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Abstract

In the last decades, non-invasive and portable neuroimaging techniques, such as functional Near-

Infrared Spectroscopy (fNIRS), have allowed researchers to study the mechanisms underlying the

functional development of the human brain, thus furthering the potential of Developmental Cognitive

Neuroscience (DCN). However, the traditional methods used for the analysis of infant fNIRS data

are still quite limited. Here, I introduce new Fuzzy Cognitive Maps, called EFCMs, for Effective

Connectivity (EC) analysis of infants’ fNIRS data. EFCMs can outline the interconnections between

the cortical areas as well as specify the direction of EC. In contrast, to shed light on the activation level

of the cortical regions, I developed a Multivariate Pattern Analysis (MVPA). The proposed MVPA

is powered by eXplainable Artificial Intelligence (XAI), named eXplainable MVPA (xMVPA). The

xMVPA is exemplified in a DCN study that investigates visual and auditory processing in six-

month-old infants with a classification accuracy of 67.69 %. The xMVPA can identify patterns of

cortical interactions formed in response to presented stimuli as hypothesised by the DCN frameworks.

However, xMVPA can only analyse cross-sectional DCN studies, i.e. it is not able to analyse the

temporal dynamics associated with a longitudinal DCN study. To this end, I developed a novel

time-dependent XAI (TXAI) system based on Temporal Type-2 Fuzzy Sets (TT2FS). The TXAI

system is exemplified on an empirical study using a real-life intelligent environments dataset to

solve a time-dependent classification problem and attained a classification accuracy of 94.08%. The

proposed TXAI system has the potential to inform the evolution of a process (such as functional

brain development) using temporal trajectories which in turn may assist in the delineation of brain

developmental trajectories.
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Chapter One

Introduction

In this chapter, I outline the motivation of my PhD research, and an overview of the state-of-the-art

research prior to my PhD work is also presented. This is followed by the objectives of my PhD

research, and the resultant contribution to science. Finally, the structure for the rest of the thesis is

outlined at the end of the chapter.

1.1 Motivation

Human brain development is a complex and dynamic process that begins prenatally and extends

through to late adolescence [1]. The human brain has an estimated 100 billion neurons at birth

[2] whose interconnections form neural networks, which become specialised over time and mediate

the functional capabilities of the human brain [3]. This specialisation results from the structural

development as well as functional optimisation of inter-regional interactions in the developing brain

[3]. Over the past 50 years, the field of Developmental Cognitive Neuroscience (DCN) has examined

the relations between the structural and functional development of the human brain [4], elucidating

the developmental mechanisms underlying cognitive processes such as perception, attention, memory,

and language.
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The DCN frameworks (outlined in Chapter 2.1) of Interactive Specialisation (IS) and Neural

Reuse provide account for functional brain development during postnatal development. However, the

fundamental question in DCN of how cognitive development is mediated by structural maturation

and optimised interactions among brain regions remains open. To this end, for my PhD research, I

developed new eXplainable Artificial Intelligence (XAI) methods (presented in Chapter 5) that can

describe functional brain development as hypothesised by theDCN frameworks. More specifically, the

first proposedXAImethods, named EFCM, is based on FuzzyCognitiveMaps (FCMs) for the analysis

of Effective Connectivity (EC) in neuroimaging data to implement the neural reuse framework. The

second XAI method is based on Interval Type-2 (IT2) Fuzzy Logic Systems (FLS) and delineates

cortical networks, as hypothesised by the IS framework, using explainable If-Then patterns. The third

method is based on new Temporal Type-2 Fuzzy Sets (TT2FS) based Time-dependent XAI system

that has the potential to inform brain developmental trajectories.

In the next section, I summarise the state-of-the-art research methods as applied to neuroimaging

data and their potential to inform functional brain development.

1.2 Overview of the state-of-the-art prior to this thesis

The key limitations in developmental research are associated with the limited choice of neuroimaging

techniques that can record brain activity non-invasively, and the difference in opinion surrounding

the use of standardised and explainable analysis of the data. More recently, functional Near-Infrared

Spectroscopy (fNIRS) has emerged as a popular choice for investigating infant brain development, and

its association with cognition and behaviour. fNIRS is a non-invasive, portable, optical neuroimaging

method that allows the measurement of cerebral activity using near-infrared (NIR) light with both

good temporal (around 3-5s) and spatial resolution (within 2cm) [5]. fNIRS has enabled scientists to
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study asleep and awake infants alike both inside the laboratory settings and in natural environments

[6].

The existent inference frameworks in adult fNIRS analysis involve the use of modelling techniques

which assume that signal data coming from all subjects share standard attributes. Typically, these

models are based on the assumption that a canonical Haemodynamic Response Function (HRF)

generated in response to a specific stimulus can be represented as a linear combination of several

sources (regressors) [7]. However, for DCN studies, it is unlikely for the HRF to be known a

priori [8], and hence General Linear Models (GLMs) are not particularly suitable for the analysis of

infants’ fNIRS studies. Nevertheless, GLMs have been pivotal in outlining the relative contribution

of different sources using regression techniques [9].

As they stand, the current analysis frameworks are designed for static modelling (for example,

models which require a priori information such as a known HRF) and therefore cannot be extended

to studying brain processes undergoing continuous changes and development. Therefore, as also

highlighted in a recent review article [10], it is necessary to investigate new analytical perspectives

in DCN, as models based on adult work are not adequate to study the developing brain. In line with

the aim of the present study, Rosenberg and colleagues [10] encouraged the use of data-driven (that

learn from the data directly without relying on a priori information) predictive models to shed light

on the neural circuits that give rise to the development of cognition and behaviour.

Another common approach for the analysis of fNIRS data is using Functional Connectivity (FC)

analysis. In general, FC analysis can be directed (using Granger Causality (GC)) as well as undirected

(using correlation) [11] and can shed light on the functional organisation of the infant brain [12].The

directed FC describes the direction of the FC for example from motor cortex to basal ganglia whereas

undirected FC only identifies functionally connected areas for examplemotor cortex and basal ganglia.

In contrast, Effective Connectivity (EC) analysis describes a representative circuit diagram (cortical
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circuit) explaining observed signals (infant fNIRS signals) [13]. In this regard, EC analysis has the

potential to shed light on the cortical networks formed in infants for the processing of presented

information. EC analysis in infants studies is usually carried out using Dynamic Causal Modelling

(DCM) [14, 15], and requires estimation of the DCM model such as sensitivity matrix computations

using Monte Carlo simulation [14]. In addition, Bayesian inference is used to test the specific

hypothesis for selecting a DCM model that best explains the input fNIRS data [14]. Since, DCM

relies on estimated values (for sensitivity matrix) and a priori information for Bayesian inference, it

is not particularly suitable for infant fNIRS data analysis.

In contrast to connectivity analysis, state-of-the-art machine learning algorithms (e.g. Support

Vector Machines (SVM), Random Forest (RF), and neural-network based approaches) are used for

predictive analysis of neuroimaging data [16], and are specifically employed to distinguish between

classes (stimuli) based on input data (brain responses). The advantage of using machine learning

algorithms is that they are data driven i.e., independent of a priori information. However, these

paradigms do not explain what particular relations of brain activity are prototypical for different

stimuli [17, 18, 19]. To this end, FLS based XAI methods for the classification of fNIRS data have the

potential to outline the prototypical patterns in the form of If-Then statements. Hence, in this work,

the second XAI method (explainable multivariate pattern analysis (xMVPA)) is based on IT2-FLS

for the implementation of IS framework for functional brain development.

Although xMVPA can shed light on the cortical networks activated in response to presented

stimuli, it is ill-suited for the analysis of longitudinal fNIRS studies. Specifically, the limitation of

xMVPA to only analyse cross-sectional fNIRS studies is because standard fuzzy sets (such as IT2)

cannot integrate temporal information in their Membership Function (MF). This is a critical limitation

in FLS, as without integration of the temporal information in the MF of standard fuzzy sets, FLS

cannot inform about the evolution of a real-life process (such as brain developmental trajectories).
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In order to overcome the aforementioned limitations in DCN research, in the next section, I outline

the objectives of my PhD research.

1.3 Objective

The objective of my PhD work is to develop innovative XAI methods in neuroscience that can

provide an explanation for their classification process as hypothesised by the DCN frameworks for

the processing of presented stimuli. To this end, the XAI methods I developed are:

1. Implementation of Neural Reuse framework using Effective Fuzzy Cognitive Maps (EFCMs) -

presented in Chapter 5.1.

2. Implementation of IS framework using Explainable Multivariate Pattern Analysis (xMVPA) -

presented in Chapter 5.2.

3. Evolution of real-life temporal process (such as functional brain development) using Time-

dependent XAI (TXAI) systems - presented in Chapter 5.3.

The EFCMs (presented in Chapter 5.1) offer a more powerful methodology for the analysis of Ef-

fective Connectivity (EC), than standard Fuzzy Cognitive Maps (FCMs), in fNIRS data. Importantly,

EFCMs learn the EC values directly from the fNIRS data without any underlying model assump-

tions. The EC values, discerned by EFCM, are in the range of [−1,1] and reflect the type (positive

or negative) of interaction as well as the direction (for example, from Prefrontal Cortex (PFC) to

motor cortex). In particular, the EFCMs can shed light on how EC between cortical regions gets

optimised/rewired upon acquisition of a skill (such as facial processing) in infants. In this regard,

EFCM has the potential to inform functional brain development as hypothesised by the neural reuse

framework. However, EFCMs offer a limited account of the DCN frameworks since they can only
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decipher the interactions between different cortical regions, and cannot describe the level of activation

of the cortical regions.

To overcome the partial explainability of the EFCMs, with respect to its implementation within the

DCN frameworks, I developed the second XAI method (xMVPA presented in Chapter 5.2) based on

Interval Type-2 (IT2) fuzzy sets. The xMVPA can analyse the neural substrate of infant neuroimaging

data in response to presented stimuli, and delineates cortical networks prototypical for the processing

of the presented stimuli in the form of If-Then patterns. In this work, the xMVPA is exemplified

(Chapter 6.2) in a fNIRS dataset with six-month-old infants, recordedwhilst the infants are presented a

visual and auditory stimuli. The prototypical patterns of cortical networks delineated by the proposed

xMVPA suggests a specialised network for processing of visual stimuli and a non-specialised network

for the processing of auditory stimuli in six-month-old infants. The implications for delineating the

cortical networks formed in response to presented stimuli are profound informing functional brain

development (more details in Chapter 6.2.3).

The xMVPA can inform functional brain development in terms of the activation and interaction

of the cortical networks; however, xMVPA cannot analyse longitudinal data. More specifically, the

xMVPA cannot analyse the temporal information associated with the longitudinal data, i.e. at what

postnatal age the developmental changes are happening [20]. This is because the IT2 fuzzy sets,

on which xMVPA is based, cannot account for temporal information in its MF. In this regard, to

investigate the temporal dimension associated with brain development, the analysis of longitudinal

DCN data, i.e. neuroimaging data recorded over a certain time period, is considered imperative. To

this end, for the processing of longitudinal fNIRS studies, I developed Temporal Type-2 Fuzzy Sets

(TT2FS) based TXAI system (presented in Chapter 5.3).

By analysing neuroimaging data acquired from infants at different ages, the proposed TXAI

system has the potential to describe the prototypical patterns representing the cortical networks
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for each age/time point shedding light on DCN frameworks. Indeed, an explainable analysis of

longitudinal data is fundamental to our understanding of functional brain developmental trajectories.

The insights into brain developmental trajectories can inform our educational, and social policies.

Importantly, this work may also assist in early identification of developmental disorders.

In the next section, I outline my PhD works’ contributions to science.

1.4 Contribution to Science

My PhD research focused on the development of explainable methods to inform our understanding

of functional brain development. To this end, following is a list of the major accomplishments of my

PhD research:

1. Development of Effective Fuzzy Cognitive Maps (EFCMs)

• Elucidates the Effective Connectivity (EC) between cortical areas (functional Near-

InfraRed Spectroscopy (fNIRS) channels), presented in Chapter 5.1.

• Exemplified on surgeons’ fNIRS data where participating surgeons had varying levels of

expertise for performing a motor task, presented in Chapter 6.1.

• M. Kiani, J. Andreu-Perez, H. Hagras, E. I. Papageorgiou, M. Prasad, and C.-T. Lin, “Ef-

fective Brain Connectivity for fNIRS with Fuzzy Cognitive Maps in Neuroergonomics,”

IEEE Transactions on Cognitive and Developmental Systems, 2019, Early Access

• Link: https://ieeexplore.ieee.org/document/8929015

2. Review of eXplainable Artificial Intelligence (XAI) methods for understanding functional brain

development

https://ieeexplore.ieee.org/document/8929015
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• Identifies the limitations in current Artificial Intelligence (AI) methods for understanding

functional brain development, outlined in Chapter 4.

• Proposes XAI methods for informing functional brain development in line with the De-

velopmental Cognitive Neuroscience (DCN) frameworks.

• M. Kiani, J. Andreu-Perez, H. Hagras, S. Rigato, and M. L. Filippetti, “Towards Under-

standing Human Functional Brain Development With Explainable Artificial Intelligence:

Challenges and Perspectives,” IEEE Computational Intelligence Magazine, 2021, In Press

• Published (pre-print): https://arxiv.org/pdf/2112.12910.pdf

3. A new method for the development of eXplainable Multivariate Pattern Analysis (xMVPA)

based on Type-2 fuzzy systems

• Outlines functional brain development in line with the Interactive Specialisation (IS)

framework, presented in Chapter 5.2.

• Exemplified on six-month-old infants’ fNIRS data, presented in Chapter 6.2.

• Javier Andreu-Perez, Lauren L. Emberson, Mehrin Kiani, et al. (2021), "Explainable

Artificial Intelligence Based Analysis for Developmental Cognitive Neuroscience". In:

Commun Biol 4, p.1077

• Link: https://www.nature.com/articles/s42003-021-02534-y

4. Development of new General Type-2 based Time-dependent XAI (TXAI) System

• Temporal Type-2 Fuzzy Sets (TT2FS).

• Applied on a real-life temporal dataset.

https://arxiv.org/pdf/2112.12910.pdf
https://www.nature.com/articles/s42003-021-02534-y
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• Mehrin Kiani, Javier Andreu-Perez, Hani Hagras, "A Temporal Type-2 Fuzzy System

Based Approach for Time-dependent Explainable Artificial Intelligence." In: IEEE Trans-

actions on Artificial Intelligence, Under Review.

In the next section, I outline the structure of my thesis.

1.5 Structure of the thesis

The structure of my PhD thesis is as follows:

• In Chapter 2, I expand on the different frameworks of DCN, neuroimaging modalities, and in

particular fNIRS and its data analysis approaches in the context of DCN studies.

• In Chapter 3, I provide some preliminary background that illustrates the Fuzzy Logic Systems

(FLS) based XAI methods proposed for DCN studies.

• In Chapter 4 a literature review of state-of-the-art AI methods applied to brain data (infants

and/or adults) is presented.

• In Chapter 5 the three new XAI methods developed in the work are presented in detail.

• In Chapter 6 the applications of the proposed XAI methods are presented with a discussion of

their results, and implications for functional brain development.

• In Chapter 7 a conclusion of the proposed XAI models as well as future works is presented.
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Chapter Two

Background on Neuroscience

In this chapter1, I provide an overview of the different frameworks in Developmental Cognitive

Neuroscience (DCN) for the analysis of functional brain development. As will become evident in

the current chapter, the most comprehensive account for functional brain development is provided

by the DCN frameworks of Interactive Specialisation (IS) and neural reuse; hence, the development

of the eXplainable Artificial Intelligence (XAI) models (in Chapter 5), in this work, also focus on

delineating their inference mechanisms in terms of IS and neural reuse.

In addition to DCN frameworks, this chapter also provides an overview on functional Near-

InfraRed Spectroscopy (fNIRS). fNIRS is a neuroimaging modality that can be readily applied for

recording infants’ brain activity. This chapter also outlines the fNIRS data analysis techniques as

applied to DCN studies.

1Some parts of the text in this chapter have been published here: M. Kiani, J. Andreu-Perez, H. Hagras, S. Rigato, and

M. L. Filippetti, “Towards Understanding Human Functional Brain DevelopmentWith Explainable Artificial Intelligence:

Challenges and Perspectives,” IEEE Computational Intelligence Magazine, 2021, In Press © 2022 IEEE.
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2.1 Developmental Cognitive Neuroscience (DCN)

DCN research can inform us about the influence of genetic variations and environmental factors in

the specialisation of neural networks [3]. In addition, DCN studies can extend insights into how

these specialised networks mediate newly acquired social and cognitive functions, shedding light

on typical and atypical trajectories of human brain development [23]. A greater understanding of

brain development trajectories can have profound implications for early detection and the subsequent

intervention of developmental disorders [4]. Furthermore, a better understanding of the interplay

between structural and functional brain development can be leveraged to inform clinical, educational

and social policies [24].

Broadly speaking, historically the theoretical approaches towards understanding human brain

development have contrasted the nature versus nurture approach [25]. On the one hand, the nature

approach claims that there exist a set of innate characteristics (such as genetics) and non-learned

knowledge (also termed core knowledge for representing objects, numbers, actions, and space [26])

which are universally invariant across development [27, 28]. In this sense, the nature approach

proposes that the brain development of an infant unfolds as a result of their genetic or biological

makeup and mostly independent of their experiences.

On the other hand, the nurture approach claims that brain development transpires mainly because

of acquired knowledge based on the interaction of the infant with its environment [29]. In this sense,

most of the information required for brain development is experience-dependent with some elements

from the environment (such as gravity) being common for all infants. An infant’s interaction with

the environment is deemed multi-faceted, spanning from an infant’s early childhood experiences, its

social relationships, and cultural influences.

Overall, nature-nurture interaction aims to identify the relative contributions of ones’ core knowl-

edge as well as innate characteristic and those attributed from the environment in shaping the human
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cognitive abilities. However, with the advent of more research in the developing brain, there is now

significant evidence [3] suggesting that it is the interplay between an individual’s inherited genetics,

core knowledge and their environment that shapes infants’ development.

The interplay between nature and nurture for cognitive development is referred to as the ‘con-

structivist’ approach [30]. Both the nature and nurture approaches share the assumption that the

information necessary for development to unfold already exists prior and independently from the

ontogenic trajectory of the individual. Constructivist stands in an intermediate position between

these two approaches, by suggesting a non-deterministic, dynamic process involving both the innate

characteristics and the external factors for explaining the perceptual and cognitive development [31].

Compared to previous approaches to development, constructivism places a significant focus on the

mechanisms of change and on the interactive processes (dynamic interaction between brain and be-

havior) that lead to the emergence of optimised brain structures (that mediate social and cognitive

functions). In this regard, DCN studies have increasingly investigated the developing brain by taking

the constructivist approach [3, 32].

The three main DCN frameworks that have been proposed to explain human brain development,

namely 1) Maturational perspective, 2) Skill learning, and 3) Interactive Specialisation (IS) aim to

answer the question of how specialised neural networks emerge during postnatal development. The

rest of the chapter expands on the aforementioned DCN frameworks.

2.1.1 Maturational Perspective

The maturational perspective on human brain development undertakes a simplistic approach by

suggesting that brain development occurs as a consequence of brain maturation. Broadly speaking,

maturational perspective is a unidirectional approach by relating maturation of anatomical regions of

brain with their respective brain functions such as perception, language, motor etc. In this sense, the
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maturational approach assumes a deterministic pathway from structural development of a brain region

to its corresponding brain function [33]. Hence, the maturational perspective suggests a one-to-one

mapping between brain structure and brain function.

Most of the research inDCN, until early 2000, has been conducted from amaturational perspective.

The maturational perspective deems brain development as a maturational process. The success of this

perspective comes from the identification of brain regions responsible for processing/carrying out

a certain task such as, for example, the maturation of the DorsoLateral Prefrontal Cortex (DLPFC)

being linked with the successful performance in object retrieval task [34]. More specifically, the

A-not-B task [35] is used to investigate object retrieval in infants. In this task, the object is hidden

in one of two locations (that differ with respect to their right or left location only) as the young

participant watches. The infant is then expected to hold the information in mind (working memory),

and successfully retrieve the object from the correct location, i.e. either left or right. By 7 to

12 months, infants increasingly appear to perform the object retrieval task successfully [36].The

conclusion that the DLPFC is involved in the successful retrieval of an object is based on a study with

adult non-human primates where a damage to the DLPFC impaired the participants from successful

object retrieval [37]. Further, in the work by [38], a higher activation is observed in DLPFC during

object retrieval task using an optical neuroimaging modality (functional Near-Infrared Spectroscopy

(fNIRS)). Indeed, the mapping of DLPFC and A-not-B response task is one of the most established

example of brain-behaviour relations studied in DCN [39].

Overall, the aforementioned studies support the maturational perspective, i.e., once a brain region

(such as DLPFC) is structurally mature, infants are able to perform the corresponding brain function

successfully (in the case of DLPFC the object retrieval task). However, there are also studies that

propose that experience or learning impact on the brain functions, such as the training of a working

memory task in adults by [40] which can not be explained using the maturational perspective alone.
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More specifically, in the work by Olesen et al. [40], the researchers have shown that adults’ working

memory demonstrate a higher capacity after undergoing a five week training. Since the participants

are adults, with mature brains, [40] conclusions can not be accounted for using the maturational

perspective alone. To summarise, the ability of the human brain’s structure and function to change

beyond its formative years, as a result of learning, (also termed as the brain plasticity [41]) can not be

explained using the maturational perspective alone.

With regards to brain plasticity, the maturational perspective suggests that this is an innate ability

of the human brain to recover, however brain plasticity is only brought into action when the brain

suffers an injury or stroke [31]. Other than in cases of lesion, brain development is perceived to be a

static process with different cognitive functions emerging at different time points, as a consequence of

brain structures developing according to their pre-determinedmaturational timetables. To summarise,

beyond the identification of primary functions of various brain regions, the maturational perspective

is not able to explain all aspects of the functional brain development such as the optimisation of

inter-connectivity between brain regions post learning.

2.1.2 Skill Learning

The skill learning perspective supports a life-long learning process as a way to explain functional

brain development. As such, for the skill learning perspective, human brain development has no

specific earmarked developmental phases, i.e. the human brain is in a continuous developmental

phase throughout the life span of an individual. The skill learning approach suggests that the cortical

regions active in infants during the onset of perceptual or cognitive abilities are similar to those that

are involved in complex skill acquisition in mature/adult brains. These specific cortical regions are

referred to as the ‘skill learning circuitry’ that is activated during the acquisition of a skill either in

infants or adults. An illustration of a skill learning circuitry for a sensorimotor task is shown in Fig.
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Figure 2.1An illustration of a skill learning circuitry invoked for sensorimotor learning [42]
with P1, P2, and P3 referring to possible pathways.

2.1 as suggested by [42]. The cortical regions involved in sensorimotor tasks are the sensory cortex,

Basal Ganglia, Prefrontal Cortex (PFC), and Motor Cortex.

A notable DCN study that supports the skill learning framework is the work by Gauthier et al.

[43]. They have shown that the fusiform gyri area of the brain is activated when adults are trained

with greebles- objects which have spatial characteristics like the human face but haven’t been seen

earlier by the participants, i.e. they are novel, artificial objects. After an extensive training with the

greebles, the same area of the brain is activated as those in infants after attaining face processing

skills, i.e. the fusiform gyri. Although the work by [43] corroborates the skill learning perspective

for an adult brain, it is unable to account for the dependence on structural maturation of the cortical

areas involved that precedes the acquisition of skills in infants such as successful object retrieval only

from 7 month onwards [36].

In addition, the notion of plasticity in the skill learning approach is deemed as a result of the

continuous learning of the human brain. Hence, plasticity is a lifelong attribute with no particular

age deemed more special for brain development. Referring back to Fig. 2.1 a total of three paths are
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shown depending on the skill acquisition level achieved for a generic sensorimotor task. The blue

path, labelled P1, represents the initial pathway that is involved for carrying out a sensorimotor task

investigated in [42] and involves the sensory cortex, basal ganglia, PFC and motor cortex. The second

pathway, colored green and labelled P2, emerges when basal ganglia output to PFC has strengthened

the PFC’s sensory input synapses, hence the optimised sensorimotor circuit now bypasses the basal

ganglia. Upon further optimisation, a new pathway P3 emerges directly linking the sensory cortex

with the motor cortex. As can be seen from the Fig. 2.1, plasticity or change in the connectivity of

the human brain can be explained using the skill learning approach.

Although the skill learning approach is intuitive since it offers a dynamic mechanism of learning,

the fundamentals of dynamic mechanisms or the dependency of a skill acquisition on the structural

maturation of a skill learning circuitry are not elucidated. In contrast to the skill learning approach,

the IS approach, presented in the next section, provides a more holistic view on functional brain

development.

2.1.3 Interactive Specialisation (IS) Theory

The IS framework suggests a more probabilistic account based on a bidirectional relationship between

structural and functional brain development. In particular, it assumes dynamic changes during brain

development. The IS framework proposes that both feed-forward and feedback connections between

different cortical regions affect the functional specialisation of cortical regions [44]. More specifically,

the IS theory provides a description of the following three major processes that occur in the developing

brain:

(i) Localisation: The extent of cortex activation for a given task.

(ii) Specialisation: The extent of functionality achieved by a given cortical area.
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Figure 2.2 An illustration of the Interactive Specialisation (IS) theory, © 2022 IEEE.

(iii) Parcellation: The optimisation of synaptic connections of neural circuits.

The IS framework suggests that functional brain development is a dynamic process with localisa-

tion, specialisation, and parcellation processes forming a continuous loop of development as shown

in Fig. 2.2. As a given cortical area gains more structural maturation, its specialisation for a given

task increases, which then triggers the parcellation (optimisation) of information flow in the cortical

network formed to subserve that given task. Optimisation can take place because of structural

and/or functional maturation of different parts of the brain, along with more long range connections
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Framework Principle Brain structure-function mapping
Maturational Structural development A static one-to-one mapping.
Skill Learning Skill acquisition A dynamic mapping that changes in response

to acquisition of skill.
Interactive Specialisation Interlinked structural and Dynamic cortical networks with

functional development inter- and intra-cortical connections.

Table 2.1 A summary of three frameworks in developmental cognitive neuroscience (DCN)
[44].

coming ‘on line’. As a result of the parcellation process, not all parts of a given cortical region need

to be activated nor all connections may be required to transmit the information to the next level of

processing. In this sense, parcellation takes place both within and between cortical regions. The

increased segregation of information pathways gives rise to increased specialisation (i.e. a modular

structure), thus leading to the gradual emergence of hierarchical networks.

A summary of the three DCN frameworks is provided in Table 2.1. Clearly, the DCN frameworks

are not mutually exclusive but rather focus on different aspects of brain development. Please note, for

the purpose of this work, I will focus on the IS perspective, which is largely supported by DCN studies

on the basis of being the most comprehensive account [33]. In addition to the IS framework, I will

also be referring to the Neural Reuse phenomenon (explained next in Section 2.1.4) for understanding

how brain structures get re-wired for the pursuit of a highly specialised, hierarchical adult brain.

2.1.4 The Hierarchical Human Brain

The developed adult human brain, both in terms of structure and function, is a ‘small world’ network

[45]. A small world network is typically characterised with concentrated local activity, decreased

short-range interconnections (segregation), and increased long-range connections (integration) ren-

dering it cost efficient. Repeated processing of certain types of input leads to certain brain networks to

become increasingly proficient and fine-tuned to process that specific information [46]. In particular,
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developmental change in the varying levels of activity across different cortical regions leads to gradual

specialisation and localisation observed in the developed human brain [46], as illustrated in Fig. 2.2.

A developed brain is also modular with respect to functional organisation, i.e. it has a hierarchical

network that has the ability to feed processed information from one layer (module) to another. The

hypothesis of a more modular developed brain is based on the evidence of top-down and bottom-up

information flow. For example during visual processing, the information in the adult brain flows from

the primary area of visual processing (such as occipital cortex) to higher hierarchical levels (such as

PFC) where the information processed by lower hierarchical levels is integrated [47, 48]. For top-

down modulation, the higher-order cognitive influences (such as from PFC) interact with information

coming from primary area of visual processing (such as occipital cortex). The cognitive influences

may change the information conveyed by occipital cortex such as attention, object expectation, and

scene segmentation [49].

An important consideration with regards to the hierarchical brain is that the interactions between

hierarchies at multiple levels and timescales are not hard-wired, i.e. the coordination betweenmodules

is not fixed [20]. As a consequence, existing modules could subserve emerging cognitive states by a

reconfiguration of their interconnections using a neural reuse [50] process of brain organisation. The

other two plausible processes put forward to explain functional brain organisation are modularity and

holism [50].

With regards to explaining the hierarchical structure of the human brain, the modular functional

brain structure would imply that for each task there would be largely segregated cortical circuits with

limited overlap. Whereas the holism organisation of the brain suggests that all cortical circuits may

be engaged across all tasks. The neural reuse perspective suggests that individual modules have

the capacity to connect with each other in numerous configurations to achieve a range of cognitive-

behavioural tasks. The three aforementioned perspectives of functional structure of the brain are
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Figure 2.3 The perspectives for the hierarchical structure of the brain, © 2022 IEEE.

illustrated in Fig. 2.3.

The idea of neural reuse seems plausible with respect to optimal usage of existent circuits evolved

for a given cognitive task. In this way, while neural circuits are modular to some extent with respect

to their individual functionality, neural reuse suggests that neural circuits can continue to acquire

new uses after an primary function is established [50]. The neural reuse perspective is supported

by a range of higher cognition functions such as the reuse of motor control circuits for language by

Pulvermuller et al. [51]. In the study by Pulvermuller et al. [51], the authors reported that listening to

words which involve an action such as ‘pick’ and ‘kick’ activates primary motor cortex. The finding

that listening to or comprehension of verbs also activates motor cortex entails the neural reuse of

motor cortex for language comprehension. Another example of the neural reuse of motor cortex for

memory retrieval is by Casasantro et al. [52]. In their work, the authors concluded that participants

were able to retrieve more (positive or negative) memories if their movement (moving marbles up or

down from one container to another) was matched with the memory valence (i.e. positive memory

with moving marbles up and negative memory with moving marbles downward from one container to

another). Their study suggests that activation (neural reuse) of motor cortex helps with the memory

retrieval of the participants.

In the next section, I outline the fNIRS neuroimaging modality for its application in DCN studies.
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2.2 Functional Near Infra-Red Spectroscopy (fNIRS)

The aim of this work is to develop XAI (explainable artificial intelligence) methods that can describe

functional brain development in accordance with the IS (interactive specialisation) and neural reuse

framework (previously outlined in Chapter 2.1). Before I present the proposed XAI methods, in

this section, I outline the different neuroimaging modalities that are common for recording infants’

brain activity. For DCN studies in particular, in order to be able to investigate multifaceted aspects

of cognition in development, the experimental paradigms require that infants’ brain activity can be

recorded during the execution of a wide range of cognitive tasks. Owing to the requirements to study

cognition in infants, some key features should be taken into account when designing experimental

studies with this population. While it is essential for the designated neuroimaging modality to be safe

and non-invasive, the methodology should also have good temporal resolution and spatial localisation,

and allow for infants to be sitting upright (to be able to watch the stimulus/task) with the freedom to

perform bodily movements. Keeping in mind the aforementioned constraints, the following review

of neuroimaging modalities aims to assess their applicability for DCN studies.

In order to examine the neural underpinnings of cognitive processes and their changes across

development, functional Near-Infrared Spectroscopy (fNIRS) [53, 6], and Electroencephalogram

(EEG) [54] have been widely used in DCN studies with infants and children. These neuroimaging

modalities are both safe, non-invasive, portable, wearable, and relatively inexpensive - compared to

Magnetic Resonance Imaging (MRI), which has instead proved pivotal in adult brain neuroimaging.

In particular, fNIRS and EEG allow for the young participants to stay engaged in tasks whilst recording

their brain activity in more naturalistic postures (e.g. sitting upright vs laying down), and even in

ecologically valid settings such as their homes if needed [6]. Nevertheless, fMRI has been successfully

used in developmental studies with asleep infants [55, 56] and, more recently, also with awake infants

[57, 58].
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Figure 2.4 The Electroencephalogram (EEG) neuroimaging modality for DCN studies, ©
2022 IEEE.

EEG measures brain electrical activity, with the electrodes placed on the scalp, that reflect the

summated postsynaptic potentials of cortical neurons (also known as the ‘EEG generators’ [59])

in response to changing cognitive or perceptual states [60]. EEG activity is mainly generated by

pyramidal neurons in the cerebral cortex that are perpendicular to the brain’s surface/electrode on

the scalp [61]. The EEG principle is represented in Fig. 2.4b. EEG records electrical changes

continuously on the scalp allowing the measurement of rapid cognitive processes [62] with high

temporal accuracy, in the order of milliseconds [63]. The EEG net has electrodes fitted on it that

covers the whole head (see Fig. 2.4a). Since EEG can record activity on the time scale of underlying

neuronal activity, EEG signals (see Fig. 2.4c) are better suited than fNIRS signals for connectivity

analysis. The connectivity analysis using EEG signals has proved pivotal in understanding the neural

correlates of cognitive functions in typical infants [64] as well as those with varying underlying

conditions such as low weight birth [65], those born preterm [66], and also those at risk for autism

spectrum disorder [67].

In contrast to the continuous EEG signals, the Event Related Potential (ERPs) are derived from the

EEG signals by averaging the time-locked segments to the presentation of an event or stimulus [68].

For example, in adults during a face processing task, a P100 component (a positive ERP) is observed
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at 100ms and a N170 component (a negative ERP) is observed at 170ms over occipitotemporal

electrodes post stimulus presentation [69]. Likewise, in 3- to 12-month old infants, EEG based

studies investigating the development of face processing have observed two ERP components over the

occipitotemporal electrodes thought to be the precursors of the adult N170, i.e. the N290 and the P400

components [70]. The difference in the morphology of the ERPs (latency and amplitude) between

adults and infants is expected, and arises because of the physiological differences between infants

and adults (such as the head, skull, and brain tissue [71]), as well as the developmental differences

between the two populations (such as the difference in local functional structure of cerebral cortex

[72]).

The study of cognition in infants with ERP based investigations has enabled a time based analysis

that allows the identification of the sequence of cognitive processes based on the time information

embedded in the ERP waveform [70]. Further, based on the difference in the morphology of the

ERPs, it is also possible to investigate the difference in response to different stimuli. For example

in the processing of facial expressions, the P400 amplitude was larger for fearful vs neutral or happy

faces at semi-medial electrodes in infants [70]. Likewise, ERPs have been used to investigate other

areas in cognition such as auditory [73] and language learning impairment [74] as well as attention

[75].

The challenges associated with infant ERP-based studies include significant variation in the

elicited ERP both within and between infants. In addition, the number of trials per infant are usually

smaller in comparison to adults (due, for example, to higher motion artifacts [76]) and consequently

the averaging of the ERP does not have as much statistical power as those of adult ERP studies.

The critical limitation of EEG for investigating functional brain development as hypothesised by

the DCN frameworks (Chapter 2.1) is its limited spatial resolution [77], whichmakes it difficult tomap

brain electric activity to its corresponding anatomical regions in the brain. Although a few EEG based
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studies have attempted source localisation in adults (for example, Brain Electrical Source Analysis

[78]) and infants (for example, [79]); the proposed source localisation algorithms are dependent on

source generator assumption upon which dipole locations are determined and subsequently potential

distribution is built [71]. Since EEG can not identify the source (corresponding brain region) of

brain activity, without significant assumptions, I will be focusing on fNIRS modality for investigating

functional brain development.

fNIRS is an optical neuroimaging modality that uses Near-Infrared (NIR) light on the scalp to

record relative changes in blood haemoglobin (Hb) concentration, based on NIR light absorption

by the Hb molecules, which is inferred as a measure of the cortical brain activity [53]. The NIR

light absorption is minimum as it travels through the brain tissue except for the Hb chromophore.

Hence, NIR light can detect changes in concentration of Hb based on the absorption of the NIR light.

Though, the NIR absorption spectra of the oxygenated Hb (oxy-Hb) and deoxygenated Hb (deoxy-Hb)

are different. A greater absorption of the NIR light means larger presence of Hb which is reflective

of greater brain activity. This is because the part of the brain involved in the processing/execution

of a task experiences a greater metabolic demand for oxygen and glucose. The increase in metabolic

demand is met by an increased cerebral blood flow to that region of the brain leading to an increase

in oxy-Hb and a decrease in deoxy-Hb.

An illustration of the fNIRS principle (Fig. 2.5b) along with a representative signal (oxy-Hb in

red, and deoxy-Hb in blue) is shown in Fig. 2.5c. The fNIRS cap comprises of pairs of sources and

detectors, and the cortical area between a source and detector is deemed as a fNIRS channel, see

for example Fig. 2.5a). The source and detector probes on the fNIRS cap can be placed in various

configurations such as the 10-20 or 10-10 standard montages as well as a fully customised montage

where the researchers place source and detector probes against cortical areas of investigation in their

study. More recently, a wearable fNIRS cap with high density, fixed distance probes for infants has
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Figure 2.5 The functional Near-InfraRed Spectrocopy (fNIRS) neuroimaging modality for
DCN, © 2022 IEEE.

been developed to further improve the spatial localisation of fNIRS [80]. The fNIRS cap can also be

customised to add EEG electrodes for a simultaneous recording (fNIRS and EEG) of the underlying

brain activity [81].

Over the past 50 years, fNIRS has been used to study a range of populations whilst investigating

a multitude of brain-behaviour tasks. The technological advances in fNIRS coupled with more

sophisticated tools for its signal analysis have seen a rapid growth in studies investigating neural

correlates using fNIRS. In particular, the portability of fNIRS to study participants both inside and

outside the lab environment, as well as the freedom to perform motor tasks makes it an ideal modality

for studying brain activity in naturalistic environments. Apart from portability, and low sensitivity to

motion, fNIRS also offers good spatial localisation (within 2cm [82]) which allows for conclusions

to be drawn about the localised cortical activity from different anatomical locations of the cortical

structures. The aforementioned attributes are quintessential for gaining insight into the developing

brain as these allow for greater flexibility in the experimental paradigm. As a result, more sophisticated

questions regarding brain-behaviour relation can be answered.

Notwithstanding the strengths of fNIRS technology for the study of human brain development,

there are several limitations that should be taken into account when employing fNIRS in cognitive
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neuroscience research. First, brain activity using fNIRS can only be recorded as a relative measure

compared to a baseline measurement (usually the first reading of the fNIRS signal), and not absolute

measurements [83]. The cause for the calculation of relative measurements of brain activity using

fNIRS are further discussed in Section 2.2.1. Second and unlike functional MRI (fMRI), the fNIRS

measurements do not include an anatomical image to which underlying brain regions can be refer-

enced. This means that fNIRS channels will need to be anatomically registered to corresponding

brain areas [84]. This is an important consideration when undertaking a neuroimaging study with

fNIRS, since any conclusions about the localised brain activity are hinged on the identification of

the corresponding anatomical locations of the fNIRS channels. The fNIRS channel registration is

discussed in more detail in Section 2.2.2. Another important consideration with fNIRS modality is

that it has limited penetration depth (only reads the brain activity as far as the superficial cortex [85])

and hence fNIRS based studies can not shed light on brain activity beyond the superficial cortex.

Further, because there is a substantial time delay between the activation of the brain region and

the observed haemodynamic response, fNIRS is not well-suited for real-time investigations of brain

activity. Although these are all significant limitations, however, they do not impact the suitability

of fNIRS in DCN research as such because relative measurements of brain activity, even after a

significant lag, are still warranted to shed light on the activated cortical regions.

The continuous advancements in fNIRS are further enabling the technology to be at the forefront

for answering questions in an ever expanding field of neuroscience. Arguably, the most exciting areas

of recent advancement is fNIRS hyper-scanning [86] where the brain signals are recorded from more

than one person simultaneously. In this sense, fNIRS hyperscanning allows for brain activity to be

recorded whilst allowing for natural social interaction between the participants and investigations

usually aim to analyse inter-brain synchrony using wavelet coherence or Granger Causality (GC).

Further, with wireless fNIRS [87] now it is also possible to investigate brain activity of participants
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with minimal constraints (no wires) which is particularly advantageous during neurorehabilitative

training. Another recent advancement in neuroscience research entailing fNIRS, is the combined

use of neuroimaging techniques such as fNIRS and EEG (e.g. [88]). The multimodal imaging can

provide a wider picture of functional brain activity by benefiting from the advantages of different

neural measures. These are all promising avenues in neuroscience research with fNIRS which have

the potential to further inform brain-behaviour relations.

A flowchart of a typical neuroscience experiment with fNIRS is illustrated in Fig. 2.6. In the next

sections, an outline of the fNIRS typical pre-processing stages and the standard procedure for fNIRS

channels’ co-registration is presented. The prevalent analysis of fNIRS signals are outlined in section

2.2.4.

1. Experimental design 2. fNIRS data
acquisition

3. fNIRS data
preprocessing 4. fNIRS data analysis

3.1 Channel pruning 3.2 Motion artifact
correction 3.3 Filtering 3.4 Modified

Beer-Lambert Law

Statistical
Inference

Univariate
Analysis

Multivariate
Analysis

Connectivity
Analysis

Figure 2.6 A schematic of typical neuroscience study with fNIRS.

2.2.1 Preprocessing

The noise sources in fNIRS signals are usually characterised as measurement/system (such as elec-

tronic noise or light source instability), physiological (associated with heart rate/breathing) or motion
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artifacts (head or body movements). The aforementioned sources of noise significantly affect the

fNIRS signal quality, and therefore it is important to preprocess such signals to ensure subsequent

inferences made are based on neural correlates and not noise. The standard preprocessing steps for

fNIRS signals, based on the recent work of [89] and [84] are listed below.

1. Channel pruning

2. Motion artifact correction

3. Filtering

4. Modified Beer-Lambert law

Although the preprocessing steps are similar across studies, there is no established standard with

respect to performing these steps [89]. For example, there is little consensus on the criterion for

channel pruning such as the signal-to-noise ratio (SNR) threshold or the attrition rate in infant studies

[90]. Likewise, various types of filters (low pass, high pass, band pass) have been used in fNIRS

based studies with varying filter orders, and cut-off frequencies [89]. Moreover, there is also no gold-

standard for the order in which the above listed steps are carried out [84]. A lack of standardisation

of the above steps makes it difficult to not only draw comparison between studies but also makes it

hard to replicate the results. In this regard, there is a growing need for the standardisation of fNIRS

preprocessing pipelines [84] to ensure robust results and replications. Recently, different viable

preprocessing pipelines for infant fNIRS studies have been proposed by [8].

Apart from the variation in the pre-processing steps, there is also no standard toolbox/program for

performing such analyses. Some notable toolboxs include: 1) Statistical Parametric Mapping (SPM)

for fNIRS [91], 2) HomER [92], and a more recent one: 3) NIRS-KIT [93]. They are all based in

Matlab and offer a graphical user interface to perform the fNIRS data pre-processing steps. More
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recently, however, there has been a greater uptake of the HomER program (for example [6, 89, 84])

since it allows for custom processing scripts at subject and group levels as well as the continuous

advancement in their toolbox; they have recently released a 3rd version of their toolbox [94].

In spite of the choice of the pre-processing toolbox, the first step in the preprocessing of fNIRS

data usually involves the channel pruning stage. In channel pruning stage the quality of the signal

from fNIRS channels is checked against a set SNR threshold. The fNIRS channels that pass the SNR

threshold are then selected for subsequent analysis. In this regard, it is important to note that not the

same fNIRS channels might be selected across all subjects.

The next preprocessing step involves removing or correcting for the motion artifacts. The motion

artifacts, caused by head or limb movements, result in spikes or baseline shifts in the signals. Motion

artifacts are particularly predominant in DCN studies because infants tend to move often during

experiments, and the experimenters have little control over infants’ behaviour or mood. In addition,

to account for the prevalent physiological noise in the fNIRS signals, filtering of fNIRS signals is

also undertaken. By filtering the fNIRS signals, frequency bands which are associated with the

physiological noise are removed. The particular components removed are typically heart rate (∼1Hz),

Mayer waves (∼0.1Hz), and breathing rate (∼0.3Hz).

After removing noise and motion artifacts, the signals (from selected fNIRS channels) are con-

verted to changes in Hb concentration. The fNIRS estimates the attenuation ($), or loss, in the NIR

light shone from the source by comparing the input NIR light, IIN , with the detected NIR light, IOUT ,

using the modified Beer-Lambert Law (mBBL) (2.1a) [95]. The first attenuation measure at time

(t) =0, i.e. $(at t = 0), is subtracted from all subsequent attenuation measures to give differential

attenuation measures, denoted as ∆$(t) in (2.1b). The use of differential attenuation measures helps

to minimise the NIR loss from sources other than the Hb absorption such as the NIR light scattering

and absorption in the brain tissue. The concentration changes of oxy-Hb and deoxy-Hb, ∆ζ , are then
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derived from differential attenuation measures as a function of the source-detector distance (d) and

the Differential Pathlength Factor (DPF) in (2.1c). The extinction coefficient of the chromophore at

a certain wavelength λ is denoted by ε in (2.1c). Using a dual wavelength system, measurements for

∆ζoxy−Hb and ∆ζdeoxy−Hb can be solved using matrix notation as outlined in (2.1c).

$(t) = −log10
IIN(t)
IOUT (t)

(2.1a)

∆$(t) =$(t) −$(t = 0) (2.1b)

∆ζ = ∆$(t)
ε(λ) ∗ d ∗DPF (λ) (2.1c)

⎡⎢⎢⎢⎢⎢⎢⎣

∆$λ1(t)

∆$λ2(t)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

εoxy−Hbλ1
εdeoxy−Hbλ1

εoxy−Hbλ2
εdeoxy−Hbλ2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

∆ζoxy−Hb

∆ζdeoxy−Hb

⎤⎥⎥⎥⎥⎥⎥⎦
(2.1d)

2.2.2 Channels’ Registration

As noted earlier in Section 2.2, fNIRS has good spatial localisation, compared to EEG, however unlike

fMRI, fNIRS signal measurements do not include corresponding brain anatomical map. Hence,

fNIRS channels need to be registered to correctly identify corresponding anatomical brain regions

from which brain activity is recorded. Channel registration is an important part of an fNIRS study

because it directly affects the subsequent inference about the brain activity of cortical regions under

investigation.

The most prevalent approach for fNIRS channels’ registration is to use a probabilistic registration

method that allows for using a database of reference MRI images in place of individual’s/participant’s

own MRI image [96]. The probabilistic registration method maps the location of fNIRS channels

to a standard brain template. The most commonly used brain template for adults is the Montreal
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Neurological Institute (MNI) template whichwas created from 152 brains coregistered to the Talairach

brain [97]. The probabilistic registration method improves the fNIRS channels location specificity

when individual MRI images of participants is not possible. However, when access toMRI is possible

and MRI image of the participant can be obtained, individual MRI scans are a preferred way to do

spatial registration of fNIRS channels [98].

In particular for DCN studies, given that infants’ head sizes can vary significantly within and

across ages, channel registration becomes critical. Some examples of magnetic resonance (MR)

coregistration with fNIRS channels in infant studies are by [99, 100, 101].

2.2.3 Oxy-Hb or Deoxy-Hb

As previously discussed in Section 2.2, the expected haemodynamic response reflective of brain

activity is a simultaneous increase in oxy-Hb concentration and a decrease in deoxy-Hb concentration

[89], also referred to as the canonical haemodynamic response (see Fig. 2.5c). However, scientific

works in DCN have pointed to inconsistency in deoxy-Hb response in human infants [6] and as such

the canonical haemodynamic response is rarely observed/reported in DCN studies [8]. Therefore,

most DCN studies with fNIRS report data analysis with only oxy-Hb chromophore, for example [101].

This is because, in comparison to deoxy-Hb, the oxy-Hb chromophore has been reported to pertain

more information than the deoxy-Hb about the underlying neural correlates [102]. However, there

is now growing consensus to report both oxy-Hb and deoxy-Hb signals analysis as a step towards

standardisation of fNIRS studies [84] even if no significant results are obtained from any/either of

the Hb biomarkers. Some examples of DCN studies that report data analysis from both oxy-Hb and

deoxy-Hb are [103, 104, 105].

In the next section, an overview of the fNIRS data analysis is presented.
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2.2.4 fNIRS Data Analysis

The prevalent data analysis of fNIRS signals, post pre-processing and conversion to ∆Hb concentra-

tions, involves estimation of the HRF by 1) simple block averaging, 2) Convolution, or 3) General

linear models (GLMs). The block averaging method is independent of any a priori assumptions

about the shape of the HRF and is the de-facto choice for studies when the HRF response for a

novel experimental paradigm or population is not yet established such as DCN studies [84], further

discussed in Section 2.2.4. Block averaging typically involves selecting a time window of the fNIRS

signals, post stimulus presentation such as 4 - 7 seconds [101], and taking the average of that time

window. A range of statistical tests can then be applied on the average activation for different stimuli

or events.

An important caveat with respect to block averaging is the identification of the time window

also known as activation hacking. In activation hacking, the start and stop time points post stimulus

presentation of the fNIRS signal oxy-Hb or deoxy-Hb) are identified that would result in best classi-

fication results. As such, there is no set procedure for activation hacking nor is there any consensus

on the parameters of the time window (start and stop time points post stimulus presentation) i.e.

different DCN studies have reported different time windows. For example, the work by [106] with

7-month-old infants used 6s post stimulus until 2s post offset, in six-month-old infants [101] used 4-7

s time window, whereas [107] used 8 to 10 s.

In contrast to activation hacking for block averaging, some studies make use of the whole signal by

dividing the full length of the fNIRS signals into blocks, and doing statistical analysis on the averages

of the blocks. For example, in the study by Pfeifer and et al. [108] the fNIRS signals is segmented

into 10 blocks and the averages of these 10 blocks are used for statistical analysis (Friedman test was

used in [108]).

Although block averaging is a powerful method, independent of any underlying assumptions, it
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takes away the temporal information embedded in the fNIRS signal. In this regard, the GLM method

builds upon the temporal information stored within the fNIRS signal, and is outlined next.

General Linear Model (GLM)

The GLMmethod seeks to find the influence of each of the explanatory variables (often referred to as

regressors in fNIRS) of the fNIRS signal using their (regressors’) weighted linear combination. The

weight attached to each of the regressors is an indication of the contribution of a given regressor for

a fNIRS signal. The GLM can be mathematically expressed as (2.2).

κ(t) = βξ(t) +Ω (2.2)

The β values are the weights that quantify the contribution of each regressor (denoted by ξ) to

the estimated HRF (denoted by κ(t)). The noise or unexplained contributions to the fNIRS signal

are referred collectively as the error, denoted by Ω. The GLM estimates the value of the β for

each regressor by comparing the estimated haemodynamic response function (HRF) (κ(t)) with a

predefined HRF. In this way, by reducing the difference between the estimated and the predefined

HRF the β values are optimised.

The strength of the GLM method arises from the incorporation of the full time series of the

fNIRS signals. This evidently gives GLM higher statistical power than block averaging method. In

addition, in the GLM method it is easy to quantify the contribution of each of the predictors (such as

fNIRS channel, noise etc.) using regressor (β) values. However, the GLM presumes that a specific,

predefined HRF is known for the task and the underlying cortical region being investigated [89].

This is rarely the case for DCN studies i.e. no established HRF is known for infants [8]. As a

consequence, such lack of known HRF for infants limits the applicability of GLM in DCN studies (As

a consequence, such lack of known HRF for infants limits the applicability of GLM in DCN studies
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(though see [109] for an example of HRF estimation in infants, and [110] for an example of HRF

estimation in adults .

Haemodynamic Response Function (HRF) in infants

Although some notable works for the identification of HRF in full-term infants have been carried

out (such as [109]) there are many caveats associated with pre-determination of HRF in infants. For

example, the HRF is dependent on the task/experimental paradigm as well as the cortical area under

investigation i.e. the HRF for visual stimulus may not necessarily be the same as that for auditory

stimulus. Likewise, the HRF in occipital cortex would be different from that in temporal cortex.

The HRF would also be dependent on how much an infant engages with the stimulus. Owing to the

lack of an established HRF in infants, most DCN studies do not use HRF based analysis but rather

block-averaging of oxy-Hb signal for the most pronounced time window is often used (for example

[101], [111]).

In the next sections, an overview of fNIRS data analysis based on block-averaging is presented

using univariate and multivariate methods.

Univariate Analysis

The classical statistical inference models for fNIRS data analysis are predominantly univariate, i.e.

they investigate one variable’s or cortical region’s data at a time (for example [112, 111]). These

methods have focused on where in the brain the activity is more globally pronounced in response to

a certain stimulus. This is possibly due to the relatively limited datasets that can be experimentally

collected, and the need of cognitive neuroscientists to decode and interpret the complex multivariate

patterns of neuroimaging data using straightforward approaches. This limitation is amplified in DCN,

where data collection poses significant additional challenges, such as dealing with infant participants’
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compliance with the experiment, and sample sizes are, as a consequence, relatively smaller compared

to neuroimaging studies with adults.

However, the univariate analysis tends to implement the maturation perspective of the DCN

frameworks, i.e. mapping one brain region to one brain function. As outlined earlier in Chapter

2.1, the DCN frameworks of IS and neural reuse support the interaction of various brain regions for

carrying out various cognitive, perceptual, or motor tasks. In this regard, a method that can analyse

multiple brain regions’ activity at the same time (termed multivariate analysis) is required to elucidate

the cortical networks thus formed in response to presented stimuli.

In the next section, multivariate analysis is presented.

Multivariate Analysis

As discussed in the last section, the univariate methods only partially responds to the main research

question for DCN studies of how emerging patterns of interaction between brain regions are associated

to new cognitive functions [3]. However, by usingM number of dimensions, arising fromM number

of fNIRS channels, Multivariate Pattern Analysis (MVPA) methods have the potential to identify

associations between brain regions, and the corresponding activation levels in terms of distributed

patterns, rather than just as measurements of a single source. MVPA is a classification method

that aims to differentiate between classes (or stimuli) by finding patterns in the multivariate matrix

that are prototypical of the classes. The MVPA has two integral components: 1) computing a

Multivariate Matrix (MVM) and the 2) selection of the AI technique that will analyse the MVM. The

aforementioned components of MVPA are explained in detail next.

In most multivariate analysis, the feature set is crafted by hand. That is the statistic characteristic

(such as mean, amplitude etc.) of a neuroimaging signal which would best capture the neural

underpinnings, corresponding to the task at hand, is chosen manually. The two dimensional matrix
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formed by collating together the features fromM channels (for fNIRS) and E number of data trials is

then given as input to an Artificial Intelligence (AI) method, and is hereby referred to as aMultivariate

Matrix (MVM).

Although it requires considerable subject-matter expertise to select a feature set forMVM that best

represents the underlying neural activity, the classification results (based on the analysis of MVM)

would reflect on the validity of the selected features to represent the dynamics of the underlying

cortical networks. In this regards, the classification results obtained from the analysis of MVM can be

at least partially attributed to the cortical networks activation as represented by the statistical feature

used for constructing the MVM.

The AI paradigms seek to find patterns within the input data that are characteristic of each of the

classes (or stimuli in DCN studies). The classification of unlabelled input data is done on the basis of

the prototypical patterns found by theAI paradigms. A greater classification accuracy of anAImethod

is a testament that it has discerned the underlying patterns to the level of the classification accuracy.

The MVM can be readily analysed using any state of the art AI methods. Most AI methods such

as Support Vector Machine (SVM), Random Forest (RF) etc. usually give very robust classification

results with MVM.

The AI methods’ inference mechanism, driving the MVPA, identifies patterns within it (MVPA)

that are prototypical of the presented stimuli. However, the inference mechanism of the AI method

must be able to describe the cortical networks’ representations within the MVPA to shed light on the

brain development. In this regard, it is critical for the AI methods to have a transparent, explainable,

human-understandable inference mechanism so that the patterns found in MVPA can shed light on

the cortical networks formed in response to the presented stimuli. Indeed, a deeper understanding of

cortical brain networks for the processing of presented stimuli in the developing brain would shed

light on the interplay between the physical growth of the activated brain regions and the emergence
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of new behavioural abilities during brain development [3].

In the next section, fNIRS connectivity analysis is presented.

Connectivity Analysis

Brain connectivity analysis can shed some light on the segregation, and integration of the isolated

cortical networks formed to mediate coherent cognitive and behavioral states. The three modes

of brain connectivity analysis [113] that can inform about the organisation and the working of the

developing human brain are: 1) Structural Connectivity 2) Functional Connectivity (FC) and 3)

Effective Connectivity (EC) analysis. SC is generally associated with respect to the anatomical

wiring in the brain and is typically measured in vivo using diffusion weighted imaging. Whereas,

FC is measured as temporal correlation between spatially remote neurophysiological events [13]. In

contrast, EC measures the influence that one neural system exerts over another which can be both

activity, and/or time dependent [114].

In most cognitive studies, to understand the underlying connectivity of cortical regions for pro-

cessing presented information, the analysis of FC (to investigate which spatially distinct cortical areas

of the brain are engaged simultaneously) and/or EC (to investigate the extent of influence one cortical

region exerts on another) is undertaken. Indeed the analysis of FC and EC can potentially inform

about brain architecture; however to what extent the connectivity analysis effectively contributes to

the understanding of brain processes is dependent on the choice of the AI technique (used for the

connectivity analysis). This is because the extent to which the AI technique can inform about the

underlying cortical networks depends on the level of explainability of the AI technique.

An example of a recent work that analyses EC in infants’ fNIRS data is by Bulgarelli et al. [15]. In

the work by Bulgarelli et. al, the authors undertook a multimodal study (fMRI and fNIRS) to estimate

the EC in a six month old asleep infant using Dynamic Causal Modelling (DCM). Although they were
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able to choose the most suitable DCM model that best explains the data using Bayesian inference,

the DCM model is hinged on the correct estimation of the sensitivity matrix. In addition, their DCM

model was able to only outline the (presence or absence of an) interconnection between different brain

regions, i.e. their analysis did not include corresponding (numeric/quantitative) EC values. In this

work, I have developed an explainable EC connectivity analysis (called EFCM presented in Chapter

5.1) which does not rely on a priori information or estimated values. Further, the ECFM method is

able to delineate the cortical networks’ reconfiguration using EC values as hypothesised by the neural

reuse framework. In the next chapter, I outline fuzzy logic systems (FLS) which form an integral

part of the xMVPA (presented in Chapter 5.2) developed for the implementation of the IS framework

(Chapter 2.1).
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Chapter Three

Background on Fuzzy Logic Systems (FLS)

based explainable AI (XAI)

In this chapter, I present an overview of Fuzzy Logic Systems (FLS). FLS forms the basis of new

explainable methods (presented in Chapter 5), that I developed in this work, for the analysis of infants’

fNIRS data in line with the DCN (Developmental Cognitive Neuroscience) frameworks (previously

outlined in Chapter 2.1).

Over the last few decades, the widespread application of AI (artificial intelligence) systems have

enhanced many aspects of everyday life from risk management [115], sky shepherding of sheep

[116], medical image segmentation [117], recognition of expertise level [21], mobile applications

[118] to Covid-19 detection based on cough samples [119]. Although opaque AI systems offer

remarkable prediction accuracy, they are limited by a lack of explanation behind their predictions. A

lack of explanation renders the AI systems untrustworthy, and particularly inapplicable where users

want to understand the decision process of the AI system. To this end, there is a growing need for

transparent, human-understandable AI systems called XAI systems [120]. Several approaches taken

towards the development of XAI systems include: 1) Intrinsic: a method in which model inference

structure is fully transparent, and 2) Post-hoc: a model-agnostic meta-model is used to decipher the
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Figure 3.1 An illustration of the main components of a Fuzzy Logic System (FLS).

inference rationale of a black-boxmodel. Within post-hocmethods attempts to understand a black-box

model using an intrinsic model have also been undertaken. A particular category of these are the

anchor-based models.

Although anchor-based approach provides a step towards implementing human-understandable

explanations [121], explanatory patterns rest on hard thresholds and are constrained by Boolean logic.

They are not suitable for complex, real-life processes which are characterised with uncertainty. In

this regard, another approach to implement XAI systems is FLS [120, 122]. The FLS based XAI

systems are well-suited for explainable modelling of real-life processes because of FLS capability to

handle uncertainty in the input data, and subsequently improve the process model and performance.

Further, the use of conceptual labels that model uncertainty and axioms of FLS based XAI systems

pave way for human-understandable models for describing complex, real-life processes.

In addition to providing explainability, FLS can also be used for analysing both classification

(predict one output class for example car or house) and regression (predict a quantitative number for

example annual sales prediction) problems. In general, the main components of a FLS are a fuzzifier,

patterns (or rules), inference mechanism, and a defuzzifier, as illustrated in Fig. 3.1. Also, since in
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the context of this work, ‘rules’ and ‘patterns’ can be used interchangeably hence from here on-wards

only the word ‘patterns’ is used for keeping the text consistent.The aforementioned components of

the FLS are described in detail below.

The fuzzifier (of a FLS) handle uncertainty in the input data using fuzzy sets that convert crisp

numbers (viz. uncertain observations) to conceptual labels characterised with membership degrees

[122, 123]. The fuzzy sets are defined by Membership Functions (MFs) and represent a given

conceptual label. The membership degrees are usually in the range [0,1] and is a soft measure of

degree of association the associated fuzzy set has for a given crisp measurement to belong to the

conceptual label represented by the fuzzy set [123]. For example, an XAI system modelling the

heights of people in a community using type-1 fuzzy sets may represent height using conceptual

labels of Tall, Medium, and Short. The MF associated with each conceptual label’s MF will assign a

crisp number for the height of a person with a membership degree; for example, a height of 6ft may

get assigned membership degrees of 0.8,0.5,0.1 to represent conceptual labels of Tall, Medium, and

Short respectively.

While fuzzy sets transform measurements from input features into conceptual labels, the patterns

in a FLS outline the relationship between the input features (antecedents) and the output (consequent)

using conceptual labels and propositions. The patterns, for a given process, can be provided by the

experts in the relevant field [124] or can also be learnt using input data using evolutionary algorithms

[125]. In general, the patterns of a FLS are formed of two parts: the antecedent part, and the

consequent part, as outlined in (3.1).

Pattern ∶ IF Antecedents THEN Consequent with dominance score (3.1)

An example of a pattern for a classification problem in an fNIRS neuroimaging study can be IF

activity in Channel 1 is Low AND activity in Channel 3 is High THEN stimulus is Auditory with

dominance score = 0.35. In this illustrative pattern for a classification problem, Channel 1 and
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(a) T1 Fuzzy Set (b) IT2 Fuzzy Set (c) GT2 Fuzzy Set

Figure 3.2 The three types of fuzzy sets: (a) Type-1 (T1) (b) Interval type-2 (IT2) and (c)
General type-2 (GT2) fuzzy sets.

Channel 3 are antecedents (input), Low and High refer to the conceptual labels for the activity (input

feature) of Channel 1 and Channel 3 respectively whereas Auditory refers to the class (stimulus). The

dominance score is a measure of the prowess of a pattern to correctly predict the class for a given

input data instance.

The inference mechanism of a FLS reads from the patterns and input fuzzy sets to generate output

fuzzy sets. More specifically, the inference mechanism quantifies the matching between a given data

instance and the patterns. The defuzzifier, for a regression problem, defuzzifies the output fuzzy

set, i.e. a quantitative prediction is made. Whereas for a classification problem, the defuzzifier,

predicts a class for the output post the inference mechanism. In this work, the FLS are used for

classification problems (predict the stimulus) therefore in Chapter 3.4 I outline the method for solving

a classification problem using the different types of FLS.

In general, there are three main types of FLS based on the composition of the innate fuzzy sets.

The three types of fuzzy sets are: 1) Type-1 (T1), 2) Interval Type-2 (IT2), and 3) General Type-2

(GT2) fuzzy sets. As can be seen in Fig. 3.2, all fuzzy sets model uncertainty in the feature domain
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but to different extent; T1 fuzzy sets model the least uncertainty and GT2 fuzzy sets model the most

uncertainty amongst all fuzzy sets. Also, in Fig. 3.2, Gaussian function is used to illustrate the

different types of fuzzy sets; however, other types of MFs (such as triangular, trapezium) can also be

used. Evidently, the shape of MF impacts the inference made in a FLS [126]. Hence, it is important

to choose the shape of the MF, and determine optimum parameters for the shape of MFs such as

through particle swarm optimisation [127].

In addition to modelling uncertainty, all fuzzy sets share the following properties [124]:

1. A given number, from the feature domain, can belong to more than one fuzzy set simultaneously

(an important distinction from classical sets).

2. Fuzzy sets are convex, i.e. the MF of fuzzy set is first monotonically non-decreasing and then

monotonically non-increasing.

3. A normal fuzzy set has the maximum value of membership as 1, i.e. µA(x) = 1 where A is a

normal fuzzy set.

In the next subsections, I outline the three most common types of fuzzy sets namely: T1, IT2, and

GT2 fuzzy sets.

3.1 Type-1 (T1) Fuzzy Sets

The T1 fuzzy sets where each crisp measurement, x ∈ X , gets assigned a membership degree,

µT1(x) ⊆ [0,1], but there is no ambiguity in the membership degree, for example as shown by the

red dashed line in Fig. 3.2 (a): µT1(x = 1) = 0.95. More specifically, the membership degree, of a

crisp measurement (such as x = 1), using T1 fuzzy set is also a crisp number (for x = 1, it is 0.95).
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3.1.1 Definition

A Type-1 (T1) fuzzy set, denoted by A, is defined on universe X such that µA(x) → [0,1] where

µA(x) is the associated MF of A. T1 fuzzy sets can be written mathematically as follows [124]:

A = {(x,µA(x) ∣ x ∈X)} (3.2)

In set notation, T1 fuzzy sets can be written for continuous universe X as:

A = ∫
x∈X

µA(x)/x (3.3)

where ∫ represents union over all admissible values of x ∈ X . For discrete universe, the set

notation for T1 fuzzy sets can be written as follows:

A = ∑
x∈Xd

µA(x)/x (3.4)

where ∑ represents union over all admissible values of x ∈ Xd in the discrete universe Xd.

Also, please note, the slash ‘/’ in the equations (3.3 and 3.4) links the values of x ∈ X with their

corresponding values of membership degree µA(x) > 0.

In the next sections, I outline some of most common operations on T1 fuzzy sets such as the

fuzzification, union, intersection, and defuzzification.

3.1.2 Fuzzification using T1 Fuzzy Sets

As mentioned earlier in the chapter, fuzzy sets transform a numerical value/measurement into a

conceptual label with a membership degree (for that numerical value to belong to the conceptual

label represented by the fuzzy set). This is also termed as fuzzification of a numerical value. There

are two main types of fuzzification [124]: 1) Singleton and 2) Non-Singleton fuzzification. The two

fuzzifications only differ in the membership degree’s value. In particular, singleton fuzzification is
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Figure 3.3 An illustrative plot to exemplify fuzzification using type-1 (T1) fuzzy sets.

only dependent on the MF whereas non-singletion fuzzification also accounts for input uncertainties

[128]. However, for ease of computation, in this work, singleton fuzzification is implemented

throughout, and is explained next.

An illustrative plot to exemplify how a conceptual label is characterised with uncertainty handling

using T1 fuzzy sets is shown in Fig. 3.3 with reference to thermal concepts. Thermal comfort can

be expressed with the conceptual labels cold, comfortable and hot with approximate membership

degree values, µ, obtained from [129]. As can be seen in the Fig. 3.3, the definition of conceptual

labels is not necessarily mutually exclusive, i.e. a certain temperature can be represented using more

than one conceptual label with varying membership degrees. For example, the temperature of 12 °C

has membership degree as: µcold(12°C) = 0.5 and µcomfortable(12°C) = 0.35 and µhot(12°C) = 0.

The derived ambiguity in the membership degree ensures that uncertainty in a numeric value is well

retained upon transformation into a conceptual label.
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(a) T1 Fuzzy Sets. (b) Union. (c) Intersection.

Figure 3.4 The union and intersection of two Type-1 (T1) fuzzy sets A and B.

3.1.3 Union of T1 Fuzzy Sets

LetA andB be two T1 fuzzy sets defined on the universeX and let their respective MFs be as µA(x)

and µB(x). The union of two T1 fuzzy sets is another T1 fuzzy set such that:

µA∪B(x) = max[µA(x), µB(x)] (3.5)

where max t-conorm takes the maximum of the two membership degrees corresponding to each

x ∈ X . The union of T1 fuzzy sets is also illustrated in Fig. 3.4 (b). For example, for x = −3, the

membership degrees of µA(x = −3) = 0.87 and µB(x = −3) = 0.135, therefore the union will be:

µA∪B(x = −3) = max[0.87,0.135]

= 0.87 (3.6)

3.1.4 Intersection of T1 Fuzzy Sets

The intersection of two T1 fuzzy sets A and B is another T1 fuzzy set such that:

µA∩B(x) = min[µA(x), µB(x)] (3.7)
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wheremin t-norm takes theminimumof the twomembership degrees corresponding to eachx ∈X .

For example, for x = −3, the membership degrees of µA(x = −3) = 0.87 and µB(x = −3) = 0.135,

therefore the intersection will be:

µA∩B(x = −3) = min[0.87,0.135]

= 0.135 (3.8)

Please note for the computation of intersection of T1 fuzzy sets, either min t-norm or product of

the membership degrees can be used. The intersection of T1 fuzzy sets is also illustrated in Fig. 3.4

(c).

3.1.5 Defuzzification of T1 Fuzzy Sets

The defuzzification of a T1 fuzzy set, A, transforms the fuzzy set into an equivalent number, and can

be thought of as an inverse of fuzzification. For T1 fuzzy sets, the defuzzification usually involves

computing the centroid of the fuzzy set as shown in (3.9):

x∗ = ∑
I
i=1 xiµA(xi)
∑I
i=1 µA(xi)

(3.9)

where x∗ is the centroid (or defuzzified value) of the T1 MF defined on the domain x ∈X . Here,

the summation sign is used as in typical mathematical equations, i.e., for the case of the numerator,

it is summing the product of x values and their corresponding membership degrees whereas for the

denominator it is summing the membership degrees corresponding to all xi values ∀i ∈ [1, ..., I].

As an example, the defuzzification of the T1 fuzzy set shown in Fig. 3.5 can be undertaken using
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Figure 3.5 The defuzzification of a T1 Fuzzy Set using (3.9).

(3.9) as shown below:

x∗ =∑
I
i=1 xiµA(xi)
∑I
i=1 µA(xi)

=1 ∗ 0 + ... + 2 ∗ 0.009 + ... + 5 ∗ 1 + ... + 8 ∗ 0.009 + ... + 9 ∗ 0

0 + ... + 0.009 + ... + 1 + ... + 0.009 + ... + 0
(3.10)

=5

Apart from centroid calculation, other most common methods of defuzzification of T1 fuzzy sets

are the centre-of-set and height defuzzification [124].

3.2 Interval Type-2 (IT2) Fuzzy Sets

The Interval Type-2 (IT2) fuzzy sets are three-dimensional (3D) and characterised by a primary

membership degree, and a secondary membership degree which is always 1 [124]. TheMF associated

with an IT2 fuzzy set assigns each numerical value, x ∈ X , a range of primary membership degrees

such that µIT2(x) ⊆ [0,1]. An example of an IT2 fuzzy set is shown in Fig. 3.2 (b) with red dashed

line denoting a particular numerical value’s (x=1) IT2 membership degree: µIT2(x = 1) = [0.7,0.95].
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More specifically, the membership degree, of a numerical value (such as x = 1), has lower (such as

0.7) and upper (such as 0.95) bounds. The area between the lower and upper bounds is often termed

as the footprint of uncertainty (FOU).

3.2.1 Definition

An Interval Type-2 (IT2) fuzzy set, denoted by Ã, is defined on universeX such that µÃ(x)→ [0,1]

where µÃ(x) is the associated MF of Ã. IT2 fuzzy sets can be written mathematically as follows

[124]:

Ã = {(x,u,1)∣∀x ∈X,

∀u ∈ [µ
Ã
(x), µÃ(x)]⊆[0,1]}

(3.11)

where µ
Ã
(x) is the lower membership degree and µÃ(x) is the upper membership degree.

In set notation, IT2 fuzzy sets can be written for continuous universe X as [130]:

Ã = ∫
x∈X

∫
u∈Jx

1/(u,x)

= ∫
x∈X

[∫
u∈Jx

1/u]/x

where ∫ represents union over all admissible values of x ∈X and u ∈ Jx, Jx ⊆ [0,1] is the primary

membership of x. The FOU of Ã is the area between the lower and upper MF and is illustrated as the

shaded area in Fig. 3.2(b). The FOU can also be expressed as:

FOU(Ã) = ⋃
x∈X

Jx (3.12)

Also, the slash ‘/’ in the equation (3.12) links the values of x ∈X with their corresponding values

of membership degree µA(x) > 0.

In the next sections, some of most common operations on IT2 fuzzy sets such as the fuzzification,

union, intersection, and defuzzification are outlined.
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Figure 3.6 An illustrative plot to exemplify fuzzification using Interval Type-2 (IT2) fuzzy sets.

3.2.2 Fuzzification using IT2 Fuzzy Sets

The fuzzification of a measurement/observation using an IT2 fuzzy set results in an upper and lower

membership degree, i.e. µÃ(x) = [µ
Ã
(x), µÃ(x)].

An illustrative plot to exemplify how a conceptual label is characterised with uncertainty handling

using IT2 fuzzy sets is shown in Fig. 3.6 with reference to thermal concepts. Thermal comfort

can be expressed with the conceptual labels cold, comfortable and hot with approximate degree of

membership values, µ, obtained from [129]. As can be seen in the Fig. 3.6, the definition of conceptual

labels is not necessarily mutually exclusive, i.e. a certain temperature can be represented using more

than one conceptual label with varying membership degrees. For example, the temperature of 12 °C

has membership degree, µ, in the range of (0, 0.5) for cold and (0, 0.33) for comfortable. The derived

ambiguity in the membership degree ensures that uncertainty in the numerical value (or neuroimaging

reading from fNIRS) is well retained upon transformation into a conceptual label.
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(a) IT2 Fuzzy Sets. (b) Union. (c) Intersection.

Figure 3.7 The union and intersection of two Interval Type-2 (IT2) fuzzy sets Ã and B̃.

3.2.3 Union of IT2 Fuzzy Sets

Let Ã and B̃ be two IT2 fuzzy sets defined on the universeX and let their respective MFs be as µÃ(x)

and µB̃(x). The union of two IT2 fuzzy sets, such as Ã and B̃, is another IT2 fuzzy set such that the

area enclosed in the FOU of Ã⋃ B̃ is a union of the FOU’s of Ã and B̃. In mathematical notation,

the union operation on two IT2 fuzzy sets can be written as follows:

Ã⋃ B̃ = 1/FOU(Ã⋃ B̃)

= 1/[max(µ
Ã
(x), µ

B̃
(x)), max(µÃ(x), µB̃(x))] (3.13)

Also, the slash ‘/’ in (3.13) links the primary membership degrees (µÃ(x) > 0 and µB̃(x) > 0)

with their corresponding secondary membership degrees (which is always 1 for an IT2 fuzzy set).

The union of two IT2 fuzzy sets is also illustrated in Fig. 3.7 (b).

3.2.4 Intersection of IT2 Fuzzy Sets

The intersection of two IT2 fuzzy sets, such as Ã and B̃, is another IT2 fuzzy set such that the area

enclosed in the FOU of Ã⋂ B̃ is an intersection of the FOU’s of Ã and B̃. In mathematical notation,
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the intersection operation on two IT2 fuzzy sets can be written as follows:

Ã⋂ B̃ = 1/FOU(Ã⋂ B̃)

= 1/[min(µ
Ã
(x), µ

B̃
(x)), min(µÃ(x), µB̃(x))] (3.14)

Also, the slash ‘/’ in (3.14) links the primary membership degrees (µÃ(x) > 0 and µB̃(x) > 0)

with their corresponding secondary membership degrees which is always 1 for an IT2 fuzzy set. The

intersection of two IT2 fuzzy sets is illustrated in Fig. 3.7 (c).

3.2.5 Defuzzification of IT2 Fuzzy Sets

The defuzzification of an IT2 fuzzy set can be done by either 1) type reduction followed by defuzzi-

fication, or using 2) direct defuzzification. In type reduction, IT2 fuzzy set is first type-reduced to

a T1 fuzzy set and then the centroid of the reduced T1 fuzzy set is computed. Whereas in direct

defuzzification, one crisp (or defuzzified) value representative of the IT2 fuzzy set is found.

The centroid, CÃ, of an IT2 fuzzy set, Ã, is defined as the union of all the centroids of T1 fuzzy

sets embedded (within the IT2 fuzzy set), denoted by Ãe [130]. In other words,CÃ denotes an interval

enclosed by left and right centroids. In mathematical terms, the centroid of an IT2 fuzzy set can be

written as follows [130]:

CÃ ≡ ⋃
∀Ae

c(Ae) = [cl(Ã), cr(Ã)] (3.15)

where⋃ represents the union operation. The left and right centroids of Ã are the minimum and

maximum of the centroids of the embedded T1 fuzzy sets, Ae i.e.:
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cl(Ã) = min∀Aec(Ae) (3.16)

cr(Ã) = max∀Aec(Ae) (3.17)

where cl and cr can also be expressed as follows [131]:

cl(Ã) =
∑L
i=1 xiµÃ(xi) +∑

J
i=L+1 xiµÃ(xi)

∑L
i=1 µÃ(xi) +∑

J
i=L+1 µÃ(xi)

(3.18)

cr(Ã) =
∑R
i=1 xiµÃ(xi)

+∑J
i=R+1 xiµÃ(xi)

∑R
i=1 µÃ(xi)

+∑J
i=R+1 µÃ(xi)

(3.19)

where L and R represent the indices corresponding to the switch points xL and xR. The switch

points are most commonly found using the iterative Karnik-Mendel (KM) algorithm [131], outlined

in Appendix A. Once cl(Ã) and crÃ are computed, the final defuzzified value (or the centroid in

(3.15)) can be obtained by taking their average, i.e.

C(Ã) = cl(Ã) + cr(Ã)
2

(3.20)

In contrast to the KM algorithm which require iterations to find the switch points, another method

for centroid calculation of an IT2 fuzzy set is the Nie-Tan approach [132]. The advantage of the

Nie-Tan approach, over KM algorithm, is that it gives a closed form mathematical equation for the

computation of a given IT2 fuzzy set’s centroid. The centroid equation using Nie-Tan approach is as

follows in (3.21) [132]:

C(Ã) =
(∑J

j=1 xj ∗ µÃ(xj) +∑J
j=1 xj ∗ µÃ(xj))

(∑J
j=1 µÃ(xj) +∑J

j=1 µÃ(xj))
(3.21)
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3.3 General Type-2 (GT2) Fuzzy Sets

General Type-2 (GT2) fuzzy systems are 3D like IT2 fuzzy sets, discussed earlier in the section 3.2,

with primary and secondary membership degrees. However, unlike IT2 fuzzy sets whose secondary

membership degree is always 1, the secondary membership degree of a GT2 fuzzy set can take any

value ⊆ [0,1]. More specifically, GT2 fuzzy sets have T1 fuzzy sets as membership degree for a

given numerical value, for example: µT2(x = 1) = {u,µT1(u)∣∀u ∈ [0,1],∀µT1 ∈ [0,1]} where

u is called the primary membership degree and µ is called the secondary membership degree as

illustrated in in Fig. 3.2 (c). The primary and secondary membership degrees enable GT2 fuzzy set

to model uncertainty in the input data to greater extent however it also renders them complex, and

computationally expensive.

3.3.1 Definition

A General Type-2 (GT2) fuzzy set, denoted Ã is characterised with a bivariate MF, µÃ(x,u). In

mathematical notation, Ã is defined as [124]:

Ã = {((x,u), µÃ(x,u))∣x ∈X,u ∈ U ≡ [0,1]} (3.22)

where X is universe for primary variable of Ã, i.e. x, and U is the universe for secondary variable of

Ã, i.e. u. In set notation, Ã can be expressed as follows:

Ã = ∫
x∈X

∫
u∈[0,1]

µÃ(x,u)/(x,u) (3.23)

where ∫x∈X ∫u∈[0,1] denotes the union over all admissible values of x and u.

The secondary degree of x, denoted µÃ(x,u) in (3.23), is also represented as `x(u) i.e. µÃ(x,u) ≡
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`x(u) ⊆ [0,1]. Another notation for (3.23) is:

Ã = ∫
x∈X

∫
u∈[0,1]

µÃ(x,u)/(x,u) = ∫
u∈[0,1]

`x(u)/u (3.24)

3.3.2 Fuzzification using GT2 Fuzzy Sets

The fuzzification of a numerical value in the universe of discourse, i.e. x ∈ X , using GT2 fuzzy sets

results in a T1 MF. As a result of a T1 MF at each value x ∈ X the corresponding computations

are significantly complex in GT2 fuzzy sets than IT2 fuzzy sets (fuzzification results in an interval

for membership degree; see section 3.2) and T1 fuzzy sets (fuzzification results in one membership

degree; see section 3.1).
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Figure 3.8 An illustrative plot to exemplify fuzzification using General Type-2 (GT2) fuzzy
sets.

An over-simplified illustration of fuzzification with GT2 fuzzy sets is shown in Fig. 3.8. In the

figure, five secondary MFs, µÃ(x = [0,1,2,3,4], u) corresponding to five values of x = [0,1,2,3,4]

are plotted in blue line. Whereas, the red lines in Fig. 3.8 link the primary degrees at the y-
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axis u = [0.3,0.4,0.5] with the non-zero secondary degrees at z-axis µ. The secondary MFs,

µÃ(x = [0,1,2,3,4], u) (represented in blue in Fig. 3.8) are also referred to as vertical slice

representations of GT2 fuzzy sets at given values of x (in this case at x = [0,1,2,3,4]). In general,

the vertical slice representation expresses the GT2 fuzzy set as a union of all its secondary T1 MFs.

In set notation, the GT2 MF at x = 0 at ux=0 = [0.4,0.5,0.6] can be written as follows (see (3.24)):

µÃ(x=0,u) = `x=0(u) = 0.5/0.4 + 0.6/0.5 + 0.5/0.6 (3.25)

where the ‘/’ links the primary membership degrees u with their corresponding secondary mem-

bership degrees µ.

3.3.3 Union of GT2 Fuzzy Sets

The union of two GT2 fuzzy sets results in another GT2 fuzzy sets. However, as stated earlier,

computations involving GT2 fuzzy sets are complex since for each value in the universe of discourse

the membership degree is a function (T1 MF). A common approach for computing the union of GT2

fuzzy sets is the ‘Extension Principle’ [128, 133]. The extension principle undertakes vertical slices

of the GT2 fuzzy set at each value of x ∈X .

Let Ã and B̃ be two GT2 fuzzy sets defined on the universe X and let their respective MFs be as

µÃ(x,u) and µB̃(x,u). Using the extension principle, the union of two GT2 fuzzy sets Ã and B̃, can

be expressed in mathematical notation as follows [124]:

µ(Ã∪B̃)
(x)

≡ µÃ(x) ⊔ µB̃(x) = ∫
v∈[0,1]

∫
w∈[0,1]

`x(v) ⋆ h̷x(w)/(u = v ∨ ω) (3.26)

where ⊔ denotes the union operation, ⋆ indicates the product or minimum (also called t-norm)

operation, and ∨ indicates the maximum (also called t-conorm). The union of primary membership
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(a) GT2 fuzzy sets. (b) Union. (c) Intersection.

Figure 3.9 An illustration of the (b) union and (c) intersection of (a) two General Type-2
(GT2) fuzzy sets using vertical-slice representation at x = 2.

degree (represented by v and ω for GT2 fuzzy sets Ã and B̃ respectively) is computed for all values

of x ∈X.

In simple terms, (3.26) outlines the union of two GT2 fuzzy sets using the extension principle

such that for each x ∈X:

1. u = v ∨ ω entails that for all possible combinations of the primary membership degrees (v and

ω) the secondary degree µ(Ã∪B̃)x is computed by the minimum operation (or t-norm, denoted

as ⋆ in (3.26)) between the corresponding secondary degrees i.e. `x(v) ⋆ h̷x(ω).

2. In case of a duplicate point(s) for primary membership degree after the calculation of v ∨ ω,

then the point (primary membership degree) with the largest secondary membership degree is

selected.

In Fig. 3.9 (b) an illustration for the union of two GT2 fuzzy sets Ã and B̃ using extension principle

(with vertical slice at x = 2) is presented. The corresponding calculations are outlined as follows:
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µ(Ã∪B̃)x=2
(u) =µÃ(x=2) ⊔ µB̃(x=2)

=(0.4/0.2 + 0.5/0.3 + 0.5/0.4) + (0.5/0.4 + 0.6/0.5 + 0.6/0.6)

=min(0.4,0.5)
0.2 ∨ 0.4

+ min(0.4,0.6)
0.2 ∨ 0.5

+ min(0.4,0.6)
0.2 ∨ 0.6

+ min(0.5,0.5)
0.3 ∨ 0.4

+ min(0.5,0.6)
0.3 ∨ 0.5

+

min(0.5,0.6)
0.3 ∨ 0.6

+ min(0.5,0.5)
0.4 ∨ 0.4

+ min(0.5,0.6)
0.4 ∨ 0.5

+ min(0.5,0.6)
0.4 ∨ 0.6

=0.4/0.4 + 0.4/0.5 + 0.4/0.6 + 0.5/0.4 + 0.5/0.5 + 0.5/0.6 + 0.5/0.4 + 0.5/0.5 + 0.5/0.6

=max(0.4,0.5,0.5)/0.4 +max(0.4,0.5,0.5)/0.5 +max(0.4,0.5,0.5)/0.6

=0.5/0.4 + 0.5/0.5 + 0.5/0.6 (3.27)

3.3.4 Intersection of GT2 Fuzzy Sets

Using the extension principle, the intersection of two GT2 fuzzy sets Ã and B̃, can be expressed in

mathematical notation as follows [124]:

µ(Ã∩B̃)
(x)

≡ µÃ(x) ⊓ µB̃(x) = ∫
v∈[0,1]

∫
ω∈[0,1]

`x(v) ⋆ h̷x(ω)/(u = v ∧ ω) (3.28)

where ⊓ denotes the intersection operation, ⋆ indicates the product or minimum (also called

t-norm) operation, and ∧ indicates the minimum (also called t-norm). The intersection of primary

membership degrees (represented by v and ω for GT2 fuzzy sets Ã and B̃ respectively) is computed

for all values of x ∈X.

In simple terms, (3.28) outlines the intersection of twoGT2 fuzzy sets using the extension principle

such that for each x ∈X:

1. u = v ∧ ω entails that for all possible combinations of the primary membership degrees (v and

ω) the secondary degree µ(Ã∩B̃)x is computed by the minimum operation (or t-norm, denoted
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as ⋆ in (3.28)) between the corresponding secondary degrees i.e. `x(v) ⋆ h̷x(ω).

2. In case of a duplicate point(s) for primary membership degree after the calculation of v ∧ ω,

then the point (primary membership degree) with the largest secondary membership degree is

selected (just like the union operation outlined previously).

In Fig. 3.9 (c) an illustration for the intersection of two GT2 fuzzy sets Ã and B̃ using extension

principle (with vertical slice at x = 2) is presented. The corresponding calculations are outlined as

follows:

µ(Ã∩B̃)x=2
(u) =µÃ(x=2) ⊓ µB̃(x=2)

=(0.4/0.2 + 0.5/0.3 + 0.5/0.4) + (0.5/0.4 + 0.6/0.5 + 0.6/0.6)

=min(0.4,0.5)
0.2 ∧ 0.4

+ min(0.4,0.6)
0.2 ∧ 0.5

+ min(0.4,0.6)
0.2 ∧ 0.6

+ min(0.5,0.5)
0.3 ∧ 0.4

+ min(0.5,0.6)
0.3 ∧ 0.5

+

min(0.5,0.6)
0.3 ∧ 0.6

+ min(0.5,0.5)
0.4 ∧ 0.4

+ min(0.5,0.6)
0.4 ∧ 0.5

+ min(0.5,0.6)
0.4 ∧ 0.6

=0.4/0.2 + 0.4/0.2 + 0.4/0.2 + 0.5/0.3 + 0.5/0.3 + 0.5/0.3 + 0.5/0.4 + 0.5/0.4 + 0.5/0.4

=max(0.4,0.4,0.4)/0.2 +max(0.5,0.5,0.5)/0.3 +max(0.5,0.5,0.5)/0.4

=0.4/0.2 + 0.5/0.3 + 0.5/0.4 (3.29)

3.3.5 Defuzzification of GT2 Fuzzy Sets

The defuzzification of a GT2 fuzzy set, Ã, is usually undertaken using a z-slice representation [134]

(also termed as horizontal-slice representation or an α-cut representation)). Fig. 3.10 illustrates the

z-slice representation of a GT2 fuzzy set at z-slice locations of z = [0,0.3,0.6,1]. Since a z-slice of a

GT2 fuzzy set gives an IT2 fuzzy set at that z-location, the centroid of a GT2 fuzzy set can be written
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as the union of the centroids of the IT2 fuzzy sets. In mathematical notation, the centroid of a GT2

fuzzy set can be written as follows [124]:

CÃ(x) = ⋃
z∈[0,1]

z/[cl(z), cr(z)] (3.30)

whereCÃ(x) is a T1 fuzzy set composed of the centroids of the IT2 fuzzy sets at z-levels z ∈ [0,1].

The defuzzification of a GT2 fuzzy set using z-slices is outlined in Algorithm 1.
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Figure 3.10 A z-slice representation of a General Type-2 (GT2) fuzzy set Ã.

3.4 Pattern-based Models as Classifiers

FLS can be used to solve classification problems which aim to predict a class for a given data

instance. For FLS, the class is predicted using the patterns that define the relation between the input

(antecedents) and output (consequent) variables of a given process. A generic nomenclature for

the patterns is outlined earlier in (3.1). The motivation for solving a classification problem using

FLS is that FLS provide explainable classification mechanism (in the form of patterns) whilst giving

statistically significant classification accuracy ( [135]).



3.4 Pattern-based Models as Classifiers 61

Algorithm 1: The defuzzification of a GT2 fuzzy set, Ã.
Result: The centroid, x∗.

1. For z-slices of a GT2 fuzzy set Ã at [zi, z2, ...., zI] for a total of I slices such that zi ∈ [0,1]

2. Compute the left and right centroids of the IT2 fuzzy set at each z-slice, i.e. cl(zi) and cr(zi),

using the KM algorithm outlined in Appendix A.

3. Using centroid average compute one representative left and right centroid, i.e.

cl(x) and cr(x), as shown below:

• cl(x) = z1∗cl(z1)+...+zI∗cl(zI)
z1+...+zI

• cr(x) = z1∗cr(z1)+...+zI∗cr(zI)
z1+...+zI

4. The centroid, x∗, can now be calculated by finding the mean of cl(x) and cr(x) ∶

x∗ = cl(x)+cr(x)
2
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In this work, the application of FLS is for solving classification problem for functional brain

studies in line with the DCN frameworks (Chapter 2.1). Hence, the rest of the chapter outlines

the preliminaries and the method for solving a classification problem using FLS. In general, for

implementing a classification problem using FLS, the following information is required:

1. Input features.

• The total number of inputs such as 10 fNIRS channels.

• The statistical feature for each input such as, for example, mean of fNIRS signals for

channels 1-3 and amplitude of fNIRS signals for channels 4-10.

2. Number of conceptual labels per feature.

• For example the mean of an fNIRS signal can be defined using three conceptual labels

such as Low, Medium, and High.

3. Membership Function (MF) per conceptual label.

• The MF shape and parameters for each conceptual label such as triangular MF with

coordinates on x-axis and y-axis at (0,0), (1,2) and (2,0).

4. Patterns.

• The total number of patterns.

• The maximum number of antecedents per pattern.

• The antecedents and consequent of each pattern.

• The dominance score of each pattern.
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Some of the aforementioned information can be optimised using the input data (such as selection

of input features, pattern learning, and MF parameters optimisation). For the proposed xMVPA

(presented in Chapter 5.2) the learning of the aforementioned components for FLS is presented in

detail in Chapter 5.2.4.

In the next sections, I outline FLS based on the different type of fuzzy sets i.e. T1-FLS, IT2-FLS,

and GT2-FLS.

3.4.1 Classification using T1 Fuzzy Logic System (T1-FLS)

The patterns in an T1 FLS take the following form (3.31):

Pattern Pq ∶ IF x1 is A
q
1,l ... AND xΨ is A

q
Ψ,l ... AND xΦ is A

q
Φ,l

THEN class is Ok with DSq

(3.31)

where xs are the numeric values (oxy-Hb or deoxy-Hb values) for the variable (or antecedent) Ψ

(such as fNIRS channels) with a total of Φ variables i.e. Ψ ∈ [1, ...,Φ], AqΨ,l is the antecedent T1

fuzzy set for the Ψth variable representing the conceptual label l, where l ∈ [1, ...,W ] for a total ofW

conceptual labels, for the pattern number q. The output class (such as stimulus) of pattern number q

is denoted by Ok where k ∈ [1, ...,K] with K as the total number of output classes. The dominance

score (DS) for the pattern number q is denoted by DSq.

The rest of the section outlines the method for solving a classification problem using a T1-FLS.

In a T1-FLS, all input and output fuzzy sets are T1, see Fig. 3.1.

1. Degree ofMembership Function (MF):Themembership degree, µA, for a given data instance,

x, using T1 MFs, A, is as outlined in (3.2) and pictorially illustrated in Fig. 3.3.
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2. Firing Strength: The firing strength, denotedwq(x), determines the similarity between a given

data instance x and pattern Pq where q is the pattern number. It can be defined mathematically

as follows:

wq(x) =
Φ

∏
Ψ=1

µAΨ(xΨ) (3.32)

where Φ is the total number of antecedents in the pattern Pq.

3. Dominance Score: The dominance score (DS) is a measure of the strength of a pattern, Pq,

in correctly predicting a label for a given data instance. It is the product of pattern confidence,

confq, and support supq:

DSq = confq ∗ supq (3.33)

The pattern confidence and support are defined next.

(a) PatternConfidence: The confidence, confq, of a pattern, is an indication of the likelihood

of a pattern for correctly classifying a data instance. It is computed using

confq(Ψq ⇒ Yq) =
∑x∈(Ψq⇒Yq)wq(x)
∑Q
q=1,x∈Ψq wq(x)

(3.34)

where wq(x) is the firing strength, as outlined in (3.32) for a data instance x, Ψq is the

antecedent(s), and Yq is the consequent of the pattern Pq with Q as the total number of

patterns.

(b) Pattern Support: The support, supq, of a pattern, Pq, is an indication of the coverage of

training dataset by the pattern. It is computed using

supq(Ψq ⇒ Yq) =
∑x∈(Ψq⇒Yq)wq(x)

Q
(3.35)
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where wq(x) is firing strength of pattern Pq for a data instance x, Ψq is the antecedent(s),

and Yq is the consequent of the pattern Pq with Q as the total number of patterns.

4. Association Degree: The class for a given data instance is determined using the metric of

association degree. The pattern with the highest association degree predicts the class for a

given data instance. The association degree, hq, of a pattern Pq with a given data instance, x,

is computed as outlined in (3.36).

hq(x) = wq(x) ⋅DSq (3.36)

where wq(x) is the firing strength as calculated in (3.32) and DSq is the dominance score as

calculated in (3.33).

The method for solving a classification problem using T1-FLS is presented above, however, the

proposed method xMVPA (Chapter 5.2) is implemented using IT2 FLS which are presented next. In

the next section, classification problem using IT2 FLS is outlined.

3.4.2 Classification using IT2 Fuzzy Logic System (IT2-FLS)

In this section, the method for solving a classification problem using IT2 FLS is outlined. The

proposed XAI method (xMVPA presented in Chapter 5.2) for the classification of infants’ fNIRS data

is based on IT2 FLS. The IT2 fuzzy sets are a trade-off between the simplistic T1 fuzzy sets and the

computationally expensive GT2 fuzzy sets. IT2 offer greater uncertainty handling than T1 fuzzy sets

whilst being computationally simpler than the 3D GT2 fuzzy sets. The rules in an IT2 FLS take the

following form (3.37):

Pattern Pq ∶ IF x1 is Ã
q
1,l ... AND xΨ is Ã

q
Ψ,l ... AND xΦ is Ã

q
Φ,l

THEN class is Ok with DSq

(3.37)
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where xs are the crisp brain activity values for the variable Ψ (fNIRS channel) with a total of Φ

variables i.e. Ψ ∈ [1, ...,Φ], ÃqΨ,l is the IT2 fuzzy antecedent set for the Ψth variable representing the

conceptual label l, where l ∈ [1, ...,W ] for a total ofW conceptual labels, for the pattern number q.

The output class of pattern Pq is denoted by Ok where k ∈ [1, ...,K] with K as the total number of

output classes.

1. Degree of Membership Function (MF): The conceptual labels, defined using IT2 fuzzy

concepts Ã [120] can be written in mathematical notation as follows in eq. (3.38).

Ã = {(x,u,1)∣∀x ∈X,

∀u ∈ [µ
Ã
(x), µÃ(x)]⊆[0,1]}

(3.38)

where µÃ represent the membership degree function of IT2 fuzzy concept Ã.

2. Firing Strength: The firing strength, wq(x), of pattern, Pq, for a data instance, x, is a measure

of the degree of match between the pattern and the data instance. It is computed as outlined in

(3.39).

wq(x) =
Φ

∏
Ψ=1

µÃΨ(xΨ)

wq(x) =
Φ

∏
Ψ=1

µ
ÃΨ(xΨ)

(3.39)

where Ψ ⊆ {1, ...,Φ}, where Φ is the total number of antecedents.

3. Dominance Score: The dominance score (DS) is a measure of a given pattern’s strength and

is computed as shown in (3.40).

DSq = conf q × supq (3.40)

DSp = conf q × supq
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where conf is the confidence and sup is the support of the qth pattern.

(a) Pattern confidence: The confidence, confq, of a pattern, Pq, is an indication of the

likelihood of a pattern for correctly classifying a data instance. It is computed using

conf q(Ψq ⇒ Yq) =
∑x∈(Ψq⇒Yq)wq(x)
∑Q
q=1,x∈Ψwq(x)

conf
q
(Ψq ⇒ Yq) =

∑x∈(Ψq⇒Yq)wq(x)
∑Q
q=1,x∈Ψwq(x)

(3.41)

where wq(x) and wq(x) are the upper and lower firing strength, as outlined in eq. (3.39),

for pattern Pq on a data instance x, Ψq is the antecedent(s), and Yq is the consequent of

the pattern Pq with Q as the total number of patterns.

(b) Pattern support: The support, supq, of a pattern, Pq, is an indication of the coverage of

training dataset by the pattern. It is computed using (3.42).

supq(Ψq ⇒ Yq) =
∑x∈(Ψq⇒Yq)wq(x)

Q

sup
q
(Ψq ⇒ Yq) =

∑x∈(Ψq⇒Yq)wq(x)
Q

(3.42)

where wq(xi,t) and wq(x) are the upper and lower strengths of activation for pattern Pq

on a data instance x, Ψq is the antecedent(s), and Yq is the consequent of the pattern Pq

with Q as the total number of patterns.

4. Association Degree: The association degree, hq, of pattern Pq with each data instance is

computed as outlined in 3.43).
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hq(x) = wq(x) ⋅DS q

hq(x) = wq(x) ⋅DS q

hq(x) =
hq(x) + hq(x)

2

(3.43)

In the next section, General Type-2 (GT2) fuzzy sets and systems are presented. The GT2 fuzzy sets

are computationally extensive (in comparison to T1 and IT2 fuzzy sets) on account of being 3D.

3.4.3 Classification using GT2 Fuzzy Logic System (GT2-FLS)

In this section, the method for solving a classification problem using GT2 FLS is outlined. The rules

in an GT2 FLS (are similar to those for IT2 FLS) take the following form (3.44):

Pattern Pq ∶ IF x1 is Ã
q
1,l ... AND xΨ is Ã

q
Ψ,l ... AND xΦ is Ã

q
Φ,l

THEN class is Ok with DSq

(3.44)

where xs are the crisp brain activity values for the variable Ψ (fNIRS channel) with a total of Φ

variables i.e. Ψ ∈ [1, ...,Φ], ÃqΨ,l is the antecedent GT2 fuzzy set for the Ψth variable representing

the conceptual label l, where l ∈ [1, ...,W ] for a total ofW conceptual labels, for the pattern number

q. The output class of pattern Pq is denoted by Ok where k ∈ [1, ...,K] with K as the total number of

output classes.

TheGT2 fuzzy sets are 3D and the associated computationswithGT2 fuzzy sets aremore extensive

since for each x ∈ X the primary membership degree is a T1 MF. Consequently, and as previously

outlined, for union and intersection of GT2 fuzzy sets extension principle involving vertical slices of

GT2 is carried out (see Section 3.3.5), and for defuzzification z-slices (or horizontal slices are taken)

(see Section 3.3.5).
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For solving a classification problem using GT2 fuzzy set, in this work, the z-slice approach [134]

is undertaken that type-reduces the GT2 fuzzy set to an IT2 fuzzy set at each z location (see Fig.

3.10). Therefore, for pre-determined z-locations, the method outlined for IT2 fuzzy sets in Section

3.4.2 can be repeated. The final stage involving the classification problem involves defuzzification of

the association degree for each pattern. The defuzzification of the association degree can be carried

out using Algorithm 1. The overall method for solving a classification problem using a GT2 FLS is

outlined in Algorithm 2.

Algorithm 2: The classification using GT2 FLS using z-slice representation.
Result: The output class.

For z-slices at predefined levels zi ∈

[z1, ..., zI] and a given data instance x, the output class for x can be determined as follows:

for zi < zI do

Compute membership degree as outlined in (3.38).

Compute firing strength as outlined in (3.39).

Compute dominance score (DS) as outlined in (3.40).

Compute association degree as outlined in (3.43).

Defuzzify the association degree using Algorithm 1 for each pattern.

The pattern with the highest association degree predicts the output class.

In the next chapter an overview of the AI methods most commonly used for fNIRS based studies

(with adults and infants) is presented.
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Chapter Four

Artificial Intelligence (AI) for Neuroscience

The2 generic field of cognitive neuroscience investigates the underlying brain functional mechanisms

that subserve cognitive processes such as memory, perception, understanding, and reasoning [136].

DCN is a sub-field of cognitive neuroscience that focuses on developmental population (infants and

younger children) to investigate how functional brain developmental processes shape the developing

brain. In principle, the AI techniques that have been applied to study the cognition states of non-

developmental population (such as adults) can also be used to study the developmental population.

This is because all the pre-processing stages of acquired neuroimaging data (fNIRS) would be similar.

Moreover, AI techniques that can identify the difference in brain activation patterns for adults should

also be able to decode the same in infants’ neuroimaging data analysis. As opposed to cognitive

neuroscience for adult populations, due to the lack of prior assumptions or cannon models, the

application of XAI in DCN helps to bring new light into a science that otherwise, with classical

non-explainable or purely statistical models, would be challenging to elucidate.

AI techniques [137] have been both inspired by, and used for the study of the learning processes in

the human brain. A major component of functional brain development is attributed to unsupervised

2Some parts of the text in this chapter have been published here: M. Kiani, J. Andreu-Perez, H. Hagras, S. Rigato, and M. L. Filippetti, “Towards Understanding Human Functional Brain

Development With Explainable Artificial Intelligence: Challenges and Perspectives,” IEEE Computational Intelligence Magazine, 2021, In Press © 2022 IEEE.
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learning [138] owing to the massive amounts of unlabeled sensory data infants receive, although

supervised and reinforcement learning faculties are also hypothesised to account for some facets of

human brain development [139]. There is also considerable debate about how much of the functional

brain development is a result of postnatal learning, and to what extent is the genome (an organism’s

complete set of hereditary material) responsible for shaping brain development [138].

The overarching aim of this chapter is to investigate the potential and limitations of these algo-

rithms, as applied to infant neuroimaging data analysis, to explain their learnt inference mechanism in

terms of developmental brain processes of localisation, specialisation, parcellation, and neural reuse

as outlined by the DCN frameworks. For this reason, here I review AI methods with application(s)

to fNIRS, as well as some recent promising works for their applicability to DCN research and data

analysis. Please note this is not meant to be an exhaustive review of all the AI methods used in

cognitive neuroscience studies, nor is it designed to be used as a reference for implementing the

reviewed AI methods. The aim of this review is to understand the underlying inference mechanism of

the explored AI methods, and what their understating can inform us about the underlying developing

brain processes.

4.1 AI in Cognitive Neuroscience for Adult Brains

In Cognitive Neuroscience AI methods are frequently used with adult populations (mature brains).

Some approaches can provide no explanation (such as deep neural networks) or simply partial

information, and others can derive some explainable structurewith respect to describing the underlying

brain activity. Towards this end, I will be reviewing the extent AImethods can explain their underlying

mechanisms to shed light on the processes of functional brain development. Most studies have not

necessarily used these algorithms for the analysis of infants’ neuroimaging data, however, their
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application to infants data would be similar in principle.

A review of the non-explainable AI methods for investigating cognitive processes in adults’

cognitive neuroscience studies is presented next.

4.1.1 FC with fNIRS using Ridge Regression (RR)

The connectivity analysis with fNIRS does not require additional spatial localisation of the measured

cortical activity owing to the relatively good spatial resolution that can be achieved with fNIRS

instruments [53]. Two complementary, non-explainable AI methods namely Ridge Regression (RR),

and Interpolated Functional Manifold (IFM) used with fNIRS connectivity measures are reviewed

next.

A fNIRS study investigating intrinsic FC of cortical networks to predict anxiety states using linear

RR models was carried out by Duan et al. [140]. The resting state FC was calculated using Pearson

correlation coefficient for 1035 edges between 46 nodes (fNIRS channels). The RR model was able

to predict the anxiety score with statistical significance using the connectivity of cortical networks.

The mean square error of their model was 122.04 with correlation coefficient of 0.36.

The prowess to predict anxiety state using FC has profound implications for the diagnosis of

anxiety and related disorders. However, the ability for the regression model to explain its 1035

optimal values of β (see (2.2)) in terms of FC is significantly limited (it is hard to interpret 1035

values and relate the brain activation). Hence, despite obtaining statistically significant results, the

FC analysis could not shed significant light on the resting state cortical networks.

4.1.2 FC with fNIRS using Interpolated Functional Manifold (IFM)

A recent study that puts forth a solution for group-wise explorative analysis using manifolds is

presented byAvila-Sansores et al. [141]. In this work, fNIRS values are projected to an ambient space.
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Since there can be infinite surfaces that can cross the projected fNIRS values, the aforementioned

study proposes Interpolated Functional Manifold (IFM) to select a surface. In particular, an explicit

model for the surface is chosen by interpolating between the projected fNIRS values using Radial

Basis Function (RBF).

The proposed IFM method is used on subjects with varying levels of surgical expertise (knot-

tying). The fNIRS values are projected onto a two-dimensional manifold and the distribution of the

fNIRS values is based on pairwise distances i.e. points that are close together in the manifold have

similar characteristics. For this particular study, themedical students’ fNIRS responses were projected

to the edges of the manifold, whereas more experienced participants (trainees and consultants) fNIRS

response accumulated in the conceptual centre of the manifold. The graphs were validated against

mixed effect models (with regressors encoding group variances) and Psychophysiological Interaction

(PPI). Since IFM analysis may contain infinite graphs, they visualised the FC with IFM graphs

by thresholding them to obtain maximum similarity of Jaccard Index(JI). The maximum JI values

reported with group level analysis are 0.89 ± 0.01 and with PPI are 0.83 ± 0.07.

The advantage of IFM approach is that an explicit analytical expression is obtained that can be

used to study quantitatively the group based differences, as in the case of participants with varying

level of expertise for certain motor skill. In addition, the IFM approach can facilitate fNIRS data

analysis in hyper-scanning studies, i.e. reading neuroimaging data from more than one person at a

given time. However, it is a complimentary analysis for measuring FC since the graph of FCmeasures

is selected by thresholding it against established group level models to obtain maximum values for JI.

4.1.3 RepL with fNIRS using Convolutional Neural Networks (CNN)

Many recent works in neuroscience are increasingly using deep leaning paradigms to investigate the

underlying brain activity in response to a presented task [142]. Amongst Deep Neural Networks



74

(DNNs), Convolutional Neural Networks (CNNs) have gained particular interest because of their

remarkable performance in unsupervised automatic feature extraction and classification of objects in

challenging image classification problems [142]. Owing to the capability of CNNs to compose higher

level features using lower level features, CNNs can learn representations of input data automatically

overcoming the long standing challenge to handcraft a feature set in conventional AI methods [142].

In CNNs, a small matrix of numbers (called a filter) is passed over (convoluted with) the raw data, to

extract features from the raw data, such as edges in images, also called a feature map. The convolution

layer is followed by a pooling layer which downsamples the input to reduce both the spatial size of the

input data and the number of hyperparameters in the network. A typical CNN architecture consists

of the following stages:

(i) Feature Learning Blocks

• Convolution + Rectified Linear Unit (ReLU).

• Pooling.

(ii) Classification/Regression Blocks

• Fully Connected Layers.

• Softmax, Logistic regression layer, regression loss (Root Mean Square Error (RMSE)

etc.)

The performance of CNNs is critically dependent on the optimisation of hyperparameters, and

owing to the large number of hyperparameters that need optimisation, most DNNs, including CNNs,

require large datasets to converge. The hyperparameters of a CNN include the size of the filter(s),

stride, number of hidden layers, and the learning rate.
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In this section, I review the works that learn representations of input data, with multiple levels

of abstraction, using CNNs for Brain-Computer Interface (BCI) applications. The aim of BCI is to

translate brain signals into control signals for a computer (or device) to perform the desired action

[143]. The advancements in BCI have enabled people with neuromuscular disorders to restore or

replace some of their motor functions such as limb movements [144]. For a successful BCI, a user

typically has to undergo training for generating brain signals that can encode their intention for

communicating with the connected device. Likewise, an AI technique powering BCI also needs to be

trained to decode the intention based brain signals, from the user, to command signals for successful

control of the device.

The relevance of BCI for DCN studies come from gaining insights into the neural reuse of already

evolved cortical circuits for performing a given function such as limbmovement. Since the user would

typically know how to control their limb in the normal way, they would have to re-learn the control

of their limb through BCI. Hence, this re-learning of a user to control their limb via BCI instead of

normal output pathways of peripheral nerves and muscles would be a key mechanism for successful

BCI. In this regards, the decoding of the composition of the ‘control’ signal, based on lower level

features using multiple processing layers of CNN, can have profound implications for shedding light

on the consequences of neural commitment (perceptual narrowing) for defining neural reuse. Hence,

the CNNs powering BCI can shed light into the neural reuse and perceptual narrowing to perform

BCI.

Next, I review one of the most promising studies for fNIRS-based BCI application [145]. The

classic analysis paradigms for fNIRS signals are based on the statistical features most representative of

the underlying activity. For representation learning on fNIRS signals using CNNs, the fNIRS signals

are first transformed to equivalent image time-frequency representations known as spectrograms.

In the work by Janani et al. [145] the authors investigated the possibility of classification of four
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Figure 4.1 A general schematic of a CNN for representation learning, © 2022 IEEE.

different motor imagery tasks, i.e. participants imagined moving their limbs instead of physically

moving their limbs, using CNNs. More specifically, the four different motor imagery tasks were:

right- and left-fist clenching, right- and left-foot tapping. The fNIRS channels were placed on top of

the left and right hemispheres to record brain activity from respective cortical regions.

The spectrogram method was used to transform the fNIRS signal into a time-frequency image.

The architecture of the CNN feature extraction stage had two convolution layers with 1 pooling layer

in between of the following sizes- Convolution1: 3×23×16; Pooling: 2×12×16 and Convolution2:

3×3×32. The fully connected layer had 288 nodes which connected through hidden layers classified

the input fNIRS image into 4 motor imagery tasks.

The average classification accuracy obtained over all four tasks was 72.35%. Although the CNN

preformed the best amongst other standardAImethods (SVMandMulti-Layer Perceptron (MLP)); the

classification accuracy was not at par with the usual high performing CNNs. The modest performance

of CNN could be attributed to the large input fNIRS image dimensions (660×22). However, despite

the advent of advanced neuroimaging technologies and the availability of sophisticated CNNs, the

DCN research has not benefited as much from the aforementioned technological and computational
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advances in comparison to other complex fields (such as image classification). In addition, the limited

explainability of CNNs in terms of the underlying brain activity critically limits its applicability to

inform functional brain development. In the next section, I review the application of AI in DCN.

4.2 AI in Developmental Cognitive Neuroscience (DCN)

The de-facto standard for analysis of DCN studies is univariate analysis based on simple statistical

tests, where the cortical regions most active in response to the presented stimulus is recognised, i.e.

it is an activation based analysis. There is also a tendency to apply models used in adult research to

DCN, however this entails making some assumptions (such as the shape of HRF, see Chapter 2.2.4).

In contrast, very few DCN studies have focused on decoding the multivariate patterns in brain activity

of infants in response to the presented stimuli (such as [101] which is a correlation based MVPA). In

fact, there is an evident scarcity for undertaking AI methods in DCN research.

In the following section, I review the study by [101] that undertakes MVPA with fNIRS using

correlation.

4.2.1 MVPA with fNIRS using correlation

An fNIRS basedMVPA is aimed at spatial investigations into the cortical regions’ activations encoded

in the MVM. The work by [101] decoded the brain responses in 19 six-months-old infants’ fNIRS

signals in response to auditory and visual stimuli. They decoded the signals by undertaking a

MVPA driven by correlation and reported an average classification accuracy of 66.67% for trial-level

decoding.

The significance of their work lies in the use of MVPA that improved the decoding sensitivity

in comparison to their previous work using univariate methods [146]. Also a feature significance
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analysis was also undertaken to determine which features (fNIRS channels) are most significant for

recognising the fNIRS signals in response to visual and auditory stimuli. Their results indicated

channel 1 (occipital cortex), channel 3 (occipital cortex), and channel 8 (PFC) (see Fig 6.5 (a)) to be

the most critical channels for decoding between visual and auditory stimuli (as noted in Table 6.3).

The identification of fNIRS channels, and their corresponding anatomical locations, sheds light

on the localised activation of the cortex as described by the IS framework. In addition, the improved

sensitivity of MVPA on account of analysing more than one variable (fNIRS channels’ activity) rather

than univariate analysis further corroborates that cortical networks (interaction between multiple

cortical regions) are formed for the processing of perceptual stimuli. In this sense, the correlation

based MVPA is able to implicitly imply the formation of cortical networks. However, what exactly

entails the cortical networks is unknown because the presence and type of interaction between the

fNIRS channels is unrevealed by the correlation based MVPA.

Motivated from the success of the correlation based MVPA of infants’ fNIRS data by [101] and to

overcome its limitation of partial explainability, I designed an explainable MVPA (xMVPA), outlined

in Chapter 5.2. The proposed xMVPA is able to explain its inference mechanism in terms of the IS

frameworks (presented in Chapter 2.1); thereby informing about the localisation and specialisation

of the cortical regions for the processing of presented information. The xMVPA is designed for

cross-sectional fNIRS data, i.e. it can analyse fNIRS data that is collected from infants of similar

age. In this way, the explainable results provided by xMVPA can shed light on the localisation,

and specialisation of the cortical networks formed for the processing of the presented information in

infants of a particular age group.

In the next chapter, I present the new XAI methods developed for the analysis of functional brain

development.
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Chapter Five

Proposed Explainable AI (XAI) Methods

In this chapter the proposed XAI methods are outlined. The motivation for the development of the

the XAI methods is to be be able to describe functional brain development as hypothesised by the

DCN frameworks of IS and neural reuse (previously outlined in Chapter 2.1). The proposed methods

overcome the limitations of prevalent data analysis techniques in DCN studies (previously discussed

in Chapter 2.2) such that they 1) are not dependent on large datasets, 2) do not rely on a priori models,

and 3) provide an explanation for their classification process.

More specifically, the XAI methods are:

1. Effective Fuzzy Cognitive Maps (EFCMs).

2. Explainable Multivariate Pattern Analysis (xMVPA).

3. Time-dependent eXplainable Artificial Intelligence (TXAI) system.

The rest of the chapter outlines the aforementioned XAI methods in detail.
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5.1 Effective Fuzzy Cognitive Maps (EFCMs)

Effective Fuzzy Cognitive Maps (EFCMs)3 are derived from Fuzzy Cognitive Maps (FCMs) and

based on graph theory. EFCM is capable of representing fuzzy connectivity between variables (such

as fNIRS channels) as fuzzy degrees of relationships (such as effective connectivity (EC)) in a

complex system (such as functional brain development). More specifically, the EFCMs propose a

partial explainable model in terms of estimating the EC as fuzzy weights between its concepts (fNIRS

channels). In this regard EFCMs, when applied to fNIRS based DCN studies for estimating EC, can

shed light on how cortical networks evolve in terms of their influence (EC) on account of emerging

cognitive functions as hypothesised by the neural reuse framework (previously outlined in Chapter

2.1).

A mathematical formulation for EFCMs is outlined as follows in (5.1):

χj(τ + 1) = %(
℘
∑

k=0,k≤τ
(yj(k)

M

∑
i=1

(νij ⊙ ϑij)χi(τ − ℘))) (5.1)

where χj(τ) is the fuzzy value of the concept or node (or signal in fNIRS paradigm) j at time τ based

on the strength and direction of the interaction (EC value) in the range [−1,1], νij ⊙ ϑij , where (⊙

represent element wise multiplication), of concept j with other concepts in the system, and the past

values of the concept j, χj(τ −℘). The total number of concepts (fNIRS channels) in a given system

is represented by M. The number of past fuzzy values of a given concept to be considered by the

EFCM when computing the new fuzzy value for that concept is dictated by the order of the EFCM,

represented by ℘. The EFCM also allows for tuning the strength of influence of the preceding fuzzy

values on the current fuzzy value for a given concept by optimizing values of yj(k), ϑij ∈ Z, and

3Some parts of the text in this section have been published here: M. Kiani, J. Andreu-Perez, H. Hagras, E. I. Papageor-

giou, M. Prasad, and C.-T. Lin, “Effective Brain Connectivity for fNIRSwith Fuzzy CognitiveMaps in Neuroergonomics,”

IEEE Transactions on Cognitive and Developmental Systems, 2019, Early Access © 2019 IEEE.
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νij ∈D using Genetic Algorithm (GA).

The transformation function, denoted % in (5.1), is based on the sigmoid function as outlined in

(5.2).

%(x) = 2sigmoid(2x) − 1 (5.2)

sigmoid(x) = 1

1 + exp−ιx (5.3)

where ι is a parameter used to define a particular shape of the sigmoid function. Themost common

value of ι found in literature is 5 [147, 148].

The proposed regularisation of EFCM is achieved by straining the weights of the connection

matrix D, using a soft regulariser, Z. The soft regulariser Z is a generalisation of a dropout mask

since the elements of Z can attain any value in the range of [0,1]. The elements νij ∈D and ϑij ∈ Z

are both optimised using GA, however, only elements ofD can model the direction of the EC whereas

Z can only optimise the strength of the EC, and hence cannot affect the direction of EC unlikeD.

A quantitative assessment of the predicted states, χj(τ + 1) in (5.1), generated by the EFCM can

be done using the two standard FCM error functions error1 and error2 outlined in (5.4) and (5.5)

[147], respectively. The error is estimated by comparing the reconstructed signals from the resultant

EFCM model with the original signals. In this work, error2 (5.5), is computed for quantifying the

performance of the proposed EFCM technique for evaluating the EC in Chapter 6.1 since it also

accounts for the rate at which the state of a concept is changing.

error1 =
T

∑
τ=1

N

∑
i=1

∣χi(τ) − χ̂i(τ)∣ (5.4)

error2 =
T

∑
τ=1

M

∑
i=1

∣(Ci(τ) − χ̂i(τ))2 + (χ′i(τ) − χ̂′i(τ))2∣ (5.5)
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where χ̂ is the predicted state of the concept of resultant FCM, and χ′ is the rate of change in the

state of a concept.

In comparison with standard FCM, EFCMs optimises the strength (scalar magnitude without

direction) and direction separately rendering it (EFCM) with more degrees of freedom to find the

optimum values of EC, i.e νij ⊙ ϑij in eq (5.1). In addition, EFCM also undertakes tuning of the

transformation (sigmoid) function, % in eq (5.1), to optimise how fast the non-normalised fuzzy

degrees of relationship are squeezed into the normalised range for the fuzzy degrees of relationship.

Further, EFCM establishes that for deciphering EC in a complex process such as brain cortical

networks, a higher order of EFCM, ℘, is more suited to discern the underlying EC. In the next

sections, the aforementioned revision in EFCM namely: 1) Transformation function tuning, 2) EFCM

order, and 3) EFCM learning are outlined in detail.

5.1.1 Transformation Function Parameter Tuning

A transformation function is responsible for normalizing the fuzzy degrees of relationships (or EC

values) in a specified range. The particular transformation function used in this work is the sigmoid

function, see (5.2). Essentially, the gradient of the transformation function determines how fast the

non-normalized fuzzy degrees of relationship are squeezed into the normalized range for the fuzzy

degrees of relationship.

Fig. 5.1 shows the transformation function plot for two values of the parameter, ι, that defines the

gradient of the function. The value for ι is assumed to be 5 for most practical applications [147, 148].

However, with ι = 5, the gradient of the transformation function proved too steep to suit the needs

for this work- the fuzzy degrees of relationship were being squashed to the normalised range too fast,

and hence was not able to discern the underlying EC.

In contrast, the empirically found value of ι = 1, is more inclusive of the non-normalized fuzzy
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degrees of relationship to be translated to the non-extreme values in the normalized range for the

fuzzy degrees of relationship by having a less steep gradient. This can also be seen in Fig. 5.1.

The transformation function with ι = 1 (red) is including values from approximately (−4,4) to be

converted to non-extreme normalized equivalents whereas with ι = 5, values from the approximate

range of (−1,1) only are being translated to non-extreme counterparts in the normalized fuzzy degrees

of relationship.
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Figure 5.1 Transformation function with ι = 5 (blue) and ι = 1 (red), © 2019 IEEE.
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5.1.2 EFCM Order

The EFCM order dictates how many past fuzzy values, ℘, in a set of observations will be considered

by the EFCM when trying to discern a fuzzy effective connection between them. The implications of

the choice of the order of the EFCM are largely dependent on the particular application. In (5.1), the

parameter ℘ defines the order of the EFCM. As is also evident in (5.1), the impact of the preceding

state(s) on the current state can also be scaled by tuning the value of the parameter y.

The motivation for employing a higher order EFCM for fNIRS signals lies in a more accurate

deciphering of the fuzzy EC between the fNIRS signals. This is owing to complex, higher order

fuzzy effective connections amongst the fNIRS signals which first order EFCM dynamics cannot

comprehend very well.

5.1.3 EFCM Learning

The EFCM learning can be achieved either manually using the information provided by experts or by

employing an automated process that can use historical information to develop FCMs [149]. There is

an increasing trend to use computerised techniques to uncover the fuzzy relations between concepts

for an FCM simulation [150] since using an automated approach to learn the inherent model of a given

system does not introduce a bias in the FCM simulation that may be incorporated into the results had

the FCM evolution been governed by human knowledge.

In accordance with the greater advantages of automated FCM learning, in this work, EFCM

learning is achieved by utilising the Genetic Algorithm (GA). GA is an optimisation algorithm

that is based on evolutionary ideas of natural selection and genetics and is capable of solving both

constrained and unconstrained optimisation problems. Owing to its robust, and heuristic nature, GA

can be applied to learn the inherent model of a given system using the historical data of the system

[147].
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Figure 5.2 A flowchart of the algorithm for predicting EC in fNIRS signals using the
proposed EFCM model, © 2019 IEEE.
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The flowchart in Fig. 5.2 outlines the steps for the generation of a resultant connection matrix,

D ⊙ Z, by GA using historical data to be incorporated in the EFCM simulation. The EFCM builds

the next state vector, χ(τ + 1), of a given system using the resultant connection matrix, D ⊙ Z, and

the historical data, χ(τ), till a chosen tolerance criterion is achieved.

fitness = 1

10(T − 1)Merror (5.6)

where T is the length of each of the totalM signals and the error is computed using (5.5).

The fitness of each predicted state χ̂(τ) is gauged against an a priori termination criterion, and

if achieved, the weight matrix D(τ)) ⊙ Z(τ) is updated accordingly, see Fig 5.2. In case the

termination criterion is not met, the GA will try to look for new offsprings using selection, crossover,

and mutation, to generate a new predicted state χ̂(τ) which will then again be compared with the

termination criterion, and the process will continue to repeat itself till the chosen termination criterion

is satisfied.

In the next section, I present the second XAI mechanism based on interval type-2 (IT2) fuzzy

logic system (FLS).

5.2 Explainable Multivariate Pattern Analysis (xMVPA)

In this section4, an XAI inference mechanism for infants’ fNIRS data based on IT2-FLS (previously

outlined in Chapter 3.2) is presented. The proposed XAI inference mechanism will drive the MVPA

(multivariate pattern analysis)[16], a technique first introduced for functional MRI data analysis

with adults, and recently used for study the infant mind with fNIRS [101]. MVPA deciphers multiple

4Some parts of the text in this section have been published here: J. Andreu-Perez, L. L. Emberson, M. Kiani, M. L.

Filippetti, H. Hagras, and S. Rigato, “Explainable Artificial Intelligence Based Analysis for Developmental Cognitive

Neuroscience,” Commun Biol, vol. 4, p. 1077, 2021 © 2021 Nature.
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fNIRS channels activity simultaneously to identify informative differences in brain regions’ activation

in response to stimuli.

The proposed eXplainable MVPA (xMVPA) is an XAI inference mechanism for brain haemody-

namics data that uses evolutionary learning procedure [151] to train the model that drives the MVPA.

A generic nomenclature for the functional patterns learnt by the xMVPA, as defined in (5.7). The

patterns are captured (or learnt) directly from the input fNIRS measurements. By identifying cortical

networks activated for the processing of perceptual information, these patterns can pinpoint the emer-

gence of the specialisation of different brain regions and their interactions, critically contributing

to the existent literature of neurodevelopmental trajectories. A generic nomenclature of xMVPA

patterns that map interactions among brain regions (antecedents) to particular stimuli (consequent) is

as follows:

IF activity is CoL in Ch. 1 AND activity is CoL in Ch. 2 ...

THEN it corresponds to StimulusA

(5.7)

where CoL stands for a conceptual label that denotes the level of activity in a given channel (Ch.),

such as inactive, active, or very active. More specifically, since the xMVPA is based on IT2 fuzzy

sets, the xMVPA patterns can be written in terms of IT2 fuzzy sets as in (5.8):

Pattern Pq ∶ IF x1 is Ãq1,l AND ... AND xΨ is Ã
q
Ψ,l ... AND xΦ is Ãq1,Φ

THEN stimulus is Yq with DSq

(5.8)

where q is the pattern number, xΨ is the numeric brain activity value of fNIRS channel Ψ i.e.

Ψ ∈ [1, ...,Φ], ÃqΨ,l is the antecedent IT2 fuzzy set for the Ψth variable representing the conceptual

label l, where l ∈ [1, ...,W ] for a total ofW conceptual labelswithΦ as the total number of antecedents,

Yq is the consequent stimulus class for the pattern, and PSq is the pattern score associated with the

qth pattern.
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In general, xMVPA inference mechanism consists of the following integral processes:

1. Brain activation concept definition;

2. Pattern dominance score evaluation;

3. Matching of data with the stimulus by the explainable pattern;

4. Learning of xMVPA:

(a) Learning of conceptual labels;

(b) Learning of patterns.

In this work, the xMVPA learns directly from the data by splitting the the conceptual multivariate

data into 5-fold disjoint training and validation datasets [152]. To ensure there is no bias in the

selection of the training and validation datasets, the conceptual multivariate data is split into 5-

fold disjoint training and validation datasets [152]. Also, please note that in the xMVPA inference

mechanism there is no information flow from the learning of patterns from one training fold to another

training fold. The interlinks between the different processes of the xMVPA inference mechanism are

delineated in a flowchart in Fig. 5.3 (d). A description of each of these processes is provided next.

5.2.1 Conceptualisation of Brain Activation Levels

The xMVPA works on a MVM that has elements characterised by conceptual labels. For this, the

numerical MVM formed by combining the data from all channels of interest is converted into a

conceptual MVM. In the present work, the conceptual labels of inactive, active, and very active are

used to represent the level of brain activity measured by a fNIRS channel. The conversion of numeric

data into conceptual labels is based on the numerical range of values represented by each of the

conceptual labels. The shape of the MFs for the conceptual labels is as outlined in Fig. 5.3 (a) -
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(c). The numeric values to be learnt for the definition of inactive and very active conceptual labels

are 4 each, while 8 numeric values need to be optimised for the trapezium shaped MF for active and

marked with yellow circles in Fig. 5.3 (a) - (c). The range of numeric values for each conceptual

label are learnt using an evolutionary algorithm with more details as outlined in the section 5.2.4.

5.2.2 Explainable Patterns’ Dominance Score Evaluation

Starting with an initial random set of patterns, the upper and lower bounds of the dominance score,

DS q and DS q respectively, for each of the patterns Pq in the set are determined on a given k-fold

training dataset as shown in eq. (5.9) [151].

DS q = conf q ⋅ supq

DS q = conf q ⋅ supq
(5.9)

where q is the pattern number, conf q and conf q is the upper and lower confidence score of the pattern

Pq respectively, and supq and supq is the upper and lower support of the pattern Pq, on a training

dataset.

The confidence score, confq, of a pattern, Pq, can be viewed as the possibility that a given data

instance is an observation of this pattern, i.e. confq is the likelihood of a given data instance to be a

representative observation for the same stimulus as the pattern stimulus (consequent) Yq, given the

data instance has matching interactions of brain regions as the rule Pq, i.e. the same antecedents. The

mathematical formulation for the computation of a pattern confidence is as provided in (3.41). The

support, supq, of a given pattern is an indication of the coverage of training dataset by the pattern.

The mathematical formulation for the computation of a pattern support is as provided in (3.42).
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5.2.3 Stimulus Prediction

A set of optimal patterns, with corresponding dominance scores, DSq, are obtained using an evolu-

tionary search (section 5.2.4) guided by the results of a k-fold cross-validation (k=5) procedure. The

most likely stimulus for a given data instance, where a data instance is a row (i) in the validation

dataset, is achieved by evaluating the association of the data instance with all the patterns (pattern-

based explanations). The stimulus response of a data instance is predicted as the consequent of the

pattern with the highest association degree, i.e. visual or auditory stimulus.

The stimulus for each data instance in the validation dataset, xi, is determined using the metric of

association degree. The association degree, hq, of pattern Pq with each data instance in the validation

dataset, xi, is computed as outlined in eq. (5.10).

hq(xi) = wq(xi) ⋅DS q

hq(xi) = wq(xi) ⋅DS q

hq(xi) =
hq(xi) + hq(xi)

2

(5.10)

where wq and wq are the upper and lower firing strengths of a pattern Pq for a data instance of

the validation set xi. More information on the firing strengths is provided in (3.39). To summarise, a

given validation data instance, xi, is classified as a response to the stimulus, Yq, corresponding to the

pattern Pq with the maximum association degree with xi.

5.2.4 xMVPA learning from data

Search of explainable patterns

The initial set of patterns used in the proposed xMVPA inference mechanism is randomly generated

to ensure that there is no bias introduced in the learning of the set of patterns. An evolutionary GA
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is integrated in the xMVPA inference mechanism to identify those set of patterns that together give

the best classification results. Fig. 5.3 (d) outlines the steps undertaken to reveal an optimised set of

patterns using a given dataset.

All sets of patterns are learnt using k-fold cross-validation to establish the general ability of a

given set of patterns. Using an initial random set of patterns with a total of Q patterns, the Mathew’s

Correlation Coefficient (MCC) of the set of patterns is computed as MCC gives a more balanced

measure of the quality of binary (two-class) classifications. It is computed as shown in eq. (5.11)

[19]:

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(5.11)

where True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) are as

defined in the confusion matrix in Fig. 6.7 (a).

The cost of the set of patterns is computed as 1 - the mean of the MCCs of all k-fold validation

datasets. The GA then compares the cost of the set of patterns with a pre-defined tolerance criterion.

If the cost is greater than the tolerance of GA, the GA then populates a new set of patterns and the

cycle is repeated till the tolerance criterion of the GA is met as outlined in Fig. 5.3 (d). More details

on the GA are provided in Chapter 5.2.4.

To maximise the model interpretability, the total number of patterns to be learnt by xMVPA

system is set at 20 patterns, with maximum of 3 channels interactions in a given pattern (as three-

point messages are the recommended standard for science communications [153]). The evolutionary

system [125] will aim to maximise the accuracy of prediction while using a maximum of 20 patterns,

where each pattern consist of a maximum 3 antecedents. This renders the total number of variables,

to be optimised for pattern learning, by GA to be: total number of patterns (20) * maximum number

of channels (3) and conceptual label for each chosen channel (3: Inactive, Active or Very Active) and

the corresponding stimulus class for each pattern (1) = 20*(3+3+1) = 140 variables.
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Learning of conceptual labels

The number of parameters to be learnt for conceptual labels definition are the lower and upper numeric

range of values for each concept. For a given channel, the number of variables that need to be learnt

for the channel’s equivalent conceptual labels numeric range are 16 (4 for inactive as shown in Fig.

5.3a, 8 for active as shown in Fig. 5.3b, and 4 for very active as shown in Fig. 5.3c). Hence, in this

work, for ten channels the total number of variables to be optimized for conceptual labels numeric

range are 16*10 = 160.

Hence, the grand total of variables to be learnt by the GA are 140+160 = 300 variables. The

structure of each phenotype is described in eq. (5.12). The population size of GA, i.e. the number of

feasible solutions is set at 200, with selection done using tournament and the GA tolerance is set at

1 ∗ 10−5.

ρb = {φ1
1, φ

1
2, φ

1
3,Υ

1
1,Υ

1
2,Υ

1
3, Y

1, ...,

φQ1 , φ
Q
2 , φ

Q
3 ,Υ

Q
1 ,Υ

Q
2 ,Υ

Q
3 , Y

Q, ...,

γ1
IAj
, ..., γ4

IAj
, γ1
Acj , ..., γ

8
Acj , γ

1
VAj

, ..., γ4
VAj

, ...,

γ1
IAn , ..., γ

4
IAn , γ

1
Acn , ..., γ

8
AcN , γ

1
VAn , ..., γ

4
VAn}

‘ (5.12)

where ρb is the phenotype of an individual b (a potential solution) for the GA for a total of Q

patterns. Each φ denotes a particular channel, each Υ represents the corresponding conceptual labels

associated with each channel. These chromosomes form the antecedent of a pattern. The consequent

of the patterns is denoted as Y . The γ represent the numeric values for the range of each of the

conceptual labels of all the F fNIRS channels. In particular, γNV
CoLj

, subscript CoL (conceptual label)

denotes the value of concept that can be inactive: IA, active: Ac, and very active: VA, along with the

associated channel number j and the numeric value (NV) in the superscript: 4 NVs for Inactive and

Very active, and 8 NVs for Active.
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Evolutionary Learning of xMVPA

As previously outlined in Chapter 5.1.3, Genetic Algorithms (GA) are a type of evolutionary algorithm

[125] that are based on the survival of the fittest phenomenon from Darwin’s evolutionary theory. The

‘survival of fittest’ idea states that given limited resources for a population of individuals within some

environment, a competition for those resources causes a natural selection of the individuals in that

population and eventually only the fittest individuals survive, i.e. gain access to the limited resources.

Consequently, the population of the individuals that survive are the best of the possible individuals.

In the present work, individual solution’s (which comprise of the set of patterns, and the numeric

range of conceptual labels, see (5.12)) cost (1 - the mean of the resultant MCCs from cross-validation

(5.11)) is compared against a set tolerance criterion (see Fig. 5.3). The solutions that have the best

fitness values become the ‘parents’ for the next generation (offsprings) of the ‘solutions’. The next

generation of solutions is found by incorporating novelty using recombination and/or mutation in the

parent solutions. Recombination is an operator that is applied on two or more parents to produce the

offsprings whereas mutation is applied to one parent and results in a new altered/mutated offspring. In

this way, the application of recombination and mutation generates a new generation of the solutions.

In turn, these newly generated solutions are evaluated against the tolerance criterion and given fitness

score. If the fitness score is less than the tolerance criterion the search for the optimal solution is

stopped, else the process is iterated until a solution with sufficient quality (i.e. meets the tolerance

criterion) is found or an iteration limit is reached.

Despite extending novel insights into the functional brain development, a critical limitation of

xMVPA is its inability to analyse longitudinal data. Infants’ longitudinal neuroimaging data holds key

information for delineating brain developmental trajectories. In particular, the infants’ longitudinal

data analysis can shed light on how neural networks optimise over time to pave way for the hierarchical

structure of the human brain. In this regard, there is a need to carry out infants’ longitudinal brain
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data analysis to implement the neural reuse framework, as first discussed in Chapter 2.1. To this

end, a Time-dependent XAI (TXAI) system that is capable of analysing longitudinal fNIRS data is

developed. The proposed TXAI system integrate the time information using new Temporal Type-2

Fuzzy Sets (TT2FS). Based on the temporal information embedded in the TXAI system, it (TXAI

system) is able to inform on the temporal dynamics within the longitudinal data. The proposed TXAI

system, for the analysis of infants’ longitudinal data, is presented next (in Chapter 5.3).

5.3 Time-dependent XAI (TXAI) Systems

Owing to the inability of standard FLS to integrate temporal information, the proposed xMVPA

(presented in Chapter 5.2) can only inform about the workings of the developing brain associated with

a given time point, i.e. at the age of the participating infants. More specifically, xMVPA is not able

to shed light on how the cortical networks would rewire as the infants’ brain develop (both structural

and functional) with time as hypothesised by the neural reuse framework (outlined in Chapter 2.1).

Further, the incorporation of temporal information associated with infants’ brain data could allow to

describe brain developmental trajectories which can in turn inform social, clinical, and educational

policies. To this end, in this chapter, to model time-dependent real-life processes more effectively,

the theory of a new Temporal Type-2 Fuzzy Set (TT2FS) based approach for Time-dependent

XAI (TXAI) system is presented.

There have been few notable attempts in the literature to model time in the MFs. The work

by Garibaldi et al. [154] on non-stationary fuzzy sets proposed that variation within a MF can be

incorporated by perturbing the parameters of the MF. Their work aims to develop non-deterministic

fuzzy reason as a way to model the variability in fuzzy decision making to mimic the variability in

expert opinions. However, their work does not incorporate the variation within a fuzzy concept with
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respect to time, which is the aim of the present work, to represent the time-variant transformation of

a same fuzzy linguistic variable.

Similarly, the work by Kostikova et al. [155] proposes dynamic fuzzy sets by extending the

classical fuzzy set to include a time dimension for representing MF at different time points. They

propose four different types of dynamic MFs depending on how many parameters are changed in the

definition of the dynamic MF. However, the dynamic MF is essentially a set of functions determined

at different time points with no bearing on the temporal variation in the fuzzy concept.

In another work, Maeda et al. [156] propose dynamic fuzzy reason to deal with the notion of time

delay between premise and consequent. An example of where a time delay between premise and

consequent assumes critical importance is: ‘If it starts snowing, the traffic on road will increase about

30 minutes later’. They propose the use of fuzzy relations between a fuzzy concept and its fuzzy time

interval to assign a credit degree to the concept. The temporal fuzzy reasoning provides a framework

for modelling delay in fuzzy reasoning and the temporal dynamics of a fuzzy concept.

To the best of my knowledge, there is no work in the literature on fuzzy sets that delineates the

incorporation of time-based variation in a fuzzy concept to compute the membership degree for the

crisp values of the fuzzy concept. The prowess of TXAI system for incorporating time information for

modelling time-variant processes is of paramount significance since the insights provided by a TXAI

system can shed light on both spatial (feature domain) and temporal behaviour of the time-dependent

process. In addition, no previous work has aimed at delineating the trajectories of a time-variant

process with respect to time. To this end, in this work, I propose TXAI systems that can integrate

information from both the feature domain and time domain.

The TXAI system is based on TT2FS (Temporal Type-2 Fuzzy Sets) that incorporate information

from not only the uncertainty in the input domain of the fuzzy linguistic term, but also from its

time of occurrence. In particular, the information from the time of occurrence is integrated into
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Figure 5.4 An illustrative Type-1 (T1) Membership Function (MF) for the fuzzy concept of
‘Cold’ in the (a) universe of temperature in °C and (b) in the universe of time: months of a
year.

the membership degree of the TT2FS using fuzzy relations such that it varies with respect to time

(time-dependent).

Next, I present themost common fuzzy relations and outline how they can be used for implementing

TT2FS.

5.3.1 Fuzzy relations between fuzzy linguistic variables and time related mea-

sures

In this work, fuzzy relations are used to interrelate the information with respect to the degree of truth

of a determined linguistic term or conceptual label, A, within the domain X , and time, T , to form

TT2FSs such that the likelihood of occurrence of A in x ∈ X , i.e. the primary membership degree

µA(x), is credited by a measure that is dependent on time such as frequency. The application of fuzzy

relation, for constructing TT2FSs, is motivated by the work on dynamic fuzzy reasoning models in

[156]. They outline fuzzy relations that can be used to model time dependencies, as noted in Table

5.1.

Before reviewing the different relations that can be applied to construct a TT2FS, the conditions

that need to be fulfilled by the associated temporal MF (TMF) are listed below:
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Name Definition of the relation

Godel ΓG(t, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if µTA(t) ≤ µA(x)

µA(x) if µTA(t) > µA(x)

Lukasiewicz ΓL(t, x) = 1 ∧ (1 − µTA(t) + µA(x))

Gaines-Rescher ΓGR(t, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if µTA(t) ≤ µA(x)

0 if µTA(t) > µA(x)

Mamdani ΓM(t, x) = µTA(t) ∧ µA(x)

Table 5.1 Fuzzy relations between the universe of concept X and time domain T .

(i) The TMF should be continuous.

(ii) The TMF should be convex.

(iii) The range of the TMF ⊆ [0,1].

(iv) The TMF should reflect in the value of membership degree the intrinsic magnitudes of mem-

bership degree in feature domain and in frequency of occurrence domain, i.e. they should be

directly proportional. For example, if µA(x) is high and the time representation is also high

then the result from the relation between them should also be high and vice versa.

An illustrative comparison of the TT2FSs formed for the conceptual label ‘Cold’ of feature thermal

concept using the fuzzy relations listed in Table 5.1 is shown in Fig. 5.5. The fuzzy relations are

applied on hypothetical primary MF of ‘Cold’ in feature domain (temperature) and time domain

(months of a year). As can be seen in Fig. 5.5, the different fuzzy relations are encapsulating distinct

inter-dependencies between time and feature domain. All relations meet the criteria (i) - (iii) listed

above however, only the Mamdani relation meets the criterion (iv) as well since it gives credit to µCold

based on the variable frequency of occurrence of ‘Cold’ as observed in different months of the year.

Hence, in this work, the Mamdani relation is used to construct the TT2FSs.
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Figure 5.5 A comparison of TT2FSs for the conceptual label ‘Cold’ for feature thermal
concept constructed with the most commonly used fuzzy relations.

5.3.2 Conditional relative frequency distribution of a fuzzy linguistic term

In the proposed TT2FS, a measure of conditional relative frequency between time and the occurrence

of a linguistic term is employed. I denote asA an instance of a linguistic term from a set of conceptual

labels (CoL), CoLs ∶= [CoL1,CoL2, ...,CoLW ] of a specific linguistic variable or input.

Definition 5.3.1 (Discrete conditional relative frequency with respect to time). The discretized con-

ditional relative frequency is defined as the likelihood of observing a linguistic term A based on its

membership degree, across time. This is denoted as gA(tn, µA(x)) with time t discretised over N

time points (tn) such as tn ∈ [t1, ..., tN], and is given by:

gA(tn, µA(x)) =
∑

x∈X,tn
δnl

max
[t1,...,tN ]

( ∑
x∈X,tn

δnl)
(5.13)

δnl is a Kronecker delta function [157] (e.g. δab = 0 if a ≠ b, δab = 1 if a=b) that takes the value of

1 when the following condition applies, ∃ argmaxl(µCoLj(xtn)) ∶ Coll = A, ∀l ∈ [1, ...,W ], and 0

otherwise. Note xtn is a realisation of x at time tn.
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The numerator in (5.13) finds the count of occurrences of a given A for a determined time point

tn across all data instances, whereas the denominator is finding the maximum value of the count of

occurrences of A across all N time points and all data instances. The resultant discrete conditional

relative frequency gA(tn, µA(x)) is interpolated to form a conditional distribution fA(t, µA(x)). For

the sake of notational simplicity, I denote the later distribution as fA and the discrete conditional

relative frequency as gA from here on-wards.

Let us assume that the linguistic variable is thermal sensation defined on the input domain

(x ∈ X) of temperature in °C and the associated conceptual labels be: [Cold, Comfortable, Hot].

For a given crisp input of temperature such as 15°C, the associated primary membership degree for

all three conceptual labels of Cold, Comfortable, and Hot be µCold(15,°C) = [0.4],,µcomf.(15°C) =

[0.3], µhot(15°C) = [0] respectively. In this illustrative case, the temperature of 15 °Chas amaximum

membership grade, amongst all conceptual labels, for Cold and hence 15 °C is assigned with the

conceptual label of Cold. Referring back to (5.13), for computing the conditional relative frequency

for Cold the numerator is going to sum all the data instances where the crisp inputs are assigned with

Cold for a given time point tn such as a particular month of a year. The denominator finds the mode

of occurrence of Cold across all months. The result of the division will scale the gCold values to [0,1].

An illustration for calculating the gCold values using (5.13), with a total of 12 time points as the

months of a year is shown in Fig. 5.6 (b) with continuous values of fCold, found using interpolation

of gCold, plotted in Fig. 5.6 (c). Please note the associated time intervals, (as listed in the illustration

in Fig. 5.6 are seasons in a year such as Winter, Spring, Summer, and Autumn), are for easing the

computational complexity of the four-dimensional (4D) TT2FSs as will be explained later in Section

5.3.4 by taking time interval based slice of the TT2FS.
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5.3.3 Temporal Type-2 Fuzzy Sets (TT2FS)

In this section, a formal definition of Temporal Type-2 Fuzzy Sets (TT2FS) is presented. TT2FS

are 4D as they incorporate information from the input domain (X), time domain (T ), frequency of

occurrence domain (F ) and are characterised by a temporal MF (TMF).

The computation of TMF, hereby termed as temporal fuzzification, involves two stages: 1) fuzzification

of crisp input values of A from feature domain X to form T1 µA(x), as undertaken in standard T1

fuzzy sets; and 2) computation of the conditional distribution of A, fA. The temporal fuzzification is

illustrated in Fig. 5.6 (a) and defined next.

Definition 5.3.2 (Temporal membership function). The Temporal MF (TMF) can be defined as

follows:

µA⃗(x, t, fA) = µA(x)⊗ fA (5.14)

where ⊗ is a relation operator, µA(x) is the primary membership of A in feature domain credited

by the conditional distribution of A, denoted fA, using the Mamdani relation (outlined earlier in Sec

5.3.1).

Theorem 5.3.1. The TMF of A, constructed using Mamdani relation (5.14), µA⃗(x, t, fA) is ⊆ [0,1].

Proof. The range of µA⃗(x, t, fA) follows directly from the range of primary MF of A: µA(x) ⊆ [0,1],

and the conditional distribution of A: fA ⊆ [0,1]. Hence, by crediting µA(x) with fA using Mamdani

relation (taking the min or product), it follows that the range of µA⃗(x, t, fA) ⊆ [0,1]. ∎

Proposition 5.3.1.1. If the primary membership of TMF is normal and the conditional distribution

f is normal, according to (5.13), then the resultant TMF membership after applying the Mamdani

relation yields a normal TMF, therefore we can imply that

sup
x∈X

µA⃗(x, t, fA) = 1 (5.15)
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Proof. Given a fA ⊆ [0,1] and a µA(x) ⊆ [0,1] both with sup = 1, ∀x ∈ X by deduction, ∃x ∶

fA × µA(x) ∨min(fA, µA(x)) = 1 ∎

Next, we define the TT2FS which are characterised by a TMF.

Definition 5.3.3 (Temporal Type-2 Fuzzy Sets (TT2FS)). A TT2FS A⃗ of the universe of discourse

X × T × F is characterised by a credited TMF µA⃗(x, t, fA) ∶ X × T × F → [0,1] where X is the

feature domain of A characterised by a T1 MF µA(x), T is the time domain of A, F is the frequency

of occurrence domain of A characterised by conditional frequency distribution with respect to time

fA. In mathematical set notation, A⃗ can be written as (5.16):

A⃗ ={(x, t, fA, µA⃗(x, t, fA)) ∣

∀x ∈X,∀t ∈ T,∀µA(x) ⊆ [0,1],

∀fA ∈ F ⊆ [0,1]}

(5.16)

where µA⃗(x, t, fA) ⊆ [0,1]. Please note the conditional distribution, fA, is a continuous distribution

interpolated from discrete conditional relative frequency, gA, and is defined mathematically earlier

in (5.13). A⃗ can also be expressed as:

A⃗ = ∫
x∈X

∫
t∈T
∫
fA∈F

µA⃗(x, t, fA)/fA/t/x (5.17)

where ∫ ∫ ∫ denotes the aggregation over all admissible values of x, t, and fA. The associated

TMF, µA⃗(x, t, fA)) ⊆ [0,1], scales the µA(x) based on its conditional distribution fA as defined in

(5.14).

5.3.4 Time Interval slice followed by Z-slice (TS-ZS) approach for TT2FS

A popular approach for minimising the computational demand of 3D GT2 fuzzy sets is to use z-slice

based framework [134], previously outlined in Chapter 3. Motivated from the effectiveness of z-slice
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Figure 5.6 (a) A schematic of temporal fuzzification for constructing Temporal Membership
Function (TMF).

based framework for simplifying the computations for GT2 fuzzy sets, in this work, the approach of

taking time interval slice followed by z-slice (TS-ZS) is taken for performing operations on TT2FSs.

The TS-ZS approach is explained in more detail as follows:

(i) TS: Time interval based slice to convert 4D TT2FSs into 3D. The 3D time interval based

TT2FS is similar to 3D GT2 fuzzy set, with both sharing the feature domain on x−axis. On

y−axis is the frequency of occurrence domain, for that time interval, for time interval based

TT2FS, while for GT2 fuzzy sets, primary membership grade is on y−axis. And on z−axis

is the temporal membership degree for time interval based TT2FS while for GT2 fuzzy set

secondary membership degree is on z−axis.

(ii) ZS: z-Slice based approach for the time interval based 3D TT2FS as utilised for GT2 fuzzy

sets. The z-slices at specific z-levels render a given 3D fuzzy set to an equivalent IT2 fuzzy set

with lower and upper primary membership degrees. For the case of TS-ZS based TT2FSs, the

primary membership degrees are the conditional distribution values for that time interval at a

given z-level.
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In the following sections, a formal definition for the operations on TT2FSs is given with A⃗ and B⃗

denoting two TT2FSs characterised by TMFs µA⃗(x, t, fA) and µB⃗(x, t, fB) respectively as outlined

in (5.18):

A⃗ = ∫
x∈X

∫
t∈T
∫
f∈F

µA⃗(x, t, fA)/fA/t/x

B⃗ = ∫
x∈X

∫
t∈T
∫
f∈F

µB⃗(x, t, fB)/fB/t/x (5.18)

where X is the feature domain, T is the time domain, and F is the frequency of the occurrence

domain.

5.3.5 Union of TT2FS

A general procedure for undertaking the union (and intersection) operations on the 4D TMFs is

outlined in Algorithm 3. The union of two TT2FSs A⃗ and B⃗ is a TT2FS defined as A⃗ ∪ B⃗ in (5.19):

A⃗ ∪ B⃗ = ∫
x∈X

∫
t∈T
∫
f∈F

µA⃗∪B⃗(x, t, f)/f/t/x (5.19)

whereµA⃗∪B⃗ can be calculated by discretising theT domain, and taking z-slices onµA⃗∪B⃗,∆tα(x, t, f)

values as outlined in (Alg 3.1) of Algorithm 3. In particular, for union operation, at time interval ∆tα

(Alg 3.1) takes the form of (5.20) when using the max t-conorm:

µA⃗∪B⃗,∆tα(x, f∆tα) =∑
x

∑
f∆tα∈[max(lA,lB),max(uA,uB)]

zi/f∆tα (5.20)

5.3.6 Intersection of TT2FS

Likewise, the intersection of TT2FSs can be written as shown in (5.21)
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Algorithm 3: Union and Intersection Operations on TT2FSs
Result: Resultant Temporal Membership Function (TMF) µA⃗⊘B⃗(x, t, fA⊘B) where ⊘ denotes

the operation of either union or intersection.

Let concepts A and B on feature domain X have TMFs denoted by µA⃗(x, t, fA(t, µA(x))) and

µB⃗(x, t, fB(t, µB(x))) respectively with time intervals ∆tα ∈ [∆t1, ...,∆tV ] and zslices

discretised at zi ∈ [z1, z2, ..., zI]

For each time interval ∆tα the operation (union or intersection) on 3D time interval based

TMF is computed independently by first taking the z-slices at zi ∈ [z1, z2, ..., zI] which

renders the 3D time interval based TMF into Interval Type-2 (IT2) TMFs

For each IT2 TMF, the operation is done as shown below in eq. (Alg 3.1)

for x ∈X do

for zi < zI do

µA⃗⊘B⃗,∆tα(x, f∆tα) =∑
x

∑
f∆tα∈[⊙(lA,lB),⊙(uA,uB)]

zi/f∆tα (Alg 3.1)

end

end

where the summation signs in eq. (Alg 3.1) denotes the aggregation in set theoretic operation, l and u

are the lower and upper conditional distribution values respectively of set A⃗ and B⃗ on z-slice zi and

time interval ∆tq. For union operation, in eq. (Alg 3.1), the ⊙ denotesmax and for intersection

operation ⊙ denotesmin.
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A⃗ ∩ B⃗ = ∫
x∈X

∫
t∈T
∫
f∈F

µA⃗∩B⃗(x, t, f)/f/t/x (5.21)

whereµA⃗∩B⃗ can be calculated by discretising theT domain, and taking z-slices onµA⃗∩B⃗,∆tα(x, t, f)

values as outlined in (Alg 3.1) of Algorithm 3. In particular, for intersection operation, at time interval

∆tα (Alg 3.1) takes the form of (5.22) when using the min t-norm. However, either product or min

can be applied.

µA⃗∩B⃗,∆tα(x, f∆tα) =∑
x

∑
f∆tα∈[min(lA,lB),min(uA,uB)]

zi/f∆tα (5.22)

5.3.7 Defuzzification of TT2FS

In general, defuzzification converts a fuzzy set to an equivalent crisp number, and can be thought of

as the inverse of fuzzification. As outlined earlier in Chapter 3, for T1 fuzzy sets, defuzzification

usually involves computing the centroid of the T1 fuzzy set [158] to compute a representative crisp

number, as shown in (5.23).

x∗ = ∑
I
i=1 xiµ(xi)
∑I
i=1 µ(xi)

(5.23)

where x∗ is the centroid of the T1 MF defined on the domain x ∈ X . Here, the summation sign

is used as in typical mathematical equations, i.e., for the case of the numerator, it is summing the

product of x values and their corresponding membership degrees whereas for the denominator it is

summing the membership degrees corresponding to all xi values ∀i ∈ [1, ..., I].

For a 3D GT2 fuzzy set, defuzzification usually involves three steps, outlined as follows:

(i) Transforming a 3DGT2 fuzzy set to IT2 fuzzy sets by slicing the GT2 fuzzy set at given z-levels

such as zi ∈ [z1, ..., zI].
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Algorithm 4: Defuzzification of TT2FSs for a given time interval ∆tα
Result: Crisp value for a given time interval, denoted by crisp∆tα , where ∆tα is the αth time

interval.

Let feature A on feature domain X have temporal membership function (TMF) denoted by

µA⃗(x, t, fA(t, µA(x))) with time intervals ∆tα ∈ [∆t1, ...,∆tV ] and z-slices discretised at

zi ∈ [z1, z2, ..., zI]

For each 3D time interval based TMF, the defuzzification can be done independently, by first

taking the z-slices at zi ∈ [z1, z2, ..., zI] which renders the 3D time interval based TMF into

Interval Type-2 (IT2) MFs

The left and right centroid for each IT2 TMF at z-location zi, denoted by Czi,∆tα , can be

computed using Karnik-Mendel (KM) method [159] to give [cl, cr] at that z-slice zi and time

interval ∆tα as outlined in eq. (Alg 4.1)

for zi ≤ zI do

Czi,∆tα = [clzi,∆tα , crzi,∆tα ] (Alg 4.1)

end

Defuzzifcation of the type reduced T1 fuzzy sets, using centroid average, to find equivalent

cl∆tα and cr∆tα

cl∆tα(x) =
(z1 ∗ clz1,∆tα) + (z2 ∗ clz2,∆tα) + ... + (zI ∗ ylzI ,∆tα)

z1 + z2 + ... + zI
(Alg 4.2)

cr∆tα(x) =
(z1 ∗ crz1,∆tα) + (z2 ∗ crz2,∆tα) + ... + (zI ∗ yrzI ,∆tα)

z1 + z2 + ... + zI
(Alg 4.3)

A crisp value, crisp∆tα , can now be computed by applying Nie-Tan method [132] on cl∆tα and

cr∆tα .
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(ii) Type reducing the z-level based IT2 fuzzy sets results in two T1 fuzzy sets using KM (Karnik

Mendel) method [159] (outlined in Appendix A). The type-reduced T1 fuzzy sets are composed

of the left and right centroids of the IT2 fuzzy sets. More specifically, the KM method

requires iterative process to compute left and right centroids resulting in two T1 fuzzy sets:

[clz1 , clz2 , ..., clzI ] and [crz1 , crz2 , ..., crzI ] where clz1 is the left centroid at z-level 1 and crz1 is

the right centroid at z-level 1 and so on.

(iii) Defuzzifcation of the type reduced T1 fuzzy sets, using centroid average, to find equivalent

cl(x) and cr(x).

cl(x) =
(z1 ∗ clz1) + (z2 ∗ clz2) + ... + (zI ∗ clzI )

z1 + z2 + ... + zI
(5.24)

cr(x) =
(z1 ∗ crz1) + (z2 ∗ crz2) + ... + (zI ∗ crzI )

z1 + z2 + ... + zI
(5.25)

(iv) The final type-reduced crisp value is found using the Nie-Tan method [132] on cl and cr.

In this work, the defuzzification of 4D TT2FS also involves TS-ZS approach (explained earlier in

section 5.3.4), i.e., taking the time interval based slice followed by z-slices. The time interval based

TMF is 3D, and for each of the time interval (∆tα) based TMF, z-slices at particular zi levels renders

them as IT2 fuzzy sets. The KM procedure [159] can be applied on IT2 fuzzy sets, at each z-level,

to compute T1 fuzzy sets composed of [clzi,∆tα , crzi,∆tα ] as outlined in (Alg 4.1). Using the centroid

defuzzifier, the T1 fuzzy sets are defuzzified to give one equivalent cl and cr, for that time interval, as

outlined in (Alg 4.2) and (Alg 4.3). The Nie-Tan method [132] is then applied to compute one crisp

value for that time interval. The defuzzification of TT2FSs, for a given time interval, is summarised

in Algorithm 4. The procedure outlined in Algorithm 4 can be repeated for each time interval, i.e.

∆tα where α ∈ [1, ..., V ], to obtain a crisp value for all time intervals.
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5.3.8 TXAI Inference System (TXAI-IS)

In this section, the TXAI Inference System (TXAI-IS) for classification problems is outlined. A

general flowchart for the TXAI-IS is outlined in Fig. 5.7. The temporal fuzzifier constructs the 4D

TT2FSs as outlined in Fig. 5.6 (a). To analyse a given dynamic process with respect to time, the

TXAI-IS works for each time interval ∆tα where ∆tα ∈ [∆t1, ...,∆tV ] independently. To this end,

the 4D TT2FSs are first sliced based on the ∆tα, and inference is made on time sliced 3D TT2FSs

using the temporal patterns for the same ∆tα. Each time interval would entail a unique temporal

pattern base. The temporal patterns can either be furnished by experts in the field or can be learnt

from the input data using evolutionary algorithms such as Genetic Algorithm (GA) [160].

In the next subsections, the classification TXAI-IS is outlined in detail as the empirical study on

which TXAI system is exemplified also undertakes a classification problem, i.e., occupancy dataset

[161] is analysed to determine whether or not a room is occupied.

Classification

For the classification problem, the TXAI-IS will predict one class for a given data instance for each

time interval. The overall TXAI-IS for classification undertakes the following steps:

(i) Compute the membership degree for the time interval based 3D TT2FSs.

• The time interval based 3D TT2FSs are transformed into IT2 fuzzy sets by taking slices

at predefined z-levels. The membership degree at each z-level, such as zi ∈ [z1, ..., zI]

where I is the total number of z slices, for a given 3D TT2FS is given as follows [134]:

Ã = {(x,u, z)∣∀x ∈X, (5.26)

∀u ∈ [µ
Ã
(x), µÃ(x)] ⊆ [0,1]}

where µÃ is the membership degree of the IT2 fuzzy set Ã at the predefined z level.
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(ii) Compute the firing strength for each pattern, at each z-level.

• The upper and lower firing strength of a given patterns Pq, wq and wq respectively, is the

degree of match between the pattern Pq and the data instance x. It is computed as:

wq(x) =
Φ

∏
Ψ=1

µÃΨ(xΨ)

wq(x) =
Φ

∏
Ψ=1

µ
ÃΨ

(xΨ) (5.27)

where q is the pattern number, Φ is the total number of antecedents in the pattern Pq.

(iii) Compute the dominance score (DS) for each pattern, at each z-level.

• The DS is a measure of a given pattern’s dominance and is computed as shown in (5.28).

DSq = conf q × supq (5.28)

DSq = conf q × supq

where conf is the confidence of the pattern Pq and sup is the support of the qth pattern.

• The confidence of a pattern is a measure of the likelihood to correctly classify a given

data instance. It is calculated as shown in eq. (5.29)

conf q(Ψq ⇒ Yq) =
∑x∈(Ψq⇒Yq)wq(x)
∑Q
q=1,x∈(Ψq)wq(x)

(5.29)

conf
q
(Ψq ⇒ Yq) =

∑x∈(Ψq⇒Yq)wq(x)
∑Q
q=1,x∈(Ψq)wq(x)

where Ψq and Yq are the antecedents and consequent respectively of the pattern Pq. The

numerator sums the firing strength of all the data instances that have the same antecedents

and consequent as the pattern Pq. Whereas the denominator sums the firing strength of

all the data instances that have the same antecedents as the pattern Pq irrespective of the

consequent- for all the patterns [1, ...,Q], where Q is the total number of patterns.
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• The support of a pattern is calculated as shown in (5.30)

supq(Ψq ⇒ Yq) =
∑x∈(Ψq⇒Yq)wq(x)

Q
(5.30)

sup
q
(Ψq ⇒ Yq) =

∑x∈(Ψq⇒Yq)wq(x)
Q

with Q as the total number of patterns.

(iv) Compute the association degree of each pattern, with a given data instance, for each z-level.

• The association degree of a pattern Pq with a given data instance x is computed as shown

in (5.31):

hq = wq(x) ×DSq (5.31)

hq = wq(x) ×DSq

(v) Predict the class.

• Find a value of the association degree, h, for each pattern by using Nie-Tan [132] method

on the h and h which are found using (Alg 4.2) and (Alg 4.3).

• The pattern with the highest association degree, h, predicts the class for the given data

instance.

(vi) The steps outlined above (i)-(v) are repeated for each time interval to predict a class for all time

intervals.

Numerical Step-wise Example

In this section, a binary classification problem using TXAI-IS is exemplified using a hypothetical

dataset with two input features, Feature1 and Feature2, and one output. Let time intervals be defined
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ponents of a Time-dependent eXplainable Artificial Intelligence Inference System (TXAI-
IS).
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over a day such as Morning, Daytime, and Evening with three conceptual labels associated with the

inputs (Feature1 and Feature2) be: [Low, Medium, High] and output classes beOutput1 andOutput2.

First, TT2FSs for both inputs (Feature1 and Feature2) are constructed using temporal fuzzifier, as

outlined in Fig. 5.6. Also, for each time interval, the patterns will be different but the overall process

to determine the output class is same. In the following steps, I exemplify how the output class is

predicted for one time interval, in this example, Morning.

Let the patterns (P) outlining the relation between input features and output for Morning be as

listed in (5.32). The corresponding lower and upper dominance score at each z-level are as listed in

Table 5.3. In the following steps i)- iv) I show how a corresponding class for Output is predicted

using TXAI-IS for input values of Feature1 = 19.7 and Feature2 be = 4.3. In this example, the z-level

is discretised at z0.2, z0.4, z0.6, z0.8, and z1.0.

P1 ∶ IF Feature1 is Low and Feature2 isMedium

THEN Output is Output2

P2 ∶ IF Feature1 isMedium and Feature2 isMedium

THEN Output is Output1

P3 ∶ IF Feature1 is High and Feature2 is High

THEN Output is Output1 (5.32)

(i) The membership degree for each conceptual label of the inputs Feature1 and Feature2 is

determined from the time interval (Morning) based 3D TMF. The membership degree is the

value of the conditional distribution at a given input value and corresponding z-level as outlined

in (5.26). Let the corresponding membership degrees for each conceptual label of the inputs
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Feature1 and Feature2 be as noted in Table 5.2.

Feature CoLs z0.2 z0.4 z0.6 z0.8 z1.0

Feature1

Low
Lower 0.50 0.52 0.54 0.52 0.51
Upper 0.61 0.63 0.64 0.61 0.60

Med.
Lower 0.63 0.63 0.65 0.63 0.61
Upper 0.77 0.78 0.78 0.77 0.75

High
Lower 0.65 0.64 0.64 0.63 0.63
Upper 0.69 0.69 0.68 0.68 0.67

Feature2

Low
Lower 0.31 0.31 0.31 0.31 0.31
Upper 0.32 0.32 0.32 0.32 0.32

Med.
Lower 0.50 0.55 0.55 0.54 0.53
Upper 0.58 0.59 0.59 0.58 0.57

High
Lower 0.40 0.40 0.40 0.42 0.44
Upper 0.43 0.43 0.46 0.46 0.49

Table 5.2 The hypothetical lower and upper membership degrees of the Conceptual Labels
(CoLs) of Feature1 and Feature2.

(ii) The firing strength of each pattern listed in (5.32) are found, using the membership degree in

Table 5.2, as outlined in (5.27) and listed in Table 5.3. As an example, for P1 the lower firing

strength at z = 0.6, w1z=0.6
, can be calculated as follows:

w1z=0.6
(x = [19.7,4.3]) =

2

∏
i=1

µ(xi)

= 0.54 ∗ 0.55 = 0.297 (5.33)

(iii) The association degree of each pattern with the input data instance is determined, using the

firing strength in Table 5.3, as outlined in (5.31). The upper and lower values of the association

degree for the five z-levels are as listed in Table 5.4. As an example, for P2 the upper association

degree at z = 0.2, h2z=0.2 , can be calculated as follows:
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Pattern
Firing z-level

Consequent Dominance Score z-level
Strength, w z0.2 z0.4 z0.6 z0.8 z1.0 (DS) z0.2 z0.4 z0.6 z0.8 z1.0

P1

Lower 0.25 0.286 0.297 0.281 0.27
Output2

Lower 0.31 0.30 0.30 0.29 0.27
Upper 0.354 0.372 0.378 0.354 0.342 Upper 0.35 0.34 0.34 0.31 0.30

P2

Lower 0.315 0.347 0.358 0.34 0.323
Output1

Lower 0.69 0.69 0.68 0.66 0.66
Upper 0.447 0.46 0.46 0.447 0.427 Upper 0.73 0.73 0.72 0.72 0.72

P3

Lower 0.26 0.256 0.256 0.265 0.277
Output1

Lower 0.22 0.21 0.21 0.21 0.21
Upper 0.297 0.297 0.313 0.313 0.328 Upper 0.24 0.22 0.22 0.22 0.22

Table 5.3 The lower and upper firing strengths, w, for the hypothetical patterns listed in
(5.32)

h2z=0.2 = w2z=0.2(x) ×DS2z=0.2 (5.34)

= 0.447 ∗ 0.73 = 0.326

(iv) The consequent of the pattern with the highest association degree with the input data instance

becomes the predicted class for a given time interval. The crisp value for the association degree

of each pattern is found using (Alg 4.2) and (Alg 4.3). As an example, the crisp value of

association degree for P3 is found as follows:

h3l =
0.2 ∗ (h30.2

) + ... + 1.0 ∗ (h31.0
)

0.2 + 0.4 + 0.6 + 0.8 + 1.0

= 0.2 ∗ 0.057 + 0.4 ∗ 0.054 + ... + 1 ∗ 0.058

3
= 0.056

h3u =
0.2 ∗ (h30.2) + ... + 1.0 ∗ (h31.0)

0.2 + 0.4 + 0.6 + 0.8 + 1.0

= 0.2 ∗ 0.071 + 0.4 ∗ 0.065 + ... + 1 ∗ 0.072

3
= 0.0696

h3crisp =
0.056 + 0.0696

2
= 0.1256

2
= 0.063 (5.35)

In this illustrative example, P2 has the highest association degree (tabulated in Table 5.4) hence

the predicted output for the input data instance (Feature1 = 19.7 and Feature2 be = 4.3) for time

interval Morning is the consequent of P2, i.e., Output1.
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P h z0.2 z0.4 z0.6 z0.8 z1.0 hcrisp

P1

Lower 0.077 0.086 0.089 0.081 0.073
0.097

Upper 0.124 0.126 0.128 0.11 0.103

P2

Lower 0.217 0.239 0.243 0.225 0.213
0.274

Upper 0.326 0.336 0.331 0.322 0.308

P3

Lower 0.057 0.054 0.054 0.056 0.058
0.063

Upper 0.071 0.065 0.069 0.069 0.072

Table 5.4 The lower and upper association degrees, h, for each of the three patterns (P)
listed in (5.32).

The same process can be repeated for each time interval with their respective patterns to predict a

class for the output. Hence, in this numerical example, there will be three output classes for a total of

three time intervals.

Estimating Temporal Trajectories from TXAI System

The temporal trajectories of a dynamic system can be outlined by the TXAI system by making use

of the conditional distribution integrated into the TXAI system. The trajectories of a TXAI system

is motivated by the work of Filev et al. [162] that embodies fuzzy transition events defined by joint

possibility encompassing the current and future prototypical patterns. More specifically, the TXAI

system can delineate a pattern transition matrix (PTM) which will entail the joint possibility of the

patterns in present (∆t) and future (∆t+) time intervals. In mathematical terms, for a total of U

patterns in time interval ∆t, and a total of V patterns in time interval ∆t+, the PTM can be written as

follows [162]:

PTM(∆t,∆t+) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π11 ... π1N

... ... ...

πM1 ... πGH

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.36)

where πij is the Pattern Transition Possibility (PTP) for the ith pattern, Pi, in time interval ∆t and
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the jth pattern, Pj , in time interval ∆t+ as given by (5.37).

πij = ηij ×
Sij
S∆t+

(5.37)

where ηij is the joint possibility for the two patterns to be prototypical in their respective time

intervals, and the ratio Sij
S∆t+

entails the number of times Pi and Pj are observed in their respective

time intervals with respect to all V patterns in ∆t+. The following equations, (5.38) - (5.40), outline

how ηij and the ratio
Sij
S∆t+

are computed.

ηij(Pi,∆t, Pj,∆t+) = σi(Pi,∆t) × σj(Pj,∆t+) (5.38)

Where σ is computed by applying the t-norm operator (product or minimum type) to the conditional

distribution values of the antecedents of a given pattern (P ) in a given time interval (∆t or ∆t+);

mathematically expressed as shown in equation (5.39) for pattern (Pq) in time interval (∆t). The

computation of the conditional distribution, f , is previously outlined in Section 5.3.3 (in particular

see (5.13)).

σq(Pq,∆t) = fq(Ψ1,Pq ,∆t) × fq(Ψ2,Pq ,∆t) × ... × fq(ΨΦ,Pq ,∆t) (5.39)

where Φ is the total number of antecedents (Ψ) of pattern Pq. The elements for computing the

ratio Scd
S∆t+

are outlined in (5.40):

Sij =∑Pj,∆tPj,∆t+ (5.40)

S∆t+ =
H

∑
j=1

Pj,∆t+
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where the numerator, Sij , represents the sigma count of the number of times Pj and Pj are

observed in their respective time intervals, and the denominator, S∆t+ , denotes the sigma count of

observing all H patterns in ∆t+.
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Chapter Six

Applications of Proposed Explainable AI

(XAI) Methods

In this chapter, I present the applications of the proposed XAI methods (outlined in Chapter 5)

developed in this work. More specifically, the applications for each of the proposed XAI method are:

1. Application of EFCMs on adults’ fNIRS based skill acquisition study for the implementation

of neural reuse framework.

2. Application of xMVPA on infants’ fNIRS based perceptual stimuli study for the implementation

of Interactive Specialisation (IS) framework.

3. Application of TXAI on real-life temporal, room occupancy dataset for potential delineation of

brain developmental trajectories.

The rest of the chapter outlines the results of the XAI methods on their respective applications,

and presents their implications for delineating functional brain development as hypothesised by the

DCN frameworks (previously outlined in Chapter 2.1). Also, for both EFCM and xMVPA which

have been exemplified on fNIRS data, the analysis for both oxy-Hb and deoxy-Hb are presented to

follow best practices in fNIRS studies (previously discussed in Chapter 2.2.3).
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6.1 Application of EFCMs on skill acquisition study

In this section5, the efficacy of the proposed EFCM for deciphering the change in EC on account of

neural reuse framework is validated using an adults’ fNIRS study [163]. The reason this particular

dataset is chosen to exemplify the neural reuse phenomenon is because the participants can be

categorised based on their expertise level for performing a complex visual-spatial task (namely

laparoscopic surgery (LS)). The neural reuse phenomenon suggests that existent cortical circuits for

computation of a given task have the ability to reconfigure themselves in multiple configurations

as an infant gains experience. Hence, a comparison of the deciphered EC values by EFCM for

participants with different level of expertise (for example novices vs. experts) would shed light on

the different configurations of the cortical networks formed. Although this is an adult fNIRS study,

the participants have varying level of expertise therefore an EFCM analysis of EC based on the level

of expertise can still shed light on how cortical networks get rewired upon acquisition of a skill,

resembling developmental processes. This is in fact similar to the reconfiguration of the cortical

networks in infants on the onset of new cognitive abilities [164, 165] as hypothesised by the neural

reuse framework (which suggests the rewiring of existing cortical networks upon experience) as

previously outlined in Chapter 2.1.

The fNIRS dataset [163] also entails separate records for oxy-Hb and deoxy-Hb levels in the

investigated brain regions. Hence, in order to follow the best practices in fNIRS studies [84], the EC

within the 16 real fNIRS signals for both the oxy-Hb fNIRS signal and deoxy-Hb fNIRS signals are

analysed separately. This is also important because no direct correlation of the two Hb (haemoglobin)

dimensions of fNIRS has been established in the literature yet [166, 167, 168]. However, the

5Some parts of the text in this section have been published here: M. Kiani, J. Andreu-Perez, H. Hagras, E. I. Papageor-

giou, M. Prasad, and C.-T. Lin, “Effective Brain Connectivity for fNIRSwith Fuzzy CognitiveMaps in Neuroergonomics,”

IEEE Transactions on Cognitive and Developmental Systems, 2019, Early Access © 2019 IEEE.
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Figure 6.1 Brain activity being recorded via fNIRS whilst participants perform LS task, ©
2019 IEEE.

discrepancies between the oxy-Hb and deoxy-Hb signal may be meaningful to elucidate transient

neural activity as revealed in [169].

For the adult fNIRS study, a local research ethics committee approval was obtained (project

number: 05/Q0403/142). More specifically, the study involved 27 right-handed male surgeons

affiliated with National Health Service, and Imperial College London. Amongst the 27 surgeons

there were 9 Novice (NVs), 10 Trainee (TNs), and 8 Expert (EXs) consultants. The participants

performed the LS whilst their brain activity is recorded, as shown in Fig. 6.1. The reader is referred

to [163] for a more detailed description of the participants, the task, and the pre-processing of the

fNIRS signals.

A total of 16 fNIRS signals are analysed in this study. The fNIRS digitized probe positions were

registered from a real-world coordinate to the MNI space. The MNI coordinates were transformed to

Talairach space [170], and looked up in a brain atlas [171] to establish their relations with the Region

of Interest (ROI). A detailed explanation of the fNIRS probe positions transformation is provided in

the study by [163]. The measured channels locations are as shown in Fig. 6.2.
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Figure 6.2 The 16 fNIRS channel position differentiated based on ROIs- Prefrontal Cortex
(PFC) in pink, and Motor Cortex (MC) in yellow, © 2019 IEEE.

In this work, a third order EFCM is used, i.e. ℘ = 3 in (5.1). The EFCM learning is undertaken

using the GA such that the resultant connectivity matrix, D ⊙ Z, depicted the inherent EC of the

16 synthetic fNIRS signals as close as possible. The population size of the GA is set to 1000, the

maximum number of generations is defined as 1000 x the population. The maximum fitness is set

to 0.99 and the tolerance criterion is set to 1e−1. The genetic operator used is crossover and the

selection is made by tournament. A detailed description of the GA parameters can be found in [147,

150]. Moreover, the GA learning is driven by the fitness of the predicted state χ̂(τ) with respect to

the original state χ(τ). The fitness of the predicted state χ̂(τ) is evaluated according to the fitness

function in (5.6).
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6.1.1 Results

In this section, the results of the application of the third order EFCM on an adults’ fNIRS dataset

are presented. The expertise level of the participating subjects was categorised into three levels of

NVs, TNs, and EXs. The aim of the study was to learn the difference in EC networks formed with

varying levels of proficiency for carrying out a task that requires active planning, and visual-motor

coordination.

In order to facilitate the comparison of cortical network reconfiguration, as an individual gains a

certain degree of expertise in doing LS, Fig. 6.3 shows a plot of the EFCMs generated from oxy-Hb

and deoxy-Hb fNIRS signals along with corresponding combined EFCM for NVs, TNs, and EXs.

A green line signifies the presence of a positive (reinforcement) EC between the connecting cortical

regions, and the presence of a black line denotes a negative (weaken) EC between the connecting

cortical regions. Please note only the most significant connections are shown in Fig. 6.3 which have

fuzzy degrees of relationship greater than 90th percentile.

A noteworthy observation that can be made from Fig. 6.3 is that as the expertise level increases,

the number of significant EC (strength of fuzzy degrees of relationship greater than 90th percentile) is

more for deoxy-Hb EFCMs as compared to oxy-Hb EFCMs signifying that perhaps deoxy-Hb signals

hold more latent information with regards to channels underlying EC as compared to oxy-Hb signals

if the brain networks have evolved owing to more experience. The quiescent EC structure within the

deoxy-Hb signals for more experienced subjects could also explain why a greater number of t-testH0

got rejected in Table 6.2 against the corresponding oxy-Hb channels.

The error between the estimated signal and real signal using the learnt EC weights by EFCM is

computed using (5.5). The average error values (5.5) along with corresponding standard deviations

comparing the accuracy in estimating fuzzy effective connections between oxy-Hb and deoxy-Hb by

proposed EFCM are listed in Table 6.1. Essentially, the Hb group EFCM simulation for which the



124

average error is greater, its weights are scaled down by the corresponding percentage hence taking

forward more of the accurate EC estimates to contribute to the combined EFCM. For example, for

NVs, the oxy-Hb weights are scaled down by 3.1% before being mapped into the overall EFCM.

Novices (NVs) Trainees (TNs) Experts (EXs)

oxy-Hb 120.25 ± 29.85 122.79 ± 32.89 156.38 ± 46.52

deoxy-Hb 116.62 ± 27.14 119.99 ± 43.44 125.49 ± 73.45

Error Oxy-Hb by 3.1% Oxy-Hb by 2.3% Oxy-Hb by 19.8%

Table 6.1Average error values for oxy-Hb and deoxy-Hb fNIRS simulation by ℘ = 3 EFCM,
© 2019 IEEE.

In order to assess the EFCM results for statistical significance, Table 6.2 lists the number of the

t-test H0 being accepted for all subjects of category NVs, TNs, and EXs. The null hypothesis is

defined as H0: The original and predicted signals connectivity values have the same mean at 95%

confidence level. The results indicate that for most of the channels, across all subjects and expertise

levels, the H0 is accepted indicating the prowess of the proposed higher order EFCM for delineating

the EC in fNIRS data. However, the results in Table 6.2 indicate that underlying effective connections

in oxy-Hb results are better understood by the proposed third order EFCM in comparison to the

deoxy-Hb for less experienced subjects. However, the accuracy of the predicted signals, for both

oxy-Hb and deoxy-Hb signals, can also be seen to decline as the expertise level increases. This could

perhaps be owing to changes in the memory order of the EC of the underlying channels on account

of increased experience but needs further investigation since, in this work, the order of the EFCM

method is not varied with the change in expertise level.
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Figure 6.3 The third order EFCM networks showing the reconfiguration of cortical networks
as hypothesised by the neural reuse framework, © 2019 IEEE.
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H0/Subj

Novices (NVs) Trainees (TNs) Experts (EXs)

Ch. oxy-Hb deoxy-Hb oxy-Hb deoxy-Hb oxy-Hb deoxy-Hb

1 100.0% 88.9% 90.0% 90.0% 87.5% 75.0%

2 100.0% 100.0% 90.0% 90.0% 87.5% 100.0%

3 100.0% 100.0% 100.0% 100.0% 100.0% 87.5%

4 100.0% 88.9% 80.0% 90.0% 75.0% 87.5%

5 100.0% 77.8% 100.0% 100.0% 62.5% 87.5%

6 100.0% 100.0% 90.0% 80.0% 75.0% 100.0%

7 100.0% 77.8% 90.0% 100.0% 62.5% 75.0%

8 100.0% 100.0% 70.0% 80.0% 87.5% 100.0%

9 100.0% 100.0% 90.0% 100.0% 75.0% 87.5%

10 100.0% 100.0% 90.0% 80.0% 87.5% 87.5%

11 100.0% 88.9% 90.0% 90.0% 100.0% 100.0%

12 100.0% 77.8% 100.0% 80.0% 50.0% 62.5%

13 100.0% 88.9% 70.0% 80.0% 87.5% 75.0%

14 100.0% 88.9% 80.0% 70.0% 87.5% 87.5%

15 100.0% 88.9% 90.0% 90.0% 87.5% 87.5%

16 100.0% 88.9% 80.0% 90.0% 62.5% 87.5%

Table 6.2 Percentage ratio of No. of t-TestH0 accepted to No. of Subjects (Subj),H0/Subj
, for oxy-Hb and deoxy-Hb of 9 NVs, 10 TNs, and 8 EXs at 95% confidence level, © 2019
IEEE.
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6.1.2 Discussion

In this work the adults’ fNIRS data [163] entailed subjects which differed in their level of expertise

for performing a pre-defined LS task. The fNIRS data recorded, whilst the subjects performed LS

task, is used to assess the efficacy of the innovative, regularised EFCM method presented. In this

section, the results obtained for EC between ROIs from the proposed EFCM method are discussed

against similar works in the literature.

The results from third order EFCM indicate network connections change from random activations

to evenly spread out along with more positive influences as the expertise level increase as shown

in Fig. 6.3. In addition, there are more long-range connections in both PFC and motor cortex for

EXs and TNs in comparison to NVs. This is in agreement with the current findings [172, 173] as

well as the results from the original study [163] that as an individual progress in learning, their brain

networks evolve and optimise their connections.

In particular, the original study [163] reported statistically significant differences in correlation

(Rv) coefficients between the Hb (haemoglobin) responses from different brain regions (prefrontal and

motor cortices) based on the expertise levels of the participants. More specifically, the Rv coefficients

are an approximation of the the squared Pearson correlation coefficient [174]. Although the results

in [163] suggest different correlations between the Hb responses from prefrontal and motor cortices,

the results can not inform about the underlying EC between different brain regions for carrying out

the LS task based on the expertise level of the participants.

In this work, another perspective for underpinning the EC analysis in between ROIs is done by

collapsing the weights according to PFC and motor cortex as shown in Fig. 6.4. This is done by

first averaging the weights for all subject’s oxy-Hb and deoxy-Hb of a given expertise level, and

subsequently finding the mean of the average values for the individual Hb’s ROIs weights. The

resultant averaged values are then scaled to unit length for each connection, i.e. PFC to PFC, PFC
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to motor cortex, motor cortex to PFC, and motor cortex to motor cortex across the three expertise

level. A similar trend can also be seen in Fig. 6.4, with NVs relying more on inter PFCs and almost

non-dependent on motor cortex’s connections as compared to TNs and EXs. TNs and EXs rely

more on inter motor cortex connections and less on inter PFC with progression towards a balanced

corroboration between ROIs as more experience is gained, hence spreading the cognitive load in

contrast to NVs [172, 163]. This progression trend with increased experience is also intercepted well

by EFCM as can be seen in Fig. 6.3 with more strong positive cause-effect relations between PFC

and motor cortex for TNs and EXs as compared to NVs.

The shift in brain activations from PFC to motor cortex on account of increased experience is

also in line with the findings from the work of [175] which observed a decrease in EC in frontal

pathway encompassing the regions of inferior frontal gyrus and precentral gyrus brain as a particular

visual-motor coupled task is learnt. Another distinct work by [176] - focusing on the particular role

that motor cortex takes whilst a certain task is learnt - concludes that motor cortex is critical for

learning of a task but not essential for execution of a previously learnt motor task. They conclude that

motor cortex engages sub-cortical motor cortex circuits upon learning of a task and assigns them the

execution of the learnt task. This account frees the motor cortex for any new learning activity and is in

coherence with the findings of this work that brain networks evolve to a more balanced configuration,

on acquisition of a certain level of expertise, without draining any particular segment of the brain.

The work by [177] also reports a similar trend, in a non-human primate study, of high dependency

on PFC when the participant is inexperienced with the task undertaken.The task carried out by the

participant in the study [177] was to switch on flashing lights by pressing corresponding buttons.

Once the participant learnt the task, the button and flashing light sequence is changed so as to coerce

it to suppress its learnt behaviours. The study concluded that PFC regions are more involved during

the learning of a task whereas basal ganglia takes over when a goal directed behaviour is required.
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Figure 6.4 EC strength between ROIs: PFC and motor cortex for NVs (left), TNs (center),
and EXs (right), © 2019 IEEE.

6.1.3 Implications for functional brain development analysis

Owing to the differences in discerned EC by the EFCM, on the basis of varying level of expertise

of participants, EFCM is able to shed light on the differences in cortical networks’ interconnections

upon skill acquisition. When applied to DCN studies for estimating EC, EFCMs can inform us on

how cortical networks rewire, in terms of their interconnections (EC), with the onset of new cognitive

abilities. The elucidation of cortical network reorganisation would help understand functional brain

development as hypothesised by the neural reuse framework.

The EFCMs results from adults’ fNIRS skill acquisition study suggests that participants with

lower expertise level tend to activate the PFC more than the participants with higher expertise level,

whereas the motor cortex engagement increases upon greater dexterity in performing the motor task

(LS) (Fig. 6.4). The reconfiguration of adults’ cortical networks upon learning the motor skill, as

suggested by EFCM, is similar to infants’ literature on cortical network optimisation upon acquisition
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of motor skills [164]. In particular, in the fNIRS based study by [165], the authors have shown

an increase in motor cortex activity and a decrease in DLPFC activity (by means of higher oxy-Hb

concentration) as infants aged 5 to 13 months learn motor skills.

The parallels between the EFCM analysis of adults fNIRS data upon skill acquisition, and that

of infants’ literature on onset of motor functions, suggest that EFCM is a viable mechanism to study

functional brain development as per the neural reuse framework. Although EFCMs estimated values

of EC can be mapped generally to the neural reuse of the DCN processes, not much insight can be

gained about the activation(s) of the individual cortical regions. In this sense, the EFCMs propose

a partially explainable method in terms of estimating the EC as fuzzy weights between its concepts

(fNIRS channels). This is mainly because of how EFCMs seek to find the optimal values of the EC

by trying to minimise the error between the estimated and the actual values of the fNIRS signals with

the help of GA. Hence, not much could be inferred about which part of the cortex is for example more

active from the optimised EC values.

In addition to estimating EC with statistical significance, EFCM results also demonstrated the

prowess to analyse the difference between estimating EC from oxy-Hb and deoxy-Hb dimensions of

fNIRS signals for representing the EC in the cortical networks. Although it remains to be established

which dimension of fNIRS is more representative for a certain task, or specialisation level; EFCM

results suggest that EC estimated using deoxy-Hb is more representative of the underlying EC as an

individual gains experience in a certain motor task (Table 6.1 and 6.2).
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6.2 Application of xMVPA in DCN

In the present work6, the xMVPA inference mechanism is applied for the explainable classification

analysis of infant fNIRS data obtained from an earlier study by [101]. In this study, fNIRS was

used to record six-month-old infants’ haemodynamic responses to auditory (a toy sound) and visual

stimuli (a dynamic red smiley face). In between the trials, a jittered video of dimmed fireworks was

displayed. A schematic representation of the auditory and visual trials is shown in Fig. 6.5 (b). The

infant fNIRS data was recorded from 10 channels (see Fig. 6.5 (a) for the anatomical locations of the

10 fNIRS channels after MR co-registration).

In the present work, a MVM is constructed by calculating the mean of the oxy-Hb signal for each

of the 10 channels from time 4-7 seconds post stimulus presentation for each trial. The rows in the

MVM consist of all the trials with each entry in the 2-dimensional matrix (for row (i) and column (j)

being the average of the jth channel activity from time 4-7 s post stimulus for the ith trial. Please see

Fig. 6.5 (c) that outlines the steps for the construction of a MVM.

The xMVPA identifies informative activation patterns by combining the input neuroimaging data

from all fNIRS channels of interest into a MVM (multivariate matrix). Here, the MVM is constructed

by calculating the mean of the oxy-Hb signal from each of the 10 channels in the time-window 4-7s,

following stimulus presentation for each trial. A grid-search was undertaken to find the optimal time

window of 4-7s. In line with previous infant fNIRS studies [178], and as reported by Emberson

et al. [101], the focus is on examining the oxy-Hb signals. Nevertheless, there will be no changes

in the proposed xMVPA method for using either or both of the dimensions of the fNIRS signals to

construct the MVM. Moreover, the results of the proposed xMVPA on deoxy-Hb signals are provided

6Some parts of the text in this section have been published here: J. Andreu-Perez, L. L. Emberson, M. Kiani, M. L.

Filippetti, H. Hagras, and S. Rigato, “Explainable Artificial Intelligence Based Analysis for Developmental Cognitive

Neuroscience,” Commun Biol, vol. 4, p. 1077, 2021 © 2021 Nature.



Auditory Trial

Visual Trial

(b) Auditory and Visual trial schematic.

Ch. Number Ch1 Ch2 Ch3 Ch4 Ch5
Lobar Atlas Occipital Occipital Parietal Temporal Temporal
LONI Atlas Middle occipital gyrus Middle occipital gyrus Middle occipital gyrus Middle temporal gyrus Middle temporal gyrus
Ch. Number Ch6 Ch7 Ch8 Ch9 Ch10
Lobar Atlas Temporal Temporal Frontal Temporal Frontal
LONI Atlas Superior temporal gyrus Middle temporal gyrus Inferior frontal gyrus Superior temporal gyrus Postcentral gyrus

(a) The anatomical location of the 10 fNIRS channels (Ch) in the study by
[101].
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A single or a combination of fNIRS signal features such as mean,
amplitude, and/or area under the curve etc. can be used
to built a multivariate matrix.

Trial No Ch1, µMol Ch2, µMol Ch3, µMol Ch4, µMol Ch5, µMol Ch6, µMol Ch7, µMol Ch8, µMol Stimulus

1 −4.10 ∗ 10−6 −1.74 ∗ 10−5 −15.05 ∗ 10−5 1.19 ∗ 10−5 −4.90 ∗ 10−6 −8.70 ∗ 10−6 −1.09 ∗ 10−5 8.60 ∗ 10−6 ,

2 −1.01 ∗ 10−5 6.56 ∗ 10−5 3.48 ∗ 10−5 −3.50 ∗ 10−6 8.00 ∗ 10−7 −3.10 ∗ 10−6 −1.10 ∗ 10−5 −5.90 ∗ 10−6 ♪

3 2.13 ∗ 10−5 2.79 ∗ 10−5 −1.50 ∗ 10−5 −3.00 ∗ 10−7 −1.72 ∗ 10−5 −1.28 ∗ 10−5 −7.10 ∗ 10−6 −8.20 ∗ 10−6 ♪

4 2.49 ∗ 10−5 −3.05 ∗ 10−5 −16.97 ∗ 10−5 −4.90 ∗ 10−6 1.30 ∗ 10−6 −5.10 ∗ 10−6 6.70 ∗ 10−6 5.70 ∗ 10−6 ,

5 4.77 ∗ 10−5 1.27 ∗ 10−5 −3.32 ∗ 10−5 −1.52 ∗ 10−5 −5.84 ∗ 10−5 −2.31 ∗ 10−5 −3.42 ∗ 10−5 4.90 ∗ 10−6 ,

6 −6.68 ∗ 10−5 −3.14 ∗ 10−5 −2.92 ∗ 10−5 −8.90 ∗ 10−6 −4.00 ∗ 10−7 −5.80 ∗ 10−6 −2.28 ∗ 10−5 −2.70 ∗ 10−5 ♪

7 −6.22 ∗ 10−5 5.89 ∗ 10−5 −15.35 ∗ 10−5 2.04 ∗ 10−5 −6.60 ∗ 10−6 1.18 ∗ 10−5 −3.00 ∗ 10−6 3.17 ∗ 10−5 ,

8 3.04 ∗ 10−5 2.07 ∗ 10−5 −4.33 ∗ 10−5 1.77 ∗ 10−5 5.00 ∗ 10−6 5.00 ∗ 10−6 9.70 ∗ 10−6 2.88 ∗ 10−5 ♪

9 3.46 ∗ 10−5 −5.83 ∗ 10−5 −9.39 ∗ 10−5 1.05 ∗ 10−5 −8.80 ∗ 10−6 −2.50 ∗ 10−6 −4.30 ∗ 10−6 7.90 ∗ 10−6 ,

10 4.40 ∗ 10−6 5.27 ∗ 10−5 6.90 ∗ 10−6 1.00 ∗ 10−7 −6.00 ∗ 10−7 −8.70 ∗ 10−6 −2.01 ∗ 10−5 6.20 ∗ 10−6 ♪

Conversion of multivariate matrix (MVM) based on CoLs definitions. In this
illustration, colours are encoding the CoLs value of inactive (white),
active (amber) and very active (red).

Trial No Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Stimulus
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(c) Multivariate pattern matrix construction.

fN
IRS

signals

Figure 6.5A schematic for the construction of a multivariate pattern matrix, © 2021 Nature.
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in Section 6.2.1. A total of 19 babies’ data is included in the analysis, with multiple trials per baby,

amounting to a total of 524 trials. Experimental control and signal assessment were performed to

avoid the inclusion of any possible noise artifacts or covariates in our data [146, 101]. The reader

is referred to the earlier study by [101] for more details on the experimental setup, data collection,

sample, control, exclusion and the subsequent pre-processing steps.

The numerical neuroimaging data in the MVM is then translated into conceptual labels of brain

activation defined as inactive, active, and very active to represent the average activity level of each

channel for the time-window considered. A flow chart outlining the steps for generating a multivariate

patternmatrixwith conceptual labels is presented in Fig. 6.5 (c). The data instances in themultivariate

pattern matrix characterised by the conceptual labels for each trial are subsequently used to train the

xMVPA for explainable classification results of the infant data in response to the visual and auditory

stimuli. More details of the proposed xMVPA inference mechanism are provided as follows.

In this work, the evaluation of xMVPA is performed by splitting the observations transformed into

the conceptual MVM into 5 mutually-exclusive train and validation sets (viz. k-fold cross-validation).

The patterns are initially generated at random with the maximum number of patterns in a given set to

be 20, and the maximum number of channels (or antecedents) in a given pattern to be 3, i.e. a given

pattern would outline interactions from a maximum of 3 channels/brain regions. The small number

of patterns, with short antecedents, ensures that a given set of patterns is comprehensive and easily

interpretable [120, 153].

6.2.1 Results

In the following sections, the results of the xMVPA of [101] using oxy-Hb and deoxy-Hb signals are

presented.
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Oxygenated Haemoglobin (oxy-Hb) Results

xMVPA revealed six functional patterns of interactions between cortical regions using the publicly

available DCN dataset of auditory versus visual stimulus processing7. The patterns form the inference

mechanism for xMVPA as they predict the stimulus (or class) for the brain activity instances (or data

instances).

7Data available at: https://dataspace.princeton.edu/handle/88435/dsp01xs55mf543

https://dataspace.princeton.edu/handle/88435/dsp01xs55mf543
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The six patterns provided by xMVPA that outline the brain regions’ activation and interaction

for processing visual and auditory information are given below:

Pattern P1 ∶ IF Ch1 is Active AND Ch2 is Active AND Ch4 is Active

THEN stimulus is V isual with dominance score 0.581

Pattern P2 ∶ IF Ch4 is Active AND Ch6 is Inactive AND Ch8 is V ery Active

THEN stimulus is V isual with dominance score 0.019

Pattern P3 ∶ IF Ch1 is Inactive AND Ch8 is Active

THEN stimulus is Auditory with dominance score 0.434

Pattern P4 ∶ IF Ch4 is Inactive AND Ch5 is Active

THEN stimulus is Auditory with dominance score 0.406

Pattern P5 ∶ IF Ch4 is Inactive AND Ch9 is V ery Active

THEN stimulus is Auditory with dominance score 0.239

Pattern P6 ∶ IF Ch1 is Inactive AND Ch9 is Active

THEN stimulus is Auditory with dominance score 0.082

where dominance score (DS) is in the range (0,1). Dominance Score of a pattern indicates the overall information

prowess of a given pattern with DS=1 being the most informative pattern and DS=0 being the

least informative pattern. (6.1)

Patterns P1 and P2 identified interactions between regions involved in the processing of the visual

stimulus, as shown in Figure 6.6 (a). Firstly, P1 showed a prominent involvement of the occipital

cortex, where channel 1 and channel 2 are both classified as active. Secondly, both P1 and P2 identified

an active status of channel 4, located in the temporal cortex (see Fig. 6.5 (a)). Finally, P2 identified
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an inactive status of channel 6 in the temporal cortex in combination with an active status of channel

4 and a very active status of channel 8, located in the frontal cortex.

The patterns of interactions in response to the auditory stimulus are shown in Fig. 6.6 (b). Here,

channels that are active correspond to the PFC (channel 8 in P3), and temporal cortex (channel 5 in

P4 and channel 9 in P5 and P6). The occipital cortex is not engaged in the processing of auditory

stimulus as indicated by the inactive status of channel 1 in combination with both PFC (channel 8

active in P3) and temporal cortex (channel 9 active) in P6 activation.
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1 2 3
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(a) Patterns for visual stimulus. (b) Patterns for auditory stimulus.

Inactive Active Very
Active

Figure 6.6 The patterns (cyan) identified by the xMVPA delineate the contributions between
brain regions evoked by (a) visual and (b) auditory stimuli, © 2021 Nature.

Taken altogether, the patterns identified by the xMVPA show activation over the occipital and

temporal cortices for visual stimulus processing, and over the temporal cortex for auditory stimulus

processing. The patterns also identified activity over the frontal cortex for the processing of both

auditory and visual stimuli.

Another important observation from the patterns in P1 - P6 is that no individual channel in the

temporal cortex with sufficient decoding accuracy stood out for processing the auditory stimulus

presented to the infants in the study, i.e. no channel had stimulus-specific activation (for example
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Figure 6.7 A comparison of xMVPA performance with state-of-the-art classification meth-
ods: Support Vector Machine (SVM), Random Forest (RF), and MultiLayer Perceptron
(MLP), © 2021 Nature.
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active for auditory processing, and inactive for visual processing) as reported in Table 6.3. This might

be due to a more diffuse cortical activity [179], in line with what is suggested by fMRI and fNIRS

studies that report widespread activation in response to auditory stimuli, such as sounds (e.g. [56],

[180]), in the infant brain.

The absence of decoding strength in the temporal cortex in response to auditory stimuli is

also consistent with the correlation based MVPA analysis reported in [101]. However correlation

based MVPA method was unable to specify neither the semantics of such activation difference (i.e.

less active or more active) nor the channels combination yielding higher decoding, i.e. just the

independent decoding strength and significant activation for each channel, as outlined in Table 6.3.

More specifically, as noted in Table 6.3, the correlation based MVPA results inform which channels

have decoding strength (Ch1, Ch3, and Ch8) and which channels have significant activation (Ch1,

Ch7, Ch9, and Ch10). However, the correlation based MVPA results can not inform about the

channel combinations (patterns/ cortical networks) made for the processing of the presented stimuli.

The xMVPA overcomes this limitation as it can inform about the prototypical channel combination for

the processing of stimuli (in the form of patterns), rendering it suitable for describing the underlying

cortical networks as per the IS framework.

A range of statistical performance measures derived from the confusion matrix, outlined in Fig.

Anatomical Location Occipital Cortex Temporal Cortex Pre-Frontal Cortex
Activation Level Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch9 Ch8 Ch10
Decoding Strength ✓ ✓ ✓
Significant Activation ✓ ✓ ✓ ✓
Visual Processing Active Active Active Inactive Very Active

Audio Processing Inactive Inactive Active Active or

Very Active

Active

Table 6.3 A comparison of xMVPA with correlation based MVPA with [101], © 2021
Nature.
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6.7 (a), are calculated to quantify the performance of the xMVPA patterns. The confusion matrix

helps in assessing the robustness of a given model’s inference mechanism by indicating whether or

not the model is ‘confusing’ the classes, i.e. decoding visual stimulus when it is auditory stimulus

(or vice versa). Please note, in Fig. 6.7 (a), the visual stimulus is referred to as positive class, and

auditory stimulus is referred to as negative class.

The bar graph in Fig. 6.7 (b) shows a comparison of the statistical performance measures

(Accuracy, Positive Predictive Value (PPV), Negative Predictive Value (NPV), Fscore, False Positive

Rate (FPR) and False Negative Rate (FNR) defined in Fig. 6.7 (a)) between the xMVPA and the state-

of-the-art machine learning algorithms SVM, RF, and MLP. The statistical performance measures of

accuracy, PPV, NPV, and Fscore for xMVPA are comparable to those obtained for SVM, RF, and

MLP. However, the xMVPA outperforms all the other models for the metrics FPR and FNR. The

lowest values of FPR and FNR for xMVPA indicate the most robust classification method (also named

decoding model in MVPA [101]) for the input fNIRS data, i.e. the xMVPA obtains the least fNIRS

instances predicted as auditory when they are in factual evoked by visual stimuli and vice versa.

Altogether, this comparison confirms that the xMVPA’s patterns clearly discern the differences in the

fNIRS instances for the six-month-old brain in response to visual and auditory stimuli.

Deoxygenated Haemoglobin (deoxy-Hb) Results

In this section, the results of the xMVPA inference mechanism on the deoxy-Hb signals obtained

from [101] are presented. The xMVPA is applied on the MVM formed by calculating the mean

of the deoxy-Hb signals from each of the 10 channels in the time-window 4-7s, following stimulus

presentation, for each trial. Please note that the construction of the MVM and the xMVPA parameters

are identical for both oxy-Hb and deoxy-Hb signals. The xMVPA results for oxy-Hb are presented in

Section 6.2.1.
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The evaluation of xMVPA on the MVM from deoxy-Hb signals gives an average classification

accuracy of 64.88% with a standard deviation of 4.81%. The eight patterns provided by xMVPA that

outline the brain regions’ activation and interaction for processing visual and auditory information

for deoxy-Hb signals are given below:

Pattern P1 ∶ IF Ch2 is Active AND Ch3 is V ery Active

THEN stimulus is V isual with dominance score 0.02

Pattern P2 ∶ IF Ch5 is V ery Active AND Ch8 is V ery Active

THEN stimulus is V isual with dominance score 0.01

Pattern P3 ∶ IF Ch2 is V ery Active AND Ch5 is V ery Active

THEN stimulus is Auditory with dominance score 0.67

Pattern P4 ∶ IF Ch4 is V ery Active AND Ch7 is V ery Active

THEN stimulus is Auditory with dominance score 0.08

Pattern P5 ∶ IF Ch2 is V ery Active AND Ch9 is Active

THEN stimulus is Auditory with dominance score 0.08

Pattern P6 ∶ IF Ch1 is Inactive AND Ch9 is Active

THEN stimulus is Auditory with dominance score 0.06

Pattern P7 ∶ IF Ch2 is Inactive AND Ch9 is Active

THEN stimulus is Auditory with dominance score 0.03

Pattern P8 ∶ IF Ch1 is Active AND Ch7 is Active AND Ch9 is V ery Active

THEN stimulus is Auditory with dominance score 0.02
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where dominance score (DS) is in the range (0,1). The greater the value of dominance score the more

informative that pattern is with DS= 0 being the least informative pattern.
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(a) Patterns for visual stimulus. (b) Patterns for auditory stimulus.
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Figure 6.8 An illustration of the patterns (cyan) identified by the xMVPA, using deoxy-Hb
signals,© 2021 Nature.

A total of two patterns, P1 and P2, have been identified by xMVPA for the processing of visual

information from the deoxy-Hb signals. P1 describes the contributions of only occipital channels,

i.e. channels 2 and 3, whereas P2 identifies the contributions between channel 5 (temporal cortex)

and channel 8 (PFC). However, none of the channels from the occipital and PFC have been found

engaged by the xMVPA for visual processing. Moreover, the dominance score of the patterns is

almost negligible, i.e. 0.02 and 0.01 for P1 and P2 respectively.

For the auditory processing, the xMVPA found six patterns: P3 - P8. However, only P3 is a

relevant pattern with a dominance score of 0.67. P3 uncovers the contributions of occipital and

temporal channels as it outlines both channel 2 (occipital cortex) and channel 5 (temporal cortex) to

be very active. The remaining patterns, P4 - P8, for auditory processing are not as supported as P3,

with P4 delineating contributions within the temporal cortex (channel 4 and channel 7) and P5 - P8

outlining contributions between the occipital and temporal cortices. Unlike the patterns found for
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visual processing, none of the patterns for the auditory processing outline the contributions from the

PFC.

An illustration of the patterns for both visual and auditory processing using deoxy-Hb signals is

shown in Fig. 6.8.

6.2.2 Discussion

In this chapter, an explainable method for analysing and interpreting infant fNIRS data is presented.

The proposed xMVPA is an MVPA based on XAI that provides functional patterns characterised by

conceptual labels delineating contributions between brain regions for information processing. The

xMVPA is applied for the analysis of a group of six-month-old infants’ brain activity in response to

visual and auditory stimuli [101], and identified six patterns of cortical networks.

xMVPA Patterns found in oxy-Hb fNIRS Signals

The results showed that the classification accuracy obtained on the infant fNIRS dataset by the

proposed xMVPA is comparable to the state-of-the-art machine learning algorithms frequently used

forMVPA (e.g. SVM,RF, andMLP; see Fig. 6.7 (b)) using oxy-Hb fNIRS signals, thus demonstrating

the validity of our model. This is of critical importance for an advancement in DCN because, in

contrast to our xMVPA, the classification process of these standard machine learning algorithms is

opaque [17, 18] and thus cannot inform our understanding of the developing brain.

The validity and efficacy of the proposed xMVPA method are also demonstrated against the

correlation based MVPA presented in the previous study by [101]. As reported in Table 6.3, channel

1 is the only channel to have both decoding strength in the correlation basedMVPA reported by [101],

and stimulus-specific activation for visual and auditory processing in the xMVPA analysis (see Table

6.3), i.e. channel 1 is specifically active in response to the visual stimulus, but inactive in response
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Figure 6.9 The cortical networks proposed by xMVPA using oxy-Hb fNIRS signals, © 2021
Nature.
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to the auditory stimulus. This specific pattern of activation is also consistent with the localisation

of channel 1 in the occipital cortex, responsible for the processing of visual information [181]. In

addition, the xMVPA patterns also outline the interconnection of channel 1 with other channels

(channel 2 and channel 4 in P1), uncovering a network of cortical regions for visual processing.

The xMVPA has identified two brain activity patterns (P1 and P2) in response to the dynamic

visual stimulus presented to the six-months-old infants in the study. Specifically, we found activation

of the occipital cortex and the PFC, with partial activation of the temporal cortex.

The activation of the occipital cortex for processing visual information in infancy is well-

established in the literature. For example, [182] reported activity over the occipital cortex when

6.5-month-old infants were presented with an occlusion event involving objects. [183] showed that

3-month-old infants’ occipital cortex was activated for both dynamic (moving mobile objects) and

static visual stimuli (black-and-white checkerboard pattern). Similar to our findings, in response to

the dynamic stimulus, they also reported activation over temporal and prefrontal cortices. Hence,

the patterns P1 and P2 provided by the xMVPA are in line with the existent literature, suggesting

that a specific cortical network of regions involving the occipital, temporal, and prefrontal cortices is

involved in the processing of dynamic visual information.

It is important to note that the dynamic visual stimulus used by [101] displayed human facial

attributes. Extending previous findings of studies that investigated face processing in young infants

(e.g. [184, 185]), a specific inter-regional interaction between the occipital and temporal cortices

(P1) in response to the face stimulus is found. A similar network of occipital and temporal regions

for visual processing is also found in the adult literature [186]. In particular, the occipito-temporal

region is identified as a ‘core system’ in the model of the distributed human neural system for face

perception in adults [187]. Thus the interaction between occipital and temporal cortices identified in

the pattern P1 in the present study provides evidence for the existence of an equivalent ‘core system’
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for face processing in six-month-old infants (Fig. 6.9 (a)).

In addition, pattern P2 identified inter-regional interaction between the prefrontal and temporal

cortices. This indicates that infants as young as sixmonths of age recruit an extended neural system for

processing social stimuli, such as faces, adding to the existent literature that found similar activations

in older infants [188, 189]. This is also in line with the ‘extended system’ in the model of face

perception in adults [187], which is a dedicated network over the temporal and prefrontal cortices for

processing basic facial emotions.

In line with [111], no pattern is found in P1 or P2 suggesting direct inter-regional interactions

between the occipital (channel 1 and channel 2) and the PFC (channel 8, inferior frontal gyrus) in

response to the visual stimulus. However, previous studies have demonstrated the involvement of

the PFC during the presentation of visual stimuli in newborns [181] and 3-month-old infants [183].

While there is evidence supporting the functional role of the PFC in the early postnatal period [190],

it is possible that the functional connections between visual and frontal cortex undergo experience-

dependent synaptic pruning during this time [191] leading to potential functional specialisation in the

occipital cortex by 6 months of age [192]. In support to this hypothesis, a study by [193] demonstrated

a decrease in connectivity between prefrontal and occipital cortices from birth to six months. Taken

together, the results reported by [193] and [111], as well as the absence of interaction between occipital

and PFC in the present work, suggest that the role of the PFC is not significant in the core processing

of visual information at 6 months of age. However, the direct connections with the temporal cortex

suggest that the PFC may play a role in the extended system for deriving meaning from the visual

stimulus. This is in line with the established role of the PFC as an overall control unit that receives

input from perceptual cortices and generates meaning from the received input [3, 194].

Based on the above discussion on the patterns provided by the xMVPA, a model for the cortical

pathways for the processing of visual stimulus in six-month-old infants is presented in Fig. 6.9 (a).
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The model for the developing brain has similar modules and interconnections as the adult neural

system for face perception presented by Haxby et al. in [187] suggesting that by 6 months of age the

cortical activity associated with face processing is already similar to that of mature brains.

A total of four patterns, P3 to P6, were identified by the xMVPA for the processing of auditory

stimulus. Specifically, while patterns P4, P5, and P6 describedd the involvement of the temporal

cortex, the activation of the PFC is observed in pattern P3. This evidence is in line with the literature,

whereby non-speech auditory stimuli elicit consistent responses in the infant temporal [195] and PFC

[111].

While activation of the prefrontal and temporal cortices were found, none of the pattern revealed

an interaction between these areas. Previous studies with infants reported non-synchronised activity

in temporal and prefrontal cortices in response to non-speech auditory stimuli [196, 197], whereas

activation in both temporal and prefrontal cortices has been reported in response to speech-like

sounds [198, 199]. Considering that in the present work, the auditory cue presented to infants was a

non-speech stimulus, the xMVPA results are in line with the literature and suggest that inter-regional

interactions between the temporal cortex and PFC might be specific to speech-like sounds [198, 199].

While this interpretation would fit both with the xMVPA results and with the available evidence from

previous infant research, further studies should use the xMVPA model to directly test this hypothesis.

None of the patterns identified activation of the occipital cortex in response to the auditory

stimulus, indeed channel 1 was found inactive in patterns P3 and P6. While this is not surprising,

as the occipital cortex is usually recruited in response to visual, rather than auditory stimuli [181],

it is important to point out that this finding further strengthens the validity of the proposed xMVPA

method.

The xMVPA method also shows a selective pattern of activation over the temporal cortex that is

specific to visual vs. auditory stimuli. Specifically, the channels of the temporal cortex which are
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active in response to the visual stimulus are instead inactive in response to the auditory stimulus, i.e.

channel 4 is active in P1 and P2 for visual processing and inactive in P4 and P5 for auditory processing.

This confirms the multifaceted role of temporal cortex in the processing of sensory stimuli thereby

some areas are dedicated to visual processing (eg. [182, 183, 187, 184]) whilst others are associated

with auditory processing (eg. [56, 198, 199]).

Based on this body of evidence, with this work we hypothesise a non-synchronised model for the

cortical pathways engaged in the processing of non-speech auditory stimuli in six-month-old infants.

This proposed model is composed of a ‘Core’ and an ‘Extended’ system as shown in Fig. 6.9 (b).

The temporal cortex will form the core system for processing non-speech auditory stimuli, while the

PFC will form the extended system for processing the emotion associated with the auditory stimulus.

When inactive, the occipital cortex enables the occurrence of these patterns.

Taken together, the patterns P1 to P6 obtained by the proposed xMVPA have not only provided

corroborative evidence for the existent literature for the processing of perceptual information in infants,

but also revealed new brain regions activation and interactions not yet established for the developing

brain. Learning new cortical pathways directly from the neuroimaging data is of fundamental

significance in DCN research to shed light on functional brain development in absence of established

assumptions.

xMVPA Patterns found in deoxy-Hb fNIRS Signals

An illustration of the cortical network formed using the xMVPA patterns obtained from deoxy-Hb

signals of six-months-old infants for the processing of auditory stimulus is shown in Fig. 6.10. There

is no prominent cortical network for visual processing using deoxy-Hb signals since the two xMVPA

patterns P1 and P2, for visual processing, have almost negligible dominance score.

As such, no direct comparison of visual cortical networks formed from the xMVPA patterns
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using the oxy-Hb and deoxy-Hb is possible since no prominent cortical network is uncovered for the

visual processing using deoxy-Hb signals. A comparison for the cortical network for the auditory

processing, for oxy-Hb and deoxy-Hb, reveals a notable absence of PFC for the deoxy-Hb cortical

network.

Although I have presented a preliminary comparison of the cortical networks formed for the

processing of oxy-Hb and deoxy-Hb, it is important to note that most developmental studies with

fNIRS do not investigate the deoxy-Hb signals because of their low SNR, as well as inconsistent

response in infants [6, 200]. Nevertheless, a comparison of the deoxy-Hb signals’ (for the six-month-

old infants data) decoding accuracy and that of oxy-Hb signals using correlation based MVPA and

other state-of-the-art classifiers, and the proposed method of xMVPA is reported in Table 6.4. As

can be readily appreciated from the decoding accuracy, values of xMVPA reported in Table 6.4 are

indeed similar to or better than the ones obtained with opaque boxmethods, while rendering insightful
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Figure 6.10 An illustration of the cortical network formed for non-speech auditory process-
ing in six-month-old infant using deoxygenated haemoglobin (deoxy-Hb) signals, © 2021
Nature.
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explainability on the decoding patterns. However, mostly low dominance patterns were present with

deoxy-Hb. This corroborates what is reported in DCN literature [6, 200] that decoding of oxy-Hb

signals is more consistent and informative than deoxy-Hb signals.

Given the unreliable deoxy-Hb signals, a lack of infant studies investigating deoxy-Hb signals in

the literature, and mostly under-supported xMVPA patterns on account of low dominance score, the

implications of the xMVPA patterns obtained using deoxy-Hb signals are not discussed.

Haemoglobin (Hb) MVPA SVM RF MLP xMVPA

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

oxy-Hb 66.67 17.45 % 69.87 1.17 67.47 5.32 68.36 3.22 67.69 3.52%

deoxy-Hb 33.98 16.57 % 61.65 3.29 60.76 2.47 57.72 3.21 64.88 4.81%

Table 6.4 A comparison of average decoding accuracy (avg.) with standard deviation (SD)
using oxy-Hb and deoxy-Hb data from the earlier work of MVPA by [101], © 2021 Nature.

6.2.3 Implications for functional brain development analysis

The proposed xMVPA overcomes the need of knowing a prioi the haemodynamic response function

(HRF) for infants; which is rarely known [84] (as previously outlined in Section 2.2.4). In addition,

xMVPA offers an explainable inference mechanism in terms of patterns which represents a stepping

stone for furthering our understanding of the functional development of the human brain as hypoth-

esised by the interactive specialisation (IS) framework (discussed in Chapter 2.1). Here, xMVPA is

applied on fNIRS data obtained in response to visual and auditory stimuli in a group of six-month-old

infants [101]. The xMVPA identified six patterns, for oxy-Hb signals, describing cortical activations

and inter-regional interactions specific to each of the perceptual stimuli. These patterns corroborated

the existing evidence in the DCN literature, while providing further insight about auditory processing
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Problem Input/Output Feature/Class Conceptual Labels (CoLs) N Time Intervals, ∆tα

Classification
Input

Temperature Low, Medium, High 24 Morning, Daytime, Evening
Light Low, Medium, High 24 Morning, Daytime, Evening
CO2 Low, Medium, High 24 Morning, Daytime, Evening

Output
Occupied
Not Occupied

- - Morning, Daytime, Evening

Table 6.5 The classification problem is exemplified using the proposed Time-dependent
eXplainable Artificial Intelligence (TXAI) system with occupancy dataset [161].

in infants.

6.3 Application of TXAI in Temporal dataset

In this section, a temporal occupancy dataset [161] is used to exemplify the proposed TXAI system

modelling. The occupancy dataset entails measurements of a room along with the time of when the

measurement is recorded. In particular, it includes measurements of the room temperature, light,

CO2, and a binary class of whether or not the room is occupied. There are 8,143 data instances in the

dataset taken over a period of a few weeks.

In this work, the dataset [161] is used for classification problem where TXAI system predicts

whether or not the room is occupied based on the room measurements. The inputs of temperature,

light, and CO2 are used to predict whether or not the room is occupied. Three conceptual labels of

Low, Medium, and High are associated with inputs of temperature, light, and CO2. The primary MF

of the conceptual labels for all inputs are empirically found. The time is discretised at each hour of

the day hence a total of N = 24 time points with a total of three time intervals defined at Morning,

Daytime, and Evening, as also summarised in Table 6.5.

The conditional distribution for each conceptual label of every input is computed on the entire

dataset. Once the conditional distributions are computed, the learning procedure focuses on the data

belonging to each interval. A 10-repeated nested cross-validation procedure is adopted. The dataset
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is split into a disjoint stratified train, validation and the test set to ensure a random selection of the

datasets (train, validation, and test) is not creating any bias in the results. Each repetition, 20% of the

dataset is held out as a test set, and the remaining is used to build the train and validation sets. Train

and validation sets are determined in an inner 10-fold procedure, where a fold is used for validation

and the rest for training to determine the pattern weights. Balanced accuracy and other performance

metrics are computed over each validation and test set. The z-slices are obtained on locations [0.2,

0.4, 0.6, 0.8, 1.0].

A pattern-base is formed for each time interval. The patterns are learned using GA (previously

outlined in Chapter 5.1.3 and Chapter 5.2.4) [125] such that they (patterns) attain optimally balanced

accuracy on the validation datasets. The GA parameters specification includes the number of genera-

tions, set at 20, with each generation having a population of 50. Moreover, the GA is leveraged to find

the patterns that are prototypical for each time interval. The number of antecedents in each pattern

can be at most 3 but not more to underpin explainability and hamper model complexity therefore

precluding over-fitting. For the same reason, the maximum number of patterns in each candidate

pattern-base for each time interval was limited to 30, although further pruned when its weight (eq.

(5.28)) does not surpass a tolerance threshold of 0.001.

In order to compare the performance of the proposed TXAI system, numerous state-of-the-art

classifiers which can both analyse time-series data and/or are explainable have been used. More

specifically, for comparison with temporal analysis Long Short-Term Memory (LSTM) [201] and

Hidden Markov Models (HMM) [202] are used, for comparison with explainable models the standard

GT2 based XAI system is used, and for partial explainablility Decision Trees (DT) [203] is used.

In addition, a comparison is also made with a temporal convolutional network (TCN) [204] for

comparison with deep learning methods [205]. Parametrization and configuration was set to default

mode of their respective libraries (Sklearn and Keras). For methods with no modelling with respect
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to a time component, time is given as an extra input feature. Moreover, the train, validation, and

test dataset splits are similar across all methods and for GT2 based XAI in particular, the location of

z-slices, and the GA parameters for pattern learning are also identical to those of TXAI system.

6.3.1 Results

For the classification problem undertaken, using the occupancy dataset, the proposed TXAI system

and numerous state-of-the-art classification methods predict whether or not the room is occupied.

The mean (and standard deviation) f-score obtained using TXAI system on the 10 test datasets is

95.30% which is the highest score on the test dataset across all classifiers except TCN. The other

classification metrics investigated in this work are balanced accuracy, recall, and precision. A bar plot

for the aforementioned classification metrics for both the proposed TXAI and the state-of-the-art AI

methods (TCN, LSTM, DT, HMM, GT2 based XAI) on 10 times repeated 10-fold validation and test

datasets is shown in Fig. 6.11 (a) and (b) respectively. In addition, a convergence graph that outlines

how the GA optimisation converges with respect to balanced accuracy for both TXAI and GT2 based

XAI systems is also shown in Fig. 6.11 (c).

The original study [161] applied numerous state-of-the-art AI methods for the classification of

the occupancy dataset. They reported best performing methods’ (RF, linear discriminant analysis,

classification and regression trees) accuracies ranging from 95% to 99%. For the RFmodel, the results

suggest that the most important features were Light, CO2, and Temperature (in descending order).

For the classification and regression trees, the models also highlight the importance of Light and

Temperature for correctly predicting the occupancy status of the room. While the feature importance,

and tree based models shed partial explainability (in terms of input feature importance), these models

are unable to shed light on the interdependence of the input features for the classification of the room

occupancy status. In contrast, the proposed TXAI method can shed light on the interdependence of
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the input features in the form of patterns.

The patterns outlined by TXAI and GT2 based XAI systems which are prototypical for whether

or not the room is occupied are listed in Table 6.6. For the TXAI system, the patterns are found

separately for each time interval (Morning, Daytime, and Evening) whereas, for GT2 based XAI

system, the time intervals are one of the antecedents of the patterns. In general, for both TXAI and

GT2 based XAI systems, the patterns outline that when the room measurements have higher values,

the room is more likely to be occupied, and when the room measurements are on the lower end, the

room is more likely to be not occupied.
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Figure 6.11A comparison of the classification prowess of the proposed time-dependent eX-
plainable artificial intelligence (TXAI) system with numerous state-of-the-art classification
systems.

For the TXAI system, the temporal trajectories of a time-variant system can also be investigated

using the pattern transition matrices (PTMs), previously outlined in section 5.3.8. The individual

PTMs transitioning from one time interval (∆t) to another i.e., from Morning to Daytime, from

Daytime to Evening, and from Evening to Morning, represent the joint possibilities of observing a

given pattern in∆t+ with respect to the patterns in∆t. The patterns corresponding to the highest PTPs

(pattern transitioning possibilities) are also joined with lines in the column PT (pattern transitions)

in Table 6.6 and illustrated in a schematic in Fig. 6.12.
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1 IF Light is High THEN room is Occupied 0.346
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2 IF Temperature is High THEN room is Occupied 0.079

3 IF CO2 is Medium THEN room is Occupied 0.050

4 IF CO2 is High THEN room is Occupied 0.046

5 IF Temperature is High AND Light is High THEN room is Occupied 0.018

6 IF Light is High AND CO2 is Medium THEN room is Occupied 0.014

7 IF Light is High AND CO2 is High THEN room is Occupied 0.012

8 IF Temperature is Medium THEN room is Occupied 0.012

9 IF Temperature is High AND CO2 is High THEN room is Occupied 0.011

10 IF Temperature is Medium AND CO2 is Medium THEN room is Occupied 0.007

11 IF Light is Low THEN room is Not Occupied 1.000

12 IF Temperature is Low THEN room is Not Occupied 0.073

D
ay
tim

e

1 IF Light is High THEN room is Occupied 0.473

2 IF Temperature is High THEN room is Occupied 0.277

3 IF CO2 is High THEN room is Occupied 0.110

4 IF Temperature is Medium AND Light is High THEN room is Occupied 0.017

5 IF Temperature is High AND Light is High AND CO2 is High THEN room is Occupied 0.015

6 IF Light is Low THEN room is Not Occupied 1.000

7 IF CO2 is Low THEN room is Not Occupied 0.50

8 IF Light is Medium THEN room is Not Occupied 0.147

9 IF Temperature is High AND Light is Low THEN room is Not Occupied 0.011

Ev
en
in
g

1 IF Light is High THEN room is Occupied 0.005

2 IF Light is Low THEN room is Not Occupied 1.000

3 IF Light is Low AND CO2 is Low THEN room is Not Occupied 0.108

4 IF Temperature is High AND Light is Low THEN room is Not Occupied 0.041

eX
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e
A
rti
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l

In
te
lli
ge
nc
e
(X

A
I) 1 IF Light is High AND Time is Daytime THEN room is Occupied 0.580

2 IF Light is High AND Time is Morning THEN room is Occupied 0.425

3 IF Temperature is High AND Time is Daytime THEN room is Occupied 0.419

4 IF Light is Low AND Time is Morning THEN room is Not Occupied 1.000

5 IF CO2 is Medium AND Time is Evening THEN room is Not Occupied 0.789

Table 6.6 The prototypical patterns (P) were obtained by the proposed time-dependent
explainable artificial intelligence (TXAI) system for the binary classification problem (room
occupied or not) using the occupancy dataset.
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6.3.2 Discussion

In this work, the proposed TXAI system is used to model an occupancy dataset [161] for the

classification problem of whether or not the room is occupied. For comparison purposes, several

state-of-the-art explainable (GT2 based XAI system), partially explainable (DT), and non-explainable

methods that can analyse temporal information (LSTM and HMM) as well as TCN are also applied

to the aforementioned classification problem. As can be noted from the Fig. 6.11 (a) and (b), TXAI

offers greater classification performance than all classifiers (for e.g. for mean fscore TXAI performs

better than LSTM by 18.19%, DT by 6.81%, HMM by 4.90% , GT2 based XAI system by 8.58%

on test datasets) except TCN (for mean fscore TCN performs better than TXAI by 4.67% on test

datasets). However, the TCN classification mechanism is not explainable hence unable to shed light

on the prediction of the room occupancy based on input features of Temperature, Light, CO2, and

Time.

With respect to the comparison with the GT2 based XAI system, the only explainable system

apart from the proposed TXAI system, a convergence graph plotted in Fig. 6.11 (c) also highlights

that TXAI system converges (∼500 function evaluations) twice as faster than standard GT2 based XAI

system (∼1000 function evaluations) whilst also yielding higher classification metrics (Fig. 6.11 (a)

and (b)). Moreover, the patterns outlined by the explainable systems, TXAI andXAI systems, are listed

in Table 6.6, and both systems are in agreement that when the room measurements (Temperature,

Light, and CO2) have higher values, then the room is likely to be occupied, and when the room

measurements are lower, then the room is likely to be not occupied. However, the patterns for TXAI

also offer greater insight into how the room measurements are interlinked with respect to predicting

room occupancy. For example, for the time interval Morning, pattern no 5 (see Table 6.6) outlines

that if both inputs of Temperature and Light have high values then the room is likely to be occupied.

In this regard, patterns across time intervals shed light on the intertwined conceptual labels of the
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Rule No. 11: IF Light is Low

THEN room is Not Occupied.

Morning

Rule No. 2 If Temperature if High

THEN room is Occupied.

Daytime

Rule No. 2: If Light is Low

THEN room is Not Occupied.

Evening

0.218 0.335

0.226

Figure 6.12 A schematic presenting the evolution of the occupancy system based on the
rules with the highest Pattern Transition Possibilities (PTPs).

inputs prototypical for decoding the room occupancy.

Furthermore, the TXAI systems are also able to shed light on the temporal trajectories of the

system being modelled using PTMs, previously outlined in Section 5.3.8, and illustrated in Fig. 6.12.

The PTPs (Pattern Transition Possibilities), which are the elements of the PTMs, represent the joint

likelihood of observing a pattern in one time interval (rows) and then observing another pattern in the

next time interval (columns). For example, in the PTM transitioning from Morning to Daytime, the

patterns with the highest PTP are pattern number 12 (for time interval Morning) and pattern number

5 (for the next time interval Daytime). For the particular case of the occupancy datasets, the PTMs

and the corresponding PTPs outline the trajectory across time as the TXAI system transitions from

one time interval to another. In this case, an analysis of the occupancy dataset can be leveraged for

the efficient energy management of smart homes using the predictive power of the PTMs [206].

Indeed, the motivation for developing the TXAI systems is to be able to analyse time-dependent

real processes across time. In this regard, conditional distribution integrated within the TXAI system

can be used to obtain the PTMs. The PTMs entail the likelihood of observing the transition of a

real-life process from one time point to another. The proposed TXAI system can shed light not only

on which patterns are prototypical for each of the time intervals but also on the likelihood of observing

the patterns across the different time points.
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6.3.3 Implications for functional brain development analysis

Infants’ longitudinal data analysis has the potential to describe brain development trajectories since

it holds information of how the infants’ brain is working across different times/ages. It is important

to investigate the brain development trajectories as they can inform on typical and atypical brain

development which in turn can be leveraged to inform clinical, educational and social policies. The

brain developmental trajectories can inform about functional brain development in line with the DCN

frameworks of IS and neural reuse (outlined in Chapter 2.1). To this end, the proposed TXAI system

has been designed to integrate temporal information as well as able to outline the trajectories of a time-

dependent process (i.e., brain development trajectories for the case of functional brain development

analysis).

In the next chapter, I present a discussion on the three proposed XAI models’ results and findings

as well as the conclusion.
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Chapter Seven

Conclusions and Future Work

In this chapter, I present the conclusion and future works for the proposed XAI methods.

7.1 Conclusion

Developmental Cognitive Neuroscience (DCN) is a multidisciplinary field that aims to inform typical

and atypical human brain development. The brain development is a complex process as it entails a

bi-directional relation between the structural maturation and emerging functional capabilities of the

different regions of the brain. In this regard, the most prevalent and suitable DCN frameworks that

account for the phenomena underlying brain development are the interactive specialisation (IS) [3] and

neural reuse accounts [50], as discussed in Chapter 2.1. The IS account suggests that postnatal brain

development emerges as a result of the optimisation of interactions between different regions of the

brain. In more detail, it suggests that cortical regions interact and compete with each other to acquire

their role in new computational abilities, therefore becoming more specialised with development.

Critically, the onset of new behavioural abilities is associated with changes in activity over cortical

networks, and not by the onset of activity in single regions. Whereas the neural reuse framework

accounts for the hierarchical structure of the brain brought about by the rewiring of the cortical
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networks on acquisition of a skill.

In order to investigate functional brain development, a recording of infants’ brain activity as

they perform different motor, and cognitive tasks is quintessential. A neuroimaging modality that

is safe, ‘infant-friendly’ and offers good spatial and temporal resolution is functional Near-InfraRed

Spectroscopy (fNIRS) [6], described in Chapter 2.2. The fNIRS cap has sources and detectors fitted

on it to record the underlying cortical region’s activity. More specifically, fNIRS uses the relative

absorption of Near InfraRed (NIR) light, by the haemoglobin (Hb) chromophores, as a measure of a

cortical brain activity [53].

The fNIRS data analysis, in DCN studies in particular, has been predominantly univariate, i.e., it

aims to identify the region with the most pronounced activity in comparison to other cortical regions

in response to the presented information [146]. The univariate analysis has proved pivotal in the

recognition of the prototypical functions of different regions of the brain. However, it (univariate

analysis) can not shed light on the interactions of the different regions of the brain for the processing

of presented information. In this regard, multivariate pattern analysis (MVPA) which investigates

multiple regions’ data simultaneously has the potential to uncover the cortical networks formed in re-

sponse to the presented information. However, for MVPA to inform functional brain development, the

artificial intelligence (AI) methods driving the MVPA need to elucidate the patterns/representations

(classification mechanism) they learn from the data in explainable, human-understandable language

[22].

Owing to the current gap in DCN research due to non-explainable AI methods there is limited

insight obtained from the learnt classification mechanism on the basis of brain activity patterns, as

discussed in Chapter 4. A lack of explainable classification models critically limits the translation

of DCN research to shape developing brain trajectories despite acquiring statistically significant

classification results. To bridge the gap between DCN research and the translation of their insight(s),
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in this work, explainable classification mechanism are developed. The proposed XAI methods are:

1) Effective Fuzzy Cognitve Maps (EFCMs), 2) Explainable Multivariate Pattern Analysis (xMVPA),

and 3) Time-dependent XAI (TXAI) Systems.

EFCMs (presented in Chapter 5.1) offer enhanced formulation, than the classical fuzzy cognitive

maps (FCMs), to learn the strength of interaction (effective connectivity (EC)) between cortical

regions (fNIRS channels). The EC values give a quantitative measure of the interaction between the

corresponding cortical regions of the brain. In this regard, EFCMs can shed light on the rewiring of the

cortical networks as hypothesised by the neural reuse framework upon functional brain development.

In this work, I exemplified the EFCM method on an adults’ fNIRS dataset (presented in Chapter

6.1) in which the participating surgeons had varying level of expertise (NVs, TNs, and EXs) for

performing a complex motor task (Laparoscopic Surgery (LS)). The significance of this dataset, for

the analysis of functional brain development, lies in the varying expertise level of the participating

surgeons akin to how infants expertise for performing a certain task differs at different ages. Hence

an EFCM analysis of the surgeons’ dataset, with varying level of expertise, can also potentially shed

light on the evolution of cortical networks as hypothesised by the neural reuse framework.

The EFCM learns the EC values directly from the fNIRS data, presented in Fig. 6.3. More

specifically, in Fig. 6.3, the cortical networks based on the learnt EC values are presented. Moreover,

in Fig. 6.4, the cortical networks based on two ROIs (motor cortex and PFC) are presented. In both

Fig. 6.3 and 6.4 the evolution of the cortical networks can be deciphered from the reconfiguration of

the interconnections. Although EFCMs can shed light on the evolution of the cortical networks, they

are limited in their explainability. In more detail, the EFCM cannot inform about the activations of

the different cortical regions such as PFC is more active than motor cortex. This is a critical limitation

of the EFCM since it cannot describe the functional brain development as hypothesised by the IS

framework.
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In addition to limited explainability, the EFCM prowess to decipher the EC values correctly also

depend on the order of the EFCM. In this regard, it is a good practise to explore the effect of modifying

the order of the EFCM model as the expertise level increases. This can be of significance because

as the brain networks evolve the memory order of the underlying EC in the brain network may also

increase or decrease. This needs to be further investigated but an intuitive hypothesis can be that

optimisation of brain networks would have a bearing on the memory order of EC within the ROIs.

Whereas EFCMs are based on graph theory, the other two proposed XAI methods (xMVPA and

TXAI) developed in this work are based on fuzzy logic systems (FLS). The two main advantages of

using FLS based XAI systems are: 1) FLS are explainable, i.e. their classification mechanism consists

of patterns which can be easily understood, and 2) FLS can handle uncertainty in the input data using

fuzzy sets that convert uncertain observations (such as fNIRS signal measurements) to conceptual

labels characterised with membership values [122, 123]. The fuzzy sets are characterised by MFs

and represent a given conceptual label. The membership value are usually in the range [0,1] and is a

soft measure of degree of association the associated fuzzy set has for a given observation to belong

to the conceptual label represented by the fuzzy set [123]. For example, an XAI system modelling

the brain activity of infants using Type-1 fuzzy sets may represent brain activity using conceptual

labels of inactive, active, and very active. The MF associated with each conceptual label’s MF will

assign a crisp number for the brain activity of an infant with a membership grade; for example, a brain

activity of 2mM may get assigned membership grades of 0.8,0.5,0.1 to represent conceptual labels

of inactive, active, and very active respectively.

The proposed FLS based XAI method is called explainable MVPA (xMVPA) [105] and presented

inChapter 5.2. The xMVPA is based on IT2-FLS (Interval Type-2 FuzzyLogic System) since it has the

capability to model uncertainty to a greater level (than T1 fuzzy sets) whilst not as computationally

expensive as the GT2 fuzzy sets. In this regard, xMVPA based on IT2 fuzzy sets can model the



162

uncertainty in the infants’ fNIRS dataset as well as describe an explainable inference mechanism that

can shed light on functional brain development.

xMVPA is here applied on fNIRS data obtained in response to visual and auditory stimuli in

a group of six-month-old infants [101]. The xMVPA identified six patterns (listed in Chapter 6.2)

describing cortical activations and inter-regional interactions specific to each of the perceptual stimuli.

In particular, the cortical networks for the processing of visual stimulus (illustrated in Fig. 6.9 (a))

outlined the formation of a ‘core system’ composed of occipital and temporal cortices and an ‘extended

system’ composed of PFC. In this regard, xMVPA suggests the formation of a specialised cortical

network as formed by adults for the processing of visual information [187].

In contrast to the specialised cortical network suggested by the xMVPA for the processing of

visual stimulus, xMVPA suggested a non-specialised cortical network for the processing of auditory

stimulus. The non-specialised cortical network is suggested by the missing interconnection, in Fig.

6.9 (b), between the temporal cortex and the PFC. Overall, the xMVPA patterns corroborated the

existing evidence in the DCN literature for visual processing, while providing further insight about

auditory processing in infants.

With regards to the xMVPA implementation, an important consideration is the selection of the

optimal time window for the fNIRS signals. The statistical feature (such as mean or amplitude) of

the selected fNIRS signal (based on the time window) is then used to construct a multivariate matrix

(MVM). The xMVPA then works on theMVM and hence the time window selection can considerably

impact (increase or decrease) the classification accuracy scores. In this work, 4-7s of the fNIRS signal

was found using grid search to give the highest accuracy (same time window is also reported by the

original study [101]). Therefore, it is recommended to find the optimal time window (using grid

search or evolutionary algorithms) so that the patterns learnt by xMVPA can yield a high accuracy

score.
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In addition to the selection of the optimal time window for fNIRS signals, the granularity in the

activation levels for the patterns is also an important factor that can impact the classification accuracy

of the xMVPA method. In this work, only three conceptual labels are chosen to represent the level

of activity of the channels, i.e. Inactive, Active and Very Active. The rationale behind keeping 3

conceptual labels is to keep the patterns easily interpretable. However, the number of conceptual

labels should be carefully chosen for each study depending on the question at hand, and the level of

interpretability required.

The shape of the membership functions (MFs) is another important factor that can impact the

performance of the xMVPA. More specifically, the shape can be either triangular, trapezium and/or

Gaussian. In addition to the selection of the shape, the parameters that define the shape (such as

the mean and standard deviation for the Gaussian MF) is also critical to the xMVPA’s performance.

In this work, I used trapezium shaped MFs, and the parameters for the MFs are found through the

Genetic Algorithm (GA). The MFs shape and parameters are important because the conversion of a

numeric measurement to a conceptual label depends on the MF.

Nevertheless, given its capability and reliability of identifying patterns of inter-regional interac-

tions for information processing, the xMVPA provides a technical framework for implementing the IS

account proposed by Johnson [3] for explaining functional brain development. However, a limitation

of the xMVPA is that it can only analyse cross-sectional data and can not shed light on the temporal

dynamics associated with a longitudinal dataset. This is because xMVPA which is based on IT2

fuzzy sets cannot integrate temporal information in their MF (Membership Function). To account for

the temporal components associated with functional brain development, in this work, I present the

time-dependent XAI (TXAI) systems in Chapter 5.3. The TXAI systems, based on new Temporal

Type-2 Fuzzy Sets (TT2FSs), can account for the likelihood of a measurement’s occurrence in the

time domain using (the measurement’s) frequency of occurrence. In TT2FSs, a four-dimensional
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(4D) time-dependent MF is developed where fuzzy relations are used to construct the inter-relations

between the elements of the universe of discourse and its frequency of occurrence. In addition, the

temporal trajectories of a dynamic process such as functional brain development can be outlined by

the TXAI system by making use of the conditional distribution integrated into the TXAI system.

In this work, the TXAI system is exemplified on a real-life occupancy dataset [161] to determine

whether or not the room is occupied based on sensor readings of temperature, light, and carbon

dioxide. The TXAI system performance is also compared with other state-of-the-art classification

methods with varying levels of explainability. The TXAI system manifested better classification

prowess, with 10-fold test datasets, with a mean recall of 95.40% than a standard XAI system (based

on non-temporal general type-2 (GT2) fuzzy sets) that had a mean recall of 87.04%. TXAI also

performed significantly better than most non-explainable AI systems between 3.95%, to 19.04%

improvement gain in mean recall. Temporal convolution network (TCN) was marginally better than

TXAI (by 1.98% mean recall improvement) although with a major computational complexity. In

addition, TXAI can also outline the most likely time-dependent trajectories using the frequency of

occurrence values embedded in the TXAI system; viz. given a pattern at a determined time interval,

what will be the next most likely pattern at a subsequent time interval.

Although TXAI provides a greater insight than xMVPA with respect to the integration of the

temporal information, care must be taken to select the parameters that can impact the performance

of the TXAI method such as the optimal time window selection for fNIRS signal, the number of

conceptual labels, and the shape of the MFs (as previously discussed for the xMVPA). In addition,

for the TXAI method, the number of time intervals as well as their definition can have significant

impact on the performance of the TXAI method. In this work, I chose three time intervals (Morning,

Afternoon, and Evening) for the classification of the occupancy dataset using TXAI. The reason for

selecting three time intervals is because of the common perception of three time intervals (Morning,
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Afternoon, and Evening) in a given day. In this regard, the TXAI system outlined the most likely

patterns for each time interval as well as the likelihood of pattern transition from one time interval to

another. Therefore the selection of the time intervals will have a bearing the temporal trajectories of

the system.

In the next section, I outline the future works for the proposed explainable methods (EFCM,

xMVPA, TXAI) developed in this work.

7.2 Future Works

In this chapter, I outline the future research in functional brain development that can focus on the

application of the proposed XAI methods (EFCMS, xMVPA, and TXAI) on infants’ fNIRS data. All

three methods are developed to analyse a single dimension of Hb (i.e., either oxy-Hb or deoxy-Hb).

In this regard, a future work can extend the methods to analyse a possible combination of the two Hb

chromophores. In addition, all methods are built for fNIRS modality only, it is worth investigating if

multi-modal data such as fNIRS and EEG can also be investigated after a possible extension of the

methods.

More specifically, for EFCMs which undertake partially explainable effective connectivity (EC)

analysis, future work can focus on its application in DCN studies to shed light on the reorganisation

of the cortical networks with the onset of cognitive and motor abilities. More specifically, EFCMs

can be applied to infants’ fNIRS data before they attain a certain cognitive or motor ability and after

the onset of the ability, such as grasping an object [164], to learn the optimisation of the cortical

networks as hypothesised by the neural reuse framework.

For xMVPA, future applications can undertake the analysis of infants’ fNIRS data recorded in

response to various cognitive and perceptual stimuli. The xMVPA results would entail the cortical
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network formed in response to the presented stimuli and therefore have the potential to further our

understanding of the workings of the developing brain in response to the presented stimuli. The

xMVPA performance against more Fuzzy logic based methods such as fuzzy-SVM [207] can also be

investigated. However, only cross-sectional fNIRS based DCN studies can be investigated using the

xMVPA.

Future applications of the TXAI system could focus on infants’ longitudinal fNIRS datasets as

TXAI has been developed to provide complementary time-stamps patterns and map brain regions

activation and interactions. In this regard, TXAI systems offer a promising avenue for the study of

developmental brain trajectories in terms of maturation and inter-regional functional interactions [3].

It is important to investigate the brain developmental trajectories as they can inform on typical and

atypical brain development, which in turn can be leveraged to inform clinical, educational and social

policies. The delineation of brain developmental trajectories will further enhance the potential of the

TXAI systems to critically contribute to the field of DCN.
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Appendix A

Karnik-Mendel (KM) Algorithm

The KM algorithm [131] for computing the left centroid of an IT2 fuzzy is outlined in Algorithm

5. For finding the left centroid, cl as outlined in (3.18), the value of L needs to be determined as

follows:

Algorithm 5: The KM Algorithm for computing the left centroid, cl.
Result: The left centroid, cl.

Initialise θi ←
µ
A
(xi)+µA(xi)

2 where i = 1,2, ..., I and c2 ← 0

Compute c1 ← ∑Ii=1 xiθi

∑Ii=1 θi

while c1 ≠ c2 do

c1 ← c2

Find I (1 ≤ I ≤ I − 1) such that xI ≤ c1 ≤ xI+1

Set θi ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µÃ(xi) i ≤ I

µ
Ã(xi)

i > I

Compute c2 ← ∑Ii=1 xiθi

∑Ii=1 θi

Set cl ← c2 and L← I
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The following steps outline the procedure for computing the right centroid, cr as outlined in

(3.19), using the KM algorithm outlined in Algorithm 6.

Algorithm 6: The KM Algorithm for computing the right centroid, cr.
Result: The right centroid, cr.

Initialise θi ←
µ
A
(xi)+µA(xi)

2 where i = 1,2, ..., I and c2 ← 0

Compute c1 ← ∑Ii=1 xiθi

∑Ii=1 θi

while c1 ≠ c2 do

c1 ← c2

Find I (1 ≤ I ≤ I − 1) such that xI ≤ c1 ≤ xI+1

Set θi ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µ
Ã(xi)

i ≤ I

µÃ(xi) i > I

Compute c2 ← ∑Ii=1 xiθi

∑Ii=1 θi

Set cr ← c2 and R ← I
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Appendix B

List of Symbols

No. Symbol Description

1 α Index for time intervals of TT2FS i.e. α ∈ [1, ..., V ]with V as the total number

of time intervals

2 β Weight/Contribution of regressor

3 δ Kronecker delta function

4 ∆ Change

5 λ Wavelength

6 ζ Hb concentration

7 ε Extinction coefficient of the chromophore

8 κ Estimated Haemodynamic Response Function (HRF)

9 ξ Regressors

10 Ω Error between true and estimated Haemodynamic Response Function (HRF)

11 χ Concept (or fNIRS channel) value

12 τ Iteration number

13 ν Effective Connectivity (EC) value

14 Θ Total number of iterations

15 µA Membership degree of T1 fuzzy set A

continued . . .
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. . . continued

No. Symbol Description

16 µB Membership degree of T1 fuzzy set B

17 µÃ Upper membership degree of IT2 fuzzy set, Ã

18 µB̃ Upper membership degree of IT2 fuzzy set, B̃

19 µÃ Lower membership degree of IT2 fuzzy set, Ã

20 µB̃ Lower membership degree of IT2 fuzzy set, B̃

21 µÃ Secondary membership degree of GT2 fuzzy set, Ã

22 µB̃ Secondary membership degree of GT2 fuzzy set, B̃

23 `x(u) Equivalent of µÃ(x,u)

24 h̷x(u) Equivalent of µB̃(x,u)

25 Φ Total number of antecedents

26 φ A particular fNIRS channel

27 Ψq The antecedent(s) in pattern number q

28 ρ Phenotype

29 ℘ Order of the FCM or EFCM

30 % Sigmoid function

31 ι Parameter defining the shape of sigmoid function

32 ϑ Optimised soft regularizer values in EFCM

33 Υ Corresponding CoLs associated with each channel

34 Γ Fuzzy Relation

35 I Index in KM Algorithm

36 γ Numeric values for the range of each of the CoLs of all the F fNIRS channels

continued . . .
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. . . continued

No. Symbol Description

37 π Pattern Transition Probability

38 $ Attenuation

39 ω Primary membership degree of GT2 fuzzy set B̃

40 η Joint possibility for two patterns to occur in their respective time intervals

41 A T1 (Type-1) Fuzzy set

42 Ã Interval Type-2 (IT2) or General Type-2 (GT2) Fuzzy Set

43 A⃗ Temporal Type-2 Fuzzy Set

44 Ae Type-1 Embedded fuzzy sets within IT2 fuzzy sets.

45 Ac Active

46 b Individual solution of GA

47 B T1 (Type-1) Fuzzy set

48 B̃ Interval Type-2 (IT2) or General Type-2 (GT2) Fuzzy Set

49 B⃗ Temporal Type-2 Fuzzy Set

50 c Centroid

51 cl Left centroid of IT2 fuzzy set, Ã

52 cr Right centroid of IT2 fuzzy set, Ã

53 CÃ The union of embedded T1 fuzzy sets’ (Ae) centroids. Interval enclosed by

left and right centroids of IT2 fuzzy set, Ã.

54 Ch Channel

55 confq Confidence of pattern number q

56 d fNIRS source-detector distance

continued . . .
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. . . continued

No. Symbol Description

57 D EC Connection Matrix in EFCM

58 DPF Differential Pathlength Factor

59 DS Dominance Score of a pattern

60 E Total number of data instances (or fNIRS trials)

61 f Conditional distribution

62 F Frequency of occurrence domain

63 g Discrete conditional relative frequency

64 G Total number of patterns in time interval ∆t

65 h Association degree

66 H Total number of patterns in time interval ∆t+

67 i Generic Iterator

68 IIN Input NIR light

69 IOUT Output NIR light

70 IA Inactive

71 j Generic Iterator

72 Jx Universe of primary membership value

73 k Generic Iterator

74 K Total number of output classes

75 l Iterator for CoLs i.e. l ∈ [1, ...,W ]where W is the total number of CoLs

76 L Left switch point in KM algorithm

77 M Total number of concepts (or fNIRS channels)

continued . . .
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. . . continued

No. Symbol Description

78 N Total number of points for discretising time.

79 O Output class or label of a pattern

80 P Pattern

81 q Pattern number

82 Q Total number of patterns

83 R Right switch point in KM algorithm

84 supq Support of pattern number q

85 t Time

86 T Time domain

87 u Primary membership degree of IT2 or GT2 fuzzy set

88 U Universe of secondary variable of IT2 or GT2 fuzzy set

89 v Primary membership degree of GT2 fuzzy set Ã

90 V Total number of time intervals

91 V A Very Active

92 w Firing Strength

93 W Total number of conceptual labels (CoLs)

94 x Input value

95 x∗ Defuzzified/crisp value of a fuzzy set or centroid of T1 fuzzy set which is also

a crisp value

96 X Universe of discourse

97 Xd Discrete universe of discourse

continued . . .
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. . . continued

No. Symbol Description

98 y Strength of influence on a given concept (or fNIRS channel)

99 Yq Consequent fuzzy set for pattern number q

100 z Location of z-slice

101 Z Soft regularizer matrix in EFCM
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Appendix C

List of Abbreviations

No. Abbreviation Definition

1 3D Three Dimensional

2 4D Four Dimensional

3 AI Artificial Intelligence

4 BCI Brain-Computer Interface

5 CA Connectivity Analysis

6 CNN Convolutional Neural Networks

7 CO2 Carbon dioxide

8 DCN Developmental Cognitive Neuroscience

9 DCM Dynamic Causal Modeling

10 deoxy-Hb deoxygenated Haemoglobin

11 DLPFC Dorsolateral Prefrontal Cortex

12 DNN Deep Neural Networks

13 DPF Differential Pathlength Factor

14 DT Decision Tree

15 EC Effective Connectivity

16 EEG Electroencephalogram

continued . . .
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. . . continued

No. Abbreviation Definition

17 EFCM Effective Fuzzy Cognitive Map

18 ERP Event Related Potential

19 EXs Experts

20 FC Functional Connectivity

21 FCM Fuzzy Cognitive Map

22 FLS Fuzzy Logic System

23 fMRI functional Magnetic Resonance Imaging

24 fNIRS functional Near-Infrared Spectroscopy

25 FNR False Negative Rate

26 FOU Footprint of Uncertainty

27 FPR False Positive Rate

28 GA Genetic Algorithm

29 GC Granger Causality

30 GLM General Linear Models

31 GT2 General Type-2

32 GT2-FLS General Type-2 Fuzzy Logic System

33 Hb Haemoglobin

34 HMM Hidden Markov Models

35 HRF Haemodynamic response function

36 IFM Interpolated Functional Manifold

37 IS Interactive Specialisation

continued . . .
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. . . continued

No. Abbreviation Definition

38 IT2 Interval Type-2

39 IT2-FLS Interval Type-2 Fuzzy Logic System

40 JI Jaccard Index

41 KM Karnik-Mendel

42 LS Laparoscopic Surgery

43 LSTM Long Short-Term Memory

44 mBBL modified Beer-Lambert Law

45 MCC Mathew’s Correlation Coefficient

46 MF Membership Function

47 MLP Multilayer Perceptron

48 MNI Montreal Neurological Institute

49 MR Magentic Resonance

50 MRI Magnetic Resonance Imaging

51 MVM Multivariate Matrix

52 MVPA Multivariate Pattern Analysis

53 N170 A negative ERP observed at 170ms

54 NIR Near-Infrared

55 NPV Negative Predictive Value

56 NVs Novices

57 oxy-Hb oxygenated Haemoglobin

58 P100 A positive ERP observed at 100ms

continued . . .
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. . . continued

No. Abbreviation Definition

59 PFC Prefrontal Cortex

60 PPI Psychophysiological Interaction

61 PPV Positive Predictive Value

62 PTM Pattern Transition Matrix

63 PTP Pattern Transition Possibility

64 ReLU Rectified Linear Unit

65 RepL Representation Learning

66 RF Random Forest

67 RMSE Root Mean Square Error

68 ROI Region of interest

69 RR Ridge Regression

70 SD Standard deviation

71 SNR Signal-to-Noise Ratio

72 SPM Statistical Parametric Mapping

73 SVM Support Vector Machine

74 T1 Type-1

75 T1-FLS Type-1 Fuzzy Logic System

76 TCN Temporal Convolutional Networks

77 TMF Temporal Membership Function

78 TN True Negative

79 TNs Trainees

continued . . .
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. . . continued

No. Abbreviation Definition

80 TP True Positive

81 TS-ZS Time Slice followed by Z Slice

82 TT2FS Temporal Type-2 Fuzzy Set

83 TXAI Time-dependent eXplainable Artificial Intelligence

84 TXAI-IS TXAI- Inference System

85 XAI eXplainable Artificial Intelligence

86 xMVPA eXplainable Multivariate Pattern Analysis
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