmechanismen getroffen werden.

Werden zum elektronischen Grundzustand noch zusätzlich angeregte Zustände (ESs)

berücksichtigt, verkompliziert sich die Interpretation der PESs, da nun auch Wechsel

zwischen verschiedenen elektronischen Zuständen auftreten können.

Die vorliegende Arbeit beschäftigt sich mit der Implementierung von Methoden zur

PES-Aufklärung in Grund- und angeregten Zuständen, sowie ihrer Anwendung auf

photochemische Fragestellungen.

Der Theorieteil diskutiert die benötigten theoretischen Grundlagen, um SPs und MEPs

auf PESs zu finden. Dabei können drei Algorithmenklassen unterschieden werden:

• Schreiten entlang der PES (surface walking): Eine vermutete Startgeometrie wird

zum nächstgelegenen SP (Minimum oder Sattelpunkt) optimiert.

• Optimierung einer Kette von Zuständen (chain-of-states, COS): Eine Kette von

mehreren Geometrien approximiert einen MEP und wird gemeinsam optimiert, bis

alle Geometrien auf dem MEP liegen.

• Integration einer intrinsischen Reaktionskoordinate (IRC): Pfad des steilsten Ab-

stieges in massengewichteten, kartesischen Koordinaten, üblicherweise ausgehend

von einem Sattelpunkt, hin zu Edukt(en) und Produkt(en).

Ein besonderer Fokus der Arbeit liegt auf Methoden, um einen initial gewählten ES

entlang einer Optimierung zu verfolgen (state-tracking), auch über Kreuzungen mit

anderen Zuständen hinweg. Der Ergebnisteil diskutiert die Resultate der vorliegenden

Dissertation in zwei Kapiteln.
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Biaryl-Kopplungs-Photoreaktion

Kapitel 12 beschäftigt sich mit der Aufklärung des Reaktionsmechanismus einer Biaryl-

Kopplungs-Photoreaktion. Mittels Konformerensuche und Optimierungen unter Nebenbe-

S NH

O

O

R1
R2

R1 R2
- SO2
- NHCH2

254 nm

dingungen (relaxed scans) konnten zwei wichtige Strukturmotive identifiziert werden,

welche die Sulfonamid-Edukte einnehmen: lineare Geometrien, mit großem Abstand

zwischen den zu koppelnden Kohlenstoffatomen und Hufeisen-Geometrien, mit stark

verringertem Abstand. Für den elektronischen Grundzustand wurde ein fünf-gliedriger

Übergangszustand gefunden, welcher die Reaktion vermittelt. Eine IRC-Integration

zeigte jedoch die Existenz einer hohen Barriere, welche die Reaktion im Grundzustand

unmöglich macht. Durch Berechnungen von ESs entlang des IRCs wurden verschiedene

Zustände erhalten, in denen die Barrierenhöhe stark reduziert ist, so dass die Reaktion ef-

fizient stattfinden kann. Die Ergebnisse der Berechnungen zeigen eine gute Überstimmung

mit experimentellen Messungen.

Pysisyphus

Kapitel 13 stellt die Software pysisyphus vor, einen externen Optimierer mit spezieller

Unterstützung für die Verfolgung von ESs. Pysisyphus erlaubt state-tracking mittels

Überlapps zwischen Wellenfunktionen, Übergangsdichte-Matrizen oder natural transition

orbitals. Für verschiedene ES-Optimierungen zweier Referenzsysteme (Cytosin und ein

Ruthenium-Nitrosyl-Komplex) konnte der benötigte Rechenaufwand im Vergleich zur

Literatur auf 3.1% bis 5.6% reduziert werden. Die Anwendbarkeit der vorliegenden

Implementierung für Optimierungen von Triplett-Zuständen wurde für zwei Platin-

Komplexe gezeigt.

Weiterhin implementiert pysisyphus eine Vielzahl von Algorithmen für surface-walking,

COS-Optimierung und IRC-Integration. Die Korrektheit der vorliegenden Implemen-

tierungen wurde ausgiebig gegen eine Vielzahl von Referenzsystemen verifiziert. Neben

den untersuchten Referenzsystemen wurde die Anwendbarkeit von pysisyphus für die

Sattelpunktsuche auch für die o.g. Biaryl-Kopplungs-Reaktion gezeigt.

Pysisyphus wurde mittels moderner Praktiken wie unit-tests, continuous integration

und Code-Generierung entwickelt.
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A Appendix

A.1 Numerical integration of the Local Quadratic

Approximation

The IRC
dx(s)

ds
= − g(x)

|g(x)|
(A.1)

is parametrized by the arc length s. Assuming 3N mass-weighted Cartesians the arc

length is calculated as[335]

ds2 =

3N∑︂
i=1

dx2i . (A.2)

Pechukas noted that integrating

dx(t)

dt
= −g(x) (A.3)

yields the same paths, as integration of eq. (A.1).[334] Eq. (A.3) can be related to eq. (A.1)

via
dx

dt
=

dx

ds

ds

dt
(A.4)

Expanding g(x) to first-order around x0 and substituting into eq. (A.3) yields

dx(t)

dt
= −g(x0)−H(x0)(x− x0) . (A.5)

For quadratic potentials eq. (A.5) is solved by

x(t) = x0 +A(t)g(x0) . (A.6)

Matrix A(t) is defined as

A(t) = U0α(t)U⊺
0 (A.7)
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with U0 being the eigenvector matrix of H(x0) and α(t) is a diagonal matrix with

elements

αii =
e−λit − 1

λi
(A.8)

where {λi} are the eigenvalues of H(x0). From now on, g(x0) and H(x0) will be denoted

as g0 and H0. Substituting Eq. (A.6) in the right-hand side (RHS) of eq. (A.5) and

multiplying from the left with U⊺
0 yields:

U⊺
0

dx

dt
= −U⊺

0 g0 −U⊺
0H0(x0 +A(t)g0 − x0) (A.9)

= −U⊺
0 g0 −U⊺

0H0A(t)g0 (A.10)

= −U⊺
0 g0 −U⊺

0H0U0α(t)U⊺
0 g0 (A.11)

= −U⊺
0 g0 − λ0α(t)U⊺

0 g0 . (A.12)

λ0 denotes a diagonal matrix containing the eigenvalues of H0. Eq. (A.12) is further

simplified to

U⊺
0

dx

dt
= −(λ0α(t) + 1)U⊺

0 g0 (A.13)

dx′

dt
= −(λ0α(t) + 1)g′

0 (A.14)

where the prime denotes quantities transformed to the basis of the Hessian eigenvectors

U0. Matrix λ0α(t) is diagonal with elements

(λ0α(t))ii = λi
e−λit − 1

λi
(A.15)

= e−λit − 1 . (A.16)

Substituting eq. (A.16) into eq. (A.14) yields(︃
dx′

dt

)︃
i

= −(e−λit − 1 + 1)g′0i (A.17)

= −e−λitg′0i . (A.18)

Arc length s satisfies the equation

ds

dt
=

√︃
dx

dt

dx

dt
. (A.19)
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Together with eq. (A.18) and the fact that the (unitary) transformation x′ = U⊺
0x is

norm conserving (x′⊺x′ = x⊺x), the final equation for integrating ds
dt in the basis of the

Hessian eigenvectors is obtained.

ds

dt
=

√︄∑︂
i

g′2
0ie

−2λit (A.20)

A.2 Biaryl Cross-Coupling Results for 1b

Figure A.1: Energy differences and C5 – C1 distances for the relaxed scan around the
central dihedral (C5 – S4 – N3 – C2) in 1b at the CAM-B3LYP/def2-TZVP
level of theory. A horseshoe conformer is predicted as minimum energy
geometry at ϕ = −90◦ with a C5 – C1 distance of 337 pm.
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Figure A.2: Selected distances along the IRC, describing the formation of 2b from 1b by
photosplicing, obtained at the CAM-B3LYP/def2-TZVP/CPCM(ACN) level
of theory. a) Atomic distances with significant changes when going from the
educt to the TS and b) distances that change significantly in the second IRC
half, when going from TS to the photoproducts.

A.3 S22 Geometries with High root mean square

deviations (RMSDs)

Figure A.3: Overlay of selected, optimized geometries from the S22 test set, as discussed
in section 13.2.2.[417, 423] The numbering is consistent with Table 13.4.
Reference geometries as provided by Lindh are given in blue, whereas the
geometries obtained from pysisyphus (this work) are colored by element. All
geometries, beside case 17 (benzene · water dimer) are virtually indistinguish-
able, from the reference geometries, even though they show high RMSDs, in
spite of resorting the atoms with the Hungarian algorithm.[433, 434]
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A.4 Code Listings

This section contains several python code listings, allowing to reproduce (part of) the

results presented in this thesis. Listings are provided in the form of unit tests, that can

be executed by the pytest python package. [526–529] Exact git commits are given as

docstring below the function header.

Listing A.1: test baker.py, Optimization of Bakers test set in 207 cycles at the HF/STO-
3G level of theory, as discussed in section 13.2.1.

import pyte s t

from pys isyphus . benchmarks import Benchmark
from pys isyphus . c a l c u l a t o r s .ORCA import ORCA
from pys isyphus . op t im i z e r s . RFOptimizer import RFOptimizer

def c a l c g e t t e r ( charge , mult ) :
return ORCA( keywords=”hf sto−3g” , pa l=6, charge=charge , mult=mult )

BakerBm = Benchmark ( ”baker ” , coord type=”redund” , c a l c g e t t e r=c a l c g e t t e r )

@pytest . mark . parametr ize ( ” fn , geom , r e f e n e r gy ” , BakerBm)
def t e s t bak e r ( fn , geom , r e f e n e r gy ) :

””” pys isyphus @ 7 cc0a296493b797ae934dfe891109414f9 f8a fc6 ”””
opt kwargs = {

” thresh ” : ”baker ” ,
” h e s s i a n i n i t ” : ” f i s c h e r ” ,
” hes s i an update ” : ” b fg s ” ,
” l i n e s e a r c h ” : True ,
” g d i i s ” : True ,

}
opt = RFOptimizer (geom , ∗∗ opt kwargs )
opt . run ( )

a s s e r t opt . i s c onve rg ed
a s s e r t geom . energy == pyte s t . approx ( r e f e n e r gy )
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Listing A.2: test s22 set.py, Optimization of S22 TS test set in 310 cycles at the RI-
MP2/6-31G** level of theory, as discussed in section 13.2.2.

import pyte s t

from pys isyphus . benchmarks import Benchmark
from pys isyphus . c a l c u l a t o r s import ORCA
from pys isyphus . op t im i z e r s . RFOptimizer import RFOptimizer
from pys isyphus . t e s t i n g import us ing

S22Bm = Benchmark ( ” s22 ” , coord type=”redund” )

@using ( ” orca ” )
@pytest . mark . parametr ize (

” fn , geom , charge , mult , r e f e n e r gy ” ,
S22Bm. geom ite r

)
def t e s t s 2 2 s e t ( fn , geom , charge , mult , r e f e n e r gy ) :

””” pys isyphus @ e56df2973cdcf3140216637b4ae4b5dbf2f30542 ”””
c a l c = ORCA(

keywords=”RI−MP2 6−31G∗∗ def2−SVP/C t i g h t s c f ” ,
pa l=4,
mem=1500 ,
charge=charge ,
mult=mult ,

)
geom . s e t c a l c u l a t o r ( c a l c )
opt kwargs = {

” thresh ” : ”gau” ,
”dump” : True ,

}
opt = RFOptimizer (geom , ∗∗ opt kwargs )
opt . run ( )

a s s e r t opt . i s c onve rg ed
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Listing A.3: test baker ts.py, Optimization of Bakers TS test set in 304 cycles at the
HF/3-21G level of theory, as discussed in section 13.2.4, using restricted
step partitioned RFO (RS-PRFO) with enabled line search.

import pyte s t

from pys isyphus . benchmarks import Benchmark
from pys isyphus . c a l c u l a t o r s .ORCA import ORCA
from pys isyphus . t s op t im i z e r s import RSPRFOptimizer

def c a l c g e t t e r ( charge , mult ) :
return ORCA( keywords=”HF 3−21g” , pa l=6, mem=500 , charge=charge ,

mult=mult )

BakerTSBm = Benchmark (
” bake r t s ” ,
coord type=”redund” ,
c a l c g e t t e r=c a l c g e t t e r ,

)

@pytest . mark . parametr ize ( ” fn , geom , r e f e n e r gy ” , BakerTSBm)
def t e s t b a k e r t s ( fn , geom , r e f e n e r g y ) :

””” pys isyphus @ 1 ce48d3eb95715111b4758c3e6a1f0da4e7319d4 ”””
i f fn == ”22 hconhoh . xyz” :

r e f e n e r gy = −242.25695787 # Unconstrained s o l u t i o n

opt kwargs = {
” thresh ” : ”baker ” ,
” t r u s t r a d i u s ” : 0 . 1 ,
” trust max” : 0 . 3 ,
” m in l i n e s e a r ch ” : True ,
”max l ine s ea r ch ” : True ,

}
# Cases 10 & 11 s t a r t in the convex reg i on o f the PES, so we must
# des i gna t e an i n i t i a l mode/ root / d i r e c t i o n .
i f fn == ”10 t e t r a z i n e . xyz” :

opt kwargs [ ” rx mode” ] = ( ( ( 0 , 2 ) , 1 ) , ( ( 1 , 3 ) , 1 ) )
e l i f fn == ”11 t r an s bu tad i ene . xyz” :

opt kwargs [ ” rx mode” ] = ( ( ( 2 , 0 , 1 , 3 ) , 1 ) , )
opt = RSPRFOptimizer (geom , ∗∗ opt kwargs )
opt . run ( )

a s s e r t opt . i s c onve rg ed
a s s e r t geom . energy == pyte s t . approx ( r e f e n e r gy )
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Listing A.4: test baker ts dimer.py, Optimization of Bakers TS test set in 358 cycles (1092
gradient evaluations in total) at the HF/3-21G level of theory, using the DM
and preconditioned LBFGS, as discussed in section 13.2.4 and summarized
in Table 13.7.

import p i c k l e
import pyte s t

from pys isyphus . benchmarks import Benchmark
from pys isyphus . c a l c u l a t o r s import Dimer , ORCA
from pys isyphus . op t im i z e r s . PreconLBFGS import PreconLBFGS

BTS = Benchmark (
” bake r t s ” ,
coord type=” ca r t ” ,
exc lude =(10 ,) ,

)

@pytest . mark . parametr ize (
” fn , geom , charge , mult , r e f e n e r gy ” ,
BTS. geom ite r

)
def t e s t b ak e r t s d ime r ( fn , geom , charge , mult , r e f e n e r gy ) :

””” pys isyphus @ 6d9c004d ”””
with open( ”Ns” , ” rb” ) as handle :

N INITS = p i c k l e . load ( handle ) # Load i n i t i a l o r i e n t a t i o n s

c a l c = ORCA(”hf 3−21g t i g h t s c f ” , charge=charge , mult=mult , pa l=6)
dimer kwargs = {

” rotat ion method ” : ” f o u r i e r ” ,
” c a l c u l a t o r ” : ca l c ,
”N raw” : N INITS [ fn [ : 2 ] ] ,
” l ength ” : 0 .0189 ,
” r o t a t i o n t o l ” : 5 ,
” r o t a t i o n d i s a b l e p o s c u r v ” : True ,
” t r a n s f o r c e f p e r p ” : True ,

}
dimer = Dimer (∗∗ dimer kwargs )
geom . s e t c a l c u l a t o r ( dimer )
opt kwargs = {

” thresh ” : ”baker ” ,
” precon” : True ,
”max step element ” : 0 . 25 ,
”max cycles ” : 50 ,
” c s t ab ” : 0 . 103 ,
”dump” : True ,

}
opt = PreconLBFGS(geom , ∗∗ opt kwargs )
opt . run ( )
a s s e r t opt . i s c onve rg ed
a s s e r t geom . energy == pyte s t . approx ( r e f e n e r g y )
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Listing A.5: test xtb rx.py, TS optimizations for the COS test set at the GFN2-XTB level
of theory, using the GSM and restricted step image method RFO (RS-IRFO),
as discussed in section 13.2.5.

from path l i b import Path
import t emp f i l e

import pyte s t

from pys isyphus . benchmarks import Benchmark
from pys isyphus . xyz loader import wr i t e g e oms t o t r j
from pys isyphus . run import run f rom d i c t

@pytest . mark . parametr ize (
” fn , geoms , charge , mult , r e f e n e r g y ” , Benchmark ( ” xtb rx ” ) . geom ite r

)
def t e s t x t b r x ( fn , geoms , charge , mult , r e f e n e r g y ) :

””” pys i syphus @ 3779 c3485bb5048dc6b58fa6f035e9cb493c1ec6 ”””
s ta r t , t s r e f o r g , end = geoms
i d = fn [ : 2 ]
with t emp f i l e . TemporaryDirectory ( ) as tmp dir :

tmp path = Path ( tmp dir )
i n p t r j = str ( tmp path / ” g s i npu t s . t r j ” )
w r i t e g e oms t o t r j ( ( s t a r t , end ) , i n p t r j )
r un d i c t = {

”geom” : {
” type” : ” d l c ” i f ( i d != ”02” ) else ” ca r t ” ,
” fn ” : i n p t r j ,

} ,
” c a l c ” : {

” type” : ”xtb” , # GFN2−XTB 6 . 3 . 3
” pal ” : 1 ,
”mem” : 750 ,
” charge ” : charge ,
”mult” : mult ,

} ,
” preopt ” : {”max cycles ” : 5} ,
” cos ” : {

” type” : ” gs ” ,
” cl imb” : True ,
” cl imb rms” : 0 .0075 ,

} ,
” opt” : {

” type” : ” s t r i n g ” ,
”max step” : 0 . 2 ,
” rms fo r c e ” : 0 .005 i f ( i d != ”19” ) else 0 .003 ,
” rms f o r c e on l y ” : True ,

} ,
” t sopt ” : {

” type” : ” r s i r f o ” ,
” thresh ” : ”gau” ,
” trust max” : 0 . 5 ,
” do hes s ” : True ,

} ,
}
r e s u l t s = run f rom d i c t ( run d i c t )
a s s e r t r e s u l t s . t s op t . i s c onve rg ed
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Listing A.6: test birkholz interpolation.py, TS optimizations for the HCN isomerization
and the Cope rearrangement of 1,4-hexadiene using the connectivity transi-
tion state (CTS) method, as mentioned in section 13.2.5.

import pyte s t

from pys isyphus . c a l c u l a t o r s .PySCF import PySCF
from pys isyphus . h e l p e r s import (

geom loader ,
d o f i n a l h e s s i a n ,
h i g h l i g h t t e x t

)
from pys isyphus . t s op t im i z e r s import RSPRFOptimizer , b i r k h o l z i n t e r p o l a t i o n
from pys isyphus . t e s t i n g import us ing

@using ( ” pysc f ” )
@pytest . mark . parametr ize (

”name , fn , r e f e n e r gy ” ,
[

( ”hcn” , ” l i b : b i r kho l z r x /02 h c n o r i g i n a l . t r j ” , −91.56485102) ,
( ” cope” , ” l i b : b i r kho l z r x /03 cope . t r j ” , −230.06026151) ,

] ,
)
def t e s t b i r k h o l z i n t e r p o l a t i o n (name , fn , r e f e n e r gy ) :

””” pys isyphus @ f67a70a2a565c42c7d422190288aac96d4fa6fd2 ”””
geoms = geom loader ( fn )

def c a l c g e t t e r ( ) :
return PySCF( ba s i s=” sto3g ” , verbose=0)

t s g u e s s = b i r k h o l z i n t e r p o l a t i o n ( geoms , c a l c g e t t e r )

print ( h i g h l i g h t t e x t ( ”TS−Optimizat ion ” ) )
t sopt kwargs = {

”dump” : True ,
” thresh ” : ”gau” ,
” trust max” : 0 . 3 ,
” p r e f i x ” : name ,

}
t sopt = RSPRFOptimizer ( t s gue s s , ∗∗ t sopt kwargs )
t sopt . run ( )

d o f i n a l h e s s i a n ( t s gue s s , write imag modes=True )
a s s e r t t s g u e s s . energy == pytes t . approx ( r e f e n e r g y )
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Gräfe, S.; Neugebauer, U.; Gandra, U. R.; Schiller, A. Visible light-activated

biocompatible photo-CORM for CO-release with colorimetric and fluorometric

dual turn-on response. Polyhedron 2019, 172, 175–181, DOI: 10.1016/j.poly.

2019.04.031.

(6) Amini, K.; Sclafani, M.; Steinle, T.; Le, A.-T.; Sanchez, A.; Müller, C.; Steinmet-

zer, J.; Yue, L.; Saavedra, J. R. M.; Hemmer, M.; Lewenstein, M.; Moshammer,

R.; Pfeifer, T.; Pullen, M. G.; Ullrich, J.; Wolter, B.; Moszynski, R.; de Abajo,
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Nudged elastic band calculations accelerated with Gaussian process regression. The

Journal of Chemical Physics 2017, 147, 152720, DOI: 10.1063/1.4986787.

(80) Unke, O. T.; Brickel, S.; Meuwly, M. Sampling reactive regions in phase space by

following the minimum dynamic path. J. Chem. Phys. 2019, 150, 074107, DOI:

10.1063/1.5082885.
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Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.

Journal of Chemical Theory and Computation 2016, 12, 1207–1219, DOI: 10.

1021/acs.jctc.5b01148.
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(479) Garćıa, J. S.; Alary, F.; Boggio-Pasqua, M.; Dixon, I. M.; Heully, J.-L. Is photoiso-

merization required for NO photorelease in ruthenium nitrosyl complexes? Journal

of Molecular Modeling 2016, 22, DOI: 10.1007/s00894-016-3138-2.

(480) De Lima Batista, A. P.; de Oliveira-Filho, A. G. S.; Galembeck, S. E. Photophysical

properties and the NO photorelease mechanism of a ruthenium nitrosyl model com-

plex investigated using the CASSCF-in-DFT embedding approach. Physical Chem-

istry Chemical Physics 2017, 19, 13860–13867, DOI: 10.1039/c7cp01642e.

195

https://doi.org/10.1016/j.jinorgbio.2014.01.012
https://doi.org/10.1016/j.poly.2018.05.028
https://doi.org/10.1016/j.poly.2018.05.028
https://doi.org/10.1016/j.ica.2018.05.038
https://doi.org/10.1016/j.ica.2006.02.020
https://doi.org/10.1016/j.ica.2006.02.020
https://doi.org/10.1016/j.ica.2005.03.019
https://doi.org/10.1016/j.ica.2005.03.019
https://doi.org/10.1016/j.cbpa.2008.02.009
https://doi.org/10.1007/s00894-016-3138-2
https://doi.org/10.1039/c7cp01642e


Bibliography
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