
  
 

TU Ilmenau | Universitätsbibliothek | ilmedia, 2022 
http://www.tu-ilmenau.de/ilmedia 

Jaurigue, Lina; Lüdge, Kathy 

Connecting reservoir computing with statistical forecasting and deep neural 
networks 

 
Original published in: Nature Communications. - [London] : Nature Publishing Group UK. - 13 

(2022), art. 227, 3 pp. 

Original published: 2022-01-11 

ISSN: 2041-1723 
DOI: 10.1038/s41467-021-27715-5 
[Visited: 2022-03-08] 
 

   

This work is licensed under a Creative Commons Attribution 4.0 
International license. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/ 

 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1038/s41467-021-27715-5
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


COMMENT

Connecting reservoir computing
with statistical forecasting and deep
neural networks
Lina Jaurigue1✉ & Kathy Lüdge 2✉

Among the existing machine learning frameworks, reservoir computing
demonstrates fast and low-cost training, and its suitability for implementation in
various physical systems. This Comment reports on how aspects of reservoir
computing can be applied to classical forecasting methods to accelerate the
learning process, and highlights a new approach that makes the hardware
implementation of traditional machine learning algorithms practicable in elec-
tronic and photonic systems.

The prediction of the future development of an a priori unknown and complex system is a task
that can be tackled by algorithms that are based on unconventional (or analog) computing.
There are a wide range of classical regression models that have been developed for, or applied to,
the task of time-series forecasting with different levels of complexity, e.g. from the statistical
forecasting field there are classical linear methods such as autoregressive integrated moving-
average methods (ARIMA) or vector-autoregression (VAR), and extensions of these methods
such as nonlinear vector-autoregression (NVAR). From the machine learning field, there is
reservoir computing (RC) on the lower end of the complexity spectrum, deep neural networks
(DNN) on the upper end, and various other learning algorithms in between. The machine
learning algorithms are also suited to solving a range of other tasks in addition to time-series
forecastings, such as picture or speech recognition.
In this comment, we want to draw attention to recent studies published in Nature

Communications1,2, which connect elements of this hierarchy of methods and facilitate the
transfer of knowledge between research fields.

The connection between the different methods discussed here is RC. We will first explain its
concept and briefly compare it with DNN and NVAR. RC was first introduced by H. Jaeger
under the name of the ‘echo-state‘ machine3. It consists of a recurrent network (the reservoir)
that is driven by input data and output is produced by linearly combining the state of the readout
nodes, as illustrated in Fig. 1b. For traditional neural network algorithms, all weights are trained,
as depicted in Fig. 1a for a deep neural network. In contrast to this, only the output weights are
trained in RC (yellow lines in Fig. 1b), via linear regression. This reduction in the complexity of
the training has to be compensated for by an increase in the dimension of the reservoir, but it
means that any physical dynamical system can be used as a reservoir (e.g. biological tissues,
buckets of water, or semiconductor networks)4. The idea behind RC is that the reservoir
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performs nonlinear transforms on the input and that, if the
network is appropriately chosen and the readout sampled cor-
rectly, the desired output can be approximated. In methods such
as NVAR, the nonlinear transforms of the input are chosen
directly and make up the so-called feature vector, the elements of
which are linearly combined to produce the output (see Fig. 1c).
A certain similarity between RC and NVAR is apparent and it
was recently shown that there are conditions under which these
methods are equivalent5.

Inspired by the results of Bollt5 the authors of Gauthier et al. 1

applied aspects of RC to NVAR and thereby introduced what
they call Next Generation Reservoir Computing (NG-RC). Speci-
fically, Tikhonov regularization is used and the role of correla-
tions in the feature vector is also considered. With their approach,
the authors achieve good results for typical time-series prediction
tasks, while simultaneously having several advantages compared
with conventional RC. Firstly, the absence of a reservoir means
that there are fewer hyperparameters to tune. Secondly, the
authors show that, at least for their chosen tasks, shorter training
data sets are required and that the dimension of the output vector
is smaller than the number of nodes for comparable reservoir
computers. These two factors also lead to shorter computation
times. If similar reductions in the required training data sets are
also viable for real-world problems, where training data is often
limited, then NG-RC could indeed be favorable. However, using
this approach essentially trades the optimization of reservoir
hyperparameters for the optimization of the elements of the
feature vector, and the latter is still very much an open problem.
It remains to be seen if the choice of the feature vector is generally
an easier process than hyperparameter optimization for reservoir
computers.
Although the authors of Gauthier et al. 1 refer to their method

as RC, they also state that it most closely resembles NARX and it
could be argued that it is in fact also a statistical learning method.
However, one important difference between machine learning
in general and statistical methods is the intended purpose6.

For NARX methods the selection algorithms are designed such
that only a few terms are selected and the resulting model is
compact and transparent enough to gain insights into the rela-
tionship between elements of the underlying system7. Whereas, in
machine learning, the goal is exclusively the optimization of the
performance for a given task. The latter approach is also taken for
the NG-RC method and its feature vectors have far more terms
than for typical NARX methods. It is the difference in the choice
of feature vector terms and the use of Tikhonov regularization
that sets the NG-RC apart from the well-established statistical
methods. The authors of1 do, however, address that the number
of components in the feature vector can possibly be reduced
without significantly influencing the error, as some of the com-
ponents are very small. In this regard, NG-RC could be of interest
to the statistical forecasting community, if it is possible to reduce
the resulting NG-RC to a manageable model from which infer-
ences about the underlying system can be made.
A lot of the interest in RC, in recent years, stems from the pos-

sibility for hardware implementation, as there are substantial gains to
be made in terms of speed and power consumption compared with
the implementation on a traditional computer4. Particularly suited to
this is the concept of delay-based RC which was introduced in ref. 8

(see Fig. 2a). In this case, the reservoir need only consist of one
nonlinear element with time-delayed self-feedback. For small inputs,
the RC performance can be deduced from the linear response of the
physical node9. Adding delay to any system makes it technically
infinitely dimensional. In practical terms the systems do not have
infinite dimensions, however, if the parameters are chosen correctly,
such a system can exhibit complex, high-dimensional transient
dynamics and can therefore perform well on various machine
learning benchmarking tasks, see for example10. Using just a single
node with a delay instead of a network of randomly coupled nodes is
a great simplification that makes this scheme especially suited for
hardware implementation with optical devices11.
In2 the authors take this idea of using only a single physical

node with delay and extend it to emulate deep neural networks,

Fig. 1 Visualization of different machine learning architectures. Topology and training scheme for the three different concepts discussed in this comment.
DNN deep neural networks; RC reservoir computing, NVAR nonlinear vector-auto-regression.

Fig. 2 Deep neural networks via time delay and sequential sampling. Illustration of a delay-based RC scheme with a delay loop and one physical node
(blue circle), b deep neural network (DNN) with three layers (each layer contains two physical nodes), and c corresponding folded-in-time deep neural
network (Fit-DNN) realized via three feedback loops with time-varying feedback strengths and sequential sampling of the physical node (iteration 5 and 6
are shown).

COMMENT NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27715-5

2 NATURE COMMUNICATIONS | (2022)13:227 | https://doi.org/10.1038/s41467-021-27715-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


an approach which they have coined Folded-in-time Deep Neural
Network (Fit-DNN). This is achieved by having multiple delay
loops with adjustable feedback strengths, while the physical
node supplies the nonlinearity (see Fig. 2c for the Fit-DNN with
the corresponding DNN in Fig. 2b). A network node of the Fit-
DNN is now defined as the system state at a certain time and all
nodes are sampled sequentially. Coupling between the layers is
achieved by coupling back the appropriate time-delayed signals.
The authors show that if the temporal separation between
the nodes, i.e. the time intervals at which the system is sampled, is
sufficiently large compared with the characteristic timescales of
the physical node, then the Fit-DNN is equivalent to a deep
neural network. When the node separation is small, there are
additional inter-layer and intra-layer connections because
temporally adjacent nodes are not fully independent, and a
modified back-propagation method needs to be used to train the
system. For small node separation and for the case of a sparse
DNN, i.e. a Fit-DNN with a reduced number of delay loops, the
authors test the performance on various benchmark tasks. For the
sparse Fit-DNN they find good performance, but emphasis that
removing/adding delay loops changes an entire diagonal of a
coupling weight matrix and for this, a new training method is still
required. In the case of small node separation, the performance is
diminished, however, this needs to be weighed up with the
decreased computation time that can be achieved by reducing
the time between the sampling of the nodes. For a fully connected
Fit-DNN with large node separation, the conventional DNN is
fully reproduced with unaltered performance.
Overall, we find the novel method introduced in ref. 2 very

interesting and hope to see hardware implementations of this
approach in the near future. However, at this point, we must also
mention a significant drawback that the authors also discuss.
Although this approach is well suited for implementation in
hardware, for example in photonic or optoelectronic setups, the
training must still be performed using a conventional computer.
Furthermore, due to the need to solve a delay differential equa-
tion, the training time can be significantly increased. Therefore
the speed and efficiency of the final trained system need to be
weighed up against the training process.
To summarize, the two newly introduced non-conventional

computing schemes, i.e. NG-RC and Fit-DNN, suggest ways
to realize effective and high-performing machine learning applica-
tions with small ecological footprints. Furthermore, bringing
together knowledge from different communities, here the statistical
learning, the nonlinear dynamics, and the machine learning com-
munities, has led to cross-fertilization with high innovative
potential.

Received: 23 September 2021; Accepted: 7 December 2021;

References
1. Gauthier, D. J., Bollt, E. M., Griffith, A. & Barbosa, W. A. S. Next generation

reservoir computing. Nat. Commun. 12, 5564 (2021).
2. Stelzer, F., Röhm, A., Vicente, R., Fischer, I. & Yanchuk, S. Deep neural

networks using a single neuron: folded-in-time architecture using feedback-
modulated delay loops. Nat. Commun. 12, 5164 (2021).

3. Jaeger, H. The ‘Echo state’ Approach to Analysing and Training Recurrent
Neural Networks. GMD Report 148 (GMD—German National Research
Institute for Computer Science, 2001).

4. Nakajima, K. Physical reservoir computing—an introductory perspective. Jpn.
J. Appl. Phys. 59, 060501 (2020).

5. Bollt, E. M. On explaining the surprising success of reservoir computing
forecaster of chaos? The universal machine learning dynamical system with
contrast to var and dmd. Chaos 31, 013108 (2021).

6. Bzdok, D., Altman, N. & Krzywinski, M. Statistics versus machine learning.
Nat. Methods 15, 233–234 (2018).

7. Billings, S. A. Nonlinear System Identification: NARMAX Methods in the Time,
Frequency, and Spatio-temporal Domains (John Wiley & Sons, 2013).

8. Appeltant, L. et al. Information processing using a single dynamical node as
complex system. Nat. Commun. 2, 468 (2011).

9. Köster, F., Yanchuk, S. & Lüdge, K. Insight into delay based reservoir
computing via eigenvalue analysis. J. Phys. Photonics 3, 024011 (2021).

10. Larger, L. et al. High-speed photonic reservoir computing using a time-delay-
based architecture: million words per second classification. Phys. Rev. X 7,
011015 (2017).

11. Argyris, A., Bueno, J. & Fischer, I. Photonic machine learning implementation
for signal recovery in optical communications. Sci. Rep. 8, 1–13 (2018).

Author contributions
L.J. and K.L. prepared and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Lina Jaurigue or
Kathy Lüdge.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27715-5 COMMENT

NATURE COMMUNICATIONS | (2022)13:227 | https://doi.org/10.1038/s41467-021-27715-5 | www.nature.com/naturecommunications 3

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Connecting reservoir computing with statistical forecasting and deep neural networks
	References
	Author contributions
	Competing interests
	Additional information




