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A B S T R A C T

Underwater gliders allow efficient monitoring in oceanography. In contrast to buoys, which log oceanographic
data at individual depths at only one location, gliders can log data over a period of up to one year by following
predetermined routes. In addition to the logged data from the available sensors, usually a conductivity-tem-
perature-depth (CTD) sensor, the depth-average velocity can also be estimated using the horizontal glider ve-
locity and the GPS update in a dead-reckoning algorithm. The horizontal velocity is also used for navigation or
planning a long-term glider mission. This paper presents an investigation to determine the horizontal glider
velocity as accurately as possible. For this, Slocum glider flight models used in practice will be presented and
compared. A glider model for a steady-state gliding motion based on this analysis is described in detail. The
approach for estimating the individual model parameters using nonlinear regression will be presented. In this
context, a robust method to accurately detect the angle of attack is presented and the requirements of the logged
vehicle data for statistically verified model parameters are discussed. The approaches are verified using logged
data from glider missions in the Indian Ocean from 2016 to 2018. It is shown that a good match between the
logged and the modeled data requires a time-varying model, where the model parameters change with respect to
time. A reason for the changes is biofouling, where organisms settle and grow on the glider. The proposed
method for deciphering an accurate horizontal glider velocity could serve to improve the dead-reckoning al-
gorithm used by the glider for calculating depth-average velocity and for understanding its errors. The depth-
average velocity is used to compare ocean current models from CMEMS and HYCOM with the glider logged data.

1. Introduction

Today, underwater gliders are an inherent part of monitoring
oceans. These platforms have proven their efficiency and robustness in
the collection of oceanographic data in the last two decades [1–3]. The
first operational underwater gliders, called “legacy gliders”, were the
Seaglider [4] built by the University of Washington, the Spray [5] built
at the Scripps Institution of Oceanography, and the Slocum [6] devel-
oped by the Webb Research Corporation. This paper focuses on the
Slocum glider. It should be noted that the equations and methods
presented are also applicable to other glider types. The data used are
from the Center for Ocean Observing Leadership (COOL) at Rutgers
University [7]. The Rutgers glider team started with the first Slocum
glider missions in 2003 [8]. Since that time, the team has conducted
505 missions, which have mapped ocean properties over 252,944 km
during 13,563 days at sea. The team is also involved in the Challenger

Glider Mission, which is an international science effort to navigate a
fleet of gliders on a global mission of discovery [9,10]. The gliders will
retrace the path of the HMS Challenger, measuring temperature, salinity
and current. The four-year voyage of the HMS Challenger that began in
1872 sought to answer significant questions about the world’s oceans.
The measurements of the present day Challenger Glider Mission will be
used to assess the capabilities of the most recent Ocean General Cir-
culation Models. The Mission has completed the survey of the South
Atlantic Ocean and is in the middle of the Indian Ocean leg as of
publication. The data used in this paper is taken from the Indian Ocean
transect.

Accurate determination of the glider states during a mission is a
prerequisite for its control and the derivation of in-situ ocean current
data. This requires an accurate glider model that should reflect the
glider behavior in the current environmental conditions, such as sali-
nity, temperature, pressure, bathymetry, and ocean current. The wing
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configuration [11], the fitted sensors [12] and biofouling [13] also have
an important influence on the glider model and should be considered.

The angle of attack is of crucial importance in glider modeling. It
will be used for the calculation of the horizontal and vertical glider
velocity. The horizontal glider velocity is required for dead-reckoning
navigation during a mission [14] and for estimating the depth-average
velocity [15]. The depth-average velocity results from the difference
between the glider velocity over ground and the horizontal glider ve-
locity through water. The horizontal velocity is also applied in the
planning for long-term glider missions to find an optimal/passable path
from a defined start to a goal and to get information about the feasi-
bility of the mission with regards to energy consumption and the esti-
mated arrival time at the goal [16]. The difference between the vertical
glider velocity and the depth rate was used in [17] to determine the
vertical current velocity.

Section 2 presents the glider flight model with relations and de-
pendencies of the angle of attack and the horizontal glider velocity,
which are based on the analysis of Slocum glider models presented in
Section 3. The order of the sections (first: glider model used, second:
relevant glider models) relates to the fact that many issues presented in
Section 3 are explained in Section 2. Approaches to estimate the model
parameters and to determine the angle of attack will be described in
Section 4. Section 5 presents the results of the parameter identification
for various parameter sets. Requirements regarding the logged data in
order to determine trustworthy model parameters will be discussed.
Horizontal glider velocities from a long-term mission are used in
Section 6 to calculate the depth-average velocities which are used for
the comparison of ocean current models from CMEMS [18] and HYCOM
[19] with the glider data.

2. Glider flight model

A generally used glider model for a steady-state gliding motion will
be described in the following sections.

2.1. Calculation of the horizontal glider velocity

Fig. 1 shows a schematic illustration of a glider with the defined
reference frame, angles, velocities and forces.

It should be noted that the angle relations in Fig. 1 correspond to
real glider conditions where a glider has a positive angle of attack α
during the dive phase and a negative angle of attack during the climb
phase.

The navigation of a glider, the planning of a long term glider mis-
sion or the in-situ estimation of the ocean current conditions during a
mission require information about the correct horizontal glider velocity
vx. This velocity is dependent on the vertical glider velocity vz and the
glide path angle ξ, which is the result of the relation between the pitch
angle θ and the angle of attack α

= (1)

The angle of attack α is defined as the angle between the projection of
the total velocity vector of the glider = u v wV [ , , ] onto a vertical plane,
formed by the body-fixed xb and zb axes (x zb b plane), and the
body-fixed xb axis. The angle α can be defined with the body-fixed
velocities u and w as

= w
u

tan 1
(2)

Assuming that the glider has zero roll and no yaw moment, this vertical
plane can be used for a simplified glider flight model when the glider
moves only in this plane. This assumption and the requirement for a
symmetrical glider body will form the basis for the following modeling
steps. This way, the resulting glide speed V can be calculated with the
two body-fixed velocities u and w as

= +V u w2 2 (3)

which can also be described with the horizontal and vertical glider
velocity through water vx, vz as

= +V v vx z
2 2 (4)

and as function of the glide path angle ξ

= =V v v
sin( ) sin( )

z z

(5)

The horizontal glider velocity vx, which is of interest, can be computed
as

= =

= =

v v v

V V
tan( ) tan( )
cos( ) cos( )

x
z z

(6)

The vertical glider velocity (through water) vz results from the differ-
ence between the depth rate (vertical velocity over ground) z and the
vertical current velocity v ,zcurrent which is generally assumed to be zero

= =
=

v z v v zz z
v

z
0

current
zcurrent

(7)

In contrast to the variables vertical glider velocity vz and pitch angle θ,
which can be directly derived from the logged glider data during the
steady-state gliding, the angle of attack α has to be detected using ad-
ditional glider parameters. The necessary steps and relationships for
this are described below.

2.2. Force-velocity relations

The horizontal and vertical force equations for the glider in the
vertical plane at equilibrium steady glides are

+ =F Fcos( ) sin( ) 0D L (8)

+ =F F Fsin( ) cos( )D L Bnet (9)

where FD is the drag force, FL is the lift force, ξ is the glide path angle
and FBnet is the net buoyancy force of the glider given by =F m g,B 0net
the product of the excess mass m0 and the acceleration due to gravity g.
The excess mass m0 can be defined using the total vehicle mass mv and
the mass of displaced fluid m as =m m mv0 . For a neutral buoyancy
trimmed glider, m0 corresponds to the variable ballast mass mb. For
safety reasons, a glider is often trimmed slightly light, so that it floats
when the buoyancy engine is set to =m 0b . Therefore, a buoyancy trim
offset Δm0 has to be added to the resulting excess mass:

= +m m mb0 0 (10)

Re-arranging Eqs. (8) and (9) into a separate description for FD and FL
gives the buoyancy force components

=F m g sin( )D 0 (11)
Fig. 1. Illustration of the defined reference frame, angles, velocities and forces
for a glider.
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=F m g cos( )L 0 (12)

The hydrodynamic forces are modeled as

=F C AV1
2

( )D D
2

(13)

=F C AV1
2

( )L L
2

(14)

where CD and CL are the non-dimensional drag and the lift coefficients
which refer to the reference area A, ρ is the density of water, and V is
the glide speed.

2.3. Angle of Attack relations

The coefficients CD and CL are functions of the angle of attack α and
will be generally modeled as

= +C C CD D D
2

0 2 (15)

=C CL L1 (16)

Using the horizontal force Eq. (8) and the hydrodynamic force Eqs. (13)
and (14), the glide path angle ξ can be calculated as

= = = =F
F

C
C

tan( ) sin( )
cos( )

tan( ) ( )
( )

D

L

D

L (17)

The necessary steps to solve α numerically will be presented in
Section 4.2.

A characteristic value to describe the gliding flight is the lift-to-drag
ratio L/D which can be described using Eqs. (13)-(16) as

= = =
+

L D F
F

C
C

C
C C

/ ( )
( )

L

D

L

D

L

D D
2

1

0 2 (18)

There is a maximum in L/D [20] at

= ±
C
CL D

D

D
( / )max

0

2 (19)

with a value of

=L D
C
C

C
C

( / )
2

L

D

D

D
max

1

0

0

2 (20)

The smallest glide angle ξmin is at (L/D)max and can be calculated as

= = ±
C
C

C
C

cot
2L D

L

D

D

D
min ( / )

1
max

1

0

0

2 (21)

where cot 1 is the arccotangent.
Using Eq. (11) in (13) or (12) in (14), the glide speed V can be

described as function of the related buoyancy force component to the
hydrodynamic force as

=V m gsin
AC

2 ( )
( )D

0

(22)

or

=V m gcos
AC

2 ( )
( )L

0

(23)

The vertical glider velocity vz can be calculated by substituting Eq. (23)
and a sine relation of the glide path angle ξ in Eq. (17) into Eq. (5)

=

=

v m g
AC

C
C

m g C
AC

m gC
AC

2 cos( )
( )

( )
( )

cos( )

2 cos( ) ( )
( )

2 ( )
( )

z
L

V

D

L

D

L

D

L

0

sin( )

0
3 2

3
0

2

3 (24)

Eq. (24) allows the calculation of the angle of attack for minimum

vertical glider velocity v ,minz by maximizing the term CL(α)3/CD(α)2 in
the simplified equation, where the cosine term is ignored [21]. For
typical, small glide angles ξ is the term cos(ξ)3 close to one and con-
stant. The solution of the extreme value problem

=
+

=C
C

C
C C

( )
( ) ( )

0L

D

L

D D

3

2

3 3

2 2
1

0 2 (25)

results in

= ±
C

C
3

v
D

D
,minz

0

2 (26)

whereby the glide angle v ,minz can be calculated as

= ±
C
C

C
C

cot
4

3
v

L

D

D

D
,min

1
z

1

0

0

2 (27)

In analogy to the approach described above it is possible to de-
termine the glide path angle where the horizontal glider velocity vx has
its maximum. Substitute Eq. (22) into (6)

=

=

v m gsin
AC

m gsin
AC

m gsin
AC

2 ( )
( )

cos( )

2 ( )cos( )
( )

2 ( )cos( )

x
D

D D

0

0
2

0
2

const (28)

and maximize the term sin (ξ)cos (ξ)2 in the simplified Eq. (28), where
the drag coefficient CD(α) for small angles of attack is nearly constant.
The extreme value problem for

= =(sin( )cos( ) ) cos( ) 2 sin( ) 02 2 2
(29)

has one solution at

= ± = ±cot ( 2 ) 35.3v ,max
1

x (30)

The value = 35. 3v ,maxx is valid for all types of gliders and independent
of hydrodynamic coefficients [22].

Fig. 2 shows a graphical representation of the glider velocities vx
and xz for dive. This form of representation corresponds to the glide

Fig. 2. Glide polar for a Slocum glider using the hydrodynamic coefficients of
[14] for a excess mass =m g2500 . (A) minimum vertical glider velocity vz, min,
(B) smallest glide angle ξmin, (C) maximum horizontal glider velocity vx, max.
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polar of a sailplane [23] and can be used for graphical analysis and to
determine the glider velocities vx and vz and angles α, ξ and θ for the
operation point of interest. This plot is mirrored on the abscissa to the
commonly used glide polar representation for a glider [22,24,25]. A
glider should be flown within a glide angle range between ξmin and
ξx,max and between the operation points B and C. Here the slowest glide
slope is defined at the maximum lift-to-drag ratio and results in the
minimum specific energy consumption of the glider [22]. This slope is
called stall glide slope in [25]. Flying at higher angles of attack will
enable the lowest sink rate of a glider vz, min in operation point A. Be-
cause the linear relation of the lift curve CL(α) is not guaranteed for
high angles of attack, this operation range should be avoided. The lift
curve is dependent on the structural design of the glider and is mainly
influenced by the shape of the wings. High angles of attack result in
boundary layer separation and the wings stall [26].

3. Relevant work about slocum glider models

This section presents relevant work about the modeling of Slocum
gliders. The interested reader will find information about model design,
strategies to find the model parameters and relations between the in-
dividual models.

3.1. Relevant work

Vehicle Control Technologies, Inc. (VCT) [27] used computa-
tional fluid dynamics (CFD) computations to determine the coefficients
CD and CL of the Slocum glider. These results are published in [24] and
[26]. In this work, the coefficients CD and CL are normalized by the
square length of the hull of 1.789 m. The reference area A is thus
(1.789 m)2 = 3.2 m2.

Graver [28] directly used the lift coefficient from [27] with a re-
scaling in his reference area, i.e. the frontal area of the vehicle for his
glider flight model. With a glider diameter of 0.2127 m the reference
area is A = 0.0355 m2. The drag coefficient was determined using the
glider logging data and the given lift coefficient. An estimation of the
buoyancy trim offset Δm0 was necessary to avoid an asymmetrical drag
coefficient curve.

Bhatta [29] used hydrodynamic force equations by analogy with
Eqs. (37) and (38) so that the reference area definition could be
omitted. Some parameters were estimated using glider logging data
from sea trials in [28] and wind tunnel experiments in [26].

Williams et al. [30] used an iterative scheme to obtain estimates for
the parameters C ,D0 CD2 and CL1 for the lift and drag coefficients. The
individual parameters were determined sequentially in a loop using the
logged glider data: pitch angle θ, vertical glider velocity vz and the net
buoyancy FBnet. This loop is stopped when all parameters converge to a
stable set. Here the reference area A is the frontal area of the glider. The
values of the estimated parameters during dive are different from the
values during climb. According to [30] this is due to the ballasting
procedure. Williams’s work also includes a detailed hydrodynamical
analysis of a hull with a length-to-diameter ratio similar to a Slocum
glider tested in a towing tank.

Merckelbach et al. [17] consider the hull and wings of a Slocum
glider separately for the parameters of the lift and drag coefficients. The
individual parameters for hull and wings are added together to give the
total coefficients, so that they can be used in Eqs. (15) and (16). The
buoyancy force calculation used considered the additional influences of
water pressure P and water temperature T on the volume of the dis-
placed fluid

= + +F g V P a T T V{ [1 ( )] }B g T bp0 (31)

where Vg is the glider volume at atmospheric pressure, ε is the com-
pressibility of the hull, aT is the thermal expansion coefficient, and ΔVbp
is the volume change resulting from the buoyancy engine. Therefore,
the parameters Vg and ε are estimated using the logged glider data. An

additional estimated parameter is CD0 in Eq. (15). All other parameters
in Eqs. (15) and (16) are the result of experiments or empirical formulas
as described below. The determined parameters CD2 and CL1 from hull
tow tests in Williams et al. [30] were used for the hull segment. Since
these parameters refer to the frontal area AF, rescaling is applied. The
reference area in this work is the wing surface area AW = 0.1 m2. The
rescale factor is therefore AF/AW = 0.038/0.1 = 0.38. The parameter
CL1 for the lift coefficient of the wings is the result of a semiempirical
formula [31] for a lift-curve slope using the aspect ratio , and the
wing sweep angle Λ. (A detailed analysis and comparison of possible
formulas for a lift-curve slope for a Slocum glider is given in [32].)
Prandtl’s lifting line theory was used for modeling the drag coefficient
of the wings. In this theory the drag coefficient CD has two terms, a
parasitic drag CD0 as a result of the form drag or pressure drag, the skin
friction drag and the interference drag and an inducted drag CDi cal-
culated using Prandtl’s lifting-line theory

= + = +C C C C KCD D D D L
2

i0 0 (32)

where

(33)

The aspect ratio is calculated as b2/AW, where b is the wing span and
AW is the wing area. The span efficiency parameter e in Eq. (33) allows
the consideration of a real lift distribution, which is usually disturbed
through the addition of fuselage, engine nacelles or other parts [33]. It
should be noted that some of the relations used to describe the hy-
drodynamic vehicle behavior are based on aerodynamic studies where
there is a wealth of experience. Another name for this factor is the
Oswald efficiency factor. (A wide range of approaches to calculate this
factor are presented in [34].)

Mahmoudian [35] also used Eq. (32) to describe the drag coeffi-
cient of the entire glider. The parameters used for the lift and drag
coefficient in this model are from Bhatta [29].

Cooney [14] used exclusively empirical formulas from [33] to de-
scribe the glider behavior. Analogous to Merckelbach [17], a separate
consideration of the hull and wings of a Slocum glider is conducted. The
calculation of the drag coefficient is based on Eq. (32) where the
parasitic drag CD0 is exclusively the result of the pressure drag. The
calculation of the pressure drag is based on Hoerner [33] (3–12 equa-
tion (25))

= + +C D
L

C L
D

C D
L

0.44 4 (Re) 4 (Re)D f f0 (34)

where D is the hull diameter, L is the characteristic length and C (Re)f is
the skin-friction drag coefficient for a flat plate in laminar flow which is
a function of Reynolds number Re

=C 1.328
Ref (35)

The Reynolds number Re represents the ratio of the dynamic forces
relative to the friction forces [33] as

= VLRe (36)

where V is the glide speed, L is the characteristic length and ν the fluid
kinematic viscosity, which is taken to be 1.35× 10 6 m2/s at 10 ∘C. The
speed-dependent behavior of the drag coefficient is a unique feature
compared to the other models presented. Fig. 3 shows the pressure drag
CD0 as a function of glide speed V. Thus, a lower glide speed V leads to a
greater drag coefficient CD. The lift coefficient CL due to the wings is
determined using the lifting-line theory of swept wings. The parameters
of the empirical formula are the aspect ratio and the wing sweep
angle Λ.

M. Eichhorn, et al. Applied Ocean Research 101 (2020) 102191

4



3.2. Comparison of the models

Although the models presented above describe the lift and drag
coefficients for a Slocum glider, it is difficult to compare the individual
parameters. The reasons for this are the different definition for the re-
ference area A in Eqs. (13) and (14), different analytical equations to
describe the drag and the lift coefficients, different types of Slocum
glider and wing configurations. To compare the parameters used in the
individual models, the following hydrodynamic force equations with
the dimensioned lift and drag coefficients KL and KD will be used

= = +F K V K K VD
fw

D
fw

D

AC

D

AC

2

1
2

1
2

2 2

fw D fw D

0

0

2

2 (37)

= =F K V K VL
fw

L
fw

L

AC

2

1
2

2

fw L

1

1 (38)

where pfw is the density of freshwater 1000 kg/m3. The relations of the
dimensioned parameters K ,L1 KD0 and KD2 to the non-dimensioned
parameters C ,L1 CD0 and CD2 in Eqs. (13) and (14) are located below the
underbraces. This form of equation will also be used in this paper.
Table 1 shows the individual parameters K ,L1 KD0 and KD2 and the
characteristic values ,L D( / )max (L/D)max and min calculated from it for
the individual models.

It should be noted that the lift coefficient in VCT [27] and Graver
[28] is defined as

= +C C CL L L1 2 (39)

which does not allow a direct comparison with the other models. In
these cases, a linear regression can be used to estimate a linear coeffi-
cient CL1 for Eq. (16). Therefore, the data points for α will be created
ranging from 0∘ to 10∘, which form the elements of the regression matrix
. The lift coefficient values for Eq. (39) can now be calculated using

these data points. These calculated values form the output variable y in
the regression. This results in a parameter KL1 equal to 219.93 ±
0.17 kg/m/rad for VCT and 219.43 ± 0.17 kg/m/rad for Graver.

To use a fixed drag coefficient for Cooney’s work [14], two oper-
ating points, a glide speed =V 0.3 and =V 0.7 m/s, were chosen in
Eq. (34). These give two KD0 values of 6.06 and 5 kg/m which allow a
direct comparison with the other models.

Table 1 shows a wide dispersion of the parameters and character-
istic values. This also is evident in Figs. 4 and 5, which show the drag
and lift coefficients as a function of α for the models. The curves of lift-
to-drag ratio in Fig. 6 as well as the curves of glide path angle in Fig. 7
for dive, where the angle of attack α is positive show four characteristic
groups (The curves for negative angles of attack are mirrored in the
diagonal quadrant.). The corresponding group number is shown to the
right of the curves.

The first group includes the work from VCT [27], Bhatta [29],
Merckelbach [17] and Mahmoudian [35] where the maximum in L/D
lies between 5.7 and 7.2 for α between 9.4∘ and 12.2∘. The second group
contains the results from Cooney [14] where the maximum in L/D lies
between 3.5 and 3.8 for α between 10.3∘ and 11.3∘. A third group
contains the results of Williams [30]. The L/D curves for the dive and
climb are similar, but the maximum in L/D lies at 1.8, which equals
approximately one-third of the value of the first group. A reason for this
could be in the initial configuration for the iterative scheme, which
includes parameters only of the glider hull detected in the towing tank
tests. The α values are again similar to the first group. The last group
includes Graver’s model. The maximum in L/D is 2.35 at an α of 4.7∘.
There is also a significant difference in the drag coefficient curve in
Fig. 4 compared to the other models. Possible explanations for the high
drag coefficient used by Graver [28] are complex geometry through
wing deformation and a CTD sensor in real or bad data logging con-
ditions due to a sideslip angle caused by a static roll.

Fig. 8 shows the determined angle of attack α and the resulting
horizontal glider velocity vx using mean values for the pitch angle θ and
the vertical glider velocity vz in Table 2 for all dives and climbs in the

Fig. 3. Pressure drag CD0 as function of glide speed V.

Table 1
Parameters and characteristic values for the individual models.

Work KL1 KD0 KD2 L D( / )max (L/D)max min
(kg/m/rad) (kg/m) (kg/m/rad2) (deg) (deg)

VCT(2003) [27] 219.93 2.5 93.24 9.38 7.21 7.9
Graver(2005) [28] 219.43 3.8 573.32 4.66 2.35 23.04
Bhatta(2006) [29] 135 2 45 12.08 7.12 8
Williams(2007) Dive [30] 82.98 4.37 109.82 11.43 1.89 27.84
Williams(2007) Climb 70.37 3.36 116.21 9.74 1.78 29.31
Merckelbach(2010) [17] 305 5 144 10.68 5.68 9.98
Mahmoudian(2010) [35] 135.52 1.99 44.23 12.16 7.22 7.89
Cooney(2011) V=0.3 m/s [14] 212.28 6.06 154.39 11.35 3.47 16.08
Cooney(2011) V=0.7 m/s 212.28 5 154.39 10.31 3.82 14.67

Fig. 4. Drag coefficient KD of the individual models.
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period from 2018-09-05 to 2018-09-18 for the glider mission RU29-550
from Sri Lanka to Mauritius. As Fig. 8 shows, there is a maximal dif-
ference of 8% in the horizontal glider velocity in all models, except
Williams. Although the models compared here have different para-
meters and L/D curves, the calculated horizontal vehicle velocities are
close. The maximal difference in the horizontal glider velocity between
Williams and the other models is around 20%.

4. Parameter identification

4.1. Background

This section describes an approach to estimating the parameters for
the lift and drag coefficients to determine α which is used in Eq. (6) for
calculating the horizontal glider velocity vx. The idea is to minimize the
difference between the logged vertical glider velocity vz, derived from
the depth z, and the modeled vertical glider velocity v̂z using estimated
parameters. The vertical force Eq. (9) is used for modeling the vertical
glider velocity vz. Combining Eqs. (5), (37) and (38) into (9) gives

+

+ = +

( )
( )

K K

K m m g

sin( ) ( )

cos( ) ( ) ( )

D D
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v

b

2
sin( )

2
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2
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z

fw
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1 (40)

Solving for v̂z gives

=
+

+
m

K K K
v

m g^ sin( )
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(( )cos( ) ( )sin( ))
0

L D D
z

fw b
2

1 0 2

(41)

The estimated parameters are marked in bold and summarized in the
parameter vector β

= K K K m, , ,L D D
T

01 0 2 (42)

In addition to the parameters for the lift and drag coefficients, the
buoyancy trim offset Δm0 is a further parameter to be estimated. This is
necessary since the lift and drag coefficients are used for the modeled
vertical glider velocity in both the dive and the climb. Without cali-
bration of the buoyancy trim offset Δm0, the modeled lift and drag
coefficients for the individual dive and climb lie above or below the
ideal lines. The parameter vector β can be estimated using a search
method to minimize the cost function C given by

Fig. 5. Lift coefficient KL of the individual models.

Fig. 6. Lift-to-drag ratio L/D of the individual models.

Fig. 7. Glide path angle ξ of the individual models.

Fig. 8. Determined angle of attack α (see Section 4.2) and calculated horizontal
glider velocity vx from Eq. (6) for the individual models using the pitch angles θ
and the vertical glider velocities vz in Table 2.

Table 2
Mean values from the RU29-550 mission.

Mean Value Dive Climb

Pitch angle θ (deg) −24.922 25.397
Vertical glider velocity vz (ms 1) 0.150 −0.246
Variable ballast mass mb (kg) 0.271 −0.269
Water density ρ (kg/m3) 1029.23
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which corresponds to the mean squared error (MSE) where n is the
number of all logged dives and climbs within a defined time period. The
values ρ, θ and mb used in Eq. (41) are average values computed for
each dive and climb.

4.2. Determination of the angle of attack

The calculation of the lift and drag coefficient in Eq. (41) requires a
known angle of attack α. This angle can be solved numerically by in-
serting Eqs. (37) and (38) into Eq. (17) to give

+ + =K K Ktan( )( ) ( ) 0L D D
2

1 0 2 (44)

A bisection or bracketing method can be used to solve this one-
dimensional optimization task. A bracketing method works without
derivatives and finds the minimum through iterative decreasing of the
interval until the desired tolerance ϵ is achieved, where the minimum
lies. In this approach the bisection method in MATLAB fzero and the
bracketing methods Golden section search [36], Fibonacci search [37]
and Brent’s method [38] were tested. Brent’s method was used as it
requires lesser cost function calls compared to the other methods. On
average, 7–9 cost function calls are needed to determine the angle of
attack. The MATLAB function name for this bracketing method is
fminbnd. This method requires a cost function f(x) and a fixed interval
[xl, xu] wherein the search parameter x lies. The cost function is de-
fined as

= + +f x K K K( ) (tan( )( ) ( ))L D D
2 2

1 0 2 (45)

Good interval values can be found by using a quadratic approximation
of Eq. (44) to determine α where the function tan(x) is approximated
with x

+ + =K K K( )( ) ( ) 0L D D
2

1 0 2 (46)

The resulting quadratic equation is therefore
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The approximated angle of attack α can be solved using the dis-
criminant disc. An evaluation of the real roots gives
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In cases that <K K| | 10 ,D L
9

2 1 the quadratic Eq. (47) reduces to a linear
equation, where α can be calculated using

=
K
K

D

L

0

1 (49)

The resulting interval is calculated using α from Eq. (48) or (49) by

=
= +

x
x

l

u (50)

where Δα was chosen as 3∘. This value worked well for all examined
glider missions. The cost function C(β) in Eq. (43) thus includes an
internal search procedure to detect the corresponding angle of attack α
for every dive or climb.

4.3. Initial parameters setting

To guarantee a good convergence and to find the global minimum,
initial parameters have to be defined. The parameters for the lift and

drag coefficients K ,L1 K ,D0 and KD2 from Cooney [14] were used as in-
itial parameters in this paper (The parameter KD0 corresponds to the
mean value of this parameter in Table 1). The initial parameter for the
buoyancy trim offset Δm0 can be calculated by inserting Eq. (11) into
Eq. (37) with the assumption of similar drag coefficients for all dives
and climbs as follows

= =V
v

V
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sin( ) sin( )dive
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climb
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climb

dive climb

(51)
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(52)

where the unknown parameter angle of attack α in ξ was set to zero and
mean values of all dives and climbs were used.

5. Results

Logged glider data from the Challenger Glider Mission [9,10] was
used to evaluate the parameter identification approach presented in
Section 4. The goal is the accurate determination of the horizontal
glider velocity vx during a mission using the identified lift and drag
coefficients K ,L1 KD0 and KD2. The glider data used in Eq. (41) is the
mean values of the water density ρ, the pitch angle θ and the variable
ballast mass mb computed for each dive and climb in the defined time
period. The nonlinear regression function nlinfit from MATLAB was
used to estimate the coefficients. This function uses the Levenberg-
Marquardt nonlinear least squares algorithm and allows an easy de-
termination of the confidence intervals for the coefficients using the
MATLAB function nlparci after the minimization. The independent
variable matrix X, the parameter vector β and the output vector y can
be written as

=

m
m

m

X

b

b

n b n

1 1

2 2

n

1

2

(53)

= K K K m, , ,L D D
T

01 0 2 (54)

= …v v vy , , ,z z z
T

n1 2 (55)

5.1. Minimizations for different parameter sets

The first tests used data from the glider mission RU29-550 from Sri
Lanka to Mauritius for a time period of two weeks from 2018-09-05 to
2018-09-18. The data of the glider state during the time period is shown
in Fig. 9.

Five minimizations with different Parameter Sets PS* to be mini-
mized were executed. The placeholder character * includes the posi-
tions of the estimated parameters in the parameter vector in Eq. (54).
For example - PS24 means only parameter KD0 and Δm0 will be esti-
mated, parameter KL1 and KD2 have fixed values and will not be esti-
mated. The estimated parameters and their 95% confidence intervals
are shown as black text, while the unestimated parameters are shown in
gray text in Table 3. An underlined parameter value represents a sta-
tistically insignificant value, where the corresponding confidence in-
terval includes zero.

The unestimated parameters correspond to the parameters from
Cooney [14]. The buoyancy trim offset Δm0 was an estimated para-
meter in every minimization. The results for all minimizations is similar
around −120 g (positively buoyant). This means that the glider is
trimmed slightly light, which makes sense for safety reasons. The re-
sulting drag and lift coefficients as a function of α for the individual
minimizations are shown in Figs. 10 and 11.

All minimizations found solutions where the modeled vertical glider
velocity v̂z agrees well with the logged vertical glider velocity vz, as
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shown in Fig. 12.
Likewise, the calculated drag and lift coefficients KD and KL, found

using the logged glider data by substituting Eqs. (5) and (11) into
Eq. (37)

=K m g
v

sin( )
sin( )

D
fw

z
0

2

2 (56)

and by substituting Eqs. (5) and (12) into Eq. (38)

Fig. 9. Glider data used for the minimization: pitch angle θ, vertical glider velocity vz, ballast mass mb, water density ρ.

Table 3
Estimated parameters and their confidence intervals (CI).

Minimization KL1 KD0 KD2 Δm0
(95% CI) (95%

CI)
(95% CI) (95% CI)

(kg/m/rad) (kg/m) (kg/m/rad2) (kg)

PS14 444.87 5.53 154.39 −0.1197
[416.67,
473.07]

[−0.1215, −0.1180]

PS24 212.28 6.30 154.39 −0.1203
[6.24,
6.35]

[−0.1220,−0.1186]

PS34 212.28 5.53 373.62 −0.1198
[360.63,
386.61]

[−0.1215,−0.1180]

PS234 212.28 7.21 −109.54 −0.1207
[5.79,
8.63]

[−519.36,
300.29]

[−0.1224, −0.1190]

PS1234 126.77 6.88 169.90 −0.1207
[-2100.06,
2353.59]

[1.52,
12.23]

[−1242.60,
1582.39]

[−0.1225, −0.1190]

Fig. 10. Drag coefficient KD for the minimizations.

Fig. 11. Lift coefficient KL for the minimizations.

Fig. 12. Logged and modeled vertical velocities vz for all minimizations for dive
and climb.

M. Eichhorn, et al. Applied Ocean Research 101 (2020) 102191

8



=K m g
v

cos( )
sin( )

L
fw

z
0

2

2 (57)

lie along the fitted curves created by the estimated parameters for all
minimizations. This can clearly be seen in Figs. 13 and 14, which show
the results of the minimization PS24.

Although not all possible parameters were estimated in the first four
minimizations, the good correlation between the logged and modeled
data in Fig. 12 is remarkable. In addition to a good agreement between
the chosen unestimated parameters and the real system parameters is
another reason for the good correlation the cluster-like distribution of
the logged data. This can be seen in Figs. 9, 18 and 19, where all logged
data for the pitch angle θ and the vertical velocity vz are concentrated
around two individual points, one for the dives (θ = -24.922∘, vz =
0.15 m/s) and one for the climbs (θ = 25.397∘, vz = -0.246 m/s). For
such a data constellation multiple settings exist for an angle of attack α
to model these operating points. Figs. 15 and 16 show possible settings
for the lift and drag coefficients for the dive operating point using
Eqs. (56) and (57). In the case that the parameters of only one coeffi-
cient need to be optimized, the parameters result from the intersection
of the given coefficient curve and the curve to describe possible settings
of α for the operating point. This can be seen for the first minimization
PS14 in Fig. 15, where the intersection of the given drag coefficient
curve and the curve to describe possible settings of α results in an angle
of attack α of around 1.46∘. The three minimizations PS24, PS34 and
PS234 use a given lift coefficient and estimate one or both parameters
of the drag coefficient. This corresponds to Graver’s work, where the lift
coefficient was used from VCT [27] and only the drag coefficient was
determined. Although the values found for KD0 and KD2 in Table 3 are

very different, the calculated angles of attack α and the horizontal
glider velocities vx in Fig. 17 are similar.

The reason for this is the cluster-like distribution of the logged data,
which leads to an operating point of α = 3.4∘ and KD = 6.8 N(s/m)2

using the intersection method for the lift coefficient in Fig. 16 described

Fig. 13. Drag coefficient KD estimated from PS24.

Fig. 14. Lift coefficient KL estimated from PS24.

Fig. 15. Possible settings for the angle of attack α and the drag coefficient KD
for the defined operating point for dive.

Fig. 16. Possible settings for the angle of attack α and the lift coefficient KL for
the defined operating point for dive.

Fig. 17. Determined angle of attack α (see Section 4.2) and calculated hor-
izontal glider velocity vx using Cooney’s approach and the individual mini-
mizations for the pitch angles θ and the vertical glider velocities vz in Table 2.
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above. This operating point can be modeled by various quadratic
function curves, which is clearly shown in Fig. 10, where this operating
point corresponds to the intersection point of the curves PS24, PS34 and
PS234 (red circles). It should be noted that the negative value for the
estimated parameter KD2 obtained for minimization PS234 is a result of
the cluster-like distribution of the logged data. A negative value for the
parameter is impossible from the physical point of view, but it leads to
the minimal cost for C(β) in Eq. (43) using the logged data.

The minimization PS1234 has no limitations regarding the lift or
drag coefficient curve used. This means that the lift and drag coeffi-
cients used to model the operating point are the result of a defined
angle of attack α on the possible setting curves in Figs. 15 and 16.
Multiple combinations for KD and KL are thus possible. The parameter
set found leads to an angle of attack of around 6.8∘ for dives. This value
is twice as high as the results of Cooney’s approach (see Fig. 8) or the
other minimizations (see Fig. 17) and is not trustworthy when using
data with a cluster-like distribution around an operating point.

This data distribution is shown in Figs. 18 and 19 where the data
samples are greatly scattered around the ideal curves.

The shape of these data distributions can be described by the scale
parameters interdecile range (IDR) between the 10th and 90th percen-
tiles for the pitch angle θ and the residual standard deviation of a linear
regression sy.x for the vertical velocity vz. A linear regression model

= +vz 0 1 is admissible for a pitch angle between ± 15∘ and ± 35∘

where the ideal curves in Figs. 18 and 19 can be assumed as linear. The
using of IDR instead of a standard deviation results from the fact that
the pitch angle data is not normally distributed and multimodal in
practice. The MATLAB call for IDR is IDR=diff(prctile(x,[10
90])). The residual standard deviation is defined as
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where n is the sample size, yi are the individual output data samples and
ŷi are the modeled output values from the regression. The lower and the
upper bounds of the distribution are defined by two standard deviations
sy.x from the regression line. Another possible parameter to describe
these distributions is Pearson’s correlation coefficient r [39]. This coef-
ficient is a measure of the linear correlation between two variables x
and y and is defined as
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where n is the sample size, xi and yi are the individual data samples, x̄
and ȳ are the sample means and sx and sy are the standard deviations.
The variables x and y correspond here to the pitch angle θ and the
vertical glider velocity vz. A linear relation between the vertical glider
velocity vz and the pitch angle θ leads to a correlation coefficient of -1.
The calculated coefficients for the dives and climbs using the logged
data are -0.77 and -0.802. A reason for these distributions could be an
existing vertical current velocity vzcurrent in Eq. (7) caused by internal
waves. This is also discussed in [15] as a possible influencing factor on
the measurement accuracy of depth-average velocity.

5.2. Sensitivity and topographical analysis of the cost function

For a better understanding of the influence of the parameters βi on
the cost function C(β) in Eq. (43), and thus on modeling the vertical
glider velocity vz in Eq. (41), a global sensitivity analysis is carried out.
The method used is based on cumulative distribution functions (CDFs)
and is described in detail in [40]. The key idea is to analyze the dif-
ferences between the conditional and unconditional CDFs of the output
y using the Kolmogorov-Smirnov (KS) statistic as a measure of their
distances. This distance correlates to the sensitivity of the input xi to the
output y. The unconditional CDF is the result when all inputs vary si-
multaneously in defined ranges, whereas the conditional CDFs result
when varying all inputs except xi, which is fixed at a defined value. The
KS statistic provides a curve of sensitivity over all defined fixed values
of xi. A new density-based sensitivity index, called PAWN was presented
in [40], where a defined statistic such as the maximum, mean or median
extracts a single value Ti from the KS curve for every input xi. This value
varies between 0 and 1. A low value of Ti implies a smaller influence of
xi on y.

In this paper, the inputs xi of the sensitivity analysis are the para-
meters βi and the output y is the cost function value C(β). The data used
corresponds to that of the previous section. The Sensitivity Analysis for
Everybody (SAFE) Toolbox for MATLAB [41] was used for the analysis.
The curves for the KS statistic in Fig. 20 show a high sensitivity for the
parameters KD0 and Δm0. The parameters KL1 and KD2 have low sensi-
tivity within the whole range and lie under the critical level for a
confidence level α of 0.05. This can explain the large confidence in-
tervals for these parameters in Table 3 and their uncertain estimation in
Section 5.1. An interesting point is the increase in the middle of the KS
curves of the parameters KD0 and Δm0 in Fig. 20 that correspond to the
estimated parameters. These parameter areas show a higher sensitivity

Fig. 18. Scatter plot of the logged pitch angle θ against vertical glider velocity
vz and the curves =v f K K K m( , , , , )z L D D1 0 2 0 using the estimated parameters
from minimizations in Eq. (41) for given pitch angles in the range [-27∘, -23∘]
for dives.

Fig. 19. Scatter plot of the logged pitch angle θ against vertical glider velocity
vz and the curves =v f K K K m( , , , , )z L D D1 0 2 0 using the estimated parameters
from minimizations in Eq. (41) for given pitch angles in the range [23∘, 28∘] for
climbs.
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to the cost function because they characterize the area of the cost
function minimum. Fig. 21 shows the resulting PAWN sensitivity in-
dices for the four parameters and their confidence intervals. It shows
clearly that the most influential parameters of the cost function C(β) are
KD0 and Δm0.

The analysis of the cost function topography may also shed light on
the influence of the parameters βi on the cost function C(β). To ad-
ditionally examine the influence of the data distribution on the cost
function topography, simulated data was generated. The parameter set
of minimization PS24 in Table 3 was used to calculate the vertical
glider velocities vz in Eq. (41) and define thus the minimum of the cost
function. Two scenarios were examined. The first scenario includes one
operating point for dive and climb where the pitch angles θ, the vari-
able ballast masses mb and the water density ρ in Table 2 were used for
the calculations in Eq. (41). The second scenario includes an additional
operating point where the pitch angles θ are 7∘ smaller than in the first
scenario. Fig. 22 shows the contour plot for the cost function C(β) with
respect to the parameters KL1 and KD2 when the parameters KD0 and
Δm0 are fixed at their optimal values for the two operating points
scenario. The minimum lies inside a long flat valley. Using the cost
function for one operating point results in a similar valley without
significant minimumarea. This can clearly be seen in Fig. 23, which
shows the parameter KL1 and the minimum of the valley Cmin with

Fig. 20. Top panels: Scatter plots of the cost function C(β) of Eq. (43) using the
logged data from RU29-550 and the random samples of the parameters. Middle
panels: Cumulative distribution functions (CDFs) of the cost function C(β). The
red dashed line is the empirical unconditional distribution function F̂ (·)C of the
cost function C(β) and the gray lines are the empirical conditional distribution
functions F̂ (·)C i| . Bottom panels: Kolmogorov-Smirnov statistic KŜ ( )i at dif-
ferent conditioning values of βi. The red dashed line is the critical level of the KS
statistic for a confidence level of 0.05. [Experimental setup: sampling strategy:
Latin Hypercube; number of samples used as conditioning values for the
parameters βi n = 15; number of samples used to create the empirical un-
conditional CDF Nu = 150; number of samples used to create the empirical
conditional CDFs Nc = 100]. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 21. PAWN sensitivity indices for the cost function C(β) of Eq. (43) using
the logged data from RU29-550. The boxes are formed by confidence intervals
as a result of bootstrapping. The middle lines show the mean value of the PAWN
index. [Experimental setup: sampling strategy: Latin Hypercube;
= = =n N N15; 150; 100u c ; number of bootstrap resamples: 100; statistic used

in the PAWN index calculation: maximum].

Fig. 22. Topology of the cost function with respect to the parameters K L1 and
K D2 for the two operating points scenario. The parameters K D0 and Δm0 are
fixed at their optimal value for the parameter set of minimization PS24. The red
lines correspond to the minimum of the valley for a defined parameter K D2 for
one and two operating points. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 23. Values for K L1 and the minimum of the valley Cmin with respect to the
parameter K D2 for one and two operating points.
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respect to the parameter KD2 for one and two operating points. The
minimum of the valleyCmin for two operating points shows a significant
minimumarea, whereas the minimum curveCmin of one operating point
is very flat, which makes it difficult or impossible to converge to the
minimum. Multiple combinations of KL1 and KD2 are possible to fulfill
the cost function requirement. This result is confirmed by the analysis
of the minimization PS1234 in Section 5.1.

5.3. Requirements in parameter estimation

In order to detect the correct curve characteristics of the lift and the
drag coefficient, it is necessary to use samples for dives and climbs
which result in significantly variable angles of attack. This means using
data with maximal informativeness about the system. This is a basic
requirement in system identification or machine learning to create
models which are valid for the whole operational area [42]. Tests with
artificially generated noisy data using a parameter set assumed to be
known in Eq. (41) and normally distributed pseudo-random numbers
were carried out for minimization PS234 and PS1234.

These tests show that the minimization PS234 delivers significant
parameters with a maximal 10% error to the given parameter KD2 and a
maximal 1% error to KD0 and Δm0 with an interdecile range IDRθ of at
least 8∘ by two residual standard deviations s2 v .z of 0.01 m/s corre-
sponding to the logged data. In such a data distribution, the Pearson’s
correlation coefficient r is -0.99. Such a data distribution can be
achieved by defining two operating points for the dives and climbs,
where the pitch angles differ by about 7∘. This is in line with [12] where
three operating points θ = 16∘, 19∘, 27∘ for the dives and climbs were
defined to detect the induced drag CD2 in Eq. (15). Such a requirement
contradicts the energy optimal control of a glider during long-term
missions. A compromise has to be reached between the energy optim-
ality and the correct estimation of all glider model parameters during a
mission. It would be sufficient when the glider is operated with non
optimal operation point for two or three days, to collect enough sam-
ples.

Finding significant parameters for all four parameters in mini-
mization PS1234 requires in addition to an interdecile range IDRθ of at
least 8∘ a two residual standard deviations s2 v .z of less than 0.001 m/s
for the vertical velocity vz which corresponds to a tenth of the observed
deviation in the logged data. Pearson’s correlation coefficient r is here
-1.0. This requirement is difficult to realize in practice (existing vertical
current velocity vzcurrent and measurement and detection errors in θ and
vz), which makes the estimation of all four parameters impossible.
Another alternative is to use known model parameters and estimate the
unknown ones, which is described in Section 5.4.1.

5.4. Depth-average velocity analysis for RU29-492

The logged data from the glider mission RU29-492 from Perth,
Australia to Sri Lanka [47] for a time period of seven months from
2016-11-17 to 2017-06-24 was used to analyze the depth-average ve-
locity during a long-term mission which is described in Section 6. The
horizontal glider velocity required for this could be calculated with
time-invariant and time-varying model parameters. The time-varying
model allows the assessment of biofouling during the mission. The in-
dividual steps to determine the horizontal glider velocity vx using a
time-invariant and a time-varying model are shown in Fig. 24. The
time-invariant model uses only one parameter set as result of the
minimization of Eq. (43) using all logged glider data for the dives and
climbs of the whole mission period, whereas the time-varying model
estimates a parameter set for each dive and climb at time t(i) using only
logged glider data which lie in a sliding window defined by a time
interval between t i t( ) 0.5 window and +t i t( ) 0.5 window. The length of the
sliding window is twindow.

The data of the glider state during the time period is shown in
Fig. 25. For most of this period, the glider was programmed to fly four

yo profiles, starting from the surface and diving to 980 m, climbing to
100 m, diving again to 980 m, repeating this two additional times and
returning to the surface. During the surface period of normally 10 min
the glider sends the logged data via satellite to the Dockserver, the land-
or ship-based glider communication center, and receives new instruc-
tions for command and control for the next dive period.

5.4.1. Parameter estimation
Due to the existing distribution of the logged data a reliable para-

meter estimation for all parameters in Eq. (41) is not appropriate (see
Section 5.3). Therefore, the quadratic parameter KD2 in drag coefficient
Eq. (37) and the linear parameter KL1 in lift coefficient Eq. (38) are
assumed to be known and were used from Cooney [14] (see Table 1).
This strategy is equivalent to the minimization set PS24 in Section 5.1
and corresponds to the works of Graver [28] and Merckelbach [17]
where only a part of the model parameters were estimated. A close look
at factors that influence both parameters shows that a change in value
as a result of biofouling is unlikely. The linear parameter KL1 only de-
pends on constructive parameters/relations (aspect ratio , wing
sweep angle Λ) where biofouling has no influence. Since in the lifting-
line theory, the quadratic parameter KD2 is calculated using the lift
coefficient KL (see Eqs. (32) and (33)) and the aspect ratio , a change
in value as a result of biofouling is therefore also unlikely.

The approach described in Section 4.1 was used to estimate the
unknown parameters KD0 and Δm0. The first minimization estimates
these two parameters using all logged data for the dives and climbs of
the 7-month mission period in Eq. (43). This results in two single model
parameters KD0 = 7.355 kg/m and Δm0 = -0.085 g, which are time-
invariant during the whole mission period. The modeled vertical glider

Fig. 24. Individual steps to determine the horizontal glider velocity vx for a
time-invariant (a) and a time-varying model (b).
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velocity vz for dive and climb using these parameters in Eq. (41) are
shown in curve “Time-invariant Model” in Fig. 26. The comparison of
the logged and the modeled vertical glider velocity between dive and
climb shows differences. There is a good match of the curves for climb
for the whole mission period, where the vertical glider velocity is ap-
proximately equal to 0.16 m/s during the whole mission period. The
modeled curve for the dive shows a relatively constant progression of
0.14 m/s, whereas the logged vertical glider velocity has larger values
at the first half of the mission and smaller values in the second part of
the mission. The real progression can be approximated as a linear slope
starting at 0.17 m/s and ending at 0.14 m/s. The consistent commanded
pitch angle θ and the variable ballast mass mb (see Fig. 25) cannot
explain the contradictory progression of the vertical glider velocity for
the dive (time-varying progression) and the climb (time-invariant
progression) during the mission.

To analyze the time-varying behavior of the vertical glider velocity
for dive, an extended minimization process will be performed. In this
process, the minimization will be executed for every mission day using
the logged data over a sliding window of 3 weeks in Eq. (43). The re-
sulting curves for the parameter KD0 and Δm0 are shown in Fig. 27. The
glider was trimmed slightly, which results in a buoyancy trim offset of
Δm0 = -65 g at the start of the mission. This was necessary to com-
pensate for the lower density of surface waters starting at Sumatra and
most likely near Sri Lanka. The line “Time-varying Model” in Fig. 26

shows the course of the vertical glider velocity vz using these para-
meters in Eq. (41).

Now both modeled curves for dive and climb match very well with
the real glider behavior. The reason for this good match is the trends of
the parameters KD0 and Δm0 during the mission. The parameter K ,D0
which corresponds to the parasitic drag coefficient and the negative
buoyancy trim offset Δm0 increase with time. Biofouling could be re-
sponsible for this behavior. The biofouling grows during the mission,
which increases the skin friction drag and generates an additional
buoyancy. This is also described in [13], where the influence of bio-
fouling on the glider behavior during long-term missions is explained in
detail. The 0.4 kg/m3 increase in water density during the mission (see
Fig. 25) can also explain the increase of Δm0 by about 30 g. (The used
glider had an extended energy bay, which results in a glider volume of
72.2 l. This volume leads to an additional buoyancy of 28.88 g =
0.4 kg/m3 · 0.0722 m3 during the mission.) These two effects, a larger
drag coefficient and a larger negative buoyancy trim offset, add up
during dive and reduce the glide speed. A larger negative buoyancy
leads to a larger glide speed during climb. This effect will be compen-
sated for by the larger drag coefficient, which decreases the glide speed.
The result is an approximately equal glide speed for climb during the
mission.

5.4.2. Resulting velocities
Fig. 28 shows the horizontal glider velocity and an estimated linear

trend for dive and climb using the parameters from the time varying
model. The estimated linear trend equations, computed with regression,

Fig. 25. Glider data used for the minimization: pitch angle θ, vertical glider velocity vz, ballast mass mb, water density ρ.

Fig. 26. Logged and modeled vertical glider velocity vz for a time-invariant and
time-varying model for dive and climb.

Fig. 27. Results of the moving minimization process for the parameters K D0 and
Δm0.

M. Eichhorn, et al. Applied Ocean Research 101 (2020) 102191

13



are

=v m
s

m
s d

t0.289 0.000275
·x missiondive (60)

=v m
s

m
s d

t0.303 0.0000396
·x missionclimb (61)

where tmission is the mission duration in days. It is clear that the differ-
ence between the horizontal velocity for dive and climb will increase
with increasing mission duration. The curves in Figs. 27 and 28 show
three important facts which should be considered in connection with
planning and navigation of long-term missions:

• The model parameter KD0 and Δm0 can be time-varying;
• The horizontal glider velocity vx can decrease over the course of the
mission;
• The horizontal glider velocity vx for dive and climb can be different.
This means to obtain a similar horizontal glider velocity for dive and

climb during the mission the current buoyancy trim offset Δm0 needs to
be detected as accurately as possible. A good estimate of this parameter
can be achieved using Eq. (51). Fig. 29 shows the curves estimated
using this approach (“Calculated Parameter”) and the results of the
moving minimization (“Estimated Parameter”) as described above. The
sliding window for the logged data is 3 weeks in both approaches. Since
the maximum error between the curves is only 3.9 g, the calculated
buoyancy trim offset is a good guide to determine the right variable
balance mass mb for climb and dive during the mission. A more accurate
result can be achieved using an angle of attack α in Eq. (51).

Fig. 30 shows the calculated angle of attack courses using the model
parameters from Cooney, a time-invariant and a time-varying model
and the logged pitch angle θ in the angle of attack determination pre-
sented in Section 4.2. The angle of attack α is approximately equal to
± 4∘ during the mission using the parameters from the time-invariant

model. Using the time-varying model, the angle of attack will increase
from ± 3.6∘ to ± 4.4∘ during the mission. Although Cooney’s model
does not include time-varying parameters a slight increase of the angle
of attack α is observed for dives during the mission. The reason is the
inclusion of the glide speed V in the pressure drag CD0 calculation in
Eq. (34), which is used in the angle of attack determination. The glide
speed V is decreased for dives and remains constant for climbs during
the mission.

Fig. 31 shows the calculated horizontal glider velocity vx using the
angles of attack in Fig. 30, the vertical glider velocity vz and the pitch
angle θ in Eq. (6). All curves have a similar trend, which is determined
by the trend of the logged vertical glider velocity vz for dive and climb.
The calculated velocity values using Cooney’s model are 0.005 to
0.015 m/s (1.7% to 5.0%) larger than the velocity values calculated
with the time-varying model. The velocity values from the time-in-
variant model lie around the velocity curve of the time-varying model
whereas the values are smaller in the first half of the mission (−0.005
to 0 m/s (1.7% to 0%)) and larger in the second part of the mission (0 to
0.005 m/s (0% to 1.7%)).

6. Evaluation of the depth-average velocity

The depth-average velocity is a unique calculated quantity in the

Fig. 28. Horizontal glider velocity vx for dive and climb.

Fig. 29. Estimated and calculated buoyancy trim offset Δm0.

Fig. 30. Angle of attack α courses using the parameters from Cooney, a time-
invariant and a time-varying model for dive and climb.

Fig. 31. Horizontal glider velocity vx courses using the parameters from
Cooney, a time-invariant and a time-varying model for dive and climb.
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operating area of underwater gliders. It is used for glider navigation or
as a score to evaluate the quality of ocean current models in and near
the operating area of the glider. The evaluation of the ocean current
models can help to choose a suitable current model for navigation
during the mission. Another application for evaluation is the data post-
processing, where the depth-average velocities of the individual dive
segments in a mission will be compared with ocean current models.
This evaluation can help to determine the confidence in new data
sources, to improve the ocean models using the spatial and temporal
anomalies between modeled and observed data, and to modify an ocean
model with additional data/information from a glider or calculation
methods from ocean models with a better correlation to the logged
data. The individual steps for an evaluation process are presented
below.

6.1. Calculation of depth-average velocity

To evaluate the depth-average velocity of an ocean current model
with that of a glider requires their previous calculation. Both calcula-
tion methods for a glider and an ocean model will be described in detail
below.

6.1.1. Depth-average velocity of a glider
The depth-average velocity of a glider vcGlider is the difference be-

tween the velocity over ground vg and the horizontal glider velocity
through water vh [15]

=v v vc g hGlider (62)

The velocity over ground vg is the result of the GPS fixes at the be-
ginning xstart and the end xend of a dive segment and the time required
for it

=
t t

v x x
g

end start

end start (63)

The horizontal glider speed through water vh can be described by its
magnitude, the horizontal glider velocity vx, and its direction, the
logged glider heading ψ

= =v
v

v
v

v
cos( )
sin( )h

east
north

x

x (64)

As shown in Section 5.4.1, there are two different horizontal glider
velocities for dive vxdive and climb vxclimb. To calculate an exclusive
horizontal velocity vx used in Eq. (64) a temporal weighting where the
velocities are active is necessary. The horizontal glider velocity for dive
would be underestimated and the horizontal glider velocity for climb
would be overestimated using a simple mean calculation, because the
dive time period is larger than the climb time period. The vertical glider
velocities vzdive and vzclimb will be used for temporal weighting
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6.1.2. Depth-average velocity of an ocean model
The depth-average velocity can be understood as the mean ocean

current in the operation area of the glider during the time period for a
considered dive segment. Such a segment can consist of one or more yo
profiles. To calculate this value, the ocean current conditions vc have to
be detected at the position xstart, at the time tstart and at the position xend,
at the time tend in several depth layers for the dive segment. Therefore, a
defined number n of depth layers are equidistantly distributed between
the surface and the dive-to depth which is shown in Fig. 32. The
number n is taken to be 20. Finally, the mean value for all these ocean
current components will be calculated according to the following
equation

= +
z t

z t

z t

z t
v

v x

v x

v x

v x

1
2

( , , )

( , , )

( , , )

( , , )
c

c start start

c start n start

c end end

c end n end

1 1

Model

(66)

Since the ocean current data, coming from the Ocean General Circu-
lation Models (OGCM) as data files, will be provided only at discrete
positions, depths and times with a nonlinear depth scale and a coarser
time and length scale, so that the ocean current information cannot be
taken directly from the files. Hence, a multi-dimensional interpolation
scheme will be used to extract the desired ocean current data. Addi-
tional information about the interpolation scheme is presented in [16].

This approach is a simplification and works well for easy current
conditions. In case of complex current conditions or to determine the
depth-average velocity more accurately, a glider simulation should be
used. Therefore, the exact yo movement of the glider in the current field
of the ocean model using the commanded heading, pitch and dive
profile for the dive segment will be simulated. The resulting surfacing
position and the simulated horizontal glider velocity can then be used
in Section 6.1.1 to determine the depth-average velocity.

6.2. Goodness-of-fit indicators

Two goodness-of-fit indicators were used for the evaluation. Both
indicators use the distance information d between the calculated end
positions using the depth-average velocity of the ocean model vcModel
and the glider vcGlider after a defined time period Δt.

=d tv vc cModel Glider (67)

It should be noted that the horizontal glider velocity through water vh
has no influence on Eq. (67) because this vector will be used in both
calculations for glider and for ocean model, and thus will be offset.

The first indicator is a non-dimensional skill score (ss) presented in
[43]. This skill score was developed to compare simulated with ob-
served drifter trajectories and has to be adapted for single dive seg-
ments. It has been applied in a variety of work [44–46] in the last
decade. To overcome the difficulties with dive segments of different
lengths a non-dimensional index s will be used to normalize the dis-
tance d with the length l of the dive segment

=s d
l (68)

This index is used to calculate the skill score ss

=ss
s n

s n
1 , ( )

0, ( )

s
n

(69)

where n is a tolerance threshold. A skill score of 1 implies a perfect
match between model and glider.

The second indicator is novel and uses a time period Δt of 24 hours
in Eq. (67). The result of this indicator Da24h is given in km. This makes

Fig. 32. Defined depth layers on the start and end position of a dive segment.
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it possible to overcome the difficulties with dive segments of different
time periods. Likewise, this parameter can be imagined easily, as it
corresponds to the distance between the modeled and the real surfacing
position of the glider after 24 hours. A small distance means a good
match between model and glider.

6.3. Evaluation

Three ocean current models were chosen for the comparison of the
modeled with the observed depth-average velocities along the mission
route. The models used are GLBu008 (GOFS 3.0) and GLBv008 (GOFS
3.1) of HYCOM [19] and the 24 hourly global-analysis-forecast-phys-
001-024 model of the Copernicus Marine Environment Monitoring
Service (CMEMS) [18]. Fig. 33 shows a map with the mission route of
RU29-492 from Perth, Australia to Sri Lanka with the weekly mean
depth-average velocity vectors from the glider RU29 (blue) using the
calculated horizontal glider velocity vx of the time-varying model and
the 24 hourly CMEMS ocean model (red) for the several dive segments.
This map includes additionally the smoothed skill score ss values for the
several dive segments. A moving average algorithm with a sliding
window of seven days was used for smoothing. There is a good match
between the observed and modeled depth-average velocities for most of
the mission period where the skill score ss is larger than 0.7. There are
four regions during the mission with a bad evaluation:

• 28∘-30∘S and 108∘E start of December 2016
• 21∘S and 104∘E start of January 2017
• 12.5∘S and 99.25∘E start of March 2017
• 2∘S and 89.9∘E middle of May 2017.

Fig. 34 shows the smoothed courses of the two goodness-of-fit in-
dicators: skill score ss and distance after 24h Da24h for the three ocean
current models using the calculated horizontal glider velocity vx of the
time-varying model. The distance after 24h Da24h shows an inverse
behavior to the skill score ss. The HYCOM models show a worse

evaluation in comparison to the CMEMS model. As shown in Table 4,
which includes the mean values of the indicators, the GLBv008 model
has a slightly worse evaluation in comparison to the GLBu008 model.
The bad evaluation of the HYCOM models in the area are noticeable:

• 14.5∘-15.5∘S and 101∘-103∘E start of February 2017 (only GLBv008)
• 0∘S and 85.5∘-87∘E middle of June 2017.

Table 4 shows that the mean values of the two indicators for the
methods used to detect horizontal glider velocity vx are very similar.
The higher model accuracy of the time-varying model does not lead to
other significant results. The reason is the small differences in the cal-
culated horizontal glider velocities in the individual methods (maximal
5%) (see Fig. 31). The CMEMS has a 20% better quality in ss and a 33%
better quality in Da24h than the indicators of the HYCOM models. The
GLBu008 shows a 6% better quality in ss and a 11% better quality in
Da24h than the GLBv008 model.

7. Conclusions

This paper examines the need for an accurate glider model in na-
vigation, control and data post-processing. A model which is generally
used for a Slocum glider was presented in detail. The calculation of the
horizontal glider velocity vx based on an accurate angle of attack de-
tection was discussed in this context. A robust minimization approach
to detect the model parameters and its limitations due to the available
logged glider data were described. The correct parameter estimation
requires a large data distribution in the whole operation range of a
glider which contradicts the energy optimal control of a glider during

Fig. 33. Skill score ss and current vectors for the observed (RU29) and modeled
(CMEMS 24HOURLY) depth-average velocities along the mission. The current
vectors correspond to the weekly mean values.

Fig. 34. Skill score ss and distance after 24h Da24h curves for the three ocean
models: 24 hourly global-analysis-forecast-phys-001-024 model of CMEMS
(CMEMS 24HOURLY), GLBu008 (HYCOM GlBu008) and GLBv008 (HYCOM
GLBv008) of HYCOM.

Table 4
Calculated mean values for skill score ss and distance after 24h Da24h for the
three ocean models: 24 hourly global-analysis-forecast-phys-001-024 model of
CMEMS, GLBu008 and GLBv008 of HYCOM and the three methods to detect the
horizontal glider velocity vx.

Score Model CMEMS GLBu008 GLBv008

ss Cooney 0.766 0.636 0.594
Time-invariant 0.767 0.64 0.602
Time-varying 0.768 0.641 0.603

Da24h (km) Cooney 5.8 8.758 9.986
Time-invariant 5.765 8.668 9.763
Time-varying 5.762 8.646 9.754
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long-term missions. The analysis of RU29-492 from Perth, Australia to
Sri Lanka shows an increase in the drag coefficient over the course of
the mission caused by biofouling, which leads to an increase of the
angle of attack of about 1∘ using similar pitch commands. In addition,
an increase in the buoyancy trim offset as result of biofouling and
changing salinity conditions during the mission could also be observed.
This should be considered for the navigation and control of a glider
through an online model parameter estimation during the mission. The
decrease of the horizontal glider velocity from 0.3 to 0.26 m/s within 7
months should be considered in the global path planning.

The comparison of the depth-average velocity of ocean current
models from CMEMS and HYCOM with the observed velocity from the
glider using chosen goodness-of-fit indicators allows a spatial and
temporal model evaluation along the mission route. In this context, one
question arises: How should the evaluation results be processed so that
they can be used in ocean model design?
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