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Abstract

The pathogenesis of metabolic-associated fatty liver dis-
ease (MAFLD) is complex and thought to be dependent on 
multiple parallel hits on a background of genetic suscep-
tibility. The evidence suggests that MAFLD progression is 
a dynamic two-way process relating to repetitive bouts of 
metabolic stress and inflammation interspersed with endog-
enous anti-inflammatory reparative responses. In MAFLD, 
excessive hepatic lipid accumulation causes the produc-
tion of lipotoxins that induce mitochondrial dysfunction, 
endoplasmic reticular stress, and over production of reac-
tive oxygen species (ROS). Models of MAFLD show marked 
disruption of mitochondrial function and reduced oxidative 
capacitance with impact on cellular processes including mi-
tophagy, oxidative phosphorylation, and mitochondrial bio-
genesis. In excess, ROS modify insulin and innate immune 
signaling and alter the expression and activity of essential 
enzymes involved in lipid homeostasis. ROS can also cause 
direct damage to intracellular structures causing hepatocyte 
injury and death. In select cases, the use of anti-oxidants 
and ROS scavengers have been shown to diminish the pro-
apoptopic effects of fatty acids. Given this link, endogenous 
anti-oxidant pathways have been a target of interest, with 
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Nrf2 activation showing a reduction in oxidative stress and 
inflammation in models of MAFLD. Thyroid hormone recep-
tor β (THRβ) agonists and nuclear peroxisome proliferation-
activated receptor (PPAR) family have also gained interest 
in reducing hepatic lipotoxicity and restoring hepatic func-
tion in models of MAFLD. Unfortunately, the true interplay 
between the clinical and molecular components of MAFLD 
progression remain only partly understood. Most recently, 
multiomics-based strategies are being adopted for hypoth-
esis-free analysis of the molecular changes in MAFLD. Tran-
scriptome profiling maps the unique genotype-phenotype 
associations in MAFLD and with various single-cell tran-

scriptome-based projects underway, there is hope of novel 
physiological insights to MAFLD progression and uncover 
therapeutic targets.

Citation of this article: Clare K, Dillon JF, Brennan PN. 
Reactive Oxygen Species and Oxidative Stress in the 
Pathogenesis of MAFLD. J Clin Transl Hepatol 2022. doi: 
10.14218/JCTH.2022.00067.

Introduction

Metabolic-associated fatty liver disease (MAFLD) is now the 
most common chronic liver condition worldwide and will 
soon be the leading indication for liver transplantation.1 
MAFLD represents a pathological spectrum of liver injury 
ranging from simple steatosis to liver fibrosis with an evo-
lutionary course to cirrhosis. Approximately 30% of adults 
in the general population have MAFLD, 10–20% have stea-
tohepatitis and in these patients, 20–30% go on to develop 
cirrhosis within 20 years.2

The link between MAFLD development and obesity, in-
sulin resistance and type 2 diabetes mellitus is well estab-
lished with MAFLD considered a hepatic manifestation of 
the metabolic syndrome.3 Given the increasing prevalence 
of these related conditions, the incidence of MAFLD is pro-
jected to increase with data suggesting a 56% rise over the 
next decade.4 Although MAFLD is typically associated with 
a western lifestyle, data demonstrates a rapid increase in 
disease burden in developing counties.5

The MAFLD disease continuum has the associated seque-
lae of end-stage liver disease and hepatocellular carcinoma 
(HCC).2 Patients with significant fibrosis have a higher risk 
of detrimental outcomes compared to those with simple 
steatosis and alarmingly, these patients may develop HCC 
without progression to cirrhosis first.6,7

MAFLD pathogenesis

The pathogenesis of MAFLD is complex and still not fully 
understood; it remains a challenge to stratify and identify 
specific drug targets and currently there are no licensed 
therapies for its management. The original two hit hypoth-
esis proposed by Day et al8,9 is now largely obsolete having 
been replaced with the multiple parallel hits hypothesis.
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The development of MAFLD is dependent on multiple cu-
mulative insults including a nonmodifiable genetic suscep-
tibility. MAFLD has been shown to be polygenic with the 
PNPLA3, MBOAT7 and TM6SF2 gene variants identified as 
predisposing risk for disease development.10 Additional fac-
tors which have a putative pathogenic role are excessive 
dietary intake, products of the microbiota and/or malad-
aptation to environmental stimuli. The multiple, parallel 
hits model suggests that in the presence of significant li-
pid accumulation in hepatocytes and systemic and hepatic 
insulin resistance, there are multiple coincident metabolic 
alterations which leads to an imbalance between free radical 
production from gut and adipose tissue and anti-lipotoxic 
protective mechanisms of the liver. The pathophysiological 
mechanisms involved in this include endoplasmic reticulum 
(ER) stress, excessive generation of reactive oxygen spe-
cies (ROS) and diminished catabolism of fatty acids which 
lead to a pro-inflammatory state.7 The mechanisms, which 
have associations with insulin resistance, involve numerous 
cell responses, pro-inflammatory cytokines, chemokines, 
and toll-like receptors with complex interaction profiles. It 
is imperative to note that although ROS are agents of dam-
age, one of their most important biological roles is cell sign-
aling through acting as sensors of cellular stress and setting 
the oxidative tone of the cell.

Overall, the evidence suggests that MAFLD progression is 
a dynamic two-way process relating to repetitive bouts of 
metabolic stress and inflammation interspersed with endog-
enous anti-inflammatory reparative responses. An overlay 

of these pathophysiological concepts underlying MAFLD are 
best illustrated by means of the schematic in Figure 1.11,12 
Given the current lack of treatment for MAFLD, the soaring 
global epidemic presents a major challenge. It is becom-
ing increasingly essential to uncover the specific pathogenic 
mechanisms underlying this disease in order to identify 
pharmacological targets for novel therapies.

Role of ROS in MAFLD progression

One of the most important roles of ROS is cellular signal-
ing. Through modulating transcription factors, ROS have a 
key role in cell proliferation and differentiation, metabolism, 
and immune defense mechanisms. ROS are continually 
produced by various intracellular organelles including mi-
tochondria, ER, and peroxisomes as by-products of normal 
cellular metabolism. In normal physiology, ROS are buff-
ered at a steady state in order to maximize cellular redox 
signaling. Oxidative stress describes an imbalance between 
the production of reactive oxygen species (ROS) and the 
host antioxidant scavenging capacity in favor of the for-
mer.13 Oxidative stress and ROS are intrinsically linked in 
the pathogenesis of MAFLD. The discrepancy between ROS 
generation as a potent proinflammatory, and antioxidant 
defense proponents; potentiates both DNA and cellular in-
jury.14 The proinflammatory cascades may be propagated 
through increasing pro-oxidant signaling, or relative an-
tioxidant dysfunction and there likely exists an important 

Fig. 1.  General overview of MAFLD pathogenesis. Schematic adapted from Akshintala et al and Cusi.11,12 
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inflection point beyond which fibrosis develops. ROS signal-
ing is therefore considered as a strong pro-determinant in 
hepatic fibrogenesis. These complex pathways likely involve 
a number of coexistent pro-oxidative triggers which syner-
gistically interact in concert with mitochondrial dysfunction 
as a principle potentiator of OS.

Mitochondrial ROS generation is typically considered as 
the most quantitative supply of ROS in the context of ener-
gy-derived metabolism.13 ROS have varying chemical prop-
erties and are subdivided into free radicals and nonradicals 
based on these. Free superoxide anion radicals (O2

−) and 
nitric oxide (NO) along with nonradical hydrogen peroxide 
(H2O2) are some of the first produced ROS in cell metabo-
lism and are key redox signaling molecules in controlling 
both physiological and pathological cellular functions. The 
hydroxyl free radical (HO), hypochlorous acid (HOCl), per-
oxynitrite (ONOO−) and peroxynitrous acid (ONOOH) are 
all nonradicals with secondary products typically associ-
ated with pathology. Finally, the downstream free radicals 
alkoxyl/alkyl peroxyl (RO/ROO) and the carbonate radical 
ion (CO3) are deemed potent inducers of oxidative stress 
and generate widespread cellular damage.14,15 Given the 
significance of this metabolic maladaptation, there is in-
creasing interest in determining pharmacological targets in 
the implicated pathways to develop novel targeted thera-
peutics.16,17

Mitochondrial dysfunction in MAFLD

Mitochondria are complex organelles with diverse roles in 
energy metabolism, cell signaling, and calcium homeosta-
sis.18 Mitochondria are central to cellular energy modulation, 
given their inherent role in ATP regulation. There are in-
trinsic gate-keeper mechanisms responsible for maintaining 
mitochondrial integrity; known as the mitochondrial quality 
control (MQC) system. This MQC comprises facets includ-

ing mitochondrial fission and fusion, mitophagy and redox 
regulation.19 Excessive and dysregulated ROS production 
within the mitochondrial matrix may damage constituent 
structures including mitochondrial membrane, mitochon-
drial DNA (mtDNA) and may induce pro-apoptotic pathways 
including mitochondrial autophagy, a process also known as 
mitophagy. These interactions are illustrated in Figure 2.20

Structurally, mitochondria are composed of an inner mi-
tochondrial membrane, and an outer mitochondrial mem-
brane that are separated by an intermembranous space.21 
Mitochondria contain double-stranded circular DNA (mtD-
NA) that encodes 13 polypeptides of the respiratory chain 
complexes, including adenosine triphosphate (ATP) syn-
thase and additional RNAs responsible for intramitochon-
drial translation.22

Functionally, mitochondrial energy coupling occurs via 
the electron transfer chain (ETC), whereby ATP is generated 
by controlled movement of electrons along the ETC from a 
high energy state to low energy state in a step wise fashion. 
This process is facilitated by sequential reduction of nicoti-
namide adenine dinucleotide and flavin adenine dinucleo-
tide to NADH and FADH2 respectively, which subsequently 
are donated at regulatory points in the ETC.23 The energy 
potential released from this electron transfer potentiates a 
proton gradient and facilitates the phosphorylation of ADP 
to ATP in a process called oxidative phosphorylation (OX-
PHOS). Given the fundamental role of the mitochondria in 
energy regulation, mitochondrial dysfunction appears to be 
a key component in the pathogenesis of MAFLD.

There are a number of essential nuclear-encoded pro-
teins within mitochondria that have specific functions, but 
together play a role in mitochondrial biogenesis, the forma-
tion of new mitochondria. Peroxisome proliferation-activat-
ed receptor gamma (PPARγ) is a ligand-activated transcrip-
tion factor with a spectrum of function including regulation 
of mitochondrial production and function, redox balance, 
and fatty acid oxidation. PPARγs coactivator-1 alpha (PGC-

Fig. 2.  General overview of some aspects of mitochondrial dysfunction in metabolic associated liver disease as described in the text, diagram adapted 
from Wu et al.20 Aerobic respiration with ATP synthase highlighted as essential co-factor in oxidative phosphorylation in making ATP. Fis1 is an outer mitochondrial 
membrane protein that interacts with DRP1 to initiate fission and damaged mitochondria purged by mitophagy. Healthy mitochondria fuse to continue network facili-
tated by MFN1/2.
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1α) regulates mitochondrial biogenesis and once activated 
by de-acetylation or phosphorylation, it stimulates nuclear 
respiratory factor (NRF)1 and NRF2.24 In addition to their 
separate functions, both NRF1 and NRF2 mediate the ex-
pression of the ETC subunits that are encoded by the nucle-
ar genome. NRF1 binds to specific promoter sites of genes 
involved in mtDNA transcription and is known to regulate 
the expression of transcription factor A (Tfam).25 Tfam is an 
mtDNA binding protein that activates transcription of mtD-
NA. Through regulating mitochondrial stability and replica-
tion, Tfam coats and packages the mitochondrial genome.26 
Activation of this PGC-1α-NRF-Tfam pathway leads to mito-
chondrial DNA and protein synthesis and the formation of 
new mitochondria.

ATP synthase

There are a number of markers of mitochondrial function 
which are disrupted in MAFLD. ATP synthase is essential 
cofactor involved in oxidative phosphorylation, localized on 
the inner mitochondrial membrane and is considered a reli-
able indicator of mitochondrial functionality. Murine MAFLD 
models demonstrated impaired ATP synthase stability in 
both subunit alpha and ATP synthase F(0) complex subunit 
B1, which contributed to relative ATP deficiency.27,28 Human 
MAFLD tissue has also demonstrated impaired ATP syn-
thase/Complex V functionality relative to normal controls 
(42.4% ± 9.1%).29

Mitochondrial fission protein 1 (FIS1)

FIS1 is another important marker of mitochondrial function-
ality in MAFLD. It is a complex molecule involved in both 
apoptotic and mitophagy pathways and may influence per-
oxisomal fusion.30 There appears to be a reciprocal associa-
tion between FIS1 and mitofusin 1/2 (MFN1/MFN2) where-
by an overall increase in mitochondrial fission (FIS1), with 
parallel reduction in fusion (MFN1/2), induces adiposity and 
increased preponderance to MAFLD.28 This characteristic 
expressional profile is associated with impaired mitochon-
drial function and integrity and may be used as a surrogate 
disease marker.

Peroxisome proliferator-activated receptor-γ coacti-
vator 1 alpha (PGC-1α)

PGC-1α is a key moderator of lipid and glucose metabo-
lism with wide ranging cell-specific functions in addition to 
its role in mitochondrial biogenesis. There is relative ubiq-
uity preserved in its interactions with the nuclear receptor 
peroxisome proliferator-activated receptor alpha (PPAR-α), 
which is integral for hepatic adaptation to prolonged fast-
ing and integral in β-oxidation.16 Impaired activity of PGC-
1α has been demonstrated and noted as a consequence of 
decreased interaction with promotors containing NRF-1/2 
response elements.17 Similarly, phosphoenolpyruvate car-
boxykinase induction by PGC1α was diminished, sugges-
tive of suboptimal mitochondrial biogenesis in MAFLD in 
association with reduced activity index of PGC1α.17 Within 
targeted knockout models of PGC-1α, there is clear reduc-
tion in mitochondrial oxidative capacitance, with features of 
mitochondrial distress with a hepatic steatosis phenotype.31 
Conversely, overexpression of hepatic PGC-1α resulted in 
incremental fatty acid oxidation and reduced triglyceride 
and secretion.32 Therefore, PGC-1α homeostasis is a key 
regulatory element of hepatic energy coordination, and is a 
putative treatment target.

Role of lipid dysregulation in MAFLD pathogenesis

The most direct etiology of MAFLD is disequilibrium of lipid 
metabolism, and hepatic steatosis is the result of an imbal-
ance in lipid production and degradation.13 The link between 
diet and MAFLD is well established. Excessive consumption 
of refined carbohydrates, saturated fats, and animal protein 
is associated with the development of steatosis and MAFLD 
progression. Obesity results from a failure to regulate body 
mass and is the result of excess energy intake, reduced 
energy expenditure, or both. Obesity causes a marked in-
crease in visceral adipose tissue and profound changes to 
its function, which has significant secondary effects on the 
liver. In obese individuals, visceral adipose tissue is high-
ly biologically active. Adipocytes develop an inflammatory 
phenotype, become necrotic, and secrete cytokines into 
systemic circulation, which modulates hepatic immune 
function and induces hepatocyte death. Triglyceride storage 
in adipocytes is also disrupted, this leads to the inappropri-
ate delivery of free fatty acids (FFAs) to nonadipose tissue 
causing lipotoxicity, a crucial event in MAFLD pathogenesis. 
Delivery of FFAs to the liver impairs insulin sensitivity, caus-
es transcription of sterol responsive element binding protein 
1c (SREBP-1c) and promotes de novo lipogenesis which fur-
ther contributes to steatosis.33

In MAFLD, as hepatic lipid deposition increases, intracel-
lular processes become overwhelmed, and ROS generating 
mechanisms are potentiated. In general, there are three pri-
mary sources of FFAs, which precipitate hepatic lipid accumu-
lation. They are peripheral lipolysis, de novo lipogenesis and 
dietary.13 Hepatic FFAs typically have two major metabolic 
fates, they undergo mitochondrial beta oxidation or they 
undergo esterification to form triglycerides. In MAFLD, the 
increased influx of FFAs overwhelms hepatocytic metabolic 
capacity, causing failure of beta oxidation and mitochondrial 
dysfunction. The surplus of fatty acids can, instead, be con-
verted into triglycerides, stored as lipid droplets, and partial-
ly released into circulation as very low-density lipoproteins.13 
The excess FFAs can also act as a substrate for the genera-
tion of lipotoxic lipid species such as ceramides and diacylg-
lycerols. These lipotoxins are known to cause hepatocellular 
stress and, in combination with the free pool of hepatic fatty 
acids, to induce mitochondrial dysfunction and endoplasmic 
reticular stress. They also activate NADPH oxidase (NOX). an 
enzyme complex that catalyzes the production of superoxide 
free radicals, a major source of cellular ROS. These three 
primary mechanisms account for the increased production of 
ROS from hepatic lipid deposition, O2

−, H2O2, malondialde-
hyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) in particular. 
The elevated ROS signals modify insulin and innate immune 
signaling, and alter the expression and activity of essential 
enzymes involved in lipid hemostasis. In combination, these 
effects result in the redox-dependent dysregulation of he-
patic lipid metabolism seen in MAFLD.13

One further, more recently identified, endogenous influ-
ence on hepatic lipid regulation is thyroid hormone (TH) 
by its activation of THβ receptor in the liver. TH has been 
shown to have an essential role in hepatic cholesterol syn-
thesis and fatty acid metabolism.34 Through its ability to al-
ter the function of transcription factors, moderate cell sign-
aling cascades, and through binding to proteins other than 
TH receptors, TH can modulate gene expression for hepatic 
fatty acid biosynthesis, cholesterol, and metabolism. The 
ability of TRβ1 selective agonism of TH in modulating lipid 
homeostasis may be partly explained by increased clear-
ance, and increased hepatic Ldlr expression in addition to 
synergistic effects on cholesterol 7α-hydroylase (CYP7A1) 
related cholesterol synthesis. Various studies have demon-
strated the relationship between TH levels and MAFLD, with 
patients who have hypothyroidism and high levels of TSH 



Journal of Clinical and Translational Hepatology 2022 5

Clare K. et al: Development of MAFLD as influenced by ROS and OS

at an increased risk of MAFLD, with greater TSH elevation 
correlating with more extensive steatosis. In mouse models 
with a negative mutation in THβ, hepatic steatosis was pre-
sent by 4–5 months of age. Hepatic lipid accumulation in the 
models was thought to be caused by increased PPARγ sign-
aling and decreased THR-mediated fatty acid β-oxidation.35 
Consistent with that, use of TH and THRβ-specific ligands 
were shown to reduce hepatic triglyceride content in these 
models thus re-enforcing this relationship.

Oxidative modification of intracellular components

As well as causing dysfunctional lipid metabolism, at high 
concentrations, ROS can induce oxidative modification of 
important cellular molecules including proteins, lipids and 
DNA.9 The accumulation of damaged cellular components 
causes cellular injury and death. Various in vitro models 
have shown that cellular apoptosis induced by FFAs may 
be mediated by ROS, as the pro-apoptotic effects of fatty 
acids were decreased by anti-oxidants and ROS scavengers 
in select cases.36–38

With regard to oxidative damage to proteins, there are a 
number of essential nuclear-encoded proteins within mito-
chondria, including Nrf1 and Nrf2, Tfam and PGC1 as previ-
ously mentioned.39 In MAFLD, increased levels of ROS and 
subsequent oxidative damage to nuclear DNA can alter the 
transcription of mitochondria proteins that are necessary 
for mitochondrial metabolism and DNA maintenance. There 
is consistent evidence of decreased Nrf2, Tfam, and PGC-1 
expression in models of MAFLD.17,40

ROS and inflammasome activation

During periods of metabolic stress or redox imbalance, pat-
tern recognition receptors in hepatic cells, including toll-like 
receptors and nucleotide-binding oligomerization domain 
like receptors (NLRs), sense pathogen-associated molecu-
lar patterns (PAMPs), danger associated molecular patterns 
(DAMPs), and cellular metabolites that trigger complex 
downstream immune signaling cascades.13 As part of the 
NLR family, pyrin domain-containing 3 (NLRP3), is activated 
by various PAMPs and DAMPs including ROS, FFAs, ATP, and 
mitochondrial DNA. Both mitochondrial and NOX-generated 
ROS have been shown to activate NLRP3 and lead to down-
stream induction of inflammasome complexes. Once stimu-
lated, these inflammasomes initiate the release interleukin 
(IL)-1β) and IL18 via caspase-1 activation. These pro-in-
flammatory cytokines are well known to precipitate hepato-
cyte necrosis and to contribute to the development of he-
patic fibrosis orchestrated by NFkB downstream signaling.41

Potential therapeutic targets

Given the increasing interest to determine the association 

between oxidative stress and MAFLD development, endog-
enous antioxidant pathways have been a target of interest 
for therapeutics. Nrf2 is known to be a master regulator of 
cell defenses by modulation of cellular anti-oxidant respons-
es and its anti-inflammatory and cytoprotective properties. 
Nrf2 is activated in both acute and chronic states of oxi-
dative stress, and through regulating the gene expression 
of cytoprotective enzymes and proteins, there is a reduc-
tion in ROS generation with subsequent reduction in oxida-
tive damage, inflammation and cell apoptosis.42 Research 
has shown Nrf2 is a key modulator in the natural defense 
against MAFLD and studies to support this show that loss of 
Nrf2, or Nrf2 deletion accelerates the progression of MAFLD 
in mouse models.43,44

Given these findings, there is enormous interest in ex-
ploiting the therapeutic potential of Nrf2 activation. Du et 
al.45 found that though using osteocalcin, a small protein 
found in bone and dentin which activates Nrf2, there could 
be reduction in oxidative stress and inhibition of the JNK 
pathway which plays an essential role in MAFLD pathogen-
esis and thus improving disease progression. Studies have 
shown that ezetimibe (a Niemann-Pick-C1-Like 1 inhibitor 
used to treat hypercholesterolemia) and green tea extract 
both promote the protective features of Nrf2 against hepatic 
lipid deposition and the inflammatory response in MAFLD. 
Despite this, Nrf2-related therapeutics remain unlicensed 
for use in MAFLD, and the development of promising agents 
to target oxidative stress in management of this disease 
remains challenging.46,47

Intracellular hepatic lipid accumulation can activate 
Kupffer cells and the release of pro-inflammatory cytokines 
including IL1, TNF-α and IL6 whose effects are known to en-
hance MAFLD progression to fibrosis and cirrhosis.48 A study 
in mice with diet-induced obesity showed that pharmaco-
logical blockade of IL1 using anakinra, a recombinant IL1 
receptor antagonist, significantly improved hepatic steato-
sis by decreasing inflammation and lipogenic gene expres-
sion.49 Although there is currently a lack of research in its 
effects in humans with MAFLD, studies of anakinra in pa-
tients with type 1 and 2 diabetes showed an improvement 
in insulin sensitivity and a reduction is systemic inflamma-
tion, and thus could be a promising therapeutic target in the 
future for MAFLD.50,51

Another attractive therapeutic target, given the relation-
ship between thyroid hormone, hepatic fatty acid, choles-
terol metabolism and MAFLD, is the THRβ receptor. There 
are currently a number of THRβ agonists demonstrated the 
potential to reduce hepatic lipotoxicity and restore function 
in models of MAFLD in clinical trials. Resmetirom is a highly 
specific THRβ agonist designed to improve MAFLD. Its se-
lectivity to the THRβ receptor enhances its safety profile, as 
it has therapeutic effectiveness without the unwanted sys-
temic events in the heart, bones, and thyroid axis through 
activation of THRα. One randomized, double-blind, placebo-
controlled trial in patients with biopsy-confirmed MAFLD 
showed that treatment with resmetirom resulted in a sig-
nificant reduction in hepatic fat at both 12 and 36 weeks. 
Those positive results have initiated a phase 3 multinational 

Table 1.  Overview of recognized molecular targets, pharmacological agents, and clinical trials supporting their use in the treatment of MAFLD

Molecular target Therapeutic agent Clinical trial

Nrf2 activation Broccoli spout/sulforaphane Randomized, placebo control, double-blind trial56

Neimann-Pick-C1 Like 1 inhibition Ezetimibe ESSENTIAL study57

IL1 antagonist Canakinumab CANTOS (cardiovascular trial)58

THRβ receptor agonist Resmetirom Phase 3 multinational trial59

PPAR agonist Pioglitazone Lanibranor TOSCA. IT55; PIVENS60; NATIVE (phase 2b)61
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trial to evaluate long-term outcomes of resmetirom with an 
estimated completion date of March 2024.52,53

Lastly, the PPAR family of nuclear receptor transcription 
factors, has gained interest as a novel therapeutic target in 
MAFLD as their dysregulation is known to affect lipid me-
tabolism, contribute to insulin resistance, inflammation, and 
hepatic fibrogenesis. There are three PPAR isoforms, PPARα, 
PPARβ, and PPARγ, which have varied expression among 
cell types and tissues. PPARα is the main form expressed 
in the liver, but all three isoforms have a role in the regula-
tion of normal liver function. Multiple studies have looked 
into the benefits of activating one or several PPAR forms in 
preclinical models of liver disease with positive outcomes. 
However, pharmacological activation of all three PPAR iso-
forms concomitantly has only recently been investigated.54

A number of studies have shown that pioglitazone, a se-
lective PPARγ agonist, significantly improves hepatic stea-
tosis, inflammation and insulin resistance, independent of 
blood glucose control, in patients with type 2 diabetes.55 
Lanibranor is a pan-PPAR agonist that has been shown to 
reduce portal hypertension and hepatic fibrosis in preclini-
cal models of decompensated cirrhosis in both cirrhotic rat 
models and human liver cells from patients with cirrhosis.54 
Although pioglitazone remains the only PPAR agonist with 
a proven protective role in human MAFLD, these promising 
findings support further work in the development of PPAR 
agonists for their use in liver disease. An overview of poten-

tial therapeutic targets and agents in the future of MAFLD is 
outlined in Table 1.55,56–61

Future directions

With the rapidly rising global prevalence of MAFLD and its 
associated healthcare costs, there is increasing focus on the 
development of novel therapies to prevent, manage or even 
cure this disease.62 The pathogenesis of MAFLD is complex 
and driven by dynamic molecular mechanisms with multi-
faceted, parallel signaling pathways as shown in Figure 1. 
Unfortunately, the direct interplay between the clinical and 
molecular components linked to MAFLD progression remain 
only partly understood. To date, potential treatments of 
MAFLD have typically targeted one of the hallmark patho-
physiological risk factors driving the disease, inflammation, 
steatosis, fibrosis, or the gut microbiota. However, given its 
heterogeneous nature, managing MAFLD through alteration 
of one mechanism is nearly impossible. A general overview 
of the implicit pathophysiological mechanisms linking ROS 
to MAFLD development is presented in Figure 3.9,13,17,41

In order to gain a better understanding of the complex 
biological processes underlying MAFLD development, mul-
tiomics-based strategies have been adopted by research-
ers for hypothesis-free analysis of the molecular changes 
in MAFLD.63 The underlying genomic structure of every cell 

Fig. 3.  General overview of the potential pathophysiological mechanisms linking reactive oxygen species (ROS) to MAFLD development.9,13,17,41 
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within a given organism is principally the same. However, 
the physiological fate of a cell depends on the intrinsic cellu-
lar genome expression signature. Differing phenotypes are 
the result of genotypic alterations and their varying pat-
terns of expression, abnormalities of this typically result in 
disease. Transcriptome profiling is required for the mapping 
of this unique genotype-phenotype association, and there 
are a number of single-cell transcriptome-based projects 
underway that should provide novel physiological insights 
from which translational targets will be derived.64
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