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Abstract

The deformation of a two-dimensional inextensible elastic cell in an inviscid uniform
stream with circulation is investigated. An asymptotic expansion based on a conformal
mapping is used to obtain equilibria for low far-field flow speeds, and fully nonlinear
solutions are obtained numerically. Expanding upon the results of Blyth & Părău [1]
and Yorkston et al. [2] for an elastic cell in a uniform stream with zero circulation,
it is shown that the nature of the cell deformation in response to circulation depends
on whether the transmural pressure exceeds a series of critical values. Below the first
of these critical values, the deformed cell is elongated vertically against the stream,
and the circulation acts to reduce the deformation of the cell from the circular rest-
state, while above this critical pressure the deformed cell elongates horizontally parallel
to the flow, with stronger circulation resulting in more severe cell deformation until
self-intersection. The solution branches which emerge at the second critical transmural
pressure are found to form a closed loop in parameter space, which shrinks in size as
the circulation is increased to a critical value at which the solution branch vanishes. We
also present a set solution branches distinct from those found by Yorkston et al. [2],
which become dominant for large values of circulation.

1. Introduction

The deformation of an elastic body in response to hydrodynamic forces is a problem
with applications in many fields. In biomechanics, elastic cells have been used to model
the deformation of blood cells [3, 4] and capsules used for drug delivery [5], while in
the aerospace industry there is increasing interest in the use of inflatable aerofoils which
deform elastically in response to the airflow [6, 7, 8].

The deformation of an elastic cell that is positioned in an inviscid uniform stream
in the absence of circulation has been well studied. The deformation of an elastic cell
subject to constant transmural pressure was analysed by Lévy [9], Carrier [10] and
Tadjbakhsh & Odeh [11], and subsequently expanded on by Flaherty et al. [12] to
account for an interval of self-contact. Blyth & Părău [1] used a conformal mapping
approach to show that a cell in a uniform stream will deform into an ellipse-like shape,
with its orientation determined by whether the transmural pressure exceeds the first of
the critical values identified by Halphen [13] at which elastic cells buckle in a static fluid.
Yorkston et al. [2] subsequently used an asymptotic expansion based on a conformal
mapping to obtain distinct solutions which bifurcate at each of the critical pressures of
Halphen [13], and presented a detailed analysis of the solution space.

The work of Blyth & Părău [1] and Yorkston et al. [2] builds upon results obtained
for the closely related problem of the deformation of a bubble in an inviscid flow (the
current problem is reduced to the bubble problem under the appropriate limit). Vanden-
Broeck & Keller [14] obtained numerical solutions for a uniform stream by formulating
the problem as an integrodifferential equation, while Shankar [15] used a conformal
mapping method to obtain asymptotic solutions for low flow speeds, and Nie & Tanveer
[16] performed a linear stability analysis for the deformed bubble shapes. Exact solutions
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for a circulatory flow were obtained by Crowdy [17], and expanded upon by Wegmann
& Crowdy [18].

Here we conduct a study of the deformation of an elastic cell in an inviscid uniform
stream with circulation. Guided by the results of Yorkston et al. [2], we use an asymp-
totic expansion based on the conformal mapping technique of Shankar [15] to obtain
analytic expressions for solutions at low flow speeds, identifying a set of novel solution
branches which only exist for non-zero circulation. We use numerical methods to extend
the solution branches to arbitrary flow speeds, and analyse the effects of circulation on
the solutions.

2. Formulation

We consider the deformation of a closed, two dimensional elastic cell placed in an
inviscid, incompressible, irrotational fluid flow. The cell wall is assumed to be inextensi-
ble with constant thickness h and uniform density ρc, and in the absence of an external
pressure the cell is assumed to take the shape of a circle. The fluid in the exterior of the
cell is taken to be a horizontal uniform stream of speed U in the far-field with circulation
Γ around the cell. The interior of the cell is assumed to be a static fluid of density ρ
equal to that of the exterior fluid.

For equilibria to occur the lift force acting upon the cell must be balanced by the
weight of the cell material. The density of the cell material can thus be obtained from
the Kutta-Joukowski theorem as

ρc = − ρUΓ

2πghℓ
. (2.1)

For physical solutions we thus require UΓ ≤ 0, which ensures that the lift force acts in
the upwards direction.

A balance of forces acting upon the cell wall is given by

d

ds

(
T (s)τ̂ +N(s)n̂

)
− ρchgj +∆p(s)n̂ = 0, (2.2)

where τ̂ and n̂ are unit vectors in the anticlockwise tangential and outward normal
directions respectively, s is the arc-length of the cell wall in the anticlockwise direction,
g is the acceleration due to gravity, ∆p(s) is the difference between the interior and
exterior fluid pressures acting on the cell wall, and N(s) and T (s) are the normal and
tangential components respectively of the internal tension.

We assume the bending moment at any point is proportional to the difference between
the curvature at that point and its resting curvature. Such an assumption is justified by
[19] for a locally inextensible cell. This gives the constitutive equation for the bending
moment

M = −EB(κ− κR), (2.3)

where κ(s) is the signed curvature of the cell, κR is the resting curvature, which is
assumed to be constant, and EB is the bending modulus. According to thin-shell theory,

the bending modulus is given by EB = Eh3

12(1−ν2) , where E is the Young’s modulus of

the cell-wall, ν is the Poisson’s ratio of the cell-wall, and h is the thickness of the cell-
wall. A balancing of moments about an infinitesimal section of the cell wall thus gives
N = Ms = −EBκs. Splitting (2.2) into tangential and normal components, we obtain

Ts + EBκκs − ρchgys = 0, −EBκss + κT + ρchgxs +∆p(s) = 0, (2.4)
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where x(s) and y(s) are the horizontal and vertical components respectively of the arc-
length parameterisation of the cell boundary. Integrating (2.4), we obtain

∆p(s) = EB

(
κss +

1

2
κ3 − σκ

ℓ2

)
− ρchg(xs + κy), (2.5)

where ℓ is a length scale taken to be the radius of the undeformed cell, and σ is some
undetermined constant.

The fluid pressure difference across the cell boundary is given by Bernoulli’s equation
as

∆p(s) = p0 − p∞ +
1

2
ρ
(
q(s)2 − U2

)
, (2.6)

where p0 and p∞ are the fluid pressures in the interior of the cell and in the far-field
respectively, and q = |∂w/∂z| is the flow speed evaluated at the cell boundary. Sub-
stituting into 2.5 and nondimensionalising using the length scale ℓ, the radius of the
undeformed cell, and the velocity scale

√
EB/(ℓ3ρ), we obtain

1

2
(q2 − α2)− (κss +

1

2
κ3 − σκ) +

αβ

2π
(xs + κy)− P = 0, (2.7)

where all variables are now dimensionless. The dimensionless parameters are defined as

α = U

√
ℓ3ρ

EB
, β = −Γ

√
ℓρ

EB
, P =

(p∞ − p0)ℓ
3

EB

which relate to the far-field flow speed, the circulation around the cell, and the pressure
difference between far-field and the interior of the cell respectively. Note that the sign of
β has been chosen such that a positive value of β corresponds to an upwards lift force.

The dimensionless bending energy of the cell is given by

W =

∫ 2π

0

1
2 (κ+ 1)2ds, (2.8)

where the resting cell with curvature κ = −1 has zero bending energy.
The flow field in the exterior of the cell is obtained using the conformal mapping of

Shankar [15], which maps to the exterior of the cell in the complex z-plane from the
exterior of the unit circle in some ζ-plane. This mapping can be written as

z(ζ) = a−1

(
ζ +

∞∑
n=1

anζ
−n

)
, (2.9)

where the coefficients an are generally complex. Parametrising the unit circle in the
ζ-plane as ζ = eiϕ, where 0 ≤ ϕ < 2π, the cell wall is then given in complex form as

η(ϕ) = a−1

(
eiϕ +

∞∑
n=1

ane
−inϕ

)
. (2.10)

The coefficient a−1 is taken to be

a−1 =
2π∫ 2π

0
|ηϕ|dϕ

, (2.11)

which ensures that the perimeter of the cell is equal to 2π. In the pre-mapped ζ-plane
the complex potential is given by

w(ζ) = αa−1

(
ζ +

1

ζ

)
− β

2πi
log ζ (2.12)
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Figure 1: Numerically computed cell shapes for α = 2.5, P = 0. (a) shows the cell shape for various
values of the circulation β. (b) shows a contour plot of the flow past the cell for β = 30, with the
colour scale corresponding to the flow speed divided by the far-field flow speed α. The black lines are
the streamlines of the flow.

which gives the flow speed at the cell wall as

q(ϕ) =

∣∣∣∣dwdz
∣∣∣∣
∣∣∣∣∣
ζ=eiϕ

=

∣∣∣∣2αa−1 sinϕ+ β/2π

ηϕ

∣∣∣∣. (2.13)

We note that (2.12) has stagnation points located at

ζ = ±

√
1−

(
β

4παa−1

)2

− βi

4παa−1
. (2.14)

Thus for 0 < β < 4παa−1 there are two stagnation points located on the cell boundary,
while for β > 4παa−1 there exists a single stagnation point in the flow, away from the
cell boundary.

Finally, substituting (2.13) into (2.7), we obtain the single governing equation

1

2

(∣∣∣∣2αa−1 sinϕ+ β/2π

ηϕ

∣∣∣∣2 − α2

)
− P −

(
κss +

1

2
κ3 − σκ

)
+

αβ

2π

(
xs + κy

)
= 0,

(2.15)

to be solved for the values of the mapping coefficients an.

3. Numerical Method

The numerical method used to compute nonlinear equilibria is based on that pre-
sented by Tanveer [20]. We truncate the Fourier series (2.10) at N terms, taking an = 0
for n > N . We then split up the coefficients into the 2N real variables ℜ(an) and ℑ(an)
for 1 ≤ n ≤ N , with a−1 given in terms of an by (2.11). The parameters α and P are
freely chosen, while σ is to be found as part of the solution. We obtain explicit expres-
sions for κ and κss for the truncated mapping in terms of the mapping coefficients an
and evaluate (2.15) at 2N +1 equally spaced collocation points ϕi = 2π(i− 1)/(2N +1)
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for i = 1, . . . , 2N + 1, giving 2N + 1 equations to solve for the 2N + 1 variables. We
obtain the Jacobian of the truncated system analytically, and Newton’s method can be
used to obtain a numerical solution. For the results shown in this section we generally
take N = 200, although values as high as N = 2000 are required for certain solutions.
To confirm the accuracy of the numerical results we note that, for any given mapping
function, the absolute value of the left-hand side of (2.15) can be obtained analytically
along the entire cell, not just at the 2N +1 collocation points used in Newton’s method.
We can therefore verify the validity of our results by sampling (2.15) at a much larger
number of points, say 1000N , and confirm that the maximum value remains below some
tolerance level; all results in this chapter have a maximum absolute error less than 10−10.
We use the small α asymptotic results presented below as an initial guess for Newton’s
method. The full nonlinear solution space can then be explored by continuation in the
parameters α and P .

4. Results

It is well known that in the absence of a far-field flow, corresponding to α = 0, there
exists a trivial circular cell solution for all values of β. [1] showed that, as well as these
trivial solutions, there exist a set of buckled mode-k symmetric cells which bifurcate
from the circular solution as the pressure P passes through a set of critical pressures

Pk(β) = k2 − 1 +
k − 1

k + 1

β2

8π2
. (4.1)

We seek solutions for α > 0 which bifurcate from the trivial circular solution at
α = 0 by expanding the unknowns an and σ as asymptotic series in α of the form

an = an,1α+ an,2α
2 +O

(
α3
)

n ≥ 1, (4.2)

σ = 1
2 − P + 1

8π2 β
2 + σ1α+ σ2α

2 +O
(
α3
)
. (4.3)

Substituting these expansions into (2.15) and evaluating at O(α), we obtain

−σ1 +

∞∑
n=2

(
n2 − 1

)(
P − Pn(β)

)
ℜ
(
an−1,1e

−inϕ
)
= 0, (4.4)

where Pn(β) is the nth critical pressure given by (4.1). We thus require σ1 = 0, and for
each n ≥ 2 we require either an−1,1 = 0 or P = Pn(β). We split the problem into two
distinct cases; we start by looking for a solution which is valid for general values of P ,
where P ̸= Pk(β) for all k ≥ 2. We then look for solutions which are valid at each of
the critical pressures P = Pk(β) for k ≥ 2.

First seeking a solution valid for general values of P , we assume P ̸= Pk for all k ≥ 2.
Equation (4.4) thus gives σ1 = 0 and an,1 = 0 for all n ≥ 1. Next satisfying (2.15) at
O
(
α2
)
, we obtain

1
2 − σ2 − cos(2ϕ) +

∞∑
n=2

(
n2 − 1

)(
P − Pn(β)

)
ℜ
(
an−1,2e

−inϕ
)
= 0. (4.5)

Noting that

ℜ
(
an−1,2e

−inϕ
)
= ℜ(an−1,2) cos(nϕ) + ℑ(an−1,2) sin(nϕ),

we compare coefficients of cos(nϕ) and sin(nϕ) in (4.5) to obtain

a1,2 =
1

3(P − P2)
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Figure 2: Numerically computed cell shapes for α = 2.5, P = 6. (a) shows the cell shape for various
values of the circulation β. (b) shows a contour plot of the flow past the cell for β = 15, with the
colour scale corresponding to the flow speed divided by the far-field flow speed α. The black lines are
the streamlines of the flow.

and an,2 = 0 for n ≥ 2, with σ2 = 1
2 . We then proceed in the same way to higher powers

of α using the symbolic computing environment Maple to obtain

η(ϕ) = eiϕ +
1

3(P − P2)
α2e−iϕ +O

(
α4
)
, (4.6)

an ellipse which is elongated vertically for P < P2 and horizontally for P > P2. Note
that setting β = 0 reduces this solution to that obtained by [2]. However, unlike the
β = 0 solution, the coefficients a2 and a4 are imaginary for β ̸= 0, causing the cell to lose
its top-bottom symmetry, although the cell remains left-right symmetric. This solution
becomes invalid when the pressure P is equal to any of the critical pressures Pk(β). This
contrasts with the β = 0 solutions, which are only invalid for P = P2k while remaining
valid for P = P2k+1. This suggests that the general solution branch valid for β = 0 and
P = P2k+1 detaches from α = 0 as circulation is introduced; the exact nature of this
behaviour will be discussed further on.

Figures 1 and 2 show numerically computed cell shapes for P = 0 and P = 6
respectively for various values of β, along with a plot of the flow field for β = 30. For
P = 0 the cell is elongated vertically, as predicted by (4.6). As β is increased the cell
deformation decreases and the cell becomes more circular. This agrees with (4.6); as
β is increased the critical pressure P2(β) increases, and so the magnitude of the factor

1
3(P−P2)

decreases, resulting in a more circular cell shape. For P = 6 the cell is oriented

horizontally, which also agrees with (4.6). As β is increased, the magnitude of the factor
1

3(P−P2)
in (4.6) increases, resulting in a more elongated cell shape. This deformation

increases with β until the cell eventually self-intersects, at which point the solution
becomes physically invalid.

We then seek asymptotic solutions which are valid at the critical pressures P =
Pk(β), focussing in particular on the first two critical pressure P2(β) and P3(β). We
start by considering the case where P = P2(β) = 3+ β2/(24π). As shown by [1] for the
case of β = 0, we find that (2.15) cannot be satisfied by an expansion in integer powers
of α. We instead take an expansion in powers of α1/3 and satisfy (2.15) at each power
of α1/3, which gives the unique solution

η(ϕ) = eiϕ − 3

√
16
(
β̂2 + 90

)
5β̂4 + 774β̂2 + 10935

e−iϕα2/3 +O
(
α4/3

)
, (4.7)
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(b) P = P2(β)
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Figure 3: Numerically computed bending energy against α for solution branches near P2(β). The black
crosses in (b) correspond to the analytical result (4.7) which is correct to O

(
α6

)
.

where β̂ = β/(2π), corresponding to an ellipse elongated vertically perpendicular to the
flow. Note that at higher orders of α the circulation will induce a top-bottom asymmetry.
Taking β = 0 we obtain a1,1 = − 2

9
3
√
12, which agrees with the results obtained by et al.

[2]. As β is increased, the magnitude of the coefficient of e−iϕ in (4.7) decreases and the
cell becomes more circular.

Figure 3 shows the numerically computed bending energy against α for P near P2(β),
along with the analytical results for P = P2(β). For P < P2(β) we find a single solution
branch, with horizontally elongated cell shapes which are left-right symmetric. As the
circulation is increased the bending energy of these cells decreases. These solution
branches have W = 0 at α = 0, which corresponds to the circular solution. As P is
increased to P2(β) the energy curve develops a cusp, as predicted by the expansion (4.7).
We find excellent agreement between the analytical results and the numerical results for
all values of β. As P is increased above P2(β) a loop appears in the energy curve
underneath the previous solution branch, corresponding to cells which are vertically
elongated. The solution branch containing the horizontally elongated cells no longer
bifurcates from the unit circle at α = 0, instead corresponding to the buckled mode-2
cell in a static fluid at α = 0 with W > 0. This change in orientation of the cells
bifurcating from the unit circle at α = 0 agrees with that predicted by (4.6).

We next consider the case where P = P3(β) = 8 + β̂2/4. Using an integer power
expansion of the form (4.2), we satisfy (2.15) at O(α) to obtain σ1 = 0 and an,1 = 0 for
n ̸= 2, with a2,1 undetermined. At O(α2), we find that a2,1 satisfies[(

β̂2 + 140
)(
7β̂4 + 2580β̂2 + 64512

)
|a2,1|2 − 2β̂2

(
β̂2 + 252

)]
a2,1 = 0.

We thus have two distinct cases; either a2,1 = 0, or

|a2,1| =

√√√√ 2β̂2
(
β̂2 + 252

)(
β̂2 + 140

)(
7β̂4 + 2580β̂2 + 64512

) ,
7
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Figure 4: Bending energies of the solution branches at P = P3(β) against α for large β. The crosses in
(d) correspond to the cell shapes depicted in Figure 5.
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(a) W = 0.1480 (b) W = 0.0784

(c) W = 0.0141

Figure 5: Contour plots of the flow past the three cells which exist for α = 2.5, β = 200, P = P3(β), as

shown in Figure 4d. The colour scale corresponds to the flow speed divided β̂. The black lines are the
streamlines of the flow.

with the argument of the complex coefficient a2,1 undetermined at this stage. Each of
these cases will correspond to a distinct branch of solutions.

Considering firstly the case where a2,1 = 0, we proceed to satisfy (2.15) at each
power of α up to O

(
α5
)
, at which point we obtain

η(ϕ) = eiϕ +
4

β̂2 + 60
α2e−iϕ −

12
(
β̂2 + 105

)
β̂
(
β̂2 + 60

)2 iα3e−2iϕ +O
(
α4
)
. (4.8)

At O
(
α2
)
the cell shape is elliptical with its major axis oriented horizontally in line

with the uniform stream, with larger values of β corresponding to a more elongated
shape. However, at O

(
α3
)
the cell becomes top-bottom asymmetric, although it retains

a left-right symmetry. The O
(
α3
)
term has a singularity at β = 0; this solution is thus

distinct from any which exists in the absence of circulation.
We then consider the case where

|a2,1| =

√
2β̂2
(
β̂2 + 252

)
7β̂6 + 3560β̂4 + 425712β̂2 + 9031680

.
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Figure 6: Bending energies of the solution branches at P = P3(β) against α for small β. The crosses in
(c) correspond to the cell shapes depicted in Figure 7.
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Satisfying (2.15) at O
(
α3
)
, we find that ℜ(a2,1a2,2) = 0 while both a2,1 and a2,2 re-

main undetermined. At O
(
α4
)
we obtain ℜ(a2,1) = 0 and ℑ(a2,2) = 0, with ℜ(a2,2)

undetermined. We thus have

a2,1 = ±i

√
2β̂2
(
β̂2 + 252

)
7β̂6 + 3560β̂4 + 425712β̂2 + 9031680

,

which gives two distinct solutions depending on the sign of a2,1. Finally, at O
(
α6
)
we

find that a2,2 = 0, and obtain the value of a2,3, which we omit for brevity. The solution
is then given to O

(
α2
)
as

η(ϕ) =
(
1− |a2,1|2α2

)
eiϕ +

4α2

β̂2 + 60
e−iϕ ± |a2,1α|ie−2iϕ

± 4|ai2|β̂α2

3 ˆβ2 + 420
e−3iϕ +

β̂2 + 588

3β̂2 + 756
|a2,1|2α2e−5iϕ +O

(
α3
)
.

(4.9)

This cell is left-right symmetric but top-bottom asymmetric. At O(α), the choice of
sign of ℑ(a2,1) simply corresponds to a reflection of the cell shape about the x-axis. At
higher orders of α however, the cell shapes differ at O

(
α2
)
depending on the sign of

ℑ(a2,1).
The numerically obtained bending energies of the three solution curves bifurcating

from the circular solution at α = 0 for P = P3(β) for varying values of β are shown in
Figure 4. We find that while solutions exist on the uppermost branch for all values of
α, the lower two solution branches exist only for α below some maximum value. This
maximum value of α increases as the circulation β is increased; however, the circulation
β is always much greater than the maximum uniform flow speed α. Figure 5 shows the
corresponding cell shapes and flow fields for α = 2.5 and β = 200. The high circulation
results in a near-circular cell, with the flow field resembling a vortex flow.

Figure 6 shows the bending energy of the solution branches for P = P3(β) for low
values of β. For β = 0 we have the three solution branches described [2]. To describe
the behaviour of the solution branches, we use the classifications defined in [2]. Cells
on the lower branch, which are left-right and top-bottom symmetric, are classified as
type 2a. Cells on the middle branch, which are top-bottom symmetric but left-right
asymmetric, are classified as type 3a. Cells on the upper branch, which are left-right
symmetric but top-bottom asymmetric, are classified as type 3b. Note that while the
type 2a cells are left-right and top-bottom symmetric, the type 3a cells are left-right
asymmetric and the type 3b cells are top-bottom asymmetric. Since the system for
β = 0 is both left-right and top-bottom symmetric, the type 3a cells can be reflected
horizontally to obtain another type 3a solution, and the type 3b cells can be reflected
vertically to obtain another type 3b solution. As the circulation is then introduced the
system loses its top-bottom symmetry; the type 3b solution branch thus splits into two
separate branches, depending on the orientation of the cell. We classify the lower energy
cell as type 3b1 and the higher energy cell as type 3b2. Plots of the cell shapes for each
of these solution branches are shown in Figure 7.

For β > 0 the type 2a, 3a and 3b1 branches disconnect from α = 0, remaining valid
only for α above some minimum value. The type 2a and 3b1 branches, which both
correspond to left-right symmetric cells, form a continuous loop in the α − W plane,
while the left-right asymmetric type 3a cells bifurcate from the type 2a–3b1 loop. The
solution branches shown in Figure 4 are also present for β > 0, but for low values of β
these branches are too small to be seen.

As the circulation β is increased further we find that the type 2a–3b1 branch forms a
closed loop, with the solutions existing only for α between two critical values. The type

11



(a) Type 2b (W = 1.86) (b) Type 3a (W = 3.71)

(c) Type 3b1 (W = 4.95) (d) Type 3b2 (W = 6.38)

Figure 7: Contour plots of the flow past the three cells which exist for α = 2.5, β = 11, P = P3(β), as
shown in Figure 6c. The colour scale corresponds to the flow speed divided by the far-field flow speed
α. The black lines are the streamlines of the flow.
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3a solution branch is bounded by this closed loop, bifurcating from the 2a–3b1 branch
at both ends. This loop becomes smaller as β is increased, until approximately β = 14
where the loop disappears entirely, leaving only the type 3b2 branch and those shown
in Figure 4.

5. Summary

We have studied the deformation of an elastic cell in a uniform stream with circula-
tion. Using a conformal mapping approach we have constructed asymptotic approxima-
tions for equilibria at low far-field flow speeds. We have computed nonlinear equilibria
numerically and confirmed excellent agreement with the asymptotic approximations,
and presented a detailed analysis of the nonlinear solutions.

Blyth & Părău [1] used a conformal mapping approach to study the deformation
of an elastic cell in both a uniform stream flow and a vortex flow, and identified a
set of critical transmural pressures at which buckled cells emerge. Yorkston et al. [2]
subsequently used an asymptotic expansion based on a conformal mapping to study
the cell deformation in a uniform stream, and presented an analysis of the full set of
solution branches which emerge. We have expanded upon these studies by introducing
a circulation to the flow, and presented an analysis of the complex solution space which
emerges.

We have used asymptotic expansions for low flow speeds to obtain solutions which
bifurcate from the unit circle. We obtained a general solution valid for general values
of the pressure P and identified critical pressures at which distinct solution branches
emerge. The general solution was found to be elliptical to first order, with the orientation
depending on the pressure P ; for P below the first critical pressure the cell is oriented
vertically with its major axis perpendicular to the flow, while for P above the first
critical value the cell is oriented horizontally with its major axis parallel to the flow.
We found that as the circulation is increased the vertically oriented cells become more
circular, while the horizontally oriented cells become more deformed. We found that
the solution space near the second critical pressure becomes significantly more complex
when the circulation is introduced. The solution branches which exist in the absence
of circulation form a closed loop in solution space, which shrinks as the circulation is
increased, while a set of novel solutions emerge for large circulation.

Yorkston et al. [2] performed a linear stability analysis along with nonlinear simu-
lations of the unsteady flow to assess the stability of the equilibria for a flow with zero
circulation. It would be informative to use a similar approach to analyse the stability
of the new equilibria obtained here in the presence of circulation; this is left for future
work.
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