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ABSTRACT

We report measurements of the thermal dissipation rate in turbulent Rayleigh-B�enard convection using a four-thermistor temperature gradi-
ent probe. The measurements have been undertaken in a Rayleigh-B�enard cell filled with air (Prandtl number Pr ¼ 0:7Þ. The focus of this
work is on large aspect ratios C (ratio between the horizontal and vertical extension of the cell), for which reason four datasets in the range
of Rayleigh number Ra ¼ 3:9� 106 to Ra ¼ 1:8� 109 were taken at C � 8. In order to extend the range toward higher Rayleigh numbers,
two smaller aspect ratios were also investigated (C ¼ 4 with Ra ¼ 1:7� 1010 and C ¼ 2 with Ra ¼ 1:6� 1011). We present highly resolved,
vertical profiles of the thermal dissipation rate in the central vertical axis and discuss how these profiles change with the Rayleigh number.
With its maximum near the wall and at the highest Rayleigh number, the thermal dissipation rate decreases monotonically with the distance
from the plate. Moreover, the normalized, volume-averaged thermal dissipation rate, which effectively results in the Nusselt number Nu,
scales with an exponent of about 0:29 with the Rayleigh number. In the Rayleigh number range investigated here, the dissipation is always
higher in the boundary layer than in the bulk region. However, by means of an extrapolation of the considered Rayleigh number range to
larger Rayleigh numbers, the intersection point between the dissipation in the boundary layer and the bulk region can be estimated as
Ra � 3� 1012.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0033746

I. INTRODUCTION

The understanding of the reciprocal transfer between kinetic
and thermal energies is very important for the understanding of
complex flow fields. The transition from kinetic to thermal energy
is called thermal dissipation and can be described by the thermal
dissipation rate. We study this quantity by direct measurements in
thermal convection.

A very common setup to study thermal convection is the
Rayleigh-B�enard setup, where a fluid layer is cooled from above and
heated from below. The temperature gradient generates a complex
fluid flow, which transports heat from the warm bottom to the cold
top plate. This setup is characterized by a set of five dimensionless
parameters. The first is the Rayleigh number Ra that describes the
thermal force, which drives the flow. As shown in Eq. (1), it depends
on the thermal expansion coefficient b, the gravitational acceleration
g, the temperature difference DT , the distance H between heating and
cooling plates, the thermal diffusivity j, and the kinematic viscosity �,

Ra ¼ b g DT H3

j �
: (1)

The second parameter is the Prandtl number, which is the ratio
between the transport coefficients of momentum and heat in the flow
field

Pr ¼ �

j
: (2)

In this work, we particularly focus on heat transport, which appears
between the two horizontal plates. The Nusselt number, which is the
third parameter, describes the dimensionless heat flux in response to
Ra and Pr. It is defined as the ratio between the convective and the
conductive heat flux, _qconvective and _qconductive, respectively,

Nu ¼ _qconvective
_qconductive

: (3)

Another output parameter is the Reynolds number, which is a typi-
cal velocity U of the flow field divided by the molecular velocity
�=H,

Re ¼ U H
�

: (4)
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In general, Rayleigh–B�enard convection can be considered as a
laterally infinite extended, one-dimensional system, in which the mean
values of all relevant parameters only change in the vertical direction.
Over a long observation time, mean values are constant at each point
of any horizontal plane. This is the basis of nearly all concepts con-
cerning heat transport in this system. Many applications, for example,
geophysical flows, fulfill this condition fairly well, because the lateral
extension is much larger than the vertical. However, the majority of
the laboratory experiments and most numerical simulations are con-
ducted in geometries with sidewalls and, hence, do not fully match this
theoretical assumption. Usually, a fifth parameter, the aspect ratio C, is
introduced to describe the ratio of horizontal (diameter d) to vertical
(heightH) extent,

C ¼ d
H
: (5)

(For a detailed overview on Rayleigh–B�enard convection see Chill�a
and Schumacher.1) One of the most frequently discussed question in
Rayleigh–B�enard convection is the dependence of the dimensionless
heat flux in form of the Nusselt number on the Rayleigh and the
Prandtl number, which is quite often represented by a scaling law with
the scaling exponents c and c0,

Nu � Rac Prc
0
: (6)

Over the last decades, various scaling laws have been suggested. Under
the assumption that heat transport is exclusively set by marginally sta-
ble boundary layers, Malkus2 suggested a scaling exponent of c ¼ 1=3
without any Prandtl number dependence. Experiments done by
Castaing et al.3 in low-temperature helium near the critical point indi-
cate a smaller exponent, namely, c ¼ 0:28. Based on these measure-
ments, Castaing et al. developed the so-called mixing-zone model,
which is characterized by rising and falling plumes stabilizing the
opposite boundary layer. The same scaling law was proposed in a the-
oretical model of Shraiman and Siggia.4 They connect the heat flux
with the shear in the viscous boundary. With the equations of motion,
they derived mathematical expressions for the volume-averaged
kinetic and thermal dissipation rates euh iV and ethh iV , respectively,
and how they are linked with the corresponding dimensionless param-
eters of Rayleigh-B�enard convection (Nu, Ra, Pr),

euh iV ¼ �3

H4
Nu� 1ð ÞRaPr�2 ; (7)

ethh iV ¼ j
ðDTÞ2

H2
Nu: (8)

In the year 2000, Grossmann and Lohse5 took up this idea and devel-
oped their unifying theory. The basic idea of this work is to correlate
the kinetic and the thermal dissipation rates in the boundary layer and
the bulk. Later on, they refined the model by replacing the boundary
layer and bulk with thermal plumes and turbulent backgrounds.6 The
model predicts four different regimes in the parameter space of Ra
and Pr, each of them described by a scaling law with different scaling
exponents. The bounds of these regimes in the Ra - Pr phase space are
essentially determined by the two-volume averaged dissipation rates
euh iV and ethh iV . Both quantities are decomposed into a boundary
layer and a bulk contribution. Depending on location in the Ra - Pr
phase space, either the boundary layer or the bulk fraction of the

thermal and the kinetic dissipation rates dominates, respectively. In
order to estimate dissipation rates, it is necessary to know, whether the
thermal or kinetic boundary layer is larger. This depends on the
Prandtl number. For Prandtl numbers below one, the kinetic bound-
ary layer is nested within the thermal boundary layer; for Prandtl
numbers above one, it is the other way around. The theoretical model
only provides scaling exponents c and c0 but not the prefactors in Eq.
(6). In order to complete the model, the prefactors have to be deter-
mined by data either from experiments or from numerical simula-
tions. This is partly difficult since Rayleigh–B�enard experiments and
simulations meeting both, a high aspect ratio and a high Rayleigh
number, are rare. Therefore, prefactors obtained in aspect ratio C ¼ 1
or C ¼ 1=2 experiments or numerical simulations are currently
implemented in the model7 (see Ahlers et al.8 for a detailed overview).

Even though, dissipation might be a key quantity to understand
turbulent convection and to predict the turbulent heat flux, measure-
ments of the thermal dissipation rate are rare. He et al.9 conducted
measurements of this quantity in turbulent Rayleigh–B�enard convec-
tion with water (Pr ¼ 7). The aspect ratios were C ¼ 1 and C ¼ 0:5,
respectively. They used probes of different sizes; however, the smallest
one was still as large as the thickness of the boundary layer. The
authors measured vertical profiles of the thermal dissipation rate and
decomposed the quantity into a fraction em which is linked to the
mean temperature gradient and another fraction ef which is linked to
the fluctuations. They found that ef predominates in the bulk region,
whereas em is the dominant fraction in the boundary layer.
Furthermore, they investigated how ef and em depend on the Rayleigh
number. They found that their contribution scales differently with the
Rayleigh number, and they concluded that thermal plumes and the
boundary layer must be treated individually.

In a numerical work, Shishkina and Wagner10 also focused on
the separation of the thermal dissipation rate into a plume related frac-
tion and a turbulent background related fraction. Plumes change their
shape with varying Rayleigh numbers and form a large-scale circula-
tion at higher Rayleigh numbers. The main result of Shishkina’s work
is the finding that the contribution of the thermal dissipation rate in
the turbulent background related to the whole dissipation increases
with the Rayleigh number. Another recent numerical investigation by
Bhattacharya et al.11 aims at separating the dissipation field into a
boundary layer and a bulk fraction again. In order to gain scaling rela-
tions, the authors regarded the dissipation in boundary layer and bulk
in a Rayleigh number range from Ra ¼ 106 to Ra ¼ 108 and at
Prandtl numbers of Pr ¼ 1 and Pr ¼ 100, respectively. They found
that the ratio between the boundary layer and bulk dissipation remains
constant over the range of Rayleigh numbers investigated. However,
this result is in direct contrast to the Grossmann–Lohse theory, which
predicts that this ratio decreases with increasing Rayleigh number.

Our conclusion with respect to the existing data is that thermal
dissipation in turbulent convection was exclusively studied in low
aspect ratio setups. In general, investigations at a large aspect ratio are
very rare, since they require large-scale experiments and/or specific
working fluids close to their critical point. Direct numerical simula-
tions become quickly quite complex and expensive as the grid resolu-
tion must be higher than in setups with a low aspect ratio. On the
other hand, the maximum Rayleigh number in a large aspect ratio cell
is much smaller than in a small aspect ratio cell with the same lateral
dimension. This is the main reason why experiments12–15 and
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numerical simulations16–20 are mostly aimed toward aspect ratios of
the order of one or even smaller. There are a few papers on flat geome-
tries, but none of them deals directly with thermal dissipation rate. For
the sake of completeness, we show some of them below. First, there is
a work by another group in Ilmenau, who engaged in an optical mea-
surement technique for examining the velocity field in a flat
Rayleigh–B�enard cell21,22 and the evaluation of a measurement tech-
nique to determine the temperature field by means of thermochromic
liquid crystals.23 Furthermore, a few numerical studies at large aspect
ratio exist, which mainly focus on turbulent, coherent structures.24–26

The variation of the aspect ratio involves in that cases a variation of
the Rayleigh number.

In our experiment, we measured the thermal dissipation rate
highly resolved in space and time in a Rayleigh number range from
Ra ¼ 3:9� 106 to Ra ¼ 1:6� 1011 using a probe with four micro-
thermistors. We run our experiment in a configuration, where the
aspect ratio at C � 8. The working fluid is air, whose Prandtl number
is almost constant Pr ¼ 0:7 over the whole temperature range our
measurements covered. Measurements of the thermal dissipation rate
in this parameter range are unique. We discuss the vertical profiles of
the thermal dissipation rate and how they vary with the Rayleigh num-
ber. Furthermore, and in analogy to the Grossmann–Lohse theory, we
analyze the dissipation in the boundary layer and in the bulk region.
This paper is divided as follows: in Sec. II, we describe the
Rayleigh–B�enard cell, the construction and the functionality of the
new four-thermistor temperature gradient probe and the measure-
ment procedure. In Sec. III, we discuss the results of our measure-
ments and compare them with previous work. We conclude our work
in Sec. IV.

II. EXPERIMENTAL SETUP
A. The large-scale Rayleigh–B�enard experiment “Barrel
of Ilmenau”

We have undertaken our measurements in a large-scale
Rayleigh–B�enard experiment, which is called the “Barrel of Ilmenau.”
The experiment allows to study thermal convection in a wide range of
Rayleigh numbers and aspect ratios. Due to its large size, it also meets
the criterion of sufficiently thick boundary layers to probe them with
our temperature gradient probe. The test section is filled with air (see
Fig. 1). It is of cylindrical shape with an inner diameter of d ¼ 7:15m.
The distance between the heated bottom and the cooled top plates is
continuously adjustable between H ¼ 0:2m and H ¼ 6:30m. By
means of electric heating, we can vary the temperature of the heating
plate from THP ¼ 20 �C to THP ¼ 80 �C. The cooling system consists
of a cooling aggregate and a buffer store, which enables us to adjust
the temperature of the cooling plate between TCP ¼ 10 �C and
TCP ¼ 30 �C. Nevertheless, the temperature difference should not be
larger than DT ¼ 50K, as the cooling power of the cooling aggre-
gate is limited. In order to maintain a constant temperature over
the surface of each plate, both plates consist of aluminum with
water tubes inside. The temperature of the plates is controlled
using multiple thermometers at various locations. The maximum
temperature deviation amounts to 0:02K. An adiabatic sidewall
with an active compensation heating system prevents any heat
exchange between the inner of the cell and the environment (for
more details see du Puits et al.27)

The work presented here mainly focuses on an aspect ratio of
C ¼ 8. With a diameter of d ¼ 7:15m, the distance between cooling
and heating plates amounts then to H ¼ 0:9m. From our point of
view, this is sufficiently large, to exclude any effect of the sidewall on
the flow field in middle of the container, where we measure the ther-
mal dissipation rate.27 With keeping the aspect ratio constant, a range
in Rayleigh number from Ra ¼ 3� 107 to Ra ¼ 3� 109 can be set in
the test section varying the temperature between DT ¼ 0:5K and
DT ¼ 50:0K. However, we consider a total temperature difference of
DT ¼ 3:0K as a lower limit for the measurement of the profiles of the
thermal dissipation rate (DT ¼ 2:0K for the 2:5m inset, see below),
since even lower temperature gradients would increase the measure-
ment uncertainty. Our setting results in a minimum Rayleigh number
for the d ¼ 7:15m diameter test section of Ra ¼ 1:9� 108. In order
to extend this range to lower Rayleigh numbers, we inserted a
PlexiglasVR cylinder with a diameter of d ¼ 2:50m and a height of
H ¼ 0:28m. This extends the domain of the Rayleigh number down
to Ra ¼ 3:9� 106 with an aspect ratio in the same order (C ¼ 9Þ. In
this specific setup with a smaller inset within the larger test section, the
boundary condition is perfectly adiabatic. As well the inner of the
small inset as the space between the walls of the smaller and the larger
test sections represent the same Rayleigh–B�enard flow with equal pro-
files of the mean temperature in z-direction. Thereby, heat exchange
through the wall of the inner cylinder is almost avoided.28 Since the
maximum Rayleigh number in the C ¼ 8 cell is limited by the maxi-
mum temperature difference to Ra ¼ 3� 109, but many natural and
technical convection problems are characterized by even higher
Rayleigh numbers, we did two more measurements at a reduced aspect
ratio. One measurement was undertaken at C ¼ 4 and Ra ¼ 1:7
�1010 and the other one at C ¼ 2 and Ra ¼ 1:6�1011. However, one
has to consider that the flow in the center of the cell becomes more
and more affected by the sidewall. In total, we run six series of mea-
surements of the thermal dissipation rate, whose main parameters are
listed in Table I.

Furthermore, during another experimental study, a measurement
system at the Barrel of Ilmenau was mounted, which allows to mea-
sure the convective wall heat flux _qW . The definition of the Nusselt
number [see Eq. (3)] offers a connection between the Nusselt number
and the convective heat flux _qW ,

Nu ¼ _qW H
kDT

: (9)

The convective heat flux is measured by heat flux plates of the com-
pany Phymeas GbR. They are mounted in the heating and the cooling
plates of the Barrel of Ilmenau, respectively. The plates are provided
with calibration and a calibration error of 5% is indicated. Further
investigations on directly measured Nusselt numbers are planned.

B. The temperature gradient probe

In general, the thermal dissipation rate is defined as
eth ¼ j � rTj j2. Thus, it is necessary to measure the three-
dimensional temperature gradient rT . For that, we constructed a
multithermistor probe consisting of four single microthermistors with
a diameter of about 160lm and a length of about 340lm. They are
mounted together on a probe with a distance of about l � 2:0mm
between them. Figure 2 shows photos as well as sketches of the probe.
The measured gradients are the ratios between the temperature
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difference and the distances between thermistor 1 with the other ther-
mistors 2, 3, and 4,

rT ¼

T2 � T1

~l21
�� ��

T3�T1

~l31
�� ��

T4 � T1

~l41
�� ��

0
BBBBBBBBB@

1
CCCCCCCCCA
: (10)

In particular, the selection of the appropriate distance between the
thermistors was a very complex process, because several points have to
be considered. A small distance between the individual thermistors
would allow to measure the thermal dissipation rate with a high spatial
resolution, which is especially preferable in the boundary

layers. Estimating the Kolmogorov length scale g ¼ �3= euh iV
� �1=4

(with euh iV from Grossmann-Lohse theory) shows that the smallest
length scales for the considered Rayleigh numbers are in the range
1mm < g < 3mm. However, small distances between the thermis-
tors also result in small differences in the measured temperature. This
is not an issue in the boundary layer part. But it increases the measure-
ment uncertainty in the bulk region, where the mean temperature
gradient tends to zero. It has to be considered as well that each therm-
istor affects the fluid flow around. If the distance between them is cho-
sen too small, the measured gradients might be influenced by the
interaction of the thermistors with the fluid. He et al.9 investigated
the required distances between the sensors very intensively. The size of
the thermistors is in the same order of magnitude as those used in this
work and the separations between the thermistors are even smaller.
With respect to that and since He et al. found that l should be smaller
than 4mm, we believe that l � 2mm is an appropriate distance. In
order to enable measurements of the temperature gradient as close as
possible to the surface of the plate, we have chosen a specific arrange-
ment as shown in Fig. 2. Thermistor 1 is located above the other

FIG. 1. The setup of the “Barrel of
Ilmenau,” a very large Rayleigh–B�enard
cell with an adiabatic container (1), a cool-
ing plate (2), a heating plate (3), and
cranes (4) to lift the cooling plate up and
down. In the center of the cooling plate,
the temperature gradient probe with its
holder (5) is drawn.

TABLE I Set of parameters of our measurements with varying Rayleigh number Ra, with C being the aspect ratio, d the diameter of the cell, H the plate distance, DT the tem-
perature difference between the plates, THP and TCP the plate temperatures of the heating and the cooling plates, Tbulk the measured temperature at the midplane, j the ther-
mal diffusivity, Nu the Nusselt number determined by the measurements of the heat flux plates, and d the thermal boundary layer thickness gained with this Nusselt number
with d ¼ H=ð2NuÞ.

Ra C d ðmÞ H ðmÞ DT ðKÞ THP ð�CÞ TCP ð�CÞ Tbulkð�CÞ j m2

s

� �
Nu d ðmmÞ

3:9� 106 8:9 2:50 0:28 2:0 31:0 29:0 30:0 2:29� 10�5 13:0 10:8
1:8� 107 8:9 2:50 0:28 10:0 35:0 25:0 29:6 2:28� 10�5 19:9 7:0
1:9� 108 7:9 7:15 0:90 3:0 31:5 28:5 30:1 2:29� 10�5 38:5 11:7
1:8� 109 7:9 7:15 0:90 28:9 44:4 15:5 29:9 2:29� 10�5 71:8 6:3
1:7� 1010 4:0 7:15 1:79 36:0 50:0 14:0 33:3 2:34� 10�5 134:0 6:7
1:6� 1011 2:0 7:15 3:58 55:0 75:0 20:0 50:2 2:57� 10�5 249:7 7:2
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sensors. Its center represents the origin of a skew coordinate system,
which is formed along with thermistors 2, 3, and 4. With only one sen-
sor as tip of the probe, it is easier to place the probe as close as possible
to the cooling plate. Since the coordinate system of the probe is not a
Cartesian one and differs from the coordinate system of the test cell, a
transformation is necessary to obtain the gradients parallel ðx; yÞ and
normal to the wall ðzÞ. Our geometrical arrangement of the four ther-
mistors and the specific distances of the thermistors to each other
yields a transformation matrixM,

M ¼
0:7330 �0:3415 �0:3349

0:0000 �0:5914 0:5801

0:6806 0:7317 0:7416

0
BB@

1
CCA: (11)

In order to obtain the Cartesian gradients, the measured gradients
s1; s2; s3ð Þ has to be multiplied with the matrixM,

x

y

z

0
BB@

1
CCA ¼ M �

s1

s2

s3

0
BB@

1
CCA: (12)

In addition to the high spatial resolution of our probe, the small-
sized microthermistors also allow very fast measurements, which
will be important to investigate the dynamics of the thermal dissi-
pation rate (we will do this in a separate paper). The typical
response time of the sensors is of the order of 100ms.29 We have
calibrated the probe with the four thermistors in an isothermal box
in the range from 10 �C to 60 �C against a standard platinum ther-
mometer with an uncertainty of 60:05K. Since the smallest tem-
perature gradient measured in the bulk region is as low as
4� 10�3 K=mm at a Rayleigh number of Ra ¼ 3:9� 106 (resulting
in a temperature difference of 0:008K between the thermistors),
we decided to improve the accuracy of our measurements by an

additional in situ calibration. This is done in the center of the test
section, where the mean temperature gradient is the smallest. To
this aim, we defined the temperature of thermistor 3 as the refer-
ence value [see Eq. (13)]. Then, we determined correction values
n1;2;3;4 as the difference between the mean values of the single
sensors Th it;1;2;3;4jz¼H=2 in the cell center (at z ¼ H=2) and the ref-
erence temperature gained from Eq. (13). These correction values
[see Eq. (14)] are added to the respective temperature signals of
the whole measurement series [see Eq. (15)]. With that, corrections
in the typical order of 0:1K were made,

Th it;3jz¼H=2 ¼
!
Tref ; (13)

n1;2;3;4 ¼ Th it;1;2;3;4jz¼H=2 � Tref

� �
; (14)

T1;2;3;4 ¼ T1;2;3;4;meas þ n1;2;3;4: (15)

Another kind of measurement uncertainty is how precisely we
know the distance between the individual sensors. The shapes of
the thermistors are irregular and the positioning during the bond-
ing process is not perfect. Thus, we validate the vertical distance
between thermistors 2, 3, and 4 and thermistor 1, respectively, by
correlating the measured profiles of the mean temperatures
Th it;1ðzÞ with Th it;2ðzÞ, Th it;3ðzÞ, and Th it;4ðzÞ. Since the tempera-
ture field Th itðzÞ is the same for all four microthermistors, we can
determine the vertical distance between the thermistors by shifting
the profiles Th it;2ðzÞ, Th it;3ðzÞ, and Th it;4ðzÞ in such a way that all
four profiles collapse. The shift is coincident with the vertical dis-
tances between the sensors. Unfortunately, this method can not be
applied for the horizontal distances, for which reason we use the
construction distances.

C. Measurement setup and procedure

The multithermistor probe is connected to an L-shaped rectan-
gular, hollow brass rod, which is installed on a positioning system
standing on top of the cooling plate. The rod enters the measuring vol-
ume through a cylindrical hole in the cooling plate closed by a cap. In
order to prevent heat losses but to guarantee that the rod is guided
well defined, we used a TeflonV

R

lead with a rectangular duct for the
brass rod (see Fig. 3).

An interesting aspect of our measurements is the orientation of
the probe with respect to the global recirculation in the test section. In
order to find the latter one, we made the recirculation visible using
smoke. Unlike in the well-studied aspect-ratio-one cells, in which the
vector of the global recirculation fluctuates around a fixed plane, our
experiments in the aspect-ratio-eight cell show a completely irregular
behavior of the global recirculation vector at the measurement position
below the center of the cooling plate including all angles between 0
and 360�.30 Furthermore, the knowledge of former LDA measure-
ments gives information about the local velocity vector.31 If the vector
of flow is from the L-shaped rod to the thermistors, this might be a
source of error in certain flow states, but most of the time, it does not
disturb the measurement significantly. A positioning system at the
upper side of the cooling plate moves the rod in the vertical direction.
Its positioning accuracy is better than610lm. We find the zero posi-
tion of the probe by moving it toward the cooling plate until thermis-
tor 1 gets in contact with the plate surface. This contact can be
identified by a characteristic sequence in the measurement signal.

FIG. 2. Photos with side (a) and top views (b) and drawings with side (c) and top
views (d) of the multithermistor probe.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 035139 (2021); doi: 10.1063/5.0033746 33, 035139-5

VC Author(s) 2021

https://scitation.org/journal/phf


From this position, we move the probe down by 10lm and set this as
the z-position at which our measurement starts. Taken into account
the size of the sensors and the geometry of the probe, this position cor-
responds to a distance z0 ¼ 0:8mm (see Fig. 4).

In order to measure the profile of the thermal dissipation rate
ethðzÞ, we distribute the measurement points in a logarithmic manner.
This means that the distance between two points is comparatively
small close to the cold top plate and gets larger toward the midplane.
We also increase the time of the measurements at each position. This
is necessary, since the fluctuations of the individual derivatives rxT ,
ryT , and rzT increase with increasing distance to the plate and the
uncertainty of the statistical values would rise. In order to prevent this,
we prolonged the measuring times at those z-positions where higher
standard deviations are estimated. With that, we could keep the confi-
dence interval in a band of 0:07K (before it was 0:2K). All measure-
ments were undertaken with a rate of 200 samples per second, which

is appropriate, as the Kolmogorov time scale s ¼ �= euh iV
� �1=2 is in

the range of 0:075 s < s < 0:49 s in the considered parameter range.
Each sensor of the multithermistor probe is connected to a measuring
bridge and a preamplifier for signal conditioning. The bridge works
with an extremely low measurement current of ITh ¼ 5lA and the
maximum temperature increase in the microthermistors by self-
heating remains less than 10mK. Subsequently, the signal is amplified
and noise is removed by a low-pass filter with a cutoff frequency of
10Hz. This value corresponds to the response time of the microther-
mistors. From the output of the bridge, the signal enters a PC-based
data acquisition system with a resolution of 24 bit. Using the calibra-
tion curve, the temperature is calculated and the data are stored on a
hard disk.

III. RESULTS AND DISCUSSION
A. Profiles of the mean thermal dissipation rate

We start our discussion with two profiles of the mean thermal
dissipation rate ethh it zð Þ we measured near the cooling plate at
Rayleigh numbers Ra ¼ 1:9� 108 and Ra ¼ 1:8� 109. The results
are directly comparable, because we varied the Rayleigh number in
these two cases only by changing the temperature difference from
DT ¼ 3K (Ra ¼ 1:9� 108) to DT ¼ 28:9K (Ra ¼ 1:8� 109). The
aspect ratio and the cell height were kept constant, namely, at C ¼ 8
andH ¼ 0:9m.

In Fig. 5, we show the mean values of the thermal dissipation rate
ethh it zð Þ as function of the distance z from the cooling plate normal-
ized by the height H of the cell. In order to assign measurement values
to both, the boundary layer and the bulk, respectively, we indicate the
boundary layer thicknesses calculated from the measured Nusselt num-
bers with d ¼ H=ð2NuÞ by the dashed lines. These quantities amount
to d� ¼ 11:7mm for the smaller and d( ¼ 6:3mm for the larger
Rayleigh number. For both cases, we found the measured mean ther-
mal dissipation rate to be larger in the boundary layer and to become
smaller toward the midplane. Furthermore, we indicate the global vol-
ume averaged mean ethh iV that we obtained from Eq. (8). For this the-
oretically determined quantity we used the Nusselt numbers provided
by the Grossmann–Lohse theory32 with using the evaluated system of
equations by Stevens et al.7 While the values of the local dissipation
rate lie above this value close to the wall, they fall below it toward the
midplane. The crossovers of the profiles with the values from Eq. (8)
move toward the wall with increasing Rayleigh number. In our
specific cases, the profiles cross at zV;� ¼ 94:3mm (zV;�=H ¼ 0:01Þ at
Ra ¼ 1:9� 108 and zV;( ¼ 40:0mm (zV;(=H ¼ 0:04Þ at
Ra ¼ 1:8� 109, indicated by the vertical dashed–dotted lines.

In order to study the thermal dissipation at Rayleigh numbers
smaller height of H ¼ 0:28m between the heating and the cooling
plates of the facility. The aspect ratio amounts to C ¼ 9, which is
slightly higher than in the d ¼ 7:15m cell, but we could set up experi-
ments down to a Rayleigh number of Ra ¼ 3:9� 106. Since the height
of the two cells is not the same, the results gained in the two cells are
not directly comparable with respect to the Rayleigh number, since the
thermal dissipation rate varies with the height (or the temperature dif-
ference), even if the Rayleigh number is kept constant. Nevertheless,
the smaller cell offers the same shapes of curves and the variation of
the intersection point between the measured profiles and theoretical
values also shifts toward the wall if the Rayleigh number increases.
In our specific cases at Ra ¼ 3:9� 106 (d ¼ 10:7mmÞ and

FIG. 4. Sketch of the location of the multithermistor probe relative to the cooling
plate in order to determine the first measuring point of the profile.

FIG. 3. Sketch of the installation of the multithermistor probe with connector (6)
with the heating plate (1), the cooling plate (2), the brass rod (3), closing cap (4),
and the TeflonVR lead (5).
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Ra ¼ 1:8� 107 (d ¼ 6:3mmÞ, the intersection point changes from
z ¼ 17:1mm to z ¼ 9:4mm. The reader finds a list of data in Table II.

B. Normalized profiles of all six Rayleigh numbers

In order to compare the profiles of the mean dissipation rate
ethh it measured at different cell heights and temperature differences,
we introduce ~eth ¼ ethh it= j DT=Hð Þ2

� �
and plot the results in Fig. 6.

The distance from the wall z is normalized by the thickness of the
boundary layer d. With increasing Rayleigh number, ~eth increases con-
tinuously. The typical trend with a maximum close to the plate surface
and a minimum at the cell center virtually coincides with all consid-
ered Rayleigh numbers. In all cases, it is seen that the decrease in the
thermal dissipation rate is steeper in the boundary layer than in the
bulk region.

In the next step, we validate our measurements by computing
time and volume-averaged thermal dissipation rate ethh iV ;meas of the
measured profiles and we compare these values with those from Eq.
(8). We assume (i) the mean dissipation rate is constant over the

horizontal extent (at sufficiently large aspect ratio) and (ii) a symmetry
of the lower half and the upper half of the Rayleigh–B�enard cell. With
these assumptions, we form the integral over the profiles of the ther-
mal dissipation rate from the surface of the cooling plate at z ¼ 0 to
the midheight of the cell at z ¼ H=2,

ethh iV;meas ¼
2
H

ðH
2

z¼0
ethh it zð Þdz: (16)

Due to the finite size of the sensors (see Fig. 2), it is not possible to
measure the dissipation rate closer to the surface of the cooling plate
as z ¼ 0:8mm (see Fig. 4). This problem concerns all considered cell
configurations. At some specific configurations, there is also a lack of
data toward the midheight of the cell. This appears if either the plate
distance is very large (the holder of the probe cannot be made arbitrary
long) or the plate distance is too small (the L-shaped holder touches
the surface of the heating plate, see Fig. 3). For the general case, there-
fore, the integral according to Eq. (17) consists of three terms and
looks as follows:

FIG. 5. Profiles of the mean thermal dissi-
pation rate ethðz=HÞ at the cooling plate at
aspect ratio C ¼ 8 and two different
Rayleigh numbers Ra ¼ 1:9� 108 and
Ra ¼ 1:8� 109. The distance z is normal-
ized by the height of the cell H. The horizon-
tal, dashed–dotted lines show the theoretical
volume and time-averaged thermal dissipa-
tion rates ethh iV;� and ethh iV;(, the vertical,
dashed lines the respective boundary layer
thicknesses d� and d(, and the vertical,
dashed–dotted lines the intersection points
zV;� and zV;( between the measured pro-
file and the predictions from Eq. (8). The
error bars indicate the 95% confidence
bounds and are in an order from 1.1% to
6.8%.

TABLE II. Selected results of the measurements dependent on the Rayleigh number Ra: d� boundary layer thickness, ethh iV� theoretical time and volume-averaged thermal
dissipation rate, zGL� intersection point between the measured profiles and ethh iV , ethðz ¼ d=5Þ, ethðz ¼ dÞ, ethðz ¼ H=2Þ� mean thermal dissipation rates at z ¼ d=5,
z ¼ d, and z ¼ H=2.

Ra d mmð Þ ethh iV ðK2=sÞ zV ðmmÞ ethðz ¼ d=5Þ ðK2=sÞ ethðz ¼ dÞ ðK2=sÞ ethðz ¼ H=2Þ ðK2=sÞ

3:9� 106 10:70 0:01 17:1 3:51� 10�1 3:13� 10�2 2:34� 10�3

1:8� 107 7:03 0:58 9:4 1:90� 101 1:10� 100 9:60� 10�1

1:9� 108 11:69 0:01 94:4 6:62� 10�1 5:37� 10�2 3:50� 10�3

1:8� 109 6:26 1:80 40:0 2:49� 102 9:29� 100 2:31� 10�1

1:7� 1010 6:68 1:44 129:8 4:56� 102 1:82� 101 1:79� 10�1

1:6� 1011 7:17 1:11 177:4 6:74� 102 2:84� 101 6:56� 10�2
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ethV ;meas ¼ 2=H
ðz¼0:8

z¼0
eth zð Þdz

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

estimated

þ
ðz¼z1

z¼0:8
eth zð Þdz

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

measured

0
BB@

þ
ðz¼H=2

z¼z1

eth zð Þdz
 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

estimated

1
CCCA: (17)

In order to estimate the near-wall term, we use the measurement of
the wall heat flux _qW that provides the gradient of the mean tempera-
ture normal to the wall. With the assumption that the horizontal com-
ponents of the three-dimensional temperature gradient @T=@x and
@T=@y are negligibly very close to the wall with respect to the wall
normal component @T=@z, the thermal dissipation rate can be esti-
mated from @T=@z. The Fourier law delivers the temperature gradient
@T=@z,

@T
@z

¼ _q
k
: (18)

In this case, we used the measured heat flux _qW , which was measured
with the heat flux measurements described in Sec. IIA. The near-wall
thermal dissipation rate is then estimated as

eth;wall ¼ j
@T
@z

� 	2

: (19)

The area between the wall and the first measurement point at
z ¼ 0:8mm is linear interpolated. For the estimation of the dissipation
rate near the midplane of the cell, we used the last measured points of
the profiles to interpolate an algebraic power law in the form
eth;bulk ¼ C za. Table III shows the detailed numbers.

In Fig. 7, we plot the volume-averaged dissipation rates
ethh iV;meas vs the Rayleigh number. The plot covers the results at

C � 8 (filled circles) as well as C ¼ 4 and C ¼ 2 (empty circles). All
measured values are normalized by j ðDT=HÞ2, which eventually
leads to the Nusselt number ( ~ethh iV;meas ¼ ð ethh iV;measÞ=
ðj ðDT=HÞ2Þ ¼ Nu). As expected, ~ethh iV;meas increases with the
Rayleigh number. The dashed line shows a linear slope that corre-
sponds scale to a power law with an exponent of b ¼ 0:29. Despite an
obvious scatter of the measurement points, the rise is comparable to
the rise of the linear slope of the data points in the log/log-plot. For
comparison, we also plot the correspondent theoretical value ethh iV .

32

Our measurements do not fully coincide with the prediction by the
Grossmann–Lohse theory, but there are various reasons for the differ-
ence. The first reason is the fact that our measurements are presently
limited to the central axis of the experiment (x; y ¼ 0).

We assume homogeneity of the dissipation rate over x, y planes
for infinite long time, but this assumption might not be true for the
time interval we measured. Another reason could be the different
aspect ratio. While our measurements were undertaken at C � 8, the
Nusselt numbers provided from the theory are based on experiments/
simulations at aspect ratio one and smaller.

FIG. 6. Profiles of normalized thermal dis-
sipation rate ~e th with ~e th ¼ ethh it=
ðjðDT=HÞ2Þ. The z-position is normal-
ized by the thermal boundary layer thick-
ness d.

TABLE III. Prefactors C and scaling exponents a of the interpolation function to esti-
mate the profiles down to z ¼ H=2 for all respective Rayleigh numbers Ra.

Ra C a

3:6� 106 1:5� 10�1 �0:8
1:9� 107 5:5� 100 �0:9
1:7� 1010 2:7� 102 �1:4
1:6� 1011 3:1� 102 �1:2
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C. Dependence of the dissipation on the Rayleigh
number

One of the core ideas of the Grossmann-Lohse theory is that
the ratio of the dissipation in the boundary layer and the bulk
varies with the Rayleigh number (and the Prandtl number as well).
In this subsection, we discuss the measured dissipation in the
boundary layer and the bulk region, respectively. Like
Bhattacharya et al.,11 we calculate the dissipation as the integral of
the thermal dissipation rate over the volumes of the boundary layer
and the bulk. Then, we can write the dissipation Dbl in the bound-
ary layer and Dbulk in the bulk as follows:

Dbl ¼ 2
p
4
d2
ðz¼d

z¼0
ethh it zð Þdz ; (20)

Dbulk ¼ 2
p
4
d2
ðH

2

z¼d
ethh it zð Þdz: (21)

We again normalize the dissipation ~D ¼ ðDH2Þ=ðjDT2Þ to make the
measurements comparable at the various configurations. The results
are shown in Fig. 8. Considering only the results at high aspect ratio
C � 8, the normalized dissipation monotonically increases with the
Rayleigh number in both, the boundary layer and the bulk region. As
usual for the Nusselt number, we also fit power laws of the form

~D � Rau: (22)

We compute the scaling exponents by incorporating only the mea-
surements at C ¼ 9 and C ¼ 8 (Ra ¼ 3:9� 106 to Ra ¼ 1:9� 109).
While the thermal dissipation scales with ubl ¼ 0:21 in the boundary
layer part, the resulting exponent in the bulk region is ubulk ¼ 0:30.
Our results are consistent with the predictions of the
Grossmann–Lohse theory, where a change of the dominance of the
dissipation from the boundary layer to the bulk region is predicted, if
the Rayleigh number is sufficiently high. The theory provides this tran-
sitional Rayleigh number as high as Ratrans ¼ 1:4� 1011 for a Prandtl
number of Pr ¼ 0:7. The interpolation of our two fits intersects at
Ra � 3� 1012, which is not far from the predicted value. In contrast
to this, recent direct numerical simulations by Bhattacharya11 do not
coincide with our measurements. The authors also examined the ratio
of the dissipation within the boundary layer and the bulk. They found
the ratio of both contributions ~Dbl=~Dbulk to be almost constant if the
Rayleigh number is changed. Although we do not have an explanation,
the aspect ratio might play a role in this discrepancy. We see such an
effect in our measurements considering the trend of the dissipation at
C ¼ 4 andC ¼ 2 (see Fig. 8). Although the Rayleigh number is higher

FIG. 8. Normalized dissipation ~D
¼ ðDH2Þ=ðjDT2Þ vs Rayleigh number.
R2 are the coefficients of determination. In
the inset, the ratio between ~Dbl and ~Dbulk

is shown.

FIG. 7. Thermal dissipation rate ~e thh iV ;meas averaged in time and space from
experiments (red circles) dependent on the Rayleigh number. The dashed black
line represents a linear slope with an exponent b ¼ 0:29. The blue line shows the
curve of the theoretical values determined with Eq. (8). For this theoretical consider-
ation, the Nusselt number provided by the Grossmann–Lohse theory was used.
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than in all C � 8 measurements, the ratio ~Dbl=~Dbulk becomes larger
again, if the aspect ratio gets smaller.

IV. CONCLUSION

Finally, we summarize the results of our experimental investiga-
tions of thermal dissipation in turbulent Rayleigh–B�enard convection
at a large aspect ratio C � 8. By means of a unique four-thermistor
temperature gradient probe, we measured the instantaneous 3d-
gradient field of the temperature along the central (vertical) axis of a
large-scale Rayleigh–B�enard cell called “Barrel of Ilmenau.” From
these highly time and space resolved measurements, we compute the
thermal dissipation rate. We have executed our measurements at six
different Rayleigh numbers 3:9� 106 < Ra < 1:6� 1011 at a Prandtl
number Pr ¼ 0:7, whereas for the two highest Rayleigh numbers
Ra ¼ 1:7� 1010 and Ra ¼ 1:6� 1011, the aspect ratios were C ¼ 4
and C ¼ 2, respectively. At all considered Rayleigh numbers, the val-
ues of the thermal dissipation rate are always larger and the curve
shapes are steeper in the boundary layer than in the bulk region. The
integration of the dissipation rates over the volumes of the boundary
layer and the bulk shows that dissipation dominates in the boundary
layer in the considered Rayleigh and Prandtl number ranges. In both
regions, the dissipation increases with the Rayleigh number, but the
trend is steeper in the bulk region. We found (by interpolation) that
the dissipation in the bulk region would become dominant over the
dissipation in the boundary layer at a Rayleigh number of
Ra ¼ 3� 1012. The normalized average of the thermal dissipation
rate over the whole measurement section reveals the Nusselt number.
The exponent of the relation is of the order of 0.29. This is quite close
to other measurements that show exponents slightly smaller or larger
than 0.3.3,33–35 However, there is some deviation from the
Grossmann-Lohse theory. The reason might be the large aspect ratio
we did our measurements in, but also some kind of inhomogeneity of
the experimental results in the horizontal direction (we measure only
at a single position with respect to each horizontal plane). For this rea-
son, measurements in the side areas of the cell seem to be reasonable
in the future that may validate our results. Furthermore, it would
make sense to design an even smaller temperature gradient probe to
get better access into the temperature field very close to the wall.
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