
  
 

TU Ilmenau | Universitätsbibliothek | ilmedia, 2022 
http://www.tu-ilmenau.de/ilmedia 

Berger, Thomas; Ilchmann, Achim; Ryan, Eugene P. 

Funnel control of nonlinear systems 

 
Original published in: Mathematics of control, signals, and systems. - London : Springer. - 33 

(2021), 1, p. 151-194. 

Original published: 2021-02-26 

ISSN: 1435-568X 
DOI: 10.1007/s00498-021-00277-z 
[Visited: 2022-02-23] 
 

   

This work is licensed under a Creative Commons Attribution 4.0 
International license. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/ 

 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1007/s00498-021-00277-z
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Mathematics of Control, Signals, and Systems (2021) 33:151–194
https://doi.org/10.1007/s00498-021-00277-z

ORIG INAL ART ICLE

Funnel control of nonlinear systems

Thomas Berger1 · Achim Ilchmann2 · Eugene P. Ryan3

Received: 20 July 2020 / Accepted: 16 January 2021 / Published online: 26 February 2021
© The Author(s) 2021

Abstract
Tracking of reference signals is addressed in the context of a class of nonlinear
controlled systems modelled by r -th-order functional differential equations, encom-
passing inter alia systems with unknown “control direction” and dead-zone input
effects. A control structure is developed which ensures that, for every member of
the underlying system class and every admissible reference signal, the tracking error
evolves in a prescribed funnel chosen to reflect transient and asymptotic accuracy
objectives. Two fundamental properties underpin the system class: bounded-input
bounded-output stable internal dynamics, and a high-gain property (an antecedent
of which is the concept of sign-definite high-frequency gain in the context of linear
systems).

Keywords Nonlinear systems · Adaptive control · Asymptotic tracking · Funnel
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〈v,w〉 The Euclidean inner product of vectors v,w ∈ R
n

‖x‖ √〈x, x〉, the Euclidean norm of x ∈ R
n

L∞(I ,Rn) The Lebesgue space of measurable, essentially bounded functions
f : I → R

n , where I ⊆ R is some interval
L∞loc(I ,Rn) The set of measurable, locally essentially bounded functions

f : I → R
n , where I ⊆ R is some interval

W k,∞(I ,Rn) The Sobolev space of all functions f : I → R
n with k-th-order

weak derivative f (k) and f , f (1), . . . , f (k) ∈ L∞(I ,Rn), where
I ⊆ R is some interval and k ∈ N

Ck(V ,Rn) The set of k-times continuously differentiable functions f : V →
R

n , where V ⊆ R
m and k ∈ N0; C(V ,Rn) := C0(V ,Rn)

1 Introduction

Since its inception in 2002, the concept of funnel control has been widely investigated.
In its essence, the approach considers the following basic question: for a given class
of dynamical systems, with input u and output y, and a given class of reference sig-
nals yref , does there exist a single control strategy (generating u) which ensures that,
for every member of the system class and every admissible reference signal, the out-
put y approaches the reference yref with prescribed transient behaviour and prescribed
asymptotic accuracy? The twofold objective of “prescribed transient behaviour and
asymptotic accuracy” is encompassed by the adoption of a so-called “performance
funnel” in which the error function t �→ e(t) := y(t)− yref(t) is required to evolve;
see Fig. 1. Underlying the present paper is a large class of systems described by
r -th-order functional differential equations: we denote this class (which will be made
precise in due course) by N m,r , where m ∈ N denotes the dimension of both input
and output. The information available for feedback to the controller is comprised of
the instantaneous values of the output and its first r − 1 derivatives, together with
the instantaneous values of the reference signal and its first r̂ − 1 derivatives, where
1 ≤ r̂ ≤ r . A feedback strategy is developed which assures attainment of the above
twofold performance objective: this is the core of the main result, Theorem 1.9. We
proceed to highlight the features and distinguishing novelties of this result vis à vis
the existing literature.

1.1 Novelties and literature

Predecessors and relative degree
The parameter r coincides with the concept of relative degree for many nonlinear
examples belonging to the class N m,r . The class is, however, of sufficient generality
to encompass, not only such examples, but also systems which do not necessarily have
a relative degree as defined in, for example, [35]. Adaptive control for systems with
relative degree r > 1 has been an issue since the early days of high-gain adaptive con-
trol, as evidenced by the contribution [40] from 1984. An early approach which takes
transient behaviour into account is [41] in 1991, using a feedback strategy that differs
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conceptually from the funnel control methodology. Funnel control was introduced
in 2002 by [30] for nonlinear functional systems of the form (1) with relative degree
one, using a variant of the high-gain property from Definition 1.2. The efficacy of
funnel control for systems (1) with arbitrary r ∈ N was demonstrated in [32] in 2007.
However, the control structure in that paper is based on backstepping with attendant
(but unavoidable) escalating controller complexity vis à vis the striking simplicity
of the funnel controller for relative-degree-one systems. An alternative controller was
developed in [38] for a special class of systemswithm = 1 and arbitrary r ∈ N, termed
the bang–bang funnel controller. Since the control input switches only between two
values, it is able to respect input constraints; however, it requires various feasibility
assumptions and involves a complicated switching logic. A simpler control strategy for
nonlinear system has been introduced by [25] for r = 2 in 2013 and by [8] for r ∈ N

in 2018.

Controller complexity
Already alluded to in the above paragraph, some explicit remarks on the issue of con-
troller complexity may be warranted. For implementation purposes, the avoidance of
excessive complexity is crucial. The first approaches to funnel control for systems
with arbitrary relative degree in [31,32] showed a significant increase in controller
complexity with increasing relative degree (a variant of the “curse of dimensional-
ity”). Although these contributions have the advantage that only the output—and not
its derivatives—need to be known, they involve an intrinsic backstepping procedure
which requires increasing powers of a particular gain function as the relative degree
grows. For “large” relative degree, this leads to impracticality. Avoiding the backstep-
ping procedure, a low-complexity funnel controller has been developed in [25] for
relative degree two systems and in [8] for arbitrary relative degree. Nevertheless, the
control design developed in [8] involves successive derivatives of particular auxiliary
error variables, causing high-level complexity for high relative degree. The relative
simplicity of funnel control design underpinning Theorem 1.9 helps to resolve these
complexity issues.

Unknown control direction
In the early days of high-gain adaptive control without system identification, linear
systems with relative degree one and positive high-frequency gain were studied, cf.
Sect. 2.1. In 1983, Morse [42] conjectured the non-existence of a smooth adaptive
controller which stabilizes every such system under the weakened assumption that
the high-frequency gain is not zero, but its sign is unknown. Nussbaum [44] showed
(constructively) thatMorse’s conjecture is false. He introduced a class of sign-sensing
or probing “switching functions” in the feedback design, see Sect. 2.2. In the present
work, we allow for a larger class of switching functions (namely, continuous surjec-
tive maps [0,∞) → R, which properly contain the “Nussbaum” class), potentially
advantageous in applications.

Dead-zone input
A dead-zone input is a special case of input nonlinearity where the value of the non-
linearity is zero when the input is between some prescribed deadband parameters, see
Sects. 2.3 and 2.4. A dead-zone input may appear in practical applications such as
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hydraulic servo valves and electronic motors, and it may severely affect the perfor-
mance of a control system, see e.g. [55,56]. Several approaches have been undertaken
to treat these problems, see [43,55,56] and the references therein. We show that the
system class N m,r encompasses a larger class of dead-zone inputs than previously
considered in the literature.

Practical and exact asymptotic tracking
The “performance funnel”, which we denote by

Fϕ :=
{

(t, e) ∈ R≥0 × R
m | ϕ(t) ‖e‖ < 1

}
,

in which the tracking error is required to evolve, is determined by the choice of a
continuous functionϕ : R≥0 → R≥0 with requisite properties which include positivity
on (0,∞) and boundedness away from zero “at infinity”:

∀ t > 0 : ϕ(t) > 0 and lim inf
t→∞ ϕ(t) > 0.

For example, the unbounded function ϕ : t �→ eαt − 1, α > 0, is an admissible
choice, in which case evolution inFϕ ensures that the tracking error e(·) converges to
zero exponentially fast. In particular, exact asymptotic tracking is achieved. However,
there is a price to pay. A fundamental ingredient of the funnel controller is the quan-
tity ϕ(t)e(t) which, in the case of unbounded ϕ, inevitably leads to an ill-conditioned
computation of the product of “infinitely large” and “infinitesimally small” terms.
Therefore, while of theoretical interest, the case of unbounded ϕ may be of lim-
ited utility in applications. If ϕ is bounded, then the radius of the funnel t-section
Fϕ ∩

({t} × R
m
)
is uniformly bounded away from zero and so asymptotic tracking

is not achieved. However, the choice of (bounded) ϕ is at the designer’s discretion
and so practical tracking with arbitrarily small (but non-zero) prescribed asymptotic
accuracy is achievable without encountering the ill-conditioning present in the exact
asymptotic tracking case.

The assumption of bounded ϕ iswidespread in the literature on funnel control. Exact
asymptotic tracking with unbounded ϕ was achieved in [50] for a class of nonlinear
relative degree one systems: in [27] a predecessor for linear relative degree one systems
was developed utilizing the internal model principle. Recently (and unaware of the
latter results) it was observed in [37] that asymptotic funnel control is possible for a
class of nonlinear single-input single-output systems, albeit more restrictive than the
classN m,r of the present paper. Note also that asymptotic tracking via funnel control
for systems with relative degree two has been shown by [59,60]. However, the radius
of the funnel in these works is bounded away from zero and the property of exact
asymptotic tracking is achieved at the expense of a discontinuous control scheme.

Parameter r̂ ≤ r
Throughout, it is assumed that the instantaneous values of the output y(t) and its
first r − 1 derivatives, together with the instantaneous value yref(t) of the reference
signal, are available for feedback purposes. However, in applications, some deriva-
tives of the reference signal may not be accessible by the controller. The parameter
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r̂ ∈ {1, . . . , r} quantifies the number of derivatives that are available, and so the
instantaneous information signal fed to the controller is encapsulated by the vector
e(t) = (e(t), . . . , e(r̂−1), y(r̂)(t), . . . , y(r−1)(t)

)
with e(t) = y(t)−yref(t). The poten-

tial to copewith non-availability of reference signal derivativesmight be advantageous
for applications. Of course, the larger the value of r̂ , the more information is available
for control use, and so it might reasonably be expected that controller “behaviour”
improves with increasing r̂ . This expectation is borne out by numerical simulations.

Prescribed performance control
A relative of funnel control is the approach of prescribed performance control devel-
oped byBechlioulis and Rovithakis [1] in 2008.Using so-called performance functions
(which admit a funnel interpretation) and a transformation that incorporates these func-
tions, the original controlled system is expressed in a form for which boundedness
of the states, via the prescribed performance control input, can be proved—achieving
evolution of the tracking error within the funnel defined by the performance functions.
The controller presented in [1] is not of high-gain type. Instead, neural networks are
used to approximate the unknown nonlinearities of the system, resulting in a compli-
cated controller structure. After some developments, the complexity issue has been
addressed in [2] in 2014, where prescribed performance control is shown to be feasible
for systems in pure feedback for. However, the t-sections of the funnels correspond-
ing to the underlying performance functions have radii bounded away from zero and
so exact asymptotic tracking cannot be achieved, see e.g. [2]. While funnel control
and prescribed performance control are motivated by similar design objectives, the
solution methodologies are intrinsically different.

Applications
The new funnel control strategy has a potential impact on various applications. Since
its development in [30], the funnel controller proved an appropriate tool for track-
ing problems in various applications such as temperature control of chemical reactor
models [33], control of industrial servo-systems [24] and underactuated multibody
systems [9], speed control of wind turbine systems [21,23], current control for syn-
chronous machines [22], DC-link power flow control [52], voltage and current control
of electrical circuits [14], oxygenation control during artificial ventilation therapy [45],
control of peak inspiratory pressure [46] and adaptive cruise control [12,13].

1.2 System class

We make precise the underlying class N m,r of systems, modelled by nonlinear
functional differential equations of the form

y(r)(t) = f
(
d(t), T(y, ẏ, . . . , y(r−1))(t), u(t)

)

y|[−h,0] = y0 ∈ Cr−1([−h, 0],Rm),
(1)

where h ≥ 0 quantifies the “memory” in the system, r ∈ N is related to the concept
of relative degree, m ∈ N is the dimension of both the input u(t) and output y(t) at
time t ≥ 0, d ∈ L∞(R≥0,Rp) is a “disturbance”, and f ∈ C(Rp × R

q × R
m,Rm)
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belongs to a set of nonlinear functions characterized by a particular a high-gain
property (made precise in Definition 1.2). The operator T : C([−h,∞),Rn) →
L∞loc(R≥0,Rq), where n = rm, belongs to the class T

n,q
h of mappings which are

causal, satisfy a local Lipschitz condition, and map bounded functions to bounded
functions (made precise in Definition 1.1). The most simple, but non-trivial, prototype
of the system classN m,r is linear systems with strict relative degree r and asymptot-
ically stable zero dynamics (see Sect. 2.1).

Definition 1.1 (Operator class) For n, q ∈ N and h ≥ 0, the set Tn,q
h denotes the

class of operators

T
n,q
h := { T : C([−h,∞),Rn) → L∞loc(R≥0,Rq) | (TP1) - (TP3) hold} ,

where (TP1)–(TP3) denote the following properties.

(TP1) Causality: for all ζ , θ ∈ C([−h,∞),Rn) and all t ≥ 0,

ζ |[−h,t] = θ |[−h,t] �⇒ T(ζ )|[0,t] = T(θ)|[0,t].

(TP2) Local Lipschitz property: for each t ≥ 0 and all ξ ∈ C([−h, t],Rn), there
exist positive constants c0, δ, τ > 0 such that, for all ζ1, ζ2 ∈ C([−h,∞),Rn)

with ζi |[−h,t] = ξ and ‖ζi (s)− ξ(t)‖ < δ for all s ∈ [t, t + τ ] and i = 1, 2,
we have

ess sups∈[t,t+τ ] ‖T(ζ1)(s)− T(ζ2)(s)‖ ≤ c0 sups∈[t,t+τ ] ‖ζ1(s)− ζ2(s)‖.

(TP3) Bounded-input bounded-output (BIBO) property: for each c1 > 0 there exists
c2 > 0 such that, for all ζ ∈ C([−h,∞),Rn),

supt∈[−h,∞) ‖ζ(t)‖ < c1 �⇒ ess supt≥0 ‖T(ζ )(t)‖ < c2.

Property (TP1) is entirely natural in the context of physically motivated controlled
systems. Property (TP2) is a technical condition which (in conjunction with continuity
of f ) plays a role in ensuring well-posedness of the initial-value problem (1) under
feedback control. Property (TP3) is, loosely speaking, a stability condition on the
“internal dynamics” of (1). For linear systems with strict relative degree, the first two
conditions are trivially satisfied, while the third is equivalent to a minimum-phase
assumption: this is shown in Sect. 2.1.2.

The formulation also embraces nonlinear delay elements and hysteretic effects, as
we shall briefly illustrate.

Nonlinear delay elements.
For i = 0, . . . , k, let 
i : R × R

m → R
q be measurable in its first argument and

locally Lipschitz in its second argument, uniformly with respect to its first argument.
Precisely, for each ξ ∈ R

m , 
i (·, ξ) is measurable, and for every compact C ⊂ R
m ,

there exists a constant c > 0 such that

for a.a. t ∈ R ∀ ξ1, ξ2 ∈ C : ‖
i (t, ξ1)−
i (t, ξ2)‖ ≤ c‖ξ1 − ξ2‖.
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Let hi > 0, i = 0, . . . , k, and set h := maxi hi . For y ∈ C([−h,∞),Rm), let

T(y)(t) :=
∫ 0

−h0

0(s, y(t + s)) ds +

k∑

i=1


i (t, y(t − hi )), t ≥ 0.

The operator T, so defined (which models distributed and point delays), is of
class Tm,q

h ; for details, see [49].

Hysteresis
A large class of nonlinear operators T : C(R≥0,R) → C(R≥0,R), which includes
many physically motivated hysteretic effects, is defined in [39]. These operators are
contained in the class T1,1

0 . Specific examples include relay hysteresis, backlash hys-
teresis, elastic–plastic hysteresis, and Preisach operators. For further details, see [29].

Next, we introduce a high-gain property which, in effect, characterizes the class of
admissible nonlinearities f .

Definition 1.2 (High-gain property) For p, q, m ∈ N, a function f ∈ C(Rp × R
q ×

R
m,Rm) is said to have the high-gain property, if there exists v∗ ∈ (0, 1) such that,

for every compact K p ⊂ R
p and compact Kq ⊂ R

q , the (continuous) function

χ : R→ R,

s �→ min
{ 〈v, f (δ, z,−sv)〉 ∣∣ (δ, z) ∈ K p × Kq , v ∈ R

m, v∗ ≤ ‖v‖ ≤ 1
}

is such that sups∈R χ(s) = ∞.

We elucidate the high-gain property—which at first sight might seem somewhat
arcane—in the following two remarks, the first of which treats the linear case.

Remark 1.3 Why the terminology “high-gain property” and how is it related to
“high-gain stabilization”? Consider a very specific class of linear systems with no
disturbance d(·):

ẏ(t) = L1y(t)+ L2u(t), for L1, L2 ∈ R
m×m . (2)

For this system class, the following implications hold.

System (2) has the high-gain property.	

L2 ∈ R

m×m is sign definite,
i.e. there exists σ ∈ {−1, 1} such that σ 〈v, L2v〉 > 0 for all v ∈ R

m\{0}.
⇓

System (2) is high-gain stabilizable,
i.e. there exist σ ∈ {−1, 1} and k∗ > 0 such that, for all k ≥ k∗, the control

u(t) = −σ k y(t) renders system (2) exponentially stable.
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The equivalence of the first two statements is shown in Sect. 2.1.3. If L2 ∈ R
m×m is

sign definite, then there exists σ ∈ {−1, 1} such that σ L2 is positive definite and so

∃ k∗ > 0 ∀ k ≥ k∗ ∀ λ ∈ C : det
(
λIm − k−1L1 + σ L2

) = 0 �⇒ Re λ < 0,

whence the conclusion that, for a sufficiently high value of the gain parameter k > 0,
the linear control u(t) = −σky(t) renders the system exponentially stable. The reverse
implication does not hold. As a counterexample, consider (2) with

L1 =
[
0 −1
1 0

]
and L2 =

[
1 0
0 0

]
,

which, under the control u(t) = −ky(t), takes the form

ẏ(t) = (L1 − kL2)y(t) =
[−k −1
1 0

]
y(t),

which is exponentially stable for all k > 0 and so (2) is high-gain stabilizable. How-
ever, L2 is not sign definite.

The high-gain property in Definition 1.2 extrapolates the above observations to a
nonlinear setting.

Remark 1.4

(a) The high-gain property holds for f ∈ C(Rp×R
q ×R

m,Rm) if, and only if, there
exists v∗ ∈ (0, 1) such that, for every compact K p ⊂ R

p and compact Kq ⊂ R
q ,

at least one of the following two properties is true for the continuous function χ

defined as in Definition 1.2:

(i) sup
s>0

χ(s) = ∞ or (ii) sup
s<0

χ(s) = ∞. (3)

If (i) (respectively, (ii)) holds for every such pair (K p, Kq), then we say that
f has the negative-definite high-gain property (respectively, the positive-definite
high-gain property).

(b) That a function f may have both the negative-definite and positive-definite high-
gain properties is illustrated by following example. Let m = 1 and let f (with
trivial (δ, z) dependence) be given by

f (δ, z, u) = u sin
(
ln(1+ |u|)), (δ, z, u) ∈ R

p × R
q × R,

which has the set of zeros {uk,−uk} with

uk = ekπ − 1, k ∈ N0.

Define the sequence (sk) by

sk := 1
2 (uk+1 − uk) = 1

2ekπ (eπ − 1) > 0, k ∈ N.
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Noting that 4eπ/2 < eπ − 1, we have

ln
(
1+ 1

2 sk
) = ln

(
ekπ
(
e−kπ + 1

4 (e
π − 1)

))
> kπ + π

2 .

Also,

ln
(
1+ sk

) = ln
(
ekπ
(
e−kπ + 1

2 (e
π − 1)

))
< ln

(
ekπ (eπ/2)

) = (k + 1)π − ln 2.

Therefore, for all v ∈ R with 1
2 ≤ |v| ≤ 1 we have

kπ + π
2 < ln(1+ sk |v|) < (k + 1)π − ln 2.

It follows that

0 < sin(π − ln 2) <

{+ sin
(
ln(1+ sk |v|)

)
, k even

− sin
(
ln(1+ sk |v|)

)
, k odd

}
< 1.

Set v∗ = 1
2 . Then, we find that

χ(−s2k) = min
1
2≤|v|≤1

s2k v2 sin
(
ln(1+ s2k |v|)

)
> 1

4 s2k sin(π − ln 2)

and

χ(s2k+1) = min
1
2≤|v|≤1

−s2k+1 v2 sin
(
ln(1+ s2k+1|v|)

)
> 1

4 s2k+1 sin(π − ln 2).

Since sin(π − ln 2) > 0, it follows that sups>0 χ(s) = ∞ = sups<0 χ(s). There-
fore, f has both the negative-definite and positive-definite high-gain properties.

(c) For linear systems with strict relative degree, we show in Sect. 2.1.3 that (i)
(respectively, (ii)) is equivalent to the high-frequency gain matrix being negative
definite (respectively, positive definite).

(d) If it is known in advance that the negative-definite (respectively, positive-
definite) high-gain property holds; then, the controller structure can be simpli-
fied considerably as we will discuss in Remark 1.8.

Now we are in a position to define the general system class to be considered.

Definition 1.5 (System class) For m, r ∈ N we say that system (1) belongs to the
system class N m,r , written (d, f , T) ∈ N m,r , if, for some p, q ∈ N and h ≥ 0 the
following hold: d ∈ L∞(R≥0,Rp), f ∈ C(Rp × R

q × R
m,Rm) has the high-gain

property, and the operator T is of class Trm,q
h .

We emphasize that the system class N m,r is parameterized only by two integers,
namely, m (which denotes the common dimension of the input and output spaces)
and r (which is related to the concept of relative degree). In particular, the classN m,r

encompasses systems with arbitrary state space dimension, including systems with
infinite-dimensional internal dynamics, see e.g. [11]: we will elaborate further on this
in Sect. 4.
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Fig. 1 Performance funnelFϕ

1.3 Control objectives

The control problem to be addressed is to determine an output derivative feedback
strategy which ensures that, for every system of class (1) and any reference signal
yref ∈ W r ,∞(R≥0,Rm), the output y approaches the reference yref with prescribed
transient behaviour and asymptotic accuracy. This objective is reflected in the adoption
of a so-called “performance funnel”, defined by

Fϕ :=
{

(t, e) ∈ R≥0 × R
m | ϕ(t) ‖e‖ < 1

}
, (4)

in which the error function t �→ e(t) := y(t)− yref(t) is required to evolve; see Fig. 1.
The funnel is shaped—through the choice of its boundary (determined by the recip-

rocal of ϕ)—in accordance with the specified transient behaviour and asymptotic
accuracy; ϕ is assumed to belong to the set

� :=
{
ϕ ∈ ACloc(R≥0,R≥0)

∣∣∣∣
∀ t > 0 : ϕ(t) > 0 , lim inf t→∞ ϕ(t) > 0,
∃ c > 0 : | .

ϕ(t)| ≤ c
(
1+ ϕ(t)

)
for a.a. t ≥ 0

}
,

where ACloc(R≥0,R≥0) denotes the set of locally absolutely continuous functions
f : R≥0 → R≥0. Note that, for t > 0, the funnel t-section Fϕ ∩

({t} × R
m
)
is the

open ball in R
m of radius 1/ϕ(t).

While it is often convenient to adopt a monotonically shrinking funnel (through
the choice of a monotonically increasing function ϕ), it might be advantageous to
widen the funnel over some later time intervals to accommodate, for instance, periodic
disturbances or strongly varying reference signals.

1.4 Funnel control structure

We outline the design of funnel control for any system (1) of class N m,r .

Information available for feedback
Throughout, it is assumed that the instantaneous value of the output y(t) and its first
r − 1 derivatives ẏ(t), . . . , y(r−1)(t) are available for feedback. Admissible reference
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signals are functions yref ∈ W r ,∞(R≥0,Rm). The instantaneous reference value yref(t)
is assumed to be accessible to the controller and, if r ≥ 2, then, for some r̂ ∈ {1, . . . , r},
the derivatives ẏref(t), . . . , y(r̂−1)

ref (t) are also accessible for feedback. In summary, for
some r̂ ∈ {1, . . . , r}, the following instantaneous vector is available for feedback
purposes:

e(t) = (e(0)(t), . . . , e(r̂−1), y(r̂)(t), . . . , y(r−1)(t)
) ∈ R

rm, e(t) := y(t)− yref(t),
(5)

with the notational convention that e(0) ≡ e.

Feedback strategy
Preliminary ingredients in the feedback construction, called funnel control design
parameters, are:

ϕ ∈ �, bounded if r̂ < r ,

N ∈ C(R≥0,R), a surjection,
α ∈ C1([0, 1), [1,∞)), a bijection.

⎫
⎬

⎭
(6)

These functions are open to choice. For notational convenience, we define

γ : B → R
m, w �→ α(‖w‖2) w, where B := { w ∈ R

m | ‖w‖ < 1
}
. (7)

Next, we introduce continuous maps ρk : Dk → B, k = 1, . . . , r , recursively as
follows:

D1 := B, ρ1 : D1 → B, η1 �→ η1,

Dk :=
{

(η1, . . . , ηk) ∈ R
km

∣∣∣∣
(η1, . . . , ηk−1) ∈ Dk−1,

ηk + γ (ρk−1(η1, . . . , ηk−1)) ∈ B

}
,

ρk : Dk → B, (η1, . . . , ηk) �→ ηk + γ (ρk−1(η1, . . . , ηk−1)).

⎫
⎪⎪⎬

⎪⎪⎭
(8)

Note that each of the sets Dk is non-empty and open. With reference to Fig. 2, and
with e and ρr defined by (5) and (8), the funnel controller is given by

u(t) = (N ◦ α
)
(‖w(t)‖2) w(t), w(t) := ρr

(
ϕ(t)e(t)

)
. (9)

Note the striking simplicity of the control (9): proportional feedback of the informa-
tion vector w(t), with scalar gain. Further comments on its distinctive features are
expounded in Example 1.6 and Remarks 1.7 and 1.8.

Example 1.6 Choosing the design parameter triple

ϕ ∈ �, N : s �→ s sin(s), α : s �→ 1/(1− s),

(with ϕ bounded if r̂ < r ), the feedback becomes

u(t) = (
1− ‖w(t)‖2)−1 sin

((
1− ‖w(t)‖2)−1

)
· w(t),
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Fig. 2 Construction of the funnel controller (9) depending on its design parameters

where the signal w(t) is, for example,

w(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ(t)e(t), if r = 1 = r̂ ,

ϕ(t)ẏ(t)+ γ (ϕ(t)e(t)), if r = 2, r̂ = 1,

ϕ(t)ė(t)+ γ (ϕ(t)e(t)), if r = 2, r̂ = 2,

ϕ(t)ÿ(t)+ γ
(
ϕ(t)ẏ(t)+ γ (ϕ(t)e(t))

)
, if r = 3, r̂ = 1,

with γ given by (7).

Remark 1.7

(a) The intermediate signal w(t) in (9) is a feedback—via the function γ—of the
available information, given by (5), “weighted” by ϕ(t).

(b) We point out that the complexity of the controller is much lower than in previous
approaches such as [8], where successive derivatives of auxiliary error variables1

need to be calculated before implementation. This complicates the feedback struc-
ture for larger values of the parameter r . In (9) all required signals are explicitly
given by the recursion in (8) and can be implemented directly.

(c) The parameter r̂ ∈ {1, . . . , r} specifies the number of derivatives of yref available
for feedback. With increasing r̂ , more information becomes accessible and so, not
unreasonably, it might be expected that, loosely speaking, controller performance
improves: this expectation is borne out by numerical simulations in Sect. 3.

(d) Note that, if r̂ = r , then polynomial or exponentially increasing funnel functionsϕ

are admissible. For example, the choices ϕ : t �→ at� or ϕ : t �→ eat − 1, a > 0,
� ∈ N, ensure polynomial/exponential decay (to zero) of the tracking error t �→
e(t) = y(t)− yref(t). If r̂ < r , then boundedness of ϕ is required. As an exemplar
in this case, the choiceϕ : t �→ min{eat−1 , b}, a, b > 0, ensures that the tracking

1 The auxiliary error variables are given by ei (t) in equation (5) of [8] for i = 0, . . . , r − 1.
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error approaches the ball of (arbitrarily small) radius b−1 exponentially fast and
resides in that ball for all t ≥ a−1 ln(1+ b).

(e) Funnel control presents an anomaly: its performance might seem to contradict the
internal model principlewhich asserts that “a regulator is structurally stable only if
the controller […] incorporates […] a suitably reduplicated model of the dynamic
structure of the exogenous signals which the regulator is required to process” [61,
p. 210]. Diverse sources echo this principle—one such source is noted in [26]: a
young Mark Twain, when apprenticed to a Mississippi river pilot, recorded the
latter’s advice on navigating the river in the words “you can always steer by the
shape that’s in your head, and never mind the one that’s before your eyes” [58,
Ch.VIII]. But the funnel controller has no “shape” in its “head”, it operates only on
what is before its eyes. It does not incorporate “a suitably reduplicated model […]
of the exogenous signals”. How is this anomaly to be resolved? The internal model
principle applies in the context of exact asymptotic tracking of reference signals.
In the case of a bounded funnel function ϕ, only approximate tracking, with non-
zero prescribed asymptotic accuracy, is assured in which case the anomaly is
spurious.

(f) But what of the case of an unbounded funnel function ϕ, which is permissible
whenever r̂ = r? In this case, exact asymptotic tracking is achieved. ( See also
the paragraph ‘Practical and exact asymptotic tracking’ in Sect. 1.1.) Return-
ing to the control-theoretic origins of the internal model principle, summarized
in [61, p. 210] as “every good regulator must incorporate a model of the outside
world”, we regard the term “good regulator” as most pertinent. A fundamental
ingredient of the funnel controller is the quantity ϕ(t)e(t) which, in the case of
unbounded ϕ, inevitably leads to an ill-conditioned computation of the product
of “infinitely large” and “infinitesimally small” terms. Such a controller cannot
be deemed “good”. While of theoretical interest, the case of unbounded ϕ is of
limited practical utility.

Remark 1.8 We comment on the function N ∈ C(R≥0,R) in (6).

(a) Note that N is a surjection if, and only if,

lim sup
s→∞

N (s) = +∞ and lim inf
s→∞ N (s) = −∞. (10)

These two conditions are a generalization of the so-calledNussbaum properties (to
be discussed further in Sect. 2.2). Reiterating Remark 1.4, the high-gain property
implies that , for every pair (K p, Kq) of compact sets, at least one of the conditions
in (3) must hold. In the absence of any further a priori knowledge pertaining to
these two possibilities, the role of the function N is to provide the controller with
a “probing” capability which implicitly accommodates each possibility.

(b) If it is known a priori that f has the negative-definite high-gain property, then
N may be replaced by any continuous surjection [0,∞) → [0,∞), the simplest
example being the identity map s �→ s in which case the feedback in (9) takes the
form u(t) = α(‖w(t)‖2) w(t).
Similarly, if it is known a priori that f has the positive-definite high-gain property,
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Fig. 3 Simulation of the example from Remark 1.4 (a) under control (9) with N : s �→ σ s

then N may be replaced by any continuous surjection [0,∞) → (−∞, 0], the
simplest example being the map s �→ −s in which case the feedback takes the
form u(t) = −α(‖w(t)‖2) w(t).

(c) As the example in Remark 1.4 (c) shows, it is also possible that (i) and (ii) in (3)
hold simultaneously, in which case both of the above simplified feedback laws
are feasible. To illustrate this, consider the scalar system

ẋ(t) = u(t) sin
(
ln(1+ |u(t)|)), x(0) = 1,

under control (9) with α : s �→ 1/(1− s) and N replaced by N : s �→ σ s, where
σ ∈ {−1, 1}, that is

u(t) = σw(t)

1− w(t)2
, w(t) = ϕ(t)

(
y(t)− yref(t)

)
.

Wechooseϕ(t) = t2, yref(t) = sin t for t ≥ 0 and perform the simulation2 over the
time interval [0, 10]. The results are shown in Fig. 3, where the tracking error and
input function for σ = −1 are depicted in Fig. 3a and c, and for σ = 1 in Fig. 3b

2 All simulations in the paper are MATLAB generated (solver: ode45, rel. tol.: 10−14, abs. tol.: 10−10).
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and d, resp. In the latter case, the input exhibits a sharp increase when the tracking
error approaches the funnel boundary, and it stays within the interval [20, 25]
thereafter, while for σ = −1 the input stays within the interval [−1.5, 1.5]. This
suggests that the system structure allows the input to “probe” for an appropriate
interval of control values, independent of the sign of σ .

1.5 Funnel control: main result

If the funnel controller (9) is applied to a system (1), then the first issue is to prove
the existence of solutions of the closed-loop initial-value problem and to establish
the efficacy of the control. We stress that the proof is quite delicate—even in the
case of linear systems of the form (13). The reason is that the function α used in the
feedback (9) introduces a potential singularity on the right hand side of the closed-loop
differential equation.

By a solution of (1), (9) on [−h, ω) we mean a function y ∈ Cr−1([−h, ω),Rm),
ω ∈ (0,∞], with y|[−h,0] = y0 such that y(r−1)|[0,ω) is locally absolutely continuous
and satisfies the differential equation in (1) with u defined in (9) for almost all t ∈
[0, ω); y is said to be maximal, if it has no right extension that is also a solution.

We are now in the position to present the main result for systems belonging to the
system classN m,r .

Theorem 1.9 Consider system (1) with (d, f , T) ∈ N m,r , m, r ∈ N, and initial data
y0 ∈ Cr−1([−h, 0],Rm). Let yref ∈ W r ,∞(R≥0,Rm), with associated parameter
r̂ ∈ {1, . . . , r}, be arbitrary. Choose the triple (α, N , ϕ) of funnel control design
parameters as in (6). Assume that the instantaneous vector e(t), given by (5), is
available for feedback and the following holds:

ϕ(0)e(0) ∈ Dr , (11)

(trivially satisfied if ϕ(0) = 0).
Then, the funnel control (9) applied to (1) yields an initial-value problem which

has a solution, every solution can be maximally extended and every maximal solution
y : [−h, ω) → R

m has the properties:

(i) ω = ∞ (global existence);
(ii) u ∈ L∞(R≥0,Rm), y ∈ W r ,∞([−h,∞),Rm);
(iii) the tracking error e : R≥0 → R

m as in (5) evolves in the funnelFϕ and is uniformly
bounded away from the funnel boundary

∂Fϕ =
{

(t, ζ ) ∈ R≥0 × R
m | ϕ(t)‖ζ‖ = 1

}

in the sense that there exists ε ∈ (0, 1) such that ϕ(t)‖e(t)‖ ≤ ε for all t ≥ 0.
(iv) If r̂ = r and ϕ is unbounded, then e(k)(t) → 0 as t →∞, k = 0, . . . , r − 1.
(v) If the system is known to satisfy the negative-definite (respectively, positive-

definite) high-gain property (see Remark 1.4(a)), then the feedback (9) may be
simplified by substituting the identity map s �→ s (respectively, the map s �→ −s)
for N and Assertions (i)–(iv) remain valid.
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The proof is relegated to “Appendix A”.
When interpreted in specific cases, the initial condition constraint (11) becomes

more transparent. For example, in the relative-degree-one case r = 1 = r̂ , it is simply
the requirement that ϕ(0)‖e(0)‖ < 1, where e(0) = y0(0) − yref(0) and, in the case
r = 2, it is equivalent to the same requirement augmented by

‖ϕ(0)z + γ (ϕ(0)e(0))‖ < 1, with z =
{

ẏ0(0)− ẏref(0), if r̂ = 2,

ẏ0(0), if r̂ = 1.

In some specific circumstances, computation of a priori bounds on the evolution
of the tracking error e and (some of) its derivatives is possible. We highlight one such
circumstance. Assume that r̂ ≥ 2 and ϕ ∈ � is such that ϕ(0) > 0. Define

μ0 := ess supt≥0
(| .

ϕ(t)|/ϕ(t)
)
.

Let α† ∈ C1(R≥0, [0, 1)) denote the inverse of the continuously differentiable bijec-
tion [0, 1) → R≥0, s �→ sα(s) and, for notational convenience, introduce the
continuous function

α̃ : [0, 1) → R≥0, s �→ 2sα′(s)+ α(s).

Define (μk, e0k , ck), k = 1, . . . , r̂ − 1, recursively as follows:

e01 := ϕ(0)e(0), c1 := max{‖e01‖2, α†(1+ μ0)}1/2 < 1, μ1 := 1+ μ0c1,

μk := 1+ μ0
(
1+ ck−1α(c2k−1)

)+ α̃(c2k−1)
(
μk−1 + ck−1α(c2k−1)

)
,

e0k := ϕ(0)e(k−1)(0)+ α(‖e0k−1‖2)e0k−1,

ck := max{‖e0k‖2, α†(μk)}1/2 < 1.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12)
We emphasize that the constants ck are determined by the design parameters ϕ and α,
together with the known initial data: y(0), . . . , y(r̂−1)(0) and yref(0), . . . , y(r̂−1)

ref (0).

Corollary 1.10 Let all hypotheses of Theorem 1.9 hold. Assume, in addition, that

r̂ ≥ 2, ϕ(0) > 0 and α′ is monotonically non-decreasing.

Then, for every maximal solution y : [−h,∞) → R
m of the feedback system

(1) and (9), the tracking error e = y − yref and its first r̂ − 2 derivatives satisfy,
for all k = 1, . . . , r̂ − 2 and all t ≥ 0,

‖e(t)‖ ≤ ϕ(t)−1c1, ‖e(k)(t)‖ ≤ ϕ(t)−1
(
ck+1 + ckα(c2k )

)
.

where the constants ck are given by (12).
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The proof is relegated to “Appendix A”.
Note that these findings are much simpler than the complicated bounds derived

in [8, Prop. 3.2].

Example 1.11 Assume r̂ = 3, ϕ : t �→ a + bt , a, b > 0, and α : s �→ 1/(1 − s). In
this case, we have μ0 = b/a and α† : s �→ s/(1+ s). Therefore, for all t ≥ 0,

e01 = ae(0), c1 = max{‖e01‖2 , (1+ μ0)/(2+ μ0)}1/2 and ‖e(t)‖ ≤ c1
a + bt

.

Furthermore, μ1 = 1+ μ0c1,

α̃ : s �→ (1+ s)/(1− s)2, μ2 = 1+ μ0
(
1+ c1α(c21)

)+ α̃(c21)
(
μ1 + c1α(c21)

)
,

e02 = aė(0)+ (1− ‖e01‖2
)−1

e01, c2 = max{‖e02‖2 , μ2/(1+ μ2)}1/2

and ∀ t ≥ 0 : ‖ė(t)‖ ≤ c2 + c1/
(
1− c21

)

a + bt
.

2 Examples

In this section, we show that the class N m,r encompasses the prototype of linear
multi-input multi-output systems with strict relative degree r ∈ N and asymptotically
stable zero dynamics, see Sect. 2.1. Furthermore, the issues of control directions are
discussed in Sect. 2.2 and input nonlinearities in Sect. 2.3; a special case of the latter
is a so called dead-zone input which is discussed in Sect. 2.4.

2.1 The prototypical linear system class

As a concrete example we consider linear, finite-dimensional systems of the form

ẋ(t) = A x(t)+ B u(t), x(0) = x0 ∈ R
n,

y(t) = C x(t)

}
(13)

where (A, B, C) ∈ R
n×n × R

n×m × R
m×n , m ≤ n, and discuss its relationships to

Properties (TP1)–(TP3) and the high-gain property.

2.1.1 Strict relative degree

We show that system (13) can be equivalently written in the form (1), if system (13)
has (strict) relative degree r ∈ N, that is

C Ak B = 0, k = 0, . . . , r − 2 and � := C Ar−1B is invertible.
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It is shown in [32] that under this assumption there exists a state space transformation

z =
(

ξ

η

)
= U x, ξ =

⎛

⎜
⎝

ξ1
...

ξr

⎞

⎟
⎠ , U ∈ R

n×n invertible,

which transforms (13) into Byrnes–Isidori form

ż(t) = Ãz(t)+ B̃u(t), y(t) = C̃z(t),

where
( Ã, B̃, C̃) = (U AU−1, U B, CU−1) (14)

with

Ã =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0 Im 0 · · · 0 0
0 0 Im 0
...

. . .
. . .

...

0 0 · · · 0 Im 0
R1 R2 · · · Rr−1 Rr S
P 0 · · · 0 0 Q

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, B̃ =

⎡

⎢⎢⎢⎢⎢
⎣

0m×m
...

0m×m

�

0(n−rm)×m

⎤

⎥⎥⎥⎥⎥
⎦

,

C̃ = [Im, 0m×m, . . . , 0m×m, 0m×(n−rm)

]
.

In the new coordinates, the system representation of (13) becomes

ξ̇k(t) = ξk+1(t), k = 1, . . . , r − 1,
ξ̇r (t) = ∑r

k=1 Rkξk(t)+ Sη(t)+ �u(t),
η̇(t) = Pξ1(t)+ Qη(t),

⎫
⎬

⎭
with output y(t) = ξ1(t). (15)

With the third equation in (15), the so-called internal dynamics, we may associate a
linear operator

L : y(·) �→
(

t �→
∫ t

0
eQ(t−τ) Py(τ ) dτ

)
. (16)

With initial data η(0) = η0 =[0, In−rm]U x0 and d(·) := eQ·η0, we find that

η(t) = d(t)+ L(y)(t).

Introducing the (linear) operator

T : C(R≥0,Rrm) → L∞loc(R≥0,Rm),

ζ = (ζ1, . . . , ζr ) �→
(

t �→
r∑

k=1

Rkζk(t)+ SL(ζ1)(t)
)
, (17)
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it follows from (15) that (13) is equivalent to the functional differential system

y(r)(t) = Sd(t)+ T(y, . . . , y(r−1))(t)+ �u(t)
y(0) = Cx0, . . . , y(r−1)(0) = C Ar−1x0.

}
(18)

It is easy to see that the operator T satisfies properties (TP1) and (TP2) from Defini-
tion 1.1. The following section is devoted to (TP3).

2.1.2 Minimum phase

Suppose that system (13) has strict relative degree r ∈ N. Then the BIBO prop-
erty (TP3) of the operator T in (18) is closely related to system (13) having
asymptotically stable zero dynamics, i.e.

∀ λ ∈ C≥0 : det

[
λI − A B

C 0

]
�= 0. (19)

This concept (also closely related to the minimum phase property in the literature,
cf. [34]) is extensively studied since its relevance has been revealed in classical works
such as [17,40]. To be precise, assume that the transfer function C(s I − A)−1B ∈
R(s)m×m of (A, B, C) is invertible over R(s), then we have the following:

(A, B, C) satisfies (19)
[3, Cor. 3.3]⇐⇒ (A, B, C) stabilizable and detectable,

C(s I − A)−1B has no zeros in C≥0	
 [3, Cor. 2.8]
(A, B, C) stab. and det.,
T satisfies (TP3)

[57, Thm. 3.21]⇐⇒ (A, B, C) stabilizable and detectable,
S(s I − Q)−1P has no poles in C≥0

For the last equivalence above we note that by [57, Thm. 3.21] it is straightforward
that S(s I −Q)−1P having no poles inC≥0 is equivalent to (Q, P, S) being externally
stable or, in other words, the operator L from (16) satisfies (TP3). It is easily seen that
this is the same as T satisfying (TP3).

2.1.3 Sign-definite high-frequency gain matrix

We show that system (13) satisfies the high-gain property (recall Definition 1.2) if,
and only if, the high-frequency gain matrix � = C Ar−1B is sign definite. Otherwise
stated, we seek to establish the following equivalence:

(a) (13) has the high-gain property⇐⇒ (b) ∀ v ∈ R
m\{0} : v��v �= 0.

(a) �⇒ (b): Assume (a). Let v∗ ∈ (0, 1) be given and choose K p = {0}, Kq = {0}.
Write Am := { v ∈ R

m | v∗ ≤ ‖v‖ ≤ 1 }. Suppose (b) is false. Then there exists v̂ ∈
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Am such that v̂��v̂ = 0, thus

∀ s ∈ R : χ(s) = min
v∈Am

(− sv��v
) ≤ −sv̂��v̂ = 0,

which contradicts (a).
(b) �⇒ (a): Assume (b). Then there exists σ ∈ {−1, 1} such that σ� is positive
definite. Let G := (σ/2)(�+��) denote the symmetric part of σ� and let λ∗ > 0 be
the smallest eigenvalue of G. Set v∗ = 1

2 , choose compact K p ⊂ R
p and Kq ⊂ R

q

and define

c1 := min
{

v�(δ + z)
∣∣ (δ, z, v) ∈ K p × Kq × Am

}
.

Then,

∀ s ∈ R : χ(s)− c1 ≥ min
v∈Am

(− sv��v
) = min

v∈Am

(− sσv�Gv
)
.

Let (sn) be a real sequence with σ sn < 0 for all n ∈ N and σ sn → −∞ as n →∞.
It follows that

∀ n ∈ N ∀ v ∈ Am : −σ snv
�Gv ≥ −σ snλ∗‖v‖2 ≥ −σ snλ∗

4

and so we have

∀ n ∈ N : χ(sn) ≥ c1 − σ snλ∗
4

.

Therefore, χ(sn) →∞ as n →∞ and so (a) holds.

2.2 Known and unknown control directions

For linear systems (13) with relative degree r ∈ N the notion of “control direction” is
captured by the sign of the high-frequency gain matrix � = C Ar−1B as discussed in
Sect. 2.1.3. More precisely, if σ� is positive definite for some σ ∈ {−1, 1}, then σ is
called the control direction. If σ is known and the system (13) has asymptotically stable
zero dynamics, see (19), then it can be shown that the “classical high-gain adaptive
feedback”

u(t) = −σk(t)y(t), k̇(t) = ‖y(t)‖2, (20)

with k(0) = k0 ≥ 0, applied to (13) yields a closed-loop system, where for any
solution (x, k) we have that x(t) → 0 as t →∞ and k(·) is bounded; see [17,40,42].

For the case of unknown control direction σ , the adaptive stabilization was an
obstacle over many years.Morse [42] conjectured the non-existence of a smooth adap-
tive controller which stabilizes every linear single-input single-output system (13),
i.e. m = 1, under the assumption that � �= 0. It was shown by Nussbaum in [44]
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that this conjecture is false: One has to incorporate a “sign-sensing function” in the
feedback law (20) so that it becomes

u(t) = −N (k(t))y(t), k̇(t) = ‖y(t)‖2, (21)

where the smooth function N : R≥0 → R satisfies the so-called Nussbaum property

∀ k0 ≥ 0 : sup
k>k0

1

k − k0

∫ k

k0
N (κ) dκ = ∞ and inf

k>k0

1

k − k0

∫ k

k0
N (κ) dκ = −∞,

(22)
see, for example, [18–20,36,62]. Loosely speaking, when incorporated in the control
design, “Nussbaum” functions provide a mechanism that can “probe” in both control
directions.

The present paper utilizes a larger class of “probing” functions: in particular, the pro-
posed control design permits the adoption of any continuous function N : R≥0 → R

which is surjective or, equivalently, satisfies (10). Properties (22) imply properties (10),
but the reverse implication is false: for example, the function s �→ N (s) = s sin s
exhibits properties (10), but fails to exhibit the Nussbaum properties (22).

2.3 Input nonlinearities

In addition to accommodating the issue of (unknown) control direction (cf. Sect. 2.2),
the generic formulation (1) with associated high-gain property encompasses a wide
variety of input nonlinearities. Consideration of a scalar system of the simple form

ẏ(t) = f1(y(t))+ f2(y(t)) β(u(t)) (23)

with f1 ∈ C(R,R), f2 ∈ C(R,R\{0}) and β ∈ C(R,R), will serve to illustrate this
variety. The assumption that f2 is a non-zero-valued continuous function ensures a
well-defined control direction (unknown to the controller). Without loss of generality,
we may assume that f2 ∈ C(R,R>0); if f2 is negative-valued, then, in (23), simply
replace f2 by− f2 and β by−β. We impose the following conditions on β ∈ C(R,R):

β is surjective, with |β(τ)| → ∞ as |τ | → ∞, (24)

which is equivalent to the requirement that one of the following conditions hold:

lim
τ→±∞β(τ) = ±∞ or lim

τ→±∞β(τ) = ∓∞.

We proceed to show that system (23) has the high-gain property. Set v∗ = 1
2 , let K1 ⊂

R be compact and define

A1 :=
[− 1,− 1

2 ] ∪
[ 1
2 , 1
]
, c1 := min { v f1(z) | (z, v) ∈ K1 × A1 } ∈ R.
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Consider the function

χ : R→ R, s �→ min
{

v
(

f1(z)+ f2(z)β(−sv)
) | (z, v) ∈ K1 × A1

}
.

Then,

∀ s ∈ R : χ(s) ≥ c1 +min { v f2(z)β(−sv) | (z, v) ∈ K1 × A1 } . (25)

Let M > 0 be arbitrary. To conclude that the high-gain property holds, it suffices to
show that there exists s ∈ R such that

∀ (z, v) ∈ K1 × A1 : v f2(z)β(−sv) > M .

Define

c2 := min
z∈K1

f2(z) > 0 and c3 := 2M/c2.

By properties of β, there exist σ ∈ {−1, 1} and c4 > 0 such that

∀ τ > c4 : min
{
β(στ) , −β(−στ)

}
> c3.

Let (z, v) ∈ K1 × A1 be arbitrary. Fix s ∈ R such that σ s < −2c4 and so |sv| > c4.
Then,

v f2(z)β(−sv) =
{ |v| f2(z)β(σ |sv|), if v > 0
|v| f2(z)

(− β(−σ |sv|)), if v < 0

}
>

c2c3
2

= M .

Therefore, the high-gain property holds.

2.4 Dead-zone input

An important example of a nonlinearity β = D with properties (24) is a so-called
dead-zone input of the form

D : R→ R, v �→ D(v) =
⎧
⎨

⎩

Dr (v), v ≥ br ,

0, bl < v < br ,

Dl(v), v ≤ bl

with unknown deadband parameters bl < 0 < br and unknown functions Dl , Dr ∈
C(R,R) which satisfy, for unknown σ ∈ {−1, 1},

Dl(bl) = Dr (br ) = 0 and lim
s→∞ σ Dr (s) = ∞, lim

s→−∞ σ Dl(s) = −∞.

Note that the above assumptions allow for a much larger class of functions Dl , Dr

compared to e.g. [43], where assumptions on their derivatives are used. In particular, in
the present context, Dl and Dr need not be differentiable or monotone.
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Fig. 4 Mass-on-car system

3 Simulations

We compare the controller (9) to the controller presented in [8] and, to this end,
consider the simulation examples presented therein.

3.1 Mass-on-car system

To illustrate the controller (9), we consider a mass-spring system mounted on a car
from [51], see Fig. 4. The mass m2 (in kg) moves on a ramp inclined by the angle ϑ ∈
[0, π

2 ) (in rad) and mounted on a car with mass m1 (in kg), for which it is possible
to control the force with u = F (in N) acting on it. The equations of motion for the
system are given by

[
m1 + m2 m2 cosϑ

m2 cosϑ m2

](
z̈(t)
s̈(t)

)
+
(

0
ks(t)+ dṡ(t)

)
=
(

u(t)
0

)
, (26)

where t is current time (in s), z (in m) is the horizontal car position and s (in m) the
relative position of the mass on the ramp. The constants k> 0 (in N/m), d> 0 (in
Ns/m) are the coefficients of the spring and damper, respectively. The output y (in m)
of the system is given by the horizontal position of the mass on the ramp,

y(t) = z(t)+ s(t) cosϑ.

Writing μ := m2
(
m1 + m2 sin2 ϑ

)
, μ1 := m1/μ and μ2 := m2/μ, it is readily

verified that this system takes the form (13), with

x(t) :=

⎛

⎜⎜
⎝

z(t)
ż(t)
s(t)
ṡ(t)

⎞

⎟⎟
⎠ , A :=

⎡

⎢⎢
⎣

0 1 0 0
0 0 μ2k cosϑ μ2d cosϑ

0 0 0 1
0 0 − (μ1 + μ2)k − (μ1 + μ2)d

⎤

⎥⎥
⎦ , B :=

⎡

⎢⎢
⎣

0
μ2

0
−μ2 cosϑ

⎤

⎥⎥
⎦
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and C := [1 0 cosϑ 0
]
. Observe that

C B = 0, C AB = μ2 sin
2 ϑ, C A2B = dμ1μ2 cos

2 ϑ

and so the relative degree r of the system is given by

r =
{
2, if ϑ ∈ (0, π

2 )

3, if ϑ = 0.

Moreover, C Ar−1B > 0 and so the positive-definite high-gain property holds. Fur-
thermore, a straightforward (if tedious) calculation reveals that the eigenvalues of the
matrix Q ∈ R

(4−r)×(4−r) in the Byrnes–Isidori form (15) are given by

λ := −k/d in the case r = 3

or, in the case r = 2, by

λ± := −(d̃/2)±
√

(d̃/2)2 − k̃, d̃ := d/(m2 sin
2 ϑ), k̃ := k/(m2 sin

2 ϑ).

Thus, in each case, the zero dynamics are asymptotically stable and so property (TP3)
holds for the associated operatorTgivenby (17). Therefore, the system is of classN 1,r

to which the funnel control (9) applies. Invoking Assertion (v) of Theorem 1.9, the
function N in (9) may be substituted by the map s �→ −s.

For the simulation, we choose the parameters m1 = 4, m2 = 1, k = 2, d = 1,
the initial values x(0) = s(0) = 0, ẋ(0) = ṡ = 0 and the reference trajectory
yref : t �→ cos t . We emphasize that the function yref(·) is not available a priori to the
controller: all that is available is the function value at the current time t together with
the values of its first r̂ − 1 derivatives, y(i)

ref (t), i = 0, . . . , r̂ − 1. We consider two
cases.

Case 1 If 0 < ϑ < π
2 , then system (26) has relative degree r = 2, and the funnel

controller (9) with r̂ = r = 2 is

u(t) = −α
(
w(t)2

)
w(t), with w(t) = ϕ(t)ė(t)+ α

(
ϕ(t)2e(t)2

)
ϕ(t)e(t),

where α(s) = 1/(1− s) for s ∈ [0, 1). The controller presented in [8] takes the form

u(t) = −α
(
ϕ1(t)

2w1(t)
2)w1(t), with w1(t) = ė(t)+ α

(
ϕ(t)2e(t)2

)
e(t), (27)

where ϕ1 is a second funnel function, chosen appropriately, cf. [8]. Note that
w(t) = ϕ(t)w1(t). As simulations show, the performance of the controller (27) can
be improved compared to the simulations in [8], by choosing ϕ1 = ϕ. As in [8], we
set ϕ(t) = (5e−2t + 0.1)−1 for t ≥ 0.

The performance of the controllers (9) and (27) applied to (26) is depicted in Fig. 5.
Figure 5a shows the tracking errors generated by the two different controllers, while
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Fig. 5 Simulation, under controllers (9) and (27), of system (26) with ϑ = π
4

Fig. 5b shows the respective input functions. Comparable performance is evident,
suggesting broadly similar efficacy in cases wherein both controllers are feasible.
However, (9) is feasible in certain situations which are outside the scope of (27). For
example, (9) is able to achieve asymptotic tracking, to address the issue of an unknown
control direction and is applicable when the instantaneous value ẏref(t) is not available
to the controller: these features form the basis of the example in Sect. 3.3.

Case 2 If ϑ = 0 and d �= 0, then system (26) has relative degree r = 3. Then, the
funnel controller (9), with r̂ = r = 3, takes the form

w(t) = ϕ(t)ë(t)+ γ
(
ϕ(t)ė(t)+ γ

(
ϕ(t)e(t)

))
,

u(t) = −γ
(
w(t)

)
,

where γ (s) = sα(s2) for s ∈ (−1, 1). The controller presented in [8] reads

w1(t) = ė(t)+ α
(
ϕ(t)2e(t)2

)
e(t),

w2(t) = ẇ1(t)+ α
(
ϕ1(t)

2w1(t)
2)w1(t)

= ë(t)+ 2α
(
ϕ(t)2e(t)2

)2(
ϕ̇(t)ϕ(t)‖e(t)‖2 + ϕ(t)2e(t)�ė(t)

)
e(t)

+ α
(
ϕ(t)2e(t)2

)
ė(t)+ α

(
ϕ1(t)

2w1(t)
2)w1(t),

u(t) = −α
(
ϕ2(t)

2w2(t)
2)w2(t),

(28)

where ϕ1, ϕ2 are appropriate additional funnel functions, cf. [8]. Here, we choose
ϕ1 = ϕ2 = ϕ, with ϕ(t) = (3e−t + 0.1)−1 for t ≥ 0 and compare the controller (9)
with (28).

The simulation (Fig. 6) suggests that the controllers are broadly similar in per-
formance. While controller (9) requires more input action than controller (28), the
latter exhibits a significantly higher level of complexity, which makes it more difficult
to implement (this issue becomes even more severe for relative degrees higher than
three).
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Fig. 6 Simulation, under controllers (9) and (28), of system (26) with ϑ = 0

Fig. 7 Planar rigid revolute joint
robotic manipulator

3.2 Nonlinear MIMO system

As a nonlinearmulti-input, multi-output example, we consider the roboticmanipulator
from [24, Ch. 13] as depicted in Fig. 7. It is planar, rigid, with revolute joints and has
two degrees of freedom.

The two joints are actuated by u1 and u2 (in Nm). The links are assumed to be
massless and have lengths l1 and l2 (in m), resp., with point masses m1 and m2 (in kg)
attached to their ends. The two outputs are the joint angles y1 and y2 (in rad) and the
equations of motion are given by (see also [54, p. 259])

M(y(t))ÿ(t)+ C(y(t), ẏ(t))ẏ(t)+ G(y(t)) = u(t) (29)

with initial value (y(0), ẏ(0)) = (0, 0), inertia matrix

M : R2 → R
2×2, (y1, y2) �→

[
m1l21 + m2(l21 + l22 + 2l1l2 cos(y2)) m2(l22 + l1l2 cos(y2))

m2(l22 + l1l2 cos(y2)) m2l22

]

centrifugal and Coriolis force matrix

C : R4 → R
2×2, (y1, y2, v1, v2) �→

[−2m2l1l2 sin(y2)v1 −m2l1l2 sin(y2)v2
−m2l1l2 sin(y2)v1 0

]
,
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Fig. 8 Simulation of the controllers (9) and (30) applied to (29)

and gravity vector

G : R2 → R
2, (y1, y2) �→ g

(
m1l1 cos(y1)+ m2(l1 cos(y1)+ l2 cos(y1 + y2))

m2l2 cos(y1 + y2)

)
,

where g = 9.81m/s2 is the acceleration of gravity. Multiplying (29) with M(y(t))−1,
which is pointwise positive definite, from the left we see that the resulting system is
of the form (1) and satisfies the positive-definite high-gain property, hence it belongs
toN 2,2.

For the simulation, we choose the parameters m1 = m2 = 1, l1 = l2 = 1 and
the reference signal yref : t �→ (sin t, sin 2t). We compare the controller (9) to the
multivariate version of (27) from [8], that is

u(t) = −α
(
ϕ1(t)

2‖w1(t)‖2
)
w1(t), with w1(t) = ė(t)+ α

(
ϕ(t)2‖e(t)‖2) e(t),

(30)
where α(s) = 1/(1 − s) for s ∈ [0, 1). We choose ϕ(t) = (4e−2t + 0.1)−1 = ϕ1(t)
for t ≥ 0.

The simulation of the controllers (9) and (30) applied to (29) over the time inter-
val [0, 10] is depicted in Fig. 8. It can be seen that for this example both controllers
exhibit a nearly identical performance.
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Remark 3.1 A closer look at the simulations reveals that the controller performance
of (9) differs from that of the controller presented in [8] for the example in Sect. 3.1,
while it is practically identical for the example in Sect. 3.2. Since the different dimen-
sions of input/output spaces (m = 1 compared to m = 2) is probably not the
reason here, the presumable cause seems to be the internal dynamics. System (26)
has two-dimensional internal dynamics in Case 1 (r = 2) and one-dimensional inter-
nal dynamics in Case 2 (r = 3), while system (29) has trivial internal dynamics. This
seems to suggest that the controllers exhibit a different behaviour in the presence of
non-trivial internal dynamics.

3.3 A nonlinear systemwith dead-zone input

To demonstrate that the controller (9) can achieve asymptotic tracking and is feasible
when the control direction is unknown, we treat a system with dead-zone input and
also investigate the case wherein ẏref(t) is not available for feedback. Specifically, we
consider

ξ̇1(t) =
(
1+ ξ1(t)

2)ξ2(t),

ξ̇2(t) = α1ξ1(t)+ α2ξ2(t)+ α3η(t)+ β
(
u(t)

)
,

η̇(t) = −η(t)2
(
α4ξ1(t)+ α5ξ2(t)+ η(t)

)
,

(ξ1(0), ξ2(0), η(0)) = (ξ01 , ξ02 , η0) ∈ R
3

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

with output y(t) = ξ1(t), (31)

with real parameters αi ∈ R, i = 1, . . . , 5, and with a dead-zone input function β as in
Sect. 2.4.We show that system (31) belongs to the class of systemsN 1,2. Introducing
the function

g : R2 × R→ R, (x, z) = (x1, x2, z) �→ −z2
(
α4x1 + α5(1+ x21 )

−1x2 + z
)
,

and writing y1(t) = ξ1(t) = y(t) and y2(t) =
(
1 + ξ1(t)2

)
ξ2(t) = ẏ(t), the third

equation in (31) may be expressed in the form

η̇(t) = g
(
y1(t), y2(t), η(t)

)
, η(0) = η0 (32)

which, viewed in isolation as a system with independent inputs (y1, y2), generates a
controlled flow �. In particular, for η0 ∈ R and (y1, y2) ∈ L∞loc(R≥0,R2), the initial-
value problem (32) has unique maximal solution η(·) = �(· ; y1, y2, η0) : [0, ω) →
R, 0 < ω ≤ ∞. Also, writing α := |α4| + |α5|, we have

∀ (x, z) ∈ R
2 × R : z g(x, z) ≤ −z4 + α|z|3‖x‖ ≤ − 1

4 z4 + 1
4 (α‖x‖)4,

wherein Young’s inequality has been used. Therefore, V : z �→ 1
2 z2 is an ISS-

Lyapunov function for system (32) which, in consequence, is input-to-state stable,
see [53, Rem. 2.4 and Lem. 2.14]. Therefore, for all c0 > 0, there exists c1 > 0 such
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that for all η0 ∈ R and all (y1, y2) ∈ L∞loc(R≥0,R2) we have

‖η0‖ + ess supt≥0 ‖(y1(t), y2(t))‖ ≤ c0 �⇒ supt≥0 ‖�(t; y1, y2, η
0)‖ ≤ c1.

The above property ensures that solutions of (32) are globally defined: specifically,
for each η0 ∈ R and (y1, y2) ∈ L∞loc(R≥0,R2), the unique maximal solution of (32)
has interval of existence [0,∞). Therefore, with each fixed η0 ∈ R, we may associate
an operator

T : C(R≥0,R2) → L∞loc(R≥0,R3), (y1, y2) �→
(
y1, y2, �(· ; y1, y2, η

0)
)
.

Clearly, T is causal, i.e. (TP1) holds. Moreover, the above ISS property of � ensures
that properties (TP2) and (TP3) hold. Therefore, T ∈ T

2,3
0 . Defining

f : R4 → R, (x1, x2, z, u) �→ 2x1x22
1+ x21

+ α2x2 + (1+ x21 )
(
α1x1 + α3z + β(u)

)
,

it is readily verified that (31) is equivalent to

ÿ(t) = f
(
T(y, ẏ)(t), u(t)

)
, y(0) = ξ01 , , ẏ(0) = (1+ (ξ01 )2

)
ξ02 .

Furthermore, by applying the findings of Sects. 2.3 and 2.4 we have that f satisfies
the high-gain property and hence (0, f , T) ∈ N 1,2. Therefore, feasibility of funnel
control follows from Theorem 1.9.

For the simulation, we (randomly) select

α1 = α3 = α5 = 1 and α2 = −α4 = −2,

and the dead-zone input function as

β : R→ R, v �→
⎧
⎨

⎩

v − 1, v ≥ 1,
0, −1 < v < 1,
v + 1, v ≤ −1.

The initial values are chosen as ξ1(0) = ξ2(0) = η(0) = 0 and the reference signal
is yref : t �→ cos t . For the funnel controller (9) we choose the design parameters
α : s �→ 1/(1 − s) and N : s �→ s sin s; the latter choice is based on the assumption
that the exact shape of β (and in particular the control direction) is unknown to the
controller.

We consider two different cases: If information of the instantaneous signals ẏref(t)
are available to the controller, then we choose r̂ = 2 = r and an unbounded funnel
functionϕ : t �→ t2. If information of ẏref(t) is not available, thenwechoose r̂ = 1 < 2
and a bounded funnel function ϕ : t �→ (

2e−t + 0.01
)−1.

The simulation of the controller (9) applied to (31) in the cases r̂ = 1 and r̂ = 2 is
depicted in Fig. 9. The “jumps” in the input u are due to the dead-zone induced by the
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Fig. 9 Simulation of system (31) under control (9) in the cases r̂ = 1 and r̂ = 2

function β. Comparing Fig. 9c and d a degradation in performance may be observed.
However, this is not surprising in view of the enhanced information available for
feedback in case r̂ = 2. We may also observe, that in the latter case asymptotic
tracking is achieved.

4 Conclusion

An asymptotic and non-asymptotic tracking control objective has been achieved for a
large class of nonlinear systems with “higher relative degree” described by functional
differential equations that satisfy a high-gain property. A feedback strategy has been
developed which is simple in the sense of funnel control and as “simple” as one may
expect for higher relative degree. We believe that the present contribution is somehow
“definitive” in the context of funnel control for nonlinear systems whose internal
dynamics satisfy a BIBO property (viewed as a generalization of the minimum phase
condition for linear systems). First results on funnel control for systems which are not
minimum phase are given in [5] for uncertain linear systems and in [7] for a nonlinear
robotic manipulator.

In the present paper, we did not treat funnel control for systems described by partial
differential equations. This is however, a very important field and in fact very differ-
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ent. On the one hand, there are systems which have a well-defined relative degree and
exhibit infinite-dimensional internal dynamics, see e.g. [11]. Such systems are suscep-
tible to funnel control with the control laws presented in the present paper; for instance,
a linearized model of a moving water tank, where sloshing effects appear, is discussed
in [10]. On the other hand, not even every linear infinite-dimensional system has a
well-defined relative degree, inwhich case the results presented here cannot be applied.
For such systems, the feasibility of funnel control has to be investigated directly for
the (nonlinear) closed-loop system, see e.g. [48] for a boundary controlled heat equa-
tion, [47] for a general class of boundary control systems, [6] for the monodomain
equations (which represents defibrillation processes of the human heart) and [4] for
the Fokker–Planck equation corresponding to the Ornstein–Uhlenbeck process.

One important problem remains: non-derivative funnel control, that is, when only
the output y is available for feedback, but not its first r − 1 derivatives ẏ, . . . , y(r−1).
First results on this have been obtained in [31,32] using a backstepping approach.How-
ever, these results necessitate a level of controller complexity which, on the evidence
of numerical simulation, can lead to practical performance drawbacks. An attempt
to overcome these backstepping-induced drawbacks through the adoption of pre-
compensators can be found in [15,16] but only for systems with relative degree at most
three: the higher relative degree case remains open, even in the context of single-input,
single-output linear systems with positive high-frequency gain and asymptotically sta-
ble zero dynamics.
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Appendix A: Proofs

Proof of Theorem 1.9 For k = 1, . . . , r , we define

πk : R≥0 × R
rm → R

km,

(t, ξ) = (t, ξ1, . . . , ξr ) �→

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(t)
(
ξ1 − yref(t), . . . , ξk − y(k−1)

ref (t)
)
, k = 1, . . . , r̂ ,

ϕ(t)
(
ξ1 − yref(t), . . . , ξr̂ − y(r̂−1)

ref (t), ξr̂+1, . . . , ξk

)
,

k = r̂ + 1, . . . , r .

The proof now proceeds in several steps.
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Step 1. We recast the feedback-controlled system in the form of an initial-value
problem to which a variant of an extant existence theory applies. Set n = rm and

D := { (t, ξ) ∈ R≥0 × R
n | πr (t, ξ) ∈ Dr

}
,

which is non-empty and relatively open, and define ρ : D → B by ρ := ρr ◦ πr .
Introducing the function F : D × R

q → R
n given by

(t, ξ, η) = (t, ξ1, . . . , ξr , η) �→ F(t, ξ, η) :=

⎛

⎜⎜⎜
⎝

ξ2
.
.
.

ξr

f
(
d(t), η, (N ◦ α)(‖ρ(t, ξ)‖2) ρ(t, ξ)

)

⎞

⎟⎟⎟
⎠

and writing

x(t) =
⎛

⎜
⎝

y(t)
...

y(r−1)(t)

⎞

⎟
⎠

we see that the (formal) control (9) may be expressed as

u(t) = (N ◦ α)(‖ρ(t, x(t))‖2) ρ(t, x(t)).

The feedback-controlled initial-value problem (1) and (9) may now be formulated as

ẋ(t) = F
(
t, x(t), T(x)(t)

)
, x |[−h,0] = x0 ∈ C([−h, 0],Rn), (33)

where

x0(t) :=
⎛

⎜
⎝

y0(t)
...

(y0)(r−1)(t)

⎞

⎟
⎠ , t ∈ [−h, 0].

A continuous function x ∈ C(I ,Rn) on an interval of the form I = [−h, ω̃], 0 <

ω̃ < ∞, or of the form [−h, ω), 0 < ω ≤ ∞, is a solution of (33), if x |[−h,0] = x0,
(t, x(t)) ∈ D for all t ∈ I\[−h, 0) and

∀ t ∈ I , t ≥ 0 : x(t) = x(t0)+
∫ t

0
F
(
s, x(s), T(x)(s)

)
ds. (34)

A solution is maximal, if it has no right extension that is also a solution. Since T is an
operator with domainC([−h,∞),Rn), some care is required in interpreting the above
notionof a solution x ∈ C(I ,Rn)when I is a bounded interval of the form I = [−h, ω̃]
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or I = [−h, ω). Let I be any such interval andwrite J := I\[−h, 0). Let x ∈ C(I ,Rn)

and, for each τ ∈ J , define xτ ∈ C([−h,∞),Rn) by

xτ (t) :=
{

x(t), t ∈ [−h, τ ]
x(τ ), t > τ.

WithT ∈ T
n,q
h wemay associate T̃ : C(I ,Rn) → L∞loc(J ,Rq) defined by the property

∀ τ ∈ J : T̃(x)|[0,τ ] = T(xτ )|[0,τ ].

The causality property (P1) of T ∈ T
n,q
h ensures that T̃ is well defined. Replacing T

by T̃ in (34), we arrive at the correct interpretation of a solution. However, for sim-
plicity, we will not distinguish notationally between an operator T ∈ T

n,q
h and its

“localization” T̃.
It is readily verified that F has the following properties: If I ⊂ R≥0 is a compact

interval and Kn ⊂ R
n , Kq ⊂ R

q are compact with I × Kn ⊂ D , then

(a) F(t, ·, ·) : Kn × Kq → R
n is continuous for all t ∈ I ;

(b) F(·, v, w) : I → R
n is measurable for all (v,w) ∈ Kn × Kq ;

(c) there exists f̂ ∈ (0,∞) such that ‖F(t, v, w)‖ ≤ f̂ for almost all t ∈ I and all
(v,w) ∈ Kn × Kq .

Invoking (11), we see that (0, x0(0)) ∈ D . An application of a variant (a straight-
forward modification tailored to the current context) of [28, Thm. B.1] yields the
existence of a maximal solution x : [−h, ω) → R

n , 0 < ω ≤ ∞, of (33) and so

G = graph
(
x |[0,ω)

) ⊂ D .

Moreover, the closure of G is not a compact subset of D .
Step 2. Before embarking on the proof proper, we record some preliminary obser-

vations and definitions. Since (t, x(t)) ∈ D for all t ∈ [0, ω), we have πk(t, x(t)) ∈
Dk = dom(ρk), k = 1, . . . , r . Introduce continuous functions

ek : [0, ω) → B, αk : [0, ω) → [1,∞), γk : [0, ω) → R
m, k = 1, . . . , r ,

given by

ek(t) := (ρk ◦ πk)(t, x(t)), αk(t) := α(‖ek(t)‖2), γk(t) := γ (ek(t)) = αk(t) ek(t),

where γ is given by (7), and, for later notational consistency, we also write γ0(·) := 0.
Clearly,

∀ k = 1, . . . , r ∀ t ∈ [0, ω) : ‖ek(t)‖ < 1. (35)

In particular, for k = 1 we have ‖e1(t)‖ = ϕ(t)‖e(t)‖ < 1 for all t ∈ [0, ω) and so
the tracking error e(·) = y(·)− yref(·) evolves in the funnel Fϕ .
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Observe that the continuous control function u may be expressed as

u(t) = N (αr (t)) er (t), t ∈ [0, ω), (36)

and, for all t ∈ [0, ω) and k = 1, . . . , r , we have by definition of ρk in (8)

ek(t)− γk−1(t) =
{

ϕ(t) e(k−1)(t), if k ≤ r̂
ϕ(t) y(k−1)(t), otherwise.

(37)

We also record that

α̇k(t) = −2α′(‖ek(t)‖2
)〈ek(t), ėk(t)〉 for a.a. t ∈ [0, ω), k = 1, . . . , r . (38)

Define functions ψk : [0,∞) → R
m , k = 1, . . . , r , as follows

r̂ = r �⇒ ψk(·) := 0, k = 1, . . . , r

r̂ < r �⇒ ψk(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if k < r̂

−ϕ(t)y(r̂)
ref (t), if k = r̂

.
ϕ(t)y(k−1)

ref , if r̂ < k ≤ r − 1
.
ϕ(t)y(r−1)

ref (t)+ ϕ(t)y(r)
ref (t), if k = r .

By choice of the design parameters as in (6), ϕ is bounded (and so
.
ϕ is essentially

bounded by the definition of �) if r̂ < r . Therefore, we may infer the existence
of ψ∗ ∈ R (with ψ∗ = 0 if r̂ = r ) such that

‖ψk(t)‖ ≤ ψ∗ for a.a. t ∈ [0,∞), k = 1, . . . , r . (39)

Observe that, for almost all t ∈ [0, ω),

ėk(t) = .
ϕ(t)e(k−1)(t)+ ek+1(t)− γk(t)+ γ̇k−1(t)+ ψk(t), k = 1, . . . , r − 1

ėr (t) = .
ϕ(t)e(r−1)(t)+ ϕ(t)e(r)(t)+ γ̇r−1(t)+ ψr (t)

}

(40)
which, if r = 1 = r̂ , collapses to the tautology: ė1(t) = (ϕe)(1)(t) for a.a. t ∈ [0, ω).

Arbitrarily fix τ ∈ (0, ω). By continuity, there exists θ ∈ (0,∞) such that

∀ t ∈ [0, τ ] : (1+ ϕ(t)
) r∑

k=1

‖e(k−1)(t)‖ ≤ θ (41)

and so, by properties of �, there exists c > 0 such that

‖ .
ϕ(t)e(k−1)(t)‖ ≤ c

(
1+ ϕ(t)

)‖e(k−1)(t)‖ ≤ c θ for a.a. t ∈ [0, τ ], k = 1, . . . , r .

(42)
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Again by properties of �, the following are well defined:

sup
t∈[τ,∞)

(
1

ϕ(t)

)
=: λ > 0 and ess supt∈[τ,∞)

( |ϕ̇(t)|
ϕ(t)

)
=: μ ≥ 0.

For k ∈ {1, . . . , r} and invoking (35), (37) and (39), we find

(a) ‖ .
ϕ(t)e(k−1)(t)‖ ≤ μ‖ϕ(t)e(k−1)(t)‖ ≤ μ

(
1+ ‖γk−1(t)‖

)

for a.a. t ∈ [τ, ω), if k ≤ r̂

(b) ‖ .
ϕ(t)e(k−1)(t)‖ ≤ μ‖ϕ(t)y(k−1)(t)‖ + ‖ .

ϕ(t)y(k−1)
ref ‖

≤ μ
(
1+ ‖γk−1(t)‖

)+ ψ∗

for a.a. t ∈ [τ, ω), if k > r̂

and so, a fortiori, we have

‖ .
ϕ(t)e(k−1)(t)‖ ≤ μ

(
1+ ‖γk−1(t)‖

)+ ψ∗ for a.a. t ∈ [τ, ω), k = 1, . . . , r . (43)

We complete the preliminaries by writing

ε̂k := max
t∈[0,τ ] ‖ek(t)‖2 < 1, k = 1, . . . , r .

Step 3. Assume that r ≥ 2, otherwise proceed to Step 5. Let ε1 be the unique point of
(0, 1) such that ε1α(ε1) = 1+ μ+ 2ψ∗ and ε∗1 := max

{
ε̂1 , ε1

}
< 1. We will show

that
∀ t ∈ [0, ω) : ‖e1(t)‖2 ≤ ε∗1 . (44)

Suppose that this claim is false. Then ‖e1(s)‖2 > ε∗1 for some s ∈ (0, ω). Since
‖e1(t)‖2 ≤ ε̂1 ≤ ε∗1 for all t ∈ [0, τ ], we have τ < s and so we may define

σ := max
{

t ∈ [τ, s)
∣∣∣ ‖e1(t)‖2 = ε∗1

}
.

Clearly,

∀ t ∈ [σ, s] : ε1 ≤ ε∗1 ≤ ‖e1(t)‖2,

whence, by monotonicity of α,

∀ t ∈ [σ, s] : α(ε1) ≤ α
(‖e1(t)‖2

) = α1(t).

Therefore,
∀ t ∈ [σ, s] : α1(t)‖e1(t)‖2 ≥ ε1α(ε1) = 1+ μ+ 2ψ∗ (45)

123



186 Mathematics of Control, Signals, and Systems (2021) 33:151–194

which, by the first of relations (40) in conjunction with (35) and (43) (and recalling
γ0(·) = 0), gives

1
2

d
dt ‖e1(t)‖2 = 〈e1(t), ė1(t)〉

= 〈 .
ϕ(t)e1(t), e(t)〉 + 〈e1(t), e2(t)〉 − α1(t)‖e1(t)‖2 + 〈e1(t), ψ1(t)〉

< 1+ μ+ 2ψ∗ − α1(t)‖e1(t)‖2 ≤ 0

for almost all t ∈ [σ, s] and so ‖e1(s)‖2 < ‖e1(σ )‖2, whence the contradiction

ε∗1 < ‖e1(s)‖2 < ‖e1(σ )‖2 = ε∗1 .

Therefore (44) holds.
Step 4. For notational convenience, write

W1 := W 1,∞([0, ω),R) and Wm := W 1,∞([0, ω),Rm).

We show by induction that

(αk, ek, γk) ∈ W1 × Wm × Wm for k = 1, . . . , r − 1. (46)

This step is vacuous in the case r = 1. Let k = 1. By (44), we see that e1 is bounded
by
√

ε∗1 , α1 is bounded by α(ε∗1) and that γ1 is bounded by
√

ε∗1α(ε∗1). Recalling
that γ0(·) = 0, essential boundedness of ė1 follows by the first of relations (40)
together with (35), (39), (42), (43). Invoking (38), we may conclude essential bound-
edness of α̇1. Essential boundedness of γ̇1 = α1ė1 + α̇1e1 then follows. Therefore,
(α1, e1, γ1) ∈ W1 × Wm × Wm .

Now assume that k ∈ {2, . . . , r − 1} and
(
α j , e j , γ j

) ∈ W1 × Wm × Wm, j = 1, . . . , k − 1.

Set

β := max
{
ψ∗ , supt∈[0,ω)‖γk−1(t)‖ , ess supt∈[0,ω) ‖γ̇k−1(t)‖

}
< ∞.

By (35), (40) and (43), we have

〈ek(t), ėk(t)〉 = ϕ̇(t)〈ek(t), e(k−1)(t)〉 + 〈ek(t), ek+1(t)〉
+ 〈ek(t),

(
γ̇k−1(t)+ ψk(t)

)〉 − αk(t)‖ek(t)‖2
< 1+ 3β + μ(1+ β)− αk(t)‖ek(t)‖2 (47)

for almost all t ∈ [τ, ω). Let εk be the unique point of (0, 1) such that εkα(εk) =
1+ 3β + μ(1+ β) and define

ε∗k := max
{
ε̂k , εk

}
> 0.
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We first show that
∀ t ∈ [0, ω) : ‖ek(t)‖2 ≤ ε∗k (48)

by the contradiction argument of Step 3 (mutatis mutandis). Suppose that (48) is false.
Then ‖ek(s)‖2 > ε∗k for some s ∈ (0, ω). Since ‖ek(t)‖2 ≤ ε̂k ≤ ε∗k for all t ∈ [0, τ ],
we have τ < s and so we may define σ := max

{
t ∈ [τ, s)

∣∣ ‖ek(t)‖2 = ε∗k
}
. The

counterpart of (45) now follows:

∀ t ∈ [σ, s] : αk(t)‖ek(t)‖2 ≥ εkα(εk) = 1+ 3β + μ(1+ β)

which, in conjunction with (47), gives 1
2

d
dt ‖ek(t)‖2 < 0 for almost all t ∈ [σ, s],

whence the contradiction

ε∗k < ‖ek(s)‖2 < ‖ek(σ )‖2 = ε∗k .

Therefore, (48) holds which, in turn, implies that αk is bounded (by α(ε∗k )) and
that γk = αkek is bounded (by

√
ε∗k α(ε∗k )). By boundedness of ek+1, γk and essen-

tial boundedness of γ̇k−1, it follows from (40), together with (42) and (43), that ėk

is essentially bounded and so ek ∈ Wm . Invoking (38), we may now infer essen-
tial boundedness of α̇k . Therefore, αk ∈ W1. Finally, since γ̇k = αk ėk + α̇kek , we
have essential boundedness of γ̇k and so γk ∈ Wm . In summary, we have shown that,
for k ∈ {2, . . . , r − 1},
(
α j , e j , γ j

) ∈ W1×Wm×Wm, j = 1, . . . , k−1 �⇒ (αk, ek, γk) ∈ W1×Wm×Wm,

and so, by induction, we conclude (46).
Step 5. Our next goal is to prove boundedness of the solution x . Recalling that
yref ∈ W r ,∞(R≥0,Rm), it suffices to show that the output error e and its derivatives
ė, . . . , e(r−1) are bounded on [0, ω). By (41), we already know that

∀ k = 1, . . . , r ∀ t ∈ [0, τ ] : ‖e(k−1)(t)‖ ≤ θ,

and so it remains to show that e(k−1) is bounded on [τ, ω), k = 1, . . . , r . Since
ϕ(t)e(t) = e1(t) ∈ B for all t ∈ [0, ω), we have

∀ t ∈ [τ, ω) : ‖e(t)‖ ≤ 1

ϕ(t)
≤ λ.

By boundedness of the functions γk (Step 4), there exists γ ∗ > 0 such that

∀ k = 2, . . . , r ∀ t ∈ [0, ω) : ‖γk−1(t)‖ ≤ γ ∗. (49)

Let k ∈ {2, . . . , r}. By (37), we have

∀ t ∈ [τ, ω) : ‖e(k−1)(t)‖ ≤ λ
(
1+ γ ∗

)+ sup
t≥τ

‖y(k−1)
ref (t)‖ < ∞.
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This completes Step 5.
Step 6. We prove boundedness of αr : [0, ω) → [1,∞), t �→ α(‖er (t)‖2) together
with an immediate consequence thereof:

∃ ε∗r ∈ (0, 1) ∀ t ∈ [0, ω) : ‖er (t)‖2 ≤ ε∗r . (50)

By boundedness of x (Step 5) and property (TP3) of the operator class Tn,q
h , there

exists compact Kq ⊂ R
q such that T(x)(t) ∈ Kq for almost all t ∈ [0, ω). Since d ∈

L∞(R≥0,Rp), there exists compact K p ⊂ R
p such that d(t) ∈ K p for almost all t ∈

[0, ω). By the high-gain property, there exists v∗ ∈ (0, 1) such that the continuous
function

χ : R→ R, s �→ min
{ 〈v, f (δ, z,−sv)〉 ∣∣ (δ, z, v) ∈ K p × Kq × Am

}

is unbounded from above, where, for notational convenience, we have introduced the
compact annulus

Am := { v ∈ R
m
∣∣ v∗ ≤ ‖v‖ ≤ 1

}
.

Choose a real sequence (s j ) such that the sequence
(
χ(s j )

)
is unbounded, positive, and

strictly increasing. By surjectivity and continuity of N , for every a ∈ R≥0 and every
b ∈ R, the set { κ > a | N (κ) = b } is non-empty. Choose κ1 > α((1− v∗)2)+αr (0)
such that N (κ1) = s1 and define the strictly increasing sequence (κ j ) by the recursion

κ j+1 := inf
{

κ > κ j
∣∣ N (κ) = s j+1

}
.

Observe that

lim
j→∞χ(N (κ j )) = lim

j→∞χ(s j ) = ∞.

Seeking a contradiction, suppose that αr (·) is not bounded. Then, since κ j+1 > κ1 >

αr (0) for all j ∈ N, the sequence (τ j ) in (0, ω) defined by

τ j = inf
{

t ∈ [0, ω)
∣∣ αr (t) = κ j+1

}
, j ∈ N0,

iswell-defined and strictly increasingwith N (αr (τ j )) = N (κ j+1) = s j+1 for each j ∈
N0. Now, define the sequence (σ j ) in (0, ω) by

σ j = sup
{

t ∈ [τ j−1, τ j ]
∣∣ χ(N (αr (t))) = χ(s j )

}
, j ∈ N.

Since the sequence
(
χ(s j )

)
is strictly increasing, we have

∀ j ∈ N : χ(N (αr (σ j ))) = χ(s j ) < χ(s j+1) = χ(N (αr (τ j ))),
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and so

∀ j ∈ N ∀ t ∈ (σ j , τ j ] : σ j < τ j and χ(N (αr (σ j ))) = χ(s j ) < χ(N (αr (t))).
(51)

Next, suppose that, for some j ∈ N, there exists t ∈ [σ j , τ j ] such that er (t) /∈ Am .
We first show that αr (t) ≥ κ j . If αr (t) < κ j , then αr (τ j ) = κ j+1 > κ j and continuity
of αr imply that there exists t̃ ∈ (σ j , τ j ) such that αr (t̃) = κ j , thus

χ(N (αr (t̃))) = χ(N (κ j )) = χ(s j ),

which contradicts the definition of σ j . Therefore, αr (t) ≥ κ j which, together with the
supposition ‖er (t)‖ < 1− v∗, leads to the contradiction:

α((1− v∗)2) < κ1 ≤ κ j ≤ αr (t) = α
(‖er (t)‖2

)
< α((1− v∗)2).

Therefore,
∀ j ∈ N ∀ t ∈ [σ j , τ j ] : er (t) ∈ Am, (52)

which, in conjunction with the facts that d(t) ∈ K p and (Tx)(t) ∈ Kq for almost
all t ∈ [0, ω) and invoking (51), yields

〈er (t), f (d(t), (Tx)(t), u(t))〉
= −〈−er (t), f

(
d(t), (Tx)(t),−N (αr (t))(−er (t))

)〉
≤ −min

{ 〈v, f
(
δ, z,−N (αr (t))v

)〉 ∣∣ (δ, z, v) ∈ K p × Kq × Am
}

= −χ
(
N (αr (t))

) ≤ −χ(s j ) (53)

for all j ∈ N and almost all t ∈ [σ j , τ j ]. By (42), (43) and (49),

‖ .
ϕ(t)e(r−1)(t)‖ ≤ c θ + μ(1+ γ ∗)+ ψ∗ =: θ∗ for a.a. t ∈ [0, ω).

Since e(r)(t) = f (d(t), T(x)(t), u(t))− y(r)
ref (t) for almost all t ∈ [0, ω) and recalling

the last of relations (40), we have

ėr (t) = ϕ(t)
(

f (d(t), T(x)(t), u(t))− y(r)
ref (t)

)+ .
ϕ(t)e(r−1)(t)+ γ̇r−1(t)+ ψr (t)

for almost all t ∈ [0, ω). By (46), γ̇r−1 is essentially bounded and, since yref ∈
W r ,∞(R≥0,Rm), we have essential boundedness of y(r)

ref . Write

c1 := θ∗ + ψ∗ + ess supt∈[0,ω) ‖γ̇r−1(t)‖ and c2 := ess supt≥0 ‖y(r)
ref (t)‖.

Invoking (35), (39) and (53), we arrive at

1
2

d
dt ‖er (t)‖2 ≤ c1 − ϕ(t)

(
χ(s j )− c2

)
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for all j ∈ N and almost all t ∈ [σ j , τ j ]. By properties ofϕ ∈ � and noting thatσ1 > 0,
we have inf t∈[σ1,∞) ϕ(t) > 0. Since χ(s j ) → ∞ as j → ∞, we may choose j
sufficiently large so that c1 − ϕ(t)

(
χ(s j ) − c2

)
< 0 for almost all t ∈ [σ j , τ j ], in

which case we have ‖er (τ j )‖2 < ‖er (σ j )‖2 and so

αr (τ j ) = α
(‖er (τ j )‖2

)
< α

(‖er (σ j )‖2
) = αr (σ j )

which is impossible since, by definition of τ j , we have αr (t) < αr (τ j ) for all t ∈
[0, τ j ). Therefore, our original supposition that αr is unbounded is false. This
proves (50) and completes the proof of Step 6.
Step 7.WeproveAssertion (i) of the theorem. Recalling inequalities (44), (48) and (50)
of Steps 3, 4 and 6, we have

‖ek(t)‖ ≤ ε :=
√
max{ε∗1, . . . , ε∗r } < 1 (54)

for all t ∈ [0, ω) and all k = 1, . . . , r . Define

D̂r :=
{

(η1, . . . , ηr ) ∈ R
rm | ‖ρk(η1, . . . , ηk)‖ ≤ ε, k = 1, . . . , r

}
,

which is evidently a compact subset of Dr as in (8). Since ek(t) = (ρk ◦ πk)(t, x(t))
for all t ∈ [0, ω), k = 1, . . . , r , it follows that πr (t, x(t)) ∈ D̂r for all t ∈ [0, ω).
Suppose that ω < ∞. Then

∀ t ∈ [0, ω) : (t, x(t)) ∈ D̂ := { (s, ξ) ∈ [0, ω] × R
rm
∣∣ πr (s, ξ) ∈ D̂r

} ⊂ D .

By compactness of D̂ it follows that the closure of graph
(
x |[0,ω)

)
is a compact subset

of D , which contradicts the findings of Step 1. Therefore, ω = ∞.
Step 8. We complete the proof by establishing Assertions (ii), (iii) and (iv). Asser-
tion (ii) is a direct consequence of Assertion (i) and the results of Steps 5 and 6.
Recalling that e1 = ϕe, we may infer Assertion (iii) from (54) and Assertion (i).
Assertion (iv) follows by Assertion (i) and (iii), together with (35), (37) and (49).
Step 9. Assume that the negative-definite (respectively, positive-definite) high-gain
property is known to hold. Steps 1–5 of the above are unaffected by this assumption.
Step 6 is readilymodified as follows. By the assumption, there exists a positive (respec-
tively, negative) real sequence (s j ) such that the sequence

(
χ(s j )

)
is unbounded,

positive, and strictly increasing. Replacing N by s �→ s (respectively, by s �→ −s),
the remaining arguments of Step 6 apply mutatis mutandis to conclude boundedness
of αr . Steps 7 and 8 then follow as before. This completes the proof of the theorem.  !
Proof of Corollary 1.10 Let yref ∈ W r ,∞(R≥0,Rm) and y0 ∈ W r ,∞([−h, 0],Rm). By
Theorem 1.9, the feedback-controlled system (1) and (9) has a solution, every solution
can be maximally extended and every maximal solution is global. Let y : [−h,∞) →
R

m be any such global solution. In the following, we adopt the notation introduced in
the proof of Theorem 1.9 and recall that, for all k = 1, . . . , r̂ − 1, ψk(·) = 0, and for
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all t ≥ 0,

‖ek(t)‖ < 1, ‖γk(t)‖ = α(‖ek(t)‖2) ‖ek(t)‖,
‖γ̇k(t)‖ =

∥
∥∥2α′(‖ek(t)‖2) 〈ek(t), ėk(t)〉 ek(t)+ α(‖ek(t)‖2) ėk(t)

∥
∥∥

≤ α̃(‖ek(t)‖2)‖ėk(t)‖.

Invoking (35), (37) and (40), with the convention that γ0(·) ≡ 0 ≡ γ̇0(·), we have, for
almost all t ≥ 0,

‖ėk(t)‖ = ∥∥(
.
ϕ(t)/ϕ(t))

(
ek(t)− γ j−1(t)

)+ ek+1(t)+ γ̇k−1(t)− γk(t)
∥∥

≤ Mk(t)+ ‖γk(t)‖,
〈ek(t), ėk(t)〉 ≤ Mk(t)− αk(t) ‖ek(t)‖2,

Mk(t) := 1+ μ0
(‖ek(t)‖ + ‖γk−1(t)‖

)+ ‖γ̇k−1(t)‖.

Setting k = 1, we have

〈e1(t), ė1(t)〉 ≤ μ0 + 1− α1(t) ‖e1(t)‖2 for a.a. t ≥ 0.

With e01 and c1 as in (12), the argument used in Step 3 of the proof of Theorem 1.9
applies, mutatis mutandis, to conclude that ‖e1(t)‖ ≤ c1 for all t ≥ 0.

With μ1 = 1+ μ0c1 as in (12) we have, for almost all t ≥ 0,

‖γ1(t)‖ ≤ c1α(c21) and ‖γ̇1(t)‖ ≤ α̃(c21)
(
μ1 + c1α(c21)

)
,

wherein we have used the facts that α and α̃ are non-decreasing functions (mono-
tonicity of the latter being assured by the assumption of monotonicity of α′). Now set
k = 2, in which case we have

M2(t) ≤ 1+ μ0
(
1+ c1α(c21)

)+ α̃(c21)
(
μ1 + c1α(c21)

) = μ2 for a.a. t ≥ 0.

With e02 and c2 as in (12) the argument used in Step 4 of the proof of Theorem 1.9
applies, mutatis mutandis, to conclude that ‖e2(t)‖ ≤ c2 for all t ≥ 0. Iterating this
process, we arrive at

∀ k = 1, . . . , r̂ − 1 ∀ t ≥ 0 : ‖ek(t)‖ ≤ ck

To complete the proof, simply note that, for all t ≥ 0,

ϕ(t)‖e(t)‖ = ‖e1(t)‖ ≤ c1 and
ϕ(t)‖e(k)(t)‖ = ‖ek+1(t)− γk(t)‖ ≤ ck+1 + ckα(c2k ), k = 1, . . . , r̂ − 2.

 !
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