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Some vices miss what is right because they are deficient, others because they are
excessive, in feelings or in actions, while virtue finds and chooses the mean.

Aristotle, Nichomachean Ethics
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Abstract

Light scattering in optical fibers was initially regarded as an unwanted loss mecha-
nism, which dampens the desired light transmission. But when used and controlled
appropriately, it can transform the optical fiber into a linear light source with
customizable emission properties: a side-emitting fiber. Besides their decorative
application in interior light design and glowing fabrics, they have several applications
in the volumetric illumination of turbid media, where light is extinguished on very
short distances due to scattering and absorption. This situation is encountered
in microalgae cultivation, laser dentistry, endoscopy antimicrobial application, or
interstitial photodynamic therapy. Here, their high surface-to-volume ratio increases
the extent of the illuminated volume, and their flexibility allows easy access even
into complicated geometries.

Side emitting fibers are light sources with special angular and longitudinal emission
characteristics, not generally encountered in other light sources. Even though several
types of these fibers are currently manufactured and applied, the effect of these
properties on the performance of the fiber has not been studied systematically, and
techniques to influence these properties are only scarcely known. As it turns out,
these light sources have an untypical angular emission behavior; though they emit
radiation in all directions like a diffuse light source, the emission is preferentially
directed forward concerning the light’s propagation direction in the fiber. This
is caused by the scattering mechanism, which is the underlying cause of the side
emission. Also, the fiber’s surface emission may decrease exponentially or vary along
the fiber.

In brief, this dissertation finds that the fiber’s surface emission influences the
generated light field close to the fiber, and the angular emission influences the field at
some distance to it. This means that volumetric illumination in turbid media will be
mostly concerned with the surface-emission property, while free space illumination
application will also be concerned with the angular property. The dissertation
then demonstrates how customized surface and angular-emission profiles can be
constructed from light scattering modifications, so-called scattering centers, that
can easily be generated in commercial optical fibers with focused femtosecond laser
irradiation. These modifications are refractive index distortion filled with stochastic
fluctuations. The dissertation shows how their number density in the fiber influences
surface emission, how their refractive index difference to the surrounding and their
volume influence their scattering power, and how the spectral distribution of their
fluctuations and their outer shape influence the angular emission.

The contribution of this dissertation to the literature on side-emitting fibers is
twofold; first, it will show how the fiber’s emission parameters, namely the longitu-
dinal and the angular emission of light, will influence the generated light field in the
proximity and the far field of the fiber for free-space propagation. Second, it will
show how to customize the emission properties by using femtosecond laser-generated
scattering centers: Arranging these building blocks can generate customized longitu-
dinal emission profiles. Furthermore, it will derive an electromagnetic model of the
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scattering behavior of these modifications to show how their stochastic properties,
shape, and volume affect the angular emission profile and their scattering power.
Building upon this knowledge, future work will be able to create side-emitting fibers
with customizable angular and longitudinal emission just by laser processing of
regular, commercial glass fibers without any further mechanical handling.
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1 Introduction

Bringing light into dark spaces is a common challenge encountered in densely popu-
lated urban environments to improve living conditions [1]. Here, cheap, abundant,
and healthy sunlight is blocked, scattered, or absorbed by concrete structures, lead-
ing to detrimental outcomes in well-being and psychological health due to low light
exposure for the inhabitants [2]. Similarly, in the microcosm, light can not penetrate
far into turbid media, where the light flux is extinct within a short distance due
to scattering and absorption. In bioreactors, for example, a thick algae suspension
blocks the light and thereby reduces the photosynthetically active volume [3]; a
similar situation is encountered for microbes in soil [4], or waste water treatment
[5]. In photomedical applications, this effect is caused by the highly scattering
and absorbing human tissue. This occurs, for example, in external [6] or internal
phototherapy [7] for cancer treatment as well as phototherapy of the neurological
disorder epilepsy [8]. In all cases, absorption and scattering extinct the light flux,
leading to overexposure close to the irradiated surface and underexposure shortly
beneath it.

A linear light source based on targeted light scattering in optical fibers is a
promising candidate for these applications, offering low cost and high flexibility.
Here, the fiber serves both to guide the light to the desired location and to diffuse
it there by scattering. In principle, it has two major advantages over conventional
electric light sources in these applications. First, as a fiber, it is thin, long and
flexible: it has a small footprint but a high surface-to-volume ratio. This increases
the actively illuminated volume even in difficult geometries, as many fibers can
be placed inside it simultaneously. Second, it separates the actual electric light
source from the emitter, making it chemically and electrically safe without expensive
sealing and eliminating thermal loads from the source. These properties make
these fibers ideal candidates for sensitive phonic applications in the human brain
[7, 8], or for a simple application in an urban environment, where they can be
used to transport sunlight from rooftops to low-lying areas and subways, providing
inexpensive daylight distribution.

This thesis is organized as follows, in the continuation of the introduction, the
basic theoretical concepts and problems concerning side-emitting fibers and their
generated light field are presented. In Chapter 2 the results of the experiments
and calculations from the publications are described and discussed separately for
each publication. The publications that make up the bulk of this dissertation are
presented in Chapter 3. In Chapter 4, the results and discussion are summarized with
emphasis on their application in the research and development of side-emitting fibers.
The german translation of the summary can be found in Chapter 5. Derivations
of all theoretical concepts used in the publications but not explicitly required for
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1 Introduction

understanding are provided in Appendix A. The two experimental methods used
primarily to characterize side-emitting fiber radiation are derived and described in
Appendix B.

1.1 Side-Emitting Fibers

Figure 1.1: Side-emitting fibers discussed in this thesis: (a) Commercial side-
emitting plastic optical fiber. (b) Side-emitting fiber tip with laser-
induced scattering centers in the fiber core. (c) Textile band with 19
side-emitting plastic optical fibers. Samples (a) and (c) were provided
by the company RAMMER GmbH in Ohorn, Germany. Sample (b)
was produced as a part of this dissertation.

Like optical fibers that guide light by total reflection from start to end, side-
emitting fibers guide light but emit some guided radiation through their cylindrical
outer surface, the transparent fiber coating. To an observer, they look like a
luminous, flexible, linear light source. Examples can be seen in Fig. 1.1. This section
introduces how they work in principle and what their important properties are for
application and adaptation.

The respective length of a side-emitting fiber can range from a few centimeters,
in the case of a glowing fiber tip, to several - or hundreds of - meters. When light is
coupled into the fiber end, the fiber lights up and appears to glow, but with varying
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1.2 The Evolution of Side-Emitting Fiber Research

intensity along the fiber depending on the fiber type. An exponential decrease in
brightness from beginning to end is very common in most commercial products.
This characteristic is called longitudinal dependency of the fiber (surface) emission
(Fig. 1.2a).

If we observe the luminous fiber from different angles, we will find that it is fainter
when we observe it at a low angle along the same direction as the light propagation in
the fiber. As we increase the angles with the fiber axis, it gets brighter and becomes
brightest when we observe it in the direction towards the fiber light coupling, where
the light from the light source is coupled into the fiber. This effect is called the
angular dependence of the emitted radiation (Fig. 1.2b).

On the one hand, the geometry of the light source is an elongated cylinder, but
it can be twisted and bent within the limits of its mechanical stability. On the
other hand, the aspect ratio of the fiber is very high since the diameter is much
smaller than the length. Therefore, it may be advantageous to neglect the diameter
altogether and simply treat it as a line source rather than a cylinder source. This
leads to a great simplification in their mathematical handling.

These four properties, namely longitudinal and angular emission and line or cylin-
der source, will be the primary areas of investigation for side-emitting optical fibers
in this work and, as we shall see, are sufficient for understanding and characterizing
the radiation properties of side-emitting fibers.

(a) Longitudinal emission (b) Angular emission

Figure 1.2: Longitudinal and angular light emission from an optical fiber. Lon-
gitudinal emission changes as a function of the 𝑧-position on the
fiber. Angular emission changes as a function of the emission angle 𝜃,
relative to the fiber z-axis.

1.2 The Evolution of Side-Emitting Fiber Research
Side emitting fibers were first described 31 years ago, and since then, they have an
ever-expanding scope of manufacturing and application to novel problems. This
section presents the evolution of research on side-emitting fibers to explain what is
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1 Introduction

already known about their performance, properties, and possible customization and
to identify shortcomings in current streams of exploration.

Research on side-emitting fibers can be traced to work on the diffusive optical
fiber end by Hasselgren et al. (1990) [9], who first described it with regard to
possible application to photodynamic therapy. They made their side-emitting fiber
by removing the cladding from an ordinary optical fiber and replacing it with a
mixture of high refractive index epoxy and very high refractive index TiO2 powder.
The epoxies refractive index was higher than the fiber core, which removed the
conditions of total internal reflection (see Fig. 1.4) and led to light leaking out in
the cladding. There, it was subsequently scattered into the fiber’s surrounding by
the TiO2 powder with very high refractive index.

Spigulis et al. gradually build on this idea by extending the tip to a fiber,
formulating radiation models, and moving from medical to textile applications in
a series of publications from 1994 to 2005 [10, 11, 12, 13, 14]. Here, Spigulis et al.
identified the exponential decrease in emitted light flux on the surface of the fiber
with length as the major challenge in using longer fibers and proposed three different
ways to overcome it [14]: The first is to couple the light into the fiber from both
sides. The second is to attach a mirror to one end of the fiber to reuse transmitted
light. The third is to increase the scattering coefficient as the fiber length increases
to compensate for decreasing emission. Although Hasselgren et al. and Spigulis et
al. investigated the angular emission of their light-scattering fiber tips, its impact
on applications has not been thoroughly discussed. Older studies that preceded the
side-emitting fibers argued that purely radial irradiation could increase the depth of
penetration into tissue [15, 16].

In the present day, side-emitting fibers have become increasingly popular, but
some areas still need further research. In 2003, Time magazine declared side-emitting
fibers as one of ”the coolest invention of the year” [10]. This was accompanied
by the production and patenting of several types of side-emitting fibers [17, 18,
19] and their dissemination in various fields of application. This process continues
to the present day. Although these light sources are not uncommon today, little
is known about the radiation field they produce, which would be necessary for a
technical application. These fibers represent a new class of light sources that lie
between directional and diffuse and have an emissivity that varies longitudinally.
Therefore, classical intuitive assumptions such as cosine-dependent (Lambertian)
angular emission and constant surface emissivity cannot be taken as valid. Related to
this is also the reverse problem: How must the fiber parameters, such as longitudinal
and angular radiation, be optimized to produce a specific light field for a specific
application?

Existing routes of theory development have focused on simulating the radiation
field of side-emitting fibers. For instance, efforts to calculate the generated radiation
field have been focused on the medical application, where the distribution of light
from the fiber through the complicated human tissue is calculated with the aid
of sophisticated Monte Carol methods [20] or numerical solutions of the diffusion
equation [21]. Monte Carol methods have also been used to calculate the emitted
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1.3 Light Scattering in Optical Fibers

radiation from the fiber [22, 23]. While simulation methods offer insight into the
respective problem, a general understanding of the radiation behavior as a function
of fiber parameters is not obtained. Endruweit et al. [24] and Pan et al. [25], on the
other hand, used an approach based on the radiometric approximation to derive the
radiation field in terms of its flux density for a cylindrical, Lambertian fiber. This
approach provides the ability to insert measured fiber parameters into the model.
This work will also follow the radiometric approach, but we will additionally include
angular-dependent emission, and we will compare a cylindrical source to a simpler
line source model. We will show that the longitudinal dependence is dominant
near the fiber and the angular dependence is dominant in the far field. In addition,
the line and cylindrical source models show almost no difference in their predicted
radiation field.

Efforts on customization of the radiation field have mostly been focused on tailoring
the longitudinal properties of side-emitting fibers. The influence of the longitudinal
and the angular properties on the fiber’s radiation field shows that it is necessary
to control both features to generate customized side-emitting fibers for the desired
application. Tailoring the longitudinal emission profile is barely explored: The
Corning company produces side-emitting fibers with an approximate flat emission
profile which can be several meters in length. Their tunable scattering coefficient
is based on the twisting and stretching of gas bubbles [17], which unfortunately
makes them hard to splice to normal optical fibers. Vesselov et al. [26] designed
a customizable light-diffusing fiber tip based on long-period fiber gratings and
a coating with scattering particles. Bisyarin et al. [27] developed a 400 m long
homogeneously side-emitting fiber base on a very small increase in scattering caused
by adjusting the fiber drawing temperature. This method enables very long, but
not short, homogeneous side-emitting fibers.

Regarding the angular-dependent emission, research has focused on achieving
Lambertian emission. It is visually more pleasing in lighting applications, but other
reasons are barely discussed or are quietly assumed to be beneficial to the application.
The possibility of influencing the emission angle of optical fiber radiation is only
explored in the relatively different context of tilted fiber gratings [28, 29, 30]; no
effort has been made until now to apply something similar to side-emitting fibers.

Regardless of the radiation field property we want to influence, they are all based
on the scattering process within the optical fiber that couples the guided light out
of the fiber and radiates it into the environment. Therefore, in order to influence
the radiation field, we must first understand and control light scattering in optical
fibers.

1.3 Light Scattering in Optical Fibers

Light scattering in optical fibers is the physical process underlying the operation of
most side-emitting fibers. It determines their performance by causing, for example,
an exponential decrease in surface emission with increasing distance from the light
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1 Introduction

input for homogeneously scattering fibers. In this section, we provide an overview of
the subject and show how most phenomena in side-emitting fibers can be understood
by a relatively simple radiometric approach using a first-order linear differential
equation. Here, the light within the fiber is described only by the transmitted power,
not by the harmonic eigenmodes [31] of the guided electromagnetic waves. This
approach is more accessible than electrodynamic models, which are necessary for a
deeper understanding of the scattering process itself, which will be discussed in the
following section.

Figure 1.3: Schematics of the refractive index profile of an optical fiber with the
radius 𝑅 and a core-cladding-coating structure. The refractive index
is higher in the core and than in the cladding. The coating can have
a higher or a lower refractive index than the cladding, depending on
the application.

Optical fibers are made to guide light and, in their most basic form, have a
cylindrical shape with a core-shell structure, as shown in Fig. 1.3. The principle
mode of operation is total internal reflection of light, outlined in Fig. 1.4: when a
light ray attempts to crosses a boundary from a high refractive index material to a
low refractive index material, it is refracted and reflected. However, if the incident
angle is larger than a critical angle 𝛼𝑐𝑟𝑖𝑡, all of its power is reflected, and none is
refracted. This phenomenon is called total internal reflection. In an optical fiber,
the core consists of a high refractive index material, and the cladding (shell) consists
of a low refractive index material. Light rays propagating in the core can not cross
the boundary to the cladding if their angle with the boundary normal is larger than
the critical angle 𝛼𝑐𝑟𝑖𝑡. Since the core has a closed and symmetric boundary, each
subsequent reflection of the ray is the same. This results in the effect that a light
ray can be trapped in the core by total internal reflection, compelled to follow the
fiber wherever it may lead.

In general, light scattering occurs in optical fibers where a deviation distorts the
ideal core-shell structure, causing guided light to leave the core and radiate into the
environment. Conversely, an ideal straight fiber would experience no losses other
than absorption [32]. Macroscopic deviations such as fiber curvatures and loops,
which occur in practice, result in scattering losses. Microscopic deviations such as
microcurvatures due to stresses between the coating and the fiber, oscillation of the
core-shell boundary due to fiber fabrication, and refractive index distortions such as
bubbles or particles also cause light scattering.
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1.3 Light Scattering in Optical Fibers

Figure 1.4: Total internal reflection schematics: If the refractive index 𝑛1 is larger
than 𝑛2, so 𝑛2 < 𝑛1, then light rays are refracted away from the
surface normal (dashed), obeying Snell’s law 𝑛1 sin 𝛼1 = 𝑛2 sin 𝛼2.
The incident beam is also partially reflected. If the incident angle
becomes critical, sin 𝛼𝑐𝑟𝑖𝑡 = 𝑛2/𝑛1, the refracted ray is parallel to
the boundary, and all light is reflected. All rays with incident angles
larger 𝛼𝑐𝑟𝑖𝑡 can not refract, and therefore, all power in these rays is
reflected.

1.3.1 Radiometric Scattering Model
A general understanding of the loss of scattered light and its relationship to the
emissivity of the fiber surface can be obtained from a simplified radiometric model:
The decrease in light flux at a point in the core per unit length −𝑑𝜙

𝑑𝑧 is proportional
to the flux 𝜙 at that point, which interacts with the loss process. The positive
𝑧-direction is chosen as the longitudinal axis of the fiber and the direction of light
propagation. The constant of proportionality, which represents the fraction of flux
that is lost from the transmission, is the sum of absorption and scattering, with
their respective wavelength-dependent coefficients 𝛼(𝜆) and 𝜎(𝜆). The first-order
linear differential equation

𝑑𝜙
𝑑𝑧

= −(𝛼 + 𝜎)𝜙(𝑧) , (1.1)

that summarizes this behavior is called the Lambert–Beer law. It can be integrated,
after separation of variables, to yield

𝜙(𝑧) = 𝜙0 exp
⎧{
⎨{⎩

−
𝑧

∫
0

[𝛼(𝑧′) + 𝜎(𝑧′)] 𝑑𝑧′
⎫}
⎬}⎭

. (1.2)

Here 𝜙0 is the initial flux at the beginning of the fiber. This simple model can
be applied to single and multi-mode side-emitting fibers if a steady-state power
distribution [32, 31] can be assumed. Otherwise, every mode would have its own
scattering loss coefficient. Then the energy exchange would have to be regarded as
a coupled system of differential equations, with one equation for every mode.

The emitted flux per unit length will be the scattered fraction −𝑑𝜙
𝑑𝑧 = 𝜎𝜙(𝑧), since

the absorbed fraction of the flux is converted to heat. The scattered flux per unit
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length 𝑑𝑧 is equal to the total emitted flux of the fiber segment 𝑑𝑧. If we divide the
emitted flux −𝑑𝜙 by the emitting area 𝑑𝐴 = 2𝜋𝑅 𝑑𝑧 of the fiber with radius 𝑅, we
obtain the emitted flux per area, the emissivity

𝑀(𝑧) = − 𝑑𝜙
𝑑𝐴

= −1
2𝜋𝑅

𝑑𝜙
𝑑𝑧

= 𝜎𝜙(𝑧)
2𝜋𝑅

. (1.3)

To better understand the consequences of these equations, we use this model to
derive the exponentially decaying emission of a side-emitting fiber with a constant
scattering coefficient, as well as the scattering coefficient of a fiber with constant
emission. Then we use it to discuss the effect of different light coupling strategies:

Suppose we have a good quality fiber material with negligible absorption (𝛼 ≈ 0)
but homogeneously (𝜎 ≈ 𝑐𝑜𝑛𝑠𝑡.) distributed scattering centers, as in a commercial
side-emitting fiber, then Eq. (1.2) can be integrated. The result is a 𝑧-dependent
exponential decay of the transmitted and emitted flux in the fiber

𝜙(𝑧) = 𝜙0 exp {−𝜎𝑧} , (1.4)

𝑀(𝑧) = −1
2𝜋𝑅

𝑑𝜙
𝑑𝑧

= 𝜎𝜙0
2𝜋𝑅

exp {−𝜎𝑧} , (1.5)

which is plotted in Fig. 1.5.

(a) Transmission (b) Emission

Figure 1.5: Calculated examples of the transmission (a) and emission (b) of a side-
emitting fiber with constant scattering coefficients. Larger scattering
coefficients lead to a larger decrease in transmission and emission.
Smaller scattering coefficients lead to more transmitted and thus not
emitted light flux.

This example shows the important property that the exponential emission of
side-emitting fibers, which leads to an inhomogeneous visual illumination impression,
occurs naturally and fundamentally. Therefore, all cheaply manufactured side-
emitting fibers with constant scattering coefficient will suffer from this deficiency.
Compensating for this effect is therefore the greatest challenge in the manufacture
of side-emitting fibers with adjustable emission profiles.

In Figure 1.5 we see calculated plots for the transmitted and emitted light flux
for larger and smaller scattering coefficients in the loss-range of 4 m−1 to 0.5 m−1 to
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1.3 Light Scattering in Optical Fibers

visualize different emission and transmission behaviors. If the scattering is constant,
both the transmission and the emission of fiber surface decays exponentially. A
large scattering coefficient will lead to a large emission at the start of the fiber,
which decays on a short distance. All guided light is emitted but very unevenly.
A smaller scattering coefficient stretches the exponential function and results in a
flatter emission profile. Unfortunately, much light is transmitted through the fiber
and is lost at the fiber end, and is not used for emission.

If one wants a relatively constant emission but also wants to be economical and
use as much light as possible in emission, one needs to have a changing scattering
coefficient 𝜎. The functional dependence of the scattering coefficient 𝜎 for constant
emission can also be calculated using the radiometric model. Constant emission
𝑀(𝑧) = 𝑐𝑜𝑛𝑠𝑡. means, if we neglect absorption loss 𝛼 ≈ 0, that the flux change
rate in the fiber core must be constant 𝑑𝜙

𝑑𝑧 = −𝜙0𝐶0 and thus by integration
𝜙(𝑧) = 𝜙0(1 − 𝐶0𝑧). Setting this equal to Eq. (1.5) and again neglect absorption
loss 𝛼 ≈ 0, we obtain after logarithmization and subsequent differentiation,

𝜎(𝑧) = 1
𝑧 − 𝐶

, (1.6)

as the functional dependency of 𝜎(𝑧) with 𝐶 = 1/𝐶0. To determine the constant
𝐶, one can define how much flux is transmitted through fiber length 𝑧𝑚𝑎𝑥. For
example, if we require zero transmission 0 = 𝜙0(1 − 𝐶0𝑧𝑚𝑎𝑥), the constant would be
𝐶 = 𝑧𝑚𝑎𝑥. But this will be hard to achieve in praxis because, according to Eq. (1.6),
it will require the scattering coefficient to go to infinity 𝜎 → ∞. So one would rather
look first, which maximum scattering coefficient 𝜎𝑚𝑎𝑥 is achievable and what is the
desired length 𝑧𝑚𝑎𝑥. Then by applying Eq. (1.6), we get

𝐶 = 𝑧𝑚𝑎𝑥 + 1
𝜎𝑚𝑎𝑥

. (1.7)

These calculations show that the property of constant side emission is not so easily
achievable. It depends on the maximum scattering coefficient 𝜎 one can generate
inside the fiber and also the ability to tune it. In reality, this is additionally
complicated by absorption loss and the core-cladding structure of the fiber, as we
will see in Chapter 3.

A more straightforward method, already introduced by Spigulis et. al [14], to get
a more homogeneous emission is to apply the light-coupling to both sides of the
fiber or to use a fiber end face mirror, which reflects unused, transmitted light back
into the fiber. To obtain the transmission and emission profile for double coupling,
we use Eq. (1.5) and the principle of superposition by adding a second exponential
with the same amplitude and decay constant to the transmission profile, which runs
in the opposite direction. Then the resulting functional dependency is

𝜙(𝑧) = 𝜙0 (exp {−𝜎𝑧} + exp {−𝜎(𝑧𝑚𝑎𝑥 − 𝑧)}) . (1.8)
As before, the emission behaves proportional to the flux and is calculated according
to Eq. (1.3). We see in Fig. 1.6 that the transmission and emission are now, in
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(a) Transmission (b) Emission

Figure 1.6: Calculated examples of transmission (a) and emission (b) of a side-
emitting fiber with constant scattering coefficient and light coupling
on both sides: one at 0 mm and one at 1000 mm. The dashed line
shows an example of the two superimposed profiles. Fibers with larger
scattering coefficients still show inhomogeneous emission; smaller ones
are now more homogeneous. The unemitted light flux is twice as
large as with one-sided coupling.

all cases, symmetric to the middle of the fiber, and most fibers, except the highly
scattering one, show a more or less flat profile. This easy technique comes at the
cost of double the light sources and couplings; also, double the light flux is lost at
the fiber end.

The flux transmission for the end face mirror is derived similarly by superposition,
but the amplitude of the added exponent is now the transmitted flux 𝜙0 exp {−𝜎𝑧𝑚𝑎𝑥}
times a reflection coefficient 𝑟

𝜙(𝑧) = 𝜙0 (exp {−𝜎𝑧} + 𝑟 exp {−𝜎𝑧𝑚𝑎𝑥} exp {−𝜎(𝑧𝑚𝑎𝑥 − 𝑧)}) (1.9)
= 𝜙0 (exp {−𝜎𝑧} + 𝑟 exp {−𝜎(2𝑧𝑚𝑎𝑥 − 𝑧)}) (1.10)

the emission is again calculated according to Eq. (1.3).
The calculated profiles are shown in Fig. 1.7. Here we see that fibers with

low scattering losses benefit most from this technique, since in their case, there
is a significant transmitted flux that can be reused. Due to the geometry, the
light essentially passes through a fiber twice as long, therefore, the unemitted
fraction becomes 𝑟 exp{−2𝜎𝑧𝑚𝑎𝑥}, the square of the value without a mirror times its
reflectivity. This effect and the fact that this technique requires the same amount of
light couplings as the basic variant make this the most economical strategy, provided
a highly reflective fiber end is feasible.

This purely phenomenological treatment, presented in this subsection, helps to
understand the general emission behavior of a side-emitting fiber and the problems
for lighting applications attached to it. Here we have seen that the exponential
decay in emission is a natural consequence of the differential equation that governs
the absorption and scattering process. It is, therefore, the main challenge in
customization. Unfortunately, this basic model can not describe the angular emission
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(a) Transmission (b) Emission

Figure 1.7: Calculated examples for the transmission (a) and emission (b) of
a side-emitting fiber with constant scattering coefficient and fiber
end face-mirror (𝑟 = 1). The dashed line shows an example of the
two superimposed profiles. Fibers with small scattering coefficients
improve their performance because the unemitted light flux is greatly
diminished.

behavior; for that, we need a more sophisticated electrodynamic scattering model,
which will be outlined in the next subsection.

1.3.2 Electrodynamic Scattering Model

A deeper understanding of the scattering process is gained from electrodynamics.
Here, the guided electric field 𝑬0 of the light in the fiber induces a polarization
current in a refractive index distortion, which in turn radiates light: this is the
scattering process. The volume current method allows determining the angular
dependency of the scattered radiation and the scattering power. The derivation
is sketched here briefly and will continue in the publication in Section 3.3. The
detailed mathematical derivation of this volume current method can be found in
Appendix A.8.

We return to the idea that the ideal core-shell fiber is lossless and has a refractive
index distribution 𝑛0 as shown in Fig. 1.3; we can identify and summarize all kinds
of (micro) deviations as a distortion 𝛥𝑛 of the ideal refractive index distribution.
Then the actual fibers refractive index distribution 𝑛 is the sum

𝑛(𝒓) = 𝑛0(𝒓) + 𝛥𝑛(𝒓) (1.11)

of idealized fiber plus distortions. Now we take a look at the time free vector
wave equation for the electric field strength vector field 𝑬 (vectors are denoted in
boldface),

∇2𝑬 + 𝑛2𝑘2𝑬 = 𝑖𝜇0𝜔𝒋 . (1.12)

We see that the electromagnetic wave with the wavenumber 𝑘 is driven by the
current density 𝒋. Here, 𝑖 is imaginary unit, 𝜇0 is the magnetic permeability of
vacuum and 𝜔 is the angular frequency. The Laplacian ∇2 stands for the second
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partial derivative in all 3 spacial coordinates. When we observe the wave far from
the source, the wave equation becomes homogeneous

∇2𝑬 + 𝑛2𝑘2𝑬 = 0 . (1.13)

Now we insert the distorted refractive index distribution Eq. (1.11) in Eq. (1.13)
and split the electric field into the sum 𝑬 = 𝑬0 + 𝑬𝒔 of a guided wave 𝑬0 which
is a solution of the homogeneous Helmholtz equation Eq. (1.13) and the scattered
radiation 𝑬𝒔. If we insert this in Eq. (1.13) and neglect the term of higher order in
𝛥𝑛 we obtain

∇2𝑬0 + 𝑛2
0𝑘2𝑬0 + 2𝑛0𝛥𝑛𝑘2(𝑬0 + 𝑬𝒔) + ∇2𝑬𝒔 + 𝑛2

0𝑘2𝑬𝒔 = 0 . (1.14)

The sum of the two leading terms on the left-hand side are, by definition, Eq. (1.13)
(𝑛 = 𝑛0) and therefore zero. What remains can be written in the form of the vector
wave equation

∇2𝑬𝒔 + 𝑛2
0𝑘2𝑬𝒔 = −2𝑛0𝛥𝑛𝑘2(𝑬0 + 𝑬𝒔) ≈ −2𝑛0𝛥𝑛𝑘2𝑬0 . (1.15)

In this approximation, the electric field inside the scattering center is dominated by
the guided radiation 𝑬0 + 𝑬𝒔 ≈ 𝑬0. When we compare this equation to Eq. (1.12),
we can see that the scattered radiation is driven by the interaction of the guided
electric field with the refractive index perturbation, the source term on the right-
hand side. The source can also be written in the form of Eq. (1.12), so we get the
result that the scattered radiation is driven by a current density,

𝒋 = 2𝑖𝜔𝑛0𝛥𝑛𝜖0𝑬0 (1.16)

which, as it turned out, is caused by the interaction of the original guided field 𝑬0
with the refractive index perturbation. Here, 𝜖0 is the dielectric permittivity of
vacuum.

The point of view has two advantages: First, because the 𝑬0 field is guided in
the fiber, its contribution outside of the fiber is zero, so the electric field that is
observed outside is just the scattered fraction 𝑬𝒔. Second, the actual refractive
index difference between core and cladding is small, so we can now use the solution
for the vector wave equation in a homogeneous medium as an approximate solution
to get the equations for the far field scattered radiation. The derivation of the
equations for the scattered radiation is located in Appendix A.8. In summary the
result for the electric and magnetic field strength is

𝑬𝒔 = 𝑖𝜔 ̂𝒆𝒓 × ( ̂𝒆𝒓 × 𝑨𝒇) (1.17)

𝑯𝒔 = −𝑖𝑛𝑘
𝜇0

( ̂𝒆𝒓 × 𝑨𝒇) (1.18)

Where 𝑨𝒇 is the far field vector potential at the point 𝒓 = 𝑟 ̂𝒆𝒓 from a superposition
of spherical wavelets caused by the currents 𝒋(𝒓′) enclosed in the volume 𝑉0

𝑨𝒇(𝒓) = 𝜇0
4𝜋

𝑒𝑖𝑛0𝑘𝑟

𝑟
∫

𝑉0

𝑒−𝑖𝑛0𝑘 ̂𝒆𝒓𝒓′𝒋(𝒓′)𝑑𝑉 ′ . (1.19)
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𝒋 is zero outside of 𝑉0 so we could replace the limits of integration with infinity.
Then we would immediately see that the far field vector potential 𝑨𝒇 is the Fourier
transform of the current density inside 𝑉0. This mathematical property will be
very useful in deriving the scattering of the stochastic femtosecond laser-induced
scattering centers because it interacts very nicely with convolutions, autocorrelations,
and stochastic processes.

Another, more exact, method to solve the scattering problem is mode coupling.
In mode-coupling theory, the incident and the scattered field are described with
a set of cylindrical eigenmodes. These propagate like a plane wave in 𝑧-direction
(∝ exp{−𝑘𝑧𝑧}) and are standing waves or harmonics in radial direction, fulfilling
the boundary conditions at the fiber surface and in infinity. This results in a discrete
set of bound modes and a continuous set of radiation modes. These modes are
all orthogonal to each other, meaning, normally, they can not exchange energy.
Only when there is a distortion 𝛥𝑛 in the fiber, these modes couple, and energy
is transferred; for example, from a bound mode to a radiation mode. This is the
scattering process in mode-coupling theory, but it is too complicated for practical
use in the scope of this thesis. Other works have shown that the volume current
method and mode coupling theory are in good agreement except for low scattering
angles [28].

Other derivations and theoretical concepts used in the publications, such as the
plane wave expansion, the radiometric approximation, and the derivation of the
volume current method, have been moved to the end of this thesis for the interested
reader. They are not necessary to understand the publications but show the concepts
on which they are based and how these concepts can be derived from Maxwell’s
equations.
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2 Results and Discussion

This dissertation aims to understand the functioning of side-emitting fibers as a light
source based on the fiber’s parameters and then control the parameters to adjust
the fiber performance. The considered parameters are the longitudinal emission
and the angular emission; Section 2.1 discusses their influence on the radiation field.
This will show that the longitudinal property dominates the light field close to the
fiber; Section 2.2 shows how this property can be customized with femtosecond
laser-induced scattering centers. The angular emission of these scattering centers
influences the far field of the fiber; Section 2.3 describes how it is related to the
scattering properties of the laser modification.

2.1 The Radiation Field of a Side-Emitting Fiber

Side-emitting fiber or fiber fabrics generate the radiation field discussed in this thesis
depending on their emission properties. This section presents and discusses how it
can be measured and calculated. First, it will show the measurement results of the
longitudinal or angular property of the side-emitting fiber radiation. Then, these
will be inserted into a radiometric model to calculate the generated radiation field of
a side-emitting fiber and then compared with measurements of the radiation field.

When light from a green laser diode was coupled into commercial side-emitting
fiber with a constant scattering coefficient, the fiber lit up and looked like a linear
light source. Visually, the fiber shows a strong emissivity close to the light coupling,
which declines strongly in a short distance and then remains relatively constant.
The measured longitudinal emission profile followed a bi-exponential function (sum
of two exponentials), with two decay functions and amplitudes. One exponent
decays on a short distance of 200 mm, then the second one takes over, which decays
comparatively slow.

The perceived brightness changes for the observer if the fiber is seen from different
angles: if it is viewed in the direction of light propagation, it is relatively dim
compared to when viewed from the opposite direction, or perpendicular to the fiber
axis. A measurement of the angular emission showed that the light is preferentially
directed forward, with a maximum of emission in between 32 ° and 37 ° with respect
to the direction of light propagation in the fiber.

The light emitted from a textile band of 19 similar fibers was projected onto
a scattering screen parallel to the band at different distances. The radiation
distribution on the screen showed a similar bi-exponential decay in scattered radiation
as a single fiber, with a maximum close to the laser-coupling. This maximum
broadens and moves downwards towards the dim end of the fiber band when the
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distance between band and screen was increased.
Radiometric models of line sources and cylinder sources calculated the radiation

distribution of the fiber band on the scattering screen from the measured longitudinal
and angular fiber parameters. The calculated distribution showed qualitatively the
same characteristics, namely bi-exponential decay and downward movement of the
maximum, as the radiation pattern on the scattering screen. When the measured
angular dependency was replaced by a homogeneous Lambertian cosine dependence,
the radiation distribution close to the fiber remained the same. However, the
downwards movement of the maximum with increasing distance did not occur.

Discussion

The bi-exponential longitudinal emission behavior indicates that light is coupled in
the cladding and the core simultaneously; the two states have a different scattering
coefficient, which results in the sum of two exponentials for the declining emissions.
In this case, we assumed that the light in cladding experiences more attenuation
because it interacts with the fiber surface and its imperfections. The two amplitudes
of the exponents are related to the fraction of light that is coupled into the core
compared to the cladding. The sharp drop in emission at the start is visually
unpleasant and may lead to overexposure. An absorber could block it, or more
effort could be made to put light only into the fiber core with better coupling.

The angular scattering behavior gives insight into the spectrum of the refractive
index fluctuations in the fiber responsible for the side emission effect. Refractive
index fluctuations with a smaller wavelength than the scattered light cause back-
scattering, and fluctuations with longer wavelength cause forward scattering [31,
32]. This shows that in the spectral distribution of these wavelengths, the longer
wavelength must be dominant.

The comparison of the calculated with the measured radiation shows that the
radiation near the fibers is dominated by the longitudinal emission property of
the surface. Here, Lambertian or measured angular emission make almost no
difference in the prediction of the radiation field. In the far field, however, angular
dependence plays a role: it projects the radiation field downward. Therefore, the
maximum of radiation is moving to the bottom of the screen with increasing distance.
Furthermore, almost no difference between a line source and a cylinder source could
be calculated or observed.

Different illumination strategies for the fiber fabric were calculated, aiming at
more homogeneous illumination. Spigulies et al. [14] already proposed double
coupling and fiber end-face mirror. Here, alternating coupling between adjacent
fibers with and without end mirrors, were also tested as alternative schemes. All
variants resulted in a more homogeneous radiation field. Nevertheless, the alternating
methods provided the most homogeneous fields, although they required the same
amount of coupling as the basic one-sided variant.

In conclusion, for the studied case of free space radiation, the line source ap-
proximation can safely be used to calculate the radiation field. In the proximity
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of the fiber, it is even sufficient to use it together with the Lambertian emission
approximation, and only the longitudinal surface-emission has to be considered.
This is important for application where the fiber is in direct contact with the illu-
minated medium. In the far field, the angular dependence of the surface emission
must be considered to obtain an accurate description of the radiation field. This is
important when the fiber is used as a more classical light source. The presented
models can be used to calculate the fiber performance from two parameters for
different applications. Fiber manufacturers should make these parameters available
in catalogs for lighting designers.

2.2 The Longitudinal Emission of a Side-Emitting Fiber
This section shows how side-emitting fibers with a tailored emission profile can be
fabricated from a commercial optical fiber by focused femtosecond laser radiation.
The femtosecond laser was focused in the fiber core to induce a light scattering
refractive index distortion: a scattering center, precisely positioned with a motorized
stage. We used two placement methods to show how changing the number density of
the scattering centers affects the scattering coefficient. First, we choose a constant
distance, and second, we continuously decreased the distance with each subsequent
modification. The result of laser irradiation in both cases was a localized ellipsoidal
refractive index fluctuation in the fiber core. They were invisible to the naked eye
but observable under the microscope with phase contrast. When light was coupled
into the fiber, these distortions lit up because they scatter guided light out of the
core toward the observer.

The modified section of the fiber was several centimeters long. We measured
the transmission of the fiber after each modification and obtained the transmission
spectra. It showed bi-exponential decay with an increasing number of scattering
centers for both methods of positioning. From the outside, it looked like a glowing
fiber segment but with changing emissivity. Measurement of the longitudinal
emission profile showed a bi-exponential decay for modifications with constant
spacing (similar to transmission) and a U-shaped emission profile for modifications
with decreasing spacing.

Discussion
The experimental observations can be understood and described with basic radiomet-
ric considerations. The bi-exponential decay is caused by two dominant scattering
mechanisms, one for the fiber core and one for the fiber cladding: Initially, the core
contains all light, but when it is scattered on the first scattering centers, it is not
only emitted into the surrounding, it also enters into the cladding. There, the light
can still propagate and interact with the scattering centers when passing through
the core. These cladding modes are spread out more and have less energy density
in the core, so they are less affected by the scattering centers and lose power more
slowly.
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These phenomena can be described with a three-level energy exchange model
that takes into account the coupling of the guided light in the fiber core with
the cladding and free space. This model consists of three coupled differential
equations whose analytical solution yielded the desired bi-exponential function in
transmission and emission. The model was fitted to the transmission and emission
spectra for constantly spaced scattering centers. It was also able to predict the
longitudinal emission performance for scattering centers with decreasing distances
from the transmission measurement. We fitted the transmission data with the model
and extracted the scattering coefficients. Then we inserted them in the emission
model together with the known positions of the scattering center and reproduced
the resulting U-shaped emission profile with adequate accuracy compared to the
measurement.

In addition, to predict the emission of the fiber segment, we showed that it is
possible to shape the emission profile into arbitrary shapes: The U-shape showed
that all desired properties, namely decreasing, constant, and increasing emission
along the fiber, can be achieved with the right scattering center distance. This paves
the way to fully customizable emission patterns.

2.3 The Angular Emission of a Side-Emitting Fiber

This subsection investigates the angular emission properties of the scattering centers
introduced in the last subsection experimentally and theoretically. For this purpose,
the modified fiber segment was immersed in refractive index matching oil and placed
under a microscope where the scattering centers could be observed. Their far
field scattering pattern could be studied in the back focal plane of the microscope
objective (Fourier-microscopy, see Appendix B.2) when light was coupled into the
fiber. Additionally, an approximate electrodynamic scattering model was derived,
describing the scattering pattern as the sum of several convolutions of the Fourier-
transform of modified volume with the spectral densities of the stochastic processes.

The shape of the scattering center resembles a flat ellipsoid whose interior is filled
with stochastic refractive index fluctuations. When light is coupled into the fiber,
the refractive index distortions light up because they scatter guided light towards
the observer. The back-focal plane observation revealed that one modification’s far
field scattering pattern has a grainy structure: a speckle pattern. An average of the
patterns of 80 modifications yielded the enveloping scattering distribution, which
showed that the scattering was more intense for small scattering angles with the fiber
axis. Unlike the commercial fiber in air from Section 2.1, there was no maximum
emission angle. Additionally, the experiment showed a variation in scattering power
around the fiber that was correlated with the shape of the scattering center: when
we looked at the flat side of the scattering center, the scattering was brighter than
when we looked at the small side.
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Discussion
The outer shape of the scattering center is formed by the refraction of the focused
femtosecond laser beam on the cylindrical fiber surface, resulting in this flattened
focal spot. The fluctuations inside the modification are caused by the overlap of
several femtosecond laser pulses at the same spot, resulting in an evolution of the
refractive index fluctuations. The fluctuations also extend to the surface of the
modification, which is also stochastically deformed for the same reason.

For a deeper understanding of the scattering process, I developed an approximate
electromagnetic scattering model based on the volume current method introduced in
Section 1.3.2. It showed that the superposition of spherical wavelets originating from
inside the volume of the scattering center causes the far field scattering pattern. The
source is a volume current created by the interaction of the guided light with the
refractive index distortion. This analysis showed that the speckle pattern is the power
spectrum of the volume current. Furthermore, it showed that a three-dimensional
Fourier transform relates the volume of the modification and the scattering pattern.
The associated stochastic fluctuations act as a convolution of the Fourier transform
with its power spectrum.

This model helped to understand that the origin of the forward scattering property
is the power spectrum of the refractive index fluctuations: longer wavelength than
the scattered light cause forward-scattering, and shorter wavelength cause back-
scattering [32, 31]. That means laser processing predominately causes fluctuations
with longer wavelengths. Also, the shape of the scattering center plays a role:
the reciprocal scaling property [33] of the Fourier transform causes the scattering
power to be larger perpendicular to the small side and smaller perpendicular to the
broadside, which causes the variation of scattering power around the fiber.

This property could be easily exploited to influence the azimuth scattering de-
pendency around the fiber by changing the outer shape of the scattering center, for
example, by rotating the fiber during the writing process [34]. In this way, one can
generate rotational symmetric scattering patterns; other shapes are also possible.
Unfortunately, influencing the forward scattering property is not as easy since one
would have to control the power spectra of the refractive index fluctuations. One
possibility would be to intentionally write a grating structure like an imperfect fiber
Bragg grating. Or one could focus the laser beam better and thus cut off larger
frequencies, in which case the spectrum would be dominated by the outer shape of
the scattering center.

18



3 Publications

3.1 Radiation from Side-Emitting Optical Fibers and Fiber
Fabrics: Radiometric Model and Experimental Validation

Aaron Reupert, Jan Schröder, and Lothar Wondraczek. “Radiation from Side-
Emitting Optical Fibers and Fiber Fabrics: Radiometric Model and Experimental
Validation.” In: Advanced Photonics Research (Apr. 2021). Submitted

Side-emitting optical fibers are diffuse light sources that emit guided light through
their cladding. Here, we derive two models to predict the generated radiation field:
one for the case of a cylinder source and one for a line source. Our approach is based
on the radiometric approximation and considers longitudinal and angle-dependent
emission. Experimental validation is provided for the model parameters and the
radiation field. We show that the longitudinal characteristic is relevant in proximity
to the emitter’s surface and that the angular dependency determines the far field
of emission. Comparison to the experiment shows that the cylinder source model
allows for only slightly more accurate prediction at the cost of significantly higher
computational effort. A combination of model and measurements is then used as a
tool to predict the illumination performance of side-emitting fibers and fiber fabrics.

Remarks to the notation
In this publication, the vectors were denoted by an arrow above the symbol, e.g. ⃗𝐴.
The light flux density or irradiance was denoted by its standard representation 𝐸
and ⃗𝐸, not 𝐹 and 𝑭 as in Appendix A.7.

Remarks to the publication
This paper, which is the submitted version, was published during the review period
of this dissertation. Compared to the submitted version, the published version
includes changes in the theory section to clarify the radiometric model and its
derivation. Also, the vector notation has been changed from the arrow notation ⃗𝐴 to
the bold notation 𝑨, which is more consistent with the dissertation. The published
version can be found in Appendix C.1.
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Side-emitting optical fibers are diffuse light sources that emits guided light through their cladding. Here, we derive two models to
predict the generated radiation field: one for the case of a cylinder source and one for a line source. Our approach is based on the
radiometric approximation and considers longitudinal and angle-dependent emission. Experimental validation is provided for the
model parameters and the radiation field. We show that the longitudinal characteristic is relevant in proximity to the emitters sur-
face and that the angular dependency determines the far field of emission. Comparison to the experiment shows that the cylinder
source model allows for only slightly more accurate prediction, at the cost of significantly higher computational effort. A combina-
tion of model and measurements is then used as a tool to predict the illumination performance of side-emitting fibers and fiber fab-
rics.

1 Introduction

Side-emitting optical fibers provide a means to illuminate spaces where common light sources face limi-
tations, for example, in penetration depth, thermal load or volumetric homogeneity. These optical fibers
emit a fraction of the guided light through their cladding, acting as a diffuse line source that is sepa-
rated from the actual light emitter. This makes them easy to deploy, for example, in aquatic or highly
humid environmentss. Additionally, they are thin, long, and flexible which enables easy implementation
even in tricky geometries.
Different methods of fabrication and light coupling are established for side-emitting fiber made from in-
organic glasses or plastics e.g. [1, 2, 3, 4]. Typically, refractive index distortions (e.g. bubbles or parti-
cles) are introduced into the fiber to scatter light. Here, the standard case of homogeneously distributed
scatterers results in an exponential decay in emission strength alongside the fiber, due to the Lambert-
Beer law. In addition, the scattering process causes light emission which is preferentially forward-directed.
Both properties result in inhomogeneous illumination; their specific effect on the radiation field is largely
unknown.
Previous efforts to model the radiation field assumed that the fiber light emission was constant over all
angels (Lambertian emission) [5, 6] or used a stochastic Monte Carlo approach [7, 8]. Building on these
methods, we now treat the side-emitting fiber as exhibiting angular scattering properties in between di-
rectional and diffuse, combined with a non-uniform longitudinal light emittance profile. Both of these
characteristics are obtained from measurements. We will use this approach to discuss the generated radi-
ation field in proximity of the emitting surface, and in the far field.
The primary aim of this work is to develop a parametric model of the radiation field surrounding the
fiber. This will be shown in Section 2. Experimental methods of measuring the model parameters are
presented in Section 3. The results of these measurements are presented in Section 4, and are subse-
quently compared to the calculated radiation field in Section 5. Finally, in the same section, we will use
the best-performing model to evaluate different strategies to create more uniform illumination from stan-
dard side-emitting fibers and fiber fabrics.

2 Theory

Side emitting fibers are a light source with special properties: Their surface emittance M(z) changes
alongside the fiber and the emitted radiation has an angular dependence, captured by the phase func-
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2.1 Radiance and radiation transfer

tion P (Θ,Φ). For example, the PMMA side-emitting fiber used in this paper has an exponential decay
in emittance and the light is preferentially scatted forward. Hereinafter, we will calculate the monochro-
matic radiation field of the fiber in terms of its flux density, which is called (spectral) irradiance ~E(~r) in
one arbitrary frequency interval dν.

2.1 Radiance and radiation transfer

Radiometry describes the radiation field by its field quantity the radiance Lν(~r, ~s, ν), which is constant
along a ray of light in the absence of absorption or scattering [9]. The flux φν exchanged between two
surfaces is calculated by superposition of all possible light rays connecting the surface elements: integrat-
ing the radiance L over the emitting surface A1 and the receiving surface A2 while considering the re-
spective distance d and inclinations Θi of the surface elements normal ~ni to the distance vector ~d [9, 10],

φν = dν

∫
A2

∫
A1

Lν(~r, ~s, ν)
cosΘ1 cosΘ2

d2
dA1 dA2 . (1)

We use the equality cosΘ2 dA2 = (~s · ~n2) dA2 = ~s · d ~A2 to insert the scalar product of the ray vector
~s = ~d/d and the surface normal ~n2 of dA2. Then the total transferred flux can be written as the scalar
product of the differential irradiance d ~Eν = ~s dEν and d ~A2.

φν = dν

∫
A2

∫
A1

d ~Eν · d ~A2 = dν

∫
A2

~Eν · d ~A2 (2)

The irradiance ~Eν is independent of the receiving surface so it can be calculated in the whole irradiation
volume or on any surface by integrating over the surface of the light source A1.

~Eν(~r) = dν

∫
A1

Lν(~r, ~s, ν)
cosΘ1

d2

~d

d
dA1 (3)

The spectral radiant quantity ~Eν(~r) (monochromatic case) can be turned into the radiometric quantity
~E(~r) by performing the integral over all involved frequencies

∫
dν.

2.2 Radiation field of a cylinder source

We model the fiber as a cylinder in the corresponding coordinates (x, y, z) = (ρ cosϕ, ρ sinϕ, z), where
the light inside propagates in the positive z-direction. The surface is defined by setting ρ = R the radius
of the fiber, which gives us the surface location vector ~rs.
The radiance is measured at an arbitrary point of observation O. Because the fiber and its radiation
field are rotationally symmetric we chose O as the point of observation (ρ′, 0, z′) with ρ′ > R and the
location vector ~O. The distance vector ~d from a surface element to the observation point is

~d = ~O − ~rs =

ρ′ −R cosϕ
−R sinϕ
z′ − z

 , (4)

with the magnitude d = | ~O − ~rs| =
√

~d · ~d =
√
ρ′2 +R2 − 2Rρ′ cosϕ+ (z′ − z)2.

Every surface element of the fiber radiates depending on z-position and emission angles Φ,Θ. The latter
are defined in a local spherical coordinate system centered around the surface element as shown in Fig-
ure 1. They have to be translated into the global cylindrical coordinate system: The vector to the pole
of the spherical coordinate system always coincides with the unit vector eρ of the cylindrical coordinate
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2.2 Radiation field of a cylinder source

Figure 1: The local spherical coordinate system (black) of a surface element sits on top of the cylindrical coordinate sys-
tem (green) of the fiber. The ~d unit vector points from the surface to the point of observation O. The ~eρ vector coincides
with the axis pointing to the north pole of the spherical coordinate system, so ~eρ ~d = d cosΘ. The ~ez unit vector is the
same in both coordinate systems.

system. Thus, the polar angle Θ in spherical coordinates can be expressed with ~eρ = cosϕ~ex + sinϕ~ey
and Equation (4) as

cosΘ = ~eρ · ~s =
~eρ~d

d
=

ρ′ cosϕ−R

d
. (5)

This result becomes zero when R = ρ′ cosϕ, then ~d is a tangent to the surface of the fiber, which we will
use as the limits of the surface integration. d sinΘ cosΦ = z′ − z is the scalar product ~d · ~ez expressed in
both coordinate systems, in combination with cos2 Θ+ sin2 Θ = 1 we obtain

cosΦ =
z′ − z

d
√
1− cos2 Θ

=
z′ − z√

d2 − (ρ′ cosϕ−R)2
. (6)

Now all properties of the local spherical coordinate system are expressed in the coordinates of the global
cylindrical coordinate system. We insert Equation (5) in Equation (3), with Θ1 = Θ, replace the sur-
face element by its representation in cylindrical coordinates dA1 = R dϕ dz and obtain the final integral
equation for the irradiance vector-field of the cylinder source

~Eν(ρ
′, z′) = dν

l∫
0

ϕ1∫
ϕ0

Lν(~r, ~s, ν)
(ρ′cosϕ−R)

d4

ρ′ −R cosϕ
−R sinϕ
z′ − z

R dϕ dz . (7)

From Equation (5) we obtain the limits of integration ϕ0 = − arccos (R/ρ) and ϕ1 = +arccos (R/ρ); l is
the length of the fiber.
Two additional remarks to this equation: First, the distance to the surface has to be bigger than zero
d > 0. Second, the symmetry of the formula would cause the second entry of ~Eν always to integrate to
zero, because the irradiance passing through this surface element is equal from both sides. This is only
true for a virtual surface and not for a real one, which would block radiation from one side of the fiber.
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2.3 Radiance, emittance, and the phase function

2.3 Radiance, emittance, and the phase function

The radiant emittance of a surface element is unequally distributed in all directions on the hemisphere
above it. This distribution is a consequence of the heterogeneous scattering process inside the fiber and
the refraction and secondary scattering on the fiber surface. To account for this, we separate the radi-
ance into the product of the emittance M of the fiber surface element with its affiliated phase function
P , which contains the normalized angular information of the emitted radiation.

Lν(~r, ~s, ν) = Mν(~r, ν)Pν(~r, ~s, ν) ≈ Mν(z, ν)Pν(Θ,Φ, ν) (8)

We assume an equal scattering mechanism (homogeneously distributed scatterers) throughout the fiber,
so only the emittance M depends on z. Then we can separate the radiance into the directional P and
the positional contribution M , which allows us to determine them independently with different experi-
ments.

2.4 Line source approximation

The calculation can be greatly simplified by using a line source approximation. Here the light is only
emitted radially, therefore its phase function has no angular component everywhere except for Φ = 0.
This means that we can replace the Φ-dependency of the phase function with the delta function

Pν(Θ,Φ, ν) = Pν(Θ, ν)δ(ϕ) (9)

Inserting this into Equation (7) and performing the ϕ-integration leads to the radiant flux density of the
line source with an angular dependent emission in Θ. Additionally, as a line has no radial extend, we set
all resulting (ρ′ − R) = ρ′. The remaining R from the surface element dA = R dϕ dz is combined with
the surface emissivity to yield the radial flux emission Mν(z, ν)R = Iν(z, ν). The resulting equation for
the line source is

~Eν(ρ
′, z′) = dν

l∫
0

Iν(z, ν)Pν(Θ, ν)
ρ′

d4l

 ρ′

0
z′ − z

 dz , (10)

with dl =
√
(ρ′)2 + (z′ − z)2; the irradiance can now be calculated by integration over z.

3 Experimental

The radiation field of a rotationally symmetric side-emitting fiber can be determined if the radiant emit-
tance M(z) and the phase function P (Φ,Θ) are known. These parameters are determined experimen-
tally, with two different set-ups: The side emission measurement will determine the emittance and the
microscopy-based angular measurement will measure the phase function. Both methods, except the cal-
ibration of the angular measurement, are also described elsewhere in more detail [11, 12]. Additionally,
we show how to measure the resulting radiation field of a fiber band with a scattering screen.
The side-emitting optical fibers (PMMA, diameter 500 µm) and the textile fiber band, containing 19 cor-
responding fibers oriented parallel to each other with an average distance of 2.6mm [see Figure 4(c)],
were provided by F.J.RAMMER GmbH. For all experiments, we used a 100mW 520 nm green laser diode
which is butt-coupled (direct contact without focusing optics) to the fibers of the band. For micrographs
and phase function measurement we used a JenaPol Interphako microscope. The radiation field was im-
aged with a Canon EOS 650D camera and a EF 18-55 objective focused on a frosted glass plane as a
scattering screen.

3.1 Side Emission Measurement

A custom-made integrating sphere (see Figure 2a) was used to measure the fiber emittance. It consists
of two fiber guides, a baffle to protect the detector port from direct irradiation, and an optical fiber to
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3.2 Fourier-Microscopy

(a) Side emission measurement (b) Angular measurement

Figure 2: (a) Emittance measurement: Light emitted by the fiber segment ∆z (limited by the aperture) is homogeneously
distributed on the sphere wall by multiple diffuse reflections. The irradiance on the detector port is proportional to the
emitted flux E ∝ φ. (b) Phase function measurement: Rays spanning an angle Θ with the optical axis (dashed) are trans-
formed in parallel rays with a distance h by refraction on the reference-sphere (blue, radius f) according to the Abbe-sine
condition Equation (11).

connect the sphere to a spectrometer (Ocean Optics: Maya2000 Pro). The side-emitting fiber was threaded
through the sphere with the help of two hollow fiber guides, leaving only a small segment of the length
∆z exposed to the interior of the sphere. The emitted flux of the fiber segment ∆φ(z), which is related
to the emissivity by ∆φ(z) = 2πR∆zM(z), is distributed homogeneously by multiple diffuse reflections
on the sphere walls. Therefore, the measured irradiance Em(z) is proportional to the flux collected by
the sphere ∆φ(z) [12, 2]. By measuring the flux at different positions along the fiber, we captured the
z-dependence of the emittance of the side-emitting fiber.

3.2 Fourier-Microscopy

The angular light distribution on the hemisphere in Figure 1 was captured with a large numerical aper-
ture (NA) objective: In its back focal plane, the light is decomposed into its angular components [13,
11]. The relation between emission angle Θ and back focal plane radial distance h, for infinity-corrected
objectives, is sketched in Figure 2b and given by the Abbe sine condition [14]

sinΘ =
h

f
. (11)

The unknown focal length f can be replaced by f = n0hmax/NA by using the numerical aperture and
Equation (11): NA = n0 sinΘmax = n0hmax/f . Here hmax is the radius of the circular back focal plane
image.
All real-world objectives with high NA have angle and polarization-dependent transmission losses [15].
For correction, we use a Lambertian scattering standard (provided by QSIL GmbH Quarzschmelze Il-
menau) which should have an ideal flat irradiance profile in the back focal plane. The correction is per-
formed by dividing the measurement image pixel-wise by the image of the scattering standard.
To show this correctional property, we derive the transfer of a lossless objective with an ideal scatter-
ing standard: As shown in Figure 2 b), the flux φ emerges from the focal point in a cone around the ob-
served ray and is transformed into a non-divergent pencil of rays on the reference sphere while conserv-
ing its energy. The flux passing through dA1 is equal to the flux passing through dA2 = cosΘdA1, so the
irradiance has to vary accordingly φ = E1dA1 = E2dA2 = E2dA1 cosΘ. Therefore, the irradiance in an
ideal objective is amplified according to E2(Θ) = E1(Θ)/ cosΘ for increasing Θ.
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3.3 Measurement of the irradiance on a scattering screen

If we insert the irradiance of a Lambertian diffuser E1(Θ) = EL cosΘ into this formula, the cosines can-
cel, and we obtain EL = E2(Θ) = const.: a Lambertian diffuser should have an ideally flat intensity
profile in the back focal plane of an objective. This correction was performed separately for both polar-
ization states and then both states are averaged to obtain the corrected unpolarized back focal plane im-
age.

3.3 Measurement of the irradiance on a scattering screen

Figure 3: Scattering camera measurement: a CCD-camera is focused (l = 900mm) on a scattering screen with the surface
area AS = 650mm × 450mm. The fiber band is mounted to a straight holder, which is clamped to an optical bench. A
laser is coupled to the side emitting-fibers and the room is darkened. The fibers are moved to different positions D (10mm
to 800mm) relative to the glass plate and a picture is taken of the scattering glass plate for each position without changing
the focus of the camera.

The radiation field of a band of several side-emitting fibers is measured with a simple set up shown in
Figure 3. The idea is that the screen makes the radiation field in its plane visible by secondary scatter-
ing. The irradiance E0(x, y) = ~ns

~E(r), which is intersected by the screen at a certain point is turned
into the emissivity on the other side M(x, y) ∝ E0(x, y) by transmission through the screen. We assume
that the screen acts as an ideal Lambertian diffuser: the irradiance which is observed by the camera on
the other side of the screen is

E(x, y, α) = M(x, y)
cos β

d2
∝ E0(x, y)

cos β

d2
. (12)

This allows us to measure the light-field at the scattering screen just by taking a picture of it and cor-
rect for the angular and distance attenuation: We define the position of the pixel relative to the center
of the screen as shown in Figure 3, so d =

√
a2 + l2 =

√
x2 + y2 + l2. Therefore, the geometric attenua-

tion is
cos β

d2
=

l

d3
=

l

(l2 + x2 + y2)3/2
, (13)

which is used to correct the measurement for geometric angle and distance attenuation. Because the
scattering behavior of the screen is expected to follow the cos-dependence only approximately especially
for large angles, it is best to choose a large distance l between the screen and the camera. Also, the cam-
era response has to be checked for linearity.

4 Results

The commercial side-emitting fiber in Figure 4 (a) appears transparent and featureless to the naked eye
and under the microscope. When light is butt-coupled in the fiber, as in Figure 4 (b), it lights up and
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4.1 Phase function measurement

appears self-luminous. This luminosity is not equally distributed across the fiber, but it is brighter at
the fringes and dimmer in the center when observed under the microscope. Additionally, scattering par-
ticles in the fiber and small scratches on the fiber surface become visible. The fiber is the brightest close
to the coupling, then the brightness decreases quickly towards the fiber end.
The band of equivalent plastic side-emitting fibers in Figure 4 (c) show a similar decline in emission but
additionally, the overall brightness varies from one fiber to the next because of difficulties that arise from
distributing light equally from one large-diameter fiber to many small ones via butt-coupling.

Figure 4: Micrographs of the side-emitting fiber under bright field microscope illumination (a) and dark field self-
illumination (b). (c) 19 fibers woven in a fiber band in self-illumination. (d) z-dependence of the side-emitting fibers
emittance M with increasing distance to the light coupling. A biexponential function with the two decay constants
σ1 = 0.0021mm−1 and σ2 = 0.0080mm−1 and the corresponding amplitudes A1 = 0.58 and A2 = 0.42 has been fit-
ted to the measurement data.

To quantify the loss in brightness with length, a single fiber is clamped to the side emission set up from
Section 3.1, and the relative change in surface emittance is measured. The result in Figure 4 (d) is a
monotonous decaying curve that can be fitted with a biexponential decay function.

4.1 Phase function measurement

The emission of light from one fiber segment changes with emission angle, which can easily be verified by
observing the fiber (band) from different positions. This angular emission behavior was measured with
Fourier-microscopy in two orthogonal polarization directions which are shown in Figure 5 (a) & (b). The
radiation is concentrated on the right side of the circle in a half-moon shape, so light scatters preferen-
tially forward under low angles. The remainder of the back focal plane image is dark, which means that
comparatively little radiation is scattered in these directions.

Figure 5: (a) & (b) typical back focal plane images for two orthogonal polarization directions (pol.) and the average cor-
rected image (c) from 100 images, 50 in each polarization direction: the phase function P . The coordinate system is analo-
gous to Figure 1 when the hemisphere is viewed from the top.
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4.2 Making the radiation field visible

Figure 6: Polar plot of the normalized phase function P (left) and the projected phase function with cosΘ apodization
(right). Lambertian P is the isotropic case. The cross-section is the data from the ~eρ-~ez-plane. The average is calculated
by integrating along a rotation around ~ez and dividing by arc length.

From these measurements we determine the phenomenological, polarization-independent phase function
P (Θ,Φ) by imaging 50 pictures on different positions in each polarization direction, correcting them ac-
cording to Section 3.2, and averaging all of them. The resulting phase function in Figure 5 (c) is still
brighter to the right and is now almost rotationally symmetric with respect to ~ez. The half-moon shape
brightness, which is caused by the large angle objective amplification, is gone due to the correction pro-
cedure. Additionally, the phase function was normalized so that the integral over the hemisphere is equal
to one.
To better illustrate the forward scattering of the fiber surface we present it in Figure 6 as a polar plot in
the ~eρ-~ez-plane from Figure 5. This data will also serve as the phenomenological phase function P (Θ) of
the line source. Here we see an isotropic Lambertian surface compared to the ~eρ-~ez-cross-section of the
phase function and the average scattering. The average was calculated by integrating over the surface of
the hemisphere in a rotation around the ~ez vector and then dividing by the arc length.
In the graph on the left in Figure 6, we see the Lambertian phase function, which is constant over all
angles (P (Θ) = 1/π). The cross-section of the phase function has its maximum value before it drops
rapidly for angles greater than 71 °. This cut-off is due to the limited opening angle of the objective. The
average function shows a similar behavior but decreases after its maximum at 60 ° before the cut-off an-
gle.
When we multiply the phase function with the cosΘ projection factor (Equation (3)), we see how much
radiation is really scattered in a given direction from a surface element: the isotropic Lambertian surface
is now turned into a circle with its maximum emission at 0 °. The average curve and the cross-section
curve become more similar in shape with their respective maxima now at 53 ° and 58 °. The influence of
the cut-off angle is strongly diminished by the cosΘ-factor. This shows that the phase function can be
satisfactorily determined even with a limited aperture because the projection factor dampens the missing
large-angle phase function components.

4.2 Making the radiation field visible

A scattering screen intercepts the radiation field of the fiber band at different distances D and makes it
visible. Black and white camera images of the screen are shown in Figure 7 and display the behavior of
the radiation field: At close distance, we can almost distinguish single fibers when the band is closest to
the screen. Analogous to a single fiber, this distribution is bright at the start and then decays rapidly
towards the fiber end.
When the distance between the screen and band increases, as shown in Figure 7 from left to right, the
radiation fields of the single fibers overlap and form a continuous enveloping distribution. Here we ob-
serve a distinct maximum of brightness close but not at the very start. Increasing the distance further
leads to a downwards movement of the maximum which broadens, spreads out, and fills more and more
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area of the screen. In the largest observed distance D of 870mm (Figure 9d), the maximum brightness
has traveled the whole distance of the screen and is now located at the lower end.

Figure 7: Black and white images of the scattering screen reveal the radiation distribution of a side-emitting fiber band for
several distances (increasing from left to the right) according to Figure 3. The light is coupled into the fiber from the top
and loses its emissivity, due to the constant out-scattering of light, towards the end. Increasing the distance D between the
band and screen leads to a broadening of the light distribution.

5 Discussion

The fiber in Figure 4 (d) shows a biexponential decay in emitted radiation with increasing distance from
the light entry point. This corresponds to a fiber where some light is guided in the core and some is guided
in the cladding [12], each with its respective scattering coefficients σ1 & σ2 and amplitude φ1 & φ2. This
is the result of the butt-coupling which excites core and cladding modes simultaneously. In the present
case, we expect the cladding modes to experience stronger dampening because they interact with the
fiber surface.

φ(z) = φ1e
−σ1z + φ2e

−σ2z ↔ −dφ

dz
= φ1σ1e

−σ1z + φ2σ2e
−σ2z (14)

If we neglect absorption loss, we see how this leads to exponentially decaying emission (assuming flux
conservation): any loss in transmitted flux is turned into out-scattered radiation M(z) ∝ −dφ/dz. So,
the amplitudes extracted from the fit in Figure 4 are A1 = φ1σ1 and A2 = φ2σ2. They give us a ratio
of cladding- to core flux of φ2/φ1 = 0.2 at the start of the measurement. This strong initial decay is vi-
sually unpleasing and can lead to overexposure in technical applications. A costly solution would be to
optimize the optical coupling to the fiber core; a simpler solution is to cover this part of the fiber with
an absorber (but at the expense of emission efficiency).

5.1 Angular emission

The measurement of the angular distribution of the radiation emitted from a fiber surface element in
Figure 5 and 6 shows a clear preference for forward scattering which points to the presence of long-period
refractive index distortions: Generally, all deviations from the ideal core-cladding structure in a step-
index optical fiber cause light scattering [16]. These deviations can be thought of as refractive index fluc-
tuations which can be decomposed into a spectrum of mechanical waves [17, 11]. Each wavelength is re-
sponsible for light scattering under a certain angle: longer wavelengths than the guided light causes for-
ward scattering and vice versa. Therefore, the dominant wavelengths of the fluctuations are much longer
than the wavelength of the green laser diode.
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5.2 Calculated radiation field

5.2 Calculated radiation field

Comparing the numerically calculated fields close to the fiber for the two fiber models, namely cylinder
source and line source, together with the two different phase functions, namely Lambertian and the mea-
sured phenomenological phase function, reveals two properties: first the irradiance in all four variants
shows a reciprocal dependency on distance (ρ−1). Second, the phase functions result in different magni-
tudes of irradiance close to the fiber: the two Lambertian models are congruent and also the two phe-
nomenological phase function are congruent but result in a slightly higher irradiance.
The numerical results are plotted in Figure 8. The cylinder source was calculated by numerical integrat-
ing Equation (7) and the line source by integrating Equation (10). In both cases, the length-dependent
decay in emittance was modeled using Equation (14) with the parameters from the fit to the measured
values in Figure 4. The Lambertian phase function for the cylinder had the constant value P (Θ,Φ) =
(2π)−1 and for the line P (Θ) = π−1. The data for phenomenological phase function was either taken
from Figure 5 for the cylinder or from Figure 6 (average) for the line.
The discretization of the surface in ϕ was done by dividing the angular interval [ϕ0, ϕ1] into 20 equal
pieces. For z we converted interval [0, l] for every z-position into the angular interval [arctan(z/(rho −
R)), arctan((l − z)/(rho − R))] divided it into 100 equal angles and converted the angles back into z-
coordinates. This was done to improve numerical stability for small distances.

Figure 8: Comparison of the irradiance of the line source and the cylinder source close to the fiber for the phenomenologi-
cal and the Lambertian phase function. At z = 100mm in reciprocal distance (left) or in distance (middle). Irradiance in a
line parallel to the fiber in a distance of ρ = 0.5mm.

The deviation between phenomenological and Lambertian models close to the fiber is contradictory to
the expected behavior in that all models should converge to the emissivity M(z) of the fiber surface when
ρ → R. Three features of our phenomenological phase function are probably responsible for this: First,
the phase function is only known for Θ < 71 ° due to the NA limitation. Second, the normalization
of the phase functions can only be performed up to a certain numerical accuracy using our present ap-
proach (float 64bit). Third, the discretization of the phase function leads to angular intervals with con-
stant scattering.
Interestingly, the line source and the cylinder source give the same result in the Lambertian case, which
indicates a property known for the Labertian sphere, whose irradiance shows the same behavior (∝ ρ−2)
as an ideal point source [10]. The conclusion is that the Lambertian cylinder’s irradiance behaves like
that of a line source, although this remains to be proven mathematically.
We conclude that the Labertian approximation is adequate to describe the irradiance close to the fiber,
justifying the approach of Endruweit et al. [6] to calculate the field of a fiber from a Lambertian cylin-
der. However, it is even sufficient to solely use the line source. This is, of course, just possible in the ab-
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5.3 Comparison to the measured radiation field

sence of absorption and scattering in the surrounding medium. In the latter case, the irradiance of line
source and the cylinder source would deviate.

5.3 Comparison to the measured radiation field

In the preceding subsection, we concluded that the line source and the cylinder source differ only for dif-
ferent phase functions. Now we compare the calculations for all four models to the measured field of a
fiber band and find that in principle the cylinder source with the phenomenological phase function per-
forms best in the observed measurement range, although only slightly better than the phenomenological
line source. Lambertian fibers, which performed adequately in the proximity to the fiber, perform worse
for larger distances.
We use the same procedure as in Section 5.2 to numerically integrate the four models and obtain the ra-
diation field for the half-space next to the fiber, which corresponds to the volume spanned by the scat-
tering screen measurement in Figure 7. Then we used the principle of superposition to calculate the ra-
diation field of the fiber band from a single fiber: we made 19 duplicates of the calculated field, moved
their x-coordinates to the respective positions of fibers on the band in Figure 4, and added them up. Ad-
ditionally, we accounted for different coupling efficiencies by weighting the fields. This was done for all
observed distances. Exemplary results of these calculations of the cylinder source with the phenomeno-
logical phase function are shown in Figure 9 next to the measured values.

(a) Distance D = 10mm (b) Distance D = 160mm

(c) Distance D = 350mm (d) Distance D = 870mm

Figure 9: Comparison between measured Em and the calculated irradiance field Ec (phenomenological cylinder source) of
fiber band for the distances 10mm, 160mm, 350mm, and 870mm. The pictures on the right show the relative residual
|Em − Ec|/Em which is the relative deviation between measurement and calculation.

The calculated irradiance of the fiber band with the phenomenological phase function in Figure 9 shows
two properties that match the measurement: First, the field in proximity to the fiber is dominated by
the exponential decay of the radiant emission of the fiber surface. Second, the forward scattering prop-
erty of the fiber causes a downwards movement (away from the coupling) of the maximum of irradiance
with increasing distance D. That this is caused by the forward scattering property of P can be inferred
by comparison with a Lambertian fiber, which does not show a movement of the maximum (not shown).
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5.4 Testing alternative fiber coupling schemes by superposition

For a quantitative comparison of the models with the measurement, we calculated the relative residual
as the absolute difference between the measured Em and the calculated Ec irradiance divided by the mea-
sured irradiance |Em − Ec|/Em for every pixel. This gives the pictures on the right in the subfigures in
Figure 9. For a more comprehensive depiction, we calculated the average residual and the standard de-
viation of the relative residual for each plane of observation, this is shown in Figure 10. Here we see that
all models start with the highest residual but only the ones with a phenomenological phase function sur-
pass an error of 10% while the Lambertian level off at around 30%.

Figure 10: Comparison of the average residual and its standard deviation between cylinder source and line source with
the Lambertian or phenomenological phase function. The relative residual is calculated analogously to Figure 9 as
|Em − Ec|/Em for every pixel. All pixels are then averaged, and the standard deviation is calculated. The Lambertian
curves are congruent in average and standard deviation.

The cause of the high residual for small distances between screen and band is shown in Figure 9: we see
that the residual directly above the band is small but next to it is large. In this plane, the fibers will
block the light from each other because fibers and the screen are approximately situated in the same
plane. Additionally, a possible interaction between scattering screen and fiber band makes the measured
scattering more diffuse than in the calculation: some light is scattered back and forth between band and
screen, causing additional diffuse irradiation. Also, the screen has no real Lambertian transmission for
large incident angles. We conclude that the scattering screen measurement is unfit to measure the irradi-
ance in proximity to the fiber.
With increasing distance D between screen and band, the aforementioned effects weaken, so the calcu-
lation and the measurement converge. Still, the line source shows slightly higher residuals and standard
deviation. This shows that the cylinder source is the slightly more precise way of calculating the radia-
tion field in intermediate distances and large distances if a phenomenological phase function is used. The
line source can be used in combination with a phenomenological phase function at almost the same pre-
cision and comes with the benefit of less computational effort. The Lambertian approximation should
not be used for larger distances or only if no phenomenological phase function is available and larger un-
certainties can be tolerated.

5.4 Testing alternative fiber coupling schemes by superposition

At last, we explore alternative light coupling schemes with the best performing fiber model, the cylinder
source with the phenomenological phase function, to see if they create a more homogeneous illumination
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Figure 11: Comparison of calculated irradiance field (phenomenological cylinder source) of a fiber band for four different
light coupling schemes in two distances (left). Relative standard deviation in reciprocal presentation (right) and linear rep-
resentation in the insert (right).

from a fiber band than basic single side coupling. We use the relative standard deviation of irradiance
for each calculated plane as a quantitative comparison. From the four proposed schemes we do explore,
three perform almost equally well to create a much more homogeneous irradiance field.
The exponential decay in emittance and the forward scattering property hinder side-emitting fibers from
application because they lead to uneven illumination and optical unpleasing looks. Spigulis et al. [5]
proposed two methods to mediate the exponential decay without having to resort to fibers with self-
compensating scattering coefficient σ(z): First, double coupling, where light is coupled in both ends of
the fiber, and second, a fiber end face mirror, to re-use the transmitted light by reflecting it back into
the fiber. We additionally propose two more schemes: alternating, where light is coupled alternating
from one side or the other in neighboring fibers, and a combination of alternating with end-mirror.
We can now easily test these schemes for a fiber band with the calculated irradiance field of one fiber
and the principle of superposition: For the double coupling, we use the result from the previous subsec-
tion duplicate it, rotate the duplicate by 180 °, and add it to the original calculated field. For the end
mirror we proceed in the same manner but weigh the duplicate with the appropriate attenuation caused
by the fiber transmission loss. Alternating these methods for every single fiber gives the other two schemes.
The relative standard deviation is obtained by dividing the standard deviation of the irradiance in each
plane of observation by the average irradiance in that plane.
In Figure 11 (left) we show an example for every scheme in two distances (30mm and 100mm) and the
relative standard deviation (right). As it turns out, three of the four schemes lead to comparable uni-
form irradiance fields: alternating and alternating with mirror both provide the most homogeneous il-
lumination with the same amount of couplings as the basic one-sided version. Double coupling is third
but requires more couplings. Just using an end mirror on one side results in a more homogeneous illu-
mination than single-sided coupling but shows the same disadvantages of having a strong difference in
irradiance from start to end.

6 Conclusion

We considered two methods to calculate the emitted light field of a side-emitting fiber in the radiomet-
ric approximation: A cylinder source and a line source. We validated experimentally that a standard
side-emitting fiber possesses a position and angle-dependent radiance which is properly represented in
these models. The two contributions influence the emitted light field in two ways: The z-position de-
pendence of the emittance is dominant close to the side-emitting fiber, and the angular dependence in-
fluences the field in the distance. We showed this by comparing calculated data from both approaches
with real world measurements of the radiation field. Both models are in good agreement with the mea-
surement of the light field for distances larger than 80mm from the emitter. Here the cylinder source
possesses slightly better predictive capability compared to the line source at the expense of higher com-
putational effort. From the presented models, the radiation field of complicated arrangements of side-
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3.2 Side-Emission Properties of Femtosecond Laser Induced
Scattering Centers in Optical Fibers

Aaron Reupert et al. “Side-emission properties of femtosecond laser induced scatter-
ing centers in optical fibers.” In: Optical Materials Express 9.6 (2019), pp. 2497–2510.
doi: https://doi.org/10.1364/OME.9.002497

Fiber optical light diffusers that enable interstitial light delivery have become a
useful tool for various illumination tasks, such as in photodynamic therapy. However,
existing methods based on light diffusing fiber tips are not applicable for spatially
selective light delivery in more complex structures. Here, we employ femtosecond
laser induced scattering centers without mechanical manipulation and removal of
the outer coatings for generating customized emission patterns. Tailoring of the
cumulative emission profile is achieved through controlling the step-width between
modification spots. An in-depth evaluation shows that the side-emission pattern
is the result of an interplay of several scattering mechanisms that interact with
cladding and core modes.
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Abstract: Fiber optical light diffusers that enable interstitial light delivery have become a
useful tool for various illumination tasks, such as in photodynamic therapy. However, existing
methods based on light diffusing fiber tips are not applicable for spatially selective light delivery
in more complex structures. Here, we employ femtosecond laser induced scattering centers
without mechanical manipulation and removal of the outer coatings for generating customized
emission patterns. Tailoring of the cumulative emission profile is achieved through controlling
the step-width between modification spots. An in-depth evaluation shows that the side-emission
pattern is the result of an interplay of several scattering mechanisms that interact with cladding
and core modes.
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1. Introduction

Photodynamic therapy has become widely applied in treating superficial cancers, for example in
skin, lung, esophagus, and bladder, with good clinical and cosmetic outcomes. This method of
treatment employs light of a defined wavelength to activate a photosensitizing drug which causes
localized cell death or tissue necrosis [1]. Beyond surface treatments, however, the method is
difficult to apply to voluminous tumors because of the low light penetration depth in tissue due
to scattering and absorption. Interstitial light delivery, which is a more efficient illumination
method for such tissues, employs light scattering optical fiber tips which are placed directly
inside the tumors [2]. Such tips are usually fabricated by fixing a mixture of epoxy resin and
light-scattering particles (quartz, TiO2) to the exposed core at the fiber end [3,4]. These diffusers
provide for a flat emission profile over a length of several centimeters, but are mechanically stiff
and have a large diameter; both factors may result in unwanted tissue damage. In addition, the
maximum length of the light diffusing region is limited [3]. In recent years, several authors have
hypothesized that effective light delivery, especially in organs or tumors of complex shape, could
benefit from specifically tailored light emission profiles on the diffusive fiber tip [2,5,6]. For
example, it was estimated that collateral damage on healthy tissue could be reduced in the range
of 15% to 58% in terms of tissue volume when using adapted light sources for treating brain
cancer tissue [5].

Current technology for tailored light diffusers employs long period fiber gratings, which couple
light from guided core modes to cladding modes [3]. This light is eventually scattered out of the
fiber by a layer of TiO2 particles, which is applied as a coating to the modified region after the
grating is written. This technique is able to generate 250 µm thin and flexible light diffuser tips
with a flat or customized longitudinal emission profile. Unfortunately, this mode of fabrication
can neither generate point-like emission in the fiber nor emission profiles with large peak powers
towards the fiber end [2].

#360303 https://doi.org/10.1364/OME.9.002497
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To address the limitations of current approaches, here, we study tailored light diffusion from
a commercial optical fiber which is modified through focused femtosecond laser irradiation.
Contrary to continuous laser writing, the high energy density of this method enables the creation
of local variations in the refractive index of any transparent fiber material due to nonlinear
absorption processes [7]. The irradiation pulse generates a rapid increase in temperature followed
by rapid cooling, which results in a refractive index change of the material. Repeated focused
irradiation of a single spot by the laser pulses then create localized refractive index perturbations
which scatter light guided in the fiber.

Using established technology, such scattering centers can be arranged in periodic or aperiodic
longitudinal chains, thereby resulting in a light emitting fiber segment as shown in Fig. 1. The
emission profile could be tailored by the number of pulses per spot, by the employed pulse
energy and by the step-width between the scattering centers. Since the first two methods
include non-linear processes in the creation of the scattering effect, which are difficult to control,
we chose the latter to demonstrate the feasibility of our approach. We created two series of
modifications under similar irradiation conditions: one with constant step-width, and another one
with decreasing step-width. In this way, we make use of the usually undesired light scattering
properties of femtosecond laser induced refractive index perturbations. According to this purpose,
the writing process itself underlies less critical constraints in terms of writing accuracy and
aberrations of the focal spot as compared to the established writing process of fiber gratings.
Most noteworthy, this enables to perform the writing procedure in a non-contact process without
removal of the fiber coating or other mechanical handling. On the one hand, we retain almost
all benefits of light scattering by a long period fiber grating [3], in particular, the possibility to
manufacture thin and long filaments which are able to illuminate large volumes of tissue (or
other media [8,9]) with low laser power and very high spacial selectivity. On the other hand,
the advantages of retaining an intact cladding (by placing the emission centers into the fiber
core) also come with the challenge to include the light guiding ability of the cladding into the
conception of efficient side-emission designs.

Fig. 1. Schematics and microscope image of light scattering on femtosecond laser
modifications. a) Creation of scattering centers through focused femtosecond laser irradiation
of the fiber core. b) Light scattering on the laser modifications in a two stage process: Light
is scattered out of the core into free space and into the cladding, where it is again guided by
total internal reflection or, eventually, scattered out into the environment. c) Microscope
image of light scattering on laser modifications.
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The paper is organized as follows: Section 2 presents the three-level light flux exchange
between core, cladding and surrounding in comparison to the common one-level light flux
exchange considerations. In Section 3, we describe the experimental parameters as well as
the measurement device for quantifying fiber transmission and emission. Section 4 examines
the scattering centers and the measured emission and transmission profiles of modified fibers.
Building on these analyses, in Section 4 we discuss singular as well as chains of scattering centers.
Further, we test the theoretical analysis by applying it to a customized emission profile.

2. Theory

2.1. General

We initially analyze the interaction of scattering centers with guided light in an optical fiber. The
proposed model is based on the Lambert-Beer law, which is expanded to describe the interaction
of discrete scattering events with a core-cladding optical fiber structure. From the result we
derive the fiber transmission and emission, which can be experimentally observed. The model to
describe the fiber emission and transmission relies on two central assumptions: first, all cladding
modes as well as all core modes exist in a steady state power distribution [10]. This is warranted
by the constant coupling of modes due to light scattering. Second, the scattering centers are
independent, i.e., they do not interact with each other. This means that a single total loss function
can be applied to all modes in the cladding or in the core (viz., the Lambert-Beer law). This total
loss in transmitted spectral flux φ [W/nm] can be decomposed into scattering σ and attenuation
α, which may or may not vary over distance:

dφ
dz
= −(α + σ)φ ←→ φ(z) = φ0 exp

{
−

∫ z

0
α(z′) + σ(z′) dz′

}
. (1)

If the integrand is constant, the result is a simple exponential decline in light flux with increasing
distance z. From this the fiber emission can be deduced from conservation of energy: The
absorbed light is transformed to heat and the scattered fraction will leave the fiber through its
surface. This results in a simple expression for the emission of the fiber per unit length dφE

dz = σφ,
which is proportional to the fiber transmission.

Because a regular optical fiber consists of at least two layers with different refractive index,
namely, core and cladding, this simple model (which is mostly applied to the transmission of the
fiber core) is insufficient to describe the emission behavior of a real fiber. Therefore, we expand
Eq. (1) based on similar assumptions, but include the general observation that light scattered
from the fiber core partially ends up in the cladding where it is still able to propagate. The
exchange of flux between the core φ1, the cladding φ2 and the surrounding φ3 is now described as
the energy exchange between different states where the scattering is responsible for the coupling
between the states. Light, which is scattered into free space, is transported away from the fiber so
there is no reverse process of light being coupled into the fiber from the outside. This energy
exchange is schematically shown in Fig. 2.

The scattering of cladding and core modes is caused by discrete refractive index perturbations
(as will be generated by focused laser irradiation). The fiber is a low-loss silica fiber, so we
approximate scattering to be the dominant loss mechanism and set all other contributions to zero
(α ≈ 0). Under these conditions, we can make the transition from distance-dependent scattering
σ to constant scattering per modification s. This enables us to write the differential equations
governing the energy exchange with the number of scattering centers n as the independent variable
z→ n:

dφ1
dn
= −(s12 + s13)φ1 + s21φ2 , (2)

dφ2
dn
= s12φ1 − (s23 + s21)φ2 , (3)
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Fig. 2. Three-level representation of the energy exchange between the core, the cladding
and free space: At first all light is contained in the core and gets scattered into free space
(green) and the cladding (red). After some distance this leads to a mixed case where light is
also contained in the cladding and scattered into free space (blue) and back into the core
(yellow). Because the latter effect is very small, the core is eventually depleted and only the
remaining light in the cladding is scattered.

dφ3
dn
= s13φ1 + s23φ2 . (4)

Here, sab represents the probability for the light to be scattered from state a to b. To illustrate
the process, the three general cases for energy exchange are shown in Fig. 2. At the start of the
modified region the whole light flux is contained within the core; therefore the initial conditions
are φ1(0) = φ0, φ2(0) = 0 and φ3(0) = 0. The scattering centers are regarded as identical, so all
coefficients sab are constant. In this experiment, the NA of the fiber core is very small, so the
reverse process of scattering light from the cladding into the core is negligibly small (s21 ≈ 0);
this approximation decouples Eqs. (2) to (4).
With these conditions, the solutions to the ordinary differential equations can be found by

standard methods (e.g. integrating factor). We are only interested in the solutions for φ1 and φ2
because Eq. (4) already describes the fiber emission at the respective scattering center:

φ1(n) = φ0 exp{−(s12 + s13)n} , (5)

φ2(n) =
φ0s12

s12 + s13 − s23
[exp{−s23n} − exp{−(s12 + s13)n}] . (6)

2.2. Observed quantities

The two quantities of this scattering process, which will be measured in the experiment, are
the transmitted flux and the emitted flux of the fiber. Both quantities are normalized by the
initial flux in the fiber φ0 to yield the transmission T and the emission E. For the former, we just
have to consider that the core as well as the cladding act as light guides, therefore the measured
transmitted flux is the sum of flux of the two levels:

T(n) =
φ1 + φ2

φ0
= (1 − As) exp{−(s12 + s13)n} + As exp{−s23n} . (7)

Here As is substituted for
As =

s12
s12 + s13 − s23

. (8)
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The fiber emission is described by the normalized flux emitted by the fiber per unit length E. (In
radiometric convention, this would be expressed as the radiant exitanceM = E/(2πR) of the fiber
surface with the radius R.) With the general assumption that n is some function of z [n = n(z)],
the relation between the emission per scattering center and the emission per unit length is found
via the chain rule.

E(z) =
1
φ0

dφ3
dz
=

1
φ0

dφ3
dn

dn
dz

, (9)

= [(s13 − s23As) exp{−(s12 + s13)n(z)} + s23As exp{−s23n(z)}]
dn
dz

. (10)

This is the primary result of this analysis; it means that the functional form of the light scattering
per scattering center is always a sum of two exponential functions, regardless of their respective
distance to each other. So by placing the scattering centers at different distances, the emission
profile can be locally compressed or stretched to yield a customized cumulative profile according
to some specific design requirements.
A more sophisticated treatment would expand the consideration further to include the fiber

cladding as an additional third light guiding layer and the convolution of the emission signal with
the point spread function of the measurement device. Furthermore, it could be considered that
light is never coupled out instantaneously but has to undergo several partial reflections which
results in an additional exponential decay [11]. These considerations were omitted for clarity.

3. Experimental

3.1. Laser writing

A commercially available step-index optical fiber made from fused silica with a germanium doped
core and a fluoroacrylate coating (Nufern 20/400 Precision Matched Passive LMA Double Clad
Fibers; Core: NA = 0.065, diameter = 20 µm; Cladding: NA = 0.46, diameter = 400 µm) was
coupled to a super-continuum light source (NKT SuperK) and clamped to a motorized xy-table.
Due to the fiber coupling only core modes were excited, so the initial conditions are fulfilled. The
femtosecond laser was focused through the transparent coating into the fiber core with an NA =
0.5 microscope objective. The laser, which was employed for writing, was a Ti:sapphire (Spectra
Physics, Spitfire) regenerative laser amplifier system emitting pulses at λ = 800 nm with a pulse
length of 200 fs (FWHM). We used 4 µJ pulse energy and a 1 kHz repetition rate. A mechanical
shutter was set to 0.4 s, so the number of pulses per scattering center was approximately 400.
The transparent fiber coating was not removed for writing.

The free fiber end was connected to an integrating sphere measurement system (see Fig. 3
in the following subsection) in order to record the transmission spectrum after each step of
modification. After irradiation, the position of the focal spot was changed and the procedure was
repeated until the desired length of the modified region was reached. In one of the examples
demonstrated in the following, 1000 modifications with a distance of 60 µm were written. After
writing, the fiber was removed from the xy-table and clamped to the linear stage without changing
the coupling to the light source, as shown in Fig. 3. We performed the side emission measurement
with a longitudinal resolution of 0.2 mm and an aperture ∆z of 2 mm. All measurements were
normalized to the baseline φ0, which is the transmitted spectral flux of the unmodified fiber. The
limited range of the light source and the spectrometer constrained the spectrum to the wavelength
interval from 600 nm to 1000 nm.

After the light measurements were finished, we performed optical examination of the refractive
index modification with a microscope (ZEISS, JENAPOL interphako). For this, the fiber was
immersed in oil (n = 1.52) to yield a sharp picture by compensating the aberrations on the
cylindrical fiber surface. Then the modifications were imaged with 50 times magnification. We
additionally used phase contrast (interphako method) [12] to enhance the image quality, because
the refractive index perturbations have a very low contrast with the surrounding glass.
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Fig. 3. a) Motorized linear stage: The integrating sphere is moved incrementally alongside
the optical fiber; the spectrometer measures an emission spectrum for every position. b)
Integrating sphere: Light emitted by the fiber segment ∆z - limited by the fiber guide - is
homogeneously distributed on the sphere wall by multiple diffuse reflections. The irradiance
on the detector port is proportional to the emitted flux.

3.2. Scanning stage

Quantitative light measurement is notoriously difficult due to many different kinds of instrument
attenuation, which are hard to determine. Therefore, we chose a relative measurement approach
and normalized all spectra to the transmitted flux of the unmodified fiber. Also, we made as little
changes as possible to the measurement device in between the change from the transmission to
the emission set-up. This is especially important for the light coupling and the measurement
system because they can introduce unknown errors. Under these conditions, we assumed that the
constant unknown instrument attenuations will cancel out with the baseline normalization, as
shown in Eq. (12).
The measurement device was a fiber coupled spectrometer (Ocean Optics: Maya2000 Pro)

with a custom-made integrating sphere for measurement head (Fig. 3). The integration sphere
was machined from optical PTFA (Berghof Fluoroplastics) with a reflectivity of ρ ≈ 0.98. It
consists of two fiber guides and a baffle to protect the detector port from direct irradiation. An
optical fiber connects the sphere to the spectrometer.
The sphere was operated in two modes: In transmission measurement mode one fiber guide

was blocked with optical PTFA and the cleaved fiber end was put in the middle of the aperture. In
this way, the flux emitted from the fiber end is scattered on the blocked fiber guide and captured
by the sphere with almost no change in the setup. In emission measurement mode, the fiber
was threaded through the sphere with the help of both hollow fiber guides, leaving only a small
segment of the length ∆z exposed to the interior of the sphere. Because the fiber guides limit the
size of the measured fiber segment, they also act as the aperture of the integrating sphere. The
light flux radiated into the sphere by the fiber is distributed homogeneously by multiple diffuse
reflections on the sphere walls. The irradiance M [W/m2] measured by the detector of the port
area A is proportional to the flux emitted inside of the sphere [13]:

M =
ρφ

A(1 − ρ(1 − f ))
. (11)

Where f is the ratio of open port area to total sphere area APort/ASphere and ρ is the coefficient of
reflection of the wall material. When f and ρ are kept constant between measurement modes,
the relation of a measured value to a baseline value will be the same as the relation between the
baseline flux value and the measured flux value because the unknown attenuations cancel out. So
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the irradiance is proportional to the flux collected by the sphere:

Mi

M0
=

φi
φ0

. (12)

4. Results

4.1. Observation

The results of the focused femtosecond laser irradiation are irregular shaped refractive index
distortions in the fiber core. Fig. 4 shows microscope images of the core and the modifications
viewed perpendicular to the direction of irradiation (side view). In brightfield microscopy the
written features show up as faint blurs with irregular but defined boundaries which cover the fiber
core partially in a regularly spaced pattern. Phase contrast shows that the modifications consist
of a mixture of regions of higher (darker) and lower (brighter) refractive index compared to the
surrounding glass matrix. If the fiber is rotated by ninety degrees (top view), the modifications
are revealed to be flat, as they cover the core only partially. Here the induced phase shift exceeds
the instrument threshold with the consequence that the contrast is inverted. The approximate
dimensions of the modifications are 24 µm (length) by 28 µm (height) by 7 µm (width).

Fig. 4. Microscope images of the laser modifications in the fiber core. Top view is in the
direction of laser irradiation and side view is orthogonal to it. The contrast of the brightfield
images is low, so additional phase contrast images are provided. Here a higher refractive
index shows up darker e.g. the fiber core is the dark band in the center of the pictures.

If light is coupled into the fiber, it interacts with the localized modifications and is partially
scattered out. This can be seen under the microscope (Fig. 1c), where the modifications appear as
clear, bright spots. Without optical magnification, the spots merge into a cumulative continuous
emission profile.
For the quantitative investigation of the scattering phenomenon, transmission and emission

spectra were recorded. The extensive data set of one series of modifications is displayed in Fig. 5
as two color maps, one for transmission and one for emission. The independent variable is either
the number of the modification in the first- or the position in the second case. To better visualize
the decline in flux we averaged the data over three different wavelength intervals (which roughly
represent the upper-, lower and the whole wavelength range). This is shown in the graphs on top
of the corresponding heat maps.
The averaged transmission curves are declining monotonously with increasing number of

scattering centers from their highest value at the start to the lowest value at the end of the
examined section. The emission (which is zero outside of the modified area) jumps to its highest
value at the first modification. Then it declines rapidly for 10 mm before it crosses over into a
section where the overall rate of decline is less and several local minima and maxima appear.
The spectrally resolved measurement shows that the transmission as well as the emission

is wavelength-dependent. Figure 6 displays both sets of spectra in corresponding stages. In
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Fig. 5. Wavelength-resolved transmission and emission plots for scattering centers with
constant spacing. Transmission spectra are plotted as a function of the modification number
and the emission spectra as a function of position starting from the initial maximum. The
top plots show the average spectral flux in certain wavelength intervals. This shows a steady
decline in transmitted power with consecutive modifications for in transmission and an
overall decline but with local maximums and minimums in emission.

transmission, the strongest decline is found after 1000 modifications at the shortest observed
wavelength of 600 nm, where 55% of the initial flux is transmitted through the modified length.
Going to higher wavelength, the dampening decreases until its lowest value at around 820 nm
where more than 70% is transmitted. Then it declines again to 65% at the local minimum in the
near infrared wavelength range at around 900 nm. The shape of the emission curves resembles
the shape of the transmission when the order of spectra and the magnitude is inverted: it is
approximately a downscaled mirror image. Its highest value of 3% at 600 nm is found at the very
start of the modification. Then the emission declines with increasing wavelength to the minimum
value of 1.75% at 820 nm and it increases again to 2% at 900 nm which is a local maximum. The
magnitude of the emission spectra decreases from the start to the end of the modified length.

4.2. Model fit

For data processing, the analysis from Fig. 2 is applied to the measurements to yield the scattering
spectrum of a single modification. According to Eq. (7) and Eq. (9) a double-exponential decay
governs both the transmission and emission behavior. This translates to a fit of either Eq. (7) or
Eq. (9) to each row in the heat-map of a transmission or emission plot, respectively. To improve
the data quality for the fitting, we limited the data range from 0 to 600 modifications. Some
selected fit results are shown in Fig. 7. We numerically integrated the data over the wavelength
intervals provided in the legend as indicated in the figure captions. This has no consequence for
the underlying analysis and was solely done for better visualization.

We obtained three scattering coefficients from every fit which represent the fraction of energy
transfer between core, cladding and free space for a single wavelength. These separate values
were then stacked and plotted over their respective wavelength to yield the average scattering
spectrum per modification sab(λ) as shown in Fig. 7 for s23. The initial decay s12 + s13 is too short
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Fig. 6. Transmission spectra for increasing amounts of scattering centers (indicated by the
labels) with their corresponding emission spectra, measured at the indicated positions.

Fig. 7. Transmission and emission spectra integrated over three different wavelength ranges
and plotted as a function of the number of scattering centers or the position with their
respective fits according to Eq. (7) and Eq. (9)

to yield a meaningful spectrum, therefore we give the average value of 0.03 per modification for
transmission and emission. The fit results for the s23 scattering spectrum for transmission and
emission are plotted in Fig. 8 together with their respective standard error. This represents the
scattering spectrum of one modification for cladding modes.

In transmission the highest amount of 0.07% light scattering per modification is found for the
lowest measured wavelength of 600 nm. The scattering power then declines with increasing
wavelength until the minimum is reached at around 820 nm with 0.035%. Then the scattering
increases again up to 0.05% at the local maximum which is located at around 900 nm. The
emission spectra show a similar shape and value range as compared to the transmission data.
The difference ∆ of both spectra has the shape of a broad maximum centering around 800 nm.
The relative fit error in transmission lies between 1% (740 nm) and 4% (600 nm) with an average
value of 2%, which is too small to be visible in Fig. 8. The relative fit error in emission lies
between 4% (740 nm) and 20% (600 nm) with an average value of 7%. Here, relative errors
greater than 10% are only found for wavelength smaller than (650 nm).



Research Article Vol. 9, No. 6 / 1 June 2019 / Optical Materials Express 2506

Fig. 8. Fit results of Eq. (7) and Eq. (9) to every wavelength of the emission and
transmission data set. This yields scattering spectra s23 of a modification in emission or
transmission with its corresponding standard error (shaded area). The spectra show an
increase in scattering for lower wavelength as well as a local maximum at 900 nm and the
difference in magnitude ∆. A scattering function ∝ λ−4 was fitted to the transmission data
in the range 600 nm to 840 nm with an R2 = 0.967.

5. Discussion

5.1. Light scattering centers

The combination of microscope imaging and dampening measurement allows us to obtain
information on the inner structure of the laser modifications. We can see from the optical images
that the modifications consist of refractive index fluctuations, which are contained in a flat but
otherwise irregular shaped region. This form is different from a normal focal spot [14] which
would be rotationally symmetric when viewed from the top. The straightforward explanation
for the derivations is the refraction of the laser on the cylindrical shaped fiber surface. This
introduces aberrations which could result in such a shape. Additionally, such aberration depends
on the alignment of the fiber with respect to the laser. The outer shape of the modification will
probably influence the symmetry of the angular scattering pattern and the total scattering power
of the modification. While the former is compensated by the integrating sphere measurement
device, which covers the whole solid angle, the latter is determined experimentally by the fitting
procedure. Therefore, this asymmetry does not influence the outcome of this experiment and
could even be used to customize the angular emission profile.
The emission and transmission data show that the average decay constant of the core flux

s12 + s13 is approximately 60 times larger than that of cladding flux. This has the effect that the
fiber core is rapidly depleted and the second exponent (representing the decay of cladding flux)
becomes dominant after about 100 modifications. Then it defines the larger part of the emission
and transmission profiles. These different roles are caused by the different diameters of core and
cladding. The cross-sectional area of the scattering center is a larger fraction of the core than of
the cladding. Therefore, the scattering coefficient is smaller for the cladding flux.

The obtained spectra for s23 provide us with additional insight into the scattering mechanisms
of an average modification. Both show similar features but differ by a wavelength dependent
amount ∆. Because this additional attenuation only affects the light emission, we conclude that it
is an effect of the plastic fiber coating, probably true absorption. The remaining distinct features
we will investigate further are the local maximum around 900 nm and the increase of scattering
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when decreasing the wavelength from 800 nm to 600 nm. Both features are found in transmission
and emission, so we infer that they are caused by elastic scattering.

The increase in scattering for decreasing wavelength shows the classical proportionality with
λ−4 (R2 = 0.967 over the wavelength range of 600 nm to 840 nm). The maximum around
900 nm indicates the existence of another scattering mechanism. It is probably also caused by
fluctuations, but with a period comparable to that of the scattered light: Marcuse showed that
the power loss of an optical waveguide with random wall perturbations is at its maximum if the
correlation length of the distortions is approximately equal to the wavelength of the guided light
[15]. The same idea can be applied to refractive index fluctuations in the fiber core.
These kinds of perturbations should be resolvable with a microscope and indeed, the modifi-

cations in Fig. 4 show inner structures with fluctuations in the same order of magnitude. We
assume that these inner structures are a result of multiple rapid heating and cooling cycles
caused by laser irradiation. Their emergence might be similar to the formation of nanogratings,
which are caused by a feedback between the laser beam and the induced microstructure [16].
This interaction leads to a structural evolution from single spots for one laser shot to oriented
elongated shapes with increasing number of pulses. A similar process, but with the addition of
cylindrical aberrations, might be responsible for the observed fluctuations. To further investigate
these scattering phenomena, an evaluation of the angular spectrum of the scattered radiation is
necessary. This would yield a distribution of the mechanical frequencies.

5.2. Emission profile

In Section 2, we postulated that the scattering centers can be regarded as sufficiently independent
of each other to allow for direct shaping of the emission profile by placing the scattering centers
at well-controlled step-width.

According to our model, a constant spacing between the modifications should result in a double-
exponential decay in transmission and emission, which is also consistent with a longitudinally
homogeneous scattering function [17]. This is confirmed by the fit of Eq. (7) and Eq. (9) to both
measurement series shown in Fig. 7. In transmission, the curve shape is in good agreement with
the theoretical considerations. Regarding emission, Eq. (9) could also be fitted to the data set,
except for several local maxima and minima, which cause the scattering spectrum of s23 to be a
lot noisier than in transmission. Still, both spectra span the same range and show roughly the
same features. This indicates that both procedures record the same effects.

The local extrema we can observe in the emission profile are the result of laser writing errors
which are caused by a loss of beam focus. This is due to strong aberrations which are brought
about by fluctuations in coating thickness: the affected modifications are either smaller or fainter
than the average scattering center, or they have not been written at all. A possible solution to
this problem would be to use refractive index matching oil, which would compensate such outer
surface irregularities.
Surprisingly, deviations from the ideal exponential curve shape are far stronger in emission

than in transmission. This is a counterintuitive consequence of the property discussed in Section
2: contrary to the emission, the transmission is independent of scattering center spacing when
there is no interaction. In transmission, only measurements after a successful modification
were recorded. Therefore, it shows a double-exponential decay which is in agreement with the
model. In emission, the whole length of the chain of modifications was recorded, so missing
scattering centers show up as minima. Additionally, according to Eq. (4), the local emission of
one modification is determined by the product of its scattering coefficient with the present flux in
the core or in the cladding. This makes it even more susceptible to small variations in scattering
power.
Besides these irregularities, the model is able to describe the emission and transmission

behavior. Nevertheless, the consistency of the theoretical prediction with the measured values
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might be coincidental for the special case of constant modification spacing. As an additional test
for the proposed approach, we generated an arbitrary emission profiles with aperiodic spacing,

dn+1 = 0.002(60mm − dn) . (13)

Hence, the first distance is d0 = 0.120 mm and the last is d1000 = 0.016 mm. The last interval
is smaller than the length of the modification, so at the end of the modified region scattering
centers start to overlap. Again, we created 1000 modifications and performed transmission and
emission measurements as in the previous section. Results are provided in Fig. 9.

Fig. 9. a) Measured transmission with fits according to Eq. (7) at three selected wavelength
ranges shows a second degree exponential decay. b) Comparison of the measured emission
behavior and the calculated emission profile. The right-side maximum is caused by the
decrease of the scattering center distance leading to an increase in emission per unit length.

The measured emission profile in Fig. 9 is U-shaped. This shape is caused by the deformation
of the two exponential functions by consecutive decrease of the modification spacing. The high
emission values on the left side of the curve correspond to the initial decay of the two exponentials.
The increasing line density of scattering centers towards the end of the profile causes the high
emission on the right side. An overlap of both effects leads to partial compensation and therefore
causes the almost flat emission profile in the central section.
Again, the transmission curve follows a double-exponential decay function, but with lower

dampening due to a difference in focal spot position with respect to the fiber core. Qualitatively
the overall behavior is in accordance with our hypothesis that the emission profile is shaped by
scattering center positioning but the transmission is not.
We extracted the three different scattering spectra sab from the transmission measurement by

fitting Eq. (7) to the data set. The obtained values where then inserted into Eq. (9) to calculate
the emission spectra. To apply this formula, the derivation of the function n(z) was approximated
in the following way:

dn
dz
≈
∆n
∆z
=

1
dn

. (14)

This gives the emission per unit length at the position of every modification. The last step was to
plot this emission as a function of the position of each modification known from the iterative
formula Eq. (13). This calculated emission profile is also shown in Fig. 9. Apart from the
irregularities in emission caused by writing errors, the shape of the calculated distribution closely
follows the measured one; this holds true for all calculated wavelengths.
Nevertheless, the model shows deviations at the start of the modified length. This is due

to the additional effects mentioned in Section 2: the convolution of the measured data with
the instruments point spread function and the fiber cladding as a possible third light guiding
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layer. Also, the small number of measurement points, where the s12 + s13 exponent dominates
the transmission profile, makes the fit of this exponent more prone to errors. Despite these
shortcomings, the model was capable of predicting the trend of the emission behavior from the
transmission data. Therefore, we conclude that the assumption, which leads to the development
of the model, i.e., the independence of the scattering centers, can also be applied to modifications
of varying distance. This means that arbitrary emission profiles can be designed just by deliberate
spacing of similar scattering centers.

This property can also be used to increase the scattering power of the modified area. Figure 6
indicates the range of the transmission through themodified fiber segment after 1000modifications
from 50% to 70%. Depending on the application, this value should be close to zero or at least
controllable. In the context of our model, the way to enhance the emission from the fiber and
thereby decrease the transmission is to increase the number of scattering centers. This can be
achieved either by increasing the length of the light emitting fiber segment or decreasing the
distance between the scattering centers. If this is not desired, then another possibility is to make
a second chain of scattering centers, which is slightly parallel displaced to the first one. In this
way, the number of scattering centers is doubled, therefore just the scattering coefficients sab
increases but the longitudinal distance of scattering centers stays the same. All these methods
results in a double exponential decay with lower transmission but with different longitudinal
emission properties. These can again be predicted with the presented model.
However, one needs to acknowledge the possibility that in high light power application, the

interaction of the guided light with the scattering centers could cause the destruction of the fiber
due to a process called optical fuse [18]. Here, the interaction of the incident light with the
backscattered light could lead to the creation of a new defect just in front of the first modification.
Repetition of this process may cause a chain reaction in which the defect front moves backward in
the optical fiber towards the light source. Driscoll et al. [18] gave an approximate threshold value
for the radiant flux density q in the order of 1MW/cm−2 for the creation of the fuse. Fortunately,
radiant flux Q required for photodynamic therapy lies between 1W and 5W [1], which would
lead to an average radiant flux density q = Q/(2πr) between 0.3MW/cm−2 and 1.5MW/cm−2 in
the present fiber core with a radius r of 10 µm. This puts the upper limit of the required flux on
the lower end of the threshold value. If necessary, the problem can easily be avoided by taking a
fiber with a slightly higher core radius. For example, a core radius of 15 µm would lead to an
average radiant flux density of 0.7MW/cm−2 while the radiant flux is 5MW.

6. Conclusions

In summary, we tested a new method for creating tailorable emission profiles for side-emitting
optical fiber segments by focused femtosecond laser irradiation, generating chains of refractive
index perturbations alongside the fiber core. The scattering spectrum of each individual such
emission center is broadband and wavelength-dependent. Cumulation of all individual scattering
centers leads to an overall emission profile which is determined by the employed step-width
between the laser-written modifications. Thereby, the writing can be periodic or aperiodic.

Using a model based on simple considerations of Lambert-Beer’s law and a three-level transfer
process, the emission behavior of longitudinal chains of scattering centers can be predicted with
satisfying accuracy, for regular as well as for irregular spacing. As the scattering centers can be
treated as acting independent of each other, they can be used as building blocks for creating a
virtually arbitrary emission pattern such as required in a certain illumination task.
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3.3 Angular Scattering Pattern of Refractive Index Modifications

3.3 Angular Scattering Pattern of Femtosecond
Laser-Induced Refractive Index Modifications in Optical
Fibers

Aaron Reupert et al. “Angular Scattering Pattern of Femtosecond Laser-Induced
Refractive Index Modifications in Optical Fibers.” In: Advanced Optical Materials
8.18 (2020), p. 2000633. doi: https://doi.org/10.1002/adom.202000633

Focused femtosecond laser irradiation is used to induce light scattering modifi-
cations in the core of an optical fiber. This turns the fiber into a diffuse, linear
light source. The scattering is investigated by imaging almost the full solid angle
far-field pattern for the first time. Additionally, an electromagnetic scattering model
is developed to explain the observations. The findings herein change how the rela-
tionship between light scattering and the refractive index fluctuations is perceived
by showing that the far-field scattering pattern is the power spectral density of the
polarization current inside the scattering center. Further, the authors contribute to
a better estimation of the scattering process by showing that the total scattering
power scales quadratically with the laser-induced refractive index change and its
volume.
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interface, or in the glass matrix itself.[4–6] 
Rawson measured the angular scattering 
spectrum of a pristine optical fiber for the 
first time and linked it to the presence of 
small needle-like structures for which he 
also gave a theoretical description.[7]

More recent experimental research 
has turned toward the scattering loss of 
laser-induced microstructures like fiber 
Bragg gratings (FBGs) and long-period 
fiber gratings (LPFGs). Fonjallaz et al. and 
Janos et al. found an azimuthal scattering 
dependency, where the weakest intensity 
was measured in the direction of the laser 
irradiation which created the modifica-
tions.[8,9] Vesselov et al. on the other hand 

used light scattering on long-period fiber gratings to generate 
customizable side emission.[10] We showed previously how 
deliberately placed femtosecond laser-induced refractive index 
distortions can be used to create light diffusing fiber segments 
with a customizable emission profile.[11]

Meanwhile, the idea of deterministic scattering on tilted 
fiber gratings gave rise to further theoretical development of 
coupling guided to radiation modes. Here, two lines of analysis 
were followed: the mode coupling theory and the volume cur-
rent method. While the first is deemed to be more exact, the 
second offers a more intuitive understanding of the scattering 
effect. Li et al. showed that both approaches are in good agree-
ment, except for very low scattering angles.[12]

Vesselov,[10] as well as our prior study[11] relied on a phenome-
nological model of scattering loss which cannot describe the rela-
tion between the refractive index modification and the scattering 
power or the angular emission profile. These shortcomings 
will be addressed in the present paper, where we develop a new 
approach to the electromagnetic description of the scattering 
process based on the volume current method. From this, we 
are able to explain and predict the angular scattering pattern of 
refractive index modifications just by using Fourier transforms 
and convolutions. These mathematical tools are simple to imple-
ment with current computer technology. As it turns out, this 
method can be applied equally well to scattering of all kinds of 
structures in optical fibers, be it desired or undesired.

For experimental comparison, we study chains of refrac-
tive index modifications in the core of a few-mode optical fiber 
which we created with focused femtosecond laser pulses. Such 
irradiation has the advantage over a continuous wave laser in 
that it can modify the refractive index in any transparent mate-
rial and can induce strong refractive index fluctuations which 
scatter light.[13] The investigation of the refractive index modifi-
cation and far-field scattering pattern was done with the help of 
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1. Introduction

Light scattering normally constitutes undesired loss in optical 
fibers. However, if harnessed appropriately, it can be used to 
turn an optical fiber into a flexible line-shaped light source. 
Such side-emitting fiber underlies several real and potential 
applications, for example, in endoscopy where physical access 
is difficult, and a thin, non-conductive, and chemically stable 
light source is necessary.[1–3]

Early research of light scattering in optical fibers focused on 
the loss aspect. The field was pioneered by Marcuse, describing 
intrinsic fiber loss in the framework of electromagnetic 
theory which he attributed to fluctuations in the core cladding 
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several microscopy methods, that is, shearing, phase-contrast, 
and Fourier microscopy. A combination with modern digital 
image processing techniques allowed us to visualize almost the 
whole solid angle of the far-field scattering pattern of a refrac-
tive index modification in an optical fiber for the first time.

The paper is organized as follows: Section  2 presents the 
derivation of the far-field scattering pattern of a localized refrac-
tive index perturbation in a multimode optical fiber. Section 3 
describes the experimental conditions for the creation of the 
refractive index modification as well as the microscopy tech-
niques for measuring the far-field scattering pattern. Section 4 
examines the results of the laser processing and scattering 
measurements, which we discuss in Section 5 and compare the 
results with the theory from Section 2.

2. Theory: Light Scattering on Stochastic Distortions

When guided light interacts with a (laser-induced) refractive 
index modification Δn in an optical fiber it is scattered in all 
directions with varying power. This results in an angular spec-
trum of the scatted radiation which can be pictured on the unit 
sphere (Figure 1).

In this section, we show that this spectrum is closely related 
to the power spectrum and the shape of the refractive index dis-
tortion by applying a perturbation technique called volume cur-
rent method.[14,15] Here, the interaction of the distortion Δn with 
the guided electromagnetic field E0 induces a polarization cur-
rent density j inside the volume (boldface letters denote vectors). 
This current radiates light Es which effectively results in power 
being removed from the incident field. This scattering process 
is described by the inhomogeneous Helmholtz equation:

( ) 20
2 2

0
2

0 0n k n nk iEE EE EE jjss ss ωµ∇× ∇× − = ∆ = −  (1)

where the refractive index difference between fiber core and 
cladding has been neglected for simplicity. The interaction 
of the guided electric field with the perturbation causes a 

scattered electromagnetic field which is driven by the current 
density jj EE2 0 0 0i n nω= ∆ ε . Outside the perturbation Δn is zero and 
the differential equation is homogeneous, so the solution is the 
standard eigenmode expansion of the incoming incident field

( ) ( ) ( , )0

max

c z x y ei zEE rr EE∑= µ
µ

µ
βµ  (2)

which we assume to be transversal and unpolarized or circularly 
polarized. For the scattered field we use a standard procedure 
to solve the inhomogeneous Helmholtz equation with the aid 
of a vector potential A and the Lorentz gauge.[15] The solution 
outside of the fiber core in terms of the scattered electric and 
magnetic field strength is

i
in k

EE ee ee AA HH ee AAss rr rr ff ss rr ff( ), ( )0

0

ω
µ

= × × = − ×  (3)

Here Af is the far-field vector potential, made up by the 
superposition of outgoing spherical wavelets caused by the cur-
rents ( )jj rr′  enclosed in the volume V0 of our scattering center:
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0

0

e
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e dV
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AA jj rrff
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π
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 (4)

Now, we calculate the pointing vector SS EE HHss ss1 2( )*= ×  to obtain 
the direction and intensity of the far-field scattered radiation  
(* denotes the complex conjugate). For that, we perform the 
integration from Equation (4) two times, which we donate with 
the two integration variables r1 and r2 and their corresponding 
differential volume elements dV1 and dV2:

1
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2
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Figure 1. Schematics (left) and experimental data (right) of the far-field scattering pattern of a refractive index modification located in the middle of 
the sphere. iiββ  is the wave vector of the incoming light with the polarization directions ee⊥  and 



ee . ssββ  is the wave vector of the scattered light, which 
spans the polar angle θ with respect to the incoming wave. ββ∆∆  is the scattering vector. φ is the azimuthal angle of the scattered light.
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In Equation (5), we used the vector triple product where one 
term is equal to zero due to orthogonality. For Equation  (6), 
we used that j has the same direction as E0 (Equation  (1)) 
which is unpolarized or circularly polarized, therefore 

E jEE ee ee jj ee ee1 2( ) 1 2( )0 0 

= + → = +⊥ ⊥ . This leads to two 
cross products 1ee eerr × =⊥  and sin( /2 ) cos



ee eerr π θ θ× = − = , as 
shown in Figure 1.

Next, we introduce the cutoff function V which is V(r) = 1 if 
r is inside V0 and zero elsewhere and acts as a 3D aperture. It 
represents the shape and the volume of the modification and 
removes the limits of integration.

Furthermore, we perform a change of variables and get the 
corresponding volume element with the aid of the Jacobian 

2dV dVrr rr rr22 11= − → = . Also, the shorthand for the propagation 
constant n0k = βs is introduced in the exponent, and we write 
the integral from Equation (7) as

( ) ( ) ( ) ( )*
1e V j V j dV dVi s rr rr rr rr rr rree rr

11 11 11 11
rr∫∫ − −β−

−∞

∞

−∞

∞

 (8)

[( ) ( )] | |3 2� Fe Vj Vj dV Vji see rrrr∫ { }= =β−

−∞

∞

 (9)

One group of functions just depends on r1 and the other, which 
is complex conjugate, on r1 − r, therefore the integral in dV1 is 
actually the autocorrelation function ( ) ( )*

1P P dV P P�rr rr rr11 11∫ − = . 
The second integral in dV turns out to be the 3D Fourier trans-
form 3F . At last, we make use of the Wiener–Khinchin theorem 

{ } { } { } | { } |3 3 3 * 3 2P P P P PF � F F F= =  and find that the far-field 
scattering pattern is proportional to the power spectrum of the 
current density in the volume.

To our knowledge, this elegant result has been derived for the 
first time but it has one disadvantage in it requiring knowledge 
of the specific realization of the stochastic functions j(Δn, E0). To 
deal with this inconvenience we will compute the expected scat-
tering behavior of one scattering center by taking the ensemble 
average S〈 〉  after inserting the current density. At first, this will 
deviate from our elegant result, but in the end the structure of 
this solution will be recovered. The ensemble average
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 (10)

is applied only to the autocorrelation function because it con-
tains the stochastically varying functions Δn and E0. We see that 
the whole scattering power scales with k4 (and thus λ−4) similar 
to Rayleigh-scattering as already mentioned by Marcuse.[4]

From this point on, the factor in front of the integral will no 
longer change, therefore we introduce the shorthand notation

( )
64

(1 cos )0

0

0
3 4

2 2
2Q

n k

r

εθ
µ π

θ= +  (11)

We insert the eigenmode expansion Equation  (2), where the 
summation index belonging to r1 is denoted with μ and the 

other one belonging to rr rr rr22 11= −  is denoted with ν. Similarly, 
we denote the dependency of other functions on r1 or r2 with 
the subscript 1 or 2:
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− −µ ν  (12)

Due to their interaction, the only stochastic functions are 
Δn and c. Now we follow the argument of Marcuse[5] that 
the amplitudes and the refractive index perturbations are 
uncorrelated:

( ) ( ) ( ) ( )1 1
*

2 2 1
*

2 1 2c z n c z n c z c z n n〈 ∆ ∆ 〉 = 〈 〉〈∆ ∆ 〉µ ν µ ν  (13)

Furthermore, we assume that the phases of the complex field 
amplitudes are sufficiently random, so their product is always 
zero for unequal indices c z c z c c( ) ( )1

*
2 ,1 ,2

*δ δ〈 〉 = 〈 〉µ ν µν µ µ µν . This 
property removes the summation over ν, and we can express 
the ensemble average of the pointing vector as
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Now we rewrite the exponent as a scalar product of two 
vectors:

i z i is see rr ee ee rr rrrr zz rr( ) ( ) βββ β β β ∆∆− = − = −µ µ µ  (15)

With this conversion, we recover the 3D Fourier transform 
3Fµ , which is now dependent on the summation index μ and 

transforms from r space to ββ∆∆ µ  space. This is the space of 
the scattering vector added to the incident light to produce the 
change in direction as shown in Figure 1.
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The next step is to recover the autocorrelation of the whole 
integral. We process the autocorrelation function 〈Δn1Δn2〉 by 
splitting it into the autocovariance Cnn = 〈Δn1Δn2〉 − 〈Δn1〉〈Δn2〉 
and the product of the mean values 〈Δn1〉〈Δn2〉. This separates 
the deterministic mean from the stochastic part which is now 
represented by the autocovariance. We apply the same proce-
dure to the slowly varying amplitude c to obtain its autocovari-
ance Ccc and its mean ,1 ,2

*c c〈 〉〈 〉µ µ  and get:
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1 2 1 2 ,1 ,2
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1 2 ,1 ,2
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+ 〈∆ 〉〈∆ 〉〈 〉〈 〉

µ µ µ µ

µ µ

µ µ

 (17)

When we insert this result back into Equation  (16), we 
obtain four terms. We now assume that both stochastic pro-
cesses are homogeneous, so their autocovariance is only 
dependent on r and can be taken out of the integral ∫dV1. Then 
what remains inside is in all cases the autocorrelation func-
tion. Furthermore, we can write the autocorrelation separate 
from the autocovariance by using the convolution theorem 

{ } { } * { }3 3 3AB A BF F F=µ µ µ
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As the last step to simplify the equation, we use the Wiener–
Khinchin theorem to turn the autocovariance into the absolute 
square of its Fourier transform which we call the variance spec-
tral density function of the refractive index fluctuations Snn or 
the mode power amplitude Scc. The same procedure is applied 
to the autocorrelations to get their respective spectral densi-
ties. We arrive at the final most general result of the scattering 
problem for the expected scattering pattern:
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Our solution to the scattering problem is the sum of four 
terms, which all contain a deterministic diffraction part in the 
form of several power spectral densities. The influence of the 
stochastic processes appears as the convolution with the respec-
tive variance spectral density of the noise process. If it is far 
from its maximum value, for example, the dominant fluctua-
tion wavelength is way larger than the wavelength of the scat-
tering light, its shape can be approximated as a normalized 
radial exponential: Sxx exp{ | | / }ββ τ∆∆∝ − .[16]

The result of the scattering problem includes the transfor-
mation from real into Δβ space which has its point of origin at 
the pole of the sphere in Figure  1. Geometrically, all permitted 
vectors iβ  and sβ  have their tips confined to a spherical shell 
with the radius | | | |i sβ β=  centered on the scattering center, also 
shown in Figure 1. This stems from the restriction to elastic scat-
tering of a monochromatic wave, which must obey the phase 
matching condition i see eezz rrβββ β∆∆+ = . This means that the ββ∆∆  
vector always has a z-component in the range [−2βi, 0], so it is 
either negative or zero, positive z-values are not accessible.

2.1. Approximations to Improve the Usability

The previously derived model is useful to calculate a scattering 
pattern if all properties of the modification are known. For the 
experimentally observed scattering patterns the shape of the 
modification and the power spectral densities depend on a 
variety of experimental parameters that are partially stochastic. 
To be able to compare experiment and theory, we need to make 
some simplifying assumptions.

The first simplification is that the fiber core has only a slightly 
different refractive index compared to the cladding (which is 
fulfilled in the experiment, see Section 3), so we can apply the 
weakly guiding case, where all propagation constants merge into 
one βμ ≈ β ≈ n0k.[4] It follows that the 3D Fourier transform in 
Equation (19) no longer depends on μ. Also, we assume that the 
electric field across the modification is approximately constant, 

which effectively turns all the modes into plane waves with the 
transversal electric field E and the amplitude 〈c〉. The induced 
mean refractive index difference 〈Δn〉 is also assumed to be con-
stant. This enables us to factor out these constants including the 
integrated volume V2  = (∫VdV)2 from the scattering problem. 
Additionally, we use the distributive property of the convolution 
to pull | { } |3 2VF  out of the brackets. This leaves a term with the 
δ-function as the identity operation of the convolution:
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 (20)

We recall from Equation (10) that the θ dependence is due to 
polarization and can be suppressed by observing the scattering 
through a polarizer to obtain Q(θ) = Q. This formula shows that 
under these simplifying assumptions the total scattering power 
of a modification scales quadratically with V, c & Δn. This prop-
erty can act as a rule of thumb to estimate the scattering power 
of a modification and how to enhance or diminish the extent 
of light scattering. Additionally, the plane wave is no longer 
required to be a guided wave, therefore this formula can also 
be used to calculate the scattering of external waves, which pass 
thought the fiber cladding from the outside.

2.2. Random-Shaped V

The preceding calculations assumed that the volume V of 
the ensemble of the scattering centers is always the same. If 
we want to find the expected value by averaging measure-
ments, we also must consider that the shape of the scattering 
volume is changing: the surface is fluctuating about a mean. 
This can be implemented by applying the ensemble average 
in Equation  (12) also to V1V2 and assume it is uncorrelated 
to the refractive index fluctuations and mode amplitudes 
in Equation  (13). Then | { }|3 2VF  in Equation  (20) has to be 
replaced by V V SVV| { }| | { }| *3 2 3 2F F〈 〉 ≈ . We make the approxi-
mation, that it is sufficient to convolute the volume with the 
power spectrum of the surface fluctuations to account for the 
random shape.

3. Experimental Section

The fiber, a commercially available step index optical fiber 
(Nufern 20/400 Precision Matched Passive LMA Double Clad 
Fiber: Core [NA = 0.065, 20∅ =   µm], Cladding [NA 0.46= , 

400∅ =  µm]), was clamped to a motorized xy-table. The trans-
parent plastic fiber coating was removed, and femtosecond 
laser pulses were focused into the fiber core with an NA = 0.25 
microscope objective. The laser was a Ti:Sapphire regenera-
tive laser amplifier system (Spectra Physics, Spitfire) emitting 
pulses at λ = 800 nm with a duration of FWHM = 200 fs. A 
pulse energy of 2.5 µJ and 1 kHz repetition rate was used. A 
mechanical shutter was set to 2 s opening time, so the number 
of pulses per scattering center was approximately 2000. After 
one refractive index modification was induced into the fiber 
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core, the fiber was moved and the procedure was repeated at 
a distance of 200 µm along the fiber. In this way, a chain of 
similar refractive index modifications was created in the fiber 
core. Sketches and images of the scattering center preparation 
can be found in ref. [11].

To measure the generated modifications and their scattering 
performance, the fiber was removed from the laser irradiation 
set up and coupled a green laser diode (λ = 520 nm) with a max-
imum power of 100 mW into one fiber end. The initial linear 
polarization of the diode was converted to circular with the aid 
of a quarter wave plate. The modified fiber segment was then 
placed under a microscope (Jenapol Interphako), where the 
scattering of the light on the modifications as well as the refrac-
tive index distortions themselves was observed. For real space 
images, phase contrast objectives (NA = 0.65, Mag = 40) were 
used to enhance the visibility of the scattering centers.

The principle of the angular scattering measurement is 
shown in Figure  2. Here, the property that light in the front 
focal plane, by passing through the objective, is decomposed 
into its angular components whose intensity distribution is 
then projected onto the back focal plane, was made use of.[7] 
This well-known behavior gives direct access to the far-field 
scattering pattern; it is often called the Fourier-transform capa-
bility of lenses, hence, the name Fourier microscopy. The back 
focal plane is imaged with the help of a Bertrand lens, which 
is placed in the beam path of the microscope[19] (in polariza-
tion microscopy this method is also known as conoscopy). An 
NA = 1.3 oil immersion objective with a magnification of 100 
was used for side scattering; for forward and backward scat-
tering, a long-working-distance NA = 0.6 air objective with a 
magnification of 50 and a custom made mirror prism with a 
hole for the fiber was employed. Interference microscopy with 
the immersion objective was also used to approximate the 
induced refractive index change inside of the modification.

4. Results

The focused femtosecond laser irradiation produces a localized 
refractive index modification in the fiber core, which can be 
imaged with phase contrast microscopy, as shown in Figure 3. 
In all observed instances, the modifications have a very similar 
shape, but the interior consists of refractive index fluctuations 
which differ significantly from one modification to the next. 
This is readily visible in the side view of Figure 3. When com-
paring top and side-view, we find that the modifications are 
approximately ellipsoidal, with dimensions of 11.1 µm (length) 
by 15.2 µm (height) by 1.7 µm (width). In the inner regions, we 
determined an average refractive index change of 〈Δn〉 = 0.023 ± 
0.007 relative to the fiber core by means of microscope shearing 
interferometry. When light of the green laser diode is coupled 
into the fiber, the refractive index distortion visibly scatters the 
light (Figure 3 right). From this scattering image as well as the 
shearing microscopy we observe that the effective scattering 
volume might be smaller than the limits of the modification 
visible in phase contrast.

4.1. Scattering Pattern of a Single Modification

Light scattered by modifications in the core is transported 
away from the fiber with almost no refraction due to the index-
matching oil. This light eventually forms the far-field scattering 
pattern of the chain of scattering centers. If one modification is 
placed in the focus of the high NA objective, its far-field scat-
tering pattern can be observed individually. The two observation 
directions presented in Fourier space (Figure 4) correspond to 
the real space directions shown in Figure 3.

In side view the scattered light forms a pattern of smooth but 
otherwise random-shaped bright grains which are separated by 
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Figure 2. Fourier-microscopy for side, forward, and backward scattering. a) Rays spanning an angle α with the optical axis (dashed) are transformed 
into parallel rays with a distance ρ by refraction on the reference sphere (blue) according to the Abbe sine condition sin α = ρ/f. Glycerol (n0 = 1.46) 
immersion eliminates refraction on the fiber surface. b) Rays with small scattering angles are reflected upward (α → θ) by a 45° mirror and collected 
with a long working distance microscope objective. Backscattering is measured by reversing the mirror. Both set ups were calibrated with a diffuse 
transmittance standard (opal glass Qsil-ilmasil[17]) to compensate for the objectives polarization dependent angular attenuation.[18]
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dark boundaries; a structure that is very similar to a laser speckle 
pattern. The grains are brighter on the right side (small θ)  
of the picture than on the left side (large θ), which means that 
the modification is predominately forward scattering.

In top view, we see a similar granular pattern to the broad-
side but with a wide dark band in the middle, crossing the 
picture horizontally. In the area of the dark band the grains 
appear less intense and vertically elongated. Also, the overall 
brightness in top view is lower than in side view: the imaging 
required roughly five times the exposure time.

Both pictures were taken with the analyzer polarization per-
pendicular to the direction of light propagation in the fiber 
while the light guided in the fiber is circularly polarized. If we 
set the analyzer polarization parallel to the fiber and look at the 
broadside of the scattering center, a vertical dark band appears 
in the center of the back focal plane image, crossing the image 
from the top to the bottom. This is a damping of the radiation 
which is strongest if the light is scattered perpendicular to the 
direction of propagation. The same phenomena of θ dependent 
damping is also observed for the small side and independent of 
fiber rotation around the z-axis (not shown).

4.2. Forward and Backward Scattering

Light scattered at very small or very large angles cannot be 
captured with the large NA immersion objective, because its 
opening angle is limited to αmax = ±62.9° (27.1° < θ < 152.9°). 
To extend the observable angular range of the microscope, 
we used a mirror to reflect the forward and backward scat-
tered light into the objective where we again image the back 
focal plane.

The images in Figure 5 of forward (left) and backward (right) 
scattering show a central hole surrounded by concentric rings 
(very faint in backscattering). This pattern decreases in inten-
sity and in distance in between the rings with increasing radius. 
Also, the brightness around the hole varies in magnitude: Its 
angular dependency is characterized by two bright lobes on 
opposing sides which are separated by a wider and dimmer 
scattering pattern.

The backward scattering shows almost now distinguish-
able pattern even though the exposure time in backscattering 
was 450 times longer than in forward scattering. Contrary to 
the side scattering in the previous subsection, the forward 
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Figure 4. Back focal plane images of different perspectives and observation polarizations of the far-field scattering pattern from an excitation wave-
length of 540 nm with circular polarization. Brighter colors mean more light exposure. The patterns were enhanced with histogram equalization, so 
they only allow for qualitative comparison. Views correspond to the real space images in Figure 3. Guided light crosses the pictures from the left to the 
right and is circularly polarized. Light on the right side of the circle is small angle forward scattering and on the left is large angle backward scattering. 
These images correspond to viewing the sphere from Figure 1 along the βx- or βy-axis.

Figure 3. Phase contrast microscope images of the laser modifications in the fiber core. Top view is in the direction of laser irradiation and side view 
is orthogonal to it. Four images of similar scattering centers are provided (zoom in). The boundary of the fiber core shows up as two blurry horizontal 
lines in the background.
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scattering does not show a strong polarization dependency in 
the intensity distribution on the picture.

The dark irregular shaped hole in the middle of the picture is 
where the fiber is threaded through the mirror. The fiber itself 
can be seen as two dark horizontal lines. In Section  5, it will 
turn out that the rings are probably a diffraction effect caused 
by the cylindrical shape of the fiber, they are not the main focus 
of this paper.

5. Discussion

The form of the scattering center is a product of overlapping 
femtosecond laser pulses in the focal spot in the core of the 
fiber. Before the focal spot is formed, the converging beam 
undergoes a refraction on the cylindrical fiber surface which 
introduces aberrations and turns the rotationally symmetric 
focal spot into a flat ellipsoid. Then, the overlapping of several 
laser pulses causes an evolutionary process inside the irradiated 
volume, which results in an average increase of the refractive 
index and the formation of stochastic fluctuations.[20]

The change in refractive index is attributed to the generation of 
a hot electron plasma which quickly (<10 ps) transfers its energy 
to the glass matrix. Micro explosions[21] for high pulse energies 
like in the present case produce random density fluctuations. It is 
well-known that fast heating and quenching leads to an increase 
in the glass’ fictive temperature,[22,23] which, in the case of fused 
silica, is associated with an increase in refractive index.[13]

The measured mean value of 〈Δn〉 = 0.023 is very high for a 
modification in fused silica created with a femtosecond laser. 
Typical values recorded on optical waveguides are in the range 
of up to 10−3 with a threshold value of 3 × 10−3.[24,25] When 
higher pulse energies are applied for inscription, the wave-
guides start to be too strongly scattering to be functional. Both 
the energy range and the scattering effect are consistent with 
the present light scattering modifications which were produced 
at 2.5 μJ.

5.1. Speckles

The far-field grain pattern which is observed in the back focal 
plane of the objective as shown in Figure 4 is the result of the 
interaction of the laser light with the refractive index distortion. 
The shape of the grains is very similar to a laser speckle pat-
tern which can be observed when a rough surface interacts 
with coherent monochromatic light.[26] Laser speckles are 
caused by the overlapping spherical wavelets with uncorrelated 
phase which are generated by multiple scattering regions on a 
rough surface.

In Section  2, we show that the pattern is a result of over-
lapping spherical wavelets generated by the interaction of the 
guided light with the refractive index fluctuations inside the 
modified volume. Also, due to the finite correlation length of 
the autocorrelation function, we obtain different contributing 
regions. We conclude that in the present case we generate 
volume speckles while common speckles are generated on 
a surface. The presence of speckles also signifies the spatial 
limitation of the (stochastic) interior of the modification: if the 
number of contributing regions would be large enough, the 
pattern becomes finer and smoothed-out; if there is a direc-
tional spatial limitation, the speckles get elongated as in the top 
view in Figure 4.

We also observe a strong dependency of the speckle 
pattern on polarization: one direction shows a strong θ 
dependency. This is a result of the cos θ factor stemming 
from the polarization component 



ee  derived in Equation (7). 
Light, which is polarized parallel to the plane spanned by the 
incident and the scattered wave vector, cannot be scattered 
parallel to the polarization direction. This supports our idea 
that it is sufficient to image the ee⊥  component of the scat-
tering pattern via filtering to obtain an undisturbed picture. 
Furthermore, this is also in agreement with the observation 
that forward and backward scattering patterns have no polar-
ization dependence because in this angular range the cosine 
is almost unity.

Adv. Optical Mater. 2020, 8, 2000633
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Figure 5. Forward and backward scattering pattern captured by reflecting the scattered radiation on a tilted mirror. In the middle of the picture is the 
hole where the fiber is threaded through the mirror (Figure 2). The optical fiber is bound by two dark horizontal lines and distorts the image beneath it. 
A pattern of concentric rings is centered on the hole, whose underlying intensity distribution shows an angular dependency: two bright lobes emerging 
from the hole pointing upward and downward. Rings in backscattering are very faint.
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5.2. Assembling an All-Around View and Averaging

The Fourier-plane images of Figure  4 show only a segment of 
the whole spherical far-field scattering pattern, which makes it 
difficult to compare the brightness of the angular distribution 
around the fiber. To obtain a more complete picture, we assem-
bled a full 360° view in φ by stitching together 8 perspectives 
which were imaged in steps of Δφ = 45°. The result is shown 
in Figure 6. It represents a map of the far-field side scattering 
pattern, which is still limited to 0.47 < θ < 2.67 due to the max-
imum opening angle of the objective. Wrapping this map on 
a sphere comes closest to a true representation of the far-field 
scattering pattern where the modification is in the middle of the 
sphere as shown in Figure 1. The pattern itself consists of many 
small speckles. These are present on the whole map, but their 
brightness follows an enveloping pattern which depends on θ 
and φ. Their presence is harder to detect for large scattering 
angles θ without enhancing the contrast of the pictures as in 
Figure 4. We average the normalized maps of 90 similar modifi-
cations for an estimate of the enveloping intensity distribution. 
This leads to the smooth average distribution in Figure 6b.

Both maps show the same overall features in θ and φ: A 
strong increase in scattering power with decreasing polar 
angel θ, which means that the modifications are preferentially 
forward-scattering. Furthermore, the map shows a sinusoidal 
dependency of the brightness with the azimuthal angle φ. By 
comparing the real space and the Fourier images we find that 
the bright lobes coincide with the broad side of the scattering 
center and the dark bands with the small side of the scattering 
center. This is consistent with the forward scattering pattern 
which shows the same feature as the two side lobes.

For very large scattering angles (θ > π/2), the far-field inten-
sity approaches a low but constant value. This is the Rayleigh 
scattering background[7] caused by the increase in glass’ fictive 
temperature[22,27,28] inside the modified volume. In the frame-
work of our model, this can be treated as white noise back-
ground fluctuation which has a flat power spectrum.[4] Rayleigh 
scattering has no angular dependency in the present polari-
zation direction, so it is treated as an additive constant to the 
angular scattering pattern.

Comparison of the single and the average map shows four 
important properties: First, the grain pattern is the noisy power 
spectrum of one realization of the stochastic fluctuations inside 
the modification (Equation (9)). Second, the feature of two bright 
and two dark regions in φ as well as the increase in scattering 
for small θ is a general property that all scattering centers share. 
Third, the φ-dependency is a consequence of the ellipsoidal 
shape of scattering volume. Fourth, the decline of scattering 
power with θ is rotational symmetric in φ and therefore is caused 
by the radial functions Snn and Scc. The preferential forward scat-
tering indicates that the power spectrum of the fluctuations has 
its maximum at way larger wavelengths than the scattered light. 
Therefore, it can be approximated by a radial exponential.

5.3. Computed Scattering Pattern

Having obtained the average scattering map, we now show 
that we can reproduce a qualitatively similar scattering pattern 
as laid out in Section 2. From Equation (20) we know that the 
average angular scattering distribution is caused by the super-
position of four terms which all consist of a convolution with 
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Figure 6. a) Maps of the far-field scattering pattern of a single modification assembled from eight back focal plane pictures which were imaged by 
rotating the fiber in steps of 45°. It shows the angular dependency of the far-field grain pattern. b) Average scattering map of 90 modifications. It shows 
the enveloping distribution which governs all scattering patterns. Both maps have constant spacing in polar θ and azimuthal φ angle.
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the absolute square of the 3D Fourier transforms of the modi-
fied volume | { } |3 2VF .

The first step of the computation is to define the computa-
tional volume: The edge length in real space (l = 20 µm) defines 
the smallest resolvable Δβmin  = 1/l vector due to the scaling 
property of the Fourier transform. The relation between the 
largest Δβmax  = βi/2 and the smallest defines the resolution 
Δβmax/Δβmin. Here the amount of computer memory available 
is the limiting factor for increasing the resolution because the 
data increases with the volume and therefore with resolution 
to the power of three (for this reason we choose only half of βi 
to reduce computational effort). The modification is defined in 
the center of the computation grid as an ellipsoid (1 = x2/a2 + 
y2/b2 + z2/c2) with the semi-axis corresponding to the measure-
ments from Figure 3: a = 15.2 µm, b = 1.7 µm, and c = 11.1 µm.

From this, we calculate the discrete Fourier transform and 
store it into an array. Additionally, we blur it with a normalized 
radial exponential SVV (τ = 0.3 cm−1) to account for the random 
surface. Then the three other terms are computed by calcu-
lating the convolution with two different normalized exponen-
tials representing Snn (τ = 2 cm−1) and Scc (τ = 3 cm−1) (the latter 
just acts in the z-direction). The τ-values are chosen by hand to 
fit the measured curve and the results are weighted and added 
up. The final result is a 3D array in Δβ-space, where we find the 
observed scattering pattern by extracting only the values on the 
spherical shell from Figure 1 by interpolation.

The general trend for forward and side scattering is repro-
duced by adjusting the weight of Snn to 5% and of Scc to 3.5% 
of the deterministic diffraction pattern | { }|3 2VF . This is pre-
sented in Figure 7 where we compare the calculations to both 
measurements. Since the angular range for side and forward 
scattering doesn’t overlap, both measured curves require dif-
ferent normalization. Two graphs on the top left show the scat-

tering power over Δβ in comparison to the calculation viewed 
as a slice through the maximum (βy-βy-plane) and minimum 
(βx-βy-plane). The contributions of the different convolutions 
are broken down in the corresponding images below: it shows 
that the expected scattering pattern for large Δβ is determined 
by Scc; for intermediate by Snn and for small by V SVV| { }| *3 2F .  
The latter also causes the asymmetry between minimum and 
maximum. The Snn * Scc term has almost no effect because it is 
too spread out.

Still, there are some noticeable deviations between compu-
tation and observation especially when we compare the whole 
map for sideward scattering in Figure 7 on the right. The mod-
eled scattering lobes (maxima) are narrower than the observed 
ones even though they have almost the same amplitude. This 
is a consequence of the simple geometry of our calculated scat-
tering center: the high aspect ratio of the ellipsoid leads to a very 
narrow diffraction pattern due to the reciprocal scaling property 
of the Fourier transform. This mismatch indicates that the real 
scattering center has a significantly more complex shape with a 
broader spectrum of large Δβ components. Nevertheless, even 
the chosen simple geometry reproduces the same general prop-
erties in φ and θ which were observed in the experiment.

All deviations from the ideal optical fiber scatter light, there-
fore the presented model also helps to understand the observa-
tions made by other researchers.[8,9] Fonjallaz et  al. and Janos 
et al. reported that light scattering of their fiber Bragg grating 
shows a similar azimuthal dependency with respect to the laser 
writing direction as in this experiment. We argue that this is 
also caused by the asymmetry of the refractive index modifica-
tions in the optical fiber; it is ultimately a consequence of the 
asymmetry of the focal volume: it is tighter focused in y than in 
z-direction due to the refraction of the femtosecond laser on the 
fiber surface. Consequently, the inverse scaling property of the 
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Figure 7. Comparison of the calculated scattering pattern with the experimental data. a) Top: Comparison of the Δβ dependency of the calculated scat-
tering pattern with the measurements in forward and sideward scattering. The dip for small Δβ is due to the hole in the mirror (gray area). Bottom: 
Contributions of the convolution terms from Equation (20) to the computed cumulative scattering pattern 〈S〉. b) φ dependency of the calculated scat-
tering pattern compared to the measured side scattering pattern. The patterns have been integrated with respect to θ to yield the graph at the bottom.
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Fourier transform turns the scattering pattern brighter in the 
direction of the smaller extent.

An important consequence of this finding is that the shape 
of the modification can be used to influence the φ-dependency 
of the scattering pattern: If one wants to have it constant in φ, 
the scattering center should be rotationally symmetric; if one 
wants to have a certain number of maxima in φ, the modifi-
cation should reflect this requirement in its symmetry. On the 
other hand, homogeneous scattering in θ would require a flat 
power spectrum of Snn in the range of the phase matching con-
dition [−2Δβ, 0]. As of writing this document, it is unknown 
how to selectively influence the spectra of the refractive index 
fluctuations with femtosecond laser irradiation. In a previous 
work,[11] we found the maximum scattering loss for similar 
modifications to be around 900 nm, which means that a max-
imum of Snn could be in that range. So, while the modification 
is predominantly forward scattering in the visible, in the near 
infrared it could already be homogeneous.

5.4. Forward Scattering Pattern

The concentric rings are the most prominent feature of the 
forward and backward scattering pattern. They were already 
observed by Rawson[7] in his investigation of scattering loss 
in unmodified optical fibers. He gave the interpretation that 
they are the circular symmetric equivalent of laser speckles. 
If this explanation can also be applied in this case, then aver-
aging several pictures of them should remove the rings and 
give us the enveloping function like in the previous subsec-
tions. The average intensity distribution from 100 different 
positions is shown in Figure 8b. It shows that even though the 
rings become less sharp, a visible ring pattern remains, which 
implies the presence of a deterministic diffraction pattern.

This is unlikely a product of the modifications themselves 
because when we compute the scattering pattern as in the pre-
vious section, we obtain the result shown in Figure  8a. Here, 
we see two lobes emerging from the center of the computed 
forward scattering pattern, which neatly correspond to the 
observed lobes in forward scattering. This is the pattern of the 

modification. The two-lobe shape is again due to the reciprocal 
scaling effect of the Fourier transform, it causes the scattering 
to be dominant in the direction of the smallest extend of the 
modification in real space. In this way the elliptical cross sec-
tion is imprinted on the forward scattering as it was the case 
for the side scattering. The difference between the computed 
and the observed scattering pattern is because the shape of the 
real scattering center is only approximately an ellipsoid as we 
already mentioned in Section  5.3. We additionally computed 
the diffraction pattern of two modifications with a distance 
of 200  µm, which shows the same two-lobe diffraction pat-
tern (not shown), so we can rule out an interaction of several 
scattering centers.

Regarding an explanation for the circular ring pattern we 
argue that it originates either from the core–cladding or from 
the cladding–oil transition because it resembles an Airy disc. 
To demonstrate this in the framework of our present theoretical 
approach, we model the diffraction behavior by treating a sec-
tion of the core itself as a refractive index distortion interacting 
with a plane wave. For modeling, we chose a cylindrical seg-
ment with a diameter of 20 µm and a length of 30 µm. The 
computational volume in real space was as long as the core seg-
ment in the z-direction but was extended to 80 µm in x and 
y. This zero padding was done in order to increase frequency 
resolution to help to resolve the ring pattern.

The result of the calculation is shown in Figure 8c. The dif-
fraction pattern shows concentric rings whose distance and 
intensity decreases from the inside to the outside. From this 
similarity we conclude that the pattern could be caused by 
the fiber core itself. The light flux fueling this phenomenon is 
probably the main diffraction lobe of the modification which 
is shown in Figure  7a but cannot be observed due to experi-
mental restrictions (the hole in the mirror). This would make 
this a very low angle scattering effect no longer covered by the 
volume current method. This almost unknown effect could 
have implications for the development of long period fiber grat-
ings because it could influence the coupling from core to clad-
ding modes.[29]

There is certainly much ambiguity in setting the values of the 
equations. The problem at hand is that very little independently 

Figure 8. Images of the forward scattering pattern: a) Calculated scattering pattern for an ellipsoidal modification shows diffraction lobes but no ring 
structure. b) Measured average forward scattering pattern shows side lobes with visible rings. The white lines are the min/max cross sections where the 
forward scattering curves from Figure 7 were taken from. c) Calculated diffraction of a plane wave on the fiber core shows concentric rings (log scale).
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measured data are available on the properties involved in the 
scattering process, especially the mean refractive index change 
and its variance. Nevertheless, future experiments could extract 
the power spectrum of the fluctuations from a fiber transmis-
sion measurement. Then the volume and the average refractive 
index change can be measured with microscopy techniques and 
the resulting scattering pattern could be calculated with less 
ambiguity and compared to the scattering measurements.

6. Conclusions

In conclusion, we derived an equation for the scattering pattern 
of a stochastic refractive index distortion of arbitrary shape in an 
optical fiber. This enables the calculation of the angular emis-
sion behavior as well as the interpretation of measurements for 
any kind of refractive index modification. The scattering power 
scales quadratically with the average induced refractive index 
change and the volume of the modification, which allows for 
precise quantitative control of the scattering process.

We experimentally determined the far-field scattering pat-
tern of many similar refractive index modifications created 
with focused femtosecond laser irradiation: almost the full 
solid angle far-field scattering pattern was successfully imaged. 
This showed that while a single pattern is dominated by laser 
speckles, the average of several patterns follows an enveloping 
intensity distribution.

Several remarkable features of the scattering process could 
be assigned to different properties of the refractive index dis-
tortion by qualitatively comparing the calculated and the meas-
ured scattering patterns. We conclude that it is ultimately the 
shape of the scattering volume which determines the azimuthal 
dependency and that the power spectrum of the refractive index 
fluctuations determines the polar angle dependency. This prop-
erty can now be used to engineer the angular distribution of 
the scattering pattern, which paves the way to a completely new 
class of tailored optical fiber emitters.
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4 Summary

The presented dissertation focuses on the development of theoretical and experimen-
tal tools for modeling, fabrication, characterization, and optimization of side-emitting
optical fibers. For this purpose, phenomenological and electrodynamic models were
developed and applied.

In summary, this work establishes that the fiber radiation distribution can be
traced to the influence of two parameters, longitudinal emission and angular emission.
It shows how to use laser-induced scattering centers and a phenomenological model
to shape the longitudinal emission profile of a fiber. Furthermore, the electrody-
namic nature of the scattering process is derived. It shows how the stochastic and
deterministic properties of the laser-induced modifications can be used to influence
the angular scattering pattern and the overall scattering performance. This knowl-
edge paves the way for the generation of fully customizable side-emitting fibers by
femtosecond laser processing.

This section summarizes the findings on side-emitting optical fibers in this work
as follows: It describes the results of the calculation of the radiation field in terms
of the influence of two model parameters: the longitudinal emission and the angle-
dependent emission. These parameters are then summarized separately for the
specific case of femtosecond laser-induced scattering centers with attention to their
tuning.

The Radiation Field

The findings of this thesis change the way side-emitting fiber radiation can be
calculated in free-space lighting applications. The use of a simple line source model
and two phenomenological parameters, longitudinal and angular emission, greatly
simplifies the calculation of the generated light field and the evaluation of fiber
performance for specific applications.

The radiation field was calculated using a radiometric model based on the super-
position principle: The field at a point in space is the sum of all rays coming from
the side-emitting fiber surface and intersecting at that point. From this method, the
flux density, also called irradiance, is obtained. The fiber parameters, longitudinal
and angular emission, used in the model were gained from experimental observations.
From combining the model and parameters, it was found that longitudinal emission
affects the radiance near the fiber, and angular emission influences the field far from
the fiber. The calculations showed almost no difference between regarding the fiber
as a line source or a cylindrical source, so the simpler line source model can be used
to calculate the radiation field.
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4 Summary

Commercial side-emitting plastic optical fibers and fiber fabrics were used to
test the models and obtain the phenomenological parameters of the model. In
addition, the generated radiation field of a side-emitting fiber fabric was measured for
comparison with the calculated field. The fibers and band exhibited a bi-exponential
decline of the longitudinally emitted radiation and a preferential forward-directed
angular radiation.

This angular dependence projected the radiation field forward so that the generated
light distribution moved toward the fiber end with increasing radial distance from
the fiber. This effect only noticeably affects the field at a certain distance from the
fiber and is caused by the refractive index fluctuations inside the fiber, which are
responsible for light scattering in the fiber. The forward scattering shows that the
spectrum of the fluctuations is dominated by long periodic fluctuations.

The bi-exponential decline in the fiber emission causes a sharp decaying maximum
at the beginning, which is visually unpleasing and can lead to overexposure in
technical applications (e.g. microalgae reactor). Light coupling causes this effect
because cladding and core modes are excited simultaneously but have different
attenuations. The cladding modes experience more scattering because they interact
with the fiber surface. Either blocking the corresponding sections of the fiber or a
more elaborate light source coupling could circumvent this effect.

Alternatively, we devised new strategies for light coupling into fibers, partially
based on Spegulis et al. [14]: light coupling from both sides, using a fiber end mirror,
switching the coupling side between adjacent fibers, and a combination of the latter
strategies. Comparison of the calculated radiation fields showed that alternating
coupling between adjacent fibers in fiber fabrics provides a simple solution to obtain
more homogeneous illumination by using only the same number of couplings as
basic single-sided coupling.

These phenomenological models for side-emitting fibers, along with their com-
parison to measurements, contributed to the literature on side-emitting fibers in
three ways: First, I showed that for free-space applications without absorption, it
is sufficient to use the simple line-source approximation to calculate the generated
radiation field regardless of distance. So far, only the cylindrical source has been
used in the literature [24, 25]. Second, near the fiber, it is sufficient to consider
only the longitudinal emission; the parameters of the angle-dependent emission
need only be included if the field must be calculated at some distance from the
fiber. This influence of the angle-dependent emission characteristics has not yet
been studied in the literature. And third, the models can be used to calculate the
resulting light field of multiple fibers by superposition, leading to the discovery of a
new coupling strategy for fiber fabrics: alternating coupling of the light source. This
strategy provides a more homogeneous illumination of a fabric containing fibers
with exponentially decreasing emission profiles.
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The Longitudinal Emission

The calculation of the radiation field has shown that the longitudinal emission is
the critical factor when using the light field near the fiber. This situation occurs in
volumetric illumination of turbid media such as in phototherapy or an algae reactor.
For ideal illumination, the goal is to generate arbitrary or flat emission profiles.
For this purpose, this thesis presents a new technique for fabricating side-emitting
fibers with focused femtosecond laser radiation. These tailored fibers do not require
secondary light light-coupling.

The irradiation creates scattering centers in the fiber, which we use as building
blocks to change the scattering coefficient as a function of position. Since we can
control the density of scattering centers per unit length in the fiber, we have a method
to adjust the amount of scattering per unit length. This method demonstrates how
side-emitting fibers can be made from standard optical fibers with a transparent
coating without further mechanical or chemical preparation. The little preparation
required will greatly simplify the fabrication and customization process.

Based on this idea, I derived a phenomenological model to describe the longitudinal
emission profile that discrete scattering centers produce. In this case, it was not
enough to treat the fiber as a single conducting core; I also had to include the
light-guiding ability of the cladding. This led to a model of energy exchange between
the core, cladding, and free space, which I described with three coupled differential
equations. Here, the scattering coefficients served as coupling coefficients between
the states of the model, which must be determined by measurement.

The system of coupled differential equations for constant scattering coefficients
yielded a bi-exponential decay of emission and transmission for a fiber with two energy
levels. This bi-exponential behavior was observed experimentally for a constant
density of scattering centers per unit length (and for commercial side-emitting fibers).
The comparison between emission and transmission showed that laser processing
introduces negligible absorption losses so that a transmission measurement can
determine the scattering coefficients. The model shows that the transmission
depends only on the number of scattering centers but not on their placement if the
modifications can be treated independently and absorption is neglected. Thus, if the
scattering coefficient is known, it can be used to shape the emission profile of the
fiber by selective placement of the scattering centers. This leads to a stretching or
compression of the two exponents, which can be used to adjust the emission profile.

The experiment and energy exchange model contributes to the literature on
side-emitting fibers in two ways: First, it shows that even assuming a steady-state
energy distribution in the fiber, two states are still necessary to describe light
propagation in the core and cladding, resulting in a striking double exponential
decay, even for commercial side-emitting fibers as in Section 2.1. Previously, only
a single exponential decay was considered [38, 14, 24]. Second, it has been shown
that femtosecond laser-induced scattering centers can be used as building blocks to
construct arbitrary emission profiles by controlling their density in the fiber without
mechanical preparation. Previous laser processing techniques for side emission used
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4 Summary

long-period fiber gratings and required cladding removal and hydrogen loading [26].

The Angular Emission

The calculation of the radiation field has shown that the angular emission determines
the far field of the fiber radiation. The findings of this work show a new way to
understand the angular scattering of light in optical fibers from general refractive
index modifications. It discusses how the scattered radiation represents the spectrum
of polarization currents induced in the modification by interaction with the guided
light in the fiber. This idea shows how to influence the scattering behavior by
controlling the shape, refractive index difference, and stochastic properties of the
scattering center.

The interaction of the refractive index change with the guided light in the fiber
causes the light emission. Measurements on laser-induced scattering centers show
that it is preferentially forward-directed and has two maxima and two minima
in the scattering power around the fiber. Since phenomenological models do not
provide further insight, I developed an electrodynamic model based on Maxwell’s
equations to describe the scattering process. It shows the influence of the changes
in the refractive index and its stochastic fluctuations on the angular emission. From
the calculated scattering patterns, I concluded that dominant large wavelength
fluctuations cause the forward scattering and that the asymmetric shape of the
scattering center causes the angular dependence around the fiber. This reasoning
can also be applied to commercial side-emitting fibers, which also exhibit forward
scattering.

I used the volume current method to derive a scattering model of a stochastic
refractive index distribution. Under some approximations, the complicated process
that generates the far-field scattering pattern was shown to reduce to a Fourier
transform and several convolutions. These procedures can be quickly implemented
with today’s computer technology. The basis is the three-dimensional Fourier
transform of the modified volume of the scattering center. This transformed volume
is then convolved with several power spectra representing the various stochastic
processes that contribute to the scattering. These are the fluctuating envelope of
the scattering centers, the refractive index fluctuations within the modifications,
and the fluctuation of the power carried by the scattered electromagnetic wave.
Furthermore, the model showed that the scattering power scales quadratically with
the volume of the scattering center and the refractive index difference from the
surroundings.

This thesis contributes to the literature on light scattering in optical fibers
by describing localized stochastic refractive index changes using electrodynamics.
Previous work described localized periodic structures such as fiber Bragg gratings
[39] or nonlocalized stochastic perturbations with zero-mean or Rayleigh scattering
[31]. Moreover, the contribution of this work to the literature on customizable
side-emitting fibers is fourfold: First, it showed that the forward scattering property
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is caused by the power spectrum of the refractive index fluctuation. Second, it
showed that the azimuthal scattering depends on the easily changeable external
shape of the scattering center. And third, it was shown that the scattering power
scales quadratically with the volume of the scattering center and the refractive index
change.

67



5 Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Entwicklung von theoretischen und
experimentellen Werkzeugen zur Modellierung, Herstellung, Charakterisierung und
Optimierung von seitenemittierenden optischen Fasern. Zu diesem Zweck wurden
phänomenologische und elektrodynamische Modelle entwickelt und angewendet.

Zusammenfassend stellt diese Arbeit fest, dass die Strahlungsverteilung der Faser
auf den Einfluss von zwei Parametern, der longitudinalen Emission und der winke-
labhängigen Emission, zurückgeführt werden kann. Sie zeigt, wie man mit Hilfe von
laserinduzierten Streuzentren und einem phänomenologischen Modell das longitudi-
nale Emissionsprofil einer Faser gestalten kann. Außerdem wird die elektrodynamis-
che Natur des Streuprozesses abgeleitet. Es wird gezeigt, wie die stochastischen
und deterministischen Eigenschaften der laserinduzierten Modifikationen genutzt
werden können, um das winklige Streumuster und die Gesamtstreuleistung zu beein-
flussen. Dieses Wissen ebnet den Weg für die Erzeugung von vollständig anpassbaren
seitenemittierenden Fasern durch Femtosekunden-Laserbearbeitung.

Dieser Abschnitt fasst die Erkenntnisse über seitenemittierende optische Fasern
in dieser Arbeit wie folgt zusammen: Er beschreibt die Ergebnisse der Berechnung
von das Strahlungsfeld in Bezug auf den Einfluss von zwei Modellparametern:
die longitudinale Emission und die winkelabhängige Emission. Diese Parameter
werden dann separat für den speziellen Fall von Femtosekundenlaser-induzierten
Streuzentren zusammengefasst, mit Augenmerk auf deren Optimierung.

Das Strahlungsfeld

Die Erkenntnisse dieser Arbeit verändern die Art und Weise, wie seitenemittierende
Faserstrahlung in Beleuchtungsanwendungen im freien Raum berechnet werden kann.
Die Verwendung eines einfachen Linienquellenmodells und zweier phänomenologis-
cher Parameter, der longitudinalen und der winkelabhängigen Emission, vereinfacht
die Berechnung des erzeugten Lichtfeldes und die Bewertung der Faserleistung für
spezifische Anwendungen erheblich.

Das Strahlungsfeld wurde mit Hilfe eines radiometrischen Modells berechnet, das
auf dem Superpositionsprinzip basiert: Das Feld an einem Punkt im Raum ist die
Summe aller Strahlen, die von der seitenemittierenden Faseroberfläche kommen und
sich in diesem Punkt kreuzen. Aus dieser Methode ergibt sich die Flussdichte, auch
Bestrahlungsstärke genannt. Die im Modell verwendeten Faserparameter, longitudi-
nale und winkelabhängige Emission, wurden aus experimentellen Beobachtungen
gewonnen. Durch die Kombination von Modell und Parametern wurde festgestellt,
dass die longitudinale Emission die Strahldichte in der Nähe der Faser beeinflusst
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und die winkelförmige Emission das Feld fern der Faser. Die Berechnungen zeigten
fast keinen Unterschied zwischen der Betrachtung der Faser als Linienquelle oder als
zylindrische Quelle, so dass das einfachere Linienquellenmodell für die Berechnung
des Strahlungsfeldes verwendet werden kann.

Kommerzielle seitenemittierende optische Kunststofffasern und Fasergewebe wur-
den verwendet, um die Modelle zu testen und die phänomenologischen Parameter
des Modells zu erhalten. Darüber hinaus wurde das erzeugte Strahlungsfeld eines
seitenemittierenden Fasergewebes zum Vergleich mit dem berechneten Feld gemessen.
Die Fasern und das Band zeigten einen bi-exponentiellen Abfall der längs emittierten
Strahlung und eine bevorzugt vorwärts gerichtete Winkelstrahlung.

Diese Winkelabhängigkeit projizierte das Strahlungsfeld nach vorne, so dass sich
die erzeugte Lichtverteilung mit zunehmendem radialen Abstand von der Faser in
Richtung des Faserendes bewegte. Dieser Effekt wirkt sich nur in einem bestimmten
Abstand von der Faser merklich auf das Feld aus und wird durch die Brechungsin-
dexschwankungen innerhalb der Faser verursacht, die für die Lichtstreuung in der
Faser verantwortlich sind. Die Vorwärtsstreuung zeigt, dass das Spektrum von
langwelligen Fluktuationen dominiert wird.

Der bi-exponentielle Abfall in der Faseremission bewirkt ein scharf abfallendes
Maximum am Anfang, was optisch störend ist und bei technischen Anwendungen
(z.B. Mikroalgenreaktor) zu einer Überbelichtung führen kann. Die Lichtkopplung
verursacht diesen Effekt, weil Mantel- und Kernmoden gleichzeitig angeregt werden,
aber unterschiedliche Dämpfungen haben. Die Mantelmoden erfahren mehr Streu-
ung, weil sie mit der Faseroberfläche wechselwirken. Entweder das Blockieren der
entsprechenden Abschnitte der Faser oder eine aufwändigere Lichtquellenkopplung
könnte diesen störenden Effekt umgehen.

Alternativ haben wir neue Strategien für die Lichteinkopplung in Fasern entwick-
elt, die teilweise auf Spegulis et al. beruhen: Lichteinkopplung von beiden Seiten,
Verwendung eines Faserendspiegels, Wechsel der Einkoppelseite zwischen benach-
barten Fasern und eine Kombination der letztgenannten Strategien. Der Vergleich
der berechneten Strahlungsfelder zeigte, dass die alternierende Kopplung zwischen
benachbarten Fasern in Fasergeweben eine einfache Lösung darstellt, um eine ho-
mogenere Ausleuchtung zu erhalten, wobei nur die gleiche Anzahl von Kopplungen
verwendet wird wie bei der einfachen einseitigen Kopplung.

Diese phänomenologischen Modelle für seitenemittierende Fasern, zusammen mit
ihrem Vergleich mit Messungen, trugen auf drei Arten zur Literatur über seitene-
mittierende Fasern bei: Erstens habe ich gezeigt, dass es für Freiraumanwendungen
ohne Absorption ausreicht, die einfache Linienquellen-Näherung zu verwenden, um
das erzeugte Strahlungsfeld unabhängig vom Abstand zu berechnen. Bislang wurde
in der Literatur nur die zylindrische Quelle verwendet [24, 25]. Zweitens ist es in
der Nähe der Faser ausreichend, nur die longitudinale Emission zu betrachten; die
Parameter der winkelabhängigen Emission müssen nur einbezogen werden, wenn
das Feld in einiger Entfernung von der Faser berechnet werden muss. Dieser Ein-
fluss der winkelabhängigen Emissionscharakteristik ist in der Literatur noch nicht
untersucht worden. Und drittens kann mit den Modellen das resultierende Lichtfeld
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5 Zusammenfassung

mehrerer Fasern durch Überlagerung berechnet werden, was zur Entdeckung einer
neuen Kopplungsstrategie für Fasergewebe führt: die alternierende Kopplung der
Lichtquelle. Diese Strategie ermöglicht eine homogenere Ausleuchtung durch ein
Gewebe, das Fasern mit exponentiell abnehmenden Emissionsprofilen enthält.

Die longitudinale Emission

Die Berechnung des Strahlungsfeldes hat gezeigt, dass die longitudinale Emission
der kritische Faktor ist, wenn das Lichtfeld nahe der Faser genutzt wird. Diese
Situation tritt bei der volumetrischen Beleuchtung von trüben Medien auf, wie z.B.
in der Phototherapie oder einem Algenreaktor. Für eine ideale Beleuchtung ist es
das Ziel, beliebige oder flache Emissionsprofile zu erzeugen. Zu diesem Zweck wird
in dieser Arbeit eine neue Technik zur Herstellung von seitenemittierenden Fasern
mit fokussierter Femtosekundenlaserstrahlung vorgestellt. Diese maßgeschneiderten
Fasern benötigen keine sekundäre Lichteinkopplung.

Durch die Bestrahlung werden in der Faser Streuzentren erzeugt, die wir als
Bausteine nutzen, um den Streukoeffizienten selektiv in Abhängigkeit von der
Position zu verändern. Da wir die Dichte der Streuzentren pro Längeneinheit in der
Faser kontrollieren können, haben wir eine Methode, um die Menge der Streuung
pro Längeneinheit einzustellen. Diese Methode demonstriert, wie seitenemittierende
Fasern aus Standard-Lichtleitfasern mit einer transparenten Beschichtung ohne
weitere mechanische oder chemische Präparation hergestellt werden können. Die
geringe erforderliche Vorbereitung wird den Herstellungs- und Anpassungsprozess
erheblich vereinfachen.

Basierend auf dieser Idee habe ich ein phänomenologisches Modell abgeleitet, um
das longitudinale Emissionsprofil zu beschreiben, das diskrete Streuzentren erzeugen.
In diesem Fall reichte es nicht aus, die Faser als einen einzelnen leitenden Kern zu
behandeln; ich musste auch die lichtleitende Fähigkeit des Mantels mit einbeziehen.
Dies führte zu einem Modell des Energieaustauschs zwischen Kern, Mantel und
freiem Raum, das ich mit drei gekoppelten Differentialgleichungen beschrieb. Dabei
dienten die Streukoeffizienten als Kopplungskoeffizienten zwischen den Zuständen
des Modells, die durch Messung bestimmt werden müssen.

Das System der gekoppelten Differentialgleichungen für konstante Streukoef-
fizienten ergab ein bi-exponentielles Abklingen von Emission und Transmission
für eine Faser mit zwei Energieniveaus. Dieses bi-exponentielle Verhalten wurde
experimentell für eine konstante Dichte von Streuzentren pro Längeneinheit (und
für kommerzielle seitenemittierende Fasern) beobachtet. Der Vergleich zwischen
Emission und Transmission zeigte, dass die Laserbearbeitung vernachlässigbare
Absorptionsverluste mit sich bringt, so dass eine Transmissionsmessung die Streuko-
effizienten bestimmen kann. Das Modell zeigt, dass die Transmission nur von der
Anzahl der Streuzentren abhängt, nicht aber von deren Platzierung, wenn die Modi-
fikationen unabhängig behandelt werden können und die Absorption vernachlässigt
wird. Wenn also der Streukoeffizient bekannt ist, kann er verwendet werden, um das
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Emissionsprofil der Faser durch gezielte Platzierung der Streuzentren zu gestalten.
Dies führt zu einer Streckung oder Stauchung der beiden Exponenten, die zur
Anpassung des Emissionsprofils genutzt werden kann.

Das Experiment und das Energieaustauschmodell tragen in zweierlei Hinsicht zur
Literatur über seitenemittierende Fasern bei: Erstens zeigt es, dass selbst unter
der Annahme einer stationären Energieverteilung in der Faser immer noch zwei
Zustände notwendig sind, um die Lichtausbreitung im Kern und im Mantel zu
beschreiben, was zu einem auffälligen doppelten exponentiellen Abklingen führt,
selbst für kommerzielle seitenemittierende Fasern wie in Section 2.1. Zuvor wurde
nur ein einfacher exponentieller Zerfall betrachtet [38, 14, 24]. Zweitens wurde
gezeigt, dass Femtosekundenlaser-induzierte Streuzentren als Bausteine verwendet
werden können, um beliebige Emissionsprofile zu konstruieren, indem man ihre
Dichte in der Faser ohne mechanische Präparation kontrolliert. Bisherige Laserbear-
beitungstechniken für Seitenemission verwendeten langperiodische Fasergitter und
erforderten eine Mantelentfernung und Wasserstoffbeladung [26].

Die winkelabhängige Emission

Die Berechnung des Strahlungsfeldes hat gezeigt, dass die winkelabhängige Emission
das Fernfeld der Faserabstrahlung bestimmt. Die Erkenntnisse dieser Arbeit zeigen
einen neuen Weg zum Verständnis der Winkelstreuung von Licht in optischen
Fasern aus allgemeinen Brechungsindexänderungen. Es wird diskutiert, wie die
gestreute Strahlung das Spektrum der Polarisationsströme repräsentiert, die in der
Modifikation durch Wechselwirkung mit dem geführten Licht in der Faser induziert
werden. Diese Idee zeigt, wie man das Streuverhalten durch Kontrolle der Form, der
Brechungsindexdifferenz und der stochastischen Eigenschaften des Streuzentrums
beeinflussen kann.

Die Wechselwirkung der Brechungsindexänderung mit dem geführten Licht in
der Faser verursacht die Lichtemission. Messungen an laserinduzierten Streuzen-
tren zeigen, dass es bevorzugt vorwärts gerichtet ist und zwei Maxima und zwei
Minima in der Streuleistung um die Faser aufweist. Da phänomenologische Mod-
elle keine weiteren Erkenntnisse liefern, habe ich ein elektrodynamisches Modell
auf der Basis der Maxwellschen Gleichungen entwickelt, um den Streuprozess zu
beschreiben. Es zeigt den Einfluss der Änderungen des Brechungsindexes und seiner
stochastischen Fluktuationen auf die Winkelabstrahlung. Aus den berechneten
Streumustern habe ich geschlossen, dass dominante große Wellenlängenfluktua-
tionen die Vorwärtsstreuung verursachen und dass die asymmetrische Form des
Streuzentrums die Winkelabhängigkeit um die Faser verursacht. Diese Argumen-
tation lässt sich auch auf kommerzielle seitenemittierende Fasern anwenden, die
ebenfalls Vorwärtsstreuung aufweisen.

Ich habe die Volumenstrommethode verwendet, um ein Streumodell einer stochastis-
chen Brechungsindexverteilung herzuleiten. Unter einigen Näherungen wurde
gezeigt, dass sich der komplizierte Prozess, der das Fernfeld-Streumuster erzeugt, auf
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5 Zusammenfassung

eine Fourier-Transformation und mehrere Faltungen reduziert. Verfahren, die mit
heutiger Computertechnik schnell implementiert werden können. Die Basis ist die
dreidimensionale Fourier-Transformation des modifizierten Volumens des Streuzen-
trums. Dieses transformierte Volumen wird dann mit mehreren Leistungsspek-
tren gefaltet, die die verschiedenen stochastischen Prozesse repräsentieren, die zur
Streuung beitragen. Dies sind die fluktuierende Einhüllende der Streuzentren, die
Brechungsindexfluktuationen innerhalb der Modifikationen und die Fluktuation der
Leistung, die von der gestreuten elektromagnetischen Welle getragen wird. Weit-
erhin zeigte das Modell, dass die Streuleistung quadratisch mit dem Volumen des
Streuzentrums und der Brechungsindexdifferenz zur Umgebung skaliert.

Diese Arbeit trägt zur Literatur über Lichtstreuung in optischen Fasern bei, indem
sie lokalisierte stochastische Brechungsindexänderungen mit Hilfe der Elektrody-
namik beschreibt. Frühere Arbeiten beschrieben lokalisierte periodische Strukturen
wie Faser-Bragg-Gitter [39] oder nichtlokalisierte stochastische Störungen mit Mit-
telwert Null oder Rayleigh-Streuung [31]. Darüber hinaus ist der Beitrag dieser
Arbeit zur Literatur über anpassbare seitenemittierende Fasern vierfach: Erstens
zeigte sie, dass die Eigenschaft der Vorwärtsstreuung durch das Leistungsspektrum
der Brechungsindexfluktuation verursacht wird. Zweitens wurde gezeigt, dass die
azimutale Streuung von der leicht veränderbaren äußeren Form des Streuzentrums
abhängt. Und drittens wurde gezeigt, dass die Streuleistung quadratisch mit dem
Volumen des Streuzentrums und der Brechungsindexänderung skaliert.
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A Theoretical Background

The mathematical description of light distribution through the side-emitting optical
fiber relies on wave optics and radiometry, two sub-fields of optics. To link this thesis
to the relevant fields, we will briefly derive all concepts used in the publications
in Chapter 3 from the Maxwell equations. We will start with plane waves in free
space and the representation of a light field as the superposition of plane waves.
This will introduce the important concepts of electromagnetic waves: propagation
vector, refractive index, light flux density, and Fourier-optics. Then we will derive
the concept of radiometry as the limiting case for spatially incoherent light and the
scattering of light by a refractive index distortion with the volume current method.

A.1 The Plane Wave
One of the basic ideas of wave optics is to describe a propagating electromagnetic
wave with the vector-valued function 𝑬 periodic in space 𝒓 and in time 𝑡, which
represents the electric field

𝑬(𝒓, 𝑡) = 𝑬0 exp{𝑖(𝜔𝑡 − 𝑲𝒓 − 𝛿)} . (A.1)

Similarly, we have for the propagating magnetic part of the wave

𝑯(𝒓, 𝑡) = 𝑯0 exp{𝑖(𝜔𝑡 − 𝑲𝒓 − 𝛿)} . (A.2)

Throughout the text, vectors are written with boldface. The 𝛿 represents a possible
phase shift. The periodic function could also be represented by angle function (sine
or cosine), but the exponential representation allows for easier manipulation because
the rules of exponential calculus apply. We see the link to the angular functions by
using Euler’s formula

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) , (A.3)

which also shows that we should only regard the real part when we calculate a
measurable observable of the electromagnetic wave in Eq. (A.1). This case will be
necessary when we calculate the light flux via the Poynting vector.

From the Eq. (A.1) or Eq. (A.2) alone, we can immediately infer some essential
features: first, it represents a plane wave that propagates in the direction of the
propagation vector 𝑲, because the scalar product with the location vector 𝒓, 𝑲𝒓 is
maximal when both vectors are parallel. Also, it is constant for all 𝒓 that point on
a plane orthogonal to 𝑲; this is shown in Fig. A.1, and we can also see it from the
scalar product

𝑲𝒓 = |𝑲||𝒓| cos 𝛼 , (A.4)
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Figure A.1: Schematics of the wave vector 𝑲. For a plane wave, the scalar
product 𝑲𝒓1 = 𝑲𝒓2 is constant for all points 𝒓𝑖 on a plane of
constant phase.

where the modulus |𝑲| or |𝒓| represents the magnitude of the vectors and 𝛼 the
angle in between them.

When we freeze time (e.g. 𝑡 = 0) and move parallel to 𝑲, the distance between
two maxima is the wavelength |𝒓| = 𝜆. Because Eq. (A.3) is periodic when the
argument 𝑥 is an integer multiple of 2𝜋, it follows that the magnitude of 𝑲 is
|𝑲| = 2𝜋/𝜆. We can apply the same argument to the angular frequency 𝜔: for
constant point in space 𝒓 (e.g. 𝒓 = 0), the time interval from one wave maximum
passing by this point to the next is the period 𝑇, it follows 𝜔 = 2𝜋/𝑇 or when we
use the frequency 𝑓 = 1/𝑇 then 𝜔 = 2𝜋𝑓.

A.2 The Phasor

The phase term 𝑒−𝑖𝛿(𝜔,𝑲) is often absorbed into the amplitude 𝑬0 to yield a more
compact notation. 𝑬0 is then called the phasor because it contains the phase 𝛿(𝜔, 𝑲).
The same idea can also be applied to the frequency term (𝑒𝑖𝑤𝑡) or propagation term
(𝑒−𝑖𝑲𝒓) when this dependency is assumed to be stationary or of no greater interest
for the problem under consideration. In summary, we have the following equivalent
representations for the plane wave

𝑬(𝒓, 𝑡) = 𝑬′
0𝑒𝑖(𝜔𝑡−𝑲𝒓−𝛿(𝜔,𝑲)) = 𝑬0𝑒𝑖(𝜔𝑡−𝑲𝒓) = 𝑬𝝎𝑒−𝑖𝑲𝒓 = 𝑬𝑲𝑒𝑖𝑤𝑡 . (A.5)

It should be stressed again that only the real part of this plane wave equation
represents the physical wave. This will be important when calculating the carried
energy in Appendix A.6.
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The analog representations for the magnetic field are

𝑯(𝒓, 𝑡) = 𝑯′
0𝑒𝑖(𝜔𝑡−𝑲𝒓−𝛿(𝜔,𝑲)) = 𝑯0𝑒𝑖(𝜔𝑡−𝑲𝒓) = 𝑯𝝎𝑒−𝑖𝑲𝒓 = 𝑯𝑲𝑒𝑖𝑤𝑡 . (A.6)

A.3 The Wave Equation
The wave equation is the fundamental relation that underlies the propagation of
light waves in the side-emitting optical fiber and its surrounding. Here we will
show that the plane wave from the previous subsections is one solution and that
the angular frequency 𝜔 and the wave vector 𝑲 are related by the speed of light
𝑐 = 𝜔/|𝑲|. Additionally, we will show how the refractive index, the ratio of the
speed of light in the medium and in the vacuum can be included in the plane wave
equation. For this, we will derive the electromagnetic vector wave equation from
Maxwell’s equations and insert our proposed solution: the plane wave.

Our goal is the wave equation, which, in its most general form, is a linear,
second-order partial differential equation

∇2𝑢 − 1
𝑐

∂2𝑢
∂𝑡2 = 0 (A.7)

where 𝑐 represents the speed of the wave and 𝑢(𝒓, 𝑡) some spatially distributed
scalar quantity. In the present case, these will be the components of the electric
or magnetic field vectors. The triangle with its tip pointing down is the nabla
operator ∇ = ∂

∂𝑥𝒆𝒙 + ∂
∂𝑦𝒆𝒚 + ∂

∂𝑧𝒆𝒛, here in Cartesian coordinates, which is the
partial derivative along all three spatial axis 𝑥, 𝑦, 𝑧. The square of the nabla operator
is the Laplace operator ∇2 = ∂2

∂𝑥2 + ∂2

∂𝑦2 + ∂2

∂𝑧2 .
We start deriving the electromagnetic vector wave equation with the Maxwell

equations in the following form:

∇ × 𝑯 = 𝜖∂𝑬
∂𝑡

+ 𝒋 (A.8)

∇ × 𝑬 = −𝜇∂𝑯
∂𝑡

(A.9)

𝜇∇ ⋅ 𝑯 = 0 (A.10)
𝜖∇ ⋅ 𝑬 = 0 (A.11)

The vectors 𝑬 and 𝑯 represent the electric and magnetic field strength. The
displacement vector 𝑫 and is the magnetic flux density 𝑩, which are normally
encountered in Maxwell’s equations, have already been replaced with their consti-
tutive counterparts 𝑫 = 𝜖𝑬 and 𝑩 = 𝜇𝑯. Here we assumed that the medium
is approximately homogeneous, so the electric permittivity 𝜖 and the magnetic
permeability 𝜇 are constant. Additionally, there are no free charges (𝜌 = 0).

First, we use the curl, the vector product of the nabla operator (∇×), on Eq. (A.9),
and insert Eq. (A.8) on the right-hand side, and this results in

∇ × ∇ × 𝑬 + 𝜇𝜖∂2𝑬
∂𝑡2 = −𝜇∂𝒋

∂𝑡
. (A.12)
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The double curl in Equation (A.12) can be rewritten by using the vector triple
product

∇ × ∇ × 𝑬 = ∇(∇ ⋅ 𝑬) − ∇2𝑬 . (A.13)
We insert this in Eq. (A.12), use Eq. (A.11), we get the vector wave equation

∇2𝑬 − 𝜇𝜖∂2𝑬
∂𝑡2 = 𝜇∂𝒋

∂𝑡
, (A.14)

which describes the waves generated by the current density 𝒋 in a homogeneous
medium in the absence of free charges. Far from the sources, we can drop the term
𝜇𝑑𝒋

𝑑𝑡 and get the homogeneous wave equation, the vector Helmholtz equation

∇2𝑬 − 𝜇𝜖∂2𝑬
∂𝑡2 = 0 . (A.15)

The same procedure can be applied to derive the vector wave or Helmholtz equation
for 𝑯: applying the curl to Eq. (A.8) and inserting in Eq. (A.9), then proceed as
for the 𝑬-field. This results in

∇2𝑯 − 𝜇𝜖∂2𝑯
∂𝑡2 = 0 (A.16)

In both cases, the vector wave equation holds for each component of the magnetic
or electric field vectors. Therefore, if we compare Eq. (A.15) or Eq. (A.16) to the
wave equation A.7 we see that the speed of light in the medium is

𝑐 = 1
√𝜖𝜇

. (A.17)

From this, we can infer the light speed in vacuum as 𝑐0 = (𝜖0𝜇0)− 1
2 , where 𝜖0 and

𝜇0 represent the permittivity and permeability of vacuum. The ratio between light
speed in vacuum and in the material is the refractive index

𝑛 = 𝑐0
𝑐

= √
𝜖𝜇

𝜖0𝜇0
. (A.18)

When we insert our plane wave solutions Eq. (A.1) and Eq. (A.2) into the respective
vector wave equations, we get in both cases the dispersion retaliation

|𝑲| = 𝜔√𝜖𝜇 = 𝜔
𝑐

= 𝑛𝜔
𝑐0

= 𝑛𝑘 . (A.19)

Here we defined 𝑘 as the wave vector’s length in a vacuum

𝑘 = 𝜔√𝜖0𝜇0 = 𝜔
𝑐0

= 2𝜋
𝜆

, (A.20)

that has its own dispersion relation. This choice of the wave vector is sometimes
more convenient because we can include the refractive index directly in the exponent
of the plane wave equation by exchanging |𝑲| with 𝑛𝑘. From this comparison, we
see that for the same angular frequency 𝜔, the wave vector in the martial is longer
(𝑐 < 𝑐0) than in a vacuum. This means that light of the same frequency has a
shorter wavelength in a material with a refractive index higher than one.
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A.4 The Relation Between Electric and Magnetic Field
The electric field, magnetic field, and direction of the electromagnetic wave propa-
gation are related and mutually orthogonal. Because we got two independent wave
equations for 𝑬 and 𝑯, it seems that both solutions are independent. But from
the first-order Maxwell equations, it is clear that this can not be. To check that
the first-order equations are also satisfied, we substitute the solution Eq. (A.1) or
Eq. (A.2) into Eq. (A.11) or Eq. (A.10) and obtain

∇𝑬 = −𝑖𝑲𝑬0𝑒𝑖(𝑤𝑧−𝑲𝒓) = 0 , (A.21)
∇𝑯 = −𝑖𝑲𝑯0𝑒𝑖(𝑤𝑧−𝑲𝒓) = 0 . (A.22)

Because these equations have to be zero for all points ins space 𝒓 and all times
𝑡 it follows that 𝑲 and 𝑬0, as well as 𝑲 and 𝑯0, are orthogonal: the wave is
transversal.

For the mutual relation between 𝑲, 𝑬 and 𝑯, we insert the plane wave solutions
Eq. (A.1) and Eq. (A.2) into Maxwell’s Eq. (A.9) and obtain

−𝑖𝑲 × 𝑬 = −𝑖𝜇𝜔𝑯 . (A.23)

So 𝑯 is orthogonal to the plane spanned by 𝑲 and 𝑬, which are themselves
orthogonal to each other. Together with the previous two relations, this shows that
they all are orthogonal to each other: 𝑲 points in the direction of propagation, and
𝑬 and 𝑯 are both perpendicular to it, forming an orthogonal trihedron. It also
follows that the amplitudes of the electric and the magnetic fields are related by

|𝑲||𝑬| = 𝜇𝜔|𝑯| → |𝑯| = 𝑛
𝜇𝑐0

|𝑬| , (A.24)

by using the dispersion relation, the magnitude of the cross product |𝑲 × 𝑬| =
sin 𝛼|𝑲||𝑬| and the orthogonality (𝛼 = 𝜋/2) of 𝑲 and 𝑬. For the unity vectors

̂𝒔 = 𝑲/|𝑲|, ̂𝒆 = 𝑬/|𝑬|, and �̂� = 𝑯/|𝑯| which point in the respective directions
of the vectors, it follows, by cyclical permutation

̂𝒔 × ̂𝒆 = �̂� → ̂𝒆 × �̂� = ̂𝒔 . (A.25)

The plane electromagnetic wave propagates in the direction of ̂𝒔 and the electric
and the magnetic fields are orthogonal to the direction of propagation as well to
teach other.

A.5 The Superpositions of Plane Waves
We will use the simple plane wave solution to construct more complex propagating
electromagnetic fields, like light pulses or stochastic light fields, by superposition
of many plane waves. Waves of different frequencies travel at different velocities
due to dispersion, the dependency of the refractive index 𝑛 on the frequency of
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the waves. If we assume that the dispersion can be neglected, we can predict the
way a disturbance 𝑬(𝒓, 𝑡) (a light pulse) travels through a medium. We express
the disturbance as the sum of all its angular frequency components as the Fourier
integral or transform

𝑬(𝒓, 𝑡) =
∞

∫
−∞

𝑬(𝒓, 𝜔)𝑒𝑖(𝜔𝑡−𝒌𝒓)𝑑𝜔 . (A.26)

Which includes forward and backward traveling waves as well as evanescent waves,
which do not propagate. The inverse Fourier transform is

𝑬(𝒓, 𝜔) = 1
2𝜋

∞

∫
−∞

𝑬(𝒓, 𝑡)𝑒−𝑖(𝜔𝑡−𝒌𝒓)𝑑𝑡 , (A.27)

where (2𝜋)−1 is a normalization constant. From this, the amplitude function 𝑬(𝒓, 𝜔)
in Eq. (A.26), which is expanded into the plane waves, is determined by a known
shape of the impulse, e.g., in the plane 𝑧 = 0 (𝒓 = 0)

𝑬(𝑥, 𝑦, 0, 𝑡) = 1
2𝜋

∞

∫
−∞

𝑬(𝑥, 𝑦, 0, 𝜔)𝑒𝑖(𝜔𝑡−𝑘𝑥𝑥−𝑘𝑦𝑦)𝑑𝜔 (A.28)

Inserting this in Eq. (A.26) allows finding the shape of the pulse for all times 𝑡.
We extend this concept to a disturbance that is made up of plane waves, which

travel in different directions. Because the wave vector 𝑲 can be chosen freely, there
are infinitely many 𝑲-directions or ”(free space) modes” for a plane wave in an
isotropic medium. (A mode refers to something that propagates like exp{−𝑖𝑲𝒓}).
Because the wave equation is linear, also superpositions of two or more plane waves
are a solution. In fact, the most general solution of a local filed 𝑬(𝒓) will be the
sum (or expansion) over all modes, which is presented by the Fourier transform

𝑬(𝒓, 𝑡) =
∞

∫
−∞

∞

∫
−∞

𝑬(𝑲, 𝜔)𝑒𝑖(𝜔𝑡−𝑲𝒓)𝑑𝜔 𝑑3𝐾 . (A.29)

Here 𝑑𝐾3 is a volume element in wave vector space 𝑑3𝐾 = 𝑑𝐾𝑥𝑑𝐾𝑦𝑑𝐾𝑧. And the
inverse transform

𝑬(𝑲, 𝜔) = ( 1
2𝜋

)
4 ∞

∫
−∞

∞

∫
−∞

𝑬(𝒓, 𝑡)𝑒−𝑖(𝜔𝑡−𝑲𝒓)𝑑𝑡 𝑑3𝑟 . (A.30)

where we get an additional normalization factor for every integral. 𝑑3𝑟 is a volume
element in real space.

As an additional constrain, we have to demand that the dispersion relation
Eq. (A.20) is fulfilled, so not all components of the wave vector are independent:
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The dispersion relation confines the tip of the wave vector to the surface of a sphere,
defined by

𝜔2

𝑐2
0

= 𝐾2
𝑥 + 𝐾2

𝑦 + 𝐾2
𝑧 = 𝑛2𝑘2(𝑠2

𝑥 + 𝑠2
𝑦 + 𝑠2

𝑧) . (A.31)

̂𝒔 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) is the unit vector (ray vector) in the direction of the plane wave,
and 𝑛𝑘 is its magnitude. From this definition, we can see how evanescent waves are
included in the definition: e.g., if √𝜔2

𝑐2 − 𝐾2
𝑥 − 𝐾2

𝑦 = 𝐾𝑧 is imaginary, because the
expression under the square root is smaller than zero, the exponent becomes real for
𝐾𝑧, and the wave does not propagate in the 𝑧-direction but decays exponentially.
This can be seen if the imaginary 𝐾𝑧 is inserted in Eq. (A.1) or Eq. (A.29).

A.6 Pointing Vector
Only the time-average power flux of the electromagnetic wave is observable; the
rapidly fluctuating magnetic and electric fields themselves are not measurable. To
get the relation between the fields and the power flux, we will first calculate the
power flux density ”Pointing” vector with the help of Pointing’s theorem and then
its time average in the next subsection. This derivation is based on [40].

First, we take the scalar product of Eq. (A.9) with 𝑯 and the scalar product of
Eq. (A.8) with 𝑬.

𝑯 ⋅ ∇ × 𝑬 = −𝜇𝑯 ⋅ ∂𝑯
∂𝑡

(A.32)

𝑬 ⋅ ∇ × 𝑯 = 𝑬 ⋅ 𝒋 + 𝜖𝑬 ⋅ ∂𝑬
∂𝑡

(A.33)

Then we subtract one equation from the other and obtain

𝑯 ⋅ ∇ × 𝑬 − 𝑬 ⋅ ∇ × 𝑯 = −𝜇𝑯 ⋅ ∂𝑯
∂𝑡

− 𝜖𝑬 ⋅ ∂𝑬
∂𝑡

− 𝑬 ⋅ 𝒋 . (A.34)

We can rewrite this using the product rule for the time derivative (𝑯 analogous)

∂
∂𝑡

𝑬2 = ∂
∂𝑡

(𝑬 ⋅ 𝑬) = ∂𝑬
∂𝑡

𝑬 + 𝑬∂𝑬
∂𝑡

= 2𝑬∂𝑬
∂𝑡

, (A.35)

and the cross product

∇(𝑬 × 𝑯) = 𝑯 ⋅ ∇ × 𝑬 − 𝑬 ⋅ ∇ × 𝑯 . (A.36)

Inserting this and rearranging the equation gives

∂
∂𝑡

(1
2

𝜖𝑬2 + 1
2

𝜇𝑯2) = −∇ ⋅ (𝑬 × 𝑯) − 𝑬 ⋅ 𝒋 , (A.37)

Pointing’s theorem, the work-energy theorem of electrodynamics. To better un-
derstand the meaning of this equation, we take the volume integral of the whole
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equation and apply Gauss’s theorem (∫ ∇𝑨𝑑𝑉 = ∫ 𝑨𝑑𝑺) to the first term on the
right hand side, this gives

∂
∂𝑡

∫
𝑉

(1
2

𝜖𝑬2 + 1
2

𝜇𝑯2) 𝑑𝑉 = − ∫
𝑆

(𝑬 × 𝑯) 𝑑𝑺 − ∫
𝑉

𝑬 ⋅ 𝒋𝑑𝑉 . (A.38)

The volume integral on the left-hand side represents the total electromagnetic energy
stored in the volume 𝑉, and the time derivative, therefore, means the change of the
total energy in the volume. The first term on the right-hand side represents the
loss of electromagnetic energy transferred through the surface 𝑆 of the volume 𝑉
. The second term is the loss of energy due to work on charges in the volume by
the field. So Pointings theorem states that energy loss is either caused by work or
energy flowing out of the volume.

From this, we see that the energy flux density transported by the field through a
surface is

𝑺 = 𝑬 × 𝑯 (A.39)

called the Pointing vector. Deriving this was the goal of this endeavor because it
is generally associated (although not uncontroversially [41]) with the measurable
radiometric quantity irradiance 𝑭, the light power flux per unit area, or radiant flux
density. This value is sometimes (especially in optics) confusingly called intensity 𝐼,
which is actually the light power per solid angle [42]. To reconcile both concepts,
one can imagine the intensity as an area on a unit sphere - then both ideas are again
interchangeable.

A.6.1 Time Average Energy Flux Density of a Plane Wave

Generally, a light wave oscillates very fast, for example, a wave at the wavelength
of 𝜆 = 500 nm oscillates with a frequency of 𝑓 = 6 × 1014 s−1. Therefore its actual,
momentary power is not measured by a light power meter but rather the time
average over many, many oscillations. To consider this measurement effect in our
concept of flux density, we calculate the time-average pointing vector. For this,
we absorb all exponents but the time dependency in the phasor as indicated in
Eq. (A.5).

At this point, we have to consider that only the real part of our complex wave
solution (see Eq. (A.3)) contributes to the measurable energy flux. The real part will
be indicated by Re {𝑬(𝒓)} and can be calculated by adding the complex conjugated
(indicated by ∗) as in Re {𝐴} = (𝐴+𝐴∗)/2. Using these properties, we first calculate
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the real part of the pointing vector

𝑺 = 𝑬 × 𝑯 = Re {𝑬𝑲(𝒓)𝑒𝑖𝜔𝑡} × Re {𝑯𝑲(𝒓)𝑒𝑖𝜔𝑡} (A.40)

= 1
2

(𝑬𝑲(𝒓)𝑒𝑖𝜔𝑡 + 𝑬∗
𝑲(𝒓)𝑒−𝑖𝜔𝑡) × 1

2
(𝑯𝑲(𝒓)𝑒𝑖𝜔𝑡 + 𝑯∗

𝑲(𝒓)𝑒−𝑖𝜔𝑡) (A.41)

= 1
4

(𝑬𝑲 × 𝑯∗
𝑲 + 𝑬∗

𝑲 × 𝑯𝑲 + 𝑬𝑲 × 𝑯𝑲𝑒𝑖2𝜔𝑡 + 𝑬∗
𝑲 × 𝑯∗

𝑲𝑒−𝑖2𝜔𝑡) (A.42)

= 1
2

Re {𝑬𝑲 × 𝑯∗
𝑲} + 1

2
Re {𝑬𝑲 × 𝑯𝑲𝑒𝑖2𝜔𝑡} (A.43)

Now we average over one wave period 𝑇 to get the time average energy flux

𝑺 = 1
𝑇

𝑇

∫
0

𝑺𝑑𝑡 = 1
𝑇

𝑇

∫
0

1
2

Re {𝑬𝑲 × 𝑯∗
𝑲} + 1

2
Re {𝑬𝑲 × 𝑯𝑲𝑒𝑖2𝜔𝑡} 𝑑𝑡 (A.44)

The second term integrates to zero due to the double frequency exponent, and the
first is constant in time, so the time average complex pointing vector is

𝑺 = 1
2

Re {𝑬𝑲 × 𝑯∗
𝑲} (A.45)

Finally, we desorb the exp{−𝑲𝒓} from the phasor and calculate the time average
flux density contained in a plane electromagnetic wave

𝑺 = 1
2

Re {𝑬𝑲 × 𝑯∗
𝑲} = Re {1

2
𝑬0𝑒−𝑖𝒌𝒓 × 𝑯∗

0𝑒+𝑖𝒌𝒓} = ̂𝒔 𝑛
2𝜇𝑐0

|𝑬0|2 (A.46)

which is always real as long as the medium is lossless, so we dispensed the Re {...}.
Here we used Eq. (A.25) and Eq. (A.24) in the last step. As expected, the energy flux
density of a plane wave points in the direction of propagation and is proportional to
the square of the amount of the electric field amplitude. This can also be written as

𝑺 = ( ̂𝒆 × �̂�)1
2

|𝑬(𝒓)||𝑯∗(𝒓)| = ̂𝒔 𝑛
2𝜇𝑐0

𝑬(𝒓)𝑬∗(𝒓) (A.47)

using the definition of the scalar product.

A.7 The Radiometric Approximation
The radiometric approximation is used in the thesis to calculate the radiation field
generated by the fiber in its surroundings by summing the contribution from all
surface elements. The classical form of radiometry was founded independently from
electromagnetic theory on purely geometrical considerations. The first complete
systematic description is attributed to Plank in his work on the black body radiator
[43]. The main assumption is that the radiative energy is propagated along light rays
and can be described by a scalar function called the specific intensity or radiance
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𝐿𝜈(𝒓, ̂𝒔). It describes the local distribution of energy at the point 𝒓 over all possible
ray directions ̂𝒔, which is a vector of unit length. By that description, the flux
density at 𝒓 coming from the solid angle 𝛺 is

𝑭 (𝒓) = ∫
𝛺

𝐿𝜈(𝒓, ̂𝒔) ̂𝒔 𝑑𝛺( ̂𝒔) (A.48)

or vice versa: the flux that is passing through a point radiated into the solid angle
𝛺.

Figure A.2: Solid angle element 𝑑𝛺 is defined as the projection of 𝑑𝐴2 on the unit
sphere around 𝑑𝐴1 with the radius ̂𝒔. The projection is calculated by
dividing 𝑑𝐴2 through the square of the magnitude of the connection
vector 𝒅 and multiplying by the inclination cos 𝛩2 = ̂𝒏2 ̂𝒔.

From this postulated formula, we calculate the flux through a surface element
with 𝑑𝜙 = 𝑭 𝑑𝑨1 and the flux through the whole surface 𝐴1 by the integration

𝜙 = ∫
𝐴1

𝑭 (𝒓)𝑑𝑨1 = ∫
𝐴1

∫
𝛺

𝐿𝜈(𝒓, ̂𝒔) ̂𝒔 𝑑𝛺( ̂𝒔)𝑑𝑨1 , (A.49)

= ∫
𝐴1

∫
𝛺

𝐹𝜈(𝒓)𝑃𝜈( ̂𝒔) ̂𝒔 𝑑𝛺( ̂𝒔)𝑑𝑨1 . (A.50)

In Eq. (A.50), we assumed that the radiance can be separated into a position-
dependent, scalar irradiance 𝐹 and an angular-dependent phase function 𝑃, which is
normalized. If the flux through the first surface 𝐴1 is coming from another surface
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𝐴2, for example, the surface of a diffuse light source, we insert ̂𝒔𝑑𝑨1 = 𝑐𝑜𝑠𝛩1𝑑𝐴1
and the solid angle definition (see Fig. A.2)

𝑑𝛺( ̂𝒔) = ̂𝒔𝑑𝑨2
𝑑2 = ̂𝒔�̂�2𝑑𝐴2

𝑑2 = 𝑐𝑜𝑠𝛩2𝑑𝐴2
𝑑2 , (A.51)

where 𝑟 is the distance between to surface elements that exchange flux. Then
replacing the limits of integration (𝛺) with the second surface 𝐴2, gets the energy
or flux exchange between two surfaces

𝜙 = ∫
𝐴1

∫
𝐴2

𝐿𝜈(𝒓, 𝒔)cos 𝛩1 cos 𝛩2
𝑑2 𝑑𝐴1𝑑𝐴2 , (A.52)

= ∫
𝐴1

∫
𝐴2

𝐹𝜈(𝒓)𝑃𝜈( ̂𝒔)cos 𝛩1 cos 𝛩2
𝑑2 𝑑𝐴1𝑑𝐴2 . (A.53)

This double integral describes the mutual energy exchange between all surface
elements of the two surfaces 𝐴1 and 𝐴2, which are connected with a straight light
ray.

A.7.1 Electromagnetic Derivation of Radiometry

Optical coherence theory is the modern description that tries to link electromagnetic
theory to radiometry via statistical optics: The light field composed of regular,
orderly plane waves is replaced by a more general randomly fluctuating field whose
statistical properties determine the transportation of radiant energy - in the limiting
case of short correlation length similar to the radiometric approximation. Here we
will derive the radiometric equation from statistical optics, inspired by [44, 45].

For partially coherent light 𝑬 and 𝑯 are stochastic functions, we find the flux
density of the field by the ensemble average of the time-average Pointing vector ⟨𝑺⟩,
which is the crosscorrelation

⟨𝑺⟩ = 1
2

⟨𝑬(𝒓1) × 𝑯∗(𝒓2)⟩ (A.54)

The Fourier transform relation of this crosscorrelation is

⟨𝑬(𝒓1) × 𝑯∗(𝒓2)⟩ = ∫ ∫⟨𝑬(𝑲1) × 𝑯∗(𝑲2)⟩𝑒𝑖(𝑲1𝒓1−𝑲2𝒓2) 𝑑2𝐾1 𝑑2𝐾2 , (A.55)

and its inverse Fourier transform is

⟨𝑬(𝑲1) × 𝑯∗(𝑲2)⟩ = ( 1
2𝜋

)
4

∫ ∫⟨𝑬(𝒓1) × 𝑯∗(𝒓2)⟩𝑒−𝑖(𝑲1𝒓1−𝑲2𝒓2) 𝑑2𝑟1 𝑑2𝑟2 .
(A.56)
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In the asymptotic far field limit, we can approximate [45] 𝑲1 ≈ 𝑲2 ≈ 𝑲 and
use Eq. (A.47), so under the integral, the crosscorrelation can be replaced by the
autocorrelation

⟨𝑬(𝒓1) × 𝑯∗(𝒓2)⟩ = ̂𝒔 𝑛
2𝜇𝑐0

⟨𝑬(𝒓1)𝑬∗(𝒓2)⟩ . (A.57)

Then we perform the change of coordinates, 𝒓2 = 𝒓1 − 𝒓 and 𝑑𝑟2
2 → 𝑑𝑟2 with the

aid of the Jacobian. This results in the flux density in the direction 𝑲 coming from
a stochastic electromagnetic field

⟨𝑺(𝑲, 𝑲)⟩ = 1
2

⟨𝑬(𝑲) × 𝑯∗(𝑲)⟩ (A.58)

= ̂𝒔 𝑛
2𝜇𝑐0

( 1
2𝜋

)
4 ∞

∫
−∞

∞

∫
−∞

⟨𝑬(𝒓1)𝑬∗(𝒓2)⟩𝑒𝑖𝑲(𝒓1−𝒓2)𝑑2𝑟1𝑑2𝑟2 (A.59)

= ̂𝒔 𝑛
32𝜋4𝜇𝑐0

∞

∫
−∞

∞

∫
−∞

⟨𝑬(𝒓1)𝑬∗(𝒓1 − 𝒓)⟩𝑒𝑖𝑲𝒓𝑑2𝑟1𝑑2𝑟 (A.60)

= ̂𝒔 𝑛
32𝜋4𝜇𝑐0

∞

∫
−∞

𝑆𝑬𝑬(𝒓1, 𝑲)𝑑2𝑟1 (A.61)

In the last step, we introduced the local power spectrum 𝑆𝑬𝑬(𝒓1, 𝑲), which is the
Fourier transform of the autocorrelation. It still depends on 𝒓1 because it is not
necessarily the same for every point in the plane. When we assume that the purely
stochastic part of the fields is indeed stationary (just depends on 𝒓) then it can be
factored into a strength function 𝑐 an autocorrelation 𝑅𝐸𝐸. Then we obtain

⟨𝑺(𝑲, 𝑲)⟩ = ̂𝒔 𝑛
8𝜋2𝜇𝑐0

∞

∫
−∞

∞

∫
−∞

⟨𝑬(𝒓1)𝑬∗(𝒓1 − 𝒓)⟩𝑒𝑖𝑲𝒓𝑑2𝑟1𝑑2𝑟 (A.62)

= ̂𝒔 𝑛
32𝜋4𝜇𝑐0

∞

∫
−∞

∞

∫
−∞

𝑅𝐸𝐸(𝒓)𝑐(𝒓1)𝑐∗(𝒓1 − 𝒓)𝑒𝑖𝑲𝒓𝑑2𝑟1𝑑2𝑟 (A.63)

= ̂𝒔 𝑛
32𝜋4𝜇𝑐0

∞

∫
−∞

𝑐(𝒓1)𝑐∗(𝒓1)
∞

∫
−∞

𝑅𝐸𝐸(𝒓)𝑒𝑖𝑲𝒓𝑑2𝑟𝑑2𝑟1 (A.64)

= ̂𝒔 𝑛
32𝜋4𝜇𝑐0

∞

∫
−∞

|𝑐(𝒓1)|2𝑆𝑬𝑬(𝑲)𝑑2𝑟1 (A.65)

In the last two steps, we assumed that the autocorrelation length is much shorter
than the change of the strength function, therefore 𝑐∗(𝒓1 − 𝒓) ≈ 𝑐∗(𝒓1) and could be
taken out of the integral in 𝑑2𝑟. The result is, under the condition that the strength
factor varies much slower than the correlation length and the autocorrelation is
stationary, we can separate the positional and the angular part

𝑆𝑬𝑬(𝒓1, 𝑲) = |𝑐(𝒓1)|2𝑆𝑬𝑬(𝑲) , (A.66)
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which is analogous to regarding the radiance as a product of irradiance, which
contains the positional dependency, and a phase function which contains the angular
dependence. This ties into the general principle of this thesis, to separate the
longitudinal (positional) and the angular dependency of the side-emitting fiber.

The last step is to calculate the flux from the observed plane into some solid angle
above it. We use

𝜙 = ∫⟨𝑺(𝑲, 𝑲)⟩�̂�𝑑𝛺 , (A.67)

and express the wave vector with the help of the unit ray vector 𝑲 = 𝑛𝑘 ̂𝒔 =
𝑛𝑘(𝑠𝑥, 𝑠𝑦, 𝑠𝑧) and see that the surface element in wave vector space can be expressed
as 𝑑2𝐾 = 𝑛2𝑘2 𝑑2𝑠. ⟨𝑆(𝑲, 𝑲)⟩ is expressed as 𝑛2𝑘2⟨𝑆(𝒔, 𝒔)⟩, the factor 𝑛2𝑘2 enters
because the normalization of the inverse Fourier transform changes in Eq. (A.56).
Inserting this and ⟨𝑺⟩ = ̂𝒔⟨𝑆⟩ we get

𝜙 = 𝑛4𝑘4 ∫⟨𝑆( ̂𝒔, ̂𝒔)⟩ ̂𝒔�̂�𝑑𝛺 , (A.68)

= 𝑛4𝑘4 ∫⟨𝑆( ̂𝒔, ̂𝒔)⟩ cos 𝛩𝑑𝛺 , (A.69)

= 𝑛4𝑘4 ∫⟨𝑆( ̂𝒔, ̂𝒔)⟩(cos 𝛩)2𝑑2𝑠 . (A.70)

Figure A.3: Solid angle element 𝑑𝛺 corresponding to the area element 𝑑2𝑠 is its
projection on the unit sphere, 𝑑2𝑠 = �̂� ̂𝒔𝑑𝛺 = cos 𝛩𝑑𝛺

So we obtain (cos 𝛩)2 in the equation. One cos 𝛩 is from the scalar product of
the ray vector with the surface normal, and the other one is from the projection of
𝑑𝛺 on the 𝑠𝑥, 𝑠𝑦-plane, as shown in Fig. A.3. If we insert the pointing vector from
Eq. (A.61) with �̂�𝑑2𝑟1 = 𝑑𝑨1we get

𝜙 = 𝑛5𝑘4

2𝜇𝑐0
∫ ∫ ̂𝒔𝑆𝑬𝑬(𝒓1, ̂𝒔) 𝑑𝛺 𝑑𝑨1 , (A.71)

= 𝑛5𝑘4

2𝜇𝑐0
∫ ∫ 𝑆𝑬𝑬(𝒓1, ̂𝒔) (cos 𝛩)2𝑑2𝑟1 𝑑2𝑠 (A.72)
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Then we see by comparison with Eq. (A.49), that the radiance is 𝐿 = 𝑆𝑬𝑬(𝒓1, ̂𝒔)
and if we express it as 𝐿 = 𝐹𝑃 = |𝑐(𝒓1)|2𝑆𝑬𝑬( ̂𝒔). The phase function is 𝑃 = 𝑆𝑬𝑬( ̂𝒔)
and the irradiance is 𝐹 = |𝑐(𝒓1)|2.

So we have seen that the irradiance is the product of the local power spectral
density and the cosine of the emission angle in accordance with the result from
Marchant and Wolf [45, 44]. The radiance can be understood as the local power
spectral density of the random light field. It can be further factored into an irradiance
that contains the local flux density and the phase function, which contains the
angular information caused by the stochastic properties of the field. These properties
come from the autocorrelation of the fluctuations of the light field.

From frequency analysis, we know that a delta pulse contains all frequencies, so
the delta function’s Fourier transform is a white spectrum. Similarly, if the field’s
autocorrelation length is very short, e.g., a delta function, it contains all spacial-𝑲
components (directions) and is therefore radiated in all directions. So a Lambertian
surface or source has a very short autocorrelation length across its surface. In
praxis, a delta function autocorrelation length is unnecessary to get radiation in
all directions because this also contains evanescent waves, which can not leave the
source anyway. A 1/𝜆 autocorrelation-length is sufficient [46].

A.8 The Volume Current Method
The light emission from the side-emitting fiber is caused by a scattering process
inside it, where guided light interacts with refractive index fluctuations. In this
thesis, the refractive index fluctuations are localized femtosecond laser-generated
refractive index modifications: scattering centers. This section shows how the fiber’s
light emission is related to the refractive index fluctuations.

The calculation of radiation loss from dielectric waveguides and optical fibers can
be very complicated, and a variety of techniques have been used to approach this
problem [47]. Here we apply the volume current method, a perturbation technique
used to calculate small radiation loss from small refractive index fluctuations in
dielectrics. In this framework, the interaction of the guided light with refractive
index fluctuation induces a volume current density. This current density radiates
light which results in power being removed from the incident field.

The optical fiber is modeled as normal lossless refractive index distribution 𝑛0(𝒓)
with a small (localized) refractive index distortion 𝛥𝑛(𝒓) which causes the scattering
𝑛0(𝒓) >> 𝛥𝑛(𝒓). The combined refractive index distribution is

𝑛(𝒓) = 𝑛0(𝒓) + 𝛥𝑛(𝒓) . (A.73)

We use the vector wave equation Eq. (A.14) and assume the light to be monochro-
matic, so the time dependence is stationary and of the form exp{𝑖𝜔𝑡} and the time
derivatives can be replaced with 𝑖𝜔. Together with the dispersion relation Eq. (A.20)
and the refractive index Eq. (A.18), we get the time free wave equation (𝜇 = 𝜇0)

∇2𝑬 + 𝑛2𝑘2𝑬 = 𝑖𝜇0𝜔𝒋 , (A.74)
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and the homogeneous, source, and time free Helmholtz equation

∇2𝑬 + 𝑛2𝑘2𝑬 = 0 . (A.75)

We insert the distorted refractive index distribution Eq. (A.73) into the latter
equation and neglect the term of higher order in 𝛥𝑛. Then we split the electric field
into an unperturbed part 𝑬0 which is a solution of the homogeneous Helmholtz
equation Eq. (A.75) with 𝑛0, and a perturbed apart 𝑬𝒔, which is the scattered
radiation, so 𝑬 = 𝑬0 + 𝑬𝒔. This results in a sum of scatted and guided field
components

∇2𝑬0 + 𝑛2
0𝑘2𝑬0 + 2𝑛0𝛥𝑛𝑘2(𝑬0 + 𝑬𝒔) + ∇2𝑬𝒔 + 𝑛2

0𝑘2𝑬𝒔 = 0 . (A.76)

The sum two first terms on the right-hand side are by definition Eq. (A.75) and
therefore zero. What remains can be written in the form of the vector wave equation

∇2𝑬𝒔 + 𝑛2
0𝑘2𝑬𝒔 = −2𝑛0𝛥𝑛𝑘2(𝑬0 + 𝑬𝒔) ≈ −2𝑛0𝛥𝑛𝑘2𝑬0 . (A.77)

We applied the perturbation assumption that the electric field inside the scattering
center is dominated by the guided radiation 𝑬0 + 𝑬𝒔 ≈ 𝑬0. Similarly, to Eq. (A.74),
the interaction of the electric field with a small refractive index perturbation causes
an electromagnetic field that is driven by a source term. The source can also be
written in the form of Eq. (A.74), so we get the result that the scattered radiation can
be regarded as driven by a polarization current density, which in turn is caused by
the interaction of the original guided field 𝑬0 with the refractive index perturbation

𝒋 = 2𝑖𝜔𝑛0𝛥𝑛𝜖0𝑬0 . (A.78)

The advantage point of view is twofold: First, because the 𝑬0 field is guided in the
fiber, its contribution outside of the fiber is zero, so the electric field outside is just
the scattered field 𝑬𝒔. Second, we can now use the solution for the vector wave
equation to get the equations for the far field scattered radiation.

One possibility is to solve Eq. (A.14) with the aid of a vector potential 𝑨 [48, 49].
For this, we use the property of the magnetic field to be source-free (solenoidal),
according to Eq. (A.10). Because the divergence of the curl of a vector is always
zero ∇(∇ × 𝐴) = 0, we can define a vector field 𝑨 with the property

𝜇0𝑯𝒔 = ∇ × 𝑨 . (A.79)

Inserting this in the Maxwell equation Eq. (A.9) with monochromatic time depen-
dency, we obtain

∇ × 𝑬𝒔 = −𝑖𝜔∇ × 𝑨 . (A.80)

If we integrate this result, we get

𝑬𝒔 = −𝑖𝜇0𝜔𝑨 − ∇𝛷 . (A.81)
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Here the divergence of the undetermined scalar potential function 𝛷 takes the role of
the integration constant because ∇ × (∇𝛷) = 0. If we insert Eq. (A.79) in Eq. (A.8)
and apply the monochromatic condition, we get

∇ × (∇ × 𝑨) = 𝑖𝜔𝑛2𝜖0𝜇0𝑬𝒔 + 𝜇0𝒋 = 𝑛2𝑘2𝑨 − 𝑖𝜔𝑛2𝜖0𝜇0∇𝛷 + 𝜇0𝒋 . (A.82)

Then we expand the vector triple product ∇×(∇×𝑨) = ∇(∇𝑨)−∇2𝑨 and obtain

∇2𝑨 + 𝑛2𝑘2𝑨 = ∇(∇𝑨) + 𝑖𝜔𝑛2𝜖0𝜇0∇𝛷 − 𝜇0𝒋 . (A.83)

Because Eq. (A.79) just defined the rotational part of 𝑨, we can choose its divergence
as the Lorentz gauge

∇(∇𝑨) = −𝑖𝜔𝑛2𝜖0𝜇0∇𝛷 . (A.84)

This convenient choice leads to the cancellation of two of the three terms on the
right-hand side, and we get the Helmholtz equation for the vector potential

∇2𝑨 + 𝑛2𝑘2𝑨 = −𝜇0𝒋 . (A.85)

The solution to this differential equation is the Helmholtz integral [49] which satisfies
Sommerfeld’s radiation condition of an outgoing wave at infinity [50]

𝑨 = 𝜇0
4𝜋

∫
𝑉0

𝒋(𝒓′)𝑒𝑖𝑛𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
𝑑𝑉 ′ . (A.86)

It describes the vector potential as the sum of spherical wavelets originating from
the polarization current 𝒋 in the volume 𝑉0.

The electric field of the scattered radiation can be expressed in terms of the vector
potential by the combination of Eq. (A.81) and Eq. (A.84).

𝑬𝒔 = −𝑖𝜔𝑨 + ∇(∇𝑨)
𝑖𝜔𝑛2𝜖0𝜇0

= −𝑖𝜔 [𝑨 + ∇(∇𝑨)
𝑛2𝑘2 ] (A.87)

To solve it, we have to take a look at ∇(∇𝑨) and notice that the differential
operators can be pulled under the integral

∇(∇𝑨) = 𝜇0
4𝜋

∫
𝑉0

𝒋(𝒓′)∇ (∇𝑒𝑖𝑛𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
) 𝑑𝑉 ′ , (A.88)

because they operate on the unprimed coordinates only.
Because of the modulus |𝒓 − 𝒓′|, 𝒓 and 𝒓′ can be exchanged, and the differential

operators can be changed to primed coordinates as well, so

∇ (∇𝑒𝑖𝑛𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
) = ∇′ (∇′ 𝑒𝑖𝑛𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
) . (A.89)
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We are interested in the field far from the scattering center, therefore, we use the
Fraunhofer limit and approximate the exponent with |𝒓 − 𝒓′| ≈ 𝑟 − ̂𝒆𝒓𝒓′ and the
denominator with 1/𝑟. Now the gradient and the divergence is easily calculated

∇′ (∇′ 𝑒𝑖𝑛𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
) ≈ 𝑒𝑖𝑛𝑘𝑟

𝑟
∇′ (∇′𝑒−𝑖𝑛𝑘 ̂𝒆𝒓𝒓′) , (A.90)

= 𝑒𝑖𝑛𝑘𝑟

𝑟
∇′ (−𝑖𝑛𝑘 ̂𝒆𝒓𝑒−𝑖𝑛𝑘 ̂𝒆𝒓𝒓′) , (A.91)

= 𝑒𝑖𝑛𝑘𝑟

𝑟
(−𝑛2𝑘2 ̂𝒆𝒓 ̂𝒆𝒓𝑒−𝑖𝑛𝑘 ̂𝒆𝒓𝒓′) . (A.92)

Inserting this result back into Eq. (A.87) together with the Fraunhofer approximation
and using the vector triple product ̂𝒆𝒓 × ( ̂𝒆𝒓 × 𝑨𝒇) = ̂𝒆𝒓( ̂𝒆𝒓𝑨𝒇) − 𝑨𝒇( ̂𝒆𝒓 ̂𝒆𝒓) will
provide the scattered electric field

𝑬𝒔 = −𝑖𝜔 [𝑨𝒇 − ̂𝒆𝒓 ̂𝒆𝒓𝑨𝒇] = 𝑖𝜔[ ̂𝒆𝒓 × ( ̂𝒆𝒓 × 𝑨𝒇)] , (A.93)

with the far field vector potential

𝑨𝒇 = 𝜇0
4𝜋

𝑒𝑖𝑛0𝑘𝑟

𝑟
∫

𝑉0

𝑒−𝑖𝑛0𝑘 ̂𝒆𝒓𝒓′𝒋(𝒓′)𝑑𝑉 ′ , (A.94)

which now has the form of outgoing plane waves originating from the current
polarization current density inside 𝑉0.

The next step is to find the associated magnetic field. From the Maxwell equation
and the definition of the vector potential Eq. (A.79) we know

𝜇0𝑯𝒔 = ∇ × 𝑨 . (A.95)

Again, the rotation can be taken under the integral because it operates on the
unprimed quantities only, so

𝜇0𝑯𝒔 = 𝜇0
4𝜋

∫
𝑉0

∇ × 𝒋(𝒓′)𝑒𝑖𝑛𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
𝑑𝑉 ′ , (A.96)

= −𝜇0
4𝜋

∫
𝑉0

𝒋(𝒓′) × ∇𝑒𝑖𝑛𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
𝑑𝑉 ′ . (A.97)

Now we again use the modulus property to exchange the nabla operator for primed
and unprimed coordinates and use the Fraunhofer approximation to perform the
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following calculations

𝜇0𝑯𝒔 = −𝜇0
4𝜋

𝑒𝑖𝑛0𝑘𝑟

𝑟
∫

𝑉0

𝒋(𝒓′) × (∇′𝑒−𝑖𝑛0𝑘 ̂𝒆𝒓𝒓′) 𝑑𝑉 ′ , (A.98)

= −𝜇0
4𝜋

𝑒𝑖𝑛0𝑘𝑟

𝑟
∫

𝑉0

𝒋(𝒓′) × (−𝑖𝑛𝑘 ̂𝒆𝒓𝑒−𝑖𝑛0𝑘 ̂𝒆𝒓𝒓′) 𝑑𝑉 ′ , (A.99)

= 𝜇0
4𝜋

𝑒𝑖𝑛0𝑘𝑟

𝑟
∫

𝑉0

(−𝑖𝑛𝑘 ̂𝒆𝒓) × 𝒋(𝒓′)𝑒−𝑖𝑛0𝑘𝒓′𝑑𝑉 ′ , (A.100)

= −𝑖𝑛𝑘( ̂𝒆𝒓 × 𝑨𝒇) . (A.101)

In summary, the electric and the magnetic fields of the scattered radiation are

𝑬𝒔 = 𝑖𝜔 ̂𝒆𝒓 × ( ̂𝒆𝒓 × 𝑨𝒇) , (A.102)

𝑯𝒔 = −𝑖𝑛𝑘
𝜇0

( ̂𝒆𝒓 × 𝑨𝒇) . (A.103)

Where 𝑨𝒇 is the far field vector potential at the point 𝒓 from a superposition of
spherical wavelets, approximated as plane waves in the Fraunhofer limit, caused by
the polarization currents 𝒋(𝒓′) enclosed in the volume 𝑉0,

𝑨𝒇 = 𝜇0
4𝜋

𝑒𝑖𝑛0𝑘𝑟

𝑟
∫

𝑉0

𝑒−𝑖𝑛0𝑘 ̂𝒆𝒓𝒓′𝒋(𝒓′)𝑑𝑉 ′ . (A.104)

Our last objective is to calculate the scattered radiation in the far field, by calculating
the time average pointing vector from Eq. (A.46)

𝑺 = 1
2

Re {𝑬𝒔 × 𝑯∗
𝒔} = 𝜔𝑛𝑘

2𝜇0
Re {[ ̂𝒆𝒓 × ( ̂𝒆𝒓 × 𝑨𝒇)] × ( ̂𝒆𝒓 × 𝑨∗

𝒇)} . (A.105)

The complicated looking multiple cross product can be expanded using the vector
triple product

[ ̂𝒆𝒓 × ( ̂𝒆𝒓 × 𝑨𝒇)] × ( ̂𝒆𝒓 × 𝑨∗
𝒇) = ̂𝒆𝒓[( ̂𝒆𝒓 × 𝑨∗

𝒇)( ̂𝒆𝒓 × 𝑨𝒇)] − ( ̂𝒆𝒓 × 𝑨𝒇)[( ̂𝒆𝒓 × 𝑨∗
𝒇) ̂𝒆𝒓] ,

(A.106)
where the last term is zero due to orthogonality. Inserting the remaining term, we
obtain

𝑺 = ̂𝒆𝒓
𝜔𝑛𝑘
2𝜇0

( ̂𝒆𝒓 × 𝑨)( ̂𝒆𝒓 × 𝑨∗) = ̂𝒆𝒓
𝜔𝑛𝑘
2𝜇0

| ̂𝒆𝒓 × 𝑨|2 , (A.107)

= ̂𝒆𝒓
𝜔𝑛𝑘
2𝜇0

𝜇2
0

16𝜋2𝑟2 ∫
𝑉0

∫
𝑉0

[ ̂𝒆𝒓 × 𝒋(𝒓1)][ ̂𝒆𝒓 × 𝒋∗(𝒓2)]𝑒−𝑖𝑛𝑘(𝒓1−𝒓2)𝑑𝑉1𝑑𝑉2 . (A.108)

which is also real due to the absolute square, so we don’t need to remove an imaginary
part. When we replace the 𝒓2 = 𝒓1 − 𝒓 and notice that 𝒋 is zero outside of 𝑉0, we
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see that this is again the autocorrelation function of the cross product of ̂𝒆𝒓 with 𝒋
whose Fourier transform again gives the power spectral density as in Appendix A.7.
We will use this property to derive the scattering pattern of a refractive index
distortion in an optical fiber in Section 3.3.
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The measurement of the light emitted from the side-emitting fiber serves, on the one
hand, to obtain parameters to calculate the radiation field and, on the other hand,
to compare calculations with the observations. These measurements are divided into
longitudinal and angular emission, which gives the corresponding parameters used
to calculate and characterize the radiation field in the publications in Chapter 3.
For the longitudinal emission, the goal is to measure the total emission of a fiber
segment as a function of the 𝑧-position: An integrating sphere moved alongside the
side-emitting fiber captures the light emission in all directions. For the angular
emission, we want to determine the directional distribution of radiation emitted from
a fiber segment or fiber surface element. A microscope objective, focussed on the
fiber, decomposes the collected light into its angular components, and a microscope
camera images this decomposition. The enveloping angular light distribution from
a fiber segment is obtained from the average of many images of the angular pattern.

B.1 Longitudinal Measurement: Motorized Integrating
Sphere

The longitudinal emission from a side-emitting fiber is measured stepwise by cap-
turing it with an integrating sphere moved from the light coupling to the fiber-end:
The custom-made integrating sphere encloses the fiber and captures almost the
whole solid angle flux emission from a fiber segment with the length 𝛥𝑧. After the
flux measurement for one fiber segment is complete, the sphere moves to another,
and the procedure is repeated. In this way, the 𝑧-dependency of the emitted flux is
measured piece-wise for the whole fiber.

An integrating sphere is a hollow sphere made of a white, highly diffuse reflecting
material, which generates a homogeneous irradiation field inside it by multiple
diffuse reflections. In Fig. B.1 we see a sketch of the experimental set-up: Two
hollow tubes, coated with boron nitride, guide the fiber through the integrating
sphere. The guides are separated by a gap 𝛥𝑧 = 2 mm in the middle of the sphere,
which exposes a small fiber segment: this is the aperture of the sphere. The flux
emitted from the fiber segment is now homogeneously distributed on the sphere
wall by diffuse reflections. There it is measured by an optical fiber, which is placed
shortly beneath the sphere’s surface. In this way, the sphere material also acts as a
cosine corrector, which enlarges the field of view of the optical fiber to a half solid
angle. The sphere was made from optical PTFE (polytetrafluoroethylene) [provided
by Berghof-Fluoroplastics, Eningen] and had an inner diameter of 40 mm.

There are several ways to derive the measured irradiance on a port that results
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Figure B.1: Integrating sphere with motorized scanning stage for longitudinal
emission measurement of side-emitting fibers. The light emitted from
the fiber segment 𝛥𝑧 is distributed homogeneously on the sphere wall
through multiple diffuse reflections. The flux on the wall, measured
with a fiber-coupled spectrometer, is proportional to the flux emitted
by the fiber segment. The baffle protects the detector from direct
fiber illumination. After measurement, the sphere is moved to a
different 𝑧-position, and the measurement is repeated. In this way,
the 𝑧-dependent emission is recorded.

from the multiple diffuse reflections on the sphere wall. The easiest is the energy-
balance method provided by Clare [51]. It states, in equilibrium, the flux entering
the sphere has to match the flux that drained from it, either by absorption or by
leaving the sphere through a port. Let’s regard the sphere with the surface area 𝐴𝑡𝑜𝑡
as composed of 𝑛-zones with the area 𝐴𝑛, which can be chosen arbitrarily small.
Each zone has a diffuse reflection coefficient 𝜌𝑛, which can, for example, either be
around 99 % for the diffusely reflecting sphere wall or 0 % for a port. Now, the
drained flux 𝐷𝑛 from the diffuse irradiance 𝐹𝑛 which is irradiating the zone 𝐴𝑛 is

𝐷𝑛 = 𝐹𝑛𝐴𝑛(1 − 𝜌𝑛) . (B.1)

Here we dispense the vector notation because the resulting flux is always perpendic-
ular to the sphere’s surface due to symmetry. In equilibrium, when we sum up all
the drained fluxes, they should match the flux 𝜙0 injected into the sphere

𝜙0 = (1 − 𝜌0)𝜙0 + ∑
𝑛

𝐷𝑛 = (1 − 𝜌0)𝜙0 + ∑
𝑖

𝐹𝑛𝐴𝑛(1 − 𝜌𝑛) . (B.2)

Here (1 − 𝜌0)𝜙0 signifies the initial diffuse reflection of the primary beam on the
sphere wall: 𝜌0 can either be the average reflectivity of the initially irradiated wall
segment or the average of the whole sphere, if the light source is enclosed and
radiating in all directions, as in this thesis.

Now we bring the initial reflection on the left-hand side and split the sphere into
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two kinds of zones, wall (𝑤) with 𝜌𝑛 = 𝜌 and port (𝑝) with 𝜌𝑛 = 0

𝜙0 − (1 − 𝜌0)𝜙0 = 𝜌0𝜙0 = (1 − 𝜌) ∑
𝑤

𝐹𝑤𝐴𝑤 + ∑
𝑝

𝐹𝑝𝐴𝑝 , (B.3)

= (1 − 𝜌)𝑊𝐹𝑤 + 𝑃𝐹𝑝 . (B.4)

In the last step, we have replaced the two sums by the respective average irradiances
𝐹 times the associated total wall 𝑊 or total port 𝑃 area.

In equilibrium, the irradiance is approximately the same on all surface elements
𝐹𝑤 ≈ 𝐹𝑝 ≈ 𝐹 because of the spherical symmetry. When we insert this, we can solve
the equation and find the average irradiance on every wall segment as well as on
the measurement port

𝐹 = 𝜌0𝜙0
(1 − 𝜌)𝑊 + 𝑃

= 𝜌0𝜙0
𝐴𝑡𝑜𝑡[1 − 𝜌(1 − 𝑎)]

. (B.5)

Where 𝐴𝑡𝑜𝑡 = 𝑊 + 𝑃 is the surface of the sphere, and 𝑎 = 𝑃/𝐴𝑡𝑜𝑡 is the fraction
of the port area. So we found that the integrating sphere is not just distributing the
incoming radiation over the inner surface, which would result in 𝐹 = 𝜙0/𝐴𝑡𝑜𝑡, but it
boosts the signal by a factor of 𝜌0/[1 − 𝜌(1 − 𝑎)]. For example, if we assume 𝜌0 ≈ 𝜌
and 𝑎 ≈ 0, the resulting boost would be 49 for 𝜌 = 0.98, 99 for 𝜌 = 0.99 and 999
for 𝜌 = 0.999: the last percent to 100 % diffuse reflectivity makes a huge difference!
Therefore, the sphere should always be made of a highly diffuse reflecting material
and kept very clean. For the custom-made integrating sphere in this thesis, I choose
optical PTFE (polytetrafluoroethylene - also known as Teflon), which is easy to
machine into a hollow sphere and has a diffuse reflectivity of 99 % in the visible
range. It must also be stressed that this equation only holds for diffuse reflections,
not for direct illumination with the primary beam, which is therefore blocked with
a diffuses reflective but intransparent baffle Fig. B.1.

From the derived equation, we see that the measured irradiance at the port is
proportional to the flux injected into the sphere. In measuring the side-emitting fiber,
we use this to determine the flux 𝛥𝜙 from the fiber segment 𝛥𝑧. But because the
light coupling to the optical fiber and the spectrometer causes unknown systematic
errors, we choose to perform relative measurements by normalizing all measured
values to the start value at 𝑧 = 0. In this way, all the sphere parameters and
unknown systematic attenuation factors cancel out by the normalization

𝐹(𝑧)
𝐹(0)

= 𝛥𝜙(𝑧)
𝛥𝜙(0)

. (B.6)

However, the dependency on 𝑧 of 𝛥𝜙 is unaffected by this normalization and can be
examined undisturbed.

B.2 Angular Measurement: Fourier-Microscopy
The angular emission of a fiber segment is measured by capturing the radiation
with a microscope objective, which decomposes it into its angular components and

99



B Experimental Methods

Figure B.2: Schematics of a ray crossing an aplanatic objective obeying the Abbe-
sine condition: Rays emerging from the front focal plane under an
angle 𝛽 are converted into rays parallel to the optical axis with the
distance ℎ by refraction on the reference sphere with the radius 𝑓,
the focal length.

imaging the decomposition with a microscope camera. This method is referred to
as Fourier-microscopy: the light field in the front focal plane or object space is
decomposed into its angular components in the back focal plane or Fourier space.
This thesis uses this property to analyze the light emitted by a side-emitting fiber
surface or scattering center for its angular emission- or scattering pattern. To image
the back focal plane and not the object plane, a Bertrand-lense is inserted into the
beam path of a microscope [52] (alternatively, the ocular can be removed for a quick
glimpse).

When we take a picture of the back focal plane with some scattering object in
front of the lenses, we see a light-filled circle surrounded by darkness. When we
image a plane wave, we see a point inside the circle with some distance to the optical
axis depending on the plane wave’s inclination. To understand these phenomena,
we will use this section to derive how the angles of rays are represented in the back
focal plane and how certain corrections have to be performed to turn the image
into a quantitative measurement. These derivations will show us that the back focal
plane image is essentially the projection of the hemispherical far field scattering
pattern on a plane while conserving its energy.

To derive the relation between the angle of the ray and its position in the back
focal plane, we use the property that every infinity-corrected aplanatic microscope
objective should obey the Abbe sine condition in the following form [53, 54]
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sin 𝛽 = ℎ
𝑓

. (B.7)

It states that a ray emerging from the front focal plane under the angle 𝛽 is
transformed into a parallel ray with the distance ℎ to the optical axis by the imaging
system. This is schematically shown in Fig. B.2. The focal length 𝑓 is not necessarily
known, but all microscope objectives have their numerical aperture NA engraved,
which is defined by [53]

NA = 𝑛0 sin 𝛽𝑚𝑎𝑥 , (B.8)

the product of the refractive index of the medium between objective and front focal
plane 𝑛0 and the sine of the maximum opening angle 𝛽𝑚𝑎𝑥, which is the maximum
angle of a ray with the optical axis accepted by the objective.

Using the maximum opening angle in the sine condition, we can equate it to the
numerical aperture and get

sin 𝛽𝑚𝑎𝑥 = ℎ𝑚𝑎𝑥
𝑓

= NA
𝑛0

→ 1
𝑓

= NA
𝑛0ℎ𝑚𝑎𝑥

. (B.9)

We use this to replace the unknown focal length in the sin condition and obtain

sin 𝛽 = ℎ
ℎ𝑚𝑎𝑥

NA
𝑛0

. (B.10)

So the angle of a light ray can readily be determined from a picture of the back
focal plane by its relative distance to the optical axis, which is the center of the
circular back-focal plane with the radius ℎ𝑚𝑎𝑥. The numerical aperture ratio to the
refractive index accounts for the immersion medium (e.g., air/water/oil) and the
largest accepted angle.

The spherical shell in Fig. B.2 with the radius 𝑓, which refracts tilted rays into
parallel rays, is called the reference sphere. It represents the actions of the many
lenses of the objective. In essence, the Abbe sine condition acts as if the reference
sphere is projected on a plane while conserving the energy of the rays: the flux
passing through 𝑑𝐴1 on the reference sphere with the radius 𝑓 is equal to the flux
through 𝑑𝐴2, which is its projection on the back focal plane. This is geometrically
expressed as

𝑑𝜙 = 𝑭1𝑑𝑨1 = 𝑭2𝑑𝑨2 = 𝐹1𝑑𝐴1 = 𝐹2𝑑𝐴2 . (B.11)

Both flux densities are in both cases parallel to the surface normal ̂𝒔1�̂�1 = ̂𝒔2�̂�2 = 1
so we obtain

𝐹1
𝐹2

= 𝑑𝐴2
𝑑𝐴1

(B.12)

To calculate the flux-density ratio we use that 𝑑𝐴2 is the projected area of 𝑑𝐴1
or, in vector notation, the projection of 𝑑𝑨1 on the surface unit vector �̂�2. So by
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exploiting the definition of the scalar product

𝑑𝑨1�̂�2 = 𝑑𝐴1�̂�1�̂�2 = cos 𝛽𝑑𝐴1 = 𝑑𝐴2 . (B.13)

Due to the symmetry of the problem, the angle between the surface normals 𝛽 is
the same as the angle of the light ray with the optical axis. Inserting Eq. (B.13) in
Eq. (B.12) we obtain

𝐹2 = 𝐹1
cos 𝛽

. (B.14)

This shows that the flux density in large 𝛽 angles will be amplified to conserve
energy in the process of projecting the reference sphere on the back focal plane.
This amplification compensates the loss of surface area. So if one is interested in
the flux contained in a light ray, this needs to be corrected by multiplying the image
of the back focal plane with cos 𝛽. But we also need to correct for apodization.

Real-world objectives will suffer from an angle and polarization-dependent loss
according to the Fresnel equations because rays entering the objective at large
𝛽-angles will undergo large-angle refraction [55]. These losses are generally unknown,
and therefore one needs to perform a calibration if one wants to use the Fourier-
microscope as a quantitative angular radiation measurement device.

As a calibration standard, we will choose a Lambertian diffuser because it theo-
retically has a constant irradiance in the back focal plane, and very good real-world
substitutes are readily available in the form of diffuse reflection and transmission
standards.

To show that a Lambertian diffuser has a constant back focal plane irradiance
distribution, we calculate the irradiance on the reference sphere: In radiometry, a
Lambertian diffuser is characterized by its constant radiance 𝐿(𝒓, ̂𝒔) = 𝐿 = 𝑐𝑜𝑛𝑠𝑡.
Inserting this into Eq. (A.48), only the solid angle remains in the equation. We
replace it with the definition of the solid angle Eq. (A.51) and integrate it over the
emitting surface, in this case, the front focal plane 𝛥𝐴 whose surface normal �̂�𝒐 is
parallel to the optical axis

𝑭 = 𝐿 ∫
𝛺

̂𝒔𝑑𝛺( ̂𝒔) = 𝐿 ̂𝒔 ∫
𝛥𝐴

̂𝒔�̂�𝒐𝑑𝐴𝑠
𝑓2 , (B.15)

= ̂𝒔𝐿 cos 𝛽𝛥𝐴
𝑓2 = ̂𝒔𝐼 cos 𝛽

𝑓2 . (B.16)

We replaced 𝐼 ≈ 𝐿𝛥𝐴 with the intensity 𝐼 because 𝑓 is much larger than the
dimensions of the surface

√
𝛥𝐴, so it can be regarded as a point source. Here we

see why this is referred to as Lambert’s cosine law: the radiance is constant over all
directions, but the projected area of the emitting surface varies with viewing angle.
That is also the reason why a Lambertian source is equally bright from all viewing
angles.

If we insert this result in Eq. (B.11) and use the angular amplification Eq. (B.13),
the cosine cancel, and we obtain

𝐹2 = 𝐼
𝑓2 = 𝑐𝑜𝑛𝑠𝑡. , (B.17)
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the objective conserves the intensity, or the intensity of an ideal Lambertian diffuser
should be ideally flat in the back focal plane. This ideal property can now be used for
calibration in the following way. The real world measured flux of a good Lambertian
diffuser should follow the equation but has an ℎ and 𝜑 dependent apodization
𝐴(ℎ, 𝜑), the real measured flux density distribution 𝐹𝑚 in the back focal plane is

𝐹𝑚(ℎ, 𝜑) = 𝐴(ℎ, 𝜑)𝐹2(ℎ, 𝜑) , (B.18)

so when measuring a Lambertian surface, we can assume 𝐹2 to be constant. Therefore
𝐹𝑚(ℎ, 𝜑) is directly proportional to 𝐴(ℎ, 𝜑). All measurements can be apodization
corrected by dividing through the appropriately normalized back focal plane image
of a Lambertian diffuser 𝐴(ℎ, 𝜑)/|𝐴(ℎ, 𝜑)|.

(a) Polarization 0 ° ↔ (b) Polarization 90 ° ↕

Figure B.3: Fourier-microscope images of an opal glass scattering standard (pro-
vided by QSIL GmbH Quarzschmelze Ilmenau) in two polarization
directions 0 ° and 90 ° with an NA = 1.3 microscope objective oil
immersion 𝑛0 = 1.51. The two polarization directions show differ-
ent back focal plane apodization: 0 ° towards the top and bottom
edge; 90 ° towards the left and right edge. The dark outer ring
marks region undetectable due to the restrictions in opening angle
to 𝛽𝑚𝑎𝑥 = arcsin(1.3/1.51) = 59.4 °.

In Fig. B.3, we see an example of the back focal plane image of a Lambertian
scattering standard in two polarization directions. Here we see a filled circle, the
back focal plane image, surrounded by a dark ring, representing the cutoff at NA =
1.3 to the limit of NA = 1.51 in oil (𝑛0 = 1.51). We see that the irradiance profile
inside the back focal plane is almost flat parallel to the polarisation direction, only for
very large angles, there is a noticeable deviation. But orthogonal to the polarisation
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direction, the irradiance drops continuously towards the edge. This distribution is a
direct representation of the objectives polarization-dependent apodization function.
Dividing pictures of the back focal plane by these distributions in the corresponding
polarisation direction will yield the corrected versions. In this thesis, this has been
done for all back focal plane images.

B.2.1 The Fourier Transform Property of an Objective

This last section will show that the back focal plane is indeed the Fourier transform
of the electric field in the front focal plane of the objective times an angular
amplification factor. We assume that the Abbe sine condition Eq. (B.7) holds
and that it means the rays coming from the front focal plane are refracted at the
reference sphere. The directions of rays in the sine condition are associated with
the wave vector 𝑲 coming from the front focal plane. Therefore, the measured flux
on the reference sphere is the Pointing vector as a function of the wave vector.

We compute the pointing vector for the wave vector and insert the inverse Fourier
transform of the electric field

𝑺(𝑲1, 𝑲2) = 1
2

Re {𝑬(𝑲1) × 𝑯∗(𝑲2)} (B.19)

= ( 1
2𝜋

)
2 1

2

∞

∫
−∞

𝑬(𝒓1)𝑒𝑖𝑲1𝒓1𝑑𝑟2
1 × ( 1

2𝜋
)

2 ∞

∫
−∞

𝑯∗(𝒓2)𝑒−𝑖𝑲2𝒓2𝑑𝑟2
2

(B.20)

= 1
2

( 1
2𝜋

)
4 ∞

∫
−∞

∞

∫
−∞

𝑬(𝒓1) × 𝑯∗(𝒓2)𝑒𝑖(𝑲1𝒓1−𝑲2𝒓2)𝑑𝑟2
1𝑑𝑟2

2 (B.21)

The radius of the reference sphere is much larger than the front focal plane,
therefore all contributing plane waves are almost parallel, and we can use the far
field limit 𝑲1 ≈ 𝑲2 ≈ 𝑲. Using Eq. (A.47), we find the pointing vector on the
reference sphere

𝑺(𝑲, 𝑲) = = 1
32𝜋4

1
2

( ̂𝒆 × �̂�)
∞

∫
−∞

∞

∫
−∞

|𝑬||𝑯∗|𝑒𝑖𝑲(𝒓1−𝒓2)𝑑𝑟2
1𝑑𝑟2

2 (B.22)

= ̂𝒔 𝑛
64𝜋4𝜇𝑐0

∞

∫
−∞

∞

∫
−∞

𝑬(𝒓1)𝑬∗(𝒓2)𝑒𝑖𝑲(𝒓1−𝒓2)𝑑𝑟2
1𝑑𝑟2

2 (B.23)

Which we can write as the autocorrelation function with the usual change of
coordinates 𝒓1 − 𝒓2 = 𝒓 → 𝑑𝑟2

2 = 𝑑𝑟2 from Appendix A.7 and get the Fourier
transform of the autocorrelation of the electric field
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𝑺(𝑲, 𝑲) = ̂𝒔 𝑛
64𝜋4𝜇𝑐0

∞

∫
−∞

∞

∫
−∞

𝑬(𝒓1)𝑬∗(𝒓1 − 𝒓)𝑒𝑖𝑲𝒓𝑑𝑟2
1𝑑𝑟2 , (B.24)

= ̂𝒔 𝑛
64𝜋4𝜇𝑐0

|ℱ{𝑬}|2 , (B.25)

In the second step, we applied the autocorrelation theorem and obtained the absolute
square of the Fourier transform: the power spectrum of the electric field. So we see
that the flux density on the reference sphere is indeed the Fourier transform of the
electric field in the front focal plane.

If we now project this pointing vector on the back focal plane, we introduce the
factor cos 𝛽 = ̂𝒔�̂�2

𝑺(𝑲, 𝑲)�̂�2 = 𝑆(𝑲, 𝑲) ̂𝒔�̂�2 = 𝑆(𝑲, 𝑲) cos 𝛽 (B.26)

but we have already established in Eq. (B.14) that the Abbe-sine condition tells
that the energy is conserved along rays. To account for this, an additional factor
(cos 𝛽)−1 has to be put in front of the integral Eq. (B.24). In the present case, this
seems trivial because it just removes the cosine dependency in Eq. (B.26). But for
the inverse transform, for example, when a laser beam is focused with the objective,
this generates large-angle amplification, as in [56, 57, 54] and [55].

In summary, an objective performs Fourier transform in combination with an
angular amplification. The radiant flux density distribution observed in the back
focal plane is the absolute square of the Fourier transform of the electric field, or its
power spectrum, multiplied with an angular amplification factor that conserves the
flux density.
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C.1 Radiation from Side-Emitting Optical Fibers and Fiber
Fabrics: Radiometric Model and Experimental
Validation

Aaron Reupert, Jan Schröder, and Lothar Wondraczek. “Radiation from Side-
Emitting Optical Fibers and Fiber Fabrics: Radiometric Model and Experimental
Validation.” In: Advanced Photonics Research (2022), p. 2100104. doi: https:
//doi.org/10.1002/adpr.202100104

Side-emitting optical fibers are diffuse light sources that emit guided light through
their cladding. Here, we derive two models to predict the generated radiation field:
one for the case of a cylinder source and one for a line source. Our approach is based
on the radiometric approximation and considers longitudinal and angle-dependent
emission. Experimental validation is provided for the model parameters and the
radiation field. We show that the longitudinal characteristic is relevant in proximity
to the emitter’s surface and that the angular dependency determines the far field
of emission. Comparison to the experiment shows that the cylinder source model
allows for only slightly more accurate prediction at the cost of significantly higher
computational effort. A combination of model and measurements is then used as a
tool to predict the illumination performance of side-emitting fibers and fiber fabrics.

Remarks to the notation
In this publication, the light flux density or irradiance was denoted by its standard
representation 𝐸 and 𝑬, not 𝐹 and 𝑭 as in Appendix A.7.

Remarks to the publication
This paper is the published version. Compared to the submitted version, the
published version includes changes in the theory section to clarify the radiometric
model and its derivation. Also, the vector notation has been changed from the arrow
notation ⃗𝐴 to the bold notation 𝑨, which is more consistent with the dissertation.
The submitted version can be found in Section 3.1.

106

https://doi.org/https://doi.org/10.1002/adpr.202100104
https://doi.org/https://doi.org/10.1002/adpr.202100104


Radiation from Side-Emitting Optical Fibers and Fiber
Fabrics: Radiometric Model and Experimental Validation

Aaron Reupert, Jan Schröder, and Lothar Wondraczek*

1. Introduction

Side-emitting optical fibers provide a means to illuminate spaces
where common light sources face limitations, for example, in
light penetration depth, thermal load, or volumetric homogene-
ity. These optical fibers emit a fraction of the guided light
through their cladding, acting as a diffuse line source that is
separated from the actual light emitter. This makes them
easy to deploy, for example, in aquatic or highly humid
environments.[1–3] Additionally, they are thin, long, and flexible,
which enables easy implementation even in tricky geometries.

Different methods of fabrication and light coupling are estab-
lished for side-emitting fiber made from inorganic glasses or
plastics, e.g.[4–9] Typically, refractive index distortions (e.g., bub-
bles or particles) are introduced into the fiber to scatter light.
Here, the standard case of homogeneously distributed scatterers
results in an exponential decay in emission strength alongside
the fiber, due to the Lambert–Beer law. In addition, the scattering
process causes light emission, which is preferentially forward-

directed. Both properties result in inhomo-
geneous illumination; their specific effect
on the radiation field is largely unknown.

Previous efforts to model the radiation
field assumed that the fiber light emission
was constant over all angels (Lambertian
emission)[10,11] or used a stochastic
Monte Carlo approach.[12–14] Building on
these methods, we now treat the side-
emitting fiber as exhibiting angular scatter-
ing properties in between directional and
diffuse, combined with a nonuniform
longitudinal light emittance profile. Both
of these characteristics are obtained from
measurements. We will use this approach
to discuss the generated radiation field in
the proximity of the emitting surface and
in the far field.

The primary aim of this work is to develop a parametric model
of the radiation field surrounding the fiber. This will be shown in
Section 2. Then, experimental methods of measuring the model
parameters are presented in Section 3. The results of these meas-
urements are presented in Section 4, and are subsequently com-
pared to the calculated radiation field in Section 5 Discussion.
Finally, in the same section, we will use the best-performing
model to evaluate different strategies to create more uniform illu-
mination from standard side-emitting fibers and fiber fabrics.

2. Theory

Side-emitting fibers are a light source with special properties:
Their surface “emittance” MðzÞ changes alongside the fiber,
and the emitted radiation has an angular dependence, captured
by the “phase function” PðΘ,ΦÞ. For example, the side-emitting
poly(methyl methacrylate) optical fiber (PMMA fiber) used in this
work exhibits an exponential decrease in emittance with length.
In addition, the light is emitted preferentially at small angles to
the fiber axis. Hereinafter, we will calculate the monochromatic
radiation field surrounding the fiber in terms of its flux density,
which is called “(spectral) irradiance” EνðrÞ in one arbitrary fre-
quency interval (ν, νþ dν). Vector quantities will be denoted in
boldface. We will use this to calculate the radiation field of single
fibers or fiber fabrics, consisting of many side-emitting fibers.

2.1. Radiance, Irradiance, and Radiation Transfer

We use the radiometric approximation to calculate the radiation
field generated by the side-emitting fiber and assume no absorp-
tion or scattering in the surrounding medium. In this case, the
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radiometric field quantity “radiance” Lνðr, ŝ, νÞ is constant along a
ray of light,[15,16] basically representing its energy. The usual
starting point for the radiometric derivation is to use the radiance
to express the differential radiant flux dϕ in the frequency inter-
val dν transported through an element of area dA1 at an angle Θ1

and confined to an element of solid angle dΩ as

dϕν ¼ Lνðr, ŝ, νÞ cosΘdΩdA1dν (1)

This defines the flux of a pencil of light rays as sketched in
Figure 1. With the scalar product ŝ ⋅ n̂1 ¼ cosΘ1 between the
ray vector ŝ and the surface normal n̂1 of dA1, we can express
the differential flux as the scalar product of the differential irra-
diance dEν ¼ dEνŝ and the surface element dA1 ¼ n̂1dA1 as

dϕν ¼ Lνðr, ŝ, νÞŝ ⋅ n̂1dΩdA1dν ¼ dEνðr, ŝ, νÞ ⋅ dA1 (2)

The vectorial irradiance describes both the spatial distribution
of the flux density of the radiation field (light power per unit area)
and the direction of the radiation. Therefore, we argue that it is
the most useful quantity to describe the directional radiation field
surrounding a side-emitting fiber with angle-dependent emis-
sion. For example, if one were to shine the radiation from the
fiber onto a piece of paper, the observable brightness distribution
would be the projected irradiance distribution.

To calculate the irradiance at a point in space r1, we only need
to integrate the differential irradiance over the solid angle Ω sur-
rounding it. Therefore the flux density of all rays intersecting at
this point is summed up, which we write as the integral

Eνðr1Þ ¼
Z

dEνðr1, ŝ, νÞ ¼ dν
Z

Ω

Lνðr1, ŝÞŝ dΩðŝÞ (3)

In the present case, the light only originates from the surface
of the side-emitting fiber. Therefore, the irradiance at r1 is

calculated by integrating all the intersecting light rays coming
from the fiber’s surface. The relationship between the solid angle
element and a surface element of the side-emitting fiber is

dΩðŝÞ ¼ ŝ ⋅ n̂2dA2

d2
¼ cosΘ2dA2

d2
(4)

This relation is also sketched in Figure 1: the pencil of rays
crossing the observation point has its origin in the surface ele-
ment dA2 at the distance d ¼ r1 � r2 on the fiber. This area spans
the solid angle element dΩ when seen from r1.

[17] Substituting
Equation (4) and the ray vector ŝ ¼ d=d into Equation (3), we
obtain the formula for calculating the irradiance in the volume
surrounding the fiber by integration over its surface AF .

Eνðr1Þ ¼ dν
Z

AF

Lνðr1, ŝ, νÞ
cosΘ1

d2
d
d
dA2 (5)

The spectral (monochromatic) radiant quantity EνðrÞ can be
turned into the radiometric quantity EðrÞ by performing the inte-
gral over all involved frequencies ∫ Eνdν. One should keep in
mind that the scattering process causing the light emission
depends on the frequency and, therefore, the radiance’s angular
distribution does too.

2.2. Radiation Field of a Cylinder Source

To perform the fiber surface integral in Equation (5), we model
the fiber as a cylinder in the corresponding cylindrical coordi-
nates r ¼ ðx, y, zÞ ¼ ðρ cosφ, ρ sinφ, zÞ. The coordinate origin
is the center of the start of the fiber; the light inside propagates
in the positive z-direction. The fiber surface is defined by setting
ρ ¼ R, the radius of the fiber, which gives us the surface location
vector r2 ¼ ðR cosφ,R sinφ, zÞ. The radiance is measured at an
arbitrary point of observation O. Because the fiber and its radia-
tion field are rotationally symmetric, we chose Oðφ0 ¼ 0Þ as the
point of observation with the location vector r1 ¼ ðρ0, 0, z0Þ and
ρ0 > R. The distance vector d from a surface element to the obser-
vation point is

d ¼ r1 � r2 ¼
ρ0 � R cosφ
�R sinφ
z0 � z

0
@

1
A (6)

with the magnitude d ¼ jr1 � r2j ¼
ffiffiffiffiffiffiffiffiffi
d ⋅ d

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ02 þ R2 � 2Rρ0 cosφþ ðz0 � zÞ2

p
. Consequently, the length

and direction of this vector change from surface element to sur-
face element.

Every surface element of the fiber radiates depending on
z-position and emission angles Φ,Θ. The angles are defined
in a local spherical coordinate system centered around the sur-
face element, as shown in Figure 2. They have to be translated
into the global cylindrical coordinate system for the integration:
The surface vector n̂2 can be expressed as n̂1 ¼ cosφêx þ sinφêy,
as shown in Figure 2. Then, we can express the polar angle Θ in
spherical coordinates with the aid of Equation (6) as

cosΘ ¼ n̂2 ⋅ ŝ ¼
n̂2 ⋅ d
d

¼ ρ0 cosφ� R
d

(7)

Figure 1. A pencil of radiation, confined to the solid angle interval Ω, is
transmitted through a surface element dA1 at the angle Θ1 with its surface
normal n̂1. It originates from a surface dA2, emitted at the angleΘ2 with its
surface normal n̂2. The solid angle is equal to the projected area of the
radiating surface according to dΩ ¼ cosΘ2dA2=d2. The distance
d ¼ jdj is the magnitude of the connection vector d ¼ r1 � r2.
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This result becomes zero when R ¼ ρ0 cosφ, then d is a tan-
gent to the fiber’s surface. We will use this as the limit of the
surface integration.

The scalar product d ⋅ êz ¼ d sinΘ cosΦ ¼ z0 � z between the
connection vector d and êz expressed in cylindrical and spherical
coordinates gives the relation for Φ, and in combination with
cos2Θþ sin2Θ ¼ 1 we obtain

cosΦ ¼ z0 � z

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2Θ

p ¼ z0 � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � ðρ0 cosφ� RÞ2

p (8)

Now all properties of the local spherical coordinate system are
expressed in the global cylindrical coordinate system. We insert
Equation (7) in Equation (5), with Θ1 ¼ Θ, replace the surface
element by its representation in cylindrical coordinates
dA1 ¼ Rdφdz, and obtain the final Equation for the irradiance
vector-field of the cylinder source

Eνðρ0, z0Þ ¼ dν
Zl

0

Zφ1

φ0

Lνðz,Θ,Φ, νÞ ðρ
0cosφ� RÞ

d4

�
ρ0 � R cosφ

�R sinφ

z0 � z

0
B@

1
CARdφdz

(9)

From Equation (7), we obtain the limits of integration
φ0 ¼ � arccosðR=ρÞ and φ1 ¼ þ arccosðR=ρÞ; l is the length of
the fiber.

Two additional remarks to Equation (9): First, the distance to
the surface has to be bigger than zero d > 0 ! ρ0 > 0. Second,

the symmetry of the formula would cause the second entry of Eν
always to integrate to zero because the irradiance passing
through this surface element is equal from both sides. This is
only true for a virtual surface and not for a real one, which would
block radiation from one side of the fiber.

2.3. Radiance, Emittance, and the Phase Function

The radiant emittance of a surface element is distributed on the
hemisphere above it. This distribution results from the hetero-
geneous scattering process inside the fiber and the refraction and
secondary scattering on the fiber surface. To account for this, we
separate the radiance into the product of the emittance M of the
fiber surface element with its affiliated phase function P,
which contains the normalized angular information of the
emitted radiation.

Lνðz,Θ,Φ, νÞ ¼ Mνðz, νÞPνðz,Θ,Φ, νÞ � Mνðz, νÞPνðΘ,Φ, νÞ
(10)

We assume homogeneous scattering throughout the fiber, so
only the emittance M depends on z. Then, we can separate the
radiance into the directional P and the positional contributionM,
which allows us to determine them independently with different
experiments.

2.4. Line Source Approximation

The calculation can be greatly simplified by using a line source
approximation. Here, the light is only emitted radially, therefore
its phase function has no angular component everywhere except
for Φ ¼ 0. This means that we can replace the Φ-dependency of
the phase function with the delta function

PνðΘ,Φ, νÞ ¼ PνðΘ, νÞδðφÞ (11)

Inserting this into Equation (9) and performing the φ-
integration lead to the radiant flux density of the line source with
an angular-dependent emission in Θ. Additionally, as a line has
no radial extend, we set all resulting ðρ0 � RÞ ¼ ρ0. The remain-
ing R from the surface element dA ¼ dRφz is combined with the
surface emissivity to yield the radial flux emission
Mνðz, νÞR ¼ Iνðz, νÞ. The resulting equation for the line
source is

Eνðρ0, z0Þ ¼ dν
Zl

0

Iνðz, νÞPνðΘ, νÞ
ρ0

d4l

ρ0

0
z0 � z

0
@

1
Adz (12)

with dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ0Þ2 þ ðz0 � zÞ2

p
; the irradiance can now be calcu-

lated by integration over z.

3. Experimental Section

The radiation field of a rotationally symmetric side-emitting fiber
can be determined if the radiant emittance MðzÞ and the phase
function PðΦ,ΘÞ are known. These parameters are determined
experimentally, with two different setups: The “side emission

Figure 2. The local spherical coordinate system (black) of a surface ele-
ment sits on top of the cylindrical coordinate system (green) of the fiber
with the radius R. The connection vector d from Figure 1 points from the
surface to the point of observationO. The surface normal vector n̂1 written
in Cartesian coordinates is n̂1 ¼ cosφêx þ sinφêy. The êz unit vector is
the same in both coordinate systems.
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measurement” will determine the emittance, and the
microscopy-based “angular measurement” will measure the
phase function. Except for the calibration of the angular measure-
ment, both methods are also described elsewhere in more
detail.[18,19] Additionally, we show how to measure the resulting
radiation field of a fiber band with a scattering screen.

All light measurements are subject to unknown systematic
attenuation due to light decoupling or transmission losses. To
account for this, all measurements are normalized to the maxi-
mum measured value. This does not affect the calculated distri-
butions according to Section 2. If absolute values are required, it
is sufficient to measure the maximum brightness with a cali-
brated device and multiply the calculated distribution by this
to obtain the absolute value of the irradiance distribution.

The side-emitting optical fibers (multi-mode, PMMA, diame-
ter 500 μm) and the textile fiber band, containing 19 correspond-
ing fibers oriented parallel to each other with an average distance
of 2.6 mm (see Figure 5c), were provided by F.J.RAMMER
GmbH. For all experiments, we used a 100mW 520 nm green
laser diode which is butt-coupled (direct contact without focusing
optics) to the fibers of the band. For micrographs and phase func-
tion measurement, we used a JenaPol Interphako microscope.
The radiation field was imaged with a Canon EOS 650D camera
and an EF 18–55 objective focused on a frosted glass plane as a
scattering screen.

3.1. Side Emission Measurement

A custom-made integrating sphere (see Figure 3a) was used to
measure the fiber emittance. It consists of two fiber guides: a
baffle to protect the detector port from direct irradiation and
an optical fiber to connect the sphere to a spectrometer
(Ocean Optics: Maya2000 Pro). The side-emitting fiber was
threaded through the sphere with the help of two hollow fiber
guides, leaving only a small segment of the length Δz exposed
to the interior of the sphere. The emitted flux of the fiber
segment ΔϕðzÞ, which is related to the emissivity by
ΔϕðzÞ ¼ 2πRΔzMðzÞ, is distributed homogeneously by multiple
diffuse reflections on the sphere walls. Therefore, the measured

irradiance EmðzÞ is proportional to the flux collected by the
sphere ΔϕðzÞ.[6,19] By measuring the flux at different positions
along the fiber, we captured the z-dependence of the emittance
of the side-emitting fiber. Here, fiber coupling, light transmis-
sion, and absorption in the integrating sphere (walls and air) rep-
resent systematic sources of error. To take this into account, the
measurement is normalized to the maximum value.

3.2. Angular Measurement

The angular light distribution on the hemisphere in Figure 2 was
captured with a large numerical aperture (NA) objective: In its
back focal plane, the light is decomposed into its angular com-
ponents.[18,20] The relation between emission angle Θ and back
focal plane radial distance h, for infinity-corrected objectives, is
sketched in Figure 3b and given by the Abbe sine condition[21]

sinΘ ¼ h
f

(13)

The unknown focal length f can be replaced by f ¼ n0hmax=NA
by using the NA and Equation (13): NA ¼ n0 sinΘmax ¼
n0hmax=f . Here, hmax is the radius of the circular back focal plane
image.

All real-world objectives with high NA have angle and
polarization-dependent transmission losses.[22] For correction,
we use a Lambertian scattering standard (provided by QSIL
GmbHQuarzschmelze Ilmenau), which should have an ideal flat
irradiance profile in the back focal plane. The correction is per-
formed by dividing the measurement image pixel-wise by the
image of the scattering standard. To show this correctional prop-
erty, we derive the transfer of a lossless objective with an ideal
scattering standard: As shown in Figure 3b, the flux ϕ emerges
from the focal point in a cone around the observed ray and is trans-
formed into a non-divergent pencil of rays on the reference sphere
while conserving its energy. The flux passing through dA1 is equal
to the flux passing through dA2 ¼ cosΘdA1, so the irradiance
has to vary accordingly ϕ ¼ E1dA1 ¼ E2dA2 ¼ E2dA1 cosΘ.

(a) (b)

Figure 3. a) Emittance measurement: Light emitted by the fiber segment Δz (limited by the aperture) is homogeneously distributed on the sphere wall by
multiple diffuse reflections. The irradiance on the detector port is proportional to the emitted flux E ∝ ϕ. b) Phase function measurement: Rays spanning
an angleΘ with the optical axis (dashed) are transformed in parallel rays with a distance h by refraction on the reference-sphere (blue, radius f ) according
to the Abbe sine condition Equation (13).
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Therefore, the irradiance in an ideal objective is amplified accord-
ing to E2ðΘÞ ¼ E1ðΘÞ= cosΘ for increasing Θ.

Suppose we insert the irradiance of a Lambertian diffuser
E1ðΘÞ ¼ EL cosΘ into this formula. In that case, the cosines can-
cel, and we obtain EL ¼ E2ðΘÞ ¼ const.: a Lambertian diffuser
should have an ideally flat intensity profile in the back focal plane
of an objective. This correction was performed separately for both
polarization states, and then both states were averaged to obtain
the corrected unpolarized back focal plane image.

3.3. Measurement of the Irradiance on a Scattering Screen

The radiation field of a band of several side-emitting fibers is
measured with a simple setup shown in Figure 4. The idea is
that the screen makes the radiation field in its plane visible by
secondary scattering. The irradiance E0ðx, yÞ ¼ n̂sEðrÞ, which
is intersected by the screen at a certain point, is turned into
the emissivity on the other side Mðx, yÞ ∝ E0ðx, yÞ by transmis-
sion through the screen. We assume that the screen acts as an

ideal Lambertian diffuser: the irradiance which is observed by
the camera on the other side of the screen is

Eðx, y, αÞ ¼ Mðx, yÞ cos β
d2

∝ E0ðx, yÞ
cos β
d2

(14)

This allows us to measure the light field at the scattering
screen just by taking a picture of it and correcting for the angular
and distance attenuation: We define the position of the pixel rel-
ative to the center of the screen as shown in Figure 4, so
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ l2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ l2

p
. Therefore, the geometric attenu-

ation is

cos β
d2

¼ l
d3

¼ l
ðl2 þ x2 þ y2Þ3=2 (15)

which is used to correct the measurement for geometric angle
and distance attenuation. Because the scattering behavior of
the screen is expected to follow the cos-dependence only approx-
imately, especially for large angles, it is best to choose a large
distance l between the screen and the camera. Also, the camera
response has to be checked for linearity.

4. Results

The commercial side-emitting fiber in Figure 5a appears trans-
parent and featureless to the naked eye and under the micro-
scope. When light is butt-coupled in the fiber, as in
Figure 5b, it lights up and appears self-luminous. This luminos-
ity is not equally distributed across the fiber, but it is brighter at
the fringes and dimmer in the center when observed under the
microscope. Additionally, attached particles and small scratches
on the fiber surface become visible. The fiber emits strongest
close to the coupling, and then the emission decreases quickly
toward the fiber end.

The band of equivalent plastic side-emitting fibers in Figure 5c
shows a similar decline in emission, but additionally, the overall
brightness varies from one fiber to the other because of difficul-
ties that arise from distributing light equally from one large-
diameter fiber to many small ones via butt-coupling.

To quantify the loss in fiber brightness with length, a single
fiber is clamped to the side emission setup from Section 3.1, and

Figure 4. Scattering camera measurement: A CCD camera is focused
(l ¼ 900mm) on a scattering screen with the surface area
AS ¼ 650mm� 450mm. The fiber band is mounted to a straight holder,
which is clamped to an optical bench. A laser is coupled to the side-emit-
ting fibers, and the room is darkened. The fibers are moved to different
positions D (10–800mm) relative to the glass plate, and a picture is taken
of the scattering glass plate for each position without changing the focus
of the camera.

(a) (c) (d)

(b)

Figure 5. Micrographs of the side-emitting fiber under bright field microscope illumination a) and dark field self-illumination b). c) Nineteen fibers woven
in a fiber band in self-illumination. d) z-dependence of the side-emitting fiber emittance M with increasing distance to the light coupling, the data is
normalized by the maximum emittance. A biexponential function with the two decay constants σ1 ¼ 0.0021mm�1 and σ2 ¼ 0.0080mm�1 and the
corresponding amplitudes A1 ¼ 0.58 and A2 ¼ 0.42 has been fitted to the measurement data. Panel (b) reproduced from[1] under CC-BY 4.0
Licence. Copyright 2019, The authors. Published by Springer Nature.
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the relative change in surface emittance is measured. The data
was normalized by the maximum value, and the plot in Figure 5d
shows a monotonous decaying curve that decreases to 2% of the
maximum value at the end of the fiber. This decrease can be fit-
ted with a biexponential decay function.

4.1. Phase Function Measurement

The fiber’s light emission depends on the emission angle. This
can easily be verified by observing the fiber (band) from different
positions. This angular emission behavior was measured with
Fourier microscopy in two orthogonal polarization directions,
shown in Figure 6a,b. The radiation is concentrated on the right
side of the circle in a half-moon shape, so light scatters prefer-
entially forward under low angles. The remainder of the back
focal plane image is dark, which means that comparatively little
radiation is scattered in these directions.

We determine the phenomenological, polarization-
independent phase function PðΘ,ΦÞ from these measurements
by imaging 50 pictures on different positions in each polarization
direction, correcting them according to Section 3.2, and averag-
ing all of them. The resulting phase function in Figure 6c is still
brighter to the right and is now almost rotationally symmetric
with respect to êz. The half-moon shape brightness, which is
caused by the large angle objective amplification, is gone due
to the correction procedure. Additionally, the phase function

was normalized so that the integral over the hemisphere is equal
to one.

To better illustrate the forward scattering of the fiber surface,
we present it in Figure 7 as a polar plot in the n̂1-êz-plane from
Figure 6. This data will also serve as the phenomenological phase
function PðΘÞ of the line source. Here, we see an isotropic
Lambertian surface compared to the n̂1-êz-cross section of the
phase function and the average scattering. The average was cal-
culated by integrating over the surface of the hemisphere in a
rotation around the êz vector and then dividing by the arc length.

In the graph on the left in Figure 7, we see the Lambertian
phase function, which is constant over all angles
(PðΘÞ ¼ 1=π). The cross section of the phase function has its
maximum value before it drops rapidly for angles greater than
71°. This cutoff is due to the limited opening angle of the
objective. The average function shows a similar behavior, but
decreases after its maximum at 60° before the cutoff angle.

When we multiply the phase function with the cosΘ projec-
tion factor (Equation (5)), we see how much radiation is really
scattered in a given direction from a surface element: the isotro-
pic Lambertian surface is now turned into a circle with its maxi-
mum emission at 0°. The average curve and the cross-section
curve become more similar in shape, with their respective max-
ima now at 53° and 58°. The influence of the cutoff angle is
strongly diminished by the cosΘ factor. This shows that the
phase function can be satisfactorily determined even with a

(a) (b) (c)

Figure 6. a,b) Typical back focal plane images for two orthogonal polarization directions (pol.) and the average corrected image c) from 100 images, 50 in
each polarization direction: the phase function P. The coordinate system is analogous to Figure 2, when the hemisphere is viewed from the top.

Figure 7. Polar plot of the normalized phase function P (left) and the projected phase function with cosΘ apodization (right). Lambertian P is the
isotropic case. The cross section is the data from the n̂1-êz-plane. The average is calculated by integrating along a rotation around êz and dividing
by arc length.

www.advancedsciencenews.com www.adpr-journal.com

Adv. Photonics Res. 2022, 2100104 2100104 (6 of 11) © 2022 The Authors. Advanced Photonics Research published by Wiley-VCH GmbH



limited aperture because the projection factor dampens the miss-
ing large-angle phase function components.

4.2. Making the Radiation Field Visible

A scattering screen intercepts the radiation field of the fiber band
at different distances D and makes it visible. Black and white
camera images of the screen are shown in Figure 8 and display
the behavior of the radiation field: At close distance, we can
almost distinguish single fibers when the band is closest to
the screen. Analogous to a single fiber, this distribution is bright
at the start and then decays rapidly toward the fiber end.

When the distance between the screen and band increases, as
shown in Figure 8 from left to right, the radiation fields of the
single fibers overlap and form a continuous enveloping distribu-
tion. Here, we observe a distinct maximum of brightness close,
but not at the very start. Increasing the distance further leads to a
downwardmovement of the maximum, which broadens, spreads
out, and fills more and more of the screen area. In the largest
observed distance D of 870mm (Figure 10d), the maximum
brightness has traveled the whole distance of the screen and
is now located at the lower end.

5. Discussion

The fiber in Figure 5d shows a biexponential decay in emitted
radiation with increasing distance from the light entry point.
This corresponds to a fiber where some light is guided in the
core, and some are guided in the cladding,[19] each with its
respective scattering coefficients σ1 and σ2 and amplitudes ϕ1

and ϕ2. This is the result of the butt-coupling, which excites core
and cladding modes simultaneously. In the present case, we
expect the cladding modes to experience stronger dampening
because they interact with the fiber surface.

ϕðzÞ ¼ ϕ1e�σ1z þ ϕ2e�σ2z ↔

� dϕ
dz

¼ ϕ1σ1e�σ1z þ ϕ2σ2e�σ2z
(16)

If we neglect absorption loss, we see how this leads to expo-
nentially decaying emission (assuming flux conservation): any

loss in transmitted flux is turned into out-scattered radiation
MðzÞ ∝ �dϕ=dz. So, the amplitudes extracted from the fit in
Figure 5 are A1 ¼ ϕ1σ1 and A2 ¼ ϕ2σ2. They give us a ratio of
cladding to core flux of ϕ2=ϕ1 ¼ 0.2 at the start of the
measurement.

This strong initial decay is visually unpleasing and can lead to
overexposure in technical applications. A costly solution would
be to optimize the optical coupling to the fiber core; a simpler
solution is to cover this part of the fiber with an absorber (but
at the expense of emission efficiency). One could also choose
a fiber with a smaller scattering coefficient to stretch the expo-
nent and obtain a more uniform illumination. However, this
would also be at the expense of efficiency as more light would
pass through the fiber unused without being scattered and
emitted.

5.1. Angular Emission

Under the microscope, no bubbles, particles, or other sources of
light scattering can be seen inside the fiber in Figure 5.
Measurement of the angular distribution of the radiation emitted
from a fiber surface element in Figure 6 and 7 shows a clear pref-
erence for forward scattering. This points to the presence of long-
period refractive index distortions: Generally, all deviations from
the ideal core-cladding structure in a step-index optical fiber
cause light scattering.[23] These deviations can be thought of
as refractive index fluctuations, which can be decomposed into
a spectrum of mechanical waves.[18,24] Each wavelength is
responsible for light scattering under a certain angle: longer
wavelengths than the guided light causes forward scattering
and vice versa. Therefore, the dominant wavelengths of the fluc-
tuations are much longer than the wavelength of the green laser
diode.

Furthermore, the refractive index contrast of the distortion
enhances its scattering power.[18] In summary, this means that
the cause of the scattering inside the fiber is a long periodic fluc-
tuation with low refractive index contrast or a disturbance of the
core-cladding boundary with low amplitude, so it cannot be
detected with the microscope. The visible scratches and particles
on the fiber surface, on the other hand, are signs of wear and
have high refractive index contrast. They are responsible for
the attenuation of the light guided in the cladding, which

Figure 8. Black and white images of the scattering screen reveal the radiation distribution of a side-emitting fiber band for several distances (increasing
from left to right), according to Figure 4. The light is coupled into the fiber from the top and loses its emissivity, due to the constant out-scattering of light,
toward the end. Increasing the distance D between the band and screen leads to a broadening of the light distribution.
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explains the larger scattering coefficient σ2 for the cladding
modes.

5.2. Calculated Radiation Field

Comparing the numerically calculated fields in Figure 9 close to
the fiber for the two fiber models, namely cylinder source and
line source, together with the two different phase functions,
namely Lambertian and the measured phenomenological phase
function, reveals two properties: first, the irradiance in all four
variants shows a reciprocal dependency on distance (ρ�1).
Second, the phase functions result in different magnitudes of
irradiance close to the fiber: the two Lambertian models are con-
gruent, and also, the two phenomenological phase function are
congruent but result in a slightly higher irradiance.

These numerical results are plotted in Figure 9. The cylinder
source was calculated by numerical integrating Equation (9) and
the line source by integrating Equation (12). In both cases, the
length-dependent decay in emittance was modeled using
Equation (16) with the parameters from the fit to the measured
values in Figure 5. The Lambertian phase function for the cylin-
der had the constant value PðΘ,ΦÞ ¼ ð2πÞ�1 and for the line
PðΘÞ ¼ π�1. The data for the phenomenological phase function
was taken either from Figure 6 for the cylinder or from Figure 7
(average) for the line.

The discretization of the surface in φ was done by dividing the
angular interval ½φ0,φ1� into 20 equal pieces. For z, we converted
interval ½0, l� for every z-position into the angular interval
½arctanðz=ðrho� RÞÞ, arctanððl� zÞ=ðrho� RÞÞ� divided it into
100 equal angles and converted the angles back into z-coordinates.
This improves numerical stability for small distances.

The deviation between phenomenological and Lambertian
models close to the fiber is contradictory to the expected behavior
in that all models should converge to the emissivity MðzÞ of the
fiber surface when ρ ! R. Three features of our phenomenolog-
ical phase function are probably responsible for this: First, the
phase function is only known for Θ < 71° due to the NA limita-
tion. Second, the normalization of the phase functions can only
be performed up to a certain numerical accuracy using our

present approach (float 64bit). Third, the discretization of the
phase function leads to angular intervals with constant
scattering.

Interestingly, the line source and the cylinder source give the
same result in the Lambertian case, which indicates a property
known for the Labertian sphere, whose irradiance shows the
same behavior (∝ ρ�2) as an ideal point source.[17] Thus, the con-
clusion is that the Lambertian cylinder’s irradiance behaves like
that of a line source, although this remains to be proven
mathematically.

We conclude that the Labertian approximation is adequate to
describe the irradiance close to the fiber, justifying the approach
of Endruweit et al.[11] to calculate the field of a fiber from a
Lambertian cylinder. However, it is even sufficient to solely
use the line source. This is, of course, just possible in the absence
of absorption and scattering in the surrounding medium. In the
latter case, the irradiance of the line source and the cylinder
source would deviate.

5.3. Comparison to the Measured Radiation Field

Section 5.2 concluded that the line source and the cylinder source
differ only for different phase functions. Now, we compare the
calculations for all four models to the measured field of a fiber
band. We find that, in principle, the cylinder source with the
phenomenological phase function performs best in the observed
measurement range, although only slightly better than the
phenomenological line source. Lambertian fiber models, which
performed adequately in proximity to the fiber, perform worse
for larger distances.

We use the same procedure as in Section 5.2 to numerically
integrate the four models and obtain the radiation field for the
half-space next to the fiber, which corresponds to the volume
spanned by the scattering screen measurement in Figure 8.
Then, we used the principle of superposition to calculate the radi-
ation field of the fiber band from a single fiber: we made 19 dupli-
cates of the calculated field, moved their x-coordinates to the
respective positions of fibers on the band in Figure 5, and added
them up. Additionally, we accounted for different coupling effi-
ciencies by weighting the fields. This was done for all observed

Figure 9. Comparison of the irradiance of the line source and the cylinder source close to the fiber for the phenomenological and the Lambertian phase
function. At z ¼ 100mm, in reciprocal distance (left) or in distance (middle). Irradiance in a line parallel to the fiber in a distance of ρ ¼ 0.5mm.
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distances. Exemplary results of these calculations of the cylinder
source with the phenomenological phase function are shown in
Figure 10 next to the measured values.

The calculated irradiance of the fiber band with the phenom-
enological phase function in Figure 10 shows two properties that
match the measurement: First, the field in proximity to the fiber
is dominated by the exponential decay of the radiant emission of
the fiber surface. Second, the forward scattering property of the
fiber causes a downward movement (away from the coupling) of
the maximum of irradiance with increasing distance D. That the
forward scattering property of P causes this can be inferred by
comparison with a Lambertian fiber, which does not show a
movement of the maximum (not shown).

For a quantitative comparison of the models with the measure-
ment, we calculated the “relative residual” as the absolute differ-
ence between the measured Em and the calculated Ec irradiance
divided by the measured irradiance jEm � Ecj=Em for every pixel.
This gives the pictures on the right in the subfigures in Figure 10.
For a more comprehensive depiction, we calculated the average
residual and the standard deviation of the relative residual for
each plane of observation,which is shown in Figure 11. Here,
we see that all models start with the highest residual, but only
those with a phenomenological phase function surpass an error
of 10% while the Lambertian level off at around 30%.

The cause of the high residual for small distances between
screen and band is shown in Figure 10: we see that the residual
directly above the band is small, but next to it is large. In this
plane, the fibers will block the light from each other because
fibers and the screen are approximately situated in the same
plane. Additionally, a possible interaction between the scattering
screen and the fiber band makes the measured scattering more
diffuse than in the calculation: some light is scattered back and

forth between band and screen, causing additional diffuse irra-
diation. Also, the screen has no real Lambertian transmission for
large incident angles. We conclude that the scattering screen
measurement is unfit to measure the irradiance in proximity
to the fiber.

With increasing distance D between screen and band, the
aforementioned effects weaken, so the calculation and the mea-
surement converge. Still, the line source shows slightly higher
residuals and standard deviation. This shows that the cylinder
source is the slightly more precise way of calculating the

(a) (b)

(c) (d)

Figure 10. Comparison between measured Em and the calculated irradiance field Ec (phenomenological cylinder source) of the fiber band for the dis-
tances 10 (a), 160 (b), 350 (c), and 870mm (d). The pictures on the right show the relative residual jEm � Ecj=Em, the relative deviation between
measurement and calculation.

Figure 11. Comparison of the average residual and its standard deviation
between cylinder source and line source with the Lambertian or phenom-
enological phase function. The relative residual is calculated analogously
to Figure 10 as jEm � Ecj=Em for every pixel. All pixels are then averaged,
and the standard deviation is calculated. The Lambertian curves are con-
gruent in average and standard deviation.
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radiation field in intermediate distances and large distances if a
phenomenological phase function is used. The line source can be
used in combination with a phenomenological phase function at
almost the same precision and comes with the benefit of less
computational effort. The Lambertian approximation should
not be used for larger distances or only if no phenomenological
phase function is available and larger uncertainties can be
tolerated.

5.4. Testing Alternative Fiber Coupling Schemes by
Superposition

At last, we explore alternative light coupling schemes with the
best performing fiber model, the cylinder source with the
phenomenological phase function, to see if they create a more
homogeneous illumination from a fiber band than basic single
side coupling. We use the relative standard deviation of irradi-
ance for each calculated plane as a quantitative comparison.
From the four proposed schemes we do explore, three perform
almost equally well to create a much more homogeneous irradi-
ance field.

The exponential decay in emittance and the forward scattering
property hinder the application of side-emitting fibers, leading to
uneven illumination and a visually unpleasing appearance.
Spigulis et al.[10] proposed two methods to mediate the exponen-
tial decay without having to resort to fibers with self-compensating
scattering coefficient σðzÞ: First, double coupling, where light is
coupled in both ends of the fiber, and second, a fiber end face
mirror, to reuse the transmitted light by reflecting it back into
the fiber. We additionally propose two more schemes: alternating,
where light is coupled alternating from one side or the other in
neighboring fibers, and a combination of alternating with end
mirror.

We can now easily test these schemes for a fiber band with the
calculated irradiance field of one fiber and the principle of super-
position: For the double coupling, we use the result from
Section 5.3, duplicate it, rotate the duplicate by 180°, and add
it to the original calculated field. For the end mirror, we proceed
in the same manner, but weigh the duplicate with the appropri-
ate attenuation caused by the fiber transmission loss. Alternating
these methods for every single fiber gives the other two schemes.
The relative standard deviation is obtained by dividing the

standard deviation of the irradiance in each plane of observation
by the average irradiance in that plane.

In Figure 12 (left), we show an example for every scheme in
two distances (30 and 100mm) and the relative standard devia-
tion (right). As it turns out, three of the four schemes lead to
comparable uniform irradiance fields: both alternating and alter-
nating with mirror provide the most homogeneous illumination
with the same amount of couplings as the basic one-sided ver-
sion. Double coupling is third but requires more couplings. Just
using an end mirror on one side results in a more homogeneous
illumination than single-sided coupling, but shows the same dis-
advantages of having a strong difference in irradiance from start
to end.

6. Conclusion

We considered two methods to calculate the emitted light field of
a side-emitting fiber in the radiometric approximation: A cylin-
der source and a line source. We validated experimentally that a
standard side-emitting fiber possesses a position and angle-
dependent radiance, which is properly represented in these mod-
els. The two contributions influence the emitted light field in two
ways: The z-position dependence of the emittance is dominant
close to the side-emitting fiber, and the angular dependence
influences the field in the distance. We showed this by compar-
ing calculated data from both approaches with real-world meas-
urements of the radiation field. Both models are in good
agreement with the measurement of the light field for distances
larger than 80mm from the emitter. Here, the cylinder source
possesses slightly better predictive capability compared to the
line source at the expense of higher computational effort.
From the presented models, the radiation field of complicated
arrangements of side-emitting fibers can be calculated by super-
position. This was used to show that alternating the side of the
light coupling between neighboring, parallel fibers in a fiber fab-
ric can greatly improve the homogeneity of the generated radia-
tion field.
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