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Abstract
We investigate genericity of various controllability and stabilizability concepts of
linear, time-invariant differential-algebraic systems. Based on well-known algebraic
characterizations of these concepts (see the survey article by Berger and Reis (in:
Ilchmann A, Reis T (eds) Surveys in differential-algebraic equations I, Differential-
Algebraic Equations Forum, Springer, Berlin, pp 1–61. https://doi.org/10.1007/978-
3-642-34928-7_1)), we use tools from algebraic geometry to characterize genericity
of controllability and stabilizability in terms of matrix formats.

Keywords Differential-algebraic equations · Controllability · Stabilizability ·
Genericity

Mathematics Subject Classification 34A09 · 93B05

List of symbols

‖x‖2 :=
√
x21 + · · · + x2n , the Euclidean norm of x = (x1, . . . , xn) ∈ R

n

N, N
∗ := {0, 1, 2, . . .}, := {1, 2, . . .} resp.

R, C The field of the real, complex numbers, resp.
◦
C−, C+ := {

z ∈ C
∣∣�z < 0

}
, the open left (resp. closed right) half plane

{z ∈ C
∣∣�z ≥ 0}?

j := {1, . . . , j} , j ∈ N
∗. We set 0 = ∅.

f −1(A) := {x ∈ X : f (x) ∈ A}, the preimage of the set A ⊆ Y under the
function f : X → Y .

λn The Lebesgue measure on R
n .
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Rk×� The vector space of all k × � matrices with entries in a ring R.
rk FM The rank of M ∈ Rk×�over the field F .

[Rx1, . . . , xn] :=
{∑�

k=0 akx
νk,1
1 · · · xνk,n

n
∣∣ � ∈ N, ak ∈ R, νk, j ∈ N

}
, the ring of

(real) polynomials in n indeterminants.
R(x1, . . . , xn) :=

{
p
q

∣∣ p = p(x1, . . . , xn), q = q(x1, . . . , xn) ∈ R[x1, . . . , xn], q �= 0
}

1 Introduction

We study genericity of controllability and stabilizability of differential algebraic sys-
tems described by the equation

d
dt (Ex) = Ax + Bu, (1)

where

(E, A, B) ∈ ��,n,m := R
�×n × R

�×n × R
�×m .

To be precise, we first say what we understand under genericity.

Definition 1.1 [13, p. 28] and [11, p. 50] A set V ⊆ R
n is called an algebraic variety,

if there exist finitely many polynomials

p1(x1, . . . , xn), . . . , pk(x1, . . . , xn) ∈ R[x1, . . . , xn]

such that V is the locus of their zeros, i.e.,

V = {
x ∈ R

n
∣∣∀ i ∈ k : pi (x) = 0

} =
k⋂

i=1

p−1
i ({0}). (2)

An algebraic variety V is called proper if V � R
n . The set of all algebraic varieties

in R
n is denoted as

Vn(R) :=
{

V ⊆ R
n

∣∣∣∣∣ ∃ q1(·), . . . , qk(·) ∈ R[x1, . . . , xn] :
k⋂

i=1

q−1
i ({0}) = V

}
(3)

and the set of all proper algebraic varieties as

V
prop
n (R) := Vn(R)\ {Rn} . (4)

A set S ⊆ R
n is called generic, if there exists a proper algebraic varietyV ∈ V

prop
n (R)

so that Sc ⊆ V. If the algebraic varietyV is known, then we call S generic with respect
to (w.r.t.) V. �
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“Generic” is not consistently used in the literature.We show in the following propo-
sition that generic as in Definition 1.1 is stronger than containing an open and dense
subset with respect to the Euclidean topology.

Proposition 1.2 Any set S ⊆ R
n satisfies:

(i) If V ⊆ R
n is a proper algebraic variety, then V

c is open and dense.
(ii) If S ⊆ R

n is generic w.r.t. V ∈ V
prop
n (R), then S contains the open and dense

subset V
c.

(iii) There exists an open and dense set S ⊆ R
n with λn(S) < ∞, and therefore S is

neither generic nor is Sca proper algebraic variety. In other words, the reverse
implications in (i) and (ii) do not hold true.

Proof (i) We show that V is closed. Let V be given as in (2). Then, each p−1
i ({0}) is

closed since pi is continuous and hence, the claim follows.
It remains to prove that Vc is dense. Seeking a contradiction, suppose that Vc is not

dense or, equivalently, V has at least one inner point. Then, λn(V) > 0 and V cannot
be a proper algebraic variety by Proposition A.3.

(ii) This is an immediate consequence of (i).
(iii) Let ϕ : N → Q

n be a bijection and set

S :=
⋃
i∈N

{
q ∈ R

n
∣∣∣ ‖q − ϕ(i)‖ < 42−i

}
⊇ Q

n .

Then, S ⊆ R
n is open, dense and satisfies

λn(S) ≤
∑
i∈N

2n

42i n
≤ 2n

∑
i∈N

1

42i
= 2n

42

41
< ∞.

Now, Lemma A.7 shows that S is not generic.
If Sc = V were an algebraic variety, then S is generic w.r.t. V which is a contradic-

tion. This completes the proof. ��
To characterize genericity in terms of the Zariski topology, recall [11, p. 50] that

the latter is defined by the property that all closed sets are the algebraic varieties. The
Zariski topology is strictly coarser than the Euclidean topology and we have: A set
S ⊆ R

n is generic if, and only if, S contains a nonempty Zariski open set.
This approach was used by Belur and Shankar in their investigations of genericity

of impulse controllable systems (see [3, Section 3]). Since they consider differential-
algebraic equations described by differential operator matrices and hence an infinite
dimensional vector space, they need to extend the definition of generic sets to this
space using the limit topology of the Zariski topology. This is not necessary in our
setup.

In the special case that (1) is an ordinary differential equation, that is � = n
and E = I , Lee and Markus [10] proved that that the set of all controllable systems is
open and dense w.r.t. the Euclidean topology. Wonham [12, Thm. 1.3] showed in the
first edition of his monograph that the set of all controllable systems is generic.
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Recently, it has been shown that linear, time-invariant port-Hamiltonian systems
are generically controllable; see [9].

When it comes to differential-algebraic equations, then to the best of our knowledge
there are only two contributions known where open and dense subsets of controllable
systems are investigated. Banaszuk and Przyłuski [1] consider an algebraic criterion—
which they do not justify analytically and which is not related to any concept of
controllability—and give a sufficient condition so that the set of systems satisfying
the algebraic criterion contains an open and dense subset. The second contribution is
by Belur and Shankar [3].

Their main interest is on polynomial systems, and if specialized to matrix pencils,
they derive a characterization of genericity of impulse controllability. Other concepts
are not studied.

The basis of our approach is the algebraic characterizations of various concepts
of controllability and stabilizability of differential-algebraic equations; this is well
known and summarized in Propositions 2.1 and 3.1. We characterize—in terms of the
formats �, n, andm of (1)—when these controllability and stabilizability concept hold
generically. This is the content of Theorems 2.3 and 3.3. The proofs of these two main
results are based on methods from algebraic geometry, tailored for our purposes and
relegated to “Appendix 1”, and some results on ranks of special matrices are presented
in “Appendix 2”.

2 Controllability

There are various controllability concepts for differential-algebraic equations (1) such
as freely initializable (also called ‘controllable at infinity’), impulse controllable,
completely controllable, behavioral controllable, and strongly controllable. Their def-
initions and their algebraic characterizations are given in the next proposition. To state
this, we need to say what a solution of (1) is. We consider the behavior of (1) given
by

B[E,A,B] :=
⎧
⎨
⎩ (x, u) ∈ W 1,1

loc (R, R
n) × L 1

loc(R, R
m)

∣∣∣∣∣∣
Ex is absolutely continuous
and for a.a. t ∈ R :
d
dt (Ex)(t) = Ax(t) + Bu(t)

⎫
⎬
⎭

where L 1
loc(R, R

d) denotes the set of locally integrable functions f : R → R
d , and

W 1,1
loc (R, R

d) is the Sobolev space of all functions f ∈ L 1
loc(R, R

d) with f (1) ∈
L 1

loc(R, R
d). Note that any f ∈ W 1,1

loc (R, R
d) is continuous.

Controllability of a system (1) is a property of the corresponding behaviorB[E,A,B].
If systems described by ordinary differential equations are considered, i.e., the special
case E = I , then the initial value x0 ∈ R

n can be freely chosen and the problem is to
which other points it can be steered in finite time. It is well-known that the system (1)
with E = I is called controllable if, and only if, for any given initial state x0 ∈
R
n and any terminal state x1 ∈ R

n , there exists a control u ∈ L 1
loc(R, R

m) which
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steers x0 to x1 in finite time T > 0, more formally, there exists (x, u) ∈ B[E,A,B]
such that x(0) = x0 and x(T ) = x1.

However, if an arbitrary matrix E is allowed in (1), then algebraic constraints are
added to the differential equation. So it is unclear as to whether the initial value can
be chosen freely. If the latter is the case, then the system is called freely initializable,
sometimes also called controllable at infinity.

If (1) is assumed to be freely initializable, then one may ask, whether each initial
state can be steered to any final state in finite time. If both conditions are fulfilled, then
the system is called completely controllable.

A stronger controllability concept—but also a generalization of theODEcase—is in
the behavioral setup the problem as to whether it is always possible to concatenate two
given solutions (x1, u1), (x2, u2) ∈ B[E,A,B] by another solution (x, u) ∈ B[E,A,B]
over the time interval [0, T ]. Such systems are called behavioral controllable systems.

The concepts of freely initializable and completely controllable systems can be
weakened in the sense that the initial and the terminal value are compared with respect
to the image of E ; for example, the initial condition becomes Ex0 = Ex(0). These
weakened concepts are called impulse controllable and strongly controllable.

The precise definitions and algebraic characterizations are given in the following
proposition.

Proposition 2.1 For any (E, A, B) ∈ ��,n,m, the following controllability definitions
associated with the system (1) are algebraic characterized as follows:

freely initializable := ∀ x0 ∈ R
n ∃ (x, u) ∈ B[E,A,B] : x(0) = x0

⇐⇒ rk [E, B] = rk [E, A, B] ;
impulse controllable := ∀ x0 ∈ R

n ∃ (x, u) ∈ B[E,A,B] : Ex0 = Ex(0)
⇐⇒ ∀ Z ∈ R

n×n−rk E with im RZ = kerR E
: rk [E, A, B] = rk [E, AZ , B] ;

behavioral controllable := ∀ (x1, u1), (x2, u2) ∈ B[E,A,B] ∃ T > 0 ∃ (x, u) ∈ B[E,A,B]

: (x, u)(t) =
{

(x1, u1)(t), t < 0

(x2, u2)(t), t > T
⇐⇒ ∀ λ ∈ C : rk R(s)[sE − A, B] = rk C[λE − A, B] ;

completely controllable := ∃ T > 0 ∀ x0, xT ∈ R
n∃ (x, u) ∈ B[E,A,B]

: x(0) = x0 ∧ x(T ) = xT
⇐⇒ ∀ λ ∈ C : rk [E, A, B] = rk [E, B] = rk [λE − A, B] ;

strongly controllable := ∃ T > 0 ∀ x0, xT ∈ R
n ∃ (x, u) ∈ B[E,A,B]

: Ex(0) = Ex0 ∧ Ex(T ) = ExT
⇐⇒ ∀ λ ∈ C ∀ Z ∈ R

n×n−rk E with im RZ = kerR E
: rk [E, A, B] = rk [E, AZ , B] = rk [λE − A, B] .

Proof Berger and Reis [4] derive a feedback form and use this as a tool in conjunction
with ‘canonical’ representatives of certain equivalence classes to prove all characteri-
zations of controllability in their survey. Note that in their characterization of strongly
controllability, the term ‘+im RE’ is missing in the first respective line in [4, Cor. 4.3].

��
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Remark 2.2 The equivalences

(E, A, B) str. contr. ⇐⇒ (E, A, B) imp. contr. and beh. contr.

and

(E, A, B) compl. contr. ⇐⇒ (E, A, B) freely initial. and beh. contr.

are proved in [4, Rem.4.4]. ��
Genericity of the different controllability concepts can be characterized in terms of

the system dimensions. To this end, we introduce the notation

Scontrollable := {
(E, A, B) ∈ ��,n,m

∣∣ (1) is controllable}

where ‘controllable’ stands for one of the controllability concepts.

Theorem 2.3 For each of the controllability concepts defined in Proposition 2.1, the
following characterizations hold:

Sfreely initial. is generic ⇐⇒ � ≤ n + m ;
Simp. contr. is generic ⇐⇒ � ≤ n + m ;
Sbeh. contr. is generic ⇐⇒ � �= n + m ;
Scompl. contr. is generic ⇐⇒ � < n + m ;
Sstrongly. contr. is generic ⇐⇒ � < n + m .

Proof We proceed in steps.
Step 1 We show: Sfreely initial. is generic if, and only if, � ≤ n + m.
First note that Proposition 2.1 yields

Sfreely initial. = {
(E, A, B) ∈ ��,n,m

∣∣ rk [E, A, B] = rk [E, B]}.
�⇒ Let � > n + m. By Proposition B.3 (i) and (ii), the sets

S(ii) := {
(E, A, B) ∈ ��,n,m

∣∣ rk [E, B] = n + m
}
,

S(i) := {
(E, A, B) ∈ ��,n,m

∣∣ rk [E, A, B] = min {�, 2n + m}} .

are generic sets. Hence, Corollary A.5(ii) implies that S(i) ∩ S(ii) is a generic set. If
(E, A, B) ∈ S(i) ∩ S(ii), then � > n + m yields

rk [E, B] = n + m < min {�, 2n + m} = rk [E, A, B],

and therefore S(i) ∩ S(ii) ⊆ Scfreely initial. and Scfreely initial. is generic. Thus, Lemma A.6
shows that Sfreely initial. is not generic.

⇐� Since � ≤ n + m , the sets

S(ii) := {
(E, A, B) ∈ ��,n,m

∣∣ rk [E, B] = �
}
,

S(i) := {
(E, A, B) ∈ ��,n,m

∣∣ rk [E, A, B] = �
}

123



Mathematics of Control, Signals, and Systems (2021) 33:359–377 365

are both non-empty and by Proposition B.3 (i) and (ii) they are generic. Now, Corol-
lary A.5(ii) yields that S(i) ∩ S(ii) is a generic set, and by Remark A.1, Sfreely initial. ⊇
S1 ∩ S2 is generic, too.
Step 2 We show: Simp. contr. is generic if, and only if, � ≤ n + m.

We consider the two cases � ≥ n and � < n.
� ≥ n: By Proposition B.3 (i) and (iii), the sets

S(i) := {
(E, A, B) ∈ ��,n,m

∣∣ rk [E, A, B] = min {�, 2n + m}} ,

S(iii) := {
(E, A, B) ∈ ��,n,m

∣∣ rk E = n
}

are generic and thus Corollary A.5 implies that S(i) ∩ S(iii) is also generic. For
each (E, A, B) ∈ S2, we find by the rank-nullity theorem that ker E = {0}. Hence,
Proposition 2.1 yields that

Simp. contr. ∩ S(i) ∩ S(iii) = {
(E, A, B) ∈ �n,n,m

∣∣ rk [E, B] = min {�, 2n + m}}︸ ︷︷ ︸
=:S̃

∩S(i) ∩ S(iii).

Invoking Lemma A.8 gives that Simp. contr. is generic if, and only if, S̃ is generic. By
Proposition B.3, this is the case if, and only if, min {�, 2n + m} ≤ min {�, n + m}.
This inequality holds true if, and only if, � ≤ n + m.

� < n: Put Ŝ := {
(E, A, B) ∈ �n,n,m

∣∣ rk [E, B] = � = min {�, n + m}}, which
is generic by Proposition B.3 (ii). Note that both statements

∀ (E, A, B) ∈ ��,n,m ∀ Z ∈ R
n×n−rk E with im RZ = kerR E : rk [E, AZ , B] ≤ �,

∀ (E, A, B) ∈ Ŝ ∀ Z ∈ R
n×n−rk E with im RZ = kerR E : rk [E, AZ , B] = �

hold true. By Proposition 2.1, we find that Ŝ ∩ S(i)] ⊆ Simp. contr. and hence, in view
of Corollary A.5(ii) and Remark A.1, the set Simp. contr. is generic.
Step 3 Proposition 2.1 yields

Sbeh. contr. =
{
(E, A, B) ∈ ��,n,m

∣∣∣∣
∀λ ∈ C : rk R(s)[sE − A, B]
= rk C[λE − A, B]

}
. (5)

We show: Sbeh. contr. is generic if, and only if, � �= n + m.
From Proposition B.5, we find that the set

S3 := {
(E, A, B) ∈ ��,n,m

∣∣ rk R(s)[sE − A, B] = min {�, n + m}}

is a generic set. The equation (5) implies

Sbeh. contr. ∩ S3 = {
(E, A, B) ∈ ��,n,m

∣∣ ∀λ ∈ C : rk C[λE − A, B] = min {�, n + m}} .

By Lemma A.8, genericity of Sbeh. contr. ∩ S3 is necessary and sufficient for Sbeh. contr.
being generic. Now, Proposition B.8 gives: Sbeh. contr. ∩ S1 is generic if, and only
if, � �= n + m.
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Step 4 Since

Sstrongly contr. = Simp. contr. ∩ Sbeh. contr.,

Corollary A.5 (ii) implies that Sstrongly contr. is generic if, and only if, both Simp. contr.
and Sbeh. contr. are generic. In view of Step 2 and Step 3, this is the case if, and only
if, � < n + m.
Step 5 Applying Corollary A.5 (ii) to the equality

Scompl. contr. = Sfreely initial. ∩ Sbeh. contr.,

we find with Step 1 and Step 3 that Scompl. contr. is generic if, and only if, � < n+m.
��

In the following remark, we stress the observation that linear differential-algebraic
systems are either generically controllable or generically not controllable.

Remark 2.4 Acloser inspectionof theproof ofTheorem2.3yields that if Sarbitrary controllability
is not generic, then it is contained in a proper algebraic variety and thus its complement
is generic.

3 Stabilizability

In the present section, genericity of stabilizability of DAEs is studied.
In the ODE-case, a system (1) is called stabilizable if, and only if, for each initial

value x0 ∈ R
n there exists a control u ∈ L 1

loc(R, R
m) which steers the forced trajec-

tory x in (possibly) infinite time to zero, that is (x, u) ∈ B[I ,A,B] so that x(0) = x0

and limt→∞ ess sup x |(t,∞)| = 0.
As for controllability, different generalizing concepts have to be studied for DAEs.

Each system that is stabilizable in the ODE-sense is called completely stabilizable.
Similar to controllability, this concept is weakened if only Ex(t) is considered—in
this case we speak of strong stabilizability.

Finally, a system is called behavioral controllable if, and only if, each (x, u) ∈
B[E,A,B] can be concatenated with some (x, u) ∈ B[E,A,B] which tends to zero as t
tends to infinity.

The precise definitions and algebraic characterizations are given in the follow-
ing proposition. We write W 1,1

loc (I , R
n) for the set of all weakly differentiable

ϕ ∈ L 1
loc(R, R

n).
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Proposition 3.1 For any (E, A, B) ∈ ��,n,m, the following controllability definitions
associated with the system (1) are algebraic characterized as follows:

compl. stabl. := ∀ x0 ∈ R
n ∃ (x, u) ∈ B[E,A,B] x(0) = x0 ∧ limt→∞ ess sup x ||(t,∞)

= 0
⇐⇒ ∀ λ ∈ C+ : rk [E, A, B] = rk [E, B] = rk [λE − A, B];

str. stabl. := ∀ x0 ∈ R
n ∃ (x, u) ∈ B[E,A,B] : Ex(0) = Ex0 ∧ limt→∞ Ex(t) = 0

⇐⇒ ∀ λ ∈ C+ ∀ Z with im Z = ker E
: rk [E, A, B] = rk [E, AZ , B] = rk [λE − A, B];

beh. stabl. := ∀ (x, u) ∈ B[E,A,B] ∃ (x1, u1) ∈ B[E,A,B] ∩
(
W 1,1
loc (R, R

n) × W 1,1
loc (R, R

m)
)

: [∀ t < 0 : (x(t), u(t)) = (x1(t), u1(t))] ∧ limt→∞(x1(t), u1(t)) = 0
⇐⇒ ∀ λ ∈ C+ : rk R(s)[sE − A, B] = rk C[λE − A, B].

Proof All characterizations are proved in the survey article by Berger and Reis [4,
Cor. 4.3]. ��
Remark 3.2 The equivalences

(E, A, B) compl. stabl. ⇐⇒ (E, A, B) beh. stab. and freely init.

and

(E, A, B) str. stabl. ⇐⇒ (E, A, B) beh. stab. and str. contr.

are proved in [4, Rem.4.5]. �
Wenow show how genericity of the different stability concepts can be characterized

in terms of the matrix dimensions. To this end, we introduce the notion

Sstabliizable := {
(E, A, B) ∈ ��,n,m

∣∣ (1) stabilizable}

where ‘stabilizable’ stands for one of the stability concepts.

Theorem 3.3 For each of the three stabilizability concepts from Proposition 3.1, the
following characterizations hold:

Sbeh. stab. is generic ⇐⇒ � �= n + m ;
Scompl. stab. is generic ⇐⇒ � < n + m ;
Sstrongly stab. is generic ⇐⇒ � < n + m .

Proof Step 1 We show: Sbeh. stab. is generic if, and only if, � �= n + m.
Proposition B.5 yields that the set

S1 := {
(E, A, B) ∈ ��,n,m

∣∣ rk R(s)[sE − A, B] = min {�, n + m}}

is generic. By Lemma A.8, genericity of

S2 :=
{
(E, A, B) ∈ ��,n,m

∣∣ ∀ λ ∈ C+ : rk C[λE − A, B] = min {�, n + m}
}
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is a necessary and sufficient condition for genericity of Sbeh. stab.. ByPropositionB.9, S2
is generic if, and only if, � �= n + m.
Step 2 Remark 3.2 yields that

Scompl. stabl. = Sbeh. stabl. ∩ Sfreely init.

Thus, Corollary A.5 (ii) together with Theorem 2.3 gives that Scompl. stabl. is generic
if, and only if, � < n + m.
Step 3 Applying Corollary A.5 (ii) and Theorem 2.3 to the equality

Sstr. stabl. = Sbeh. stabl. ∩ Sstr. contr.

yields that Sstr. stabl. is generic if, and only if � < n + m. ��
As for controllability, we would like to emphasize that linear differential-algebraic

systems are either generically controllable or generically not controllable.

Remark 3.4 A closer inspection of the proof of Theorem 3.3 yields as in Remark 2.4
that Sstabilizable is either generic or contained in a proper algebraic variety.

Acknowledgements We are indebted to our colleague Thomas Hotz (Ilmenau) for several constructive dis-
cussions, and to a reviewer who read the two submissions very carefully and made many helpful comments.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Algebraic geometry

The results presented in the present section are tailored from algebraic geometry for
our needs. They provide a basis for the proofs of Theorems 2.3 and 3.3.

Throughout this section, let n ∈ N
∗.

We identify, wherever needed, any polynomial—an algebraic object–

p(x) = p(x1, . . . , xn) =
�∑

k=0

akx
νk,1
1 · · · xνk,n

n ∈ R[x1, . . . , xn]

with the polynomial – an algebraic object –

p(·) : R
n → R, x = (x1, . . . , xn) �→ p(x) =

�∑
k=0

akx
νk,1
1 · · · xνk,n

n .
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An immediate consequence of Definition 1.1 is the following useful property.

Remark A.1 If S ⊆ R
n is generic w.r.t. V ∈ V

prop
n (R), then any encompassing set

S̃ ⊇ S is generic w.r.t.V. �
Definition 1.1 can be simplified using one instead of finitely many polynomials.

Lemma A.2 Any set V ⊆ R
n is an algebraic variety if, and only if, there is a polyno-

mial p ∈ R[x1, . . . , xn] so that V = p−1({0}).

Proof The proof follows from
⋂k

i=1 p
−1
i ({0}) =

(∑k
i=1 p

2
i

)−1

({0}). ��

We use the well-known result that proper algebraic varieties are Lebesgue null sets.

Proposition A.3 [5, p.240] Let V ⊆ R
n be an algebraic variety. Then, V is proper

if, and only if, V is a closed Lebesgue null set.

Corollary A.4 If V1, V2 ∈ V
prop
n (Rn), then V1 ∩ V2 ∈ V

prop
n (Rn) and V1 ∪ V2 ∈

V
prop
n (Rn).

Proof The intersection and union of algebraic varieties are algebraic varieties; see [11,
p. 50]. Since the intersection and union of finitely many Lebesgue null sets are null
sets, the claim follows from Proposition A.3. ��

By Definition 1.1 and Remark A.1, we have the following corollary.

Corollary A.5 For any S1, S2 ⊆ R
n, we have:

(i) If S1, S2 are generic sets, then Sc1 is a Lebesgue null set and S1 ∪ S2 is a generic
set.

(ii) S1 and S2 are generic sets if, and only if, S1 ∩ S2 is a generic set.

With the help of Corollary A.5, we conclude from Proposition A.3 that R
n cannot

be partitioned into more than one generic set.

Lemma A.6 R
n cannot be partitioned into two generic sets.

Proof Seeking a contradiction, suppose S1, S2 ⊆ R
n is a partition of R

n into generic
sets, i.e., S1, S2 are nonempty disjoint sets with S1 ∪ S2 = R

n and Si is generic
w.r.t. Vi ∈ V

prop
n (R), for i = 1, 2. Then, S2 = Sc1 ⊆ V1 and S1 = Sc2 ⊆ V2. This

yields V1 ∪ V2 = R
n . The latter is a proper algebraic variety by Corollary A.4, but

this contradicts Proposition A.3. ��
Another consequence of Proposition A.3 is the following lemma, which will be

used for the simplification of some proofs.

Lemma A.7 If λn(S) < ∞ for some set S ⊆ R
n, then S is not generic.

Proof If S ⊆ R
n were a generic set with λn(S) < ∞, then Sc is by Corollary A.5 a

Lebesgue null set and additivity of the Lebesgue measure yields the contradiction
∞ = λn(Rn) = λn(S ∪ Sc) = λn(S) + λn(Sc) = λn(S) < ∞. ��
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A useful property of generic sets is the next lemma.

Lemma A.8 Let S1 ⊆ R
n be generic and S2, S ⊆ R

n with S ∩ S1 = S2 ∩ S1. Then, S
is generic if, and only if, S2 is generic.

Proof Since the statement is symmetric, only one direction has to be shown. Suppose S
is generic. Then, Corollary A.5 yields that S∩S1 = S2∩S1 is generic. Since S2∩S1 ⊆
S2, genericity of S2 follows from Remark A.1.

Appendix B Linear algebra

We fix, throughout this section, the positive integers �, n,m, d ∈ N
∗.

Different controllability and stabilizability concepts can—as shown in Proposi-
tion 2.1 and 3.1—be characterized by rank properties of certain matrices in terms
of (E, A, B) ∈ ��,n,m . We prove in the present section that these rank properties hold
on generic subsets of��,n,m , where the latter matrix space is identified withR

�(2n+m).
We recall the concept of a minor.

Definition B.1 (Submatrix, minor) Let s, t, u, v ∈ N
∗ fulfill the inequalities s ≤ u

and t ≤ v, let σ : s → u and π : t → v be injective, and let further R = R

or R = R[x]. Then, σ and π induce the submatrix

mσ,π : Ru×v → Rs×t , A �→ [
Aσ(i),π( j)

]
i∈s, j∈t .

If s = t = d, then the mapping

Mσ,π : Ru×v → R, A �→ detmσ,π (A)

is called minor of degree d (w.r.t. Ru×v). �
Remark B.2 Let Mσ,π be a minor of order d w.r.t. Ru×v and Sd the set of all permuta-
tions of a d-element family. Then, the Leibniz formula gives

∀ A ∈ R
u×v : Mσ,π (A) =

∑
τ∈Sd

sign τ

d∏
i=1

Aσ(i),π(τ(i)),

and hence, Mσ,π is a polynomial in the entries of the matrix and we may write

Mσ,π ∈ R[x1, . . . , xuv].
�

Next, we generalize thewell-known property that invertibility of squared realmatri-
ces is a generic property to block matrices.

123



Mathematics of Control, Signals, and Systems (2021) 33:359–377 371

Proposition B.3 The following sets are proper algebraic varieties

(i)
{
(E, A, B) ∈ ��,n,m

∣∣ rk [E, A, B] < d
}

if, and only if, d ≤ min {�, 2n + m} ;
(ii)

{
(E, A, B) ∈ ��,n,m

∣∣ rk [E, B] < d
}

if, and only if, d ≤ min {�, n + m} ;
(iii)

{
(E, A, B) ∈ ��,n,m

∣∣ rk E < d
}

if, and only if, d ≤ min {�, n} ;

Proof (i) Set Sc := {
(E, A, B) ∈ ��,n,m

∣∣ rk [E, A, B] < d
}
.

�⇒ If d > min {�, 2n + m}, then Sc = ��,n,m is an algebraic variety but not
proper.

⇐ Let M̃1(·), . . . , M̃r (·) be all minors of order d w.r.t. R
�×(2n+m) and define

∀ i ∈ r : Mi : ��,n,m → R, (E, A, B) �→ M̃i
([E, A, B]).

The fact (see the German reference [6, Sect. 3.3.6], for an English reference we only
know [2, Th.4.6.1] who prove necessity, only)

rk [E, A, B] < d ⇐⇒ ∀ i ∈ r : Mi (E, A, B) = 0

yields Sc = ⋂r
i=1 (Mi )

−1 ({0}). Now, Remark B.2 yields that every (Mi )
−1 ({0}) is

an algebraic variety, whence Sc an algebraic variety by Corollary A.5 (ii). Since S is
nonempty, Sc is a proper algebraic variety.

The remaining proofs of (ii)–(iv) are similar and omitted. ��
In the remainder of this section, we investigate polynomial matrices of degree one,

also called a pencil, of the form

[sE − A, B] ∈ R[s]�×(n+m), where (E, A, B) ∈ ��,n,m .

Remark B.4 Let M̃ be any minor of order d ≤ min {�, n + m} w.r.t. R[s]�×(n+m).
Then, M̃ induces the mapping

M : ��,n,m → R[s], (E, A, B) �→ M̃
([sE − A, B]) (6)

and Leibniz’ formula yields the existence of p0, . . . , pd ∈ R[s1, . . . , s�(2n+m)] so that

∀(E, A, B) ∈ ��,n,m : M(E, A, B) =
d∑

i=0

pi (E, A, B)si . (7)

In passing note that p0(E, A, B) = M̃([−A, B]). �
The Eq. (7) sets us in a position to characterize when the set of matrix

triples (E, A, B) with pencil [sE − A, B] of “full” rank w.r.t. the field of rational
functions is generic.
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Proposition B.5 The set

Sc = {
(E, A, B) ∈ ��,n,m

∣∣ rk R(s)[sE − A, B] < d
}

is a proper algebraic variety if, and only if, d ≤ min {�, n + m}.

Proof �⇒ If Sc is a proper algebraic variety, then S �= ∅. The latter holds if, and
only if, there exists some (E, A, B) ∈ ��,n,m so that d ≤ rk R(s)[sE − A, B] ≤
min {�, n + m}.

⇐ Let M̃1, . . . , M̃r be all minors of order d w.r.t. R[s]�×(n+m) and Mi as in (7)
the mapping Mi induced by M̃i on ��,n,m as in (7) on ��,n,m .

Note that r ≥ 1 since d ≤ min {�, n + m}. Then,

rk R(s)[sE−A, B] < d ⇐⇒ ∀ i ∈ r : Mi (E, A, B) = M̃i ([sE−A, B]) = 0.
(8)

Introducing the mapping

ϕ : {p ∈ R[s] : deg p ≤ d} → R
d+1, p =

d∑
j=0

p j s
j �→ (p0, . . . , pd),

we see that the functions hi := ϕ ◦ Mi : ��,n,m → R
d+1, defined for all i ∈ r , are

well defined polynomial vectors and satisfy, in view of (8), the equivalence

rk R(s)[sE − A, B] < d ⇐⇒ ∀ i ∈ r : hi (E, A, B) = 0.

Therefore, Sc = ⋂r
i=1 h

−1
i ({0}). Now, Remark B.2 yields that every (Mi )

−1 ({0}) is
an algebraic variety, whence Sc an algebraic variety by Corollary A.5 (ii).

It remains to show that Sc is proper. Since each hi is not identical zero , h−1
i ({0})

is a proper algebraic variety, and so is Sc by Corollary A.4. This completes the proof.
��

Wewill now study matrix triples (E, A, B) ∈ ��,n,m so that the polynomial matrix
[sE − A, B] has “full” rank for each s = λ ∈ C. An important tool for these investi-
gations is coprime polynomials and the characterization by the resultant.
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Definition B.6 (Resultant, [7, p. 61]) The resultant of two polynomials p(s), q(s) ∈
R[s]\ {0R[s]

}
with deg p = n ≥ 0 and deg q = m ≥ 0 is defined as

Res(p, q) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 q0
p1 p0 q1 ·
· · · · ·
· · · · · · q0
pn pn−1 · · qn · · q1

pn · · · · · ·
· · p0 qm−1 · · ·
· · · qm · · ·
· · · · · ·
· · · ·
pn qm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
∈R(n+m)×(m+n)

.

The matrix above is called the Sylvester matrix of p(s) and q(s). The Sylvester matrix
contains m columns with the coefficients of p and n columns with the coefficients
of q , so that it is in R

(n+m)×(m+n). All other entries are zero. Note that the diagram
shows the case n < m. �

A well-known characterization of coprime polynomials in terms of the Sylvester
matrix is given in the following lemma; for a proof see for example [7, Thm. 3.3.1].

Lemma B.7 Let p(s), q(s) ∈ R[s]\ {0R[s]
} ⊆ C[s]\ {0C[s]

}
. Then, Res(p, q) is well-

defined and p(s) and q(s) are not coprime
(
i.e., there is some common zero z ∈ C

such that p(z) = q(z) = 0
)
if, and only if, Res(p, q) = 0.

We are now in a position the characterize genericity of a set of pencils satisfying a
rank condition in the complex plane.

Proposition B.8 The set

S = {
(E, A, B) ∈ ��,n,m

∣∣∀ λ ∈ C : rk C[λE − A, B] ≥ d
}

is generic if, and only if,

d ≤ min {�, n + m} ∧ ¬(d = � = n + m
)
.

Proof �⇒ Assume first d > min {�, n + m}. Then, S = ∅ and hence S is not
generic.

Assume next d = � = n + m.
The set

S̃c := {
(E, A, B) ∈ ��,n,m

∣∣ det[E, B] = 0
}
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is a proper algebraic variety by Proposition B.3 (ii). Thus, S̃ is a generic set. Since

S̃ ⊆ S′ := {
(E, A, B) ∈ ��,n,m

∣∣ deg det[sE − A, B] ≥ 1
}
,

Remark A.1 gives that S′ is a generic set. The fundamental theorem of algebra implies
S′ ⊆ Sc, and a repeated application of Remark A.1 gives that Sc is a generic set, too.
Hence, Lemma A.6 implies that S is not generic.

⇐ We proceed in steps.
Step 1 Let M̃1, . . . , M̃r be allminors of orderd ≤ min {�, n + m}w.r.t.R[s]�×(n+m)

so that M̃i �= M̃ j for all i �= j ∈ r and define the induced mappings on ��,n,m by

∀i ∈ r : Mi : ��,n,m → R[s], (E, A, B) �→ M̃i ([sE − A, B]) .

Since ¬(d = � = n +m
)
and d ≤ min {�, n + m}, we conclude d < max {�, n + m},

and therefore r ≥ 2. Now, we are in a position to show the following implications for
any (E, A, B) ∈ ��,n,m and any λ ∈ C:

∃ i, j ∈ r : Mi (E, A, B) and Mj (E, A, B) are coprime

�⇒ ∃ i, j ∈ r : λ is not a common zero of Mi (E, A, B), Mj (E, A, B)

⇐⇒ ∃ i ∈ r : Mi (E, A, B)(λ) �= 0

⇐⇒ rk C[λE − A, B] ≥ d. (9)

Therefore,

S̃ := {
(E, A, B) ∈ ��,n,m

∣∣ (9) holds} ⊆ S. (10)

Step 2 Define N := �(2n + m) and, for any i ∈ r , the maximal degree of the
image of ��,n,m under Mi as

αi := max
{
degMi (E, A, B)

∣∣(E, A, B) ∈ ��,n,m
}

and note that not all αi ’s are zero. Remark B.4 allows to write the minors w.r.t. the
polynomial ring R[s] as

∀ i ∈ r ∃ M0
i , . . . , Mαi

i ∈ R[s1, . . . , sN ] ∀ (E, A, B) ∈ ��,n,m :

Mi (E, A, B) =
αi∑
j=0

M j
i (E, A, B)s j (11)

and, by the definition of αi , we find that Mαi
i �= 0 for all i ∈ r . Choose k ∈ r so that

αk = max
{
αi
∣∣ i ∈ r

}
> 0.

Step 3 Setting

Ŝ := (
Mαk

k

)−1
({0})c,
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we show that
(
Ŝ ∩ S̃

)c ⊆ V for some V ∈ V
prop
N (R).

Step 3a We first show that
(
Ŝ ∩ S̃

)c ⊆ V for some V ∈ VN (R). Define,

∀i ∈ r\ {k} : qi (·) := det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0
i M0

k
M1

i M0
i M1

k ·
· · · · ·
· · · · · · M0

k
Mαi

i Mαi−1
i · · · · · M1

k
Mαi

i · · · · · ·
· · M0

i Mαk−1
k · · ·

· · · Mαk
k · · ·

· · · · · ·
· · · ·
Mαi

i Mαk
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
∈R[s1,...,sN ](αi+αk )×(αi+αk )

∈ R[s1, . . . , sN ].

Laplace’s formula and expanding the last row yields

∀ i ∈ r\ {k} ∀ (E, A, B) ∈ Ŝ with Mi (E, A, B) �= 0 :
qi (E, A, B) = ± (

Mαk
k (E, A, B)

)αi−degMi (E,A,B) Res(Mi (E, A, B), Mk(E, A, B)).

(12)

Recall that on Ŝ we have Mαk
k (E, A, B) �= 0, and hence in particular Mk(E, A, B) �=

0. Thus, (12) in conjunction with Lemma B.7 gives

∀(E, A, B) ∈ Ŝ with Mi (E, A, B) �= 0 ∀i ∈ r\ {k} :
qi (E, A, B) = 0 ⇐⇒ Mi (E, A, B), Mk(E, A, B) are not coprime. (13)

If, on the other hand, Mi (E, A, B) = 0 for some (E, A, B) ∈ Ŝ, then the matrix in the
definition of qi contains at least one zero collumn; hence, its determinant is zero and
thus qi (E, A, B) = 0. Since degMk(E, A, B) = αk > 0, Mk(E, A, B) has at least
one zero and Mi (E, A, B) and Mk(E, A, B) are not coprime. This proves that (13)
applies to all (E, A, B) ∈ Ŝ. Finally, we arrive at the inclusion

(
Ŝ ∩ S̃

)c = (Ŝ)c ∪ (S̃)c ⊆ V := (
Mαk

k

)−1
({0}) ∪

r⋂
i=1, i �=k

q−1
i ({0}) ∈ VN (R). (14)

Step 3b It remains to show that V is proper. Equivalently, we prove that there
is a (E, A, B) ∈ ��,n,m so that degMk(E, A, B) = αk and Mk(E, A, B) and
Mi (E, A, B) are coprime for some i ∈ r\ {k} . Let

ai, j ∈ R for (i, j) ∈ {(i, j) ∈ � × n
∣∣ j = i ∨ j = i + 1 ∨ j + 1 = i

}
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be pairwise different real numbers.
Consider the case � < n + m. Define E, A ∈ R

�×n by

∀(i, j) ∈ � × n : Ei, j :=
{
1, j ∈ {i, i + 1}
0, else

, Ai, j :=
{
ai, j , j ∈ {i, i + 1}
0, else

and B ∈ R
�×m by

∀(i, j) ∈ � × m : Bi, j :=
{
1, i ≥ n + 1, j ∈ i − n, i − n + 1,

0, else.

Then, (E, A, B) ∈ ��,n,m and the pencil [sE − A, B] has the structure

[sE − A, B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

� � 0 · · · 0 0 0 · · · 0
0 � � · · · 0 0 0 · · · 0
0 0 � · · · 0 0 0 · · · 0
...

...
. . .

. . .
...

...
...

. . .
...

0 0 0 · · · � � 0 · · · 0
0 0 0 · · · 0 � � · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

W.l.o.g. let k = 1 and

M1 : ��,n,m → R[x], (E, A, B) �→ det ([sE − A, B])i, j∈d ,

M2 : ��,n,m → R[x], (E, A, B) �→ det ([sE − A, B])i, j−1∈d .

In passing note that (E, A, B) ∈ ��,n,m constructed above fulfills

M1(E, A, B) =
min{d,n}∏

i=1

(s − ai,i ) and M2(E, A, B) =
min{d,n}∏

i=1

(s − ai,i+1),

M1(E, A, B), M2(E, A, B) are coprime by our choice of ai, j , and they have maximal
degree.

If � ≥ n + m, then a similar argument, i.e., taking the determinant of the first two
upper right d × d submatrices of the pencil, proves the claim.

Step 4 Finally, Sc
(10)⊆ (

Ŝ ∩ S̃
)c in conjunction with (14) yields genericity of the

set S.
This completes the proof of the proposition. ��

If we consider stabilizability of systems described by differential-algebraic equa-
tion, then we are interested in the rank of the matrix [λE − A, B] for λ belonging to
the closed right half plane only.
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Proposition B.9 The set

S =
{
(E, A, B) ∈ ��,n,m

∣∣∀λ ∈ C+ : rk C[λE − A, B] ≥ d
}

is generic if, and only if,

d ≤ min {�, n + m} ∧ ¬(d = � = n + m
)
.

Proof �⇒ Note that S �= ∅ if, and only if, d ≤ min {�, n + m}. Assume d =
� = n + m. By the well-known Hurwitz criterion (see [8, pp. 339]), we find that
a polynomial whose coefficients do not have the same sign has at least one zero in
the closed right half plane. Consider the set of (E, A, B) ∈ �(n+m),n,m so that the
coefficients of det[sE − A, B] do not have the same sign. Then, this set is nonempty,
open and is included in Sc. Openness yields that Sc has a positive Lebesgue measure
and thus S is not generic Corollary A.5 (i).

⇐ This is a consequence of Proposition B.8. ��
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