Friedrich-Schiller-Universitit Jena
Fakultat fiir Mathematik und Informatik
Lehrstuhl fiir Digitale Bildverarbeitung

Semantic Knowledge Integration for
Learning from Semantically Imprecise
Data

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultét fiir Mathematik und Informatik
der Friedrich-Schiller-Universitit Jena

von Clemens-Alexander Brust, M. Sc.
geboren am 1. Mai 1991 in Hannover

Gutachter

1. Prof. Dr.-Ing. Joachim Denzler
Friedrich-Schiller-Universitit Jena,

2. Prof. Dr.-Ing. Patrick Mader
Technische Universitiat Ilmenau

Tag der Einreichung 30. August 2021
Tag der 6ffentlichen Verteidigung 7. April 2022

Abstract

Low availability of labeled training data often poses a fundamental limit to the accu-
racy of computer vision applications using machine learning methods. While these
methods are improved continuously, e.g., through better neural network architectures,
there cannot be a single methodical change that increases the accuracy on all possible
tasks. This statement, known as the no free lunch theorem, suggests that we should
consider aspects of machine learning other than learning algorithms for opportunities
to escape the limits set by the available training data.

In this thesis, we focus on two main aspects, namely the nature of the training data,
where we introduce structure into the label set using concept hierarchies, and the
learning paradigm, which we change in accordance with requirements of real-world
applications as opposed to more academic setups.

Concept hierarchies represent semantic relations, which are sets of statements such
as “a bird is an animal”. We propose a hierarchical classifier to integrate this domain
knowledge in a pre-existing task, thereby increasing the information the classifier has
access to. While the hierarchy’s leaf nodes correspond to the original set of classes,
the inner nodes are “new” concepts that do not exist in the original training data.

However, we pose that such imprecise labels are valuable and should occur natu-
rally, e.g., as an annotator’s way of expressing their uncertainty. Furthermore, the
increased number of concepts leads to more possible search terms when assembling
a web-crawled dataset or using an image search. We propose CHILLAX, a method
that learns from semantically imprecise training data, while still offering precise
predictions to integrate seamlessly into a pre-existing application.

The common learning paradigm of “waterfall” learning, where training images
are first collected, then annotated and finally used for learning, does not align well
with real-world applications. When machine learning methods are used to assist
in research projects, e.g., camera trap image analysis, the training data is not fully
available from the beginning. Instead, it is slowly collected over time, and annota-
tion resources are also rarely available all at once. The lifelong learning framework
proposes a learning cycle which consists of repeated selections of unlabeled images,
annotations, and model updates.

We propose an active learning method to intelligently select images for annotation
in a lifelong object detection task, e.g., biodiversity monitoring. To increase the speed
of model updates, we adapt an incremental learning method to the object detector,
eliminating the need for expensive re-training from scratch. We further present
a working implementation of a full lifelong learning system used in a real-world
biodiversity monitoring project.

Zusammenfassung

Die geringe Verfiigbarkeit annotierter Trainingsdaten begrenzt hdaufig die mogli-
che Genauigkeit von Anwendungen der Bildverarbeitung auf der Grundlage von
maschinellen Lernverfahren. Obwohl diese Methoden stetig verbessert werden, z.B.
durch bessere neuronale Netzarchitekturen, kann es keine einzelne methodische
Veranderung geben, die die Genauigkeit auf allen moglichen Aufgabenstellungen
erhoht. Aufgrund dieses No Free Lunch-Theorems sollten wir uns auf andere Aspek-
te des maschinellen Lernens abseits von Lernalgorithmen konzentrieren, um die
Begrenzungen durch wenig verfiigbare Trainingsdaten zu umgehen.

Die zwei Schwerpunkte dieser Arbeit betreffen einerseits die Beschaffenheit der
Trainingsdaten, deren Klassenmenge wir durch Konzepthierarchien Struktur verlei-
hen, und andererseits das Lernparadigma, das wir anpassen, um auf die Bediirfnisse
von Anwendungen in der echten Welt Riicksicht zu nehmen.

Konzepthierarchien sind Reprasentationen semantischer Relationen, also Mengen
von Aussagen wie “ein Vogel ist ein Tier.” Wir stellen einen hierarchischen Klassifi-
kator vor, der dieses Dominenwissen in eine bestehende Aufgabe integriert, sodass
dem Klassifikator mehr Information zugénglich ist. Die Blattknoten dieser Hierarchie
entsprechen der urspriinglichen Klassenmenge, wahrend die inneren Knoten “neue”
Konzepte sind und in den urspriinglichen Trainingsdaten nicht direkt vorkommen.

Solche unpriizisen Annotationen sind unserer Anschauung nach allerdings wert-
voll, und sollten selbstverstandlich vorkommen, z.B. damit Annotierende ihre Un-
sicherheit ausdriicken konnen. Auflerdem gibt es durch die hohere Gesamtzahl an
Konzepten mehr mogliche Schlagworte, um Trainingsdaten durch einen Datensatz
aus Bildersuche zu erweitern. Wir stellen CHILLAX vor, eine Methode, die aus se-
mantisch unprézisen Trainingsdaten lernt, aber dennoch prizise Vorhersagen liefert
und damit nahtlos in eine bestehende Anwendung integriert werden kann.

Das typische Paradigma des “Wasserfall”-Lernens, wobei Trainingsbilder erst ge-
sammelt, anschlieflend annotiert und letztendlich zum Lernen verwendet werden, ist
nicht gut auf Anwendungen in der echten Welt ausgerichtet. Wenn Forschungsprojek-
te maschinelle Lernverfahren einsetzen, z.B. bei der Analyse von Kamerafallenbildern,
sind die Trainingsdaten nicht von Anfang an voll verfiigbar. Sie werden stattdessen
allméahlich aufgenommen, und auch die personellen Ressourcen zur Annotation kén-
nen nicht alle auf einmal abgerufen werden. Das Framework des lebenslangen Lernens
schldgt einen Kreislauf vor, der aus wiederholten Auswahlen von nicht annotierten
Bildern, Annotationsanfragen und Modellaktualisierungen besteht.

Wir stellen eine Methode des aktiven Lernens vor, die Bilder fiir eine Objektde-
tektionsaufgabe, z.B. in der Biodiversitatsiiberwachung, intelligent zur Annotation
auswahlt. Um das Modell schneller zu aktualisieren, passen wir ein inkrementelles
Lernverfahren an den Detektor an. Zudem stellen wir eine vollstindige Implemen-
tierung eines lebenslangen Lernsystems vor, die in einem echten Forschungsprojekt
zur Biodiversititsiiberwachung verwendet wird.

1ii

Contents

1. Introduction
1.1. Requirements of Real-World Applications
1.2. Overview of Contributions.
1.3. RemainderofthisThesis

2. Machine Learning in the Past and Present
2.1. Machine Learning Foundations
2.1.1. Statistical Learning Theory
2.1.2. LinearModel
2.1.3. Gradient-Based Optimization
2.1.4. Supervised Learning and Alternatives
2.2. Model Selection and Complexity
22.1. Regularization
2.22. Validation
2.3. Machine Learning for Computer Vision
231, Images e
23.2. Computer VisionTasks
233. Challenges
2.3.4. Feature Extraction and Invariances
24. DeepLearningo e
2.4.1. Artificial Neural Networks
2.4.2. Convolutional Neural Networks
2.4.3. Implementation Details

3. Concept Hierarchies as Semantic Knowledge

3.1. Formal Introduction
311. Concepts
312. Relations

3.2. Concept Hierarchies
3.2.1. Concept Hierarchies from Relations
3.2.2. Concept Hierarchiesas Graphs

3.3. Semantic KnowledgeBases
33.1. Lexical Databases
3.3.2. Visual-Semantic Datasets
3.3.3. Domain-Specific Knowledge Bases and the Semantic Web

4. Literature Overview
4.1. Semantic Knowledge Integration From Concept Hierarchies
41.1. ModelStructure Lo
412, Embeddingso L.

Contents

Vi

413. MetricLearning oL 51
4.1.4. Non-Semantic Hierarchies 52
4.15. Analysis and Exploratory Works 53
4.2. Problem Formulations 53
421. ImpreciseData 53
4.2.2. Fine-Grained and Large-Scale Classification 54
423. ImageRetrieval 55
424. Alternatives to Supervised Learning 55
42.5. Natural Language Processing 57
Semantic Knowledge Integration and Learning from Imprecise Data 59
51. ImpreciseData. 59
5.1.1. Measuring and Modeling Imprecision using Concept Hierarchies 60
5.1.2. Mapping Conceptsto Datasets 64
5.2. Knowledge Integration by Hierarchical Classification 67
5.2.1. Internal Representationof Labels 68
52.2. Introducing Assumptions 69
523. Hypothesis 70
5.2.4. Deep Learning Implementation. 72
5.3. Extrapolating ImpreciseData 74
5.3.1. Problem Formulation 74
5.3.2. From Hierarchical Classifier to CHILLAX 76
5.3.3. Self-Supervised Approach 77
Experiments on Knowledge Integration and Imprecise Data 83
6.1. Evaluation 83
6.1.1. Classification 83
6.1.2. Hierarchical Classification 85
6.2. ExperimentalSetup L. 86
6.21. Datasets 86
6.2.2. Deep Neural Networks 88
6.23. DataProcessing 89
6.3. Knowledge Integration on Benchmark Datasets. 90
631, Setup 91
6.32. Results 92
6.4. Imprecise Data from Benchmark Datasets 95
6.4.1. Simulating Label Noise 96
6.4.2. Supervised CHILLAX 97
6.4.3. Self-Supervised CHILLAX 102
6.5. Imprecise Data from Webly Supervision: Moths 108
6.5.1. Setup 108
6.52. Results 111
6.6. Pitfallsand Dangers 113
6.6.1. Visual-Semantic Correspondence 113
6.6.2. Harmful Hierarchies 116
6.6.3. Imprecisionin Real-World Data 120

Contents

6.7. Summary and Discussion
6.7.1. Benchmark Datasets
6.7.2. Webly Supervision
6.7.3. Pitfallsand Dangers
6.7.4. Omissions and Limitations

7. Experimental Outlook Towards Lifelong Learning

7.1. A Brief Introduction to Lifelong Learning
71.1. ActiveLearning
71.2. Incremental Learning
7.1.3. The Lifelong Learning Cycle

7.2. Active and Incremental Learning for Object Detection
7.2.1. Active Learning for Object Detection.
7.2.2. Incremental Learningof YOLO
723. Experiments
7.24. Summary and Discussion

7.3. Weakly Supervised Lifelong Learning for Object Detection

7.3.1. InteractionModel
732. CameraTraps
73.3. Experiments
7.3.4. Carpe Diem AnnotationTool
7.4. Label-Efficient Gorilla Re-Identification
74.1. Re-lIdentification by Face Detection.
742, Experiments,
743. Discussion e
7.5. Lifelong Learning with Concept Hierarchies

8. Conclusion

81. Summary
82. FutureWork

A. Appendix

Notation

List of Figures

List of Tables

Acronyms

Glossary

References

List of Own Publications

Ehrenwortliche Erkldarung

151

157

159

161

163

165

169

191

195

vii

1. Introduction

There is a global biodiversity crisis (cf. Cardinale et al. 2012; Vié, Hilton-Taylor, and
Stuart 2009; Vogel 2017) which poses a severe threat to our planet’s habitability. Its
main drivers include global phenomena such as climate change (cf. Thomas et al. 2004)
and local effects, e.g., habitat destruction (cf. Tilman et al. 1994). Visual monitoring
using camera traps (see section 7.3.2) is a key ingredient to shaping an appropriate
response and guiding policy.

At the same time, the raw images are not informative on their own. They require
analysis to estimate occupancy, abundance and other indicators, and the scale of
data generated from camera trap operations makes individual viewing of images by
biodiversity researchers infeasible. Automated processing using computer vision
and machine learning is the only practical option for long-term, continuous and
non-invasive biodiversity monitoring.

However, modern and highly accurate methods such as convolutional neural net-
works depend on large quantities of training data, which can be cost-prohibitive
considering the expertise required in order to produce reliable annotations. And
biodiversity research is only one of the applications of computer vision and machine
learning where data availability poses a fundamental limit to performance, and
therefore usefulness. General methodical improvements such as better neural net-
work architectures, loss functions etc. are not guaranteed to translate to any specific
problem, which is the subject of the no free lunch theorem (see section 2.1.1.5). Hence,
we should explore alternative solutions. In this thesis, we explore two main “escape
routes” out of such a situation, which simultaneously address further specific needs
of real-world applications (see section 1.1).

The first escape route concerns the training data. We make use of readily avail-
able concept hierarchies, e.g., the biological taxonomy, which constitute domain
knowledge that can be used in addition to the scarce training data. And as stated in
Shalev-Shwartz and Ben-David (2014, p. 40), “we can escape the hazards foreseen by
the No-Free-Lunch theorem by using our prior knowledge about a specific learning
task”. Accordingly, we leverage concept hierarchies using our probabilistic hierar-
chical classifier, integrating the domain knowledge contained therein for increased
accuracy without more requiring more training data.

However, that is only a first step. With concept hierarchies and our classifier,
we not only improve performance, but also gain access to imprecise training data.
Semantically imprecise data can occur when annotators are only certain of their label
up to a some level of precision, e.g., the family level, while their actual task is to
annotate species. If annotators were then forced to annotate at the species level, they
could introduce errors or refuse to annotate examples unless they are certain enough.
However, if they are allowed to select a less precise label, e.., a genus or a family, they
can express their knowledge without loss of information or errors. Such a flexible
process is especially relevant for citizen science projects involving people of varying

1. Introduction

expertise and enables a conscious trade-off between quality and quantity of labels.
Furthermore, when crawling the web for additional data, there is a higher number of
search terms. We propose methods for learning from such imprecise data as well as
probabilistic models of annotator precision.

The second escape route concerns the learning paradigm itself. We acknowledge
that the “waterfall” model of machine learning (see Data Science Process Alliance
2021), where a model is trained once and then used indefinitely, does not align
well with real-world applications. With camera traps for example, new data is
produced continuously, and distributing annotation sessions over time aligns them
more closely with working hours in a project. We propose active learning methods
to intelligently decide which unlabeled images are valuable enough to annotate
and integrate them with a lifelong learning system. Moreover, we consider the
human-machine interaction aspect and investigate a combination of our methods
with a fast annotation process that produces weak labels for object detection.

1.1. Requirements of Real-World Applications

In this section, we explore properties of machine learning and computer vision
applications in the real world, which are not reflected in a typical academic ma-
chine learning environment. The latter is discussed in terms of waterfall learning in
section 7.1.

The first property is the requirement of representative training data (see sec-
tion 2.1.1.7) sampled from an environment distribution. Representativeness implicitly
assumes that all annotations are “correct”, at least in terms of the distribution. How-
ever, human annotators are not perfect (cf. Russakovsky et al. 2015). Furthermore,
they are not all equally knowledgeable (cf. Chang et al. 2021), meaning that each an-
notator should be characterized by their own distribution. It is therefore challenging
to obtain completely representative training data using a group of human annotators,
and also to decide which samples represent the “real” distribution that should be
learned.

Similar concerns can be raised w.r.t. collecting the images, not only the labels. As-
suming a fixed environment distribution discounts the prospect of changes over time.
Whereas in reality, concepts naturally “drift” as time passes. And in a continuous
application such as camera trap analysis, the images simply are not available in full at
the beginning of a project. Instead, they are recorded over time, and older images lose
relevance as concepts and the environment change. Hence, a fixed distribution which
is sampled once to generate training data is not always a reasonable representation
of the real world.

If the environment distribution is allowed to change over time, and images are
represented by a continuous data stream, the annotation process has to be adapted as
well. As old images become irrelevant, so do the respective labels. Regular annotation
sessions have to be coordinated with the availability of new images to capture the
changing distribution. And as the training data changes, models derived from the
data require constant re-training as well.

1.2. Overview of Contributions

1.2. Overview of Contributions

This section gives on overview of our contributions in this thesis, which mainly
consist of methods that address the aforementioned requirements, and analyses of
failure cases as well as verification of assumptions made by our methods.

Hierarchical Classification Our hierarchical classifier, as proposed in section 5.2
and published in Brust and Denzler (2019a), integrates domain knowledge and serves
as the foundation for the following methods concerning imprecise data. From the
simple assumptions (see section 5.2.2) of subsumption informed by a hierarchy, e.g., “a
bird has to be an animal”, and a closed world, i.e., “everything is an object”, we derive
a probabilistic model that relates concepts. We use the term concept to differentiate
from classes, which are always assumed to be mutually exclusive (whereas bird
and animal are not). To integrate the probabilistic model into a deep learning setup,
we transform it into a label encoding and a loss function in section 5.2.4. While our
hierarchical classifier is the foundation for the following contributions, it also has
merit on its own as a way of leveraging domain knowledge to improve accuracy.

Learning from Imprecise Data With imprecise data, we allow any concept in a
hierarchy as a label to utilize the individual expertise of each annotator. CHILLAX
(class hierarchies for imprecise label learning and annotation extrapolation) is pro-
posed in section 5.3.2 and published in Brust, Barz, and Denzler (2021b). The method
is based on the aforementioned hierarchical classifier. It interprets imprecise labels
such as animal as uncertain w.r.t. subsumed concepts, meaning “this is certainly
an animal, but I'm unsure which”. CHILLAX learns from such labels, but makes
precise predictions at the same time, i.e., it predicts only leaf nodes in the respective
hierarchy. With this capability, which we call extrapolation, we address the different
levels of expertise in individual annotators as described in section 1.1 and allow for
non-representative training data w.r.t. the label distributions. We further propose
a self-supervised strategy in section 5.3.3 which enables CHILLAX to learn from
effectively unlabeled images.

Lifelong Learning In chapter 7, we consider the specific needs of applications
where the environment distribution changes over time using the framework of
lifelong learning. An active learning method for object detection tasks is proposed in
section 7.2.1 and published in Brust, Kdding, and Denzler (2019). Based on uncertainty
heuristics, it intelligently selects unlabeled images for annotation to maximize the
utility given a constrained labeling budget. Moreover, we propose a modification
to YOLO (Redmon et al. 2016) that enables incremental learning in section 7.2.2,
including the addition of new concepts as they are discovered. Incremental learning
significantly reduces training time as new data becomes available by eliminating the
need for re-training.

Real-World Applications We validate our methods not only on benchmark data,
but also apply them to three real-world biodiversity research applications. The first
application concerns moth species classification and is detailed in section 6.5. We map

1. Introduction

the species in the dataset to the WikiSpecies database (see section 3.3.3.1) to obtain a
complete taxonomy. For each taxon, including genera, families etc., we download
images from Flickr and learn the resulting imprecise data using CHILLAX.

The second application, described in section 7.3 and published in Brust, Kdding,
and Denzler (2020), highlights our contributions to lifelong learning in automated
camera trap setup. We implement and validate a complete lifelong learning system
that supports intelligent selection of unlabeled examples, fast incremental learning,
and can accept new annotations at any time. The system is developed specifically for
ease of use and the graphical user interface implementation is published separately
in Brust, Barz, and Denzler (2021a).

Our third application is detailed in section 7.4 and published in Brust et al. (2017).
It considers heuristics to use the combination of face detection and classification for
individual re-identification of gorillas. The heuristics are necessary to map the single
label per image to potentially multiple detected faces correctly. Annotators only have
to provide identification, while the face is detected automatically. This combination
of methods and the separation of concerns allows for high sample efficiency and fast
annotation times.

Analyses We utilize concept hierarchies for their domain knowledge and to intro-
duce structure to a set of labels such that annotators can produce imprecise labels
if they are uncertain. However, both use cases assume that the hierarchy is correct
and that its semantic relation aligns to the visual properties of the corresponding
dataset. We conduct a study, detailed in section 6.6.1 and published in Brust and
Denzler (2019b), where we actually measure the visual-semantic correspondence on
a benchmark dataset to validate the latter assumption. In section 6.6.2, we consider
faulty hierarchies and determine the effects of “swapped” relations on the accuracy
of our hierarchical classifier. We further propose a synthetic dataset with perfect
visual-semantic correspondence in section 6.6.2.2 for additional insight by comparing
it to real-world data.

Since part of our experiments concerning imprecise data rely on models of anno-
tator precision, we conduct an investigation using Flickr to validate these models,
which is published in Brust, Barz, and Denzler (2021b) and described in section 6.6.3.
We determine precision distributions over the image title, caption and further meta-
data, using our algorithm for mapping arbitrary text to WordNet synsets, which we
propose in section 5.1.2.

Open-Source Software We publish the source code of implementations of our
methods wherever possible, and bundle them in reusable projects to encourage
further development and replication. The main software product of this thesis is
CHIA!, which implements our hierarchical classifier (see section 5.2), connections to
knowledge bases (see section 3.3) as well as benchmark datasets (see section 6.2.1).
CHILLAX (see section 5.3.2) is published separatelyz, including the self-supervised
methods discussed in section 5.3.3.

Ihttps://github.com/cvjena/chia
Zhttps://git.inf-cv.uni- jena.de/brust/chillax

1.3. Remainder of this Thesis

Our contributions in chapter 7 are implemented as part of our deep learning
framework CN243, which uses OpenCL for hardware acceleration. We also publish
the source code of Carpe Diem*, our graphical user interface for lifelong learning of
object detection tasks, which we discuss in detail in section 7.3.4.

All aforementioned projects are published under a 3-clause BSD license. This
license allows for commercial and private use, free distribution as well as modification.
It admits neither warranty nor liability.

1.3. Remainder of this Thesis

In the following, we briefly describe the structure of the thesis and the content of the
chapters following this one.

Chapter 2 introduces foundational concepts in machine learning. We define the
individual components of a machine learning system and make statements w.r.t.
learnability in section 2.1, where we also discuss basic methods and algorithms. In
section 2.2, we acknowledge overfitting as a general problem and detail validation
methods to tackle it. The tasks and challenges associated with computer vision for
machine learning are described in section 2.3. It further introduces feature represen-
tation, and we discuss deep learning as an alternative to hand-engineered features in
section 2.4.

The third chapter concerns concept hierarchies as one representation of semantic
knowledge. We give a formal introduction to concepts and semantic relations in
section 3.1. From these relations, we derive hierarchies and discuss their graph
representations in section 3.2. Finally, section 3.3 explores a large selection of sources
for concept hierarchies including linguistic, biological and medical subjects.

Chapter 4 lists previous work related to our own, where we focus on two main
areas. First, we discuss methods that involve concept hierarchies to integrate their
knowledge directly or indirectly in section 4.1. Second, we consider problem for-
mulations that incorporate quantitatively or qualitatively deficient training data, as
well as methods to solve these problems in section 4.2, where we relate these tasks to
learning from imprecise data.

Chapter 5 bundles our methodical contributions. In section 5.1, we first define
imprecise data formally and propose a probabilistic model of imprecision for various
categories of annotators. We also propose an algorithm to automatically match
concept hierarchies to existing datasets. In section 5.2, we construct our hierarchical
classifier from first principles and develop a deep learning implementation of its
probabilistic model. The classifier is modified in section 5.3 to build CHILLAX,
enabling learning from imprecise data. Furthermore, we analyze drawbacks of
CHILLAX and propose self-supervised methods to counteract them.

The aforementioned methods concerning the “first escape route” are validated
empirically in chapter 6. We first introduce evaluation criteria in section 6.1 and
identify common elements of our experimental setups in section 6.2. Our hierarchi-
cal classifier is tested for its capability of integrating domain knowledge on small-
and large-scale benchmark datasets in section 6.3. We then validate learning from

Shttps://github.com/cvjena/cn24
4ht‘cps ://git.inf-cv.uni-jena.de/LifelonglLearning/carpediem

1. Introduction

imprecise data using CHILLAX on large-scale benchmark data and compare it to a
competitor in section 6.4. In section 6.5, a real-world biodiversity research application
is improved using imprecise data crawled from the web. The increased complexity of
hierarchical classification also introduces new potentials for errors, which we analyze
in a detailed manner in section 6.6. Finally, section 6.7 summarizes the results and
offers explanations and discussion.

We discuss our contributions to the “second escape route” in chapter 7, starting
with an introduction to the idea of lifelong learning in section 7.1. An active learning
method that intelligently selects unlabeled images for annotation with bounding
boxes is presented in section 7.2. We then introduce a weak annotation mechanism
to the system and evaluate it in a continuous biodiversity monitoring scenario in
section 7.3. In section 7.4, we discuss a further biodiversity application involving
monitoring and re-identification of individuals. As an outlook, we propose a combi-
nation of both escape routes in the form of an active learning method for hierarchical
classification in section 7.5.

The thesis concludes with chapter 8, which summarizes our findings in section 8.1
and gives an overview of promising future research directions in section 8.2.

2. Machine Learning in the Past and
Present

This chapter introduces the concepts in machine learning that are relevant to this
work. There are many ways to approach an introduction to machine learning which
are equally legitimate. For example, one can look at data as a central topic, or start
with certain models. A historical view can also be enlightening. We choose the
angle of statistical learning theory (Vapnik 1998; Vapnik and Chervonenkis 1971)
as interpreted in Shalev-Shwartz and Ben-David (2014), which has its foundations
in probability theory and statistics. This approach integrates well with this thesis
because we formulate our models in chapter 5 in a probabilistic framework.

Sections 2.1 and 2.2 introduce machine learning in an application-agnostic way.
We build on this foundation in section 2.3, where the specific needs of computer
vision tasks are characterized. In section 2.4, we describe the more recent idea of deep
learning.

2.1. Machine Learning Foundations

Before considering machine learning, one needs to discuss the definition of learning
in general. The Oxford English Dictionary defines learning as “to acquire knowledge
of (a subject) or skill in (an art, etc.) as a result of study, experience, or teaching”
(Oxford English Dictionary 2020). An alternative definition given by Washburne
(1936) is “an increase, through experience, of problem-solving ability.”

Machine learning follows from these definitions by replacing the “learner” with
a machine. We usually stress the latter definition, as the problem-solving ability
is a desirable property. The realization of knowledge in machine learning is less
important for any given problem. It is rather a consequence of which specific method
is used, including some that specify knowledge explicitly (see section 4.1).

In this section, we first build a theoretical foundation in section 2.1.1. We then
introduce implementations in sections 2.1.2 and 2.1.3 and discuss common problem
formulations in section 2.1.4.

2.1.1. Statistical Learning Theory

We introduce the central concepts in machine learning using the framework of
statistical learning theory (Vapnik 1998; Vapnik and Chervonenkis 1971). Initially, we
consider a prediction task. The goal is to infer the state of one random variable, which
is hidden, from the observation of another. This is only possible if the two variables
are dependent in some way.

A common example is that of spam mail. Whether an e-mail is spam or not cannot
be observed by the recipient — the intent is only known to the sender. However, the

2. Machine Learning in the Past and Present

content of the e-mail can be used to classify it. We assume that there exist features, e.g.,
the presence of certain keywords (viagra, bitcoin), that are related to the intent.

If such a relationship exists, we can formulate rules. For example: “if the mail
contains prince and inheritance, it is spam”. While such simple rules can be
generated ad-hoc, this is not feasible for more complicated problems, e.g., image
classification (see section 2.3.2.1). Instead, we learn the rules from data, which are joint
samples of both the hidden and visible random variables. Through generalization,
these rules also apply to previously unseen observations. In the following, we
formalize this process and the components of a learning system.

2.1.1.1. Ingredients

We consider the main ingredients of a machine learning and their formal definitions
in the context of a prediction task. Our terminology and derivation follows that
of Shalev-Shwartz and Ben-David (2014), which presents a contemporary take on
statistical learning theory.

First, we specify the data on which our prediction system operates. From an
application perspective, a predictor gets an input (e.g., the content of the mail) and
returns an output (whether it is spam or not). The corresponding ranges of input and
output are formalized as follows:

Definition 2.1 (domain set). The domain set X is the set of possible “inputs” to a
predictor, also termed domain points. Elements of this set are to be labeled.

Definition 2.2 (label set). The label set) is the set of possible “outputs” of a predictor.
These are the labels associated with the elements of the domain set. Depending on the
structure of the label set, we distinguish different tasks:

e Classification if) is a set of mutually exclusive classes, e..,) = {dog, cat, car}.
* Regression if) is continuous, e.g., Y = R.

The association between domain points and labels is often determined by humans
in an annotation process. The human component is implied by using the word label,
but labels can also be a physical measurement, or any other random variable that
cannot be observed in the future, and thus has to be predicted. In any case, the results
of an annotation or measurement process are combined to form a set of data:

Definition 2.3 (training data). The training data S is a sequence of m pairs in X x V.
It is typically indexed, such that S = ((x1,1), ..., (Xm,¥m)). While the order of the
pairs should not be of consequence, the training data is not defined as a set because it
could contain the same pair multiple times.

To make a prediction, we use a function that maps from observations in the domain
set to predictions in the label set. Formally, this predictor function is defined as:

Definition 2.4 (hypothesis). A hypothesis is a function h : X —) from the domain
set to the label set.

We use the terms hypothesis, model, and predictor interchangeably. One ingredient
still missing is the actual learning step:

2.1. Machine Learning Foundations

Definition 2.5 (learner). A learner A(S) is an algorithm that takes training data and
produces a hypothesis.

A complete learning system realizes all of the aforementioned components. While
the domain set and label set are specific to the task or application at hand, there
are many general implementations of learners, which we discuss in the following
sections.

2.1.1.2. Probability Distributions

Before we explore the implementations and details of learners, we further formalize
how our training data is generated. For now, we assume that there exists a function
that can assign the “correct” label to every element of the domain set X’ (cf. ibid.).

Definition 2.6 (target function). The target function is a function f : X —) from the
domain set to the label set. It always assigns the “correct” label y = f(x)

Ideally, a human annotator perfectly executes this target function. A deterministic
functional relationship between domain set and label set is a very strong assumption
that often does not hold in the real world. We discuss a relaxation of this assumption
in section 2.1.1.7. We further assume that there exists a distribution to sample training
data from:

Definition 2.7 (environment distribution). The environment distribution D over the do-
main set X describes the environment. Training data is generated by sampling from
elements from X according to D. The target function is then queried to label each sam-

ple, resulting in a sequence ((x1,y1), ..., (X, ym)) = ((x1, f(x1)), .-, (Xm, f(xm)))-

2.1.1.3. (Empirical) Risk Minimization

The name “target function” already suggests that it is something to strive for. In fact,
the main goal for a learner is to produce a hypothesis that matches the target function
as closely as possible.

Definition 2.8 (risk). Given the environment distribution D and target function f,
we define the risk Lp (1) of a hypothesis & as:

Lp,s(h) = Prop[h(x) # f(x)].

In other words, the risk is the probability (over the whole domain set) of the hypoth-
esis and the target function disagreeing.

A successful learner should then minimize the risk Lp f to achieve its goal. How-
ever, it cannot do so directly because both D and f are unknown to the learner.
Instead, it has to rely solely on the training data S. We can derive:

Definition 2.9 (empirical risk). Given training data S = ((x1,y1),..., (X, ym)), the
empirical risk Ls(h) of a hypothesis h is:

3

Ls(h) = — 3 lh(x) # i

Il
_

2. Machine Learning in the Past and Present

Empirical risk can be optimized directly. This type of learning is denoted empirical
risk minimization (ERM). It is the basis for all following methods and algorithms.
However, minimizing empirical risk does not necessarily minimize risk. There
are additional assumptions necessary to relate the two, which are discussed in the
following, and specifically section 2.1.1.5. The relationship between risk and empirical
risk is detailed further in section 2.2.

2.1.1.4. A Trivial Learner

The formalisms outlined up to this point are technically sufficient to construct a
complete learning system. ERM naturally induces a learner as an optimization
problem:
Aprm(S) = ERM(S) = argmin Lg(h). (2.1)
h
Note that the search space for / is intentionally vague. This learner allows for
every possible hypothesis. In fact, there are infinitely many trivial solutions with
Ls = 0. However, we define the empirical risk as a proxy for the risk only because
our learner lacks access to the environment distribution D and target function f. And
while Agrp(S) may be perfectly equal to f on the subset of X’ supported by S, there
are no constraints on the rest of the domain. In this framework, risk and empirical
risk are not necessarily related, which may seem catastrophic for ERM since our
main goal is the minimization of risk. However, we can relate risk and empirical
risk by introducing assumptions that constrain the search space, e.g., from domain
knowledge. Such an assumption is referred to as an inductive bias. In the following,
we show how bounds on the risk can be obtained from applying such biases.

2.1.1.5. Inductive Biases

The first and most important assumption to make is w.r.t. the training data S. We
require the elements x; to be i.i.d. samples of D, meaning independent and identically
distributed (cf. Shalev-Shwartz and Ben-David 2014, p. 18). The i.i.d. assumption is
fundamental to machine learning. By convention, it is only relaxed on purpose, e.g.,
to learn with time series (Bishop 2008, p. 605).

Our next step is to constrain the allowed hypotheses to some class H. This step is
an opportunity to apply prior knowledge to the problem. Without prior knowledge,
selecting a learner that is generally better than another is impossible, which is also
called the no free lunch theorem (cf. Goodfellow, Bengio, and Courville 2016, p. 116).

For the next section, we temporarily add another constraint to our problem. We
assume that there exists a hypothesis 1* € H, such that Lp ¢(h*) = 0. This is the
realizability assumption (cf. Shalev-Shwartz and Ben-David 2014, p. 17).

2.1.1.6. PAC Learnability

Not all hypothesis classes are created equal. In the following, we consider definitions
of learnability based on the assumptions made previously.

The first is probably approximately correct (PAC) learnability (Valiant 1984). We
follow the definition given by Shalev-Shwartz and Ben-David (2014, p. 22).

10

2.1. Machine Learning Foundations

Definition 2.10 (PAC learnable). A given hypothesis class H is PAC learnable, if a
function my : (0, 1)2 — IN and a learner A exist, such that for every:

* ¢ €(0,1) (accuracy) and 6 € (0,1) (confidence),
e environment distribution D over X,
e target function f : X — {0,1},

if both the realizability assumption and the i.i.d. assumption on the training data S
hold, then evaluating A (S) with |S| = m > my(€,) results in a hypothesis /1, where
with probability of at least 1 — §, the risk is:

Lplf(h) S €.

If we can find such a PAC learnable class of hypotheses, we finally have a bound
on the risk itself. However, this definition is only valid for binary classification tasks,
where there are exactly two labels. Furthermore, in order for a PAC learnable H to
exist for such a task, a function my, has to exist as well. This function is also termed
sample complexity. For finite hypothesis classes, such a function always exists (cf. ibid.,
p- 23):

log 151

mye,8) < [<BL]

2.1.1.7. From Target Function to Loss Function

For practical purposes, we are required to relax our previous assumptions slightly,
even if it should result in a worse lower bound for the risk.

Target Function First, we remove the target function f in favor of an environment
distribution D over X x Y. The corresponding risk is (cf. ibid., p. 24):

LD(h) = IP(x,y)wD [h(x) #]/] (2.2)

The training data is sampled from D in pairs (x,y). While the target function is
deterministic, this formulation in contrast allows for situations where a domain point
is labeled ambiguously. This means that the lower bound for Lp may no longer be
zero regardless of H, because the hypothesis is still deterministic. Consequently,
we also remove the realizability assumption since it is unreasonably strong in this

context (cf. ibid., pp. 23 sq.).

Loss Function Since the target function no longer exists in our setting, its range no
longer affects the label set. The range of f as given in definition 2.10 implies J =
{0,1}. We remove this restriction to binary classification in favor of an unrestricted
label set). However, this relaxation has consequences for the risk. For continuous
Y, eg., Y = R, the inequality in eq. (2.2) is not appropriate. Instead, we are more
interested in a smooth measure such as the squared difference between prediction
and label (cf. ibid., pp. 25 sq.).

11

2. Machine Learning in the Past and Present

Clearly, the correct choice of measure depends on the specific learning problem.
We require a definition of risk that is general enough to allow for such a choice,
while still enabling claims about learnability. To this end, define a new function (cf.
Shalev-Shwartz and Ben-David 2014, p. 26):

Definition 2.11 (loss function). For any hypothesis class H, domain set X and label
set Y a loss function is a function £ : H x X x) — R™*.
We can then integrate this into the risk (cf. ibid., p. 26):

Lp(h) = IE(x,y)ND [,C(h, X,y)] . (23)
The empirical risk can be generalized similarly (cf. ibid., p. 27):

m

Y [L(hxi,yi)] - (2.4)

i=1

§\H

2.1.1.8. Agnostic PAC Learnability

To extend our previous definition of PAC learnability, we introduce a new formulation
that takes into account all the relaxations and generalizations specified in the previous
section (cf. ibid., p. 25):

Definition 2.12 (agnostic PAC learnable). A given hypothesis class H with an as-
sociated loss function £ : H x X x Y — R is agnostic PAC learnable, if a function
2 :(0,1)> — N and a learner A exist, such that for every:

e €€ (0,1) (accuracy) and § € (0,1) (confidence),
e environment distribution D over X x),

if the i.i.d. assumption on the training data S holds, then evaluating A(S) with
|S| = m > my(€,d) results in a hypothesis h € H, where with probability of at least
1 — 6 (w.r.t. the sampling of S):

Lp(h) < minLp(h') +e,
WeH

with Lp as given in eq. (2.3).

For a finite hypothesis class H, we can again give a sample complexity my (€, d),
such that H is agnostic PAC learnable with the ERM learner (cf. ibid., pp. 31-34):
2log =5 2#|

my (el (S) e2

2.1.1.9. Generalized Loss Function

The previous sections all pertain to prediction tasks. In section 2.1.4, we introduce
machine learning tasks that go beyond prediction. For these, a loss function £ :
H x X x Y — RT might not be applicable.) may not even exist. We therefore
introduce a more general example set Z with examples z, which happens to be X x Y

12

2.1. Machine Learning Foundations

for prediction tasks (cf. ibid., p. 26). We can then define the generalized loss function
L:HxZ — RT (cf. ibid., 26 sq.). Accordingly, D describes the environment
distribution over Z. The respective modifications to risk and empirical risk follow
intuitively. Agnostic PAC learnability still holds in this general formulation.

With this formulation, we can fully describe a machine learning task by its example
set Z, environment distribution D and loss function £. In practical applications,
samples z ~ D are given because the exact D is unknown or intractable.

2.1.1.10. Summary

The tasks, methods and models described in the remainder of this thesis respect the
definitions in the previous sections unless specified otherwise. With agnostic PAC
learnability for generalized loss functions, we can reasonably expect a certain risk
level with some probability, given sufficient training data and correct inductive biases.
PAC learnability can be generalized even further, e.g., to infinite hypothesis classes
with certain properties (cf. ibid., p. 48).

In the following, we discuss implementations of the aforementioned concepts to
obtain a working system. For example, a complete machine learning system can be
constructed using the hypothesis class detailed in section 2.1.2 combined with an
ERM learner. The optimization problem can be solved with one of the methods from
section 2.1.3.

2.1.2. Linear Model

Restricting the hypothesis class H is a way of introducing prior knowledge, and
therefore an inductive bias. A simple, but important class of hypotheses are linear
models:

Hep = {x = ¢((w,x) +b),w,x € R, b e R}, (2.5)

where ¢ : R —) is a function that maps the scalar result of the affine transform
(w, x) + b to the label set Y (cf. ibid., 89 sq.). For example, a binary classifier could
use ¢(s) = sgn(s) for Y = {—1,1}. Different ¢ result in different hypothesis classes.

2.1.2.1. Linear Separability

Definition 2.13 (linear separability). If a problem defined by an environment distri-
bution D is realizable (see section 2.1.1.5) in Hsgy, it is linearly separable. The term
can also be applied to specific training data.

For linearly separable problems, the ERM learner w.r.t. Hggn can also be given as
a linear program (cf. ibid., p. 91). Furthermore, the hypothesis space can be made
equivalent to the one used by the perceptron with the correct ¢ (see section 2.4.1.1).
A common example to illustrate the limits of linear separability is the XOR problem
(see fig. 2.1).

2.1.2.2. Logistic Regression

Equation (2.5) is also known as a generalized linear model in literature (cf. Bishop
2008, p. 180). The choice of ¢ determines its functionality and interpretation. For

13

2. Machine Learning in the Past and Present

example, from a probabilistic viewpoint, ¢ = sgn defines a hypothesis such that:

h(x) = argmaxP(y|x),
ye{-11}
where P is the distribution as estimated by the generalized linear model.
Knowing this distribution, we can make more fine-grained predictions. For ex-
ample, an application might make use of the probability of a certain class, given a
domain point x. We can formulate such a hypothesis:

h(x) =P(ylx),
with¢(s) =0 (s) = H%IJ(S)' This approach is named logistic regression (cf. Shalev-Shwartz
and Ben-David 2014, 97 sq.; cf. Bishop 2008, 205 sq.). It can also be implemented using
neural networks and a sigmoid activation function (see sections 2.4.1.3 and 2.4.1.4).
Support Vector Machines (SVMs) (cf. Bishop 2008, 325 sqq.) are a further possible

implementation.

2.1.3. Gradient-Based Optimization

While ERM is a clearly defined optimization problem, it cannot be implemented
directly in most cases. Searching the space of all hypotheses H for the optimal h* is
only an option for very small H. An exhaustive search is impossible if H is infinite,
e.g. linear models (see section 2.1.2). However, we can adjust the problem in many
helpful ways.

First, we observe a property of the linear model’s hypothesis class. It is parameterized
by w € R? and b € R. Instead of searching the hypothesis class, we can express the
ERM learner (see eq. (2.1)) as an optimization over RY x R:

ERM(S) = argmin Lg(h)
h

= h(;w*,b"), where
w*,b* = argmin Lg(h(-;w,b)). (2.6)
w,b
Our search space now has clearly defined structure: a real vector space. We denote
this parameter space ® and a specific instance 8. The optimal hypothesis is described
by 0*.

Second, we allow local minima. We accept that computing the globally optimal
hypothesis is infeasible and settle for one that is optimal within a small neighborhood
in @ (¢f. Goodfellow, Bengio, and Courville 2016, 82 sqq.).

Finally, L, and by extension £ and & are assumed to be differentiable functions w.r.t.
0. If 0" is a local optimum, then:

a *
SLs(h(50)) = 0.
With these assumptions, we can apply the gradient descent algorithm (Cauchy 1847).
Starting with a random initial value 8'%) (see also section 2.4.3.1), we use the following

update rule:

_ 0 _
609 = 01—y g Ls(h(:0%1)), 27)

14

2.1. Machine Learning Foundations

where 7 is the learning rate. The learning rate is not part of ® and is not optimized
using the training data. Such parameters are called hyperparameters (cf. Goodfellow,
Bengio, and Courville 2016, p. 98) (see section 2.2.2). It is common practice to change
the learning rate as optimization progresses. Such methods are called learning rate
schedules and are explained in more detail in section 6.2.2.3.

2.1.3.1. Stochastic Gradient Descent

The update rule eq. (2.7) minimizes the loss function over the whole training data in
each step. While this approach is a correct to the optimization problem, it has two
potential disadvantages. First, large datasets such as ImageNet-1k (see section 6.2.1.1)
easily overwhelm the working memory of current computers and graphics cards,
making the approach infeasible. Second, while local minima are considered accept-
able if the respective neighborhood is sufficiently large, minima that are “too local”
are still undesirable. However, the update rule eq. (2.7) will get “stuck” in any local
minimum regardless of its spatial extent.

Stochastic gradient descent (SGD) is one solution to these problems (cf. ibid., 151 sq.).
For each iteration k of the update rule, instead of the whole set S, we randomly
select a minibatch Sy C S and minimize Lg, instead of Ls. Minibatches are small
enough for efficient computation, with a typical setting of 32 (cf. Masters and Luschi
2018). Because they are different for each execution of the update rule, there is a high
probability of escaping very local minima of the whole training data simply because
they do not exist in all possible minibatches.

2.1.3.2. Momentum

SGD is often combined with a second strategy for avoiding local minima which is
called momentum (cf. Goodfellow, Bengio, and Courville 2016, 296 sq.). Instead of
computing a direction and distance in © for each step k, we estimate a change in
direction from the previous step. Effectively, the movement through ©® has a velocity
or a momentum. A hyperparameter « is introduced to control the influence of the
previous step on the current step. The momentum update rule is defined as:

P
0% = w (g1 — glk=2)) L ok=1) _ N5l (h(x; 0% 1)),

momentum

A common choice for a is 0.90. There are alternative formulations which reuse
gradients from previous steps instead of the positions in ®. This is done to reduce
the exponential influence of «.

2.1.3.3. Adam

The idea of gradient descent with momentum (section 2.1.3.2) can be generalized to
estimating statistical moments of individual components of the gradient, which are
then used to influence the movement through ®. Adam, which is proposed in Kingma
and Ba (2014), is an implementation of such a method using first- and second-order
gradient statistics to calculate a separate learning rate for each dimension of 0. It has

15

2. Machine Learning in the Past and Present

empirical advantages over SGD with momentum in many cases. Although it has a
larger number of hyperparameters, they are less sensitive to change and present a
larger operating range in practice. As such, Adam is a reasonable choice when there
is little time for hyperparameter optimization.

2.1.4. Supervised Learning and Alternatives

In the previous section, our overall goal is making predictions. Given an input x € X,
we predict the corresponding label y €)Y by using our hypothesis. A problem
of this sort is called a supervised learning problem, if there exists labeled training
data S = ((xl,yl), .., (xm,ym)). In the following, we explore alternatives to this
formulation. Further variants are discussed in section 4.2.4 and there is an effort to
formalize different levels of supervision proposed in Damen and Wray (2020).

2.1.4.1. Unsupervised Learning

Machine learning problems do not always require predictions to be made. There
are numerous other tasks (cf. Goodfellow, Bengio, and Courville 2016, 99 sqq.) or
problem formulations (cf. ibid., 104 sqq.) that involve machine learning. Unsupervised
learning removes the label set from the learning problem entirely. Intuitively, it would
seem that there no longer is a problem. Certainly, the risk is now ill-defined. However,
several interesting tasks can be formulated using only the domain set.

For example, exploring a new dataset and finding noteworthy examples, or clusters,
without additional information. Another task that enjoys recent popularity is the
generation of new examples, specifically images. Generative Adversarial Networks
(GANSs), presented in Goodfellow et al. (2014), are groundbreaking method in this
field. Learning a compact representation of an unlabeled set of images also has
potential applications in compression. Section 4.2.4.1 gives an overview of relevant
literature relating to unsupervised learning.

2.1.4.2. Semi-Supervised Learning

We can also imagine a middle ground between supervised learning and unsupervised
learning. Such a semi-supervised learning problem starts with a basic supervised
learning task. On top of the labeled training data S = ((xl,yl), ey, (xm,ym)), we
add unlabeled training data S’ = (xy41,. .., Xpem) (¢f. Goodfellow, Bengio, and
Courville 2016, 243 sq.).

While S’ would not suffice on its own to approximate a target function, it still
contains useful information. For example, it could be used to learn a better feature
representation (see e.g., sections 2.3.4.1 and 2.4). We discuss implementations in
section 4.2.4.2. Learning from imprecise data (see section 5.1) is a generalization of
semi-supervised learning.

2.1.4.3. Self-Supervised Learning

Although it is not a problem formulation in and of itself, self-supervised learning is
important to mention here. It is a class of methods to tackle semi-supervised learning

16

2.2. Model Selection and Complexity

problems where the unlabeled training data is labeled using the hypothesis itself.
Then, the newly labeled data is fed back into the learner to retrieve an improved
hypothesis. Self-supervised learning methods need to be tuned carefully to avoid
a feedback loop where mispredictions are learned and thus amplified. However,
they can achieve remarkable results (cf. Geirhos et al. 2020). Zhai et al. (2019) is a
notable example of this technique, with further works mentioned in section 4.2.4.2.
We propose a self-supervised method in section 5.3.3.

Such techniques can be applied to semi-supervised learning tasks, but also to
weakly supervised learning. This paradigm considers training data where some or all
of the labels are qualitatively worse, or “weak”. Learning from imprecise data, which
is discussed in section 5.1, is such a task.

2.2. Model Selection and Complexity

In section 2.1.1.3, we discuss the notion of risk, which is also called “true error”(see
Shalev-Shwartz and Ben-David 2014, p. 14). The overall goal of machine learning is
risk minimization, however this cannot be tackled directly unless the environment
distribution D is known exactly. Instead, we solve the proxy problem of ERM. The
main issue with ERM is that its optimum can differ significantly from the “true”
minimal risk hypothesis. There are only weak bounds that relate the two (see sec-
tion 2.1.1.8).

For example, consider the nearest neighbor classifier, which uses the label of the
training data element closest to the domain point in question as a prediction. Unless
there are ambiguous samples in the training data, the empirical risk of this classifier
is always zero. This does not imply that it generalizes well, i.e., that the true risk is
zero. If it does not, the classifier exhibits overfitting (cf. ibid., 15 sq.). It fits the training
data better than the actual environment distribution.

Non-representative training data, or too little training data considering the sample
complexity of the given hypothesis class H can contribute to overfitting. It can also
be caused by selecting the wrong model or assuming false inductive biases (see
section 2.1.1.5). The opposite phenomenon, underfitting, is also possible when the
hypothesis class is not complex enough.

Formally, the true error of a hypothesis /g obtained from an ERM learner Aggrm(S)
can be separated into two types of error: (cf. ibid., 40 sq.)

LD(hS) = eapp + Eest ,
where:

® €app = minyey Lp(h'), the approximation error, is the lowest possible true error
given H and D. It is determined by the inductive biases and choice of H.
If the inductive biases are too strong, or H is not complex enough, a high
approximation error occurs, and vice versa. Note that €,p, = 0iff D is realizable

in H.

® cest = Lp(hs) — €app, the estimation error, is the difference between the approx-
imation error €,pp and true error achieved by Agrm(S). In other words, it

17

2. Machine Learning in the Past and Present

represents the error caused by minimizing the empirical risk using training
data instead of the true risk using the environment distribution. Consequently,
€est can be reduced by a larger training data set. However, it increases with the
complexity of H as opposed to the approximation error, which decreases.

The opposite effects of the complexity of H on approximation and estimation error
are also termed bias-variance trade-off. With knowledge of the individual contributions
towards the true risk Lp, we discuss a further aspect of machine learning. Model
selection is the meta-problem of adjusting the complexity and selecting the optimal
hypothesis class to minimize the true risk.

In the following, we discuss how to control under- and overfitting by adjusting the
complexity (section 2.2.1). Furthermore, we explore methods of actually estimating
the true error, measuring generalization and overfitting (section 2.2.2).

Complexity in the context of statistical learning theory is often defined as ||,
the cardinality of the hypothesis class. (Agnostic) PAC learnability (see sec-
tion 2.1.1.8) assumes a finite H as well. However, most hypothesis classes
used in practice are infinite (see sections 2.1.2 and 2.4.1.1). Their complexity
can be measured in terms of VC-dimension (Vapnik and Chervonenkis 1971) or
Rademacher complexity (Shalev-Shwartz and Ben-David 2014, 325 sqq.).

2.2.1. Regularization

In this section, we examine a learning paradigm that allows for fine-grained control
over the complexity of hypothesis classes. Consider the parameterized version of
ERM as described in eq. (2.6), with which we can apply gradient-based optimization
methods. A simplified variant of the problem, where we consider only one parameter
0 is defined as follows:

mein Ls(h(x;0)).

We now include a regularization term R(#) with R : R? — R to formulate the
regularized loss minimization (RLM) problem (cf. ibid., p. 137):

mein Ls(h(x;0)) + R(0),

where R(0) is a measure of the complexity of the hypothesis class containing the
hypothesis associated with w.

Every value of R(6) corresponds to a specific subset of 7. With this construction,
the bias-variance trade-off is an explicit part of the optimization problem. The choice
or parameterization of R(0) remains part of the model selection problem.

2.2.1.1. Tikhonov Regularization

A very simple form of regularization is Tikhonov regularization. It is based on the
assumption that the norm of 6 is an indicator of the complexity, or irregularity of
the matching hypothesis class. For example, penalizing the norm of weights of a

18

2.2. Model Selection and Complexity

linear model (see section 2.1.2) would limit the slope of the decision function, and in
turn reduce the model’s susceptibility to noise. However, it also introduces a bias,
resulting in a high approximation error, should the task actually have too strong a
slope.

One example of a Tikhonov regularizer is the L2 regularizer (cf. ibid., p. 138):

R(6;B) = BlI6]*,

where f is a coefficient, or hyperparameter, to control the amount of regularization.
With this parameterization, the model selection meta-problem reduces to an optimiza-
tion problem over the continuous . The Tikhonov regularizer can be generalized to
any norm, not only the 2-norm.

2.2.1.2. Early Stopping

When using gradient-based optimization methods (see section 2.1.3), the number
of optimization steps is an important hyperparameter. It is typically set based on
convergence criteria to obtain the lowest possible loss (cf. Goodfellow, Bengio, and
Courville 2016, p. 643).

However, the number of iterations also affects the complexity of the hypothesis.
When the true risk is measured during optimization, it first decreases as the model
fits the data better and better, and then increases again as a result of overfitting. Early
stopping sacrifices convergence criteria based on (empirical) loss in favor of a lower
true error (cf. ibid., 246 sq.). Effectively, the number of optimization steps is another
hyperparameter to be determined during model selection.

Note that early stopping is considered a regularization method in terms of manag-
ing a hypothesis’ complexity, but is not an instance of RLM.

2.2.2. Validation

In the previous section, we discuss methods of controlling the complexity of hy-
potheses. Using these methods, we can obtain a parameterized variant of the model
selection problem. With parameters 6 € © of a parameterized hypothesis /, hyper-
parameters w € () and an environment distribution D with training data S, we can
formalize the model selection problem as:

min Lo (h(6" («))),

where
0" (w) = argmin Lg(h(-;0)) + R(6; w) .
0
This formulation does not directly solve the problems of ERM, because it requires
the impossible evaluation of Lp. Still, it is possible to estimate the true risk and
select appropriate hyperparameters w. In the following discuss various methods of

estimating the true risk using separate data sets. They are considered instances of
validation (cf. Bishop 2008, p. 32).

19

2. Machine Learning in the Past and Present

2.2.2.1. Estimating True Risk: Training, Validation and Test Sets

One straightforward way of approximating the true risk is using a validation set (cf.
Bishop 2008, 32 sqq.). Such a set T consists of samples from the environment distribu-
tion D. It should be sampled in the same way as the training data it, independently
and identically distributed. However, its use should be limited to estimating the true
risk to perform model selection. The samples should never be used for learning, i.e.,
minimizing the empirical risk.

There is one philosophical issue with validation. Model selection is a learning
problem as well. While the validation set is used to find the optimal hyperparameters
w and the training data for the parameters 6, respectively, the distinction is rather
arbitrary. Thus, it is possible to overfit the model selection problem on a given
combination of validation set and training data. For example, consider a random
seed that is used to sample the initial parameters 8(°) for gradient descent. The seed
itself would be thought of as a hyperparameter, but it can be used, with enough time,
to “learn” the validation set.

A solution to this issue is a held-out test set also sampled i.i.d. from D. This held-out
test should be used only once, to validate the results of the model selection process.

While ideally the validation and test sets are additional samples from the
distribution D, it is common practice to split existing training data into training,
validation and test parts. If the i.i.d. assumption holds, there is no difference
except for the sample size.

2.2.2.2. Cross-Validation

The split into training, validation and test sets discussed in the previous section is
typically determined only once and not changed subsequently. However, which
examples end up in which split can significantly affect the results of the model
selection process if the dataset is small to begin with.

There are alternatives for such situations that rely on combining different ways
of splitting a small dataset. k-fold cross-validation (cf. ibid., p. 33) is such a method.
The dataset is first split (evenly) into k subsets. Then, one of the subsets is used as
a validation set, while the rest constitutes the training data. Each of the k different
combinations is evaluated independently, resulting in a better approximation of
the risk. Cross-validation effectively controls for the effects of splitting a dataset in
different ways.

For even smaller datasets, leave-one-out cross-validation is an option. Instead of
splitting into k subsets, where usually k << |S|, each example is considered a single
subset. This results in a very large number of possible combinations.

2.2.2.3. Practical Considerations

We generally assume that training data is sampled independently and identically
(i.i.d.) from D. However, there are cases in practice where this assumption does not

20

2.3. Machine Learning for Computer Vision

hold. Certain examples in the training data may be correlated, which needs to be
considered when selecting a subset for validation. If validation and training examples
correlate, then validation no longer approximates the true risk.

For example, consider a medical dataset consisting of many slices of computed
tomography (CT) scans. If there are 1248 slices captured from 63 patients, the slices
cannot be assumed fully independent. As a precaution, when splitting the dataset,
slices from the same patient should not be in multiple splits. It is a common practice
to adapt leave-one-out cross-validation on a patient level, i.e., leave-one-patient-out (cf.
Hiéfner et al. 2012).

Time series, e.g., videos, financial data, or climate data, pose another problem. All
samples are correlated by design, as a result of natural laws. When splitting such
datasets, the sequence needs to be considered. For example, videos should not be
split on a frame-by-frame basis, but into cohesive segments.

2.3. Machine Learning for Computer Vision

The previous sections (sections 2.1 and 2.2) focus on very general machine learning
concepts and methods. Specifically, we pose no requirements towards the domain set
X, except in section 2.1.2, where we assume a real vector space. In this section, we
explore the area of computer vision, where methods of machine learning are applied
to solve a variety of tasks specific to visual information.

We begin with a formal definition of images, which are the most common data
type in computer vision, and their digital representation in computers. Afterwards,
a selection of relevant tasks is discussed. Finally, we address the special “needs” of
machine learning methods when processing images, and methods to combat the
challenges involved in machine learning for computer vision.

2.3.1. Images

When we mention images in this thesis, we always refer to a representation that is
suitable for processing by a (digital) computer. However, for the purpose of under-
standing the image formation and acquisition process, we start with a continuous
definition (cf. Gonzalez and Woods 2018, p. 18):

Definition 2.14 (Image function). An image function with c color channels is a two-di-
mensional function f : R? — R° with ¢ € N.

While planar image functions are sufficient for the applications discussed in this
thesis, the definition could be adapted to other situations, e.g., moving images, or
volumes.

2.3.1.1. Discretization

Both the domain and the range of an image function are continuous, and thus
unsuitable for digital storage and processing. They need to be discretized in order to
obtain a digital image, which is defined as follows:

21

2. Machine Learning in the Past and Present

Definition 2.15 (Image). A digital image with c color channels is a three-dimensional
array F € CV**¢, where w and h are width and height, respectively. C denotes the
color space of the image, which is discussed in section 2.3.1.2.

An individual element of F is called a pixel (short for picture element, cf. Gonzalez
and Woods 2018, p. 18). The discretization first involves the domain of the image
function — the coordinates. This step is called sampling (cf. ibid., 63 sqq.) and is
usually part of the acquisition process. For example, a camera sensor is constructed
of a fixed number of individual elements which measure light intensity, sampling the
image plane by design. If an image function contains high-frequency components,
selecting an insufficient amount of pixels for sampling (resulting in a low sampling
frequency) can lead to destructive artifacts. This phenomenon is called aliasing (cf.
ibid., p. 221).

Obtaining a digital representation of the image function’s range is termed quantiza-
tion. While the number of color channels is already discrete, the intensity measure-
ment is not. 8-bit unsigned integers (IF>>°) are a common representation of intensity
values (cf. ibid., p. 70), and we use it unless stated otherwise. However, a number of
machine learning methods are modeled using continuous values, e.g., linear models
(section 2.1.2) or CNNs (see section 2.4). In this case, a floating-point representation
of intensities is used, where the precision is implementation-dependent.

2.3.1.2. Color Space

As introduced in sections 2.3.1 and 2.3.1.1, images have channels, which refer to the
dimensionality of the underlying color space. A color space is used to represent both
the color and the intensity of light captured. The RGB (red, green, blue) color space is
the most common representation in images intended for human viewing on monitors
(cf. ibid., p. 405). It is also used by most capture devices, i.e., video and photo cameras
and scanners (cf. ibid., p. 406). If added together, red, green, and blue can be mixed
into most colors perceptible by humans, but not the complete visible spectrum of
light wavelengths (cf. ibid., p. 402).

RGB is represented by a cube [0, 1]* in image functions or F?°*3 in digital images
(cf. ibid., p. 407), such that a single color pixel contains 24 bits of information. Unless
stated otherwise, the RGB color space is assumed throughout this thesis. Alternative
additive color spaces exist, e.g., HSI and CIE (cf. ibid., pp. 411, 419), which also require
three degrees of freedom and can be transformed into one another. For subtractive
color mixing, e.g., by printing, the CMYK color space is common (cf. ibid., 408 sq.).

2.3.2. Computer Vision Tasks

This section formally introduces the tasks that are the building blocks of many
modern computer vision applications based on machine learning. This qualification
is important because there are many computer vision methods and tasks that are
not associated with machine learning at all. The following tasks are all supervised
learning problems (see section 2.1.4) where the domain set is a set of images. They
only differ w.r.t. the label set V.

22

2.3. Machine Learning for Computer Vision

2.3.2.1. Image Classification

If the label set) is a finite set ¥ with mutually exclusive semantics, e.g., P =
{cat, dog, tv}, then the prediction task characterized by D over I x) is called an
image classification task (cf. Gonzalez and Woods 2018, p. 43; ¢f. Gonzalez and Woods
2018, 903 sqq.). Image classification is by far the most common computer vision task.

There are several popular datasets and benchmarks available, which we explore in
detail in section 6.2.1.1. This thesis focuses on classification tasks as well. Moreover,
a number of datasets used in this thesis represent fine-grained recognition tasks, e.g.,
differentiating between very similar species of birds. However, the exact definition
of fine-grained is subject of debates (cf. Duan et al. 2012; Chang et al. 2021). Further
work in fine-grained recognition can be found in section 4.2.2.

2.3.2.2. Object Detection

Image classification is limited by a shallow description of the image’s content in
terms of a single label. If we aim for a deeper understanding of an image, or a richer
description of its contents, object detection is the logical next step. This task combines
two subtasks (cf. Goodfellow, Bengio, and Courville 2016, p. 453).

First, possible objects in an image are localized. We describe the region these
instances occupy with an axis-aligned bounding box. For example, in a two-dimen-
sional image, such a bounding box is identified in Y22 = R* = R? x R? using the
coordinates of the top-left and bottom-right vertices. Second, each localized object is
classified in a label set))*, assuming the same semantics as for image classification.

The label set of the object detection task is a power set because the number of objects
in any given image is not fixed, such that J = P(J)BB x YP). This representation
poses challenges for certain models with fixed dimensionality (for example YOLO,
see section 7.2.1.2).

2.3.2.3. Semantic Segmentation

We can further generalize object detection w.r.t. its spatial component. Semantic
segmentation (cf. Gonzalez and Woods 2018, 699 sqq.) is a task where each individual
pixel of an image is classified in a given J’. The label set is a set of functions
Y={f:{0,...,w} x{0,...,h} — Y}

Since labels are essentially images themselves, the hypothesis space is even larger
than for image classification or detection. The consequences are discussed in sec-
tion 2.3.3.1. However, semantic segmentation can be simplified by transforming the
problem into many individual classification problems of local neighborhoods (e.g.
Brust et al. 2015a). This is a trade-off because smaller neighborhoods result in less
context information to help the classifier.

2.3.3. Challenges

Computer vision faces various challenges, most of which are inherited from machine
learning in general. There are also unique challenges resulting from the nature and
representation of images. We address the effects of the high dimensionality of images

23

2. Machine Learning in the Past and Present

compared to other types of data and their particular technical requirements in the
following.

2.3.3.1. Curse of Dimensionality

The “curse of dimensionality”, introduced in Bellman (1957), describes the exponen-
tial increase in volume when dimensions are added to a vector space. As a result,
it becomes increasingly hard to sample the space with a certain density. However,
representative samples as training data are a fundamental requirement of machine
learning. The UCI repositoryl, a common benchmark dataset for general machine
learning, contains examples with tens of dimensions. In contrast, CIFAR-100 (sec-
tion 6.2.1.1), a dataset of comparatively small images, already has 3072 dimensions.
Larger images have hundreds of thousands of dimensions. Intuitive reasoning
around high-dimensional data is hard for humans as the relation between distance
and volume behaves unexpectedly (cf. Bishop 2008, p. 36).

At the same time, the number of data points is not very high, ranging from tens of
thousands to millions at most. Consequently, this training data would not appear as
representative as required by theory. Still, real-world applications of computer vision
are feasible and practical. It is assumed that images specifically only occupy a small,
lower-dimensional subspace of their respective space C¥*"*¢ — the natural image
manifold (cf. ibid., 37 sq.). The idea of invariances is closely related to this assumption
and discussed in section 2.3.4.2.

2.3.3.2. Computational and Storage Constraints

Recent large-scale benchmark datasets are many, up to hundreds, of gibibytes in size
when compressed, e.g., Openlmages-v6? and ImageNet-1k (see section 6.2.1.1). There
exist datasets that are too large to be stored on single computers, e.g., the JFT-300M
dataset described in Sun et al. (2017a), or an internal dataset used by Facebook
(Mahajan et al. 2008) comprised of billions of images.

Combined with the curse of dimensionality discussed in the previous section,
image are a demanding modality compared to, e.g., sound or financial time series.
Not only does a single example require kibibytes or mebibytes to store, the number of
data points needs to be higher than other modalities as well. Furthermore, randomly
sampled data contains redundant elements (cf. Birodkar, Mobahi, and Bengio 2019).

Processing is a further challenge. Contemporary methods cannot be used on
commodity compute hardware. Instead, they require massively parallel processing
units such GPUs or even task-specific integrated circuits (cf. Wang, Wei, and Brooks
2019). This widespread adoption leads to excessive energy use and in turn, calls
for policies around the use of such methods (cf. Strubell, Ganesh, and McCallum
2019). If compute resources are constrained, which occurs in mobile devices or edge
computing scenarios, special solutions are available, e.g., as discussed in Wang et al.
(2020). However, these methods trade off accuracy in favor of runtime or memory
requirements. In contrast, tasks such as speech recognition can be solved in real-time
with limited resources (cf. Jo et al. 2019).

Ihttps://archive.ics.uci.edu/ml/index.php (last accessed April 14th, 2021).
"https://storage.googleapis.com/openimages/web/factsfigures.html

24

2.3. Machine Learning for Computer Vision

2.3.4. Feature Extraction and Invariances

All the challenges mentioned in the previous section may lead one to believe that
solving the computer vision tasks described in section 2.3.2 using machine learning
methods is exceedingly hard or impossible. However, that is only the case when
considering machine learning methods that are not image-specific, e.g. SVMs, but
applied directly to images. In the following, we discuss alternative representations of
images that are more suitable for these methods. We also discuss several invariances
that can be exploited in computer vision tasks.

2.3.4.1. Feature Representations

Images represented digitally as matrices are typically not suitable for general machine
learning methods. Instead, we select different representations called features. Features
are “attributes that [...] are going to be of value in differentiating between entire
images or families of images” (Gonzalez and Woods 2018, p. 812).

Ideally, a feature representation has fewer dimensions than the respective image
(see section 2.3.3.1). It should also be constructed to fit the chosen machine learning
method. For example, features should be linearly separable if a linear model is
used (see section 2.1.2). Features can be “hand-crafted”, e.g., by considering several
invariances of images, as discussed in the following section. Building bespoke feature
representations for specific tasks is common. The spatial ray features described in
Kiihnl, Kummert, and Fritsch (2012) are a good example of features that are only
really suitable for their intended task. There are also more generally applicable
features, e.g., histogram of oriented gradients (HoG) introduced in Dalal and Triggs
(2005).

Feature representations can also be learned from data given sufficient quantities.
Such methods are commonly considered deep learning methods (see section 2.4), if
the features are learned end-to-end, i.e., together with the classifier or regressor.

2.3.4.2. Invariances

As described in section 2.3.3.1, the ratio between the number of examples in the
training data and the number of dimensions of the domain set is important for the
success of any machine learning application. Images are especially problematic
because of their very high dimensionality. Part of the “value” of features is that they
can reduce dimensionality substantially without loss of relevant information. This
reduction is achieved through invariances.

A task is said to be invariant to a certain transformation on the domain set, if
the transformation does not change the label associated with the domain point. It
is important to note that invariances differ strongly between tasks. The following
invariances are frequently exploited to build features for general object recognition
tasks (cf. Gonzalez and Woods 2018, p. 812):

* Translation When an image is shifted slightly in any direction, the label in terms
of classification should not be affected. In the case of object detection and
semantic segmentation, it changes predictably through the same translation

25

2. Machine Learning in the Past and Present

as applied to the image. This change is called covariant (c¢f. Gonzalez and
Woods 2018, p. 812), and is fundamental property of convolutional layers (see
section 2.4.2.2).

* Rotation Similar to translation, this geometric transformation is not expected
to change the classification of an image, and applies to bounding boxes and
segmentation maps in the same way.

¢ Scale The description of an object does not change depending on the distance to
the camera. Similarly, scale should not affect classification, and transform any
label in the same way as translation and rotation.

All of the transformations listed above are coordinate transforms on the images.
Translation and rotation are rigid transformations as they preserve the (euclidean)
distance between coordinates. Scale is an affine transformation. In all three cases,
the invariance is not global: it is limited to a certain extent, e.g., because important
objects may move outside the image.

In addition, there is a further invariance that is not geometric in nature:

¢ [llumination The semantics, the position and the boundary of objects should
not be dependent on the lighting, as long as the visibility is not affected. Any
change of lighting, over position in the image, or over time (in the case of
videos) should not have an effect.

2.4. Deep Learning

This section introduces a set of methods commonly known as deep learning. One
important ingredient is the learning of a feature representation from large amounts
of data, replacing “hand-crafted” features (Goodfellow, Bengio, and Courville 2016,
p- 4). Representation learning is made possible by very large (and deep!) neural networks,
which are also associated with the term deep learning. They are called convolutional
neural networks (CNNs). The remainder of this section describes these networks in
detail, proceeding in a roughly chronological order.

2.4.1. Artificial Neural Networks

CNN:s are a special variant of artificial neural networks suitable for large-scale image
and signal processing and capable of representation learning. We first discuss neural
networks in general to build a theoretical foundation.

The first mention of neural networks is found in McCulloch and Pitts (1943).
Inspired by the human brain and nervous system, McCulloch and Pitts develop a
temporal first-order predicate calculus. It is built on a set of axioms about neural
interaction derived from theoretical neurophysiology. A neural network consist of
neurons and synapses which interconnect neurons. The topology never changes. A
special case of these neural networks, namely cycle-free topologies, are comparable
to modern neural networks. However, their use of binary logic and some of their
other axioms severely limit possible applications.

26

2.4. Deep Learning

2.4.1.1. Perceptron

The perceptron (Rosenblatt 1958) is a continuous generalization of the McCulloch-Pitts
model. It describes a single neuron in terms of a special case of the linear model (see
section 2.1.2). The perceptron hypothesis is given by (cf. Bishop 2008, p. 192):

h(x;w,b) = ¢((w,x) +b), (2.8)

with w,x € R%,b € R and ¢(s) = 1[s > 0]. In the context of neural networks
we call ¢ an activation function. x represents the input to the neuron in terms of a
d-dimensional vector. The parameters w and b are called weights and bias, respectively.

2.4.1.2. Multi-Layer Perceptron

The perceptron in eq. (2.8) can realize (w.r.t. the realizability assumption) the same
tasks as the linear model (section 2.1.2). The task, or the training data, has to be
linearly separable (see section 2.1.2.1). In practice, this is problematic. One can easily
imagine a trivial task which is not linearly separable by any means (see fig. 2.1). This
limitation affects single perceptrons. However, multiple perceptrons can be arranged
into layers and combined to solve arbitrarily complex tasks (in terms of function
approximation, cf. ibid., p. 230). The result is a special neural network: a multi-layer
perceptron (MLP). Its hypothesis is defined as:

h(x; (Wi, b1)i=1,..0) = (hpohp_10 ... oh1)(x), (2.9)
with the weights W € R%>4-1 biases b € R%, and inputs x € R%-1.
hi(x; Wi, br) = ¢ (Wix + by). (2.10)

Note that W and b are now a matrix and a vector, respectively. The hypothesis £,
or output of the [-th layer represents the activations of several neurons placed next
to each other and all connected to the same set of inputs. Such a layer is called a
fully-connected layer.

We apply the activation function in a point-wise fashion unless specified otherwise.
For the very first layer /1, the input is a domain point. Every following layer has the
output of the previous layer as its input. The output of the final layer is the overall
hypothesis of the MLP. Because of this directionality, an MLP is a feed-forward neural
network.

2.4.1.3. Activation Functions

In the linear model, the function ¢ has the purpose of mapping the intermediate
result s = (w, x) + b to the label set. The activation function of the last layer in an
MLP is used in the same manner. However, in eq. (2.10), we can see that all layers
have their own activation function, not only the last. These ¢+, ..., ¢1_1 are essential,
but for a different reason. They serve as non-linearities. Without them, the whole
composition hip_j o ... o hj could be described by a single matrix W and vector b,
and in turn by a single perceptron (cf. Goodfellow, Bengio, and Courville 2016, p. 192).
The same is true for linear activation functions.

27

2. Machine Learning in the Past and Present

o
15 - o ©
[J
i ([1]
1.0 ° ...
[J
0.5 [)
® C(lass1
0.0 Class 2
—0.5 1 ° ~
@
@
o N °
—1.5 1 ([T
-1 0 1

Figure 2.1.: The XOR problem, which is not linearly separable (see section 2.1.2.1).

Activation functions should not only be non-linear, but also differentiable for use
with gradient-based optimization techniques (see section 2.1.3). Differentiability rules
out the original perceptron activation function ¢ = sgn. In the following, we discuss
several important activation functions (cf. Goodfellow, Bengio, and Courville 2016,
191 sqq.):

e Sigmoid ¢(s) = o(s) = ﬁp(s). This function is used for logistic regression (see
section 2.1.2.2). Its range [0, 1] makes it suitable for approximating individual
probabilities.

* Hyperbolic Tangent ¢(s) = tanh (s) = %. Like o, it has a sigmoidal
shape. However, it has a point symmetry around the origin and locally resem-
bles the identity at tanh (0) = 0, which has benefits for the application of neural

networks in practice.

e Rectified Linear Unit “ReLU” ¢(s) = max (0,s). First described in Nair and
Hinton (2010), this activation function is obtained by taking the limit of many
neurons with sigmoidal activation functions and randomly distributed b. It is
easy to compute and free of second-order effects because the second derivative
is zero almost everywhere (cf. Goodfellow, Bengio, and Courville 2016, p. 193).
Strictly speaking, it is not differentiable everywhere, which is not problematic
for practical purposes.

* Softmax ¢(s)x = %. This activation function is a common choice for the

last layer of a neural network in classification tasks. Its individual components
are never negative and always have the sum 1, which makes softmax ideal
for categorical probability distributions (cf. ibid., p. 81). Furthermore, the
combination of softmax activation function and cross-entropy loss function (see

28

2.4. Deep Learning

section 2.4.1.4) has a derivative that can be calculated very efficiently (cf. ibid.,
p. 222).

2.4.1.4. Loss Functions

Neural networks are learned, or “trained”, from data by solving the ERM problem
(see section 2.1.1.3). The hypothesis space is parameterized by weights and biases,
and the solution is determined using a gradient descent method (see section 2.1.3). For
this approach, we require a differentiable loss function. To calculate the derivatives
w.r.t. the individual layers” weights, the chain rule is applied. The process is known in
literature as backpropagation (cf. Rumelhart, Hinton, and Williams 1986; Goodfellow,
Bengio, and Courville 2016, p. 204).
Depending on the task, the following loss functions are common choices:

* Mean Squared Error L(h,x,y) = %||h(x) — y||3. The mean squared error loss
function (cf. Goodfellow, Bengio, and Courville 2016, p. 108) is suitable for
regression tasks, i.e., prediction of a continuous value. In practice, it is often
prefixed with to remove the factor 2 from the derivative. Note that this
definition does not contain a mean explicitly. Instead, the mean operator is part
of the empirical risk (see eq. (2.4)). Minimizing the squared error is equivalent to
maximizing the likelihood assuming a normal distribution of y (cf. ibid., p. 143).

e (Categorical) Cross-Entropy L(h,x,y) = — Y4_, yxlog h(x);. When y and h en-
code categorical probability distributions, this loss function is used for classifi-
cation and combined with the softmax activation function. It can be derived
from likelihood maximization as well (cf. ibid., p. 132). There is an alternative
formulation for binary classification when the last layer’s activation function
is a sigmoid, denoted binary cross-entropy: L(h,x,y) = —ylogh(x) + (1 —
y)log (1 —h(x)).

2.4.2. Convolutional Neural Networks

The MLP in eq. (2.9) is defined for domain sets that are real vector spaces. Images,
however, are represented as matrices or objects with three indices (see section 2.3.1).
As such, they are incompatible. While images can be “flattened” to vectors, spatial
relations in the image cannot be kept intact this way. Furthermore, this loss of
information complicates feature learning, since many invariances are defined w.r.t.
two-dimensional coordinate transformations.

In this section, we describe a replacement for eq. (2.10) which solves both these
problems. It takes the spatial structure of images into account and is translation
covariant. This new convolutional layer exchanges the matrix-vector product W;x with
a convolution W; * X (cf. ibid., p. 348):

w' ' dq
(X, Wi, bp)ijx = ¢ (Yo) Wi ji ik Xiigjjreii + bk) , (2.11)
ij K

which transforms an input X of dimensions w x h x c into an output of dimensions
(w—w'+1)x (h—h +1) x ¢ using a kernel W of size w’ x I’ x ¢’ x c. While an

29

2. Machine Learning in the Past and Present

image has a number of channels, the output of a convolutional layer has a number of
feature maps.

2.4.2.1. Implementing Convolutional Layers

Equation (2.11) is a typical implementation of a convolutional layer, but there are
many alternatives. This section discusses possible design choices when constructing
such a layer.

First, we observe that the central operation in eq. (2.11) is only really a convolution
w.r.t. the dimensions of width and height. If we set the kernel’s w’ and h’ sizes to one,
we obtain:

dj
(X, Wi, bp)ijx = ¢ (Y Wik Xijw + bk) :
k/

Reducing the image dimensions w, h and c to one, and removing all indices of
dimensions of size one, the equation becomes:

djq
WX Wby = ¢ (Y Wi Xp + bk)
k/

= <Pl((WzX + bk)k)r or
h(X; Wi, b)) = ¢ (WX +b),

which is equal to a layer in an MLP. Along the axis of feature maps, the convolutional
layer does not in fact convolve image and kernel, but rather computes a matrix-vector
product.

The second observation is that the output of a convolutional layer as described
in eq. (2.11) has a smaller width and height than the input image. This is necessary
in order to keep the indices of X; ;1 j 41 within the range of the image. This
reduction in output size makes the convolution valid (cf. Goodfellow, Bengio, and
Courville 2016, p. 349). Alternatively, one can pad the input image with zeros before
convolution such that the input and output width and height of the layer are equal.
Padding is not indicated along the channel axis because eq. (2.11) is not a convolution
in that respect, as per our first observation.

2.4.2.2. Spatial Pooling

In a convolutional layer, the same filter mask is applied to all spatial locations of the
layer’s input. This property is known as weight sharing (cf. LeCun et al. 1988), and
means that convolutional layers are translation covariant (see section 2.3.4.2). How-
ever, if a neural network should detect the presence of certain objects independent of
their location, translation invariance would be even better.

Spatial pooling layers can provide limited translation invariance. The layer’s input
is divided into regions. Commonly, a grid of equally sized non-overlapping regions
is used (cf. Goodfellow, Bengio, and Courville 2016, p. 342). 2x2 pixels is a typical
region size. For each region, an output value representative of all input values
inside the region is determined. Maximum pooling (cf. Zhou and Chellappa 1988) is

30

2.4. Deep Learning

a common implementation. If the input is translated slightly, such that the maxima
remain inside their original regions, the result of maximum pooling is unchanged.
A further benefit of spatial pooling with non-overlapping regions is the dimen-
sionality reduction, which is a possibly greater benefit than the limited translation
invariance. However, a similar reduction can be achieved by implementing strides
inside the convolutional layer (cf. Goodfellow, Bengio, and Courville 2016, 348 sq.).
This effectively results in a spatial pooling where the representative value is always
the upper-left pixel, but at a considerable speed-up compared to maximum pooling.

2.4.3. Implementation Details

While the fundamental building blocks of CNNs are available since the late 1980s
(e.g. LeCun et al. 1988; Zhou and Chellappa 1988), the first “breakthrough” result
(Krizhevsky, Sutskever, and Hinton 2012) of a deep learning system is published in
2012. This coincides with the availability of large-scale labeled training data (see also
section 6.2.1.1), and with the advent of general-purpose GPU computing. In fact, the
neural network architecture in Krizhevsky, Sutskever, and Hinton (ibid.) is simply
the largest that fits the specific GPU hardware and not the result of a model selection
process (see section 2.2).

In the following, we discuss a number of smaller “tweaks” and implementation
details that are also crucial for the successful application of a CNN.

2.4.3.1. Initialization

We train CNN’s using gradient-based optimization (see sections 2.1.3 and 2.4.1.4). Its
success is highly dependent upon the correct method of random initialization of the
weights and biases. The symmetry of weights is of particular concern. If two weight
components in the same layer are initialized to identical values, they remain identical
throughout the whole optimization process. This effectively reduces the complexity
of the neural network and leads to redundant calculations.

A simple heuristic initialization procedure is offered in LeCun et al. (1988). Given a
layer with d;_; input dimensions, each weight component is sampled independently
from a uniform distribution :

However, this method has a number of drawbacks which are discussed in Glorot
and Bengio (2010), including “vanishing gradients”. If the activation functions used
in the neural network are hyperbolic tangents (see section 2.4.1.3), Glorot and Bengio
propose the following initialization for a layer with d;_; input dimensions and d,
output dimensions:

V6 V6]
Vai+d A+ d

Recent implementations of CNNs often use the ReLU activation function (see
section 2.4.1.3) as opposed to the hyperbolic tangent. In He et al. (2015), the authors

00 ~ [

31

2. Machine Learning in the Past and Present

derive an optimal initialization for such “rectified” neural networks. The weights for
a layer with d;_; inputs are sampled from a normal distribution AV as follows:

0% ~ N (0, | /i) : (2.12)
di_q

Gradient descent algorithms (see section 2.1.3) change all weights simultaneously,
during each step. However, the change of an individual weight component, as
determined by the partial derivative, is only “correct” assuming that the remaining
weights are not changed. On the scale of whole layers, this phenomenon is discussed
in Ioffe and Szegedy (2015) as “internal covariate shift”.

To counteract this, Ioffe and Szegedy propose a normalization technique called
batch normalization. The inputs to a layer are normalized element-wise by subtract-
ing the mean and dividing by the standard deviation (¢f. Goodfellow, Bengio, and
Courville 2016, p. 268). During training, the statistics can simply be calculated across
a sufficiently large minibatch (see section 2.1.3.1). However, when the model is used
for predictions, the minibatch size is effectively 1, which makes the calculation im-
possible. Instead, moving averages of the normalization coefficients are maintained
during optimization and stored for later use in predictions.

2.4.3.2. Batch Normalization

2.4.3.3. Residual Networks

In section 2.4.3.1, we already state the importance of initialization. For very deep
neural network, e.g., with hundreds of layers, it is even more relevant, as a single
badly initialized layer can cause the whole network to fail. If the weights are close
zero, information is destroyed.

Residual networks (cf. He et al. 2016a,b) are a solution to this problem. Instead of
accepting the loss of information with small weights, a reasonable default is provided.
For each layer, its input is added to the output, such that zero weights result in an
identity layer where no loss of information occurs. Only the deviation from the
identity (the residual) has to be learned. A residual convolutional layer is defined as:

w' W di
(X, Wi bp)ijx = ¢ < Yo) Wi aXiij— e + bk) +X.
i/,j/ k/

The handling of edge cases, e.g., k' # k, is discussed further in He et al. (2016a).

32

3. Concept Hierarchies as Semantic
Knowledge

All T know is that I don’t know
All T know is that I don’t know nothing
And that’s fine. (Operation Ivy)

In this chapter, we abandon the notion of classes in favor of the more general
concepts. By machine learning convention, all classes in a set are assumed to be
mutually exclusive!. Something that is a member of one class cannot be in another
class at the same time. Hence, the corresponding random variables are modeled
using a categorical distribution.

A concept does not have this limitation. For example, an English Cocker Spaniel
can be a dog at the same time. However, restrictions can still exist on a more com-
plex level. The English Cocker Spaniel cannot be a Pembroke Welsh Corgi even
though both are dogs. This is informed by semantic knowledge.

In the following, these restrictions based on semantic knowledge are modeled
by relations between concepts. We then use these relations to nest concepts into
hierarchies. Finally, we explore knowledge bases from which such hierarchies can be
obtained.

3.1. Formal Introduction

Let us start with a simple prediction task. Examples are from the set Z = & x),
where there exists a domain set X, e.g., images or time series, as well as a label set V.
If we assume that our task is a classification task, then there exists a set of classes J*.
We then define Y = V" (see e.g., section 2.3.2.1), such that every domain point x is
described by exactly one class. This restriction is reasonable as long as all classes in
VP are mutually exclusive. However, consider the set shown in fig. 3.1 as). What
would be a reasonable label for an image of a 1999 Toyota Camry? If we label it as
car, all other possible labels are ruled out. That includes vehicle and object, which
are also reasonable labels. Thus, we need to reformulate ¥ to allow for multiple labels
at the same time, which we call concepts instead of classes to highlight the omission
of mutual exclusivity.

A classification problem where \yP } > 2, but Y = VP is called a multi-class
classification problem (cf. Shalev-Shwartz and Ben-David 2014, 25 sq.; cf. Bishop 2008,
182 sqq.). A multi-label classification problem generalizes this, such that any number
of classes per label is allowed, i.e., Y = P(Y"). This formulation allows a label like
{object, vehicle, car}. However, it also allows {cat,dog}. Since our task is now

IFor example, see the third postulate in Niemann (1983).

33

3. Concept Hierarchies as Semantic Knowledge

Figure 3.1.: A loose set of concepts, where mutual exclusivity does not hold.

too general, it needs to be restricted again, imposing a new structure on). Formally,
this is known as structured output prediction (cf. Shalev-Shwartz and Ben-David 2014,
198 sqq.), and we discuss methods that are formulated in this way in section 4.1.1.
Our hierarchical classifier proposed in section 5.2 fits this definition as well.

In the following, we formally define the intuitions behind sets like in fig. 3.1, and
how relations can be used to structure a label set. We then focus on different types of
semantic relations and the knowledge represented therein.

3.1.1. Concepts

Before we can begin using concepts to structure our models and guide the develop-
ment of our methods, we must first offer a definition. A concept is a semantic entity. In
philosophy, a concept is also seen as a unit of thought. It has two main components,
intension and extension (cf. Fitting 2020). The intension of a concept is the meaning
behind it, its connotation or idea. The extension then specifies what things the concept
applies to in the real world.

3.1.1.1. Formal Concept Analysis

In Wille (1992), the author offers a formal definition. The definition is based on set
theory and is part of a larger theory named formal concept analysis. Concepts cannot
exist in a vacuum. They need a space in which their extension and intension can be
represented. In Wille’s theory, this is called a context € = (G, M, I), where:

¢ G is a set of objects (“Gegenstande”),
* M is a set of attributes (“Merkmale”) and
¢ [C G x Mis a binary relation. gIm means that the object g has the attribute m.

A concept is in this theory is a pair (A, B) with A C G and B C M. The set of
objects A is the extent (from extension) of the concept. Similarly, the set of attributes
B is the intent of the concept. For consistency; it is required that the attributes B are
shared by all objects in A and vice versa. The theory of formal concept analysis is

34

3.1. Formal Introduction

developed further in Wille (2005). However, we consider this theory too complex for
our applications. Hence, we simplify it in the following section.

3.1.1.2. Concepts in this Work

For the remainder of this thesis, we do not consider attributes to inform the intension
of concepts. However, it should be noted that learning with attributes is an active
research area and a great example of semantic knowledge integration. We further
simplify our theory by defining both the extension and intension of concepts only
over other concepts. Hence, a context is simply the set of all concepts C. There
are neither separate objects as extensions, nor are there attributes as intensions of
concepts.
The context for the example in fig. 3.1 is the set:

C = {object, vehicle, animal, car, bus, cat,dog}.

On its own, the context has no structure. We intuitively define the extension
E:C — P(C) of a concept c as all concepts ¢ applies to. For example:

E(animal) = {animal,dog, cat}.

In the same way, we can treat all concepts that apply to a concept c as its intension
I:C — P(C), such that:

I(animal) = {object,animal},

which has an attribute-like interpretation.

A formal definition of intension and extension is provided as egs. (3.1) and (3.2) in
section 3.1.2.2.

The tuple (C, E, I) is a taxonomy. Clearly, the semantic knowledge necessary to give
a structure to C is contained in E and I. In the following sections, we explore the
sources and representations of such knowledge.

Note that our use of the word concept for elements of the context, while
incompatible with formal concept analysis (cf. Wille 1992), is common in the
field of natural language processing (NLP) (cf. Harispe et al. 2015, 44 sq.) and
also machine learning (cf. Silla and Freitas 2011).

3.1.2. Relations

Relations are a natural description of the extension and intension of concepts. We use
them in following sections to represent concept hierarchies. However, they should
first be defined formally.

35

3. Concept Hierarchies as Semantic Knowledge

3.1.2.1. Formal Definitions

In general, we use the term relation to mean a binary, homogenous relation. Thus,
a relation R is a (non-strict) subset of the Cartesian product of a set X with itself:
R C X x X (cf. Givant 2017, p. 1).

Let us first consider four special cases of a relation over X. There are (cf. ibid., p. 2):

¢ The empty relation @,

o the universal relation X x X,

e the identity relation id = {(x,y) : x,y € X Ax =y} and
e the diversity relation di = {(x,y) : x,y € X Ax # y}.

Relations are sets, and operations such as the complement, union, intersection and
difference extend naturally. There are also binary operations specific to relations. The
composition of two relations R and S, represented in this work as o, is of special
interest. It is defined as (cf. ibid., 6 sq.):

RoS={(x,z):3Jy:(x,y) € RA(y,z) € S}.
A relation R C X x X is (cf. ibid., p. 13):
* Reflexive if id C R, i.e., every element relates to itself,
e symmetricif (x,y) € R = (y,x) €R,
e transitive if (x,y) € RA (y,z) € R = (x,z) €R,
e antisymmetric if (x,y) € RA(y,x) E R = x=y.

We are mainly interested in relations that are transitive, reflexive and antisymmetric
for the purpose of taxonomies. Relations with these properties define a partial order
(cf. ibid., p. 13). There are also strict partial orders, where the relation is transitive,
irreflexive and asymmetric. They are closely related, and many semantic relationships
can be described in both manners.

With transitivity and the composition operation o, we can define two representa-
tions of relations that are used to transform taxonomies into graphs (see section 3.2.2).
The transitive closure R* of a relation R is the minimal relation that is both transitive
and contains R. If R’ is the relation obtained by composing R with itself i times, then
RT = U2, R'. The transitive reduction R~ of R is the smallest relation that has the
same transitive closure as R (cf. ibid., 144 sqq.).

3.1.2.2. Semantic Relations

We now explore typical relations between semantic entities. Our main interest is in
relations that can be used to build a taxonomy. However, there are non-taxonomic
relations that also represent semantic knowledge.

The hyponymy relation is also known as the entailment, inclusion or is-a relation
between nouns (cf. Brinton 2000, p. 135; Cruse 2002). It is the foundation for the

36

3.2. Concept Hierarchies

methods and models in this thesis. It relates narrower with more general terms, e.g.,
a car is a vehicle. In linguistics, the hyponymy relation is considered transitive,
irreflexive and asymmetric, i.e., it induces a strict partial order. However, we use it to
describe the extension of a concept as proposed in section 3.1.1.2. Hence, we include
id to form the reflexive and antisymmetric hyponymy relation < ;¢,, e.g., such that
dog < s dog.

Definition 3.1 (Extension and intension). With < j;,, we formally define the exten-
sion E : C — P(C) of a concept c as:

E(c)={d €C:c <isac}, (3.1)
and the intension I : C — P(C) as:
I(c)=4{d €C:c <isac}. (3.2)

The inverse relation to hyponymy is called hypernymy.

Troponymy is a relationship between verbs. It is specific to WordNet (Miller 1995,
see also section 3.3.1.1) and proposed in Fellbaum and Miller (1990). Troponymy
describes the “manner” relationship, e.g., sweeping is a manner of cleaning. Like
hyponymy, it is a strict partial order, but on verbs instead of nouns.

A more practical semantic relation, meronymy, connects parts of something to the
whole (Brinton 2000, p. 133). It is relevant for computer vision applications because it
can have a spatial extent. For example, wheel is a part of car — not only in a semantic
sense, but also spatially, and thus, visually. Datasets like Visual Genome (see Krishna
et al. (2017) section 3.3.2.1) encode such relationships. Knowledge of meronymy can
be used to improve generalization (cf. Sirakov et al. 2015).

Hyponymy, troponymy and meronymy all describe nested sets in a sense. This
idea of hierarchy is explored in more detail in section 3.2. However, there is also a
fundamentally different semantic relationship: antonymy (cf. Brinton 2000, p. 136).
There are two kinds. The first kind, binary antonymy, relates complementary concepts
such as dead and alive. The second kind, non-binary antonymy, connects extremes of
a gradual concept, e.g., hot vs. cold.

3.2. Concept Hierarchies

In section 3.1.2.2, we describe different semantic relations between concepts. The
goal is to derive the extension and intension of concepts from these relations to
ultimately build a taxonomy. We specifically focus on the hyponymy relation in this
thesis. However, most of the methods and models apply to any relation with similar
properties w.r.t. to the order they induce.

A useful perspective on a taxonomy of hyponyms and hypernyms is hierarchi-
cal. Concepts are arranged in a hierarchy of nested sets, where concepts subsume
sets of other concepts. This concept hierarchy representation is possible because the
underlying relation is a (partial) order.

Concept hierarchies are introduced in Lu (1997). The idea is more commonly
known as ontology (cf. Lorhardus 1606; Neches et al. 1991). In the following, we discuss

37

3. Concept Hierarchies as Semantic Knowledge

two ways of representing concept hierarchies. First, as relations and orders, using
the theory introduced in section 3.1.2.1. Second, as graphs, for better algorithmic
processing and improved visual understanding.

3.2.1. Concept Hierarchies from Relations

This section details the process of deriving a hierarchy from an underlying relation.
We begin by addressing the requirements w.r.t. the properties of a relation. The idea
of comparability is also explored.

3.2.1.1. Requirements

To build a hierarchy, we expect the relation to induce a partial order. Such a relation
is reflexive, antisymmetric and transitive (cf. Givant 2017, p. 13). Transitivity is
necessary for nesting, which is a fundamental property of hierarchies.

The hypernymy relation < js.,, the focus of this thesis, is transitive. However, as
mentioned in section 3.1.2.2, it is arguable whether it should be reflexive considering
its original definition. While dog < i, dog seems like a reasonable statement, the lit-
eral meaning of “hyponym” is “under-name”. It suggests a more strict, non-reflexive
interpretation. In linguistics, the reflexive part of the relation even has a separate
name: autohyponymy (cf. Gillon 1990).

For consistency with linguistics, we would have to consider hyponymy as inducing
a strict partial order, i.e., transitive, but irreflexive and asymmetric. However, we use
the reflexive formulation as it is more practical for our purposes, and the derived
intension and extension are unique for each concept. Furthermore, it allows for more
concise descriptions in section 5.2.

3.2.1.2. Comparability

Relations can have varying degrees of completeness. For example, in a fotal relation
R, every possible pair (x,y) of elements of the underlying set is comparable. That
means that either (x,y) € Ror (y,x) € R (¢f. Givant 2017, p. 39). In an empty relation
@, no two elements are comparable.

Hyponymy is a partial order, which means that some, but not all elements are
comparable. For example, dog and cat are not hyponyms in either direction. Thus,
it is not always possible to determine the most broad or narrow concept in a given
set. However, when two concepts are not comparable, we can deduce that they are
mutually exclusive in a sense. This type of semantic knowledge is used, e.g., in Deng
et al. (2014). Still, this does not always apply (see section 5.2.2).

Moreover, if a hyponymy relation were total, all concepts would be comparable,
and no concepts would exclude each other. In other words, there would exist only
one class.

3.2.2. Concept Hierarchies as Graphs

Graphs are a popular choice to represent concept hierarchies as they are visually
approachable and many intuitive assumptions about their interpretation align with

38

3.2. Concept Hierarchies

(a) A typical graph representation of a (b) A “correct” graph representation of a
concept hierarchy defined by a hy- concept hierarchy, where the edges are
ponymy relation. the hyponymy relation.

Figure 3.2.: Comparison between different graph representations of the same concept
hierarchy.

hierarchies. Common operations on concept hierarchies are defined using graph
theory, e.g., semantic similarity in terms of distance in a graph (see section 6.1.2.2).
This section details the basics of representing a concept hierarchy as a graph and also
describes specific subtypes of graphs that are especially applicable.

3.2.2.1. Graph Representation

Formally, a graph G is a pair (V, E), where V is the set of vertices, or nodes, and
E C V x V is the relation describing the edges, or connections between nodes (cf.
Diestel 2017, p. 2).

In this work, we consider directed graphs (cf. ibid., p. 27), i.e., E is not symmetric.
See fig. 3.2a for an example of a directed graph. While this figure visualizes a concept
hierarchy, the relation E is not transitive, and it is not a hyponymy relation.

What we visualize, and store in memory for algorithmic use, is the transitive
reduction (see section 3.1.2.1). Transitivity is implied, and is expressed in the directed
reachability relation over the graph. We can also derive the hyponymy relation using
E™, the transitive closure of the relation of edges E. However, there is another
difference. The relationship is often inverted such that the notions of “parent” and
“child” nodes align with the subsumption of concepts. Directed edges point away
from the “root”, or the most generic concept.

Another benefit of graphs is the concept of connectedness, where every node should
have at least one edge connected to it (cf. ibid., p. 10). This is a requirement for
most implementations of hierarchical classifiers (cf. Silla and Freitas 2011), while the
stronger notation of connexity or totality in relations is not, and is also not compatible
with hyponymy relations (see section 3.2.1.2). The relation equivalent to a connected
graph that represents hyponymy is a directed partial order, where any subset of the
underlying set must have an at least as or more general element in the whole set.
Clearly, it is easier to express this requirement using graph theory.

39

3. Concept Hierarchies as Semantic Knowledge

Figure 3.3.: A directed cycle in a graph which exhibits a “diamond” pattern.

3.2.2.2. Trees and Directed Acyclic Graphs

There exist two specific types of graphs that lend themselves to representing concept
hierarchies. Both restrict the existence of cycles, i.e., paths of length > 3 where the
first and last node are identical (cf. Diestel 2017, p. 8).

The first type is the tree, a connected acyclic graph (cf. ibid., p. 13). Trees are directed
graphs, but no cycles can exist at all. The second good representation is the directed
acyclic graph (DAG). Here, only directed cycles are forbidden. Undirected cycles,
e.g., “diamonds” can exist (see fig. 3.3). Diamonds are a term from object-oriented
programming, where they represent multiple inheritance.

In practical applications, both types exist. On the one hand, the hyponymy relation
of the popular WordNet database (Miller 1995) is a DAG. Biological taxonomy, on
the other hand, has no cycles at all. Many hierarchical classification methods cannot
process concept hierarchies that are DAGs (cf. Silla and Freitas 2011). The method we
propose in section 5.2 can do so, but cannot assume mutual exclusivity of siblings as
a consequence, which may have performance implications (see section 6.6.2).

There are theoretical advantages to restricting a concept hierarchy to a tree repre-
sentation. For example, the length of the shortest path between two nodes in a tree is
a metric. In a DAG, it is possible that the triangle inequality is violated (cf. Barz and
Denzler 2019). Trees also have the advantage that all shortest paths are unique.

3.3. Semantic Knowledge Bases

Knowledge is a central theme of this thesis. While the actual definition of knowledge
is subject to debate and extensive research (epistemology), we specifically mean the
knowledge contained in a concept hierarchy.

In this section, we show where such semantic knowledge can come from. There
are several types of knowledge bases. We start with lexical databases, which supply
us with concept hierarchies.

Our work assumes that image datasets and semantic knowledge exist separately,
but there are also datasets that combine images with enhanced semantics, which
we describe in the following. We further mention subject-specific knowledge bases.
These are of particular importance because they show that niche applications can also
profit from knowledge integration. We also consider machine-readable knowledge
bases with formalized semantics, which are crucial for cost-effective applications of

40

3.3. Semantic Knowledge Bases

machine learning integrated with semantic knowledge.

3.3.1. Lexical Databases

Lexical databases are one important source for concept hierarchies in this work. A
lexical database is in essence a dictionary, but one that is accessible to algorithms.
Such databases are often enhanced with semantic relations from which a hierarchy
can be constructed (see also section 3.2.1).

3.3.1.1. WordNet

WordNet, presented in Miller (1995), is a crucial resource for research in computer
linguistics and NLP. It is the de-facto standard lexical database and essential for this
thesis. An online browser? can be used to explore the database, but there are also
programmatic ways to access the data, e.g., NLTK described in Loper and Bird (2002).

The WordNet database contains English words, i.e., nouns, verbs, adjectives and
adverbs. However, the units are not simply words in the lexical sense, but synsets.
Synsets are unordered sets of synonyms, i.e., lemmata that all represent identical
concepts. For example, the synset dog.n.01 contains the lemmata dog, domestic dog,
canis familiaris. The lemma dog, however, appears in six other synsets, e.g., as
a mechanical part. To distinguish them, synsets are numbered, e.g., such that the
animal is dog.n.01, but the part is dog.n.06.

All relations in WordNet are between these synsets. This is ideal for our application.
First, because different lemmata for the same concept are not important for visual
recognition. And second, because the numbering of synsets avoids confusion when
the same lemma has multiple concepts.

For nouns, WordNet offers hyponymy and meronymy relations. Verbs are en-
hanced by troponymy and adjectives have both direct and indirect antonyms. These
correspond to binary and non-binary antonyms as described in section 3.1. There
are also relations between different parts of speech. For example, the pertainymy
relation links nouns with adjectives such that criminal pertains to crime.

Lexical databases such as WordNet that are augmented with relations are also
known as semantic networks.

3.3.1.2. Multilingual WordNet Variants

The WordNet lexical database is of high quality, but limited scope. Most impor-
tantly, it is only available in English. However, several alternatives, extensions and
combinations exist for other languages.

The BabelNet project, proposed in Navigli and Ponzetto (2012), is an effort to create
a very-large-scale multilingual lexical database and semantic network. It aggregates
multiple data sources to reduce or eliminate any human annotation effort. The current
version, BabelNet “live”3, uses at least 16 online sources that are constantly updated.
It is able to cover 284 languages with this strategy. To align the languages, BabelNet

Zhttps://wordnet .princeton.edu/
Shttp://live.babelnet.org/

41

3. Concept Hierarchies as Semantic Knowledge

relies on translations from Wikipedia, Wikidata and other multilingual knowledge
bases.

While BabelNet attempts to cover almost all possible languages, there are also
smaller-scale efforts that focus on individual languages. MultiWordNet, presented
in Pianta, Bentivogli, and Girardi (2002), is an example of such a project. Its goal is
to provide an Italian version of WordNet that is strictly aligned to the English coun-
terpart. Strict alignment means that all semantic relations are correctly transferable
from the original WordNet. There are also specific annotation for concepts that have
different extensions (see section 3.1.1) in either language, and lexical gaps.

The Global WordNet Association coordinates efforts on multilingual WordNet
developments. Their main goals are the standardization of representations and
the sharing of data between individual projects. The platform also provides
guidelines for building further WordNets in new languages. A summary can
be found in Pease, Fellbaum, and Vossen (2008).

3.3.2. Visual-Semantic Datasets

Technically speaking, most computer vision datasets (see, e.g., section 6.2.1.1) com-
bine some forms of visuals and semantics, typically in the form of images and class
labels. Here, we explore datasets where semantics are enhanced, i.e., contain more
information or have a more complex representation than simple class labels or bound-
ing boxes. Label representations include complex scene descriptions, captions and
question-answer pairs.

It should be noted that datasets based on ImageNet (see section 6.2.1.1), while not
described in detail here, are also semantically enhanced because all labels are synsets
taken directly from WordNet (section 3.3.1.1).

3.3.2.1. Visual Genome

Visual Genome, originally presented in Krishna et al. (2017), is probably the dataset
with the most semantically complex annotations. For each single image, it encodes
objects with semantic and visual relationships, attributes and bounding boxes for
each part. An example image is shown in fig. 3.4, where the large amount of bounding
boxes is clearly visible.

While the annotation complexity is impressive, the utility is further improved by
the feature that all semantic units in all annotations are WordNet synsets. This allows
one to take advantage of additional semantic knowledge from WordNet. The formal
representation is a scene graph. It is similar to a knowledge graph (see section 3.3.3.2)
in that it consists of triples of subject, predicate and object. Each individual element
is associated with a region in the image by a bounding box.

The dataset consists of 108 077 images. In total, there are approximately 2 300 000
relationships encoded, connecting approx. 3 800 000 objects and also approx. 2300 000
attributes.

42

3.3. Semantic Knowledge Bases

Regions. Attributes Relationships
Adog grass is tall dog has tail

tall green and grass is brown tags are attached

brown grass to collar
grass is green

white dog with
black spots

dog is white doginafield

dog s black spot on dogs head

spotted dog's wet black
nose

dog's curved white
tail
tail is curved
dog's red collar .
- legs are hidden in
§ tail is white
dog's red ID tags grass
on a collar collar is red

dog in afield collar is dog

large black spot on collar is
dog's head idenification

Figure 3.4.: An example from the Visual Genome dataset. Image cap-
tured from https://visualgenome.org/VGViz/explore?query=human,
20behind’20dog on February 10th, 2021.

The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.

Figure 3.5.: An example of image captions from the Microsoft COCO dataset. Image
captured from https://cocodataset.org/#captions-2015 on February
11th, 2021.

3.3.2.2. Image Captioning

While scene graphs in Visual Genome (see section 3.3.2.1) allow for an exceptional
degree of scene understanding, such annotations are very expensive and time-con-
suming. Image captions are a less informative, but still semantically rich type of label,
where annotators are simply asked to describe the scene in words. Processing image
captions involves NLP and evaluation schemes can be very complex and difficult (cf.
Chen et al. 2015b).

Microsoft COCO (Common Objects in Context, cf. Lin et al. 2014) is mainly an object
detection dataset. Objects are not just annotated with class labels, but as individual
instances. Segmentation maps are also provided per instance for visually fine-grained
scene understanding. On the semantic side, there are five image captions available for
each of the approximately 328 000 images. Figure 3.5 shows two example captions.

Natural images contain not only objects, but occasionally also text. There are
datasets that combine image captioning with optical character recognition (OCR),
such that image captions also describe any legible text. TextCaps (cf. Sidorov et
al. 2020) relates written text in images to objects and also offers interpretations in
captions, such as signs or public information displays. COCO-Text (cf. Veit et al.
2016) focuses only on the text in images. It differentiates between hand-written and
machine-printed text for a more challenging recognition task.

43

3. Concept Hierarchies as Semantic Knowledge

Skin Lesion

/\

Melanocytic Non-melanocytic
-~ - -
- ~<s <= - ~-->
Benign Malignant Benign Malignant
- Congenital nevi : & Fai
i Atwical e ' - Melanoma ' - Dermatoflbro:ﬁa a - Basal cell carcinoma La’ .
- Spitz/Reed nevi - Vascular b - Malignant keratosis paog
. Benign keratosis [y e

Figure 3.6.: A hierarchy of skin lesions. Figure taken from Barata, Marques, and
Celebi (2019).

There is an effort by Google, Conceptual Captions (cf. Sharma et al. 2018), to
automatically generate a very large dataset of more than 3 000 000 images. Instead of
human annotations, they use image captions from websites and perform extensive
filtering. There is a bespoke simplification step called “hypernymization” that makes
the often very specific image captions more general.

3.3.2.3. Visual Question Answering

Visual question answering (VQA) is a complex visual-semantic machine learning
task. The input to such a system is an image with an associated question, while the
answer has to be predicted. This requires an understanding of the scene as well as
the semantics of the question, leading to interesting challenges in model design. For
example, consider a picture of a street and the question “can you park here?” as well
as the knowledge required to answer it.

The eponymous VQA dataset presented in Antol et al. (2015) provides such data.
Images are taken directly from MSCOCO (see section 3.3.2.2). The authors collect
760000 questions from humans. To avoid challenges (e.g., as in Chen et al. 2015b)
in evaluating the correctness of answers, they also collect ten answers for each
individual question. A predicted answer is then considered correct if it matches at
least three of the human answers.

Further visual-semantic datasets include Fashionpedia (Jia et al. 2019) and Visu-
alSem (Alberts et al. 2020).

3.3.3. Domain-Specific Knowledge Bases and the Semantic Web

WordNet is a helpful resource for general object recognition, as evidenced by its use
in the construction of ImageNet (see section 6.2.1.1). However, industrial, medical or
research applications have separate terminologies, such that we cannot use WordNet
to build a concept hierarchy. For example, biology has its own taxonomy. In medicine,
there are many hierarchies, e.g., of skin lesions (cf. Barata, Marques, and Celebi 2019)
that can be used. We explore potential domain-specific data sources in this section
and also consider the formalization of such knowledge.

44

3.3. Semantic Knowledge Bases

3.3.3.1. Biological

This thesis contains several biological applications, specifically in the field of biodi-
versity (see sections 7.3 and 7.4). In biology, the central hierarchy comes from the
Linnean taxonomy system (cf. Linneeus 1758).

An important resource for taxonomic information is WikiSpecies®. It is represented
as RDF data (see section 3.3.3.2) in the Wikidata® project, and as such, can be ac-
cessed with structured queries in the SPARQL language. We use it in this thesis for
experiments that require knowledge of relations between species, e.g., in section 6.5.

WikiSpecies is also cross-referenced with other databases, including the Catalogue
of Life®. The catalogue is a meta-database combining 186 individual taxonomic
databases. Hence, there is a high likelihood of finding and relating even the most
obscure species.

While biological taxonomies are easily found in a machine-accessible format, there
are many areas in biology where knowledge is mainly represented in natural lan-
guage. Bioschemas (cf. Gray et al. 2017) is a recent attempt to formalize more areas
by offering a unified markup language and schemas for life sciences.

3.3.3.2. Semantic Web

There are two main ways of accessing knowledge represented in a machine-readable
fashion. The first is to apply NLP methods to process documents like scientific
publications, textbooks and manuals. The second is to store any knowledge in a
machine-readable format is the first place. “Semantic Web” is an umbrella term for
technologies that aid in the second approach. They are also the technical foundation
of databases like Wikidata.

An early semantic web technology is Resource Description Framework (RDF),
proposed In Brickley and Guha (2014). It is a graph-based formalization of semantics.
An RDF model consists of a number of triples with subject, predicate and object. Such
a triplet is called a statement, and they are connected together to form a knowledge
graph. For example, consider this excerpt from the WikiSpecies database (see also
section 3.3.3.1):

Subject: Michotamia aurata (Q1313312)
Predicate: instance of (P31)

Object: taxon (Q16521).

Subject: Michotamia aurata (Q1313312)
Predicate: parent taxon (P171)

Object: Michotamia (Q14510436).

Similar to WordNet, each human-readable term like instance of has a unique iden-
tifier (P31) to mitigate potential overlaps.

“https://species.wikimedia.org/
Shttps://www.wikidata.org/
Shttps://www.catalogueoflife.org/

45

3.

Concept Hierarchies as Semantic Knowledge

OWL, the Web Ontology Language (c¢f. W3C OWL Working Group 2012), is a

generalization of the concepts in RDF. It allows for more complex expressions. Tax-
onomies are explicitly modeled by considering classes, properties and instances as
fundamental building blocks.

46

The Linguistic Linked Open Data platform integrates linguistic knowledge from
a variety of sources using semantic web technologies to allow for easier sharing
of data and automatic access. Their positions are stated in Chiarcos, Hellmann,
and Nordhoff (2011). It is a promising development for semantic knowl-
edge integration because it aims to make even more knowledge accessible to
methods like ours proposed in section 5.2.

4. Literature Overview

This chapter serves as a broad overview of literature that is relevant to this thesis. The
related work can be divided into roughly two categories. First, we discuss methods of
semantic knowledge integration into classification tasks. The respective knowledge
is almost always a concept hierarchy, however, we also consider other semantic
information such as attributes. In addition to methods of hierarchical classification,
we review several exploratory and analysis works. The second category concerns
problem formulations other than general classification tasks. Here, we focus on
problems that stand to benefit from semantic knowledge integration. We discuss
literature on imprecise data, several alternatives to (fully) supervised learning, and
natural language processing.

4.1. Semantic Knowledge Integration From Concept
Hierarchies

In this section, we review related work that proposes methods of hierarchical clas-
sification, or more generally, methods that incorporate semantic knowledge in the
form of a concept hierarchy to improve a classification task. The term hierarchical
classification subsumes a variety of different tasks and methods (Silla and Freitas
2011). All of them involve a concept hierarchy at some point to either constrain or aid
in the learning of a classifier. In the following, we point out important distinctions
and give an overview of relevant work in this field. We first list approaches where a
hierarchy is used to structure the classifier itself, e.g., to build connections in a neural
network. Afterwards, we discuss the mutually related topics of embeddings and
metric learning. Finally, we point out non-semantic hierarchies one may encounter in
computer vision and a variety of interesting analyses.

4.1.1. Model Structure

A major category of hierarchical classifiers are structural models. We consider a
method structural if the construction of the model itself is informed by a concept
hierarchy. Examples are special layers, or decision trees that are isomorphic to a
hierarchy, i.e., where the model’s architecture is hierarchical. We also list probabilistic
graphical models where the dependency graph is built from a concept hierarchy.
Methods in which a concept hierarchy is used to construct to a loss function are also
included for completeness.

47

4. Literature Overview

4.1.1.1. Hierarchical Architecture

An early structural method is presented in Marszalek and Schmid (2007), where
SVMs are nested to represent a given concept hierarchy. This improves both accuracy
and runtime compared to a contemporary one-vs-all SVM. In addition to hyponymy,
the work also explores applications of integrating meronymy and holonymy relations
(see section 3.1.2.2).

Boosting is a meta-learning method, where multiple “weak” classifiers with access
to a subset of features are aggregated into one hypothesis. In Fan, Gao, and Luo
(2008), SVMs are aggregated in a hierarchical boosting approach.

Hwang (2013) proposes a collection of structural hierarchical classification methods,
e.g., the Tree of Metrics. The author also discusses the separation of knowledge between
training data and concept hierarchy, considering the latter “external”, as we do in
this thesis.

Furthermore, the structure of a concept hierarchy can guide the construction
of a neural network. Many approaches consider a simplified hierarchy of classes
and superclasses, i.e., with only two levels. In Ahmed, Baig, and Torresani (2016),
specialist and generalist networks informed by both semantic and visual hierarchies
(see section 4.1.4) are proposed. Goo et al. (2016) considers hierarchical pooling
layers to represent generalization and specialization of features between classes
and superclasses. Knowledge graphs, textual descriptions of concepts and further
knowledge are integrated in Zhang, Lertvittayakumjorn, and Guo (2019), while still
only two hierarchy levels are considered.

Instead of restricting the concept hierarchy to two levels, one can assign one layer
of the neural network directly to one level in the concept hierarchy. For example,
Zhu and Bain (2017) propose one layer with a softmax activation function (see
section 2.4.1.3) per level. Their method is also used in Zhang, Mou, and Xie (2020)
to integrate semantic knowledge for image generation. Similar one-layer-per-level
approaches are discussed in Chen et al. (2018) and La Grassa, Gallo, and Landro
(2021). Roy, Panda, and Roy (2020) uses a “Tree-CNN”" not to improve accuracy,
but to increase the complexity as new concepts are encountered in an incremental
learning scenario (see section 7.1.2).

In Li et al. (2021), the authors propose a generalization of hierarchical classification
that allows for multiple hierarchies. The model differentiates between concepts that
occur in multiple hierarchies (“common subclasses”) and concepts that are restricted
to one of the hierarchies (“heterogeneous superclasses”). Each set of concepts is
assigned a separate branch of the underlying convolutional neural network.

The concept of “level” only applies to concept hierarchies that are trees (see
section 3.2.2.2). Hence, the aforementioned methods are not all compatible
with DAGs.

48

4.1. Semantic Knowledge Integration From Concept Hierarchies

4.1.1.2. Probabilistic Graphical Models

With the knowledge of a concept hierarchy and additional assumptions, the prob-
abilities of certain combinations of concepts can be inferred (cf. section 5.2). In the
following, we discuss a selection of methods that manipulate probabilities to integrate
knowledge.

Taskar, Guestrin, and Koller (2004) lays out a general framework to combine
probabilistic graphical models with SVMs. While kernel-based SVMs contribute their
capability of learning in high-dimensional feature spaces (see section 2.3.3.1), the
probabilistic graphical models can exploit the problem structure, e.g., as derived from
a concept hierarchy. A similar approach is discussed in Chen et al. (2015a), where
probabilistic graphical models are combined with deep neural networks.

In Deng et al. (2010), the authors explore the special requirements of classification
tasks with tens of thousands of classes. A key insight is that not all confusions, i.e.,
predictions that differ from the ground truth, are of equal consequence. They propose
a misclassification cost based on semantic distance (c¢f. section 5.1.1.1) and derive
a probabilistic Bayes classifier to minimize this objective. Concept hierarchies are
used to derive prior probabilities for a deep neural network’s weights in Srivastava
and Salakhutdinov (2013). The (posterior) knowledge in the model is updated by
modifying the concept hierarchy, e.g., by removing relations, during training. This
Bayesian approach combines the strengths of prior knowledge and learning from
data.

A conditional random field that combines knowledge from a concept hierarchy as
well as attributes is proposed in Samplawski et al. (2019). Instances of knowledge
are modeled as expressions of propositional and relational logic. The conditional
random field is combined with a deep neural network.

While the aforementioned approaches require special models and learning pro-
cesses, the method proposed in Karthik et al. (2021) can be applied to an already
existing and trained deep neural network. A post-processing step adjusts the con-
fidences scores given by the last layer to improve the quality of mispredictions, i.e.,
lower their semantic distance. This is also known as making “better mistakes” (cf.
Bertinetto et al. 2020).

4.1.1.3. Regularization and Loss Functions

Without affecting the structure of a classifier, or explicit modeling of probabilities,
there is another possibility to integrate knowledge from concept hierarchies into a
machine learning system. Consider Hypotheses obtained from ERM, which are the
result of optimizing a loss function. In section 2.2.1, we already discuss regularization,
where an additional term to the loss function is used to improve generalizability.
Similarly, the loss function can be modified to integrate semantic knowledge.
Fergus et al. (2010) proposes “Label Sharing”, where a one-hot encoded represen-
tation of the ground truth labels is modified to induce knowledge transfer between
concepts. The authors define an affinity matrix which indicates the degree to which
two concepts are related semantically. This matrix is only a slight deviation from
the identity matrix. Each one-hot encoded label is then transformed by the affin-
ity matrix and an adapted cross-entropy loss function (see section 2.4.1.4) enforces

49

4. Literature Overview

the prediction of the modified labels, which are interpreted in terms of multi-label
classification.

A loss function specifically tailored to semantically imprecise data is derived in
McAuley, Ramisa, and Caetano (2013). The derivation is by way of an evaluation
metric for imprecise predictions (see section 5.2.3.1).

Xie et al. (2015) introduces hyperclasses, which are identical to the previously dis-
cussed superclasses in a two-level hierarchy. Assuming that there is a comparatively
large amount of training data available that is annotated with hyperclasses, a neural
network is first trained only on hyperclasses. A second neural network then solves
the actual classification task, while a term in the loss function enforces an alignment
between both networks to induce knowledge transfer.

In Chen et al. (2019), a loss function component is added specifically for the
concepts which should be predicted with low probabilities. In a conventional classi-
fication task, these complementary concepts are simply all concepts other than the
ground truth. However, when a concept hierarchy is available, a higher priority
can be assigned to more general complementary concept, which in turn “neutralize”
their hyponyms. This combined loss function is called a “hierarchical complement
objective”.

Goyal and Ghosh (2020) is a unique approach. While other loss functions depend
only on the ground truth and the predictions, this method builds a curriculum, i.e.,
a loss function that depends on the current number of optimization iterations. The
concept hierarchy is used to order the training data, which results in a significant
accuracy increase, and has further theoretical benefits. A similar approach is proposed
in Stretcu et al. (2021).

4.1.2. Embeddings

Another category of approaches for hierarchical knowledge integration into classi-
fication tasks are those based on embeddings. An embedding is a high-dimensional
vector space £ equipped with two maps, one from the domain set X' to £ and one
from the label set) to £. These maps can be either fixed or learned, e.g., by deep
neural networks. Predictions are inferred by applying the first map from & to £, and
then the inverse of the second map. If the second map is not invertible, a nearest
neighbor approach in £ can be applied.

Frome et al. (2013) combines a CNN for image classification with a skip-gram text
model that learns a high-dimensional vector representation of words. Both models
are initialized separately, the vision model on ImageNet-1k (see section 6.2.1.1) and
the text model with data from Wikipedia. The vision model is then fine-tuned
to minimize a similarity metric w.r.t. the vector representation of the labels. This
combination results in qualitatively improved mispredictions (see also Bertinetto
et al. 2020) and enables zero-shot learning (see section 4.2.4.3).

Attributes and superclasses are combined in a label embedding in Hwang and
Sigal (2014). The superclasses reside in the same vector space and are enforced to be
linear combinations of their constituent classes. A similar idea is explored in Norouzi
et al. (2014), where an embedding space is constructed from convex combinations of
one-hot classifier outputs.

50

4.1. Semantic Knowledge Integration From Concept Hierarchies

Sun et al. (2017b) allows a CNN to learn an embedding freely in order to exploit
possible relations between labels. It is observed that the learned relations reflect
semantic similarities (see section 6.1.2.2) even though the learning process has no
access to the concept hierarchy (see also section 4.1.5).

While most methods capitalize on the nested subset aspect of concept hierarchies,
Vendrov et al. (2016) considers the partial order represented by a hyponymy relation
(see section 3.1.2.1). The authors propose a label embedding into a real vector space
that, with the reverse product order on its elements, is order isomorphic to the
hyponymy relation.

Embeddings that integrate both similarity and order at the same time are proposed
in Nickel and Kiela (2017) and further generalized in Ganea, Becigneul, and Hofmann
(2018) and Dhall et al. (2020). Nested volumes (cones) in the embedding space
represent concepts such that the nesting matches the concept hierarchy. Crucially, the
hyperbolic geometry enables a volume hierarchy that matches a DAG, i.e., concepts
with multiple hypernyms.

Barz and Denzler (2019) considers a fixed label embedding, such that Euclidean
distances between concepts correspond (inversely) to semantic similarity. The em-
bedding is used for classification and also to provide more reasonable results in
content-based image retrieval (see section 4.2.3). A similar approach is developed in
Jayathilaka, Mu, and Sattler (2020). Learned (instead of fixed) embeddings reflecting
semantic similarities are proposed in Narayana et al. (2019) and Arponen and Bishop
(2019).

4.1.3. Metric Learning

Metric learning methods consider a vector space similar to embedding methods, or
more generally, a manifold. However, there is no explicit mapping from and to of this
space. Instead, metric learning approaches learn and predict distances, or metrics,
between two domain points directly. To perform a classification task using such an
approach, the learned distance can be used to determine the nearest neighbor in the
training data.

In Verma et al. (2012a), a nearest neighbor classifier is equipped with a matrix that
scales the euclidean feature distance according to a concept hierarchy. It is shown to
improve classification accuracy and, as a side effect, can perform zero-shot learning
(see section 4.2.4.3).

A conventional triplet loss (cf. Schroff, Kalenichenko, and Philbin 2015) considers a
triplet of anchor, positive, and negative examples. The positive example should be
close to the anchor, while the negative example should be at least a certain margin
away. Zhang et al. (2016) proposes a hierarchical triplet loss, where the margin
is dependent upon the semantic distance (see section 6.1.2.2) between anchor and
negative example. Similar approaches are described in Faghri et al. (2018), Tonioni
and Di Stefano (2019), and Lin, Gao, and Li (2020). In Wang et al. (2017a), the distance
scale is removed from the triplet loss in favor of enforcing certain angles, which are
determined by a concept hierarchy. Proenca, Yaghoubi, and Alirezazadeh (2020)
generalizes the triplet loss to a quadruplet loss, enforcing semantic distances between
two independent pairs.

51

4. Literature Overview

Sampling three examples to compute the triplet loss is not trivial and typically
involves complex strategies such as hard negative mining (cf. Schroff, Kalenichenko,
and Philbin 2015). There are works that relax this requirement, including the afore-
mentioned Proenca, Yaghoubi, and Alirezazadeh (2020), which can utilize random
samples. He et al. (2021) uses a concept hierarchy to guide the sampling and de-
termine hard triplets more efficiently. A method that requires no sampling at all is
proposed in Qian et al. (2019).

Sanakoyeu et al. (2019) splits the metric learning problem into several smaller
sub-problems along domain points as determined by a concept hierarchy. The less
complex sub-problems result in faster convergence and better generalization.

4.1.4. Non-Semantic Hierarchies

The hierarchies used in this thesis almost always represent semantic knowledge (see
section 3.2). They are nested sets of concepts informed by a hyponymy relation. In
this section, we explore other hierarchical structures that appear in computer vision
tasks, which are mostly visual and spatial hierarchies. These hierarchies are typically
learned or discovered and not supplied as external knowledge.

Deng et al. (2011) learns a tree of classifiers to maximize both accuracy and efficiency.
The sole purpose of this tree is to divide a large classification problem into smaller
subproblems.

HD-CNN proposed in Yan et al. (2015) a further example of learning a hierarchy
from data. “Coarse” categories are defined from a spectral clustering of the confusion
matrix. HD-CNN specifically allows overlapping coarse categories, i.e., hierarchies
that are not trees, but DAGs. The clustering can only rely on visual properties because
the classifier is not aware of semantics. A similar approach is discussed in Fan et al.
(2015), where a hierarchy is constructed by clustering visual features.

Ahmed, Baig, and Torresani (2016) combines a visual hierarchy and a concept
hierarchy in a two-level classification method (see also section 4.1.1.1).

In Fan et al. (2017), visual features of different granularities or levels of abstraction
are acquired by extracting the activations from different layers of a CNN. These visual
features are then used to build a tree classifier similar to Fan et al. (2015), which is
trained jointly with a CNN. Zhao et al. (2018) presents a comparable method.

A visual hierarchy of images is constructed based on visual feature distances in
Ge (2018). Based on this hierarchy, the margins for a triplet loss are computed (see
section 4.1.3). Milbich et al. (2020) discovers “reliable” pairwise relations between
images based on unsupervised clustering of visual features. The result is a feature
representation learned without labels that can be used in downstream tasks, e.g.,
classification.

Knowledge about the spatial relation of components is used in Sirakov et al. (2015)
to accurately identify firearms in X-ray scans even if they are partly occluded or
disassembled. Mo et al. (2019) proposes a three-dimensional point cloud dataset for
segmentation that exposes a nested spatial structure (“parts”).

52

4.2. Problem Formulations

4.1.5. Analysis and Exploratory Works

This section briefly lays out several interesting observations and connections related
to concept hierarchies and computer vision tasks.

Bilal et al. (2018) hypothesizes that CNNs naturally learn a concept hierarchy from
training data. The authors show that the confusion probabilities between concepts
exhibit a correlation with the concepts’ semantic similarity, which corroborates the
findings of Deng et al. (2010). We offer a related investigation in section 6.6.1. They
further demonstrate that the depth of a layer in a CNN cor