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Abstract

The paper is concerned with closure relations for moment hierarchies of gaskinetic

systems in the fluid dynamic limit. We develop the concept of balanced solutions which

provides a more detailed description of kinetic solutions that the classical approaches.

This allows to compare different models in use like the nonlinear Boltzmann equation,

its linearization, and the BGK model and their relation to the classical Navier-Stokes

equations.
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1 Introduction

A common way to pass from the detailed flow description provided by the equations of rarefied

gas dynamics (Boltzmann collision operator, linearized collision operator, BGK model etc.)

to the reduced moment system (Euler, Navier-Stokes) is to establish the moment hierarchy

and to truncate it applying appropriate closure relations. Classical ways of doing this are the

assumption of local equilbrium (leading to the hyperbolic system of the Euler equations) or e.g.

a formal series expansion technique as proposed by Chapman and Enskog (turning the Euler

equations into the parabolic system of the Navier-Stokes equations). These fluid dynamical

systems are at present widely accepted. However, there are situations which are not adequately

described and need some corrections. An example is the “ghost effect” produced by in the

course of a series expansion in connection with a condensation-evaporation problem of a gas

mixture as described in [1].

A way to avoid the paradox described in [1] is to pass from a description centered around

local equilibria (Maxwellians) to one which focusses on the tangent space of the manifold of

Maxwellians. In [4] we proposed such a procedure for the condensation-evaporation problem

and investigated the perturbation of the spectrum of the linearized collision operator under a

moving obstacle in the flow. In the present paper, we pick up the idea of some kind of dynamics

in tangent space for a single-species gas (without recourse to the condensation-evaporation

problem). We derive closure relations which take the form of nonlinear first order differential

terms and thus are completely different from the parabolic second order terms of the Navier-

Stokes system. The results allow to interpret the differences of various kinetic models (here:

nonlinear and linearized Boltzmann collision operators and the BGK relaxation operator) in

the fluid dynamical limit. As particular results we point at a purely nonlinear effect of the

Boltzmann collision operator which is not reflected in the Navier-Stokes approach (section 5.3),

and we demonstrate that the BGK system produces systematic artificial effects which are non-

local and which do not vanish in the fluid dynamical limit (section 6.1).

The idea to construct intermediate states between arbitrary density functions and Maxwellians

is not new. E.g. Shakhov [9] proposed such a system which is at present used for numerical

simulations [11]. A comparable intention lies behind the idea of the extended BGK model

with an additional relaxation parameter to match the correct Prandtl number. However, a

better understanding of the transfer to fluid dynamics is not a question of parameter matching,

and the above approaches do not yield a theoretical basis and a save mathematical ground.

Proposing a modified structure of kinetic solutions, the present paper claims to provide a new

attempt to better understand the passage from the rarefied gas description to the macroscopic
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limit.

The paper is organized as follows. Section 2 gives a short review over the abovementioned kinetic

models. Section 3 introduces the general (non-closed) moment system derived from gas kinetics

and derives the Euler system. Section 4 reinterprets the steps of the first order Chapman-

Enskog approach for the Navier-Stokes system. In this way the central point of procedure can

be generalized and becomes applicable to the full nonlinear collision operator without recourse

to a formal series expansion. A new concept of balanced states is introduced, which are elements

of the tangent space to the manifold of the Maxwellians and which replace (resp. supplement)

the first order terms of the density function as provided by the Chapman-Enskog procedure.

In Section 5 we introduce the concept of traces of kinetic solutions. Traces are comparable

to projections of kinetic solutions onto the tangent spaces. The differential structure of the

underlying dynamics provides a powerful tool to describe distributions in the neighborhood of

Maxwellians. In order to keep the underlying ideas as concise and understandable as possible,

we restrict theory and numerical examples to one-species gases in simple one-dimensional steady

situations. Section 6 applies the results to the heat layer problem, yields numerical simulations

and comparisons and shortly discusses further fields of application. All numerical simulations

of the paper are produced by applying 2D and 3D Discrete Velocity Models (DVM) to all of

the above kinetic systems.

2 Kinetic Models

The most fundamental kinetic model equation for a density function f = f(t, x, v) (with space

variable x and velocity variable v = (vξ)
d
ξ=1) of a single-species gas in the 2d-dimensional phase

space lRd × lRd (d = 2, 3) is the classical Boltzmann equation

(∂t + v∇x)f =
1

ε
· CJf (1)

The small parameter ε is related to the mean free path in the gas and in some sense measures

the distance to the fluid dynamic limit ε↘ 0.

The Boltzmann collision operator CJf = J [f, f ] is a bilinear operator integrating over all

possible conservative two-particle collisions and thus satisfying the conservation laws

〈1, CJf〉 = 0 (mass conservation) (2)

〈v, CJf〉 = 0 (momentum conservation) (3)

〈v2, CJf〉 = 0 (energy conservation) (4)

It is ruled by the H-Theorem stating that in a space homogeneous environment all densities

converge for t↗∞ to equilibrium functions e (these are density functions satisfying CJe = 0);
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all equilibrium functions are Maxwellians, i.e. functions of the form

e(v) = e[ρ, v, T ](v) =
ρ

√
2πT

d
· exp

(
−|v − v|2/2T

)
(5)

uniquely determined by their macroscopic moments

ρ = 〈1, e〉 (density) (6)

ρv = 〈v, e〉 (momentum) (7)

T =
1

d · ρ
· 〈(v − v)2, e〉 (temperature) (8)

(For an introduction to the Boltzmann equation see e.g. [6, 10].) The set of all Maxwellians is

denoted by E .

In the following we define by

M = span(1, vξ(ξ = 1, . . . , d), v2) (9)

the space of collision invariants, and by M⊥ its orthogonal complement. We make use of the

(2.1) Decomposition Lemma: Given a density function f and a Maxwellian e, there exists

a unique decomposition

f = eM · r + f⊥, r = (ri)
d+1
i=0 , f⊥ ∈M⊥ (10)

with M defined as

M = (1, vξ(ξ = 1, . . . , d), v2) (11)

The decomposition takes the special form

f = e+ f⊥ (12)

if and only if e has the same macroscopic moments as f .

(eM ·r is a short hand notation for an element in eM, fully written as e·(r0+
∑d

ξ=1 rξvξ+rd+1v
2).)

Proof: r can be uniquely determined by calculating mass, momenta and temperature on both

sides of (10). �

Two simplified alternatives to the nonlinear Boltzmann collision operator CJ are the linearized

collision operator CL and the BGK relaxation model CBGK . Both are based on the decompo-

sition (12). Given f = e+ f⊥, the Boltzmann collision operator is

J [f, f ] = J [e, e] + J [e, f⊥] + J [f⊥, e] + J [f⊥, f⊥] = J [e, f⊥] + J [f⊥, e] + J [f⊥, f⊥]
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Dropping the term which is quadratic in f⊥, we end up with the linearization of CJ around e,

CLf = Lef = Lef⊥ = J [e, f⊥] + J [f⊥, e] (13)

Le transfers f exponentially in time to its equilibrium e. The well-known properties of Le are

as follows.

(2.2) The linearized collision operator: Write Lef =: K(e−1f). Then

(a) ker(K) = (im(K))⊥ =M
(b) K is self-adjoint (e.g. in a weighted L2 space) and negative semidefinite.

(c) The restriction K :M⊥ →M⊥ has an inverse K−1.

(d) The linear system

CLψ = φ · e (14)

is solvable iff φ · e ∈M⊥. In this case, the solution is

ψ = L†eφ = eK−1(φ · e) (15)

It satisfies

〈φ, ψ〉 = 〈φ · e,K−1(φ · e)〉 < 0 (16)

For a more thorough treatment of Le, see e.g. [7]. For corresponding results in the case of

Discrete Velocity Models see [2, 3].

The simplest kind of exponential decay of f to its equilibrium e is given by the one-parameter

BGK model

CBGKf = λ · (e− f) (17)

The solution of the linear system (14) in the BGK case follows immediately from calculation.

(2.3) Linear system for BGK: Suppose φ · e ∈M⊥. The unique solution of

CBGKψ = φ · e (18)

is

ψ = e ·
(

1− 1

λ
· φ
)
, with 〈φ, ψ〉 = −1

λ
· 〈φ, φ · e〉 < 0 (19)
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3 The moment hierarchy and the Euler system

Taking scalar products 〈m, .〉 (m ∈ M) of the Boltzmann equation (1) or one of its models,

and taking into account that 〈m,Cf〉 = 0 for any of the above collision operators we end up

with the following moment hierarchy.

(3.4) General moment system: (In the following, ξ, η ∈ {1, . . . , d}.)

∂tρ+∇ · (ρv) = 0 (20)

∂t(ρvξ) +
∑
η

∂η(ρvξvη + pξη) = 0 (21)

∂t
(
ρ · |v|2 + d · p

)
+
∑
ξ

∂ξ
[
ρvξ|v|2 + qξ + 2(Pv)ξ + d · pvξ

]
= 0 (22)

with pressure tensor P , pressure p and heat flux q as defined below.

(20) to (22) is not a closed system, since it contains the closure moments

P = (pξ,ν)1≤ξ,ν≤d = (〈πξ,ν , f〉)1≤ξ,ν≤d (pressure tensor) (23)

q = (qξ)
d
ξ=1 = (〈σξ, f〉)dξ=1 (heat flux) (24)

described by the macroscopic moments (6) to (8) and the centered moments

πξ,ν = πξ,ν(v) = (vξ − vξ)(vν − vν) l ≤ ξ, ν ≤ d (25)

σξ = σξ(v) =
1

2
(vξ − vξ)|v − v|2 (26)

For given e = e[ρ, v, T ], ξ 6= ν, the function πξ,νe ∈ M⊥. For the other centered moments, the

projections onto M⊥ are given by

π̂ξ = πξξ −
1

d

∑
ν

πνν (27)

σ̂ξ = σ̂ξ(v, T ) = σξ −
(d+ 2) · T

2
· (vξ − vξ) (28)

The pressure p is defined by

p = d−1〈|v − v|2, f〉 = ρT (29)

The easiest way to close system (20) to (22) is to assume that f is in its local equilibrium

(which is formally the case in the limit ε↘ 0). This gives

P = p · I = ρT · I, q = 0 (30)
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with the resulting hyperbolic moment system

(3.5) Euler equations:

∂tρ+∇ · (ρv) = 0 (31)

∂t(ρv) +∇ · (ρv ⊗ v) +∇(ρT ) = 0 (32)

∂t(ρ|v|2 + d · ρT ) +∇ · (ρv|v|2) + (d+ 2)∇ · (ρT · v) = 0 (33)

4 Navier-Stokes equations and balanced states

A prominent role in the refinement of the Euler system play the solutions ψξ,ν (ξ 6= ν), ψ̂ξ and

ψσξ in M⊥ of the linear equations

CLψξ,ν = πξ,νe (34)

CLψ̂ξ = π̂ξ,νe (35)

CLψ
σ
ξ = σ̂ξe (36)

(For the solvability of the equations see (2.2)(d).)

A convenient way to derive the Navier-Stokes system is the Chapman Enskog expansion of first

order [8]. Here we plug the ansatz

f = f0 + εf1

into the Boltzmann equation (1) and compare the terms of equal power of ε. For ε−1 we find

CJ [f0] = 0

and thus f0 = e ∈ E . Power ε1 yields

(∂t + v · ∇x)e = CLf1 (37)

For its solution we perform the decomposition (12) for (37). While the part related to the

Maxwellian e is integrated into the moment system, the part acting on M⊥ reads

((∂t + v · ∇x)e)⊥ = CLf1 (38)

with

((∂t + v · ∇x)e)⊥ = (v · ∇xe)⊥

= ρ ·
∑
ξ

∑
ν

∂ξvν (vξ∂vνe[1, v, T ])⊥ + ρ ·
∑
ξ

(vξ∂T e[1, v, T ] · ∂ξT )⊥

=
ρ

T
·
∑
ξ

∑
ν

∂ξvν · πξ,νe+
ρ

T 2
·
∑
ξ

∂ξT · σ̂ξe (39)
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The solution of (38) is

fNS1 =
1

T
·
∑
ξ

[∑
ν 6=ξ

∂ξvν · ψξν + ∂ξvξ · ψ̂ξ

]
· e+

ε

2T 2
·
∑
ξ

∂ξT · ψσξ · e (40)

From this we derive the Navier-Stokes correction to the Euler equations by calculating the

moment system (3.4) for the function f = e+ εf (1). Taking into account the inequalities (16),

we find the correction terms to the closure moments of the Euler system,

pNSξ,ξ = −ε · µ(1) · d

d− 1
· 1

T
·
(
∂ξvξ −

1

d
∇ · v

)
(41)

pNSξ,ν = −εµ(2) · 1

T
· (∂ξvν + ∂νvξ) (ξ 6= ν) (42)

qNSξ = −ε · λ · 1

2T 2
· ∂ξT (43)

with the positive viscosity resp. heat coefficients

µ(1) = −〈π̂ξ, ψ̂ξ〉 (44)

µ(2) = −〈πξ,ν , ψξ,ν〉 (45)

λ = −〈σ̂ξ, ψσξ 〉 (46)

thus introducing parabolic smoothing terms into the hyperbolic system.

All the above results are classical and need no further explanation. Here, we find a way to

reinterpret the Chapman Enskog results and to generalize them, without making use of the

series expansion.

(4.6) Lemma: Let e = e(t0, x0) be a fixed Maxwellian and s = s(t0, x0) = v · ∇xe the

corresponding flow term. The expansion of first order f (0) + ε · f (1) of Chapman-Enskog is the

unique asymptotic solution (τ ↗∞) of the time-homogeneous initial value problem (IVP)

∂τf + ε · s⊥ = Lef, f(t0) = e

Proof: Decompose f uniquely into the form

f(τ) = f‖(τ) + f⊥(τ), f‖(τ) ∈ e · M, f⊥ ∈M⊥

Since f‖(τ) ∈ ker(Le) and s⊥ ∈M⊥, we find

f‖(τ) = e
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and f⊥(τ) solution of the IVP in M⊥,

∂τf⊥ + ε · s⊥ = Lef⊥, f⊥(t0) = 0

From the invertibility and negative definiteness of CL : M⊥ → M⊥ we conclude thet the

asymptotic solution

f∞⊥ = lim
τ↗∞

f⊥(τ)

exists and satisfies

ε · s⊥ = Lef
∞
⊥

Thus f∞⊥ = ε · f (1). �

The Chapman Enskog procedure as sketched above may be seen as a special case of the follow-

ing three-step procedure for the calculation of closure relations.

(4.7) Scheme for closure relations: (1) Let (t0, x0) and f = f(t0, x0) be given and fixed.

Calculate a reduced description f of f containing all information concerning the relevant mo-

ments.

(2) For an appropriate approximation C of the Boltzmann collision operator solve the IVP

∂τg + ε · (v · ∇xf)⊥ = Cg, g(0) = f (47)

(iii) Determine g∞ = limτ↗∞ g(τ) and calculate from this the closure relations for f .

In the Chapman-Enskog case, f = e and C = CL. In section 5 we are going to develop the

concept of traces, in which f is a perturbation of e, and C is a reduced version of the full

Boltzmann collision operator for f .

We can derive (47) directly from the kinetic equation (1) (or model hereof): Introduce a

microscopic time scale τ = (t − t0)/ε and solve the kinetic system. In lowest order in ε, we

freeze the source term (v · ∇xf)⊥ at τ = 0 and solve the system for τ ↗ ∞. In the following

we call the distributions g∞ balanced states, since they balance the trend to equilibrium given

by the collision operator with the perturbing effects produced by the streaming term.

5 Traces in tangent space

5.1 Traces

The definitions of the linearized collision operator and of the BGK model as well as the results

of the Chapman Enskog procedure suggest to focus on decompositions of f of the form (12)
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rather than (10). In this case, the central element e contains all macroscopic moments, but

no contribution to the closure moments. In view of scheme (4.7) we propose an alternative

approach. For simplicity we restrict in the following to spatially one-dimensional problems

(with space variable x) and with bulk velocities v = (vx, 0)T resp. v = (vx, 0, 0)T .

Given a triple [ρ, vx, T ] with corresponding Maxwellian e = e[ρ, vx, T ], we define the tangent

space T [e] of E in e as the set of all elements in

EM =
⋃
e∈E

e · M (48)

with the same macroscopic moments [ρ, vx, T ] as e. It is a two-dimensional manifold in EM
with elements

f(γ(1), γ(2)) = ê+ γ(1) · ê(1) + γ(2) · ê(2) with (49)

ê = e[ρ, v̂x, T̂ ] (50)

ê(1) =
1

T̂
· (vx − v̂x) · ê (51)

ê(2) =
1

2T̂ 2
·
(
|v − v̂|2 − d · T̂

)
· ê (52)

(γ(1), γ(2)) and (v̂x, T̂ ) are connected to (vx, T ) via

v̂x = vx − γ(1) (53)

T̂ = T +
1

d
·
(
(γ(1))2 − γ(2)

)
(54)

which can be verified easily by calculating the moments of (49). The union of tangent spaces

is denoted as

T E =
⋃
e∈M

T [e] (55)

In the following, the parameter γ(2) is not relevant in the case of the full Boltzmann collision

operator. Thus we set γ(2) = 0, γ(1) := γ and define as the trace of e in T E the mapping

γ → f(γ) = ê+ γ · ê(1) (56)

By definition, f(γ) has the same macroscopic moments as e, however it contributes to the

closure moments as follows.

(5.8) Closure relations for the trace: The closure moments of the trace elements (in

relation to the macroscopic moments vx, T of f(γ)) are

〈π̂x(v), f(γ)〉 = −d− 1

d
· ργ2 (57)

〈σ̂x(v, T ), f(γ)〉 = −ργ3 (58)
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Proof: These formulas follow from

〈π̂x(v), f(γ)〉 =
d− 1

d
· ρ ·

(
(v̂x − vx)2 + 2γ · (v̂x − vx)

)
= −d− 1

d
· ρ · (v̂x − vx)2

and

〈σ̂x(v, T ), f(γ)〉 = −ρ · v̂x − vx
2

·
(
d− 2

d
(v̂x − vx)2 + (d+ 2) · (T̂ − T )

)
�

Given f(γ), we denote as e(γ) =: e[ρ, v̂x, T̂ ], π̂x(γ) and σ̂x(γ) the Maxwellian and the centered

closure moments corresponding to the parameters v̂x = vx− γ and T̂ = T + γ2/d. For given γ,

the normed vectors nπ and nσ point into the directions of these closure moments in the sense

of

π̂x(γ) · ê(γ) = ‖π̂x(γ)ê(γ)‖ · nπ (59)

σ̂x(γ) · ê(γ) = ‖σ̂x(γ)ê(γ)‖ · nσ (60)

Furthermore the local tangent plane is defined as the affine linear space

f(γ) + span(nπ,nσ) (61)

Given z = ‖z‖ · nz ∈ span(nπ,nσ), the angle φz defined by

nz = cos(φz) · nπ + sin(φz) · nσ (62)

describes the position of f(γ) + z in the local tangent plane.

We collect some results concerning the local structure of f(γ) which can be proved by

straightforward calculations.

(5.9) Differential structure of the trace : (a) f is differentiable with derivative

∂γf = ‖∂γf‖ · n∂f = − γ

T̂ 2
· ‖π̂x(γ) · ê(γ)‖ · nπ +

2γ2

d · T̂ 3
· ‖σ̂(γ) · ê(γ)‖ · nσ (63)

(b) The leading order approximation of f(γ) for |γ| � 1 in the local tangent plane (γ = 0) is

f(γ) = e ·
(

1− γ2

2 · T 2 · π̂x(0) +
2γ3

3d · T 3 · σ̂x(0, T )

)
(64)

(c) For |γ| � 1,

tan(φ∂f (γ)) = − 2γ

d · T̂
· ‖σ̂xê‖
‖π̂xê‖

=: −C∂f · γ +O(γ2) (65)

φ∂f =

{
−C∂f · γ +O(γ2) for γ < 0

π − C∂f · γ +O(γ2) for γ > 0
(66)
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Thus at γ = 0 the curve f(γ) is not differentiable in the sense of regular parametrizations.

Proof: (a) follows from straightforward calculations (using the definition (55) of f(γ) and

formulas (52), (53)) which yield

∂γ ê =

(
− γ
T̂
− vx − v̂x

T̂
+

γ

d · T̂ 2
· (v − v̂)2

)
· ê (67)

and

∂γ

(
γ · vx − v̂x

T̂

)
=

γ

T̂
+

(
1

T̂
− 2γ2

d · T̂ 2

)
· (vx − v̂x) (68)

(b) is obtained by integrating (62) and using f(0) = e and ∂γf(0) = 0. �

For the derivation of closure moments for the nonlinear collision operator it is useful to follow

the trace of CJ along f(γ) which is defined as the projection of CJ given by

CJ f(γ) = 〈CJ f(γ),n∂f 〉 · n∂f
= cos(φ∂f )〈CJ f(γ),nπ〉 · n∂f + sin(φ∂f ) · 〈CJ f(γ),nσ〉 · n∂f (69)

(5.10) Trace of the nonlinear operator: (a) With

aJπ,π = −〈J [ê(1), ê(1)],nπ〉 (70)

the trace of CJ takes the form

CJ f(γ) = sign(γ) · cos(φ∂f ) · γ2 · aJπ,π · n∂f (71)

(b) Under the approximations of (5.9)(b),(c) for small γ,

CJ f(γ) = −γ2aJπ,π · nπ +O(γ3)

The solution f(γ(t)) of the homogeneous trace Boltzmann equation

∂tf(γ(t)) = CJ f(γ(t)) (72)

is in lowest order given by

∂tγ = −λnlγ, λnl = aJπ,π · T
2 · ‖π̂xe‖−1 (73)

Proof: (a) From the definition (55) of f(γ) and the fact that ê(1) ∈ ker(Lê) follows

CJ f(γ) = γ2 · J [ê(1), ê(1)]
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In a coordinate system centered around v̂, J [ê(1), ê(1)] is an even function with respect to v̂x.

Thus

〈σ̂x(γ), J [ê(1), ê(1)]〉 = 〈nσ, J [ê(1), ê(1)]〉 = 0

(b) follows from inserting the approximations (5.9)(b),(c). �

In our context, the most significant difference between the nonlinear collision operator on the

one side, and the linearized and the BGK operator (shortly termed as “relaxation operators”)

on the other side is that

CJ f(γ) =
γ2

T̂ 2
· J [(vx − v̂x) · ê, (vx − v̂x) · ê] (74)

is centered around ê (with the asymptotics e “unvisible”), while the Maxwellian e appears in

the definition of the relaxation operators and marks it as their asymptotic end point. For

the same reason we find closed formulas for the solutions of the homogenous equations in the

relaxation case,

f(t) = e+ exp(tLe) · (f0 − e) (linearized equation) (75)

f(t) = e+ exp(−λt) · (f0 − e) (BGK equation) (76)

while the solution of the homogeneous nonlinear equation can be given only in differential form.

5.2 Relaxation problems

Consider the initial value problem

∂tf = Cf, f(0) = f0 = ê+ ε · φ

with C one of the collision operators discussed above. Depending on φ, there exists a unique

Maxwellian e with the same macroscopic moments as f0, which is the asymptotic state of the

solution for t↗∞. In the relaxation case we have exponential decay to e, see (75), (76). The

dynamics of the nonlinear solution is more detailed, depending on the form of φ.

Suppose

φ = ê ·m+ φ⊥, m ∈M, φ⊥ ∈M⊥ (77)

Then

J [f0, f0] = J [ê, ê] + ε · (J [ê, mê] + J [mê, ê]) + ε · (J [ê, φ⊥] + J [φ⊥, ê]) +O(ε2) (78)
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with

J [ê, ê] = 0 (79)

J [ê, mê] + J [mê, ê] = Lêmê = 0 (80)

J [ê, φ⊥] + J [φ⊥, ê] = Lêφ⊥ (81)

For the short time behaviour we may neglect the O(ε2)-terms. Thus the initialization phase

(initial layer) is dominated by the exponential relaxation of φ⊥ to the “wrong” equilibrium ê.

After this follows a dynamics in T E which runs on a slower time scale and in which the initial

function ê(1 + εm) approaches its new equilibrium e. The difference between fast exponential

decay for the linearized model and of the slower approach to equilibrium for the nonlinear

system can be easily verified e.g. running simulations with Discrete Velocity Models. Figs. 1

(a), (b) represent on a semilogarithmic scale the relaxation rates for randomly perturbed initial

conditions in the cases (a), φ ∈ M⊥, and case (b), φ ∈ ê · M. Case (a) exhibits exponential

decay, with rates within a narrow band. This situation can be reasonably well imitated with

a BGK model (straight line). Case (b) is more complex and we may divide the evolution into

three phases. Phase I represents the relaxation of the perturbation (1 + εφ)ê to ê, phase II

(“convex phase”) the transition from (1 + εm)ê to e, and phase III the exponential relaxation

to e. In the special case ê ·m = ê(1) (51), phase II marks the transition of the trace element

f(ε) to f(0) = e. The slope of phase III is given by the parameter λnl of (73) which describes

the effect of the purely nonlinear part of the operator. The BGK model is not capable to

cover this situation and we have to decide whether to match to the initial Maxwellian or the

final Maxwellian, depending on whether we want to simulate the short-time or the long-time

behaviour.

FIGURE 1: Relaxation of random initial perturbation. (a) m = 0, (b) φ⊥ = 0.
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5.3 Relaxation with source, balanced states

In view of scheme (4.7) to be solved for the closure relations let’s have a look on solutions of

the IVP with source,

∂tf + εs = Cf, f(0) = e, s = σ̂x · e (82)

and in particular their asymptotic states f (∞) for t↗∞ (balanced states). For the relaxation

systems we easily find

fBGK(t) = e+ (f(0)− e) · exp(−λt)− ελ−1 · s · (1− exp(−λt))

↗ f∞BGK = e− ελ−1 · s

fL(t) = e+ exp(tLe)(f(0)− e) + ε · (1− exp(tLe))ψ
σ
x

↗ f∞L = e+ εψσx (ψσx solution of Leψ
σ
x = σ̂x · e, see (36))

Both solutions satisfy the orthogonality relation

〈f∞, π̂x〉 = 0

This is no surprise, since the source is even with respect to vx, and L maps even into even

functions, while σ̂x is odd. So it is remarkable to observe that orthogonality is not given for

the nonlinear solution, as can be seen in Fig. 2. This discrepancy between linear and nonlinear

case was observed (to our knowledge for the first time) in [5]. To understand this phenomenon,

it helps to look at trace solutions. We easily see that γ = 0 is a balanced solution to the trace

version of (82). However, it is not stable in the sense of dynamical systems, and there is another

solution. Necessary and sufficient for balancing solutions is the orthogonality relation

〈s−Cf(γ)〉 ⊥ ∂γf(γ) (83)

resp.

〈s,n∂f 〉 = 〈CJ f(γ),nπ〉 (84)

which in leading order leads to

ε · ‖∂γf(γ)‖−1 · 2γ2

d · T 3 · ‖σ̂xe‖
2 = γ2 · aJπ,π (85)

With ‖∂γf‖ = O(γ) we finally end up with
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FIGURE 2: Evolution of scalar product 〈π̂x, f(t)〉 of IVP (82),

nonlinear and linearized Boltzmann collision operator.

(5.11) Balanced state (Relaxation with source): Under the smallness assumptions for γ of

(5.9) and with an appropriate constant Cσ > 0, the leading order term of the stable solution is

given by

γbs = ε · Cσ (86)

The solution f(γbs) has an additonal contribution to the pressure tensor of the order O(ε2) as

given in (57).

This example is an indicator that the concept of traces is relevant for the investigation of the

structure of kinetic solutions in the context of closure relations. We can generalize the above

principle to other sources and kinetic models.

(5.12) Balancing condition: Suppose given a source εs and a collision operator Cf with

traces

ε · s(γ) = ε · sπ · nπ + ε · sσ · nσ (87)

Cf(γ) = cπ · nπ + cσ · nσ (88)

γ marks a balanced state if and only if the orthogonality condition

ε · s−Cf ⊥ ∂γf = dπ · nπ + dσ · nσ (89)

is satisfied which is equivalent to the balancing condition

(ε · sπ − cπ) · dπ = −(ε · sσ − cσ) · dσ (90)
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6 Applications

6.1 Heat layers with zero flow

We consider the steady flow between two totally reflecting walls at different temperatures

T0 = T (x = −1) > T1 = T (x = 1) with a temperature difference ∆T = T0 − T1 > 0. Since

v = 0, the moment equations read

∂xpxx = 0 (91)

∂xqx = 0 (92)

The closure moments for the solution are determined from the asymptotic solution fcorr for the

model at hand of

∂xfcorr +
ε

2T 2
· σ̂x = Cf (93)

In the Navier-Stokes description, fcorr contains no contribution to π̂x, and from equations

(41)...(43) we find the heat layer solution

pxx = p = ρ · T = const (94)

λ(T ) · ∂x(T−1) = const (95)

FIGURE 3: Heat layer for nonlinear collision operator and BGK model.

Temperature profiles.

Comparing the temperature profiles of numerical simulations for the nonlinear and the BGK

system (Fig. 3) we find that the BGK profile is considerably flatter than that of the nonlinear

case. (The solid line present the linear profile between the wall temperatures.) An explanation

for this is given by comparing the closure moments 〈π̂x, fcorr〉 for both models (Fig. 4(a)).

From (3.11) we expect a small almost constant contribution (maybe weakly dependent on the
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temperature) in the nonlinear case. Zooming into Fig. 4(a) confirms this (Fig. 4(b)). However,

for BGK we find a distinct, almost constant gradient over the whole field of calculation. An

explanation for this is again provided by the trace description which allows to draw a rough

picture pointing out the differences between nonlinear collision operator and BGK model.

FIGURE 4: Pressure closure moment for heat layer.

(a) Nonlinear collision and BGK operators, (b) zoom into nonlinear operator.

For sake of simplicity we construct a model close to the situation at hand with a source term

given by

s = ε · vx∂xf(γ(x)) (96)

The right hand side consists of two main components – the x-derivative of γ leading to the

term εvx∂xγ · ∂γf , and the second component containing the T -derivative of the Maxwellian e.

In regions of the x-domain with small γ, s is well-described by the model source term in trace

formulation

smod = ε · ∂xγ
T
· ‖π̂e‖ · nπ + ε · ∂xT

T
2 · ‖σ̂e‖ · nσ (97)

For the comparison of balanced states we start with the nonlinear collision operator. Inserting

the components cπ = −γ2 · aJπ,π and cσ = 0 (71), the balancing condition (90) yields(
ε · ∂xγ

T
· ‖π̂e‖+ γ2 · aJπ,π

)
· γ
T

2 · ‖π̂e‖ = ε · ∂xT
T

2 · ‖σ̂e‖
2 · 2γ2

d · T 3

Assuming ∂xγ = 0, we end up with the nontrivial balanced solution of (5.11).

In the BGK case, we pass over to the tangent plane around e and write

f(γ) = e+ ∆π · nπ + ∆σ · nσ (98)
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The trace of the BGK operator is then given by cπ = −λ ·∆π and cσ = −λ ·∆σ. The balancing

condition reads(
ε · ∂xγ

T
· ‖π̂e‖+ λ ·∆π

)
· γ
T

2 · ‖π̂e‖ =

(
ε · ∂xT

T
2 · ‖σ̂e‖+ λ ·∆σ

)
· 2γ2

d · T 3 · ‖σ̂e‖

For x-values with small γ(x), we may neglect the ∆-terms (which are at least of order O(γ2),

see (34)), and find an approximate solution by

∂x(γ
2) = γ2 · 2∂xT

d · T 2 ·
‖σ̂e‖2

‖π̂e‖2
(99)

This represents an exponentially decaying layer in −∂xT -direction for γ2 (and with this for the

closure moment π̂e, see (31)) which is not a kinetic boundary layer, since it is of macroscopic

thickness (i.e. no ε-dependence). The related profile presented in Fig. 4(a) is the superposition

of two layers, one from the left and one from the right of the computational domain. Compared

to the nonlinear collision operator this presents an artificial effect, which is neither local nor

small and which does not vanish in any limit of small parameters.

6.2 Further applications

We have proposed a new framework for closure relations for the nonlinear Boltzmann collision

operator which is fundamentally different from that of the Navier Stokes equations, since it

leads to nonlinear first order differential correction terms (in contrast to the diffusive second

order terms of the Chapman Enskog approach). The field of possible relevant applications is

large. First of all it is near at hand to extend the results of 6.1 to the case of a partially

transmitting wall. Here, we may think of a trace ansatz at the wall of the form

f(x = 0) = α(1) · ê+ α(2) ·
(

1 + γ · vx − v̂x
T̂

)
· ê (v̂x(0) < 0) (100)

where α(1) represents the transmitted and α(2) the reflected part. Applying the same ideas as

above we can follow the trace in the interior of the flow. In the same spirit we can extend the

trace formulation to the evaporation condensation problem for a gas mixture which was treated

in [4] and which was the starting point of the present paper. This point will be addressed in a

future paper.

Another type of application is the effect of the traces on the emergence of certain flow in-

stabilities. In the present paper we did not consider the situation of shear stresses. In this case

one may expect some pattern formation which becomes visible in the trace formulation and

which could destabilize the flow. This opens a wide interesting field of research which in parts

will be treated in subsequent papers.
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