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Abstract
The increasing demand for energy-efficient vehicles requires suitable methods for cost and weight reduction. This can be achieved by
the replacement of copper by aluminum, in particular for the on-board power systems. However, the complete substitution is restricted
by themechanical and physical material properties of aluminum aswell as challenges in the aluminum copper interface. The challenges
concern the corrosion vulnerability and the occurrence of brittle intermetallic compounds (IMC) which can negatively influence the
mechanical properties and the electrical conductivity. Therefore, current investigations focus on the one hand on the realization of
dissimilar aluminum copper joints by suitable joining technologies, like ultrasonic welding, and on the other hand on the assurance of a
sufficient prevention against harmful corrosion effects. In cases where the joint cannot be protected against corrosion by sealing, nickel
coatings can be used to protect the joint. In the present study, the influence of electroless, electroplated, and sulfamate nickel coatings
was investigated regarding the long-term stability. The joints were performed as industry-related arrester connections, consisting of EN
AW 1370 cables and EN CW 004A terminals. The samples were exposed to corrosive as well as electrical, thermal, and mechanical
stress tests according to current standards and regulations.

Keywords Ultrasonic welding . Aluminum . Copper . Eutectic phase . Long-term behavior

1 Introduction

In order to fulfill the current demands for reducing CO2 emis-
sions, energy-efficient vehicles must be realized through ap-
proaches such as lightweight construction. By using electri-
cally conductive materials with a lower density compared to
the most commonly used material, copper, weight can be re-
duced. One approach is the substitution of copper by alumi-
num. Aluminum has a density which is about 70% lower than
copper [1]. Since the conductivity of aluminum is lower than
that of copper, the cross section of aluminum conductors must
be increased by approximately 60%. Despite the increase in
the conductor cross section, it is possible to achieve a theoret-
ical weight saving up to 50% [2]. Due to the properties of

aluminum, such as the creep behavior and its oxide layer,
the substitution can only be partial. The contacts provided
for consumers and energy suppliers remain made of copper.
Therefore, there is a need for the production of mixed
aluminum/copper compounds. Due to the properties of the
two materials (different melting temperatures, different coef-
ficients of thermal expansion, and different thermal conduc-
tivities, as well as the tendency to form brittle, intermetallic
compounds with high specific electrical resistance), the
manufacturing of these mixed joints is a challenge for joining
technologies [1]; [3]; [4]; [5]. The use of friction-based solid-
state welding processes such as friction stir welding (FSW)
[6]; [7]; [8]; [9]; [10]; [11]; [12]; [13] or ultrasonic welding
(USW) [14]; [15]; [16]; [17]; [18]; [19]; [20] can produce
dissimilar material connections in several material combina-
tions including Al and Cu. The formation of brittle interme-
tallic phases such as AlCu and Al4Cu9 can be reduced when
using ultrasonic welding by keeping the joining zone temper-
atures below the liquidus temperature of the joining partners
[14]; [21]. During the lifetime of a vehicle, the ultrasonic
welded joints are exposed to various environmental influ-
ences. Therefore, such joints are protected against the harmful
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environmental influences in these industrial applications. This
is achieved either by specific insulation of the joint by using
protective plastic sealing or by the use of suitable coating of
the copper elements. Nickel coatings, which act as a diffusion
barrier between aluminum and copper, are frequently used for
this purpose and can thus reduce corrosion [2]; [22]; [23];
[24]; [25]. These coatings can be distinguished by the type
of nickel coating process, the composition of the electrolytes,
the composition of the coating and the mechanical,
chemical, and tribological properties. In this work, se-
lected nickel types that are used in the industry
(electroplated nickel, electroless nickel, and sulfamate
nickel) are examined with regard to their suitability for
maintaining the long-term stability of the compound.

The state of the art shows different investigations regarding
ultrasonic welded aluminum/copper joints with coated joining
partners as well as ultrasonic welding of aluminum and nickel.
Ni et al. investigated the weldability and the mechanical prop-
erties of ultrasonic welded aluminum/nickel joints [26]. In
their work, an improvement in tensile shear load by adding
Al2219 particles between the interface of the aluminum and
nickel sheets could be outlined [26]. Balasundaram et al.
showed that Al-Cu joints with a Zn interlayer in the interface
can be characterized by a tensile shear load of 25–170%
higher than samples without a Zn interlayer [27]. Regarding
the aging of Al/Cu joints without coating, Oberst et al. ana-
lyzed the aging mechanisms for bolted aluminum and copper
busbar joints [28]. They showed that a higher temperature
load leads to a faster deterioration of the connection and that

the formed intermetallic compounds did not have a significant
influence on the contact resistance [28]. Furthermore, Oberst
et al. investigated the influence of different temperature loads
on the building rates of IMCs for Al/Cu joints, Al/Ni/Cu joints
as well as other material combinations in order to determine a
maximum temperature at which the connections can be used
[29]. Bergmann et al. studied the influence of thermal load
tests on ultrasonic welded aluminum wire-copper terminal
connections considering different nickel coatings [2]. In their
research, the welded samples were exposed to a thermal load
of 350 °C for 45 h. The authors showed a reduced failure load
of up to 43% for nickel-plated samples and a reduced failure
load of 60% for Al/Cu joints without coating [2].

The analysis of the state of the art shows that the use of
coatings for dissimilar Al/Cu joints can have a positive influ-
ence on the mechanical properties and on the long-term sta-
bility. Hence, the objective of this work is to analyze the
influence of various nickel types on the long-term behavior
of the ultrasonic welded mixed cable-conductor connections.
Those were investigated under thermal, corrosive, electrical,
and vibration loads using conditions that will occur in the life
cycle in an automotive environment. Therefore, test methods
and standards from the automotive industry were used to test
the samples according to the requirements of a life cycle.

2 Experimental procedure

The experiments were carried out on a linear ultrasonic
welding machine that could realize a maximum power of
6.5 kW and a maximumwelding force of 4 kN. The horn used
has a square surface with an edge length of 16 mm and a
corrugated profile. In this study, a time-controlled welding
process was selected and performed with the welding param-
eters listed in Table 1. For the experimental procedure, EN
AW 1370 cables with a cross section of 60 mm2 were used;

Table 1 Process
variables Process variable Value

Amplitude (μm) 33.5

Welding force (kN) 1.7; 2.0

Welding time (ms) 800; 1000; 1200

horn

copper
terminal

anvil

aluminum
cable

FA

60 mm²

16
(50 x 25 x 3) mm

a b

Fig. 1 Experimental setup
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these had PVC insulation and were stripped 20 mm at each
end of the cable. The total cable length was 300 mm. The
copper terminals used had a thickness of 3 mm, a width of
22.5 mm, and a length of 50 mm. The sample arrangement of
the cable-conductor connection for the welding experiment is
shown in Fig. 1a and b.

Typical materials for battery technology and the automo-
tive industry were used for welding the stranded wire-arrester
connection. For example, a soft-annealed pure aluminum (EN
AW1370) was used as strand material and a copper sheet (EN
CW004A) as arrester, both with high corrosion resistance and
electrical conductivity. The chemical compositions are shown
in Table 2 and Table 3.

An electroless nickel with high phosphorus content, an
additive-free electroplated nickel coating, and an electroplated
sulfamate nickel (see Table 4) were selected for the coating of
the copper terminals. The layer thickness for all coatings was
set to 5 μm± 1 μm, since a closed layer can be guaranteed
from this layer thickness taking into account the variations.
The samples were analyzed with an XRAY XDV-SDD de-
vice. The measurements were performed on three coated cop-
per terminals with 24 measuring points per coating type.
Figure 2 shows the layer thickness as a function of the type
of coating. It can be seen that the measured layer thicknesses
are above 5 μm due to process variations. The variation
of the layer thickness of electroplated and electroless
nickel-plated samples is high in comparison to sulfamate
nickel-plated samples.

The objective of this paper is to investigate the influence of
different long-term tests on the joint quality of ultrasonic
welded samples. The samples were subjected to electrical,
corrosive, thermal, and vibration loads. In the context of the
long-term tests on thermal load, the samples were thermally
stored in an oven. Due to the requirements in an automotive
vehicle, temperatures of 140 °C and 180 °C were chosen and
the samples were subjected to thermal testing for 500 h, 750 h,
and 1000 h. The long-term behavior under current load was
carried out in accordance with the UL 310 standard (see
Fig. 3) [32]. Since this standard only specifies the test current
for cables up to a maximum of 5.3 mm2, the current was

adjusted according to the standard so that a node temperature
of approx. 130 °C was reached. Thus, the test current deter-
mined amounted to 330 A. The test consisted of 500 cycles,
whereby one cycle consisted of 45 min with current load and
15 min without current load. The voltage for the resistance
measurement was tapped at a distance of approximately 2 mm
from the end of the cable. Furthermore, the temperature of the
weld nodes was measured via thermocouples.

In order to test the influence of a vibration load on the long-
term behavior of the ultrasonic welded stranded wire-
conductor connections, a vibration test according to VW stan-
dard 80000 M-04 [33] was carried out (see Fig. 4). The vibra-
tion profile D was selected for components mounted on
suspended masses in the car chassis. Each dimensional direc-
tion was tested over a period of 8 h. The long-term behavior
under corrosive load was carried out according to DIN EN
ISO 11130 [34]. In accordance with this standard, the samples
were stored in a salt water solution. The salt solution was a
mixture of H2O and NaCl, of which 35 g ± 1 g/l salt was
dissolved in water. The samples were tested after 250, 500,
750, and 1000 cycles. In accordance with the standard, one
cycle consisted of 10 min in the salt water solution and 50min
drying phase. Before each measurement, the samples were
cleaned with clear water and stored for 24 h to dry.

After the long-term tests, the samples were tested by elec-
trical, mechanical, and metallographic means. The measure-
ments of the electrical resistance of the connections were per-
formed based on the principle of the four-point measurement
method (see Fig. 5). The measured values result from the sum

Table 3 Chemical composition EN AW 1370 in wt% [31]

Al Si Fe Cu Mn Cr Mg Zn Ga

≥ 99.7 ≤ 0.1 ≤ 0.25 ≤ 0.02 ≤ 0.01 0.01 ≤ 0.02 ≤ 0.04 ≤ 0.03

Table 4 Nickel coating
types Coating type Additives

Electroplated nickel None

Electroless nickel High phos

Sulfamate nickel Sulfamate
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Fig. 2 Measured Ni layer thickness in dependence of the nickel types

Table 2 Chemical
composition EN CW
004A in wt% [30]

Cu Bi O Pb

≥ 99.9 ≤ 0.0005 ≤ 0.04 ≤ 0.005
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of the electrical resistances of the cable and two welded con-
nections. The welded specimens were mechanically tested on
a tensile testingmachine with a maximum test load of 20 kN, a
test speed of 10mm/min, and a set force drop of 95%. The free
clamping length of the cables was set to 60 mm.

3 Results

In this work, the focus is on the influence of the coating types
on the long-term behavior of the welded joints. For this pur-
pose, the samples were exposed to thermal, corrosive, and
electrical loads and vibration tests.

3.1 Corrosion test

Depending on the application site, the material connection
may come into contact with liquid. To simulate this corrosive
load, a corrosive test in salt water according to ISO 11130 was

performed. Specimens that were welded with the parameters
t = 1000ms, F = 1.7 kN, and A = 33.5μmwere tested for up to
1500 h. Figure 6 shows the analysis of the influence of differ-
ent types of coating on the electrical resistance as a function of
the aging time. The specimens were electrically tested after
250 h, 500 h, 750 h, 1000 h, and 1500 h aging time. In addi-
tion, the samples were mechanically tested after 1000 cycles.
The measured value represents the electrical resistance of a
cable connection with two welded Al-Cu connections. All
coating types investigated can be described by an increase of
the mean value and by the variation of the electrical resistance
depending on the duration of the load. The largest increase in
resistance from R = 142.5 ± 1.9 μΩ (as welded) to R = 158.7
± 4.9 μΩ (1500 cycles) is observed on uncoated samples.

The data shown in the diagram indicate that all coated
samples display an increase in electrical resistance. Taking
electroplated samples as an example, it can be seen that the
resistance here increases from R = 141.4 ± 1.1 μΩ (as welded)
to R = 149.0 ± 3.7 μΩ (after 1500 cycles).

voltage tap for resistance measurement attached 

approx. 2 mm from the end of the cable with conductive 

adhesive

thermocouples attached to the weld 

node with high temperature pasteb

a

© Stocko-Contact AG

©
 S

to
c
k
o

-
C

o
n
ta

c
t
A

G

Fig. 3 Experimental setup of the
electrical load tests (© Stocko
Contact AG)

© TechnoLab

a b

Fig. 4 Experimental setup of the vibration tests (© TechnoLab GmbH)
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In the next step, the influence of the coating type on the
shear tensile load and peel tensile load was investigated. For
this purpose, samples loaded for 1000 cycles were mechani-
cally tested. The results of this investigation are shown in Fig.
7. Both test methods showed that the type of coating has no
significant influence on the failure loads of corrosively ex-
posed cable-arrester connections. The failure load of the sam-
ples after a peel tensile test is in the range of approx. 500 N,
irrespective of the type of coating. The failure loads here are
characterized by a comparatively low variation. The re-
sults of the shear tensile test show that uncoated samples
have a higher average failure load than electroplated and
electroless nickel-plated samples. The tendency of uncoat-
ed specimens to be more susceptible to corrosion, which
was determined during the examination of the electrical
resistance, was not confirmed by the mechanical test. This
can be explained by the fact that the corrosion takes place
in the strand node and not in the joining zone. Thus, a
corrosion test according to the parameters described
above has an influence on the electrical resistance, but
not on the failure load of the samples.

3.2 Electrical load test

In the next step, the influence of the long-term behavior under
current load and the type of coating on the failure load and the
electrical resistance were investigated. The current load tests
were carried out according to the automotive standard UL
310. The tests were performed with specimens that were
welded with a welding time of t = 1000 ms, an amplitude of
A = 33.5 μm, and the welding forces F = 1.7 kN and F = 2.0
kN. Figure 8 shows the electrical resistance as a function of
the type of coating and the welding force. The electrical resis-
tance was measured for all samples before and after the 500
load cycles. The diagram also shows the node temperature
during the electrical load test as a function of the
abovementioned parameters. The temperature is shown for
samples after one cycle (as welded) and after 500 cycles.

The results in Fig. 8 illustrate that the electrical resistance
and the node temperature for uncoated samples increase
slightly after the load test for samples joined with a welding
force of F = 1.7 kN. In contrast, the influence of a welding
force increased to F = 2.0 kN leads to a comparatively stron-
ger increase in electrical resistance and node temperature. For
example, the electrical resistance of electroplated nickel sam-
ples increases from R = 168.7 ± 4.5 μΩ (as welded) to F =
181.0 ± 7.8 μΩ (after 500 cycles) and the mean node temper-
ature from T = 138.6 ± 1.0 °C (as welded) to T = 143.8 ±

clamping
terminal

temperature measurement

reference resistor

I

V
V

cable

welding knotFig. 5 Experimental setup for
measuring the electrical resistance
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Fig. 6 Influence of the duration of the corrosion test and the type of
coating on the electrical resistance of the welded samples (t = 1000 ms;
F = 1.7 kN; A = 33.5 μm)
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1.0 °C (after 500 cycles). Thus, a significant influence of the
welding parameters on the measured values can be recog-
nized. This behavior can be seen for uncoated and for all
coated samples that were examined. The increase of the node
temperature can be attributed to the increase of the electrical
resistance. The temperature load during the test can cause
intermetallic phases with a higher specific electrical resistance
to be formed, so that the node temperature increases as a
result. A higher node temperature in return can lead to an
increasing growth of intermetallic phases. The growing

diffusion layer can be observed under the light microscope
on uncoated samples (see Fig. 9 a). The increase in electrical
resistance and the associated increase in node tempera-
ture also affect the mechanical properties of the samples
due to the growth of intermetallic phases. The growth
of a diffusion layer between Al and Ni could not be
detected with a light microscope.

Figure 10 shows the failure load of the electrically tested
and untested samples. It can be seen that a slight increase in
the electrical resistance (see Fig. 8), with the selected load
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Cu
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Cu
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Ni

Cu

diffusion layer

Fig. 9 Metallographic analysis of
the interface between aluminum
and copper or nickel (t = 1000ms;
F = 1.7 kN; 2.0 kN; A = 33.5 μm;
magnification = × 1000). a
Uncoated copper terminal. b
Electroplated nickel-coated cop-
per terminal. c Electroless nickel-
plated copper terminal. d
Sulfamate nickel-plated copper
terminal
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cycles, does not lead to any significant changes in the failure
load of loaded samples compared to unloaded samples. This is
the case with specimens welded with a welding force of F =

1.7 kN. In comparison, the specimens which were joined with
a welding load of F = 2.0 kN show a reduction of failure load
for uncoated and electroplated nickel-coated samples after the

as welded after 500 cycles
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welding knot and in 

the interface

10 mm
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Fig. 11 Failure behavior before
and after 500 electric load cycles
on welded cable-conductor con-
nections; t = 1000 s; F = 1.7 kN;
A = 33.5 μm
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as welded after vibration test

partial failure in the

welding knot and in 

the interface

10 mm

a b

Fig. 13 Failure behavior before
and after vibration test according
to VW standard 80000M-04 (8 h/
room axis with ae = 30.8 m/s2) on
welded cable-conductor connec-
tions; t = 1000 s; F = 1.7 kN; A =
33.5 μm; electroless nickel-
coated samples
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current load. For example, the mean failure load for uncoated
samples is reduced from F = 3365.0 ± 115.0 N (as welded) to
F = 3040.6 ± 211.3 N (after 500 cycles). For electroless
nickel-plated specimens and for sulfamate nickel-plated

specimens, the failure load remains constant after the load test.
In summary, it can be stated that no significant changes in the
failure load due to the electrical load test were observed for
any coating type tested. All changes in the failure load are
above the minimum acceptable failure load according to
SAE guideline USCAR 38 [35]. A similar behavior can be
seen in the failure mode of the samples after the tensile test.
Figure 11 shows the failure behavior before and after the elec-
trical load test for all tested coating types for a welding time of
1000ms and a welding force of 1.7 kN. The samples showed a
similar partial failure behavior in the aluminum base material
and in the interface between aluminum and copper or nickel
before and after the electric load tests.

3.3 Vibration test

In the vehicle, the aluminum cables were exposed to different
types of loads. Vibrations caused by driving and the engine
can cause connections to fail. To test the influence of the
coating type on the connection quality, the ultrasonic welded
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cable-arrester connections were exposed to a vibration test
according to VW standard 80000 M-04.

Figure 12 shows the failure load before and after the
vibration test as a function of welding time, welding force,
and type of coating. Uncoated copper terminals (see Fig.
12 a), electroplated nickel-coated copper terminals (see
Fig. 12 b), electroless nickel-coated copper terminals (see
Fig. 12 c), and sulfamate nickel-coated terminals (see Fig.
12 d) were examined. Comparing the failure loads before
and after the vibration test of uncoated samples, it can be
seen that no significant differences were found for almost
all process variables investigated. Only samples that were
joined with a welding force of F = 1.7 kN and a welding
time of t = 1200 ms show a higher average failure load after
the vibration test. Since the vibration test has no positive
effect on the mechanical properties, this effect can be ex-
plained by the general process uncertainties of the ultra-
sonic welding process. When looking at the samples coated
with nickel, no influence of the type of coating can be
detected. The failure load of both coated and uncoated
samples is not adversely affected by the vibration test.
This result can also be seen when considering the failure
behavior of the samples before and after the vibration test
(see Fig. 13). In Fig. 13, the failure behavior of electroless
nickel-coated samples is considered as an example. The
failure of the other coating types can be characterized by
a similar behavior. A partial failure behavior in the inter-
face and in the aluminum base material (welding node) can
be determined. Hence, it can be proven that the samples are
not significantly affected by the vibration test according to
VW standard 80000 M-04, independent of the type of Ni
coating. Despite the general process uncertainties, it was
shown that the requirements for the failure load according
to SAE guideline USCAR-38 (failure load ≥ 1800 N) [35]
were fulfilled for all tested samples before and after the
vibration test.

3.4 Thermal load test

The thermal emissions in the vehicle and the heating of the
connections due to the electrical resistance lead to thermal
stress on the vehicle electrical system. The welded cable-
arrester connections were therefore exposed to thermal loads
and then tested mechanically, metallographically, and electri-
cally. The samples were stored at temperatures of 140 °C and
180 °C for 500 h, 750 h, and 1000 h. The samples tested were
welded with a welding time of t = 1000 ms, a welding force of
F = 1.7 kN, and an amplitude of A = 33.5 μm. Figure 14
shows the failure load as a function of the aging temperature,
the aging time, and the type of coating. In the case of uncoated
specimens, it can be seen that there is a tendency towards a
reduction of the failure loads with increasing aging time.
However, due to the standard deviation of the values, no de-
finitive conclusion can be drawn on this basis. Also, an influ-
ence of the aging temperature on the failure load cannot be
detected due to the standard deviation. When consider-
ing the electroplated samples, it can be shown that a
tendency towards higher failure loads is manifested with
a thermal aging of 180 °C.

The reduction of the failure loads with uncoated sam-
ples and the almost constant failure loads with coated
samples can be explained by reference to the detailed
images of the joining zone in Fig. 15. In the case of
uncoated samples, the phases Al4Cu9 and AlCu were
formed in the interface of the joining zone in the samples
shown, which were aged for 1000 h at 180 °C (see Fig. 15
a and Fig. 15 f). Due to the layer thickness of less than
2.5 μm, the phase seam has no negative effect on the
mechanical properties of the compound [36]. The failure
behavior of all aging temperatures and coating types in
these tests can be described as a partial failure in the
interface and in the aluminum base material similar to
Fig. 11 and Fig. 13.

In addition to the mechanical and metallographic analysis
of the samples, they were also tested by means of electrical
resistance measurement. The results of this examination are
shown in Fig. 16. In this figure, the electrical resistance is
shown as a function of the aging time and the type of coating
at a constant aging temperature of 180 °C. It can be seen that
there are no significant changes in the electrical resistance
over the aging period. Differences can be explained by the
measuring inaccuracy of the measuring system and the com-
paratively high deviations. The electrical resistance of an un-
coated sample after an aging period of 1000 h can be deter-
mined to R = 146.6 ± 1.8 μΩ. The average resistance of
electroplated nickel samples after 1000 h is R = 142.9 ± 0.4
μΩ. In summary, it can be shown that no significant differ-
ences could be found under the aging conditions investigated
and that there is no difference in whether a coating is used or
which type of coating is used.
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Fig. 16 Electrical resistance as a function of segregation duration at
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4 Conclusion

In this paper, the influence of different nickel coatings on the
long-term stability of ultrasonic welded Al/Cu compounds
was investigated. The long-term stability of the joints was
tested according to current automotive industry standards
based on thermal, corrosive, electrical, and vibration loads.
As a result of the thermal load tests, it could be proven that
no significant effects were found under the aging conditions
investigated. In addition, no advantage of any particular type
of coating could be identified. An electrical load test was also
carried out. Here, an increase in electrical resistance and a
reduction in the average failure load were detected after 500
load cycles for all coating types examined. In this case, the
welding parameters (welding force and welding time) had a
significant influence on the change in electrical resistance and
the resulting failure load after the load test. Nevertheless, the
changes in failure load are within the permissible range spec-
ified in the automotive standards UL310 and USCAR-38. The
results of the corrosive immersion test can be summarized in
such a way that the properties of the nickel layers as corrosion
protection are given compared to uncoated samples. However,
the difference in the change in electrical resistance between
the uncoated and coated samples within the load cycles inves-
tigated can be neglected, since the coated samples are also
negatively affected by the corrosive test. Finally, the long-
term stability under a vibration load was investigated. After
conducting the experiments according to VW Standard 80000
M-04, it was found that this test does not negatively affect the
mechanical properties of the welded joints. In summary, it was
shown that the influence of the coating types investigated in
this study on the long-term stability of the joints was not
significant. This means that both nickel-coated and uncoated
copper terminals can be used for cable-conductor connections.
Hence, consideration should be given to using uncoated sam-
ples in an industrial environment in order to reduce the pro-
duction time and the production costs.
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