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Abstract
This paper presents a novel trust-region method for the optimization of multiple 
expensive functions. We apply this method to a biobjective optimization problem 
in fluid mechanics, the optimal mixing of particles in a flow in a closed container. 
The three-dimensional time-dependent flows are driven by Lorentz forces that are 
generated by an oscillating permanent magnet located underneath the rectangular 
vessel. The rectangular magnet provides a spatially non-uniform magnetic field 
that is known analytically. The magnet oscillation creates a steady mean flow 
(steady streaming) similar to those observed from oscillating rigid bodies. In the 
optimization problem, randomly distributed mass-less particles are advected by the 
flow to achieve a homogeneous distribution (objective function 1) while keeping 
the work done to move the permanent magnet minimal (objective function 2). A 
single evaluation of these two objective functions may take more than two hours. 
For that reason, to save computational time, the proposed method uses interpolation 
models on trust-regions for finding descent directions. We show that, even for our 
significantly simplified model problem, the mixing patterns vary significantly with 
the control parameters, which justifies the use of improved optimization techniques 
and their further development.
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1 Introduction

The use of electromagnetic induction to manipulate electrically conducting fluids 
is common in industrial applications, most notably in metallurgy, where time-
dependent magnetic fields are used to generate a stirring motion inside a molten 
metal that is supposed to mix additives. A homogeneous distribution of these 
additives is desired since it usually has a strong influence on the quality of the 
final ingot. The electromagnetic forcing is then achieved by rotating magnetic 
fields that are, for example, generated by electromagnets (Eckert et  al. 2007; 
Davidson 2001; Ben-David et al. 2014). Permanent magnets offer an interesting 
alternative to resistive electromagnets since they do not require a continuous 
supply of electrical currents to generate the electromagnet’s magnetic field.

A possible scenario of generating a stirring motion inside a liquid metal 
is either by moving one or more permanent magnets with respect to the liquid 
metal (Prinz et al. 2016; Rivero et al. 2016; Beltrán et al. 2010) or by injecting an 
electric current that interacts with the magnetic field of a permanent magnet (Lara 
et al. 2017). Flows considered in the present manuscript are of the first type. In 
most cases, the length scale of the permanent magnet is small compared to the 
flow domain. Hence, induced Lorentz forces only affect a small fraction of the 
liquid. When the motion of the conducting fluid is driven by external forces, such 
as an applied pressure gradient, and passes a region of a non-uniform magnetic 
field, vorticity is generated, and the flow behaves similarly to hydrodynamic flow 
past a solid obstacle (Cuevas et al. 2006).

In general, the investigation of mixing processes in liquid metal flows is 
challenging. For experiments, one challenge lies in the opaqueness of the liquid 
metal, which precludes optical measurement techniques. There are additional 
dangers due to the reactivity and the elevated temperatures of many liquid 
metals. For numerical simulations that are used in the present work, the main 
difficulty is the computational demand, since such flows are usually three-
dimensional and time-dependent. Furthermore, the generated flow and, therefore, 
its stirring properties, depend on the particular configuration characterized, e.g., 
by the movement of the magnet, the geometry of the flow domain as well as the 
distribution and the strength of the magnetic field.

New contribution from engineering perspective In the present paper we study 
a relatively simple numerical model for mixing in a liquid metal layer that is 
stirred by a harmonically oscillating permanent magnet. The generated flows are 
laminar and time-dependent. Mixing in such flows can be described and analyzed 
by methods that have been developed in the research field of chaotic advection 
(Aref 2017). Although it would be interesting in its own right, we do not attempt 
to achieve a detailed understanding of the physical mechanisms and mathematical 
properties of the particular flows from the viewpoint of chaotic advection.

Instead, we are interested in an optimization of the stirring process. The goals 
are to obtain a relatively homogeneous distribution of an initial local cloud of 
Lagrangian particles across the layer with a minimal amount of work that needs 
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to be done for moving the permanent magnet. The control parameters are the 
oscillation amplitude and frequency as well as the magnet field strength.

New contribution from optimization perspective A function evaluation is only 
possible by a time consuming simulation which can be considered as a black-box. 
Owing to that, the application of classical optimization methods such as gradient 
based descent methods is not possible. To reduce the computational work we 
propose a new algorithm based on the idea of trust regions (Conn et  al. 2000). 
The algorithm is based on Thomann and Eichfelder (2019b). There, a trust-region 
based solver for multi-objective optimization problems was proposed which was 
developed for so called heterogeneous problems. This means that one of the 
objective functions is expensive in terms of computational time, while the others 
are inexpensive, i.e. given analytically.

The algorithm used in this work differs in two aspects. First, we apply it 
for two expensive functions rather than to a cheap and an expensive objective. 
This has only minor impact, as it only requires that the Taylor model used in 
Thomann and Eichfelder (2019b) for the cheap function has to be replaced by an 
interpolation model.

Second, we apply an acceptance test for the candidates for the next iterate. 
This change in the formulation of the algorithm seems to be small at first glance. 
However, it has a strong impact. From the practical point of view it guarantees a 
strict descent in each objective function from some starting configuration, which is 
of interest especially for our application. From the theoretical point of view, the new 
test is stronger, as will be shown. Nevertheless, the theoretical convergence proof 
from Thomann and Eichfelder (2019b) does not apply directly. Some modifications 
are necessary. The changes compared to the proof of the original version as 
presented in Thomann and Eichfelder (2019b) are detailed in about five pages 
in Chapter  4.6.3 of the dissertation (Thomann 2019) of the second author of the 
present work. These proofs are technical and require several additional results and 
assumptions. For that reason, we present the algorithm and the main ingredients in 
this paper only and refer to Thomann (2019) for the details of the proof of the new 
algorithm as presented here.

Related literature In the literature there are a lot of solution methods for multi-
objective optimization problems. One common approach is scalarization (Miettinen 
1999), i.e. to formulate a parameter dependent single-objective replacement 
problem. By using a weighted sum approach for such a scalarization we might loose 
the property of a strict descent in each objective function. With the �-constraint 
method we loose the structure of our original problem which has box constraints 
only. For these reasons we will not scalarize our optimization problem.

Other methods for multi-objective optimization problems, like the generalized 
steepest descent method (Drummond and Svaiter 2005 ; Fliege and Svaiter 2000) or 
the generalized Newton method (Fliege et al. 2009) require derivative information. 
However, in our setting the derivatives are not available with reasonable efforts. 
There are also derivative-free methods such as direct search (Audet and Dennis 
2006; Custodio et al. 2011; Audet et al. 2008). This approach only needs function 
values. As our objectives are supposed to be smooth, we propose here to use 
model functions on trust regions to reduce the numerical effort. For heterogeneous 
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problems, this was advantageous in the considered test instances, see Thomann and 
Eichfelder (2019a).

There are also other trust-region based multi-objective optimization solvers for 
expensive functions, see Ryu and Kim (2014). Trust region methods can easily be 
adapted for expensive functions as the original Taylor models can be replaced by 
interpolation models of the functions. The algorithm in Ryu and Kim (2014) is for 
bi-objective problems. It uses a scalarization technique and approximates the Pareto 
front, which is the set of optimal solutions in the image space. As the evaluation of 
the objective functions is very expensive in our setting, we abstain from finding an 
approximation of the Pareto front. Our approach is limited to improving a starting 
value toward one optimal solution.

For an approximation of the whole Pareto front, next to direct search approaches 
(see above), there exist also algorithms based on the idea of Bayesian global 
optimization and meta-model-assisted evolutionary computation. The paper 
Ponweiser et  al. (2008) provides a good review and introduction to meta-model-
assisted multiobjective algorithms which are based on the idea of so-called efficient 
global optimization, as for instance ParEGO (Knowles 2006). The significant 
difference to these approaches is that we will determine models locally, change 
the local area on which these models are calculated, and improve the models by 
choosing smaller local regions. The cited approaches determine the model over the 
full parameter space and improve the model towards promising or less explored 
regions of the parameter space, where the models are built using Gaussian processes 
or Kriging, cf. Emmerich et al. (2001). For a comparison of trust region methods 
with such surrogate methods we refer to Brockhoff et al. (2020).

Our setting contains a deterministic simulation, i.e. for each parameter choice 
and for various simulation runs at the same parameters, we will always obtain the 
same function value. In case of a Monte Carlo simulation this would be different and 
the function values will differ for different simulation runs. Then different methods 
would be necessary, see for instance Hunter et al. (2019).

As already mentioned above, we do not aim at approximating the Pareto front. 
Instead, we present an algorithm with a mathematical convergence guarantee, but 
also with a guarantee of an iterative improvement from a good starting guess. One 
reason are the time consuming simulation runs which are required for one function 
evaluation. As for example discussed in Emmerich et  al. (2001), for a simple test 
instance with just two parameters and two objective functions with a very similar 
structure already 25 function evaluations are necessary. A good approximation of 
the Pareto front was generated, but no proof of the quality of the found solutions is 
possible. It is well known that the number of function evaluations scales up for an 
increase of the number of parameters. We required instead 62 function evaluations 
for the real-world problem with three parameters, but the algorithm stopped which 
is a guarantee of having found a Pareto critical point and thus a candidate for being 
efficient locally.

Structure of the manuscript The manuscript is structured as follows. First, we 
introduce the multi-objective optimization problem in Sect. 2. We give the basic 
definitions and present the new optimization procedure  in Sect. 3. In particular, 
we discuss the used acceptance test. In Sect.  4 we describe the application 
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problem in detail, together with the physical model including the governing 
equations and the used numerical methods to solve them. Moreover, the general 
structure of the flow is briefly described. In Sect. 5 we present the results of the 
optimization. Concluding remarks are given in Sect. 6.

2  The multi‑objective optimization problem and basic definitions

In this paper we study an application problem which can be modeled as an 
optimization problem with three variables, also called parameters. With � ∈ ℝ

3 
we will denote the parameter vector, i.e.

where the meaning of � , KC and Ha will be explained in Sect. 4.
The two objective functions f1 ∶ ℝ

3
→ ℝ and f2 ∶ ℝ

3
→ ℝ will have to be 

minimized w.r.t. box constraints. The feasible set for the main calculations is

The intervals for the parameters are chosen in a way that the numerical simulations 
can be reproduced by experiments under conventional laboratory conditions.

The considered multi-objective optimization problem (MOP) is then as 
follows:

where we will choose as first objective function the quality of the mixing, i.e. 
f1(�) = �(�) , and for the second objective function the work to be done by the 
magnet, i.e. f2(�) = W(�) . For both functions smaller values will mean better 
values, i.e. we are minimizing both functions. For the quality of the mixing this will 
be realized by a so-called mixing norm which should be as small as possible. The 
interpretation and calculation of these two objective functions will be given in detail 
in Sect. 4.

In the following, we give all definitions and results for the specific formulation 
(MOP) as we need them only for this setting. Naturally, the definitions extend 
to more than three parameters and to more than two objective functions. The 
algorithm which we are going to discuss attempts to find efficient solutions of 
(MOP). Recall that a feasible point � ∈ � is efficient for (MOP) if there is no 
other feasible point �� ∈ � with fi(��) ≤ fi(�) , for i = 1, 2 and with fj(��) < fj(�) 
for at least one j ∈ {1, 2}.

In fact, the algorithm cannot guarantee to find an efficient solution of (MOP). 
The algorithm generates a sequence of points where the accumulation points sat-
isfy some necessary optimality condition for a point to be efficient. But note that 
points which satisfy necessary optimality conditions might also not be efficient 

(1)� =
(
p1, p2, p3

)⊤
= (𝛽, KC,Ha)⊤ ,

(2)� = {� ∈ R3 ∣ 100 ≤ p1 ≤ 1000, 1 ≤ p2 ≤ 5, 10 ≤ p3 ≤ 40} .

(MOP)min
�∈�

(
f1(�), f2(�)

)T



 S. Prinz et al.

1 3

or only locally efficient. For more details we refer to Thomann and Eichfelder 
(2019b). The necessary optimality condition is formulated in the next definition:

Definition 1 Let fi ∶ ℝ
3
→ ℝ , i = 1, 2 , be continuously differentiable. A point 

� ∈ ℝ
3 is called Pareto critical for (MOP) if for every vector � ∈ ℝ

3 there exists an 
index j ∈ {1, 2} such that ∇fj(�)⊤� ≥ 0 holds.

This concept is a generalization of the stationarity notion for single-objective 
optimization problems. Numerical methods for single-objective optimization 
typically also do not guarantee to find a globally optimal solution but only a point 
which satisfies some optimality conditions which are necessary for local optimality. 
Pareto criticality is a necessary condition for local weak efficiency, see for example 
Fliege and Svaiter (2000), and thus for efficiency as defined above.

The following lemma gives a characterization of Pareto critical points. It stems 
from multi-objective descent methods (Drummond and Svaiter 2005; Fliege et  al. 
2009; Fliege and Svaiter 2000). It is important for the description of the convergence 
of the proposed algorithm.

Lemma 1 Let fi ∶ ℝ
3
→ ℝ be continuously differentiable functions for all i = 1, 2 . 

For the function

the following statements hold. 

 (i) The mapping � ↦ �(�) is continuous.
 (ii) It holds �(�) ≥ 0 for all � ∈ ℝ

n.
 (iii) A point � ∈ ℝ

3 is Pareto critical for (MOP) if and only if it holds �(�) = 0.

3  The trust‑region based solver for expensive multi‑objective 
optimization

In this section we describe the numerical approach for solving problems of the type 
(MOP). Recall that the difference to the algorithm presented in Thomann and Eich-
felder (2019b) is that it works for the setting that all objective functions are expen-
sive (and not that at least one is analytically given as assumed there). In addition, we 
make use of another trial point acceptance test. The proposed method can also be 
easily applied to more than two objective functions. As written, it assumes that all 
objective functions are expensive, i.e. not analytically given, and that function val-
ues are only accessible by time-consuming black-box simulations. Nevertheless, the 
approach assumes that the objective functions are smooth, i.e. differentiable, even 

(3)𝜔(�) ∶= −min
‖�‖≤1max

i=1,2
∇fi(�)

⊤�
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though derivatives will neither be calculated nor approximated. The latter would be 
too time consuming as many additional function evaluations are required for numeri-
cal differentiation.

The algorithm can also be applied to problems with a larger dimension of the 
parameter space. This would increase the number of function evaluations which 
will be required for building models of the objectives, see the next subsection for 
details. For the feasible set we have much stricter assumptions. The algorithm is 
developed for unconstrained problems and can be applied to problems with lower 
and upper bounds of the variables. However, more complex constraints cannot be 
handled.

To solve the optimization problem (MOP), we use an iterative algorithm which is 
based, as already mentioned, on the algorithm in Thomann and Eichfelder (2019b), 
see also Thomann (2019). The first modification compared to the algorithm there is 
that we use interpolation models for both objective functions, and we built the mod-
els by using a joint base of interpolation points. This also allows us to handle prob-
lems with two objective functions where function values are obtained by one simu-
lation run. Another aspect is the trial point acceptance test for a new iterate, which 
guarantees a strict descent in each objective function. We discuss it in Sect. 3.3.

3.1  Description of the method

Let k ∈ ℕ be an iteration index and �k ∈ ℝ
3 the current iteration point, i.e., we 

also have done a simulation of the fluid flow problem with parameter vector �k . In 
every iteration the computations are restricted to the local sphere

called trust region defined by the current iteration point �k , a radius 𝛿k > 0 , and 
the Euclidean norm ‖⋅‖ . The objective functions f1 and f2 are replaced by model 
functions mk

1
,mk

2
∶ ℝ

3
→ ℝ , in every iteration k. For both functions quadratic 

interpolation models based on Lagrange polynomials are used that satisfy the 
interpolation conditions

We used quadratic models in our implementation as recommended for small num-
bers of parameters. For more than 10 parameters, linear models need much less 
function evaluations to be built, see Table 1, which is then advantageous even while 

Bk ∶=
{
� ∈ ℝ

3 ∣
‖‖‖� − �k

‖‖‖ ≤ �k

}

f1(�
k) = mk

1
(�k) and f2(�

k) = mk
2
(�k) .

Table 1  Function evaluations 
for computing one model 
function depending on the 
number of variables

Number of parameters 2 3 4 5 10 20 30 40 50

Quadratic model 6 10 15 21 66 231 496 861 1326
Linear model 3 4 5 6 11 21 31 41 51
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these models are less accurate. Thus we need 10 function evaluations to built one 
quadratic model. But in future iterations, interpolation points can often be reused. 
This reduces the amount of function evaluations per iteration significantly.

Then, a search direction is computed by so-called local ideal points 
�k = (qk

1
, qk

2
)⊤ ∈ ℝ

2 which use the individual minima of the model functions, i.e.

This guarantees a descent for the model functions and, depending on the quality of 
the approximations, also for the original functions. Thus, the aim is to move as far 
as possible –as far as the trust region Bk allows– in this search direction �k . This is 
done by solving the auxiliary optimization problem

The optimal solution is denoted by (tk+, �k+)⊤ . The newly generated point �k+ 
is accepted or discarded based on a comparison of the model behavior with the 
original functions. The algorithm produces a sequence of iterates that converges to a 
Pareto critical point.

The criterion for deciding whether a newly generated point is discarded or 
not, i.e. the trial point acceptance test, differs from the criterion in Thomann and 
Eichfelder (2019b). As can be seen from the numerical experiments with this 
algorithm provided in Thomann and Eichfelder (2019a, Fig.  11), the original 
acceptance test does not necessarily guarantee a descent for both objective 
functions in each iteration. However, from a practical point of view it is better to 
improve both objective functions from some good starting guess. Therefore, we 
use another acceptance test in Sect. 3.3.

The algorithm uses a combination of three stopping criteria. Since the 
objective functions are expensive, the number of function evaluations is limited 
and the algorithm stops if the maximum allowed number is reached. Besides, 
it is proved in Thomann and Eichfelder (2019b) that the trust region radius �k 
converges to zero if the iteration points �k converge to a Pareto critical point. 
Thus, the algorithm stops if the radius �k is smaller than a pre-defined constant 
𝜀 > 0 . The third stopping criterion also characterizes the behavior of approaching 
a Pareto critical point and is based on the accuracy of the model functions mk

1
 , mk

2
 

and the step size that is obtained by solving the auxiliary optimization problem 
in Eq.  (4). We did not insert these stopping criteria in the representation of the 
algorithm in Algorithm 1 for a better readability. The output of the algorithm is 
then the last iteration point �k , with additional information as for instance the size 
of the last trust region.

Running the algorithm produces one Pareto critical point in case all assumptions 
as detailed in Thomann (2019) (and adapted for two expensive functions, which is 
straightforward) are satisfied. Due to the design of the algorithm different starting 

qk
1
= min

�∈Bk

mk
1
(�) and qk

2
= min

�∈Bk

mk
2
(�).

(4)

min t

s.t. f1(�
k) + t(f1(�

k) − qk
1
) − mk

1
(�) ≥ 0

f2(�
k) + t(f2(�

k) − qk
2
) − mk

2
(�) ≥ 0

t ∈ ℝ, � ∈ Bk.
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points result in general in different Pareto critical points. For the mixing problem, 
it cannot be expected to approximate the whole set of efficient points within a 
reasonable amount of time. This is due to the expensive simulation-given functions.

3.2  Algorithm

For the full algorithm see Algorithm 1.

The function �k
m
∶ ℝ

3
→ ℝ is defined by �k

m
(�) = maxi=1,2 m

k
i
(�) and will be 

explained in the next subsection.

3.3  Trial point acceptance test

Step 3 of Algorithm 1 is the trial point acceptance test in which it is decided if �k+ is 
accepted as next iteration point. In case it is not accepted, the trust region radius is 
reduced for the next iteration and the model functions are updated to improve their 
accuracy.

For the trial point acceptance test, the function values mk
i
(�k+) , i = 1, 2 , of the 

model functions are compared to the function values fi(�k+) , i = 1, 2 , of the original 
functions, i.e. the prediction of the model functions is compared to the actual 
behavior of the original functions.

In the single-objective trust region approach with a scalar valued objective func-
tion g ∶ ℝ

3
→ ℝ this is realized by considering the quotient
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The model function of g is denoted by mg ∶ ℝ
3
→ ℝ . If this quotient is larger than 

a given nonnegative constant, the trial point is accepted. This criterion can be 
transferred to multi-objective trust region approaches by applying it to the maximum 
over all functions. This was done in Thomann and Eichfelder (2019b) and is based 
on Villacorta et al. (2014):

with the functions

The trial point �k is then accepted if �k
�
≥ �1 holds with 𝜂1 > 0.

Due to the determination of �k+ by (4) it holds mk(�k+) ≤ mk(�k) in all iterations 
k ∈ ℕ . Therefore, we conclude

for all k ∈ ℕ . Thus, if 𝜌k
𝜙
< 0 holds, it follows 𝜙(�k) − 𝜙(�k+) < 0 . As described in 

Thomann and Eichfelder (2019b), this guarantees only a descent for at least one 
objective function.

Another possibility to extend the trial point acceptance test from single-objective 
optimization to multi-objective optimization is to formulate it for every function 
individually, that is by considering the quotients

If both quotients are larger than a given nonnegative constant, the trial point is 
accepted. This trial point acceptance test is used for example in the trust region 

g(�k) − g(�k+)

mg(�
k) − mg(�

k+)
.

�k
�
=

�(�k) − �(�k+)

�k
m
(�k) − �k

m
(�k+)

�(�) = max
i=1,2

fi(�) and �k
m
(�) = max

i=1,2
mk

i
(�) .

�k
m
(�k) − �k

m
(�k+) ≥ 0

(5)�k
i
=

fi(�
k) − fi(�

k+)

mk
i
(�k) − mk

i
(�k+)

for i = 1, 2.

Fig. 1  Trial point acceptance 
test with �k

�
 and �k

i
 , i = 1, 2
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approach from Ryu and Kim (2014). Using the acceptance test with �k
i
 , i = 1, 2 , 

guarantees a descent for every objective function. Thus, the latter acceptance 
criterion is stricter. This is proved in Lemma 2 below.

The difference is schematically illustrated in Fig.  1. Two areas are depicted: 
the gray shaded area includes the images of all points that would be accepted by 
the strict version of the acceptance test, as for example p̂ . This area is a subset of 
the area contoured by dashed lines. This larger region contains the images of 
those points that would be accepted by the trial point acceptance test defined by 
�k
�
.

Lemma 2 Let k ∈ ℕ be an arbitrary index, �1 ∈ (0, 1) a constant and let the interpo-
lation condition hold. If �k

i
≥ �1 for all i ∈ {1, 2} , then it holds �k

�
≥ �1.

Proof Let �k
i
≥ �1 hold for i = 1, 2 . According to the interpolation condition, it holds 

f (�k) = mk(�k) for all k ∈ ℕ . This implies together with the definition of �k
i

for i = 1, 2 . This is equivalent to

for i ∈ 1, 2 . Since it holds �1 ∈ (0, 1) , fi(�k) ≤ �(�k) and mk
i
(�k+) ≤ �k

m
(�k+) for 

i = 1, 2 , it follows that

for i ∈ 1, 2 . Let j ∈ {1, 2} be the index with fj(�k+) = �(�k+) . Then it holds

It follows from the interpolation condition that

From the definition of �k
�
 it then follows that �k

�
≥ �1 .   ◻

Since the version of the trial point acceptance test using �k
i
 , i = 1, 2 , is stricter 

than the version using �k
�
 , it is possible that not as many iterations are successful 

when using �k
i
 , i.e. the trial point is not accepted as often as with �k

�
 . Thus, the 

softer acceptance test can save function evaluations. However, we lose the 
property of improving the starting situation for each objective. Thus we use here 
the strict test.

With this strict version of the trial point acceptance test the convergence 
results from Thomann and Eichfelder (2019b) can be transferred with slight 
modifications. The sufficient decrease condition for the function �k

m
 has to be 

replaced by an analogous assumption for the model functions mk
i
 for all i ∈ {1, 2} . 

fi(�
k) − fi(�
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The remaining assumptions are quite technical but typical for convergence results 
for trust-region based methods with expensive functions. The required adaptions 
and modifications are discussed in detail in section  4.6.3 of the dissertation 
Thomann (2019). As describing the changes in the proof due to the new 
acceptance test is not possible without giving all assumptions and details of the 
full proof, we omit it here and refer instead to Thomann (2019, Subsection 4.6.3). 
The result is that the algorithm generates a sequence of iterates 

{
�k
}
k
 with

If the sequence 
{
�k
}
k
 has accumulation points, then all these points are Pareto 

critical for (MOP).

4  Description of the application

In this section, we describe the application problem and the numerical calculation of 
the objective functions in detail.

4.1  Physical model

Figure 2 shows an illustration of the present problem. The origin of the coordinate sys-
tem is the geometric center of the liquid metal layer. The length scale L is the thickness 
of the liquid metal layer. In the following, we specify dimensions based on this scale, 
i.e. the thickness Lz = 1 . The quadratic footprint of the box is 3 × 3 for Lx × Ly . The 
rectangular permanent magnet has the dimensions of 1 × 1 × 0.5 for Lm,x × Lm,y × Lm,z . 
It is uniformly magnetized along the z-direction. The center of the permanent magnet is 

lim
k→∞

�(�k) = 0.

Fig. 2  Sketch of the present problem—the domain of the liquid metal cell is Lx × Ly × Lz = 3 × 3 × 1 ; a 
permanent magnet of size Lm,x × Lm,y × Lm,z = 1 × 1 × 0.5 oscillates in the x-direction with neutral posi-
tion x = 0 . The gap between the permanent magnet and the bottom of the liquid metal layer is 0.25; at 
t = 0 , 2500 Lagrangian particles are seeded in subsection with the dimension 1 × 1 × 0.5 in the center of 
the liquid metal layer
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at zm = −1 , i.e. the gap between the bottom of the liquid metal layer and the surface of 
the magnet is 0.25. At t = 0 , the position of the magnet is xm(t = 0) = ym = 0 and Np 
mass-less particles are randomly seeded in a rectangular subsection of the domain with 
the dimensions 1 × 1 in the horizontal, and 0.5 in the vertical direction. The subsection 
is centered in the liquid metal layer. The magnetic field is normalized by B, which is the 
maximal value in the middle plane of the computational domain. All boundaries �  are 
electrically insulating, i.e., the electrical current density vector field � has a vanishing 
normal component � ⋅ � = 0 on �  , where � is the surface-normal vector. The velocity 
vector field � satisfies the no-slip condition � = 0 on � .

For low magnetic Reynolds numbers, the quasi-static approximation of the full 
magnetohydrodynamic equations can be applied (Davidson 2001). We define the 
oscillation period

as time scale and the maximal velocity

as velocity scale based on the amplitude A of the oscillation. Introducing further B, 
�U2 , and LUB as scales for the magnetic field, pressure ( � is the mass density of the 
fluid), and electric potential, respectively, the full set of non-dimensional equations 
reads

where

Equations (9) are the incompressible Navier–Stokes equations for the three-
dimensional velocity vector field, which is generated by the Lorentz force � × � . 
Equation (10) is Ohm’s law for a moving conductor with the induced electric field 
represented by the gradient of the scalar electric potential in accordance with the 
quasistatic approximation. The condition (11) ensures that the current density field 
is solenoidal. The quantity p denotes the pressure field and � the electric potential. 

(6)T =
1

f
=

2�

�

(7)U = �A

(8)∇ ⋅ � = ∇ ⋅ � = 0,

(9)1

KC

��

�t
+ (� ⋅ ∇)� = −∇p +

1

Re
∇2� +

Ha2

Re
(� × �),

(10)� = −∇� +
((
� − �m

)
× �

)
,

(11)∇2� = ∇ ⋅

((
� − �m

)
× �

)
,

(12)�m(t) = xm(t)�x, xm(t) = xm,0 +
KC

2�
sin(2�t),

(13)�m(t) = um(t)�x, um(t) = cos(2�t).
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The quantities �m(t) and �m(t) denote the position and the velocity of the permanent 
magnet at time t, respectively. The non-uniform magnetic field � is computed 
using an analytical expression presented in Furlani (2001). Note that the induction 
[i.e., Eqs.  (10) and (11)] results from the relative motion between the fluid and 
the permanent magnet. More details on the derivation can be found in Prinz et al. 
(2016). In Eq. (9), the following three non-dimensional parameters

occur. These are the Reynolds number Re , the Keulegan–Carpenter number KC , 
and the Hartmann number Ha . The quantities � and � in Eq. (14) are the kinematic 
viscosity and the electrical conductivity. A further useful parameter is the interaction 
parameter N (also called Stuart number). It characterizes the strength of the Lorentz 
force relative to inertial forces and is defined by

In addition to the magnet motion one has to specify its duration. One could take 
a fixed number of cycles but this would imply a change of the duration with the 
frequency for a given liquid and vessel geometry. We have therefore decided to limit 
the duration of the stirring to 10% of the viscous diffusion time, i.e., 0.1 L2∕� , which 
does not depend on the frequency. Based on the period T, the non-dimensional 
duration is

where

denotes the frequency parameter (Troesch and Kim 1991). It is also useful later on 
to define time in units of the duration, i.e.

Here, the tilde indicates proportionality to the viscous scale L2∕� . The conversion 
of the physical model into a dimensionless form is a typical procedure in continuum 
mechanics and dynamical systems theory. In this way one reduces the number of 
parameters such as viscosity, conductivity, oscillation frequency, length, magnetic 
field strength to the essential minimum, i.e. one retains those whose effect cannot be 
represented by a scaling factor. Note that the non-dimensional parameters typically 
represent the ratio of competing physical effects, e.g. inertia forces to friction forces 
for the Reynolds number Re.

(14)Re =
UL

�
, KC =

2�A

L
, Ha = BL

√
�

��

(15)N =
Ha2

Re
=

B2L�

�U
.

(16)Tmax =
0.1L2

T�
= 0.1�,

(17)� =
Re

KC
=

fL2

�

(18)t̃ =
t

Tmax

.
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The first objective of the optimization is to generate a well-mixed particle dis-
tribution. To quantify the mixing process, we introduce a mixing norm � accord-
ing to

This mixing norm should be as small as possible for a good mixing quality, hence we 
minimize it. For other norms in a Brownian particle cloud, we refer to Okabe et al. 
(2008). To maintain a large particle to cell ratio, we compute � on an equidistant 
mixing grid consisting of 6 × 6 × 3 rectangular cells in the x, y, and z-direction, 
respectively. In Eq. (19), M denotes the total number of cells (here M = 108 ), Ni 
denotes the number of particles in cell i of the mixing grid, and Np is the total 
number of Lagrangian particles (here Np = 2500).

The second objective function is the work W = ∫ � ⋅ d� done by the permanent 
magnet on the flow over the duration of the magnet motion. The force is the total 
Lorentz force on the flow. Non-dimensionalization of W needs to be done with care 
since time and velocity scales depend on the magnet motion. For a comparison 
between different frequencies and amplitudes the reference unit for W should be 
independent of A and f. Since the magnet displacement is only in x, d� = �xumKCdt . 
We therefore obtain the non-dimensional expression

for the work in units �L�2 , where

is the integral of the x-component of the non-dimensional Lorentz force density.

4.2  Numerical method for objective function evaluation

The governing equations are solved by a code which is adapted from Krasnov 
et al. (2011). The code was extensively used to perform DNS and LES of turbulent 
magnetohydrodynamic shear flows in various setups (Zikanov et al. 2014; Krasnov 
et al. 2012; Prinz et al. 2018; Prinz et al. 2019). The equations are discretized on 
a structured mesh by a second-order finite-volume scheme within a collocated 
variable arrangement following the definitions of Morinishi et  al. (1998). The 
incompressibility condition is incorporated by a standard projection method. The 
elliptic problems for pressure p and electric potential � are solved by adapting 
the FishPack libraries (Adams et  al. 1999). To adequately resolve the thin 
magnetohydrodynamic boundary layers, the computational mesh can be refined in 
vertical (z) direction by using a coordinate transformation based on the hyperbolic 

(19)� =
1

M

√√√√
M−1∑

i=0

(
Np

M
− Ni

)2

.

(20)W = Ha2ReKC∫
Tmax

0

um(t)Fx dt,

(21)Fx = ∫
1∕2

−1∕2 ∫
Ly∕2

−Ly∕2
∫

Lx∕2

−Lx∕2

(� × �)x dx dy dz
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tangent, which transforms the uniform coordinate � to the non-uniform coordinate 
z, i.e.

where � is a constant that determines the grid-clustering. To avoid particle 
communication, the parallelization is based on shared-memory parallelization 
(OpenMP) solely. The particles are advected with a second-order Euler scheme; 
trilinear interpolation is used to obtain the velocity field at the Lagrangian 
coordinates.

All simulations are conducted on a mesh with 642 equidistantly spaced grid 
points in both horizontal directions (i.e., in the x and y-direction), and 32 grid points 
resolve the vertical direction while � from Eq. (22) is set to 1.0 to better resolve 
the Hartmann boundary layer. Furthermore, all simulations are initiated from a 
quiescent state.

4.3  General structure of the flow

For a better understanding of the mixing process, it is useful to consider some 
characteristics of the obtained laminar flows. We conducted three series of 
simulations where only one parameter is varied. The remaining parameters are kept 
constant at values that fall into the range of the optimization problem, as described 
below. The parameters are

– � = 100… 1000 , KC = � , and Ha = 35,
– � = 500 , KC = 1… 5 , and Ha = 35 , as well as
– � = 200 , KC = 3 , and Ha = 10… 40.

The flow is evaluated after 50 periods.
Figure 3 shows the dependence of the integral kinetic energy (one half of ⟨Ek⟩T , 

where Ek =
1

V
∫ (

u2
x
+ u2

y
+ u2

z

)
dV  and ⟨⋅⟩T denotes averaging over one period) on 

the varied quantities. Figure  3a shows a decrease of the kinetic energy with 

(22)z(�) =
tanh(��)

tanh(�)
,

(a) (b) (c)

Fig. 3  Dependence of the kinetic energy on the variables of the optimization problem—a dependence on 
� for KC = � and Ha = 35 , b dependence on KC for � = 500 and Ha = 35 , and c dependence on Ha for 
KC = 3 and � = 200 ; ⟨⋅⟩T denotes averaging over one period.
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increasing � . This behavior is, in general, similar to an oscillating boundary layer in 
the hydrodynamic case and resembles the reduced penetration depth for increasing 
frequencies. Furthermore, the Stuart number N, i.e., the ratio between Lorentz to 
inertial forces, decreases as � increases when KC and Ha remain fixed.

Figure  3b shows that, for the studied parameters, the kinetic energy first 
increases almost linearly with increasing KC , reaches a maximum for KC ≈ 4 , 
and decreases for KC ≥≈ 4 . The non-monotonic on KC is a geometrical effect, 
i.e., the side-walls of the computational domain affect the evolution of the 
flow. To ensure that this effect is not due to a change in the flow structure, we 
computed the same parameters on a larger domain (not shown) resulting in a 
purely monotonic increase of ⟨Ek⟩T for KC = 1… 5 . Figure 3c shows a monotonic 
increase of ⟨Ek⟩T for increasing Ha.

For the chosen parameters, the instantaneous flow structure behaves similarly 
to that described by the two-dimensional numerical simulations of Beltrán et al. 
(2010), i.e., the flow is characterized by a symmetric pair of vortices changing 
sign in each half cycle. A more detailed description of the flow and an analysis of 
its mixing properties by concepts of chaotic advection (Aref 2017) is beyond the 
scope of the present manuscript.

However, an important mechanism, not shown in Beltrán et al. (2010), is the 
presence of the steady-streaming motion revealed by time-averaging the three-
dimensional flow field. From classical hydrodynamics, it is known that the 
steady-streaming motion provides an efficient mechanism for mixing processes 
(Riley 2001; Kumar et al. 2011). For the present flows, a steady streaming motion 
is detected that shows substantial similarity to the streaming motion reported for 
an oscillating sphere (Otto et al. 2008).

Figure  4 shows the steady-streaming motion visualized by three-dimensional 
streamlines for � = 100 , KC = � , and Ha = 40 , viewed from the y-direction 
(Fig. 4a), and viewed from the x-direction (Fig. 4b). For this, the velocity field 
is time-averaged over one period after transitional effects vanished. The three-
dimensional flow motion consists of a pair of vortices, mainly aligned in the 

Fig. 4  Steady streaming motion visualized by three-dimensional streamlines for � = 100 , KC = � , and 
Ha = 40—a viewed from the y-direction; b viewed from the x-direction
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y-direction. The streaming motion affects the complete flow domain and, as 
shown later, appears to play a significant role in the spreading of the Lagrangian 
particles.

5  Results from the optimization

In the following we collect the results of the numerical experiments on the 
optimization problem as well as the results of the new numerical optimization 
approach described in Sect. 3.

5.1  Preliminary study with two control parameters

To show that the optimization problem is well-defined, we performed a test where 
two variables, � and KC , are varied while the Hartmann number is kept constant at 
Ha = 30 . The simulations are performed using the same number of grid points as 
in Sect. 4.3. Since only two variables are considered, the problem can be addressed 
and visualized by a systematic analysis of the parameter space. Both variables, � 
and KC , are chosen to match the boundaries that are also used in the optimization 
problem in the next subsection, i.e., 100 ≤ � ≤ 1000 and 1 ≤ KC ≤ 5 . This param-
eter space is discretized by a 10 × 10 grid. For simplicity, the results of the objective 
functions are normalized by their maximal values over the grid, i.e., �∗ = �∕�max and 
W∗ = W∕Wmax , where �max = 74.95 and Wmax = 766.64.

Figure  5 shows contours of the normalized objective functions. Both objective 
functions are competing, i.e., the mixing norm decreases for parameters where the 
work done by the permanent magnet increases.

Figure 6a shows the approximated efficient solutions. They were found by plotting 
the values �∗ and W∗ for all grid points and retaining a set that visually corresponds 
to a smooth lower boundary.

Figure 6b shows the values of both objective functions plotted against the Stuart 
number N. The intersection between both functions happens for a Stuart number of 

Fig. 5  Normalized objective functions in a two-dimensional discretized parameter plane—a the mixing 
norm (Eq. 19), and b the work done by the permanent magnet (Eq. 20). Note that the visualized contours 
are interpolated. Pareto-optimal points are added as filled circles to both panels
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about unity. For N ≥ 1 , the work required to move the permanent magnet rapidly 
decreases, while the mixing norm increases.

Overall, the results from the two-dimensional discretized parameter plane show 
that the present problem is well suited for a multivariate optimization study, as 
conducted for three variables in the next section.

5.2  Results for three parameters

In addition to the frequency parameter � and the amplitude parameter KC , we 
now consider the strength of the magnetic field represented by the Hartmann 
number Ha as a control parameter.

For the optimization, we study an experiment where the geometry and the fluid 
properties are constant and frequency, amplitude and magnet strength can be 
varied as stated in Sect. 2. Hence, the corresponding non-dimensional quantities 
� , KC and Ha are the variables for the optimization problem. The two objective 
functions are � and W.

Fig. 6  Normalized objective functions in a two-dimensional discretized parameter plane. a Extracted 
efficient solutions in the image space are plotted as filled triangles. All other simulations as smaller cir-
cles. b The values of both objective functions plotted against the Stuart number N. Again we add all 
other simulations as open circles and squares in correspondance with the legend

Table 2  Values for selected feasible points of the optimization problem (MOP); rows 2–4 show the vari-
ables of the optimization � ; row 5 states the Reynolds number Re and row 6 the interaction parameter N. 
Values of the objective functions (normalized by the maximal value that was obtained in the optimization 
run) are given in rows 7 and 8

Starting pt. �(0) Solution �S Example �E Lowest �∗ Lowest W∗

� 710.00 375.78 1000.00 392.14 146.08
KC 3.00 3.54 5.00 4.42 1.00
Ha 40.00 37.33 15.88 39.98 22.07
Re 2130.00 1330.52 5000.00 1731.57 146.08
N 0.75 1.05 0.05 0.92 3.33
W

∗ 0.2505 0.1505 0.1648 0.2758 0.0017
�∗ 0.2504 0.2471 0.5571 0.1937 0.9928
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We performed optimization runs with different starting points. We did this 
for experimental reasons to learn about different outputs of our algorithm. The 
algorithm results each time in a single approximated efficient solution. Thereby, 
several runs resulted in –from a physical perspective– unsatisfactory solutions, 
such as very large � and small W (or vice versa). Albeit mathematically correct, 
these solutions do not allow meaningful physical interpretations. Hence, we only 
analyze the result of one optimization run for the starting point �(0) = (710, 3, 40) , 
see Table 2.

The choice of the starting point is motivated from the practical engineering 
perspective where a certain range for each of the three components of �(0) is possible 
in a concrete setup. p(0)

1
= � , the frequency parameter, and p(0)

2
= KC , the oscillation 

amplitude parameter, were chosen in the middle of the possible range sufficiently 
far away from the interval bounds. As the mixing is driven by an external magnetic 
field, the start with a stronger field is also reasonable. Note that there is no rigorous 
mathematical criterion that guided us here, but a reasonable procedure in the real-life 
application. For �(0) , the optimization algorithm called in a total of 62 simulations 
lasting in total 3477.6 hours of single processor CPU time. Similar or even longer 
computing times were required for the other runs that resulted in unsatisfactory 
solutions. All simulations were conducted on the computing cluster facility of TU 
Ilmenau.

Figure 7 shows the result of applying the proposed algorithm to the multi-objec-
tive optimization problem. Again, the values of the objective functions are normal-
ized by their maximal values that were obtained within the optimization run, which 
are 71.99 for �max and 1.32 × 103 for Wmax . Each black dot represents an individual 
simulation, i.e., an evaluation of the objective functions, for instance, to build a 
model of the objectives. Hence it can be seen that already for just three optimization 

Fig. 7  Results of the optimization run—image space; �(0) denotes the starting point, �S denotes the solu-
tion of the algorithm, and �E denotes a example point. The black dots are images of points to which the 
functions have been evaluated to built the models. (Color figure online)
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variables many function evaluations are necessary, even while we are using models 
of the functions. The starting point �(0) , the solution of the algorithm �S , as well as 
an example �E that will be used for the further discussion are highlighted.

The optimization run finds a set of variables that reduces the work done by the 
magnet by about 40% and improves the mixing efficiency slightly by about 1% 
compared to the values for the starting point �(0) . Thus both objective function val-
ues have been improved by the algorithm, which is a direct implication of the new 
acceptance test. All variables are significantly altered from �(0) = (710, 3, 40) to 
�S = (375.78, 3.54, 37.33) , see Table 2. The domain space is shown in Fig. 8.

The example point �E demonstrates the complexity since roughly the same 
amount of work required to move the permanent magnet results in very different 
mixing efficiencies. Consistently with the previous subsection, the optimization 

Fig. 8  Results of the optimiza-
tion run—domain space. �(0) 
denotes the starting point, �S 
denotes the solution of the 
algorithm, and �E denotes an 
example point. The black dots 
correspond to those in Fig. 7. 
(Color figure online)

Fig. 9  Temporal development of the mixing norm �∗ during the flow simulation for three different 
parameter vectors � , namely the starting point of the optimization �(0) , the solution �S of the optimization 
algorithm, and the example point �E
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run tends towards values of N about unity to provide a good mixing efficiency and 
reasonable work required to move the permanent magnet.

Further insight into the mixing processes is provided in Figs.  9 and 10, where 
time-dependent quantities are plotted. Figure  9 shows the temporal development 
of �∗ for three selected cases, i.e., the starting point �(0) , the solution obtained by 
the algorithm �S , and the example point �E . Starting from t̃ = 0 , �∗ decreases in all 
cases. For the mixing efficiency, the evolution between the starting point �(0) and the 
solution �S is similar. However, it should be kept in mind that this concerns only one 
of the two objective functions.

The three-dimensional particle distributions in Fig.  10 show that the particles 
mainly follow the streaming motion. When the mixing process is initiated, the par-
ticles follow the vortex pair aligned within the xz-plane and get transported towards 
the side-walls in x-direction. This is readily true for �(0) and �S . For �E the high value 
of � results in a reduced penetration depth of the oscillating fluid motion and, hence, 
the mixing process only takes places within the lower half space of the domain. At 
the end of the mixing process, i.e., at t̃ = 1.0 , the particles are well mixed in the 
solution �S of the algorithm.

Fig. 10  Results of the optimization run—temporal development of the particle distribution. �(0) denotes 
the starting point, �S denotes the solution of the algorithm, and �E denotes the example point
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6  Conclusion and outlook

We presented results from an optimization study of the mixing process in electrically 
conducting fluids, where Lorentz forces generate the flow due to an oscillating 
permanent magnet. We modified a trust-region based mathematical algorithm 
for multi-objective optimization such that we are able to handle two expensive 
functions. This makes the algorithm suitable for the presented three-dimensional 
optimization problem with time-dependent simulation based objective functions. We 
also adapted the original algorithm in such a way that it guarantees an improvement 
of the objective function values from a starting guess.

The present series of numerical simulations offer quantitative insights into the 
mixing processes. Our study serves as a proof-of-concept and may form the basis for 
further investigations on this problem. It also reveals the complex dependencies on 
the individual variables. Even for the present problem, which is still very simple, the 
objective functions vary over a wide range within narrow intervals of the variables. 
The solution of the optimization algorithm suggests a set of variables that improve 
the mixing efficiency by 1% and reduce the work done by the permanent magnet by 
40%. Most individual simulations that are of interest from an engineering point of 
view are characterized by interaction parameters N between 0.5 and 1.5.

The present study demonstrates the need for and the viability of advanced 
optimization methods for studying the mixing process in industrially relevant flows, 
like the stirring of additives within liquid metal melts during the solidification 
process. For this, the numerical model requires several refinements, i.e., finer grids, 
more particles, and larger flow domains, which should be improved in future works. 
Additional physical effects such as particle weight and drag, free surfaces and even 
solidification may also have to be added.

From the algorithmic point of view, the examination of further possible 
acceptance tests is of interest. For instance, the hyper volume, see Zitzler and Thiele 
(1998), with the starting point as reference point could be used. A hypervolume-
based expected improvement was already applied, e.g., in Emmerich et  al. (2001) 
for multiobjective Bayesian global optimization for determining an approximation 
of the full image set of efficient points in case of costly functions. Next to numerical 
experiments this new acceptance test would require a careful reevaluation of the 
convergence proof. In addition, one could examine combinations of methods based 
on surrogate models for global optimization with a local refinement based on a trust 
region approach to guarantee Pareto criticality.
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