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Abstract
Cloud data warehouse systems lower the barrier to access data analytics. These 
applications often lack a database administrator and integrate data from vari-
ous sources, potentially leading to data not satisfying strict constraints. Automatic 
schema optimization in self-managing databases is difficult in these environments 
without prior data cleaning steps. In this paper, we focus on constraint discovery 
as a subtask of schema optimization. Perfect constraints might not exist in these 
unclean datasets due to a small set of values violating the constraints. Therefore, we 
introduce the concept of a generic PatchIndex structure, which handles exceptions 
to given constraints and enables database systems to define these approximate con-
straints. We apply the concept to the environment of distributed databases, providing 
parallel index creation approaches and optimization techniques for parallel queries 
using PatchIndexes. Furthermore, we describe heuristics for automatic discovery of 
PatchIndex candidate columns and prove the performance benefit of using PatchIn-
dexes in our evaluation.
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1 Introduction

In a cloud data warehouse environment self-management and ease-of-use becomes 
important. This is reinforced by cloud warehouse applications typically lacking a 
database administrator. Self-managing systems try to overcome this with automatic 
schema tuning to achieve reasonable query performance.

In this paper, we focus on database constraints as an important factor for high 
query performance. Cloud warehouse applications integrate data from different 
sources, potentially leading to unclean data due to e.g., the integration of heterogene-
ous schemas. On these datasets, the automatic discovery of constraints is more diffi-
cult, as there might be a small number of tuples violating a constraint. Consequently, 
constraints can not be defined, leading to poor query performance as the query opti-
mizer is not aware of any applicable optimizations, e.g. dropping aggregations in 
case of uniqueness, or the choice of specialized physical operators, e.g. foreign-key 
joins or merge joins in case of a sorting constraint. One possible solution for this 
problem is data cleaning, so e.g. infering missing values according to an observed 
data distribution or deleting tuples that violate a constraint. For cases where data 
manipulation is not desired, we introduced the concept of PatchIndexes in [12] as an 
alternative approach, enabling database systems to define approximate constraints 
without modifying data. These constraints hold for all values of an indexed column 
except a set of exceptions maintained by the PatchIndex. As examples we introduced 
“nearly unique columns” (NUC) and “nearly sorted columns” (NSC). 

We investigated the PublicBI benchmark [26] to prove the existence of approxi-
mate constraints and encourate the need to handle them by the DBMS. The bench-
mark is a collection of real world Tableau workbooks, allowing evaluations against 
real user datasets and their common properties, e.g., many string columns, many 
NULL values or the absence of constraint definitions. We chose the USCensus_1, 
the IGlocations2_1 and the IUBlibrary_1 workbook as examples and determined 
the number of columns that contain an approximate constraint and the number of 
tuples that match these constraints. The histogram shown in Figure 1 represents the 
distribution of approximate constraint columns for these datasets. The USCensus_1 
workbook contains over 500 columns, from which 15 columns match an approxi-
mate sorting constraint. Nine columns match the sorting constraint with over 60% of 
their tuples. The IGlocations2_1 and the IUBlibrary_1 workbooks contain a small 

Fig. 1  Histogram over approximate constraint columns in PublicBI datasets
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number of columns, from which a relatively large amount follow an approximate 
uniqueness constraint. Many of these columns are nearly perfectly unique.

Cloud warehouse solutions are typically designed as Massively Parallel Process-
ing (MPP) systems, where the key for efficient query processing is to partition and 
distribute data within the system in order to query it in a distributed fashion. With 
this paper, we apply and extend the concept of PatchIndexes presented in [12] to 
parallel and distributed environments. Our main contributions are:

– We apply PatchIndexes to the partitioned environment.
– We provide parallel approaches for PatchIndex creation.
– We describe opportunities to optimize parallel queries using PatchIndexes.
– We present heuristics for automatic PatchIndex candidate discovery.
– As the PatchIndex structure is designed in a generic way, we discuss different 

opportunities where PatchIndexes can be applied in the future.

2  Related work

The research on approximate constraints evolved from the field of constraint discov-
ery, which is typically based on data profiling techniques [1]. An example problem 
is the discovery of unique column combinations (UCC), which is a set of columns 
whose projection only contains unique rows. Finding all exact UCCs for a given 
relation is shown to be NP-hard [8] and various algorithms were introduced in [9, 
19, 22, 23].

These algorithms mainly focus on the discovery of exact UCCs, so unclean 
data might hamper the discovery. In order to cope with this problem, numerous 
approaches and classes for data cleaning are known [21]. Alternatively, “possible” 
and “certain” keys [14] replace violating tuple values and enforce constraints and 
“embedded uniqueness constraints” (eUC) [27] separate uniqueness from complete-
ness by enforcing uniqueness constraints only on the subset of tuples without the 
occurrence of NULL values. Not only taking NULL values into account, the PYRO 
algorithm [13] discovers and ranks approximate functional dependencies and UCCs, 
extending the pruning rules of the TANE algorithm [10] and using a sampling strat-
egy for candidate pruning to reduce the search space. Recent publications [16, 20] 
also cover discovery approaches for approximate denial constraints, which is a more 
general class of data-specific constraints.

The approaches presented above mainly focus on the discovery of approximate 
constraints, but leave out possibilities to benefit from their definition. In our work, 
we integrate approximate constraints into query execution in order to accelerate 
query performance. We combine the concept of approximate constraints with the 
concept of patch processing, handling exceptions to certain distributions or proper-
ties of data, which is widely used in data compression. In order to make compres-
sion schemes more robust to outliers, PFOR, PFOR-DELTA and PDICT compres-
sion schemes were introduced in [28]. Additionally, white-box compression [6] aims 
at automatically learning functions or properties of the data, instead of choosing a 
compression scheme for all values of a column. Compression can be optimized by 
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varying algorithms between values that follow the observed behaviour and values 
that are exceptions to this, leading to a significant increase of compression ratios.

3  Definitions

In this section we introduce the concepts of “nearly unique columns”(NUC) and 
“nearly sorted columns”(NSC) as examples of approximate constraints. Tuples of 
such columns satisfy the uniqueness or the sorting constraint, respectively, with 
nearly all column values. The tuple identifiers of the tuples violating the constraints 
are collected in a set of patches Pc for a given column c. Consequently, these col-
umns contain perfect constraints after excluding the tuples of Pc . In the example in 
Figure 2 we can state column c as unique, if we do not consider the tuples with iden-
tifiers in, e.g., Pc = {1, 2, 3, 7} . Similarly, the column c is sorted if we exclude tuples 
in, e.g., Pc = {4, 7} . In the following, we provide formal definitions of the concepts 
to base further discussions on.

Definition 1 (Naming conventions)
We state the following set of naming conventions for further discussion. 

Symbol Explanation

R Relation
t ∈ R Tuple of relation R
dom(c) Set of possible values of a column c
id Column of tuple identifiers
id(t) ∈ ℕ Tuple identifier of t
c(t) ∈ dom(c) Value of column c of tuple t

 Additionally, we define a projection function

PROJ(R, c) ∶ relation × column → relation

as a projection of relation R on column c, which similarly to the SQL operator per-
forms no duplicate elimination and therefore differs from the relational algebra oper-
ator �.

Fig. 2  Example for NUC and NSC for a given dataset
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Definition 2 (Set of patches)
For a column c we define a set of patches Pc ⊆ {id(t) | t ∈ R} . Based on this, we 
define RP = {t ∈ R | id(t) ∈ Pc} as the set of tuples of R whose tuple identifiers are 
in Pc and R⧵P = {t ∈ R | id(t) ∉ Pc} as the set of tuples of R whose tuple identifiers 
are not in Pc.

Definition 3 (Threshold variables)
We define variables nuc_threshold and nsc_threshold , both in [0, 1] ⊂ ℝ.

Definition 4 (Nearly unique column (NUC))
A column c is a nearly unique column (NUC), when there is a set of patches Pc such 
that all of the following conditions are fulfilled: 

(NUC1)  PROJ(R⧵P, c) is unique
(NUC2)  PROJ(R⧵P, c) ∩ PROJ(RP, c) = �

(NUC3)  |Pc|∕|R| ≤ nuc_threshold

As an intuition, we describe values of c using the projection operator PROJ 
on c and demand these values to be unique after we excluded all tuples with 
tuple identifiers in Pc . The second condition (NUC2) is of major importance 
here to ensure the correctness of the query result, as we later want to query 
RP and R⧵P separately from each other during query execution. In column c of 
Fig.  2 values 3 and 6 are duplicates, so Pc consists of tuple identifiers of all 
occurences (according to (NUC2). The column c would be classified as a NUC 
if nuc_threshold ≥ 0.5 . The choice of a minimal set is obviously unambiguous.

Definition 5 (Nearly sorted column (NSC))
Given a column c, let ⊲ be an arbitrary order relation on dom(c). Column c is a 
nearly sorted column (NSC), when there is a set of patches Pc such that both of the 
following conditions are fulfilled: 

(NSC1)  ∀ti, tj ∈ R⧵P ∶ id(ti) < id(tj) ⇒ c(ti) ⊲ c(tj)

(NSC1)  |Pc|∕|R| ≤ nsc_threshold

As an intuition, we want values of c to be sorted according to the given order 
relation ⊲ based on the order of their tuple identifiers after we excluded tuples with 
tuple identifiers in Pc . For column c of Fig. 2 we can exclude the two tuple identi-
fiers shown by Pc to get a sorted sequence, so column c could be classified as a NSC 
if nsc_threshold ≥ 0.25 . This choice is ambiguous, as we can find a set of patches 
Pc = {3, 7} with the same cardinality. In the discovery mechanism of NSC in Sect. 4 
we are interested in a smallest set Pc.
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4  Constraint discovery

Given the formal definitions of Sect. 3, classifying a given column c as a NUC 
or a NSC translates to the problem of finding a set of patches Pc that matches the 
given requirements of a NUC or NSC, respectively. In this section, we provide 
basic discovery approaches for both NUC and NSC that can be easily integrated 
into arbitrary (automatic) database administration tools. For NUC, finding non-
unique values can be realized using a hash table. As this is also the core concept 
of hash-based aggregation operators in many database engines, we can realize the 
NUC discovery on query level. The main challenge here is to find all occurences 
of non-unique values due to the definition of (NUC2), so a simple distinct query 
is not sufficient for this purpose. Alternatively, we group the data on the exam-
ined key c and post-select all groups with more than two elements. The values 
of c that belong to the resulting groups are joined back with the table to get the 
tuple identifiers of all their occurences. Here we need to pay special attention to 
NULL values, which should be assigned to the set of patches Pc to ensure cor-
rectness. As NULL values do not join with each other, the join is realized using 
an outer join with a subsequent filter operations. The described approach leads to 
the NUC discovery query in Listing 1. Based on the result of the query, the clas-
sification of a column c as a NUC can be made based on the condition (NUC3) 
|Pc|∕|R| ≤ nuc_threshold.

Listing 1: NUC discovery query
select tab.tid from tab left outer join

(select c from tab group by c
having count(∗) > 1) as temp

on tab.c = temp.c
where temp.c is not null or tab.c is null

Finding a minimal set of patches Pc such that a given column c is sorted after 
excluding tuples in Pc can be realized by computing the longest sorted subse-
quence in c and inverting the result with respect to the base relation. As the sorted 
subsequence has maximum length, the respective set of patches Pc has minimal 
cardinality. Finding a longest sorted subsequence is a typical problem of dynamic 
programming and we utilize the longest sorted subsequence algorithm in [5]. The 
algorithm maintains arrays to keep the length and the predecessor of the last ele-
ment in the longest sorted subsequence of data [1,… , k] at position k. For each of 
the n elements in the array, the algorithm performs a binary search on the already 
computed results, resulting in an overall worst case runtime of O(n ⋅ log(n)) . In 
order to compute Pc , the resulting list of indexes that are included in the longest 
sorted subsequence is inverted (with respect to the examined relation R). NULL 
values are also assigned to Pc in order to ensure correctness of sorting queries. 
The classification of a column c as a NSC can then be based on the condition 
(NSC2) |Pc|∕|R| ≤ nsc_threshold.
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5  Index design

The design of the PatchIndex data structure follows the requirement to efficiently 
maintain and access the set of patches Pc for the indexed column c the index is 
built on. The access pattern of the index scan described in Sect. 6.2 is a sorted 
traversal of the data and the set of patches Pc , which needs to be considered when 
choosing the PatchIndex data structure. Different traditional index structures 
could be used to match this requirement. First, the tuple identifiers in Pc could 
be stored in a B+-Tree [7]. Although B+-Trees also offer sorted traversal by pro-
viding pointers between the leaf nodes, storing and maintaining the tree struc-
ture introduces overhead while the benefit of a fast point query is not necessary 
for the index scan access pattern. Hash-based indexes are also not suitable for 
the ordered scan pattern due to the cache-unfriendly random access [7]. Bloom 
filters [17] allow efficient membership queries but also allow false positives. 
This approximate nature of bloom filters would harm the definitions presented 
in Sect. 3 and lead to wrong query results when applying the optimization tech-
niques described in Sect. 6.

We realized a sparse and a dense approach of storing this information. In the 
identifier-based approach, which is similar to the sparse way of storing data, we 
hold a list of 64  Bit tuple identifiers of the tuples in Pc . On the contrary, the 
bitmap-based approach, which is similar to the dense way of storing, holds a sin-
gle bit for each tuple, indicating whether it belongs to the set of patches or not. 
This is particularly independent from the cardinality of Pc . As a consequence, the 
main decision point between both approaches is the memory consumption. As the 
bitmap-based approach has a constant memory consumption of one bit per tuple, 
the identifier-based approach has a lower memory consumption for all cases with 
exception rates e = |Pc|∕|R| ≤ 1∕64 = 1.56%.

A major advantage of the approach of storing the PatchIndex information 
separately from the actual data is that the physical data order is not changed. 
Consequently, it becomes possible to define multiple PatchIndexes on the same 
table. This particularly enhances sorting constraints and the usual sort keys, 
which would physically reorder the data. Therefore, PatchIndexes offer to exploit 
(nearly) co-sorted columns, like orderdates and shipdates or auto-increasing iden-
tifiers. Furthermore, one can create PatchIndexes for different constraints on a 
single column, e.g., if it is nearly unique and nearly sorted.

The key for parallel and distributed query processing is partitioning, splitting 
tuples into physical chunks of the input relation. Usually this is realized using 
hashing on a set of partitioning attributes. Queries can then be executed in a 
parallel or distributed fashion by assigning partitions to cores or cluster nodes 
respectively. Applying the concept of PatchIndexes to the partitioned environ-
ment, we create a separate index for each partition, which has the advantage that 
partitioning is transparent for the actual index implementation. Additionally, 
PatchIndex seamlessly integrate into parallel and distributed query processing 
with this approach, as the separate indexes are coupled with their partitions and 
are therefore independent from each other. In cloud warehouse systems that rely 
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on partitioning, work (re)distribution is done by (re)assigning partitions to nodes 
in case of elastic scaling. As PatchIndexes are coupled with their partitions, they 
are also reassigned automatically and can generally be restored from disk or the 
log file on the reassigned node.

The PatchIndex is currently designed as an in-memory data structure. The index 
creation is logged to a write-ahead log (WAL), so the index can be reconstructed 
when performing the log replay in case of a system restart, failure or scaling. The 
determined patches are not written to the WAL in order to keep it slim, so the index 
is reconstructed from the data using the same mechanisms as for index creation. 
There are several alternatives to the in-memory approach that should be evaluated in 
the future. First, the index data could be materialized to disk, which has the advan-
tages of durability, easy recovery and reducing the main memory consumption, 
as not all PatchIndexes have to be held in-memory at the same time. On the con-
trary, reading the relevant PatchIndex data from disk during query execution might 
decrease query performance, harming the desired benefit from the PatchIndex usage. 
Second, the PatchIndex information could be materialized as a bitmap column to the 
table and scanned by ordinary table scan operators.

6  Parallel query processing

In this section, we present approaches to integrate PatchIndexes into parallel and 
distributed query processing. We present parallel index creation and index scan con-
cepts as well as use cases to integrate the PatchIndex into parallel query execution. 
We assume the underlying database system to run in a parallel single-server environ-
ment or a distributed cluster, which might consist of nodes of arbitrary, commod-
ity hardware or virtual machines in the cloud environment. These cluster nodes are 
assumed to be connected over network and are based on a shared-nothing architec-
ture [24]. Partitioned data as described in Sect. 5 has to be accessible by e.g. being 
stored in a cloud file system.

6.1  Index creation

After executing the index-definition-query to create a PatchIndex, we invoke the ini-
tial index filling as a postquery. Here we need to determine the set of patches Pc 
for each partition-local index, which varies for the different constraints. For NUC, 
the main challenge is the fact that uniqueness is a global constraint. In a general 
case, the occurence of non-unique values might be scattered among different parti-
tions, resulting in the need for communication for their discovery. In order to deter-
mine the set of patches Pc for NUC, we utilize the parallel query plan in Fig. 3 for 
the discovery query stated in Sect. 4. The inner query, namely discovering all non-
unique values, is shown in the right part of the query plan. In the general case, we 
need to repartition the data on the indexed column c to enable the grouping on c in 
the next step. Afterwards, we filter for groups with more than one tuple and build 
a shared hash table on the results. The creation of the shared hash table involves 
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communication between the partitions but the hash table is then shared between all 
partitions. As a consequence, the outer join and the subsequent filter for determining 
the tuple identifiers of all occurences of non-unique values can then be executed in 
parallel without any communication and the results can be directly appended to the 
respective partitions. Note that partitions are cached in memory as much as possible, 
so reading a partition twice is avoided in the query. In conclusion, we have two com-
munication points in this query, which is the repartitioning step and the creation of 
the shared hash table. In cases where data is already partitioned on the indexed col-
umn c, the repartitioning as well as building a shared hash table becomes obsolete. 
Hash tables can be built partition-locally, resulting in a parallel execution without 
communication for this specific case.

The creation process for NSC is much more simple. The sorting is determined 
partition-locally and we integrated the computation of the longest sorted subse-
quence into the PatchIndex append operator. This way, no communication is needed 
and the creation query can be fully run in parallel.

6.2  Index scan

In order to apply the PatchIndex information to the dataflow during query execu-
tion, we designed the PatchIndex scan by combining an ordinary partitioned table 
scan with specialized partitioned selection operators with modes exclude_patches 
and use_patches. The goal of the PatchIndex scan is to split the dataflow of the scan 
operator into two distinct dataflows, one containing tuples satisfying a certain con-
straint and one containing exceptions to the constraint. Referring to Definition 2 of 
Sect.  3, selection mode exclude_patches produces R⧵P , while mode use_patches 
returns RP.

Once during the build phase of the query, these specialized selection operators 
query the PatchIndex that belongs to the scanned partition to receive a pointer to the 
list of patches for the identifier-based approach or a pointer to the bitmap for the bit-
map-based approach. The pointer as well as other metadata like processed tuples are 
stored in a state variable of the operator. During query execution, both modes pass 
the incoming dataflow to the next operator while applying the patch information 

Fig. 3  Parallel PatchIndex creation for uniqueness constraint
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on-the-fly using a merge strategy for the identifier-based approach. Therefore we use 
the elements of the set of patches Pc in a sorted way (Note that the both discovery 
methods automatically produce the order. Otherwise the elements would need to be 
sorted during index creation). The concept of the merge strategy for exclude_patches 
is shown in Algorithm 1 and is based on maintaining a patch pointer to the next ele-
ment in the patch array and increasing the pointer once the element is applied.

For exclude_patches, applying patch information means skipping a matching 
tuple and is realized in lines 11 to 15. If the condition in line 11 is not satisfied, the 
commented condition in line 13 is ensured as the set of patches Pc is sorted and as 
the patch pointer is increased by one for each match. The mode use_patches only 
passes elements that match elements of the patch array. For this, the conditions in 
lines 11 and 13 of Algorithm  1 are exchanged and the patch pointer is increased 
before returning the tuple, also making the else branch obsolete. Additionally, we 
return NULL in the case that all patches are already processed in line 7. For the 
bitmap-based approach, both selection modes are realized using a lookup operation 
on the bitmap holding the patch information. If a bit in the bitmap is set, the respec-
tive tuple passes the use_patches mode, while passing the exclude_patches mode 
otherwise.

In order to reduce I/O effort of scan operators, data pruning by applying scan 
ranges to scan operators is a common concept of analytical database systems. These 
scan ranges are often computed by small materialized aggregates [18], which are 
also supported by the PatchIndex scan. While building the query plan, the special-
ized selection operators with modes exclude_patches and use_patches fetch the scan 
ranges from the scan operators. During query execution, they merge the scan ranges 
on-the-fly with the patches by adjusting the patch pointer in order to skip patches 
outside the ranges or computing an offset within the bitmap. Applying scan ranges 
to scan operators decreases the number of scanned tuples. As we computed the set 
of patches Pc on the full set of values for the indexed column c, the selected patches 
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are not accurate anymore. For the case of NSC, pruning tuples from the table may 
result in the sorted subsequence not being the longest sorted subsequence anymore. 
Nevertheless, pruning tuples from a sorted subsequence keeps the sequence sorted. 
For NUC, values that were unique within the full table stay unique for the pruned 
table as well. As a consequence, merging scan ranges with patches does not harm 
the correctness of the query result.

6.3  Analytical queries

The key for efficient query processing in parallel and distributed databases is to exe-
cute queries locally on partitions as long as possible and ideally just combine inter-
mediate results before returning them. With our approach to support partitioning by 
creating separate PatchIndexes for partitions we follow this execution paradigm and 
enable systems to integrate PatchIndexes into efficient parallel and distributed query 
processing. Here we benefit from putting a larger one-time effort into index creation 
like described in Sect. 6.1. In the following, we present three use cases of integrating 
PatchIndexes into query execution, namely distinct, sort and join operators. The gen-
eral goal of the query optimizations using PatchIndexes is to drop these expensive 
operations on data that is known to satisfy a constraint and achieve a potential query 
speedup.

6.3.1  Distinct operator

The information about NUC can be exploited in distinct queries on an indexed col-
umn c. Here the most expensive operator is the distinct operator, which is typically 
realized using a hash-based or sort-based aggregation. A potential query plan is 
shown in the left part of Fig. 4. After splitting the dataflow using the PatchIndex 
scan, we only have to compute the distinct aggregation on the dataflow containing 
the exceptions to the uniqueness constraint, which might be the minor part of the 
data. Values of the second dataflow are ensured to be unique after excluding excep-
tions. Afterwards, both dataflows are combined using a partition-local union opera-
tor. The query is hereby allowed to contain additional pre-selections or projections 

Fig. 4  Query plans for distinct (left) and join (right) queries after PatchIndex optimization with the newly 
inserted operators highlighted
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before the aggregation (abstracted as “X” in the query tree), which are also cop-
ied to both subtrees. This query plan can be run locally for each separate partition. 
In cases where data is not partitioned on the aggregation column, the aggregation 
requires a repartitioning beforehand, which is also copied to both subtrees. If data 
is not required to be partitioned after the union operator, e.g., if there are no sub-
sequent operations, the repartitioning is dropped from the dataflow containing the 
unique values.

6.3.2  Sort operator

The information about NSC can be exploited in sort queries that require a sort oper-
ator on a column c a PatchIndex is defined on. Similar to the query plan of distinct 
queries, we can here drop the sort operator on the dataflow that excluded the excep-
tions, as these values are known to be sorted. The query plan is similar to the left 
part of Fig. 4, exchanging the aggregation operator with the sort operator. Addition-
ally, both dataflows need to be combined using a partition-local merge operation 
instead of a union operator to preserve the sort order. As a result, this query can be 
executed partition-locally without the need for any communication.

6.3.3  Join operator

As a second use case, NSCs can also be integrated into partitioned join queries as 
shown in the right part of Fig. 4. Here we can replace the partitioned HashJoin oper-
ator with the more efficient MergeJoin for the sorted subsequence. As a requirement, 
both join sides have to be partitioned on the join attribute and the other join side 
(abstracted as “X” in the query tree) needs to be sorted on the join attribute. This is a 
common case for joins between fact tables and dimension tables in data warehouses, 
where dimension tables are typically partitioned and sorted on their dimension key. 
Pre-selections and projections are also allowed before the join operation (abstracted 
as “Y” in the query tree), and it is also allowed to contain join operators that do not 
change the partitioning, so e.g. being the probe side of a HashJoin. While the sorted 
subsequence is joined using the MergeJoin, the exceptions are joined using an ordi-
nary HashJoin and both dataflows are combined using a partition-local union opera-
tor. As the number of exceptions is known during query optimization, the join sides 
of the HashJoin can be chosen optimally by building the hash table on the side with 
smaller cardinality. Additionally, the query subtree “X” is cached to avoid unneces-
sary computations.

7  Index selection

Choosing columns to create PatchIndexes differs from the classic index selection 
problem in database systems [4]. As PatchIndexes are designed to not change the 
way data is organized physically, multiple PatchIndexes can be defined on sin-
gle tables or even single columns. Therefore, choosing columns for PatchIndex 
creation can be based on a local decision whether a column is suitable or not. 



845

1 3

Distributed and Parallel Databases (2021) 39:833–853 

Surely, this can be decided by a database administrator who is familiar with the 
database schema and the included data. As this requirement is not satisfied in 
many use cases, especially for cloud applications, we provide PatchIndex selec-
tion approaches for self-managing systems in the following.

In a workload-adaptive PatchIndex selection strategy, we can use informa-
tion and statistics from typical workload queries to base the decisions on. This 
way, the database schema is redefined and adapted to the workload over time 
by the creation of PatchIndexes. The key of this approach is the integration of 
leightweight statistic functions into query operators that can be accelerated using 
PatchIndexes. For NUC, the most important information is the selectivity s of 
distinct aggregations, which can be defined as the ratio of output tuples to input 
tuples. A distinct aggregation with a high selectivity (a ratio near 1) produces 
many output values from the given input values, which means that many of the 
input values were unique. Therefore, columns with high selectivities are reason-
able candidates for the creation of a PatchIndex. We additionally consider the 
ratio t of input tuples to the cardinality of the whole table, as the selectivity of the 
aggregation operator might be influenced by preceeding filter operations. Both 
ratios are then linearly combined to determine a score for a given column being a 
PatchIndex candidate:

As a result, a high score indicates that a large amount of tuples were unique 
in a large subset of the data, which indicates that the examined column is a good 
candidate for PatchIndex creation.

In a workload-agnostic PatchIndex selection strategy, we actually test all columns 
for the given constraints. For NUC, we count the occurences of non-unique values 
using a query similar to the creation query shown in Fig. 3. For NSC, we utilize the 
longest sorted subsequence algorithm that is integrated in the PatchIndex creation 
algorithm. In order to accelerate this testing and potentially prune bad candidates 
early, we use sampling of the column values. With e being the ration of exceptions 
to input tuples, the selectivity s = 1 − e and t being the sample fraction, we can uti-
lize the score calculation from Eq. 1 in this approach to rank PatchIndex candidates. 
Note that sampling might produce wrong assumptions if samples are chosen badly. 
For example, it might occur that all values in the samples are unique, but no values 
are unique in the actual column, or that no values in the sample are unique and all 
remaining values would be unique. Therefore, samples should be chosen randomly 
and the sample size should be a significant part of the actual data.

For both strategies we can further limit the amount of memory that can be used 
by PatchIndexes. As the memory consumption is known before creation (constant 
for bitmap-based approach or linearly in the number of exceptions for the iden-
tifier based approach), we can order columns by their score and select the best 
columns until the specified memory is exhausted. This problem is similar to the 
knapsack problem and we use a greedy algorithm for the decision, which poten-
tially chooses a good but non-optimal solution but is more efficient than exact 
solutions using dynamic programming.

(1)score = p ⋅ s + (1 − p) ⋅ t with score, p ∈ [0, 1]
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8  Evaluation

In our evaluation we show the impact of PatchIndexes on query performance as 
well as the index creation effort and memory consumption. We integrated Patch-
Indexes into the Actian Vector 6.0 commercial DBMS, which is built on the X100/
Vectorwise [2] analytical database engine. X100 relies on partitioning as the key for 
parallel query processing. The system runs on a machine consisting of two Intel(R) 
Xeon(R) CPU E5-2680 v3 with 2.50 GHz, offering 12 physical cores each, 256 GB 
DDR4 RAM and 12 TB SSD. For all measured results, we used queries on hot data, 
which means that data resides in the in-memory buffers of the system. This way, we 
reduce the I/O impact and focus on the pure query execution time.

In order to evaluate the impact of the exception rate in the test data on the Patch-
Index performance, we designed a data generator [11] that varies exception rates for 
both constraints. The data consists of 1B tuples with two columns, a unique key col-
umn and a value column that shows the desired data distribution. In order to exploit 
parallel data processing, we partition the datasets on the key column into 24 parti-
tions when loading it into the system. As the key column is unique, this results in 
partitions of nearly equal size. For the uniqueness constraint, the exceptions of the 
value column are equally distributed into 100 K values, while the remaining values 
are unique and differ from the values of the exceptions. For the sorting constraint, 
exceptions are randomly chosen and all remaining values form a sorted sequence in 
ascending order. For both constraints, exceptions are randomly placed in the data-
sets. As the datasets are generated once before the benchmarks, the randomness does 
not impact the comparability of the evaluation results.

We compared the generic PatchIndex structure against different specialized mate-
rialization approaches for the respective constraints that a user would use to acceler-
ate queries. For distinct queries, we used materialized views as a comparison, which 
is a widely used technique in database systems to pre-compute partial queries like 
the distinct query in our example. This way, expensive distinct queries are replaced 
by simple scan queries on the materialized view. For sort queries, we compared 
PatchIndexes against SortKeys, which physically sorts data on the given SortKey 
column. This way, sort queries can be translated to simple scan queries. Last, we 
evaluated join queries by comparing the PatchIndex approach against JoinIndexes 
[25], which materialize foreign key joins as an additional table column. If a SortKey 
is defined on the table holding the primary key of the join, the foreign key related 
table is ordered similarly, so that a MergeJoin becomes possible to join both tables.

8.1  Query performance

In order to examine query performance, we ran a distinct query for NUC and a sort 
query for NSC on the value column on the test data. Figure 5 shows the results of the 
experiments. For NUC, reference runtimes without any constraint definition increase 
with increasing exception rates, before decreasing starting from an exception rate of 
0.3. With increasing exception rates, the number of distinct tuples and therefore the 
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number of aggregation groups decrease. The runtime behaviour is then caused by 
the inference of a reduced hash table size on the one hand and the increased com-
munication cost on the other hand, as the system uses a shared hash table build plan 
for the aggregation. Using a PatchIndex leads to a significant performance impact 
comparable to the materialized view for the distinct query also for very high excep-
tion rates, with both design approaches performing similarly in this experiment. The 
runtime of the PatchIndex supported query slightly increases with increasing excep-
tion rates due to more tuples being processed in the aggregation. Nevertheless, using 
a PatchIndex does not show a negative performance impact for this experiment.

For NSC, reference runtime increases with increasing exception rates. This is 
a result of the internal quicksort pivoting strategy, which behaves better the more 
sorted the input already is. Using a PatchIndex again shows a significant perfor-
mance speedup that shrinks expectedly with increasing exception rates, as more 
tuples need to be processed in the sort operator. Again, using a PatchIndex does 
not impact performance in a negative way for this case. Using a SortKey shows a 
constant runtime slightly higher than the scan of the materialized view, as partitions 
need to be merged here to ensure the tuple order. Additionally, Vector performs a 
Sort operator to ensure the sorting constraint, leading to slightly worse performance 
than using PatchIndexes for small exception rates.

8.2  Creation runtime

Besides query performance, the effort to create a PatchIndex is an important 
measure for the usability of the index structure. Similarly to other index struc-
tures, the PatchIndex structure is designed to be used multiple times, so investing 
a one-time effort is worth the performance improvement for multiple subsequent 
queries. Figure  6 shows the creation runtimes for NUC and NSC with varying 
exception rates. For NUC, the runtime basically follows the reference runtime 
of the distinct query in Fig.  5, as this query is pre-computed here. Comparing 
the PatchIndex creation to the materialized view creation, storing the informa-
tion in the index structure leads to a small overhead in runtime. As explained 
in Sect.  6.1, creating PatchIndexes for NUCs requires communication for 

Fig. 5  Runtimes of a distinct/sort query with varying exception rate
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repartitioning. In our experiments, the communication overhead was constantly 
responsible for around 55–65% of the creation runtime for reshuffling the con-
stant amount of data. For NSC, increasing exception rates lead to more compari-
sons in the longest sorted subsequence algorithm, but also decreases the length 
of the sorted sequence and therefore decreases the effort to reconstruct it. The 
inference of these parts leads to the observed behaviour. For both constraints, the 
bitmap-based approach performs slightly better in this experiment, as setting bits 
in a pre-allocated bitmap performs better than maintaining a growing list of iden-
tifiers. In comparison, creating a Sortkey takes significantly more time due to the 
physical reorganization of the table.

8.3  Memory consumption

The memory consumption of a PatchIndex is independent from the materialized 
constraint it holds and shown in Table  1 for the example dataset and example 
exception rates e. While the bitmap-based approach has a constant total memory 
consumption (1 bit per tuple), the memory consumption of the identifier-based 
approach grows linearly the number of exceptions. As described in Section  5, 
the bitmap-based approach has a lower memory consumption for all cases with 
exception rate e > 0.0156 . In comparison, storing a materialized view is signifi-
cantly more expensive and depending on the number of unique values. Material-
izing a JoinIndex requires an additional column of 64 Bit values. For comparabil-
ity, the memory consumption is compared without applying compression.

Fig. 6  Runtime for materialization/index creation for varying exception rate

Table 1  Memory consumption for example dataset of t = 10
9 tuples (without compression)

PI_bitmap PI_identifier Mat. view (NUC) JoinIndex

General t∕8 ⋅ 1.0039B e ⋅ t ⋅ 8B (105 + (1 − e) ⋅ t) ⋅ 8 B t ⋅ 8 B
e = 0.01 125.48MB 80MB 7.9GB 64GB
e = 0.2 125.48MB 1.6GB 6.4GB 64GB
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8.4  TPC‑H

For the evaluation of join queries, we used the popular and well-known TPC-H 
benchmark [3]. Although it only contains clean data with perfect constraints, Patch-
Indexes can also be used in this environment to provide a comparable evaluation. 
In our experiments, we used the benchmark at scale factor SF  1000 and focused 
on the largest join between the tables lineitem and orders, resulting in a subset of 
evaluated queries that contain this join. The reference run consists of the foreign 
key join without further indexes. For the PatchIndex run we only used the bitmap-
based design approach, which showed a significantly better memory footprint in the 
memory experiments. As the benchmark only contains perfect constraints, queries 
are further optimized using zero-branch-pruning (ZBP), dropping query subtrees 
that are ensured to not produce any tuples. This way, the query subtrees that handle 
the exceptions are pruned from the query plan, resulting in better performance. As 
the spezialized materialization approach, we built a JoinIndex on the foreign key and 
co-sorted both tables to enable an efficient merge join.

Figure 7 shows the measured query runtimes. For Q3 and Q7 we can observe a 
major performance benefit of 33% and 25% respectively when using PatchIndexes 
over the reference runtime. Additionally activating zero-branch-pruning reduces the 
overhead introduced by the Patchindex optimization, leading the queries to run 43% 
and 40% faster compared to the reference runtime. For both queries, using PatchIn-
dexes achieves a query performance similar to the JoinIndex variant and also better 
when using zero-branch-pruning, which is caused by the additional effort to scan the 
JoinIndex column. In Q12 we can observe a different behaviour. As the lineitem-
orders join is quite small in this query due to preceeding filters, the overhead of 
splitting the query tree to make use of the PatchIndex information is larger than it’s 
benefit, resulting in a slightly worse query performance. Therefore, the optimizer 
would not have chosen this query plan. However, using ZBP results in a better per-
formance and a performance gain compared to the reference runtime. Regarding 
creation effort, creating a PatchIndex took around 100 s for this use case, while cre-
ating a JoinIndex took significantly more time of about 600 s.

Although the benchmark only contains perfect constraints, it is an example for 
another advantage of the PatchIndex approach. Even if a dataset is clean at a point in 
time, it may become unclean in the future by update operations. While these updates 
would be aborted with the definition of usual constraints, PatchIndexes would allow 

Fig. 7  TPC-H query performance for SF1000
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the updates and the respective transition from a perfect constraint to an approximate 
constraint.

8.5  Resume

Our evaluation showed that PatchIndexes can significantly improve query perfor-
mance for distinct, sort and join queries even for high exception rates and has a per-
formance impact comparable to the specialized materialization techniques of materi-
alized views, SortKeys and JoinIndexes. The bitmap-based design approach showed 
a better memory consumption for these cases and a slightly better index creation 
runtime compared to the identifier-based approach.

9  Further use cases

In the previous sections we presented approaches to exploit “nearly unique col-
umns” and “nearly sorted columns” in parallel and distributed query execution. As 
we designed our index structure in a generic way, the PatchIndex is not limited to 
these two constraints, but can be used for many other use cases. In order to adapt the 
concept to other use cases, a developer would only need to specify an index creation 
approach and query optimization rules to integrate the index into query execution 
and actually benefit from the index definition. In the following, we present potential 
additional use cases for PatchIndexes.

9.1  Other formal constraints

Formal database constraints are not limited to uniqueness and sorting constraints. 
One could apply the PatchIndex approach also for, e.g., “constness” of column val-
ues, potentially dropping filters on these columns from query plans.

9.2  User‑defined constraints

Constraints are not necessarily formal database constraints, but could also be user-
specific, semantic constraints. Examples for user-defined constraints are various, e.g. 
nearly all dates are later than a given year, nearly all people come from the same 
country or nearly all monetary values are between a certain range. Filtering on these 
attributes can then be accelerated with PatchIndexes by pruning data and reducing 
scan effort.

9.3  Approximate functional dependencies

Besides approximate constraints, approximate functional dependencies are also cov-
ered in research [13]. PatchIndexes could also be applied here and integrated into 
integrity checks or cardinality estimation.
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9.4  Approximate foreign keys

Foreign keys require that every foreign key matches a primary key of the related 
table and joining tables without foreign keys leads to a N-to-M join. Allowing 
exceptions to this requirement using PatchIndexes could be exploited in query exe-
cution by using a more efficient 1-to-N join for all tuples satisfying the foreign key 
relationship and only relying on the general N-to-M join for exceptions. Addition-
ally, approximate foreign keys could be used in join cardinality estimation, as tuples 
satisfying the constraint match with exactly one join partner.

9.5  Approximate query processing

PatchIndexes could be applied to the field of approximate query processing [15]. 
As an example, approximate count distinct queries could be efficiently answered by 
simply querying a PatchIndex for a NUC without the need to execute an aggregation.

10  Conclusion

In this paper, we motivated the problem of exploiting approximate constraints in 
query execution. We designed a generic PatchIndex data structure that maintains 
exceptions to arbitrary constraints, for which we provided a dense and a sparse 
design approach. As examples for approximate constraints, we discussed “nearly 
unique columns” (NUC) and “nearly sorted columns”, for which we described 
discovery approaches and use cases for query execution. Adapting the concept of 
PatchIndexes to these examples, we showed how to efficiently create PatchIndexes 
and integrate them into query execution using the PatchIndex scan. Additionally, 
we provided query optimization techniques for distinct, sort and join queries using 
NUCs and NSCs. We hereby applied our approaches on the parallel and distributed 
database environment, where data is usually partitioned and distributed. Our evalu-
ation showed that using PatchIndexes can significantly increase query performance. 
As the definition of approximate constraints is not possible in ordinary database sys-
tems, PatchIndexes can also improve schema quality and prevent the loss of use-
ful information on the data. Furthermore we provided heuristics to automatically 
discover candidate columns for PatchIndex creation, which can be integrated into 
arbitrary database self-managing tools.

As the idea of PatchIndexes is able to improve query performance, we plan to 
further enhance the concept. The feature of maintaining exceptions of constraints 
offer opportunities for lightweight support for table inserts, deletes and updates. We 
especially aim at enabling update operations to global constraints (like the unique-
ness constraint) while avoiding a full table scan, potentially outperforming spezi-
alized materialization approaches like materialized views, SortKeys and JoinKeys. 
Additionally, alternatives to the in-memory design should be evaluated as well as 
the described alternative use cases for PatchIndexes.
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