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Range expansion is the spatial spread of a population into previously unoccupied 
regions. Understanding range expansion is important for the study and success-
ful management of ecosystems, with applications ranging from controlling bacterial 
biofilm formation in industrial and medical environments to large scale conserva-
tion programmes for species undergoing climate-change induced habitat disruption. 
During range expansion, species typically encounter competitors. Moreover, the spa-
tial environment into which expansion takes place is almost always heterogeneous. 
Nevertheless, the impact of competition and spatial landscape heterogeneities on range 
expansion remains understudied. In this paper we present a theoretical framework 
comprising two competing generic species undergoing range expansion and use it to 
investigate the impact of spatial landscape heterogeneities on range expansion with a 
particular focus on its effect on competition dynamics. We reveal that the area covered 
by range expansion is highly variable due to the landscape heterogeneities. Moreover, 
we report significant variability in competitive outcome (relative abundance of a focal 
species), but determine that this is induced by low initial population densities and is 
independent of landscape heterogeneities. We further show that both area covered by 
range expansion and competitive outcome can be accurately predicted by a Voronoi 
tessellation with respect to an appropriate metric, which only requires information on 
the spatial landscape and the response of each species to that landscape. Finally, we 
reveal that if species interact antagonistically during range expansion, the dominant 
mode of competition depends on the initial population density; antagonistic actions 
determine competitive outcome if the initial population density is high, but competi-
tion for space is the dominant mode of competition if the initial population density 
is low. These findings enhance our understanding of how competition for space and 
antagonistic interactions affect range expansion in spatially heterogeneous environ-
ments and provide a predictive tool for future species-specific approaches.

Keywords: coexistence, competition, Lotka–Volterra, range expansion, spatial 
heterogeneity
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Introduction

The spread of a population into space previously unoccu-
pied by that population is commonly referred to as range 
expansion. This is a ubiquitous phenomenon. For example, 
range expansion occurs during growth of microbial colonies 
(Hallatschek et al. 2007, Buttery et al. 2012), ecological inva-
sions (Okubo et al. 1989, Hastings et al. 2005, Pejchar and 
Mooney 2009, Fraser et al. 2015), the spread of epidem-
ics (Diekmann 1979, Artois et al. 2018) and even human 
migration (Templeton 2002, Moreau et al. 2011). Notably, 
range expansion is not just a feature of the early history of 
a species (e.g. spread of a new disease), but also occurs due 
to changes to the environment such as those induced by cli-
mate change (with habitats typically shifting towards poles or 
higher elevations) (Hill et al. 2001, Rosenzweig et al. 2007, 
Vos et al. 2008, Wilson et al. 2009). Under current policies, 
climate change is predicted to accelerate species extinction 
and, as of 2015, is estimated to be threatening over 15% of 
species globally (Urban 2015). Therefore, better understand-
ing how range expansion enables species to track shifts of 
habitable environments is becoming increasingly important 
(Rosenzweig et al. 2007). Knowledge of the fundamental 
dynamics that govern range expansion will provide insights 
into the resilience of species to climate change (MacDonald 
and Lutscher 2018) and could provide opportunities for 
landscape management as part of conservation programmes 
(Vos et al. 2008, Wilson et al. 2009). As range expansion 
typically takes place over large spatial scales (compared to the 
size of an individual), populations are likely to encounter spa-
tially heterogeneous landscapes (With 1997, Hill et al. 2001, 
With 2002, Fraser et al. 2015, Crone et al. 2019).

Most ecological systems are underpinned by competitive 
dynamics between species (Levine and HilleRisLambers 2010, 
Valladares 2015). Therefore, during range expansion, popu-
lations typically comprise different species that compete for 
space and resources by means of spatial expansion and other 
competitive interactions. Previous studies have addressed many 
different facets involved in multi-species range expansion; for 
example, interspecific competition has been shown to slow the 
speed of range expansion and also affect the shape of the popu-
lation fronts (Legault et al. 2020); successive range expansion 
of different species has been shown to enable coexistence with 
a fractal-like structure in the population (Goldschmidt et al. 
2017); classical results on non-transitive competitive hierar-
chies have been highlighted to not necessarily apply to multi-
species range expansion (Weber et al. 2014); and genetic 
drift at population fronts during range expansion has been 
shown to lead to a loss of genetic diversity (Hallatschek et al. 
2007). While the impact of spatial heterogeneity in the land-
scape on both the evolutionary dynamics in range expan-
sion (Wegmann et al. 2006, Gralka and Hallatschek 2019) 
and single-species expansion fronts (Kinezaki et al. 2010, 
Hodgson et al. 2012, Möbius et al. 2021) has previously been 
investigated, its impact on competition for space and its inter-
play with other interspecific competition dynamics during 
range expansion remain understudied.

From a theoretical perspective, competition dynamics in 
biological and ecological systems are most commonly char-
acterised by their asymptotic behaviour – often an equilib-
rium state (Chesson 2000, McPeek 2012). However, such an 
approach is not suitable for description of range expansion as 
this asymptotic procedure fails to account for the importance of 
the invasion dynamics (Travis and Dytham 2002, Ghosh et al. 
2015). Instead, non-equilibrium analyses of range expansion 
have been employed that are restricted to a finite time interval 
with results typically reported from a fixed, predefined endpoint 
(Hallatschek et al. 2007, Weber et al. 2014, Goldschmidt et al. 
2017, Legault et al. 2020). The importance of space to com-
petition dynamics in equilibrium settings is a well-explored 
topic. Spatially-extended dynamics are known to enable species 
coexistence at equilibrium in some cases in which competition 
in well-mixed conditions would lead to competitive exclusion. 
One classical example is a tradeoff between dispersal abilities 
and local competitiveness (Levins and Culver 1971, Horn and 
MacArthur 1972). Such a tradeoff creates behavioural niches 
(Whittaker et al. 1973), which enable a locally weaker species 
to persist in a population if it is able to colonise new areas more 
rapidly than its locally superior competitor(s) (Tilman 1994). 
Thus, a tradeoff between local competitiveness and colonisation 
abilities creates a balance that enables coexistence through spa-
tial segregation (Levins and Culver 1971, Horn and MacArthur 
1972, Hassell et al. 1994, Tilman 1994, Gravel et al. 2010). 
Similarly, coexistence in a spatially segregated equilibrium state 
can also be induced by non-transitive competitive hierarchies 
of three or more species, usually referred to as ‘rock–paper–
scissor dynamics’ (Kerr et al. 2002, Reichenbach et al. 2007, 
Avelino et al. 2019, Lowery and Ursell 2019).

Many antagonistic competitive interactions that take 
place in a spatially extended context require, at a fundamen-
tal level, spatial co-location. Hence, competition for space 
and competition through antagonistic actions are intrinsi-
cally linked. To understand the precise dynamics of competi-
tive mechanisms affecting range expansion, it is therefore key 
to first attain knowledge about the role of spatial dynam-
ics, in particular those that lead to spatial segregation. In a 
previous paper, we investigated the role of competition for 
space between two biofilm-forming bacterial strains in the 
specific case of microbial range expansion on spatially homo-
geneous substrates (Eigentler et al. 2022). In brief, we revealed 
that in a homogeneous spatial landscape, the initial popula-
tion density has a significant impact on competitive outcome 
(defined to be the relative abundance of one focal species 
across the whole community). Starting with a fixed 1:1 ratio 
between populations in a spatially homogeneous landscape, 
high initial densities consistently led to an equal competitive 
outcome. By contrast, random seeding of the initial popula-
tion at low densities resulted in highly variable competitive 
outcomes. Furthermore, in Eigentler et al. (2022), we defined 
a predictive tool that could be used to determine competitive 
outcome based solely on the distribution of the initial popu-
lation. In short, the method is as follows. A circle was first 
drawn around the initial population. Next, for each point on 
the circle, the closest initial population patch was determined 
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and the point on the circle labelled correspondingly. Finally, 
this labelling was used to define an index, termed the ‘access 
to free space score’, that quantified the proportion of points 
on the circle associated with each strain (Fig. 1). For fixed 
initial population density, we revealed a remarkably strong 
linear correlation between the access to free space score and 
the competitive outcome of a strain.

In this study, we focus on the interplay of competition 
for space and antagonistic interactions in multi-species 
range expansion that takes place in spatially heterogeneous 
landscapes. We first confirm that, all else being equal, changes 
in a spatially heterogeneous landscape across different 
realisations of range expansion represent an additional source 
of variability. Based on this observation, we investigate 1) 
whether the the random seeding of the initial population 
remains the determinant of variability in competitive 
outcome or whether changes in the spatial landscape become 
dominant; 2) if predictions of spatial spread and competitive 
outcome during range range expansion can be made based on 
the initial population distribution despite the heterogeneities 
in the landscape; and 3) whether competition for space or 
antagonistic interactions are the dominant competitive mode 
during range expansion or whether there is a fundamental 
dependence on the spatially heterogeneous landscape.

We first present the mathematical framework and meth-
ods used in the model analysis in section ‘Theoretical frame-
work’. The results of our model analysis are presented next 
in section ‘Results: Range expansion in 273 spatially hetero-
geneous domains’, where we first focus on competition for 
space (section ‘Competition for space’). Then, we investigate 
the impact of the interplay of spatial dynamics and antagonis-
tic mechanisms (section ‘Antagonistic interactions’). Finally, 
we discuss the implications of our results.

Theoretical framework

Model

Multi-species range expansion can be abstracted to the inter-
play between the key processes of (net) local growth, dispersal 
and interspecific interactions. We capture these dynamics in a 

mathematical framework and account for spatial heterogene-
ity in the landscape by employing space-dependent dispersal 
coefficients and growth rates. These heterogeneities represent 
variations in environmental conditions, such as the availabil-
ity of growth limiting nutrients.

The model describes the dynamics of two generic species 
B1(x,t) and B2(x,t) and tracks their dynamics using as system 
of partial differential equations (PDEs) based on the spatially 
extended competitive Lotka–Volterra equations:
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Here x ∈ Ω is a point in a two-dimensional circular spatial 
domain Ω Ω= { < }2x ∈  :  x R  for some positive constant 
RΩ (arbitrary space units) and time t ≥ 0 (arbitrary time units). 
To preserve generality, we choose a simple, logistic law as a 
representative form of local population growth, where r1(x) ≥ 
0 and r2(x) ≥ 0 denote the maximum growth rates of B1 and 
B2, respectively, and k > 0 the carrying capacity. Note that 
growth is limited by the total population density and again 
for simplicity we assume the carrying capacity to be constant. 
This represents growth limitation due to intraspecific and 
interspecific competition for resources, such as nutrients or 
space. Dispersal is assumed to be random and is modelled by a 
diffusion term. However, diffusion of either species into occu-
pied territories is assumed to be limited by the resident pop-
ulation. This limitation in dispersal is a common feature of 
interacting systems across a range of scales. Examples include 
interacting microbial populations (Stefanic et al. 2015, 

Figure 1. Predictions of competitive outcome in a spatially homogeneous landscape. Three example realisations of Eq. 2.1 on a spatially 
homogeneous landscape with N = 6 initial population patches are shown. The parameter values are r1 = r2 = 5, d1 = d2 = 0.1, c21 = 10 and 
c12 = 50. Note that these parameter values mean that both species are governed by the same growth dynamics in the absence of a competitor, 
but that B2 (green) is the intrinsically stronger species under competition (B1 is shown in magenta). The initial condition is classified by 
drawing a circle around the initial population and determining the closest initial patch to each point on the circle. Note that the visualisa-
tion of the initial condition shows a blow-up of the domain centre only. The scale bar is one unit length in all figures. This figure is adapted 
from (Eigentler et al. 2022) in accordance to its CC-BY 4.0 International license.
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Matoz-Fernandez et al. 2020) and territorial animal species 
(Cozzi et al. 2018). Limitation is accounted for in the model 
through density-dependent flux terms that decrease with total 
population density from their respective maxima d1(x) ≥ 0 
and d2(x) ≥ 0 at B1 + B2 = 0 to zero at B1 + B2 = k (Korolev et al. 
2012) (see the discussion and Supporting information for a 
comparison with standard diffusion). Moreover, upon con-
tact, species are assumed to engage in antagonistic actions 
leading to additional death or growth reduction between both 
species not accounted for by the logistic growth terms. The 
constants c12 ≥ 0 and c21 ≥ 0 denote the respective antago-
nistic rates. For brevity, we refer to these antagonistic inter-
actions as ‘killing terms’. However, we note that that these 
interaction terms could be assimilated into the standard form 
of the Lotka–Volterra equations with intraspecific competi-
tion coefficients r1(x)/k and r2(x)/k and interspecific competi-
tion coefficients r1(x)/k + c12 and r2(x)/k + c21 in Eq. 1a and 1b, 
respectively. Thus, the model makes no explicit assumption on 
the mode of interaction between the species with the excep-
tion that the impact of interspecific competition is assumed to 
be stronger than or equal to the impact of intraspecific com-
petition for each species.

Model initial conditions and simulation

The model (Eq. 1) is solved using a finite element method 
employed by the PDE Toolbox in Matlab (The MathWorks 
Inc. 2020). In all model simulations, RΩ = 10 and the target 
edge length of the finite elements is set to 0.16. Numerical 
integration is stopped before the population reaches the 
boundary of the computational domain Ω. In this way, nei-
ther the non-flux boundary conditions (∇B1·n = ∇B2·n = 0, 
where n denotes the outward normal on ∂Ω) nor the shape 
(circle) of the boundary bear influence on the model solution.

The initial population is assumed to be confined to a sub-
set W W W W W0 0 0

= { < }, <x xÎ :   R R R  in the centre of the 
computational domain Ω. In this paper, we choose RW0

= 2 .  
High initial population densities are represented by spatially 
homogeneous initial conditions in Ω0, i.e. B1(x,0) ≡ k1, 
B2(x,0) ≡ k2 for x ∈ Ω0 with k1 + k2 ≤ k. The representation 
of very low initial population densities requires a different 
approach; at such densities, individuals are not necessar-
ily spread uniformly in space. For example, inoculation of 
low densities of bacterial cells initially leads to the formation 
of small, spatially segregated microcolonies (Eigentler et al. 
2022), and invasion of mammal species into previously unoc-
cupied habitats typically originate from a small number of 
individuals (Middleton 1930, Campbell et al. 2012). To 
represent this initial clustering in the model, each species is 
initially confined to a number of small patches within Ω0 in 
which their density is set to carrying capacity. Unless other-
wise stated, the locations of these initial patches are chosen 
uniformly at random in Ω0 with no overlap and their total 
number is denoted by N Î . For brevity, we refer to this 
type of initial condition as a patch initial condition through-
out the manuscript. Computationally, the spatial mesh used 
to numerically solve the model imposes restrictions on the 

location and size of such patches. Therefore, we randomly 
choose the initial patch positions for each species from the set 
of mesh nodes in Ω0 and set that species to carrying capac-
ity at the nodes and to zero everywhere else. It is noted that 
depending on the spatial scale and precise application of the 
model, initial patches created by this method may be larger 
than the size of a single individual. In these cases, it is rea-
sonable to assume that such patches can be identified with 
single individuals (or breeding pairs) that were initially able 
to reproduce without interaction with competitors.

Competitive outcome

For species B1, we define the competitive outcome of multi-
species range expansion to be a time-dependent function, 
B t1 ( )

W
, quantifying the relative abundance of species B1 

across the whole computational domain at time t > 0. This 
is given by

B t
B t d

B t B t d
1

1

1 2

( ) :=
( , )

( , ) ( , )

W
W

W

ò
ò +( )

x x

x x x
.

We focus mainly on competitive outcome at the chosen end-
point t = tfinal of the model integration, but refer to the tempo-
ral dynamics of this quantity where appropriate. The chosen 
value of tfinal (here tfinal = 5) is sufficiently large to ensure the 
area covered by range expansion is significantly larger than the 
area of Ω0 in which the initial population patches are placed, 
but sufficiently small so that the population does not reach 
the boundary of the computational domain Ω during the 
simulation. Note that competitive outcome for B2, denoted 
by B2

W
, is given by B B2 1= 1

W W
- . Due to this simple rela-

tionship and for ease of exposition, throughout the paper we 
only refer to the competitive outcome for species B1.

Area covered by range expansion

We further quantify the area covered by range expansion. 
Like competitive outcome, the area covered by range expan-
sion, A(t), is defined to be a time-dynamic quantity that mea-
sures the area in which the total population exceeds 10% of 
the carrying capacity at time t > 0. This is given by

A t B t B t k( ) : ( , ) ( , ) >
101 2= Area x x xÎ +

ì
í
î

ü
ý
þ

æ

è
çç

ö

ø
÷÷W ,

where Area(·) denotes the area of a set in the Euclidean sense.

Front propagation metric

The relation between Euclidean distance and propagation 
time used in defining the access to free space score in homo-
geneous environments (Eigentler et al. 2022) does not hold in 
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spatially heterogeneous landscapes. Therefore, in this section, 
we define new tools to predict competitive outcome that take 
into account spatial heterogeneities in the landscape.

In order to make predictions regarding competitive out-
come, we first determine the times that a population initially 
located in a small patch at x ∈ Ω would take to propagate 
from x to some distant point y along each possible path in the 
absence of any competitive interaction. We then define the 
front propagation metric to be the shortest such time taken. 
This approach is motivated by earlier work on single-species 
range expansion which showed that a ‘least-time principle’ 
accurately predicts range expansion trajectories (Möbius et al. 
2021). A rigorous definition is as follows. Denote the set of 
all paths from x to y by 

( , )x y : = {P = p([0,1]) ⊂ Ω,

where p:[0,1] → Ω:p is piecewise smooth, p(0) = x, p(1) = y}. 
For a given path P Î( , )x y , the time taken to move along 
the path is given by

I P
c

ds
c p

p d
P

( ) := 1
( )

= 1
( ( ))

( )
0

1

ò ò ¢
x t

t t  ,

where 0 < c(x) < ∞ represents the propagation speed along 
the path P. The propagation speed c(x) varies across the spatial 
domain due to the heterogeneous landscape. We define the 
front propagation metric from x to y as the shortest time to 
propagate from x to y along any path, i.e.

t I P
P

FP( , ) := ( )
( , )

x y
x yÎ
inf .  (2)

The infimum exists because I(P) ≥ 0. We show in the 
supplement (Supporting information) that tFP(x,y) is a metric 
in the mathematical sense.

Note that for our definition of the front propagation 
metric tFP to hold, certain conditions are required on c(x) to 
guarantee that the integral in Eq. 2 exists. Choosing c(x) to 
be piecewise smooth would be sufficient and we believe this 
condition could be considerably relaxed. Moreover, we note 
that for computation of tFP, spatial structure of the landscape 
is required to occur on the same (or coarser) scale than that 
of the domain discretisation to ensure accuracy. However, 
theoretically, the definition may fail on landscapes that have, 
for example, a full fractal structure to an infinitesimal level. 
In such cases, it is not clear whether the set ( , )x y  includes 
the shortest path between x and y. Hence and given that we 
are principally interested in the numerical implementation 
of the metric, we do not pursue a definitive set of necessary 
conditions on the propagation speed here.

It is well known that pulled travelling wave solutions (that 
is, wave fronts whose dynamics are governed only by their 
leading edges where linear terms dominate) exist for system 
Eq. 1 in spatially homogeneous domains. The minimum 
speed of these travelling waves is given by c rd= 2 . It can 

be shown that a large class of front solutions to system Eq. 
1 asymptotically approach the dynamics of this minimum 
speed travelling wave (Stokes 1976). For spatially heteroge-
neous landscapes, we therefore reasonably assume the local 
front propagation speed to be c r d( ) = 2 ( ) ( )x x x  for all x 
∈ Ω. Numerical simulations confirm that this is indeed a 
reasonable approximation and is in agreement with earlier 
results (Korolev et al. 2012). Finally, we assume that both 
species undergo the same growth and diffusion dynamics in 
the absence of a competitor species (i.e. r1(x) = r2(x) =: r(x) 
and d1(x) = d2(x) =: d(x)). In this case, the expansion fronts of 
both species are governed by the same expansion speed. We 
provide more information on relaxing this assumption in the 
Discussion section and the Supporting information.

Numerically, tFP is computed by discretising the com-
putational domain Ω into a weighted graph and applying 
Dijkstra’s algorithm. Nodes of the graph are defined to be 
the centres of the finite elements of the domain discretisa-
tion. Graph edges connect graph nodes of elements that 
share edges of the finite elements. Graph edges are weighted 
by the time a front would require to travel along the edge, 
with its speed being approximated by the mean of the front 
speeds c(x) evaluated at both nodes. In other words, a graph 
edge connecting graph nodes at positions x and y is assigned 
weight  x y x x y y- +/( ( ) ( ) ( ) ( ))r d r di i i i . Crucially, cal-
culation of tFP only requires as input the front propagation 
speed c(x). Therefore, computational cost is independent of 
the complexity of the corresponding PDE system. Finally, we 
note that tFP could alternatively be computed by numerically 
solving the Eikonal equation using the fast marching method 
(Möbius et al. 2021).

Voronoi tessellations

We now define a classification of the initial condition by per-
forming a Voronoi tessellation with respect to the metric tFP. 
That is, given N Î  initially occupied patches centred at 
x1,…xN ∈ Ω0 we denote by DW

B1
 and DW

B2
 the sets that com-

prise points closest to initial patches of B1 and initial patches 
of B2, respectively. These sets are defined by

D WW
Bi

i
FP

j
FPt i j:= : ( , ) ( , ),x x x

k
kÎ £ ¹

ì
í
ï

îï

ü
ý

Î Îy y 
min min  lt y y

l

ïï

þï
,

where i iB i:= { , } : ( ,0) > 0 , = 1,2x x x x1 NÎ{ } .
This Voronoi tessellation provides a classification for the 

whole computational domain (D D WW W
B B1 2

=È ). Therefore, 
it cannot provide a prediction of range expansion properties 
for times before the population reaches the boundary of the 
domain. To account for the time dynamics, we modify the 
Voronoi tessellation by restricting it to sets providing an esti-
mate for regions in Ω occupied by each species at any given 
time t (with the proviso that no competitive interactions take 
place). This is achieved by defining the Voronoi sets
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D DW
Bi Bi

i
FPt t t i( ) := : ( , ) , = 1,2x x y

y
Î £

ì
í
ï

îï

ü
ý
ï

þïÎ
min . 

The Euclidean area of these sets provides an upper bound for 
the area covered by each species in our model. Therefore, the 
Euclidean area of the union of Voronoi sets D DB Bt t

1 2
( ) ( )È  

represents an estimate of the area covered by range expansion 
of the whole population at time t, as defined above.

Finally, we use these restricted sets to classify the initial 
condition for species Bi, i = 1, 2, using a single number Vi(t) 
∈ [0,1], termed the Voronoi index Vi(t). The index is defined 
to be the relative area of ΔBi(t), i.e.

V t
t

t t
ii

Bi

B B

( ) :=
( )

( ) ( )
, = 1,2

1 2

Area

Area Area

D

D D

( )
( ) + ( )

.

where Area(·) denotes the total area of a set (or collection of 
sets) in the Euclidean sense.

Intraspecies connectedness

Lastly, we define the notion of intraspecies connectedness. 
Essentially, this captures the number of distinct sectors asso-
ciated with each species that arise via the Voronoi tessella-
tion detailed above. Denote the boundary of the union of 
Voronoi sets D DB Bt t

1 2
( ) ( )È  by Γ(t). We then classify points 

on Γ based on which Voronoi set they belong, i.e. we define 
G G DBi Bi

t t i( ) := { : ( )}, = 1,2x xÎ Î . Finally, the intra-
species connectedness, M, is defined to be half the num-
ber points in the intersection between GB t

1
( )  and GB t

2
( ) ,  

i.e. M t t tB B( ) = #( ( ) ( )) / 2
1 2

G GÇ . Note that the intersec-
tion between GB t

1
( )  and GB t

2
( )  either contains zero or an 

even number of points. The intersection is finite because the 
intersection between the Voronoi sets DB t

1
( )  and DB t

2
( )  is 

a union of one-dimensional curves along which points are 

equidistant from initial patches of B1 and B2. Evenness fol-
lows from the closed shape of Γ (Fig. 2).

Results

Range expansion in spatially heterogeneous domains

With the methods for model analysis in place, we can now 
determine the effect of spatial landscape heterogeneities. 
For simplicity, we randomly split the landscape Ω into two 
types of environment in each independent model realisation. 
One type represents favourable environmental conditions 
(large r1, r2, d1, d2) and the other signifies challenging envi-
ronmental conditions (small r1, r2, d1, d2). We assume that 
the environment remains fixed over the duration of a model 
simulation. There exist many methods to split the domain 
into favourable and challenging regions. In this section, we 
present results for domains that are obtained by linking the 
parameter landscape to a random surface with monofractal 
structure (see Supporting information for details). However, 
we show in the supplement that results do not depend on this 
particular choice of heterogeneity by confirming that they 
hold for other forms of spatially heterogeneous landscapes 
(Supporting information). In all heterogeneous landscapes 
considered, the dominant scale (defined by the largest con-
nected region of one environment type) is large compared to 
the width of the travelling front (i.e. the region in which 0 
< B1 + B2 < k). However, isolated smaller patches may exist 
(Fig. 3). The assumption that the propagation speed can 
be approximated by c r d( ) = 2 ( ) ( )x x x  may not hold in 
such patches due to their size. However, we do not expect 
these errors to significantly affect overall predictions and 
results because small patches have been shown to have neg-
ligible long-term effects on the dynamics of range expansion 
(Möbius et al. 2021).

Figure 2. Voronoi tessellation with respect to front propagation metric. A Voronoi tessellation, i.e. the sets DB t
1
( )final  (magenta) and 

DB t
2
( )final  (green), where tfinal = 5, with respect to the front propagation metric tFP is shown (right). The boundary of their union, used to 

calculate the intraspecies connectedness M(tfinal) is highlighted. The initial cell patches are shown by black markers and are also visualised 
separately (middle). Note that the middle column shows a blow-up of the centre of the computational domain only. The scale bars are one 
unit length long. The underlying spatially heterogeneous domain is shown in the left column. Grey areas indicate good environmental 
conditions with r = 5, d = 0.1 and white areas indicate challenging environmental conditions with r = 2.5, d = 0.05.
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Competition for space

We start by restricting our focus on competition for space 
only. We do so by considering the dynamics of two differ-
ently labelled, but otherwise identical species B1 and B2. In 
terms of the model parameters, this scenario is achieved by 
setting d1 = d2 =: d, r1 = r2 =: r, c12 = c21 = 0. Unless otherwise 
stated, we use k = 1 throughout and d = 0.1, r = 5 to charac-
terise favourable environments and d = 0.05, r = 2.5 to char-
acterise challenging environments. Note that the parameters 
are chosen so that the width of the expansion front is small 
compared to the size of the region behind the front where the 
population is at carrying capacity. This is a realistic assump-
tion in many contexts, for example the description of bacte-
rial biofilms (Hallatschek et al. 2007), and modelling of plant 
ecosystems (Hoffmann et al. 2012, Yatat et al. 2018).

Landscape changes cause variability in competitive outcome 
and area covered by range expansion
We start by considering only changes in the parameter land-
scape across different model realisations. To cover a wide 
range of different parameter landscapes, we opt for a Monte 
Carlo approach in which 500 model realisations with inde-
pendently chosen parameter landscapes (but fixed initial pop-
ulation distributions with a 1:1 ratio between both species) 
are performed for each of 18 chosen initial population densi-
ties covering three orders of magnitude in initial number of 
patches (from N = 2 to N = 500).

As highlighted by the example visualisations shown in 
Fig. 3 for N = 6, changes to the spatial landscape cause 

variability in competitive outcome and area covered by the 
range expansion. The same trends are observed for other ini-
tial population densities within our test range. Moreover, 
the range of competitive outcome decreases with increasing 
initial population density and the mean competitive out-
come varies across initial population densities (Supporting 
information). We remark that this variability in competitive 
outcome highlights that the access to free space score used 
to predict competitive outcome in spatially homogeneous 
landscapes (Eigentler et al. 2022) is unsuitable as a predic-
tor for the heterogeneous landscapes considered here. This 
is because the access to free space score depends only on 
spatial location of the initial population and thus would 
generate the same prediction for each model realisation. 
Success of the access to free space score predictions relies 
on constant propagation speeds throughout the domain, 
a property that does not hold in spatially heterogeneous 
landscapes. Hence, the alternative method detailed above 
is applied in this paper. As expected based on experimental 
literature (Gralka and Hallatschek 2019, Borer et al. 2020), 
our results show that, all else being fixed, spatial heterogene-
ities have a significant influence on range expansion in our 
theoretical framework.

Changes to initial population distribution cause variability 
only in competitive outcome
Next, we fix the parameter landscape and only change the 
initial population distribution across independent model 
realisations. Performing a Monte Carlo simulation in 
this setting reveals that changes in the initial population 

Figure 3. Spatial heterogeneities impact single model realisations. Four model realisations with identical initial conditions but different 
spatial domains are compared. (a) shows a model realisation on a spatially homogeneous domain, (b–d) on different spatially heterogeneous 
domains. For each triplet of plots, the left column shows the spatial structure of the domain. Good environmental conditions are shown in 
grey. The middle column shows the initial condition of the system in a blow-up of the centre of the spatial domain. The right column shows 
the model result at the defined endpoint. The scale bars are 1 unit length long. Species B1 is displayed in magenta, species B2 in green.
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distribution on a fixed landscape lead to variability in 
competitive outcome that decreases with increasing popu-
lation density (Supporting information). However, no vari-
ability in the area covered by range expansion is observed 
(Supporting information). These results are in agreement 
with earlier work on a (fixed) spatially homogeneous envi-
ronment on which the initial population distribution was 
varied (Eigentler et al. 2022).

Motivated by the results of this and the preceding sec-
tion, we address in the remainder of this section how the two 
possible sources of variability (changes to initial population 
distribution and changes to spatial landscape) interact with 
each other. We investigate 1) whether one source of variabil-
ity dominates; and 2) if predictions of competitive outcome 
and area covered can be made based on the landscape and 
initial population locations. Finally, in the following section  
we investigate 3) what the dominant mode of competition is 
if species interact antagonistically.

Variability in competitive outcome is a function of initial 
population density
We next extend our Monte Carlo approach by independently 
choosing at random both the parameter landscape and initial 
population distribution (keeping the initial species ratio fixed 
at 1:1) in each model realisation to assess how simultaneous 
changes of both properties affect range expansion. In model 
realisations representing high initial population densities, 
represented by spatially homogeneous initial conditions, only 
the parameter landscape is varied.

Simulations reveal that for each fixed initial popula-
tion density, competitive outcome B ti

W
( )final  varies across 

independent model simulations. The observed mean 
m( ( )) 0.51B t

W

final »  for each initial population density and 
variability (i.e. standard deviation) in competitive outcome 
B ti

W
( )final  is maximal (s( ( )) 0.151B t

W

final » ) for 4 ≤ N ≤ 
20 and decreases with increasing initial population density 
for N > 20 (s(( ( ))) 0.0651B t

W

final »  for N = 500) (Fig. 4, 
Supporting information). For high initial population den-
sities (represented by spatially homogeneous initial condi-
tions), spatial homogeneity is preserved and a 1:1 initial ratio 
consistently leads to a competitive outcome B ti

W
( ) = 0.5final ,  

despite the changing parameter landscape across different 
model realisations (Supporting information). [We also note a 
decrease in variability of competitive outcome if the number of 

initial patches is decreased to N = 2 (s( ( )) 0.1161B t
W

final » ).  
This also occurs in spatially homogeneous environments and 
we refer to (Eigentler et al. 2022) for an interpretation of this 
phenomenon.] The reported trends and the observed ranges 
of competitive outcome are very similar to those reported 
from spatially homogeneous domains (Eigentler et al. 2022), 
Supporting information). Therefore, we conclude that the 
initial population density remains the main determinant 
of variability, despite the landscape changes across different 
model realisations.

Variability in area covered by range expansion is determined 
by spatial heterogeneities
Analysis of data obtained through the Monte Carlo approach 
further reveals variability in the area covered by range expan-
sion (Fig. 5, Supporting information). The extent of the vari-
ability is approximately identical across all initial population 
densities (σ(A(tfinal) ≈ 42)). Recall that such variability is 
not observed if the parameter landscape remains unchanged 
across different model realisations. Combined, we conclude 
that variability in the area covered by range expansion is inde-
pendent of the initial population density. Instead, it is caused 
by changes in the spatially heterogeneous landscapes across 
different model realisations.

Finally we note that the area covered by range expansion 
is increasing and saturating with increasing initial population 
density, which leads to a decrease and saturation of relative 
standard deviation.

Voronoi tessellations predict range expansion, competitive 
outcome and spatial structure
We now detail how the Voronoi tessellations and the Voronoi 
index Vi(t) determine a predictive relationship between 
the location of the initial patches and the resulting growth 
dynamics. Using the data from the Monte Carlo approach 
defined above, the following relationships were established.

First, the Voronoi tessellations provide accurate estimates 
of the area covered by the population during range expansion 
(Supporting information).

Second, the Voronoi index Vi(t) and competitive outcome 
B ti

W
( )  are approximately linearly correlated for each initial 

population density. Thus, for fixed initial population density, 
the Voronoi index acts as an accurate predictor of competi-
tive outcome (Fig. 6). The accuracy of these predictions is 
similar to that reported from the spatially homogeneous 
case for which an alternative prediction method was used 
(Eigentler et al. 2022). The predictive power of the Voronoi 

100 101 102
0

0.5

1

Figure 4. Variability in competitive outcome for identical species is 
a function of initial population density. The relation between initial 
population density and competitive outcome for the full dataset 
obtained through our Monte Carlo approach is shown. For results 
using different choices of spatially heterogeneous parameter land-
scapes see the Supporting information.
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index is time-invariant, even though both the Voronoi index 
Vi(t) and the competitive outcome B ti

W
( )  are dynamic 

quantities that evolve over time during range expansion 
(Supporting information).

Third, the slope of the relation between the Voronoi 
index Vi(t) and competitive outcome B ti

W
( )  is decreasing 

with increasing population density. The Voronoi tessellations 
accurately predict the spatial structure of the model solutions 
if the initial population density is low (Fig. 6b). This further 
translates to an approximate identity between the Voronoi 
index Vi and competitive outcome Bi

W
 for low initial popu-

lation densities (i.e. V Bi i»
W

). This occurs because species 
remain spatially segregated during range expansion and only 
colonise those areas closest to their initial patches. By con-
trast, the short distances between initial patches at high initial 
population densities lead to the development of more regions 
of overlap between the two species in the model solutions over 
time. These regions of overlap are not captured by the binary 
nature of the Voronoi tessellations (Fig. 6d, f ) leading to devi-
ations from the approximate identity between Voronoi index 
and competitive outcome. In these cases, changes in the initial 
patch configuration as measured by the Voronoi index have 
a smaller impact on competitive outcome (cf. Fig. 6a, c, e),  
which leads to the somewhat counter-intuitive conclusion 
that competition for space between the two species becomes 
stronger as the initial population becomes more scarce.

The results above were obtained for a range of fixed ini-
tial population densities, all of which were initiated with 
a 1:1 ratio between species (i.e. B B1 2(0) = (0) = 0.5

W W
). 

However, the predictive power of the Voronoi index Vi(t) is 
robust to variations in initial population ratio as is shown 
by additional model simulations with fixed initial popula-
tion density and uniformly randomly chosen initial species 
ratio (i.e. B1 (0) (0,1)

W
  ) (Supporting information). 

While simulations show that increases in initial abundance 

of a species confers (on average) a competitive advantage, the 
Voronoi index Vi(t) provides a more accurate prediction of 

competitive outcome B ti

W
( )final  than the initial abundance 

of the species Bi

W
(0)  (cf. Supporting information).

Antagonistic interactions

We next consider species that interact antagonistically and 
investigate the relation between this interaction and spatial 
dynamics in range expansion. To this end, we set the coef-
ficients in the killing terms to be positive, i.e. c12 > 0 and 
c21 > 0. We assume that species undergo the same growth 
dynamics in the absence of a competitor species (i.e. d1 = d2, 
r1 = r2, but see section ‘Discussion’ and Supporting informa-
tion for a discussion on relaxation of this assumption) and 
set c12 = 5c21 to create a strong asymmetry between the killing 
strengths. Note that in the absence of spatial dynamics, the 
model reduces to the competitive Lotka–Volterra equations. 
In the Lotka–Volterra model, stability of both single-species 
equilibria occurs, with the asymptotic solution behaviour 
depending on both model parameters and initial condition 
(bistability). For our parameter choice, convergence to the 
single-species equilibrium of B2 occurs provided B1(0)/B2(0) 
< 5. Since we typically use a 1:1 initial ratio in our analysis, 
we refer to B2 as the intrinsically stronger species through-
out this section. Unless otherwise stated, we use the same 
growth and diffusion parameters as and set c21 = 10, c12 = 50 
and k = 1. Note the order of magnitude difference between 
the killing coefficients and other model parameters. The large 
size of the killing coefficients ensures that coexistence (in a 
non-spatial sense) cannot occur as a long transient state.

Antagonistic interactions are the dominant mode of 
competition for high initial population densities only
We again perform Monte Carlo simulations with fixed initial 
species ratio, but randomly chosen locations of initial popu-
lation patches, and randomly chosen landscapes. Resulting 
data show that for high initial population density (using both 
the patch initial conditions with large N (Fig. 7a, Supporting 
information) and spatially homogenous initial conditions (not 
shown)), competitive exclusion of the weaker species occurs 

consistently ( B t1 ( ) < 0.01
W

final ). By contrast, coexistence 
(through spatial segregation) is generally possible for lower 
initial population densities, but independent model realisa-
tions yield variable competitive outcomes with the extent of 
variability being similar to that observed for identical species 

(s( ( )) 0.151B t
W

final »  for 2 < N < 20; Fig. 7b–c, Supporting 
information). Further, similar to the case of identical species, 
variability in competitive outcome increases with decreasing 
initial population density (Fig. 7d, Supporting information). 
However, in contrast to the case of identical species, the mean 

competitive outcome B1

W
 decreases with increasing initial 

population density N. This shows that killing becomes the 
dominant mode of competition as the initial population den-
sity increases. It is important to note that a comparison with 

100 101 102
0
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Figure 5. Landscape heterogeneity determines variability in area 
covered by range expansion. The relation between initial population 
density and area covered by range expansion is shown for the full 
dataset obtained through our Monte Carlo approach for identical 
species. For results using different choices of spatially heterogeneous 
parameter landscapes see the Supporting information.
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Figure 6. Voronoi tessellations predict competitive outcome. The relation between the Voronoi index V1 and competitive outcome B1

W
 is 

visualised (blue dots) for three different initial population densities in (a, c, e). A line of best fit (black dashed) to the data is shown. For each 
initial population density, example model realisations are shown in (b, d, f ). The first column in each of (b, d, f ) shows the spatially hetero-
geneous domain; the second column shows the initial condition as a blow-up of Ω0; the third column shows the prediction obtained by the 

Voronoi tessellation and the Voronoi index V1; and the last column shows the densities at t = tfinal, and the competitive outcome B1

W
. 

Species B1 is displayed in magenta, species B2 in green. Note that the boundaries between Voronoi sets in spatially homogeneous subsets of 
the spatial domain do not appear as perfect straight lines because the spatial discretisation of the domain in the calculation of the Voronoi 
sets. For results using different choices of spatially heterogeneous landscapes see the Supporting information.
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data from spatially homogeneous environments highlights 
that landscape changes across different model realisations 
do not increase the range of competitive outcomes observed 
(Eigentler et al. 2022, Supporting information).

Finally, similar to the case of identical species, variability 
in area covered by range expansion is high for all initial popu-
lation densities (σ(A(tfinal)) ≈ 41; Fig. 7e, Supporting infor-
mation). Mean area covered increases slightly with increasing 
initial population density. Again, no variability occurs in 
spatially homogeneous landscapes (Eigentler et al. 2022) or 
if the heterogeneous landscape remains fixed across different 
model simulations (Supporting information). Thus, we con-
clude that variability in area covered by range expansion is 

determined by the landscape changes across different model 
realisations, even if species interact antagonistically.

Competition for space is the dominant competitive mode for 
low initial population densities
Similar to the case of identical species, Voronoi tessellations 
provide an accurate prediction of the area covered by the 
range expansion (Supporting information). Moreover, for 
each given initial population density, the Voronoi index V1 is 

correlated with competitive outcome B1

W
 (Fig. 8). However, 

for fixed Voronoi index V1, high initial population densities 
yield lower competitive outcomes than low initial population 
densities on average (cf. Fig. 8a, c). This is in agreement with 

Figure 7. Model simulation data for two antagonistic species. Example model realisations are shown in (a–c) for a selected choice of initial 
population densities. The first column in each of (a–c) shows the spatially heterogeneous domain with grey areas indicating favourable 
environments; the second column shows the initial condition as a blow-up of Ω0; the third column shows the prediction obtained by the 
Voronoi tessellation, the Voronoi index V1 and the intraspecies connectedness M; and the last column shows the densities at t = tfinal and the 

competitive outcome B1

W
. Species B1 is displayed in magenta, species B2 in green. The relation between initial population density and 

competitive outcome B1

W
 is shown in (d). In (e), the relation between initial population density and area covered by range expansion is 

shown. For results using different choices of spatially heterogeneous landscapes see the Supporting information.
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the dependence of the average competitive outcome on the 
initial population density shown in Fig. 7d. Combined, this 
highlights that competition for space takes over from antago-
nisms as the dominant competitive mode as the initial popu-
lation density decreases.

Intraspecies connectedness refines predictions of competitive 
outcome
By definition, the Voronoi index Vi does not account for 
antagonistic interactions between two species. This leads to 

a slight decrease in accuracy of the predictions of competi-
tive outcome compared with the case of identical species (cf. 
Fig. 6a, 8a). We therefore refine our prediction by taking into 
account the intraspecies connectedness, M, of the initial pop-
ulation . We hypothesise that the more the initial population 
is separated into connected regions, the less these populations 
interact during range expansion (essentially, the inter-species 
boundary is shorter). Indeed, our data show that for fixed 
Voronoi index V1, high intraspecies connectedness (low M) 
is beneficial to the weaker species B1 and leads to a higher 

Figure 8. Voronoi tessellations and intraspecies connectedness predict competitive outcome for two antagonistic species. The relation 

between the Voronoi index V1 and competitive outcome B1

W
is visualised (blue circles) for two different initial population densities in (a, 

c). A line of best fit (black dashed) to the data is shown. In (b, d), the data shown in (a, c) is filtered by the intraspecies connectedness M. 
Dashed lines indicate lines of best fit to the filtered data. Note that there are 263, 218 and 17 data points for M = 1, M = 2 and M = 3, 
respectively, in (b) and 65, 331 and 104 data points for M ≤ 2, 3 ≤ M ≤ 4 and M ≥ 5, respectively, in (d). For results using different choices 
of spatially heterogeneous landscapes see the Supporting information.
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competitive outcome B1

W
 and vice versa. We confirmed that 

application of the intraspecies connectedness M as a filter to 
the Voronoi index V1 increases the accuracy of predictions of 
competitive outcome B1

W
 if the initial population density is 

low (Fig. 8b, d).

Discussion

Previous theoretical and experimental studies have uncovered 
a wide range of (potentially species-specific) mechanisms 
underpinning competition during multi-species range expan-
sion (Burton et al. 2010, Richter et al. 2012, Weber et al. 
2014, Goldschmidt et al. 2017, Aguilera et al. 2019, 
Legault et al. 2020). In this paper, we address the impact of 
spatial heterogeneities in environmental conditions on com-
petition within multi-species range expansion. We reveal that 
1) predictions of area covered and competitive outcome can 
be made using a Voronoi tessellation with respect to a suitable 
metric; 2) for high initial population densities, antagonisms 
are the dominant mode of competition during range expan-
sion, while for low initial populations densities, the initial 
distribution determines competitive outcome; 3) the initial 
population density is the main determinant of variability in 
competitive outcome; and 4) landscape heterogeneities are 
the main cause of variability in the area covered by range 
expansion.

We highlight that during range expansion of identical 
(but differently labelled) species, the initial species distribu-
tion determines competitive outcome (Fig. 6). The impor-
tance of the initial species distribution has previously been 
highlighted in the context of microbial range expansion (van 
Gestel et al. 2014, Bronk et al. 2018, Goldschmidt et al. 
2021, Eigentler et al. 2022) and occurs because the identical 
species engage in a ‘race for space’. We utilise the importance 
of the spatial dynamics to show that spatial structure and 
global outcome can be predicted accurately by a Voronoi tes-
sellation with respect to an appropriate metric (Fig. 6b, d, f ) 
This predictor requires as input only information on the spa-
tial structure of the environment, the response of each spe-
cies to the environment and the initial species distribution. 
Crucially, no information about the interaction between the 
species is needed. Indeed, the assumption that descendants 
colonise areas closest to their ancestors has been experimen-
tally verified (in spatially homogeneous environments only) 
using microbial species (Lloyd and Allen 2015, Chacón et al. 
2018). While the assumption that competing species are 
identical is restricting in practice, it presents the ideal test 
case to reveal the impact of spatial dynamics on competition 
for related species and forms a basis for further investigation 
of multi-species range expansion in which other competitive 
interactions occur.

Our analysis reveals that during multi-species range expan-
sion in which species interactions are subject to antagonistic 
actions, competition for space remains the dominant mode 
of competition for low initial population densities, even if the 

strength of antagonistic actions between species is strongly 
skewed (Fig. 8). This asymmetry prevents the Voronoi index 
and tessellations predicting spatial structure and competitive 
outcome with the same degree of accuracy as in the case of 
identical species (cf. Fig. 6b and 7c for example). However, 
accuracy can be improved by filtering data with respect to 
intraspecies connectedness – an estimate of the total length 
of species-to-species interface based on the initial conditions 
(Fig. 8b, d). The dominance of competition for space over 
antagonistic mechanisms for low initial population densities 
is in agreement with modelling studies and field observations 
that show that traits enhancing dispersal abilities are selected 
for within population fronts during range expansion (Travis 
and Dytham 2002, Phillips et al. 2008).

Our model analysis highlights that if species interact 
through antagonistic actions, species coexistence can occur 
through spatial segregation with limited overlap between the 
species along species-to-species interfaces. Therefore, spatial 
segregation offers protection from competitors. In particu-
lar, the majority of the population within the expansion 
front is unaffected by the antagonistic actions. This enables 
an intrinsically weaker species to coexist with a stronger 
competitor, provided the former is able to spatially segre-
gate from its competitor in the early stages of range expan-
sion. This highlights that classical mechanisms commonly 
associated with enabling coexistence, such as a tradeoff 
between local competitiveness and dispersal abilities (Levins 
and Culver 1971, Horn and MacArthur 1972, Hassell et al. 
1994, Tilman 1994, Gravel et al. 2010) or non-transitive 
competitive hierarchies (‘rock–paper–scissors’) (Kerr et al. 
2002, Reichenbach et al. 2007, Avelino et al. 2019, Lowery 
and Ursell 2019) are not necessarily required for coexistence 
to occur. Instead, our results show that spatial dynamics 
alone are sufficient to generate coexistence in range expan-
sion originating from low initial population densities.

The model revealed that, on average, spatially hetero-
geneous landscapes do not affect competitive outcome. 
However, outcomes from single realisations can be affected 
greatly by domain heterogeneities (Fig. 3). Moreover, vari-
ability in the area covered by range expansion is induced by 
spatial heterogeneities, independent of the initial population 
density (Fig. 5, 7e). These results highlight the importance 
of considering landscape heterogeneities when implement-
ing human-driven interventions in ecological systems. Our 
results predict that in cases where large numbers of organisms 
are introduced and undergo range expansion simultaneously 
(e.g. in the addition of biofertilizers to soil, Arroyave-
Toro et al. 2017, Calvo-Garrido et al. 2019), spatial landscape 
heterogeneities would be rendered insignificant. By contrast, 
landscape heterogeneities and initial population distribu-
tions would need to be carefully considered in applications 
for which only a small number of individuals are added into 
a system (e.g. rewilding of mammals, Lorimer et al. 2015).

We focussed our analysis on a generic competition model 
in which dynamics of species in the absence of interspecific 
competition are governed by logistic growth and diffusion. 
However, we argue that our method could be extended to 
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species whose growth and dispersal behaviour is governed by 
other functional responses. Generalisation would only require 
the calculation/estimation of the front propagation speed 
c(x) used in the definition of the front propagation metric 
tFP. If front expansion dynamics cannot be approximated by 
pulled travelling waves, the front expansion speed c(x) may 
additionally depend on other model parameters such as the 
population’s carrying capacity or intraspecific competition 
coefficients (which may also be space-dependent). Therefore, 
calculation of an estimate of c(x) may not be as straightfor-
ward as for the model considered in this paper, but could nev-
ertheless be approximated by numerical or field experiments. 
Moreover, we note that estimation of c(x) may fail on land-
scapes with heterogeneities on a small scale that keep propaga-
tion speeds in perpetual transients. Despite these caveats, it is 
important to note that given c(x) can be estimated, the com-
putational cost of the front propagation metric tFP does not 
scale with the complexity of the system. This presents a clear 
advantage over the numerical integration of a PDE system, 
whose computational cost increases with system complexity 
(e.g. due to increased number of species, explicit description 
of resources, more complex functional responses in growth 
and flux terms). Moreover, our method could be generalised 
to two or more species whose growth and dispersal dynamics 
differ from each other. In such a case, the front expansion 
speed c(x) would differ for each species and therefore would 
require the definition of separate metrics. However, even an 
increase in the number of species would not lead to a signifi-
cant increase in computational cost of the predictive method. 
For a mathematically rigorous definition of the Voronoi sets 
and indices in this case, see the Supporting information.

We further note that we restricted our analysis to a finite 
time interval. Within this time interval, the dynamic predic-
tions provided by the Voronoi tessellations were shown to be 
accurate for all times (Supporting information). We therefore 
hypothesise that the predictive power of the Voronoi tessel-
lations would continue to hold for range expansion taking 
place over longer timescales, provided the computational 
domain is sufficiently enlarged. For antagonistic species, the 
stronger competitor continually invades regions occupied 
by the weaker species. However, simultaneous expansion of 
the weaker species’ sectors along the edge of the population 
front creates a balance that enables coexistence (Fig. 7). We 
hypothesise that such a balance is stable over long times pro-
vided sectors of the inferior competitor are sufficiently large. 
Future work could rigorously establish conditions, such as a 
critical patch size, for such behaviour to occur.

Finally, we note that our framework assumes that expanding 
populations cannot invade existing, fully colonised patches. In 
mathematical terms, this is modelled by a density dependent 
diffusion term. This is a realistic assumption for many eco-
systems (Korolev et al. 2012, Stefanic et al. 2015, Cozzi et al. 
2018, Matoz-Fernandez et al. 2020), but presents a possible 
limitation of our approach. Through a comparison between 
results from Eq. 1 and a model with constant diffusion coeffi-
cients, we find that relaxing this assumption has only a limited 
impact on competitive outcome (Supporting information). 

For identical species, deviations in competitive outcome are 
minimal. For antagonistically interacting species, the weaker 
competitor is detrimentally affected by such a change in dif-
fusion coefficient, but the magnitude of the impact is small. 
Thus, we conclude that the predictive power of our approach 
could be extended to ecosystems in which the assumption of 
limited dispersal into occupied regions does not hold.

Conclusion

From the human perspective, range expansion is becoming an 
increasingly important process across many different spatial 
and temporal scales. Its significance extends from applications 
of fungal species and genetically modified, biofilm-form-
ing microbes in biological, medical and industrial settings 
(Dzianach et al. 2019, Martignoni et al. 2020) to conserva-
tion programs for plant and animal species whose habitats are 
shifting polewards (or towards higher altitudes) due to cli-
mate change (Rosenzweig et al. 2007). Our results reveal that 
traits required for competitive success during range expansion 
starkly differ from those characterising competitive fitness in 
equilibrium settings if range expansion originates from low 
population density. This shows that intrinsically weaker spe-
cies are able to persist (or in rare cases even outcompete) stron-
ger species during range expansion, provided they are able to 
perform well in the ‘race for space’ that determines competi-
tive outcome. Thereby, our results provide a complement to 
field studies and evolutionary models that have shown dis-
persal traits within single species are selected for within the 
expansion front (Travis and Dytham 2002, Phillips et al. 
2008). While our theoretical framework is deliberately kept 
simple so as to be applicable in a general setting, the model 
and methods form a foundation for extensions and applica-
tions to specific ecosystems. Adaptations of the framework 
to specific species in specific environments would require 
field data on an ecosystem-wide scale. Such data is becom-
ing increasingly available thanks to advances in remote sens-
ing technologies (Deblauwe et al. 2012) and machine learning 
applications (Lary et al. 2016) which highlights the potential 
of the theoretical framework to support future work.
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