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Abstract: Major modifications are made to the setup and signal processing of the method of in-situ
measurement of the pitch of a diffraction grating based on the angles of diffraction of the diffracted
optical frequency comb laser emanated from the grating. In the method, the improvement of the
uncertainty of in-situ pitch measurement can be expected since every mode in the diffracted optical
frequency comb laser can be utilized. Instead of employing a Fabry-Pérot etalon for the separation
of the neighboring modes in the group of the diffracted laser beams, the weight-of-mass method is
introduced in the method to detect the light wavelength in the Littrow configuration. An attempt is
also made to reduce the influence of the non-uniform spectrum of the optical comb laser employed
in the setup through normalization operation. In addition, an optical alignment technique with the
employment of a retroreflector is introduced for the precise alignment of optical components in the
setup. Furthermore, a mathematical model of the pitch measurement by the proposed method is
established, and theoretical analysis on the uncertainty of pitch measurement is carried out based on
the guide to the expression of uncertainty in measurement (GUM).

Keywords: diffraction grating; grating pitch; mode-locked femtosecond laser; laser diffraction;
diffraction equation; measurement uncertainty analysis

1. Introduction

A diffraction grating, which has periodic fine pattern structures on its surface, is
one of the most important optical components often employed in many scientific and
industrial fields. A diffraction grating can be employed as the scale for measurement
in an optical encoder, in which the relative displacement between an optical head and a
diffraction grating can be measured [1]. Since the fine pattern structures on a scale grating
are employed as the graduations for measurement [2,3], the evaluation of the grating pitch
is an important task to assure the performance of an optical encoder.

Many methods have been developed so far to evaluate the grating pitch of a scale
grating. The observation of three-dimensional profiles of fine pattern structures on a
scale grating by high-resolution measuring instruments such as critical-dimension (CD)
scanning electron microscopes (SEMs) or atomic force microscopes (AFMs) is a direct and
straightforward method [4–7]. However, this method is not suitable for the evaluation of
the whole length of a scale grating due to the limited measurement throughput. On the
other hand, a method utilizing the laser diffraction, in which the period of pattern structure
can be evaluated by the angle of diffraction of a diffracted laser beams emanated from
the grating surface under evaluation, is a promising one for the evaluation of the whole
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length of a scale grating [8–13]. Although the measurand capable of being evaluated in this
method is limited to a mean of the grating period over the area where the measurement
laser beam is irradiated (namely, this method is an indirect method for measurement of
the pitch of a scale grating), it is suitable for the calibration of large area grating patterns
due to its high measurement throughput and non-contact measurement apparatus. On the
other hand, in the conventional methods based on the laser diffraction with a single-mode
measurement laser beam, the information to be obtained in experiments are quite limited
due to the nature of the laser diffraction; in most of the cases, a few-order diffracted beams
can be obtained when projecting a measurement laser beam onto a scale grating. This
limits the measurement accuracy of a grating pitch.

To address the aforementioned issues, a new concept for in-situ [14] pitch measure-
ment employing an optical frequency comb laser has been proposed. An optical frequency
comb laser contains a lot of modes equally spaced in the optical frequency domain [15].
Since each mode has a deterministic light wavelength, a group of the first-order diffracted
beams having different angles of diffraction can be obtained. With the employment of a
fiber detector and a spectrometer for the observation of the diffracted beams in the optical
frequency domain, much more information can be obtained for the pitch evaluation based
on laser diffraction. Stabile and accurate optical frequency of each optical mode in an
optical frequency comb [16] is also expected to contribute to the accuracy improvement of
the in-situ pitch measurement. The feasibility of the proposed concept has been verified
through some experiments with a developed prototype setup [17]. However, there are
some problems that need to be addressed for applying optical frequency comb as a light
source for the laser diffraction method. Since an optical frequency comb has multiple
frequency modes with a narrow spacing in the optical frequency domain, the neighboring
diffracted beams overlap with each other, resulting in the difficulty of identifying each
mode in a spectrometer [18]. In the previous study by the authors [17], a Fabry-Pérot etalon
with a high free-spectral range was employed to expand the mode-spacing of the optical
frequency comb so that each mode in the group of the first-order diffracted beams could
be distinguished. However, this could reduce the information of the angles of diffraction
of the diffracted beams, resulting in diminishing the benefit of the proposed concept. In
addition, the misalignments of the measurement laser beam and a fiber detector composed
of an objective lens and a single-mode fiber in the setup could be sources of uncertainty in
measurement of the grating pitch. Theoretical investigation on the measurement uncer-
tainty of the proposed concept is thus necessary while considering the influences of these
optical misalignments, although it has remained a task to be addressed.

In this paper, following the previous study by the authors [17], a major modification
is made to the prototype setup by removing a Fabry-Pérot etalon, while applying a new
signal processing technique based on the weight of mass method to the detection of a
peak wavelength for measurement of the grating pitch. A mathematical model of the
pitch measurement is also established based on the modified setup by including some
parameters related to optical misalignments. By using the established mathematical model,
a measurement uncertainty analysis is carried out based on the guide to the expression of
uncertainty in measurement (GUM). It should be noted that, regarding the concept of the
in-situ pitch measurement, all the experiments described in this paper have been carried
out in an ordinary laboratory room condition where the optical setup is not shielded from
external disturbances such as illumination with fluorescent lights.

2. Methods for In-Situ Measurement of the Grating Pitch with a Diffracted Optical
Frequency Comb Laser

Methods for measurement of the grating pitch with diffracted laser beams are based
on the light diffraction equation that can be expressed as follows [19]:

P sin θin + P sin θdiff = mλ (1)
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where P is the grating pitch, θin is the angle of incidence of the measurement laser beam, θdiff
is the angle of diffraction of the mth-order diffracted beam, and λ is the light wavelength
of the measurement laser beam. It should be noted that θin and θdiff are defined with
respect to the normal of the grating surface. Figure 1a shows a schematic of the setup
for measurement of the pitch deviation of a grating. The setup is mainly composed
of a monochromatic laser source, a rotary table equipped with a high-precision rotary
encoder, and a detector unit (not indicated in the figure). A scale grating can be mounted
on the rotary table for pitch measurement. In the setup, a collimated laser beam from
the laser source is projected onto the grating surface to generate diffracted beams. The
configuration where θin becomes equal to θdiff, as shown in Figure 1a, is referred to as the
Littrow configuration [20]. Under the condition of the mth-order Littrow configuration
with the Littrow angle θm, θin = θdiff = θm, and the following equation can be obtained from
Equation (1):

P =
mλ

2 sin θm
(2)
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Figure 1. Laser diffraction method for measurement of a grating pitch: (a) Conventional method with a single-mode laser;
(b) Proposed method with a mode-locked laser.

According to the above equation, the parameters need to be obtained for the calcula-
tion of P, θm and λ. Since λ can be treated as a known parameter, the grating pitch P can
be evaluated by measuring θm in experiments. By rotating the grating under inspection
with a rotary table equipped with a high-precision rotary encoder, multiple diffracted
beams can be observed. For the detection of diffracted beams, image sensors such as a
charge-coupled device (CCD) are often employed in the detector unit. In most cases, the
number of diffracted beams available for pitch measurement is quite limited when employ-
ing a monochromatic laser source. For example, in the case where a scale grating having
a nominal pitch of 1000 nm is evaluated with a laser beam having a light wavelength of
633 nm, the maximum m becomes 3; namely, only six diffracted beams (three positive
diffracted beams and three negative diffracted beams) can be obtained. It should also be
noted that the area to be irradiated by the measurement laser beam could vary with the
increase of m. Namely, the grating pitch P evaluated by the diffracted beams with different
diffraction orders could be from a different area on the scale grating.

These issues can be addressed by the method with an optical frequency comb laser [17].
Figure 1b shows a schematic of the optical setup for pitch measurement with an optical
frequency comb laser. When the collimated laser beam of an optical frequency comb
is projected onto a scale grating, the group of the positive first-order diffracted beams
emanating from the projected area can be obtained [21]. It should be noted that the group
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of the negative first-order diffracted beams and those of the higher-order diffracted beams
are not indicated in the figure for the sake of simplicity. The Littrow angle θm,i of the ith
mode in the mth-order diffracted beam can be expressed by the following equation:

Pm,i =
m

2sinθ(m,i)
× c

νi
=

m
2sinθ(m,i)

× c
i× νrep + νCEO

(3)

where νi is the optical frequency of the ith mode, which can be represented by using the
pulse repetition frequency νrep and the carrier offset frequency νCEO as νi = i·νrep + νCEO.
Since a lot of Littrow angles can be obtained in the same diffraction order, the improvement
of the measurement uncertainty with the averaging effect can be expected.

It should be noted that the diffracted laser beams should be observed in the optical
frequency domain so that the light wavelength of each mode in the Littrow configuration
can be determined. In the previous work by the authors [17], a Fabry-Pérot etalon with
a high free-spectral range was employed so that each mode could be distinguished in
the optical frequency domain. In this paper, a major modification is made to the optical
setup; instead of separating the modes with the Fabry-Pérot etalon, a single-mode optical
fiber was placed on the optical axis to specify the light wavelength mode corresponding to
the Littrow configuration from the overlapped neighboring modes as shown in Figure 2.
When a group of the diffracted beams was made incident to the optical fiber, the beams
propagated through the core of the optical fiber by reflection on the boundary surface
with the shelter part named clad. Due to the loss of the intensity from the reflection, the
intensity spectrum consequently shows Gaussian distribution in which the light mode
made parallelly incident to the optical axis shows the highest intensity. The spectrum
of propagated beams within the mode field diameter (MFD), determined by the fall of
the intensity to e−2, was then detected by the optical spectrum analyzer, and the peak
wavelength was determined by the weight of mass method. This modification enables the
setup to fully utilize the information of the modes in the group of the diffracted beams.
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Figure 3a shows a three-dimensional drawing of the setup shown in Figure 1b. With
the employment of a polarizing beam splitter (PBS) and a quarter-wave plate (QWP),
the diffracted beams can be guided to the detector unit without going back to the laser
source. The detector unit consists of an objective lens and a single-mode fiber, one side of
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which is connected to an optical spectrum analyzer (OSA). In the setup, the normal of the
grating is aligned to be parallel with the X-axis when the angular position of the spindle is
set to θ = 0◦. However, the measurement laser beam and the detector unit have angular
misalignments with respect to the optical axis as shown in Figure 3b. Thus, variable α is
given to the angular misalignment of the measurement laser beam about the Z-axis with
respect to the X-axis, and variable β is given to that of the optical axis of the detector unit
about the X-axis with respect to the Z-axis. Regarding these misalignments in the setup,
the diffraction equation in Equation (2) for the first-order diffracted beams can be modified
as follows:

Ppos_i =
λ

sin θin + sin θdiff
=

λ

sin
(
∆θ+1 − α

2
)
+ sin

(
∆θ+1 +

α
2 + β

) =
λ

2 cos
(

α−β
2

)
sin
(

∆θ+1 +
β
2

) (4)

Pneg_i =
λ

sin θin + sin θdiff
=

λ

sin
(
∆θ−1 +

α
2
)
+ sin

(
∆θ−1 − α

2 − β
) =

λ

2 cos
(

α−β
2

)
sin
(

∆θ−1 − β
2

) (5)

where λ is the wavelength of the measurement beam, ∆θ±1 is the angular position of the
spindle, α is the angular misalignment of the measurement laser beam about the Z-axis
with respect to the X-axis, and β is the angular misalignment of the optical axis of the
detector unit about the X-axis with respect to the Z-axis.
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Based on Equations (4) and (5), the influences of α and β on measurement of the
pitch deviation are estimated quantitatively. Figure 4a,b show the difference between
the calculated pitch Pc obtained based on Equations (4) and (5) and the nominal pitch
P due to the angular misalignments α and β, respectively. Calculations are carried out
under the condition of P = 833.33 nm and an angular position of the spindle of 28◦. The
influence of α is estimated to be approximately−32 pm under the condition of α = 1◦, while
that of β is estimated to be approximately 13.7 nm under the condition of β = 1◦. From
these results, it can be concluded that the corrections of α and β are necessary for accurate
pitch measurement.
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Figure 4. Influence of misalignments in the setup; (a) Influence of the angular misalignment of the measurement laser beam
about the Z-axis (α); (b) Influence of the angular misalignment of the measurement laser beam about the X-axis (β).

3. Design and Development of the Optical Setup and Verification Experiment

A schematic of the setup employed in the following experiments is shown in Figure 5a.
A fiber-based mode-locked femtosecond laser with a pulse repetition frequency νrep of
100 MHz was employed as the laser source. The laser beam from the laser source was
guided into the setup by using an optical fiber. The laser beam from the edge of the fiber
was collimated by a collimating lens, and was then projected onto a grating mounted on
a spindle. It should be noted that a half-wave plate was placed just after the collimating
lens in the optical path of the laser beam so that the polarization direction of the laser
beam could be controlled. A pair of a quarter-wave plate and a polarizing beam splitter
was employed as an optical isolator to prevent the diffracted beam from going back to the
laser source. The diffracted laser beams, whose propagating directions were changed by
the polarizing beam splitters, were captured by a detector unit composed of an objective
lens and a single-mode fiber with a mode-field diameter of approximately 10.8 µm. One
end of the single-mode fiber was placed at the focal plane of the objective lens, while the
other was connected to a commercial optical spectrum analyzer (AQ6370D, Yokogawa Co.,
Ltd., Tokyo, Japan) so that the captured diffracted laser beams could be analyzed in the
optical frequency domain. Figure 5b shows a photograph of the setup employed in the
following experiments.
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Figure 5. Experimental setup for measurement of the pitch of a reflective-type diffraction grating: (a) Schematic of the setup;
(b) A photograph of the setup.

The detection of the angular position of the grating in the developed setup could
strongly affect the pitch measurement by the proposed method. Therefore, at the beginning
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of the following experiments, the stability of the reading of the rotary encoder embedded in
the spindle in the developed setup was evaluated. A variation of the rotary encoder reading
was observed while the spindle was kept stationary at the positive and negative first-order
Littrow configurations. Figure 6a,b show the variations of the rotary encoder reading at
the angular positions θ = 28.08◦ and −28.08◦, respectively, in a period of two hours. A
sampling frequency of the encoder reading was set to be 10 Hz. Standard deviations of the
rotary encoder reading were evaluated to be 0.06054 arc-second and 0.06475 arc-second
for the positive and negative Littrow configurations, respectively. From these results, the
spindle was confirmed to have positioning stability within the specification of the spindle
(1 arc-second).
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Figure 6. Reading of the rotary encoder embedded to the air-bearing spindle: (a) Positive first-order Littrow configuration;
(b) Negative First-order Littrow configuration.

Alignments of the optical setup can be carried out by using the zeroth and first-order
diffracted beams. Figure 7a shows a schematic of the setup. A retroreflector, which has the
ability to reflect the laser beam to its source, is placed in front of the scale grating, while a
beam profiler is placed at the focal plane of the objective lens. The reflected measurement
laser beam is then focused on the detector plane at a point PM in the beam profiler, and
its Y-position is recorded. After that, the retroreflector is removed from the setup where
the angular position of the spindle is set to θ = 0◦; this operation makes the zeroth-order
diffracted beam from the scale grating be focused on the beam profiler at a point P0.
Meanwhile, with the existence of the angular misalignment α, the focused laser beam is
made to shift along the Y-direction. According to the principle of laser autocollimation [22],
the Y-directional spot displacement ∆d on the beam profiler due to α can be expressed by
the following equation:

∆d = F tan α (6)

Since the focal length F of the objective lens was known to be 31 mm, α can be
evaluated by detecting ∆d with the beam profiler.
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Figure 7. Alignment of the measurement laser beam by using a retroreflector and a beam profiler: (a) Setup with a
retroreflector; (b,c) Procedure of the alignment.
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Figure 8 shows the variations of the Y-positions of the measurement laser beam and
the zeroth-order diffracted beam focused on the beam profiler in a period of 20 s. As the
target grating, a holographic-type grating with a line density of 1200/mm was employed.
From the mean values, ∆d was evaluated to be 1.143 µm, and α was thus evaluated to be
7.579 arc-seconds based on Equation (6).
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Figure 8. Y-position of the focused laser beam on the beam profiler during the alignment.

After the verification of the angular misalignment α, the alignment of the single-mode
fiber in the fiber detector unit was carried out while the angular position of the spindle
was kept stationary at θ = 0◦. Figure 9 shows the spectrum of the zeroth-order diffracted
beam captured by the detector unit. The alignment of the single-mode fiber was carried
out so that the total laser power to be detected by the detector unit became maximum
while observing the spectrum of the captured laser beam. As can be seen in the figure, a
non-uniform spectrum of the optical frequency comb laser was successfully observed.
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Figure 9. The optical spectrum of the mode-locked femtosecond laser employed in this paper.

Meanwhile, the detector unit had a small angular misalignment β about the X-axis
even after the alignment; this can be evaluated in experiments by using the positive and
negative first-order diffracted beams. Figure 10a,b show the variations of the spectra
of the positive and negative first-order diffracted beams captured by the same detector
unit when rotating the scale grating. In the figures, the spectra obtained at the angular
position |θ| ranging from 27.48◦ to 27.52◦ in a step of 0.01◦ are plotted. As can be seen
in the figure, the spectra of the negative first-order diffracted beams were found to shift
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toward the shorter light wavelength; this was mainly due to the influence of β, regarding
Equations (4) and (5).
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Figure 10. Spectra obtained at each angular position of the scale grating: (a) with the positive
first-order diffracted beams; (b) with the negative first-order diffracted beams.

The grating pitch P can be evaluated by detecting the peak wavelength of the spectrum
at each angular position of the spindle θ. In this paper, a weight-of-mass method based on
the following equation was employed to detect the peak wavelength λcenter in a spectrum:

λCenter =
∑
(

Iλi × λi
)

∑ Iλi

(7)

where λi is the ith sampled wavelength, and Iλi is the light intensity of the light wavelength
component λi. Figure 11a shows the grating pitch calculated based on Equations (4) and (5)
by the series of λcenter obtained at different angular positions θ of the spindle. It should
be noted that the parameter β was set to be 0◦. As can be seen in the figure, a discrepancy
mainly due to the misalignment β was found between the grating pitches Ppos_i and
Pneg_i obtained from the positive and negative first-order diffracted beams, respectively. To
compensate for the influence of β, calculations based on Equations (4) and (5) were repeated
by changing β in a step of 0.0001◦. Figure 11b shows the sum of |Ppos_i − Pneg_i| at each β.
By performing fitting by sixth-order function approximation and finding the extremum,
β that minimizes Σ|Ppos_i − Pneg_i| was evaluated to be 0.001212◦ (4.363 arc-seconds).
Figure 11c shows Ppos_i and Pneg_i calculated based on Equations (4) and (5) under the
condition of β = 4.363 arc-seconds. As can be seen in the figure, a good agreement can be
found between Ppos_i and Pneg_i after the compensation of the influence of β.
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It should be noted that the optical frequency comb laser employed in this paper had a
non-uniform spectrum, as can be seen in Figure 9. The non-uniform spectrum of the light
source could affect the calculation of the peak wavelength based on the weight-of-mass
method, resulting in the degradation of the uncertainty in pitch measurement. Compensa-
tion of the influence of the non-uniform spectrum of the mode-locked femtosecond laser
beam employed in the setup was thus carried out by using the observed spectrum of
the zeroth-order diffracted beam shown in Figure 9. In the compensation process, the
spectrum of the first-order diffracted beam I±1(λi) obtained at each angular position of the
spindle was divided by the spectrum of the zeroth-order diffracted beam I0(λi) to obtain
the normalized spectrum Inorm(λi). Figure 12a,b shows the grating period Pneg_i calculated
by using the spectra I-1(λi) and Inorm(λi) of 100 optical modes observed in experiments,
respectively. By the compensation process, the deviation of the calculated grating period
Pneg_i obtained from the spectra in the wavelength range of 770 nm to 800 nm was reduced
from 94.76 pm to 74.34 pm. This result demonstrated the effectiveness of the compensation
process for the reduction of the uncertainty of pitch measurement. It should be noted that
a slight difference can still be observed between Ppos_i and Pneg_i; The possible root causes
contain the influence of the chromatic aberration of the optical components in the setup, as
well as the instability of the spectrum of the mode-locked femtosecond laser beam, and
further detailed investigation is required for the better understanding of the results.
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In the following, the contribution of each parameter in the equations is evaluated. 
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Figure 12. Compensation of the influence of the measurement laser beam spectrum. (a) Grating pitch calculated by using
the spectra of the first-order diffracted beam I-1(λi); (b) Grating pitch calculated by using the normalized spectra Inorm(λi).

4. Uncertainty Analysis

Measurement uncertainty analysis is also carried out based on the guide to the expres-
sion of uncertainty in measurement (GUM) [23] to verify the feasibility of the proposed
method with the employment of an optical frequency comb laser. Since the mean of pitch
values evaluated from multiple angles of diffraction of diffracted modes is evaluated in the
proposed method, at first, the uncertainty of evaluating the pitch by a specific diffracted
mode is evaluated. Then, the probability distribution of pitches from the angles of diffrac-
tion of entire modes was obtained to evaluate the measurement uncertainty of the proposed
method.

Equations (4) and (5) can be modified as follows by considering the refractive index of
air nair:

Ppos_i =
λpos_i

2nair cos
(

α−β
2

)
sin
(

θpos_i +
β
2

) (8)

Pneg_i =
λneg_i

2nair cos
(

α−β
2

)
sin
(

θneg_i −
β
2

) (9)

In the following, the contribution of each parameter in the equations is evaluated.

(a) Angular misalignment α of the measurement laser beam about the Z-axis with respect
to the X-axis (u(α))

At first, the contribution of α was evaluated. As described in the previous section of
this paper, α was evaluated by using the zeroth-order diffracted beam reflected from the
retroreflector; the Y-directional displacement of the focused laser beam on the CCD image
sensor was converted into the angle α based on the principle of laser autocollimation [22].
Denoting the Y-positions of the focused laser beam on the image sensor when measuring
the reflected beam from the retroreflector and the zeroth-order diffracted beam from the
diffraction grating as Yretro and Y0, respectively, Equation (6) can be rewritten as follows:

α = arctan
(

Yretro −Y0

F

)
(10)

Then, the standard uncertainty u(α), which is the contribution of α, can be evaluated
by the following equation:

uα =

√
[cYretro · uYretro]

2 + [cY0 · uY0]
2 + [cF · uF]

2 (11)
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where uYretro, uY0 and uF are the standard uncertainties of Yretro, Y0 and F, respectively,
while cYretro, cY0 and cF are the sensitivity coefficients of Yretro, Y0 and F, respectively.
Table 1 summarizes the contributions of each parameter on uα. The Y-position of the
focused retroreflected beam and zeroth-order beam on the profiler was obtained as a mean
of 200 repetitive trials with a standard deviation of 0.333 µm and 0.299 µm, respectively.
From Equation (10), the sensitivity coefficients cYretro, c0 and cY can be derived as follows:

cYretro =
∂α

∂Yretro
=

∂

∂Yretro

[
arctan

(
Yretro −Y0

F

)]
=

1
F
· 1

1 +
(

Yretro−Y0
F

)2 (12)

c0 =
∂α

∂Y0
=

∂

∂Y0

[
arctan

(
Yretro −Y0

F

)]
=
−1
F
· 1

1 +
(

Yretro−Y0
F

)2 (13)

cF =
∂α

∂F
=

∂

∂F

[
arctan

(
Yretro −Y0

F

)]
=

1

1 +
(

Yretro−Y0
F

)2 ·
Y0 −Yretro

F2 (14)

Table 1. Uncertainty of the angular misalignment α.

Sources of Uncertainty Symbol Type Uncertainty
Value

Probability
Distribution Divisor

Standard
Uncertainty

u

Sensitivity
Coefficient

c
|c|·|u|

Repeatability of the
detection of Yretro

udretro A 0.333 µm Gaussian
√

200 0.0235 µm 0.116 arc-
second/µm

2.731 × 10−3

arc-second
Repeatability of the

detection of Y0
ud0th A 0.299 µm Gaussian

√
200 0.0211 µm −0.116 arc-

second/µm
2.448 × 10−3

arc-second
Focal misalignment of the
image sensor with respect

to the objective lens
uF B ±0.5 mm Rectangular

√
3 0.289 mm

−4.193 × 10−3

arc-
second/mm

1.211 × 10−3

arc-second

u(α) 3.862 × 10−3

arc-second

By applying mean values of Yretro (−186.160 µm), Y0 (−187.303 µm) and a nominal
value of F of 31.1 mm, cYretro, c0 and cY were evaluated as shown in Table 1. It should be
noted that the misalignment of the image sensor with respect to the objective lens was
considered to be within ±0.5 mm. By evaluating the contribution of each uncertainty
source, u(α) was evaluated to be 3.862 × 10−3 arcsecond.

(b) Angular misalignment β of the detector unit about the X-axis with respect to the
Z-axis (u(β))

The contribution of β was then estimated. As shown in Figure 11b, Σ|Ppos_i − Pneg_i|
corresponding to the change of β in a step of 0.0001◦ was calculated, then β which minimize
Σ|Ppos_i − Pneg_i| was selected by taking the extremum of the data curve obtained by
sixth-order polynomial approximation fitting. However, as shown in Figure 11c, Ppos_i
and Pneg_i did not perfectly match by this fitting process, and |Ppos_i − Pneg_i| at each
angular position of the spindle could contribute to the uncertainty u(β) of evaluating β
by polynomial approximation fitting. The deviation of βi, which was obtained by the ith
positive and negative Littrow angles was evaluated as shown in Figure 13. A standard
deviation of |β-βi| was evaluated to be 1.875 arc-second. Since, 100 sets of Ppos_i and Pneg_i

were employed, by applying a divisor of
√

100, u(β) was evaluated to be 0.1875 arc-second.
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(c) Uncertainty of the detection of the angle θi of the ith-mode positive or negative
first-order diffracted beam (u(θi))

In the proposed method, the ith-mode first-order Littrow angle θi was obtained from
the readings of the optical rotary encoder embedded to the precision air-bearing spindle.
Therefore, the resolution, stability and uncertainty of the reading of the optical rotary
encoder could contribute to the uncertainty u(θi) of detecting the ith-mode first-order
Littrow angle of the positive or negative first-order diffracted beam. The contribution of the
resolution (ures) was estimated from the information in the specification sheet of the rotary
encoder provided by the encoder manufacturer. Meanwhile, the contribution of the stability
of the encoder reading (ustb) could somehow be affected by the stability of the developed
setup, and was then evaluated by using experimental results. As can be seen in Figure 6a,b,
standard deviations of the encoder reading when the scale grating was kept stationary at
the angular positions of the positive and negative first-order Littrow configuration were
evaluated to be 0.06054 arc-second and 0.06475 arc-second, respectively. Since a mean
of 200 encoder readings at each angular position of the grating was employed as θi, by
applying a divisor of

√
200 to the worse case (0.06475 arc-second), ustb was evaluated to be

4.579 × 10−3 arc-second. Table 2 summarizes the contribution of each uncertainty source
to u(θi).

Table 2. Uncertainty of the detection of the ith positive or negative first-order Littrow angle θi.

Sources of Uncertainty Symbol Type Uncertainty
Value

Probability
Distribution Divisor

Standard
Uncertainty

u

Sensitivity
Coefficient

c
|c|·|u|

Stability of the angular
output ustb A 0.06475

arc-second Gaussian
√

200 4.579 × 10−3

arc-second 1 4.579 × 10−3

arc-second
Resolution of rotary

encoder ures B 0.0038
arc-second Rectangular

√
3 2.194 × 10−3

arc-second 1 2.194 × 10−3

arc-second

u(θi)
5.077 × 10−3

arc-second

(d) Uncertainty of the light wavelength detected at each Littrow configuration (u(λi))

In the proposed method, the light wavelength λpos_i or λneg_i for pitch measurement
is evaluated based on Equation (7) as the peak wavelength of the obtained spectrum.
Therefore, light intensity fluctuation at each light wavelength and the uncertainty of the
reading in the optical spectrum analyzer could contribute to the uncertainty u(λi) of the light
wavelength detected at each Littrow configuration. In this study, a value (7.10 × 10−4 nm)
from the previous work by the authors’ team [24] was employed as u(λi).

(e) Uncertainty of the refractive index in air nair (u(nair))

The contribution of nair was then estimated. Since the experiment had been conducted
in a laboratory environment, the contributions of the atmospheric pressure, air temperature,
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and humidity in the room atmospheric range should be considered. It should be noted that
a lot of work has been made so far to evaluate the contribution of nair. In this study, taking
a value from the literature [25–28], u(nair) was estimated to be ±5 × 10−8 [26].

Regarding the contribution of each uncertainty source, standard uncertainties uPi
of the pitch Pi obtained by the ith positive or negative first-order Littrow angle can be
estimated by the following equations:

uPi =

√
(c(α) · u(α))2 + (c(β) · u(β))2 + (c(θi) · u(θi))

2 + (c(λi) · u(λi))
2 + (c(nair) · u(nair))

2 (15)

where c(α), c(β), c(θi), c(λi) and c(nair) are the sensitivity coefficients that can be described
by the following equations:

c(α) =
λi sin

(
α−β

2

)
4nair cos2

(
α−β

2

)
sin
(

θi +
β
2

) (16)

c(β) =
−λi

[
cos
(

θi +
β
2

)
cos
(

α−β
2

)
+ sin

(
θi +

β
2

)
sin
(

α−β
2

)]
4nair

[
cos
(

α−β
2

)
sin
(

θi +
β
2

)]2 (17)

c(θi) =
−λi cos

(
θi +

β
2

)
2nair cos

(
α−β

2

)
sin2

(
θi +

β
2

) (18)

c(λi) =
1

2nair cos
(

α−β
2

)
sin
(

θi +
β
2

) (19)

c(nair) =
−λi

2nair
2 cos

(
α−β

2

)
sin
(

θi +
β
2

) (20)

In the above equations, α is the angular misalignment of the measurement laser beam
about the Z-axis, β is the angular misalignment value of the measurement laser beam about
the X-axis, θi is the average Littrow angle, λi is the central wavelength, and nair is the
refractive index in air. Table 3 summarizes the contribution of each uncertainty source.
Based on Equation (15), uPi was evaluated to be 40.65 pm.

Table 3. Combined uncertainty.

Sources of
Uncertainty Symbol Standard Uncertainty

u
Sensitivity Coefficient

c |c|·|u| pm

α u(α) 3.862 × 10−3 arc-second 9.02 × 10−7 nm/arc-second 3.484 × 10−6

β u(β) 0.187 arc-second −0.217 nm/arc-second 40.58
θi u(θi) 5.077 × 10−3 arc-second −0.434 nm/arc-second 2.203
λi u(λi) 7.100 × 10−4 nm 1.062 0.754

nair u(nair) 5.0 × 10−8 −833.263 nm 4.166 × 10−2

Combined uncertainty uPi 40.65 pm

An expanded uncertainty U of the pitch was thus evaluated to be 81.30 pm (k = 2,
95% confidence). From the results shown in Figure 12b, the pitch values were found to
distribute in a range from 833.404 ± 0.0372 nm; the experimental results were found to
be within the uncertainty value estimated in the above analysis. It should be noted that
U estimated in the above analysis is the expanded uncertainty of the pitch by a specific
optical mode in the optical frequency comb laser. By using N optical modes (N = 100 in
Figure 12) observed in experiments, an expanded uncertainty of the pitch measurement by
the proposed method becomes 81.30/

√
N pm.
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5. Conclusions

For the improvement of the accuracy of pitch measurement of a diffraction grating
based on the laser diffraction with an optical frequency comb laser source, major modifica-
tions have been made to the optical setup and signal processing. Instead of employing a
Fabry-Pérot etalon for the separation of the optical modes in the spectrum of the captured
first-order diffracted beams, a weight of mass method has been employed in the signal
processing to find out the peak wavelength in the spectrum for the calculation of the
grating pitch. In addition, a mathematical model of the pitch measurement in the proposed
method with the employment of the optical frequency comb laser has been established
while considering misalignments of optical components in the setup. Experiments have
been carried out to compensate for the misalignments of the optical components considered
in the mathematical model. In addition, the influence of the non-uniform spectrum of the
mode-locked femtosecond laser source employed in the developed setup has successfully
been reduced through the normalization operations of the light spectra obtained by the
detector unit in the setup. Furthermore, by using the developed mathematical model, the
theoretical analysis of the uncertainty in the pitch measurement by the proposed method
has been carried out based on the guide to the expression of uncertainty in measurement
(GUM). Through the theoretical evaluation based on GUM, an expanded uncertainty U of
the pitch measurement of a diffraction grating with a nominal pitch density of/1200 mm
by using the information from a specific mode has been evaluated to be 81.30 pm (k = 2.95%
confidence). The experimental results were found to be within the uncertainty value es-
timated in the above analysis. By using N optical modes observed in experiments, an
expanded uncertainty of the pitch measurement by the proposed method can be reduced
to 81.30/

√
N pm. These results of the theoretical investigation and experiments have

demonstrated the feasibility of the proposed pitch measurement with an optical frequency
comb laser.
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