
JCSP: Joint Caching and Service Placement for
Edge Computing Systems

Yicheng Gao, Giuliano Casale
Department of Computing, Imperial College London, London, UK

Emails: {y.gao20, g.casale}@imperial.ac.uk

Abstract—With constrained resources, what, where, and how
to cache at the edge is one of the key challenges for edge comput-
ing systems. The cached items include not only the application
data contents but also the local caching of edge services that
handle incoming requests. However, current systems separate the
contents and services without considering the latency interplay
of caching and queueing. Therefore, in this paper, we propose
a novel class of stochastic models that enable the optimization
of content caching and service placement decisions jointly. We
first explain how to apply layered queueing networks (LQNs)
models for edge service placement and show that combining this
with genetic algorithms provides higher accuracy in resource
allocation than an established baseline. Next, we extend LQNs
with caching components to establish a joint modeling method
for content caching and service placement (JCSP) and present
analytical methods to analyze the resulting model. Finally, we
simulate real-world Azure traces to evaluate the JCSP method
and find that JCSP achieves up to 35% improvement in response
time and 500MB reduction in memory usage than baseline
heuristics for edge caching resource allocation.

Index Terms—Caching, service placement, queueing modeling,
edge computing

I. INTRODUCTION

Many types of smart applications for end users, such as
virtual reality, interactive gaming, and face recognition, have
rapidly evolved over the past decade [1]. Such compute-
intensive applications are constantly expected to fulfill high
data rates and meet quality of service (QoS) requirements
arising from ever-increasing user demands. However, the effi-
ciency and reliability of these applications are both constrained
by the terminal devices in terms of storage, battery life, and
computation capability [2]. Thus, to avoid high latency when
processing incoming tasks, computationally-demanding jobs
are typically offloaded to cloud data center back-ends for faster
executions.

However, this approach is faced with the issue of high
response time, as the transmission distance from the end user
to the data center can be significant [3]. This is problematic
for latency-sensitive applications, such as autonomous driving
and real-time video. In this context, a paradigm shift has
taken place naturally from centralized cloud computing toward
distributed edge computing [4]. Edge computing configures
computation, storage, and bandwidth resources at network
edges, e.g., base stations and access points, close to end

The work of Yicheng Gao has been supported by a China Scholarship
Council-Imperial Scholarship.

978-1-6654-6824-4/22/$31.00 ©2022 IEEE

subscribers. Through these means, edge computing offers a
dramatic reduction in latency.

In this paper, we focus on edge caching strategies, i.e.,
what, where, and how to cache at the edge with limited
resources to satisfy user demands, which are one of the key
enabling technologies of edge computing. Traditional caches
store copies of items, such as images, files, and scripts, at
proxy servers or servers close to end users [5]. Different from
traditional caching, edge caching stores items at proximal
network edges, such as small cell base stations (SBSs) and
vehicles. Moreover, the cached items are no longer limited
to data contents but may also be seen as encompassing the
decision of which services are deployed for execution at
a particular edge resource. Specifically, content caching is
proposed to tackle the issues of content placement and delivery
[6]. While service placement refers to the deployment of
services and their correlative databases at edge servers to
execute tasks offloaded from end users [7].

In existing studies, edge content caching specializes in
data caching without considering queueing contention at the
services that are placed to process it. In a similar manner,
edge service placement typically overlooks the role content
caching plays in the service execution latency. To tackle both
issues, we propose a joint caching and queueing methodology
consisting of a novel class of models and a resulting resource
allocation approach. The unique feature of the models is the
ability to stochastically model the latency interplay of queue-
ing for service access and cache hits/misses. To implement
this novel class of stochastic models, we generalize a class
of models, called layered queueing networks (LQNs) [8],
which are used in the performance engineering of layered
service architectures. Our extension integrates for the first
time caching characteristics in these models, thus developing a
novel tool for stochastic scheduling in edge systems. In details,
our main contributions are as follows:
• We first model the basic job scheduling and service

placement processes (ignoring caching) by LQNs. As
applied to stochastic workloads, we find an average gain
of 16% for system response time in our experiments
compared to the deterministic scheduling method in [9].
This illustrates the benefit of adapting an LQN formalism
to deal with stochastic scheduling.

• We generalize LQN models with caching components,
which establishes a joint modeling method for edge con-
tent caching and service placement (JCSP), and present

ar
X

iv
:2

20
5.

04
57

5v
1

 [
cs

.P
F]

 9
 M

ay
 2

02
2

TABLE I
COMPARISON OF RELATED WORKS WITH DIFFERENT PARAMETERS

Ref.
Objective items Replacement

policies
Job scheduling Job

precedencescontent service deterministic stochastic
[11]–[14]

√

[15], [17]
√ √

[18]–[20]
√

[21]
√ √

[22], [23]
√ √

[9], [24]
√ √ √

JCSP
√ √ √ √ √

the analytical algorithm to analyze the generalized model
numerically.

• We simulate an advanced Queueing Petri Net (QPN)
based model to validate the accuracy of the proposed
class of integrated LQN-caching models1 and implement
the generalized LQN model within the LINE2 tool [10].

• Extensive simulations based on real-world Azure traces
are conducted to evaluate the applicability of our pro-
posed JCSP method. Results show that the JCSP method
can find a better trade-off between system response
time and memory consumption under a wide range of
situations than the baselines.

The paper is organized as follows. In Section II, we present
related works and state the limitations. The methodology is
developed in Section III. We design the generalized model
containing caching and present the analytical methods in
Section IV. The model validation and experimental evaluation
are given in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Current research has investigated edge caching from two
perspectives, i.e., content caching and service placement, as
shown in Table I. The basic issue for edge content caching is
optimizing what to cache and how, based on the architectural
features of the edge computing system under study. With
respect to what to cache, most studies center on the char-
acteristics of content popularity profile, which can be grouped
into known [11], unknown but static [12], and unknown and
time-varying [13], [14]. With regard to how to cache instead,
policies differ in the setting of network topologies. When
employing traditional two-tier hierarchical networks, the key
issue is to make a trade-off between the edge node and the
centralized node under certain resource constraints [15]. When
adopting the user-centric structures, how to collaborate within
a cluster of edge nodes, such as SBSs or vehicles, is crucial
[16], [17]. The aforementioned studies on caching contents at
edge nodes ignore the services that are placed to process such
contents.

For edge service placement, existing studies center on
optimizing the system performance [18]–[20] , e.g., response
time, energy efficiency, or cost, due to the constrained edge

1The validation datasets are available at https://doi.org/10.5281/zenodo.
6491327

2The LINE tool is available at http://line-solver.sourceforge.net/

Core
Network

User

Content
Caching

Video
Compression

Video
Analytics

Data Plane

MEC host

123

Uplink
 request

for
content

Logical Content Delivery Chain

Fig. 1. A use case of video content delivery chain

resources. Further, many studies jointly optimize service place-
ment with job scheduling processes [21]–[23]. The two pro-
cedures are interactive, as the placed services determine how
to schedule the jobs and the scheduling strategy impacts the
performance of the placement policy. To jointly model the
two procedures, most techniques take advantage of queueing
theory, such as M/G/1 [22] and M/M/1 [23]. However, these
models typically do not reflect the precedences between jobs.
If considering the precedence constraints, most approaches
adopt directed acyclic graphs (DAG) [9], [24], the optimal
scheduling of which is typically NP-hard except with specific
graph topologies (e.g., in-trees, out-trees).

In the above-mentioned research, there are two primary
limitations. First, for edge service placement, DAGs are effi-
cient to model the jobs with precedences. However, a DAG
fails to illustrate the dependencies of underlying resources
invoked by jobs, because it does not encompass scheduling
strategies and resource contention. Therefore, we propose
to jointly model the dependent job scheduling and service
placement processes by LQNs. LQNs have been extensively
used to model distributed computing systems with complex
characteristics, such as fork/join interactions and multiple tiers
of services [26]. An LQN distributes software and hardware
resources into multiple layers, according to their functionality
and request types. When there are requests need to possess
simultaneous resources [8], LQNs can explicitly represent the
dependencies by describing the interaction between clients
and servers in each layer. Each layer is then automatically
translated into a Markovian queueing network model, which
is analyzed in isolation, prior to aggregating the results to
produce end-to-end latency estimates. Thus, if applying LQNs
to layered edge computing systems, each edge node can either
act as a client or as a server to request or provide services,
which makes it easy to model and trace nested dependencies.

Next, the edge content caching and service placement
processes are studied separately. However, in practice, the
processing of many applications requires both computation
and data. For example, in video analytics [25], the request
is first forwarded to the content caching function to retrieve
the cached contents. After the identification, the request is
routed to video compression and video analytics services for
further processing, as shown in Fig. 1. Therefore, we propose
to establish a unified resource allocation approach for both
contents and services. As we define caching and LQNs to
model processing for contents and services respectively, the
key challenge is how to establish and analyze integrated
caching and queueing network models.

https://doi.org/10.5281/zenodo.6491327
https://doi.org/10.5281/zenodo.6491327
http://line-solver.sourceforge.net/

service 1

SBS1

Edge
Servers

service 2

SBSM

Edge
Servers

SBS2

service 1service 1service 2service 2

service 1

service 3service 3

User 2User 2

User 1User 1

···

User NUser N

Edge
Servers

Fig. 2. Edge computing system model containing N users

III. METHODOLOGY

A. System Model

We consider a cluster of M edge nodes connecting N
users in the edge computing system, as shown in Fig. 2.
Each edge node provides multiple services in edge servers
co-located with the SBSs. Each user offloads several jobs to
the connected edge node to be served. The offloaded jobs
may have precedences that must be processed in order. For
example, a face recognition application [27] can be regarded as
consisting of five successive jobs, i.e., object acquisition, face
detection, pre-processing, feature extraction, and classification.
Each job can be operated solely at the edge node that provides
corresponding services. When the requested services are not
provided in the connected edge node, the jobs need to be
forwarded to other edge nodes that satisfy the requirements.
Furthermore, different types of jobs at the same node also obey
the sequential processing.

We assume the total number of jobs is K, which request
a total number of C possible services. For job k at node m,
k = 1, 2, ...,K,m = 1, 2, ...,M , we define two parameters as
follows:

• Service Placement Decision pmk. If node m provi-
sions the service requested by job k, pmk = 1. Oth-
erwise, pmk = 0. The set of all nodes that pro-
vision the service for job k is denoted as Fk =
{m|pmk = 1,m = 1, 2, ...,M}.

• Mean service time tmk. This is the amount of computa-
tional processing requested by job k upon visiting node
m. Different jobs may request different mean service
time.

We then use an LQN to model the job scheduling and
service placement problem, as presented in Fig. 3. Each edge
node m is composed of 4 components as follows:

• Processor: The SBS is modeled as a processor Pm, shown
as a circle. It obeys the processor-sharing scheduling
policy, which is a mathematical abstraction of time-
sharing scheduling with an infinitesimally small quantum
of time.

• Task: The co-located edge server is modeled as a set
of tasks Tmc, shown as the larger parallelograms, each
of which represents service c running on processor Pm.
Each task has a queue to model first-come first-served
(FCFS) admission control and the service time follows

a phase-type distribution, e.g., exponential, Erlang, or
hyper-exponential.

• Entry: Each task publishes at least one entry Emcj , 1 ≤
j ≤ J , shown as a small parallelogram, which represents
the end point for calls to service c. In general, a service
with k possible endpoints is modeled as a task with k
entries.

• Activity: Each entry invokes a sequence of activities
Amci, where i = 1, . . . , Ic and Ic is the number of
activities for service c. Activities are shown as a series
of rectangles under the entries, to represent independent
or dependent executions. That is, upon invoking an entry
Emcj , it will lead to a chain of individual activities being
carried out on the underpinning processor. In LQNs, such
activities can be organized in form of a DAG called the
activity graph and detailed later. Note that each activity
may be reached by calling different entries.

The clients are modeled in the LQN formalism as reference
tasks running on a pseudo-processor P0. A pseudo-processor
is a modeling abstraction similar to a processor but without
a physical reality in the edge system and used to keep a
conceptually similar description of all tasks in the model. The
pseudo-processor in LQNs is also suitable to describe user
think times. Each client has different probabilities of request-
ing different workflows. The user workflows are also DAGs
to represent the precedence between the jobs and modeled as
special activity graphs within the pseudo-processor Pw. The
mean queue length of the infinite server on Pw is defined as the
multiplicity of the workflow. If dependent jobs are executed
at different nodes, the activity graph will feature special
activities that issue synchronous calls to different nodes, such
as Aw−2−1 and Aw−2−2. Therefore, DAGs are present both in
the reference processor to describe user workflows and bound
to entries of the services to describe the activities launched
by each entry. The latter is also in general DAGs that may
include synchronous or asynchronous calls to other tasks and
entries.

B. Problem Formulation

The LQN models we have described above allow to ob-
tain analytical estimates of throughputs, response times (i.e.,
latency per unit invocation), mean queue-lengths (i.e., back-
logs), and utilizations for each component type. We focus
on response time throughout the rest of the paper, but other
reference metrics may be easily generated from the models.
Our optimization objective is to minimize the end-to-end total
response time R of the LQN-based model, which is expressed
as

R =

C∑
i=1

Xi

X
Ri, (1)

where Xi, Ri, and X are the throughput of job class i, the
response time of job class i, and the total throughput summed
over all service classes, respectively. The ratio Xi/X may
be seen as related to the probability at steady-state where

E0-1E0-1

A0-1

E0-1

A0-1

PmPm

Ew-2

Aw-2-1

Ew-1Ew-1

Aw-1

Ew-1

Aw-1

Ew-rEw-r

Aw-r

Ew-r

Aw-r

Pw

E1-1E1-1

A1-1

E1-1

A1-1

E1-2E1-2

A1-2-1

E1-2

A1-2-1

P1

E1-1

A1-1

E1-2

A1-2-1

P1

Aw-2-2

···

···

···

···

Edge Node 1 Edge Node m

Tw-1

Tw-2

Tw-r

E1-rE1-r

A1-r-1

E1-r

A1-r-1

Em-5

Am-5-1

Am-5-2

Em-5

Am-5-1

Am-5-2

Em-r

Am-r-1

Am-r-2

Em-r

Am-r-1

Am-r-2

Em-2Em-2

Am-2-2

Em-2

Am-2-2

Em-2

Am-2-2

T1-1 T1-r T1-2

Tm-5

Tm-2

Tm-r

E0-2

A0-2

E0-NE0-N

A0-N

E0-N

A0-N

P0

···

RT1 RT2 RTN

N Clients

p1-1

p1-2

p1-r

···

Workflows

Am-r-3

Fig. 3. LQN-based model for job scheduling and service placement processes

an arrival is of class i. Thus, the problem of dependent job
scheduling and service placement is formulated as

min
x

R(x),

s.t.
∑
m∈Fk

xmk = 1,

xmk ∈ {0, 1},

(2)

where xmk denotes the scheduling decision for job k at
node m. The vector x = [x11, ..., xmk, ..., xMK] represents
the set of scheduling decisions for all jobs and R(x) is the
corresponding system response time with decision vector x.
The first constraint guarantees that job k is solely served
at one (and only one) feasible edge node provisioning the
requested services. The second constraint ensures that if job
k is scheduled to be served at node m, then xmk = 1, or
xmk = 0 otherwise.

IV. GENERALIZED LQN MODEL DESIGN

A. New Design Formalism

To extend LQN models to include caching components, we
first define two novel components as follows:
• cache-task: Each caching node is defined as a cache-task

in the LQN model. Each cache-task offers the ability to
access a collection of items through a cache, such as a
key-value store. Cache-tasks have the basic properties
of tasks, but add four specific properties for caching:
the total number of items, the cache capacity, the cache
partitioning into lists, and the cache replacement policy,
e.g., least recently used (LRU), least frequently used
(LFU), first-in first-out (FIFO), and random replacement
(RR).

ItemEntry

Ahit Amiss

Pc

ItemEntry

Ahit Amiss

Pc

CacheTask C2

E2E2

A2

E2

A2

T2

P2

E2

A2

T2

P2

E1E1

A1

E1

A1

P1

RT1

E1

A1

P1

RT1
Ac

Fig. 4. An example of a LQN model containing one cache-task

• item-entry: The services provided by the caching module
are defined as item-entries in the LQN model. Each item-
entry represents a collection of items accessible through
the cache-task. Item-entries are similar to standard en-
tries, but add the property of the popularity of the items,
e.g., Zipf or custom distribution.

Upon issuing a call to an item-entry exposed by a cache-
task, a client obtains the requested object either after a cache
hit or a cache miss. The hit/miss selection depends on the
cached contents and reflects as a choice of a different branch
in the DAG bound to the item-entry. This is modeled through
a novel precedence relationship, i.e., an activity graph edge.
We name this precedence relationship as cache-access for the
cache hit and miss activities under each item-entry, which can
be used to specify the branching in the activity graph. The
cache-access transforms an incoming job into a hit or miss job,
sending out the transformed job to the corresponding outgoing
link with a certain probability.

The cache replacement policy of each cache-task adopts by
default the RR policy, which randomly selects a candidate
item to replace when a cache miss occurs. The RR policy can
offer the same steady-state performance of the time-to-live
(TTL) mechanism [28] with exponential timers. Hence it is
a reasonable approximation of the real-world TTL with better
analytical tractability. Other policies, such as LRU or CLIMB,
can be obtained as simple extensions of our basic framework.

Based on such extensions, we generalize the LQN model
by enabling caching. Fig. 4 presents an example of an LQN
model containing one cache-task. The top-right symbol in the
task parallelogram distinguishes a cache-task from an ordinary
task. When an item request arrives, we model the probability
that the item is in the cache with phit and out of cache with
pmiss = 1 − phit. The generated architecture allows joint
modeling of caching and queueing into the same LQN model.
It is important to note that phit and pmiss need not be specified
by the end user. They are automatically determined through
the solution of the stochastic models underpinning the LQNs
with caching, which also relies on a stochastic equilibrium
analysis of the cache replacement policy, as we describe in
the next section.

.

.

.

.

.

.

think time

hit

miss

cachecache

cachecachecache

queuequeue

queuequeue

......

think time

Phit

Pmiss

λ
P X

Upper sub-model Lower sub-model

Caching sub-model

Fig. 5. Decomposition of the caching sub-model in the LQN model

B. Analysis of LQN Models with Caching

To solve the LQN model containing caching modules, the
first step is to decompose the entire model into a group of sub-
models. Each sub-model may be seen as a mixed queueing
network that contains clients and servers. The term mixed
refers to the simultaneous presence of open and closed service
classes. The former represent asynchronous requests from
clients, while the latter represent synchronous ones (i.e., closed
since issued from a finite connection pool). In particular, when
a queueing network contains the cache module, the workload
is synchronous, which means the issue of the next request
to the cache is required to take place after the reply of the
last request issued to the cache. To model this dynamics,
we additionally divide the caching sub-model into two sub-
models, as shown in Fig. 5. In the upper sub-model, the
cache module is isolated in an open queueing network with
asynchronous Poisson streams. While in the lower sub-model,
the delay and the queueing station are contained in a closed
queueing network.

To solve the caching sub-model, we generalize the analytical
method for non-layered queueing networks from [29] to the
multi-layer setting of LQNs. The expressions we give for the
method focus for simplicity on a single class of jobs, but our
implementation applies similar formulas developed in [29] for
the multi-class case.

Cache requests arrive in the upper sub-model as a single-
class Poisson stream with rate λ =

∑
r λr. With an initial

guess of the arrival rate λ, the hit and miss rates of the cache
node, i.e., p(t)miss and p

(t)
hit, are approximated iteratively via a

fixed-point iteration (FPI) scheme. The obtained values in each
iteration are leveraged in [29] to calculate the next arrival rate
λ(t+1) by the following application of Little’s law:

λ(t+1) =
sλ(t)

λ(t)θt + p
(t)
missθm + p

(t)
hitθh

, (3)

where θt, θm, θh are the mean think time, and the mean
delay to due miss and item fetch respectively. Here, s is the
maximum number of pending requests to the cache, i.e., the
total population of jobs in the caching sub-model. The iteration
process continues until the value of λ converges.

The hit and miss rates at each iteration are used to parame-
terize the queueing network of the lower sub-model as routing
probabilities. That is, jobs representing calls that experience
cache hits will dynamically switch after visiting the cache to
a hit service class, which will be processed by the queueing
station according to the activities specified in the activity graph
for hits. Similarly, calls that experience misses will switch to
a miss service class representing the workflow in the activity
graph for misses. This class-switching based separation of
the hit and miss calls enables the modeling of the different
response times experienced by the two classes of requests,
which depend on whether the items they accessed were cached
or not. At the end of the chain of operations that follow
hit/miss, both classes of jobs will be merged back into the
original class and return to the user as a response for that
class.

The solution to the upper sub-model is reconciled with the
lower sub-model iteratively by means of the following scheme:
• Guess λ0 with a random value.
• Solve the upper sub-model with approximation methods,

e.g., FPI, to obtain the hit and miss probabilities, i.e., phit
and pmiss.

• Pass phit and pmiss to the lower sub-model to set the
routing matrix.

• Solve the lower sub-model with a queueing network
solver method f(s), e.g., approximate mean value anal-
ysis (AMVA) [30], to obtain the mean throughput X .

• Pass X to the upper sub-model as the next arrival rate
λn.

• Update until ||λn+1 − λn|| < δ.
We have never observed situations where the above iteration
fails to converge. Based on this solution to the caching sub-
model, the entire procedure to solve the LQN model containing
cache-tasks is presented in Algorithm 1, where f(·) is the cus-
tomized solver for the sub-model s that returns throughputs,
queue-lengths, response times, and utilizations.

C. Cache parameters and Markov process

The caching model mentioned above for analyzing cache hit
and miss probabilities applies list-based caches [29], [31]. The
list-based cache consists of h lists formed in a tree topology,
each of which has a capacity of ml items, l = 1, 2, ..., h. The
total cache capacity is m =

∑h
l=1ml, which does not exceed

the total number of items n. The items that are not cached
are arranged in a virtual list with l = 0, with a capacity of
m0 = n −m. The request rate λvk(l) ≥ 0 issued by stream
v for item k in list l follows a Poisson arrival process, where
v = 1, 2, ..., u, k = 1, 2, ..., n.

Each list can only have one parent list p(l) to exchange the
items, satisfying p(p(· · ·p(l) · ··)) = 0, but has no constraint to
the number of children lists. Lists without children are known
as leaf lists. The probability of item k shifting from current
list l to the list j after a cache hit is non-uniform and defined
as the access probability cvk(l, j). The analytical model for
such list-based caches is based on a Markov process. In each
list, the state vector s = [s(i, j)] ∈ [1, n] represents the item

Algorithm 1 Solution algorithm for LQNs with caching
Input: LQN model with cache-tasks, Sub-model solution
algorithm f(·)

1: Decompose S sub-models based on layers
2: while not converged or not reached iteration limit do
3: for s← 1 to S do
4: if s↔ caching sub-model then
5: Decompose sub-model s into two sub-models.
6: Initialize λ in the upper sub-model.
7: while ||λn+1 − λn|| ≥ δ do
8: Solve the upper sub-model with (3) for λ.
9: Obtain phit and pmiss using the FPI method.

10: Pass phit and pmiss to the lower sub-model.
11: Solve the lower sub-model with AMVA.
12: Return the throughput X to the upper sub-model

as the next arrival rate λn.
13: end while
14: else
15: Solve sub-model s by f(s).
16: Set waiting time for sub-model s.
17: Set think time for sub-model (s+ 1).
18: end if
19: end for
20: end while
Output: layer response times, residence times, throughputs,
and utilizations.

cached in position i of list j. The applied replacement policies
are modeled as a continuous-time Markov chain (CTMC) with
an equilibrium probability π(s). The product-form solution to
π(s) is presented as

π(s) =

h∏
j=0

mj∏
i=1

γs(i,j)j

E(m)
, (4)

where E(m) is the normalizing constant and γij denotes the
access factor of item i to access list j, satisfying

γij = γip(j)

u∑
v=1

λvi(p(j))cvi(p(j), j). (5)

The performance measure for the Markovian analytical
model is defined based on the marginal probability of item
k in list j as

πkl(m) = mlγkl
Ek(m− 1l)

E(m)
. (6)

πk0(m) represents the miss ratio for item k, satisfying
πk0(m) = Ek(m)/E(m), in which Ek(m) is the normal-
izing constant when item k is not in the model. From the
marginal probabilities, the miss rate for requesting item k from
stream v can be denoted as Mvk(m) = λvk(0)πk0(m)(1 −
cvk(0, 0)). Thus, the total cache miss rate is M(m) =∑
v,kMvk(m). Throughout, we focus on single-list caches,

i.e., h = 1, as they are more widespread, but our implemen-
tation also supports h > 1 through the formulas above.

ODT-SC problem

LQN-based model

Optimal scheduling
(min completion time)

GA
solver

GA
solver

Response
 time R(x')

Response
 time R(x)

Average
Gain g

Fig. 6. An overview of the comparative procedure between the LQN-based
model and the method in [9]

V. EXPERIMENTAL EVALUATION

In this section, we first evaluate the merits of utilizing LQNs
to model the job scheduling and service placement problem.
Then we simulate a QPN-based model with Java Modeling
Tools (JMT) [32] to validate the accuracy of the generalized
LQN model. Finally, we conduct extensive simulations of
real-world Azure traces to measure the performance of the
generalized LQN model.

A. Evaluation of LQNs for Edge Service Placement

We begin by comparing our proposed scheme with the
method in [9], which formulates an offloading dependent
tasks with service caching (ODT-SC) problem. The ODT-SC
problem considers deterministic scheduling with deterministic
service time, while our scheme focuses on stochastic schedul-
ing with random service time. Moreover, the optimization
goal of the ODT-SC problem is to minimize the maximum
makespan, i.e., the sum of the start time of a job and its
execution time, while our goal is to minimize the total response
time. Despite the differences in the assumptions, we regard
this baseline as a suitable comparison to just the benefits of
stochastic LQN-based modeling of complex edge workflows.

For comparison, we set the mean service time for each job in
our LQN-based model equal to the execution time in [9]. The
optimization goal of the ODT-SC problem is reset to minimize
the total completion time, which is the sum of the makespan
of each job. Moreover, the method in [9] reformulates the
ODT-SC problem into a convex programming to get feasible
solutions. To be more general, we solve the ODT-SC problem
by genetic algorithm (GA) without the need to relax the
constraints. An overview of the comparative procedure of the
two schemes is presented in Fig. 6.

We first leverage the GA to address the ODT-SC issue,
obtaining the optimal scheduling strategy x′of each job. Then
the strategy is transformed into an LQN model to calculate the
total response time R(x′). The response time corresponding
to the minimum completion time in each iteration is selected
as the comparative object. Meanwhile, we equally exploit the
GA to solve the proposed LQN-based model to search for the
minimum total response time. Finally, we compare the two
response times to observe the average gain g of the proposed
method, which is expressed as

g =
1

I

I∑
i=1

‖ Ri(x′)−Ri(x) ‖
Ri(x′)

, (7)

where I is the total iterations.

TABLE II
PARAMETER SETTINGS FOR THE COMPARATIVE EXPERIMENTS

Definition Parameter Range of Value
number of edge nodes M 2, 5

number of users N 8, 20

number of services C 3, 9, 15

number of iterations / replications I / Q 30

number of generations G 1000

3 9 15
Number of services

0

2

4

6

8

10

12

14

G
ai

n
 (

%
)

N=8
N=20

(a) Exponential Service Time

3 9 15
Number of services

0

5

10

15

20
G

ai
n

 (
%

)

N=8
N=20

(b) Hyper-exponential Service Time

Fig. 7. Average gain of response time of the LQN-based model compared to
the method in [9] (M = 2)

In each iteration i = 1, . . . , I , to reduce the estimation
error, we run Q replications of the GA solver to search for
the optimal solutions. In each replication of the GA solver,
the number of generations is denoted by G. The dimension
of the design variable for the ODT-SC problem is 2K, of
which the first and second K elements are the start times
and scheduling decisions of each job respectively. The service
time is deterministic but varying in different kinds of services.
While for the LQN-based model, the dimension of the design
variable is the K scheduling decisions of each job. The service
time of each job class is set to be exponentially distributed or
hyper-exponentially distributed, of which the mean value is
equal to the one in the ODT-SC problem.

A set of experiments are conducted to analyze the per-
formance under different conditions. The setting of different
parameters are shown in Table II. The distribution of service
time is assumed as exponential or hyper-exponential. For sim-
plicity, the user workflow adopts chain structures for multiple
services in the experiments, but it is easily extended to cases
with parallel structures by LQNs.

The experimental results are presented in Fig. 7 and 8,
which can be seen that using LQN models yields a better
average performance than the method in [9]. When M = 2, the
gain of total response time is a minimum of 7%, an average of
12%, and a maximum of 17%. When M = 5, the gain of total
response time is a minimum of 7%, an average of 16%, and a
maximum of 28%. As a whole, the average gain improves with
the increase of the number of edge nodes. Our results show
that it is beneficial to apply LQNs to stochastic scheduling
as opposed to heuristically apply a deterministic scheduling,
i.e., the solution to the ODT-SC problem. Therefore, it is
meaningful to use the LQN model for further performance
analysis of edge caching systems.

3 9 15
Number of services

0

5

10

15

20

25

G
ai

n
 (

%
)

N=8
N=20

(a) Exponential Service Time

3 9 15
Number of services

0

5

10

15

20

25

30

G
ai

n
 (

%
)

N=8
N=20

(b) Hyper-exponential Service Time

Fig. 8. Average gain of response time of the LQN-based model compared to
the method in [9] (M = 5)

B. Generalized LQN Model Validation

We validate the generalized LQN model by JMT, which
supports the simulation of queueing networks and Petri nets
with a graphical user interface. Petri nets allow us to model the
replacement policies in caches as synchronized transitions that
alter the cache slots. Thus, by simulating a QPN-based model,
we can get an accurate estimate of the expected performance
of an LQN with caching, against which we compare our FPI-
based implementation described in Algorithm 1.

We consider a validation model containing the upper two
layers of the model shown in Fig. 4. In the upper layer, the
underlying processor P1 adopts the processor sharing strategy
and the number of users is represented by the multiplicity of
the reference task RT1. In the lower layer, the capacity of
the cache-task is set as 1 with a total number of 3 items.
All the items obey discrete uniform distribution and take the
RR strategy. The underlying processor Pc also employs the
processor sharing strategy and the number of tokens in this
layer is denoted by the multiplicity of the cache-task.

The validation model is transformed into a joint framework
of queueing networks and Petri nets in JMT, as presented in
Fig. 9. The jobs first originate from the delay node and are
stored at the place of upperlayer. Then, utilizing Petri net
transition, i.e., waiting for the tokens to be available in the
inbound places and firing a given number of tokens in the
output, we enable the transition 2 by 1 job from the upper layer
and 1 token, to fire 1 job into the lower layer. To determine a
cache hit or miss in the lower layer, we regard the cached items
as different job classes. Thus, the fired job class can switch into
any of the items at the ClassSwitch 1 node according to the
probability distribution. Based on the state of the stored items
in Cache and OutOfCache places, the transition 1 determines
whether to fire a hit or miss job class into the queue. After
different services for the hit or miss job at the queue node, the
job transforms back to the original job class at the ClassSwitch
2 node and enables the transition 3. Finally, the transition 3
fires 1 job to the place of Access Tokens and 1 job to the delay
node to execute iteratively.

We simulate the QPN-based model with JMT to validate
the analytical model. The performance metric we select is the
residence time, which includes the visit ratio compared to the
response time. The results indicate the differences between the
analytical and simulated model under different combinations

Transition 1 PCqueue ClassSwitch 2

OutOfCache

Cache

completed Transition 3

Think

Access Tokens Transition 2 ClassSwitch 1 CacheBuffer

upperlayer

A BA B A BA B

Fig. 9. A queueing Petri net used for validation via JMT

{2,2}
{5,5}

{10,10}
{20,20}

{50,50}

{100,100}

Number of {Users,Tokens}

0

50

100

150

200

R
es

id
en

ce
 T

im
e

analytical
simulated

{2,1}
{4,2}

{8,4}
{10,5}

{40,20}

{100,50}

Number of {Users,Tokens}

0

20

40

60

80

100

120

R
es

id
en

ce
 T

im
e

analytical
simulated

Fig. 10. Comparison of residence time between analytical and simulated
methods

of numbers of users and tokens, as shown in Fig. 10. It shows
that the differences are negligible in all cases, which proves
the high accuracy of the generalized LQN model.

C. Evaluation of the JCSP Method

To evaluate the JCSP method to real workloads, we perform
a trace-driven simulation to demonstrate the system applica-
bility in principle to production systems. The trace is collected
from a subset of applications running on Azure Functions
in 2019 [33]. We focus on a random subset of the trace,
which contains 34385 application ids and the corresponding
serverless function ids belonging to the same application. The
invocation rate and the distribution of execution time for each
function as well as the distribution of memory usage for each
application are also given in the trace.

Fig. 11(a) shows the cumulative distribution of the mini-
mum, average, and maximum execution time for all functions.
We can see that 50% of the functions have average and
maximum execution time less than 0.7s and 3s. 90% of the
functions execute at most 50s and 95% of the functions take
less than 50s on average. Fig. 11(b) presents the cumulative
distribution of the 1st percentile, average, and maximum
virtual memory reserved for all applications. Each application
calls for one or more functions. We can observe that 99% of
the applications consume no more than 400MB on average
and 99% of the applications are allocated at most 1000MB.

To simulate the trace-driven data, we implement the LQN
with caching by LINE [10] to facilitate the JCSP method. An
example of the generalized LQN model generated by LINE
is shown in Fig. 12. The dark hexagram, pink triangle, red
square, and yellow triangle represent the processor, task, entry,
and reference task, respectively. Edges represent client-server
relationships. Dots whose name contain C and cloud belong
to the cache and the origin server. Indexes h and m refer to
cache hit and cache miss. The index i-j for the non-reference
dots denotes service j on node i.

100 102 104 106 108

Time(ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Average
Minimum
Maximum

(a) CDF of Execution Time

101 102 103

Allocated Memory(MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Average
1st Percentile
Maximum

(b) CDF of Allocated Memory

Fig. 11. Properties of the selected subset of the real-world Azure traces
Model: lqncache

P1

T1-10

E1-10

A1-10

P2

T2-3

E2-3

A2-3

P3

T3-4

E3-4

A3-4

P4

T4-5

E4-5

A4-5

T4-10

E4-10

A4-10

Pcloud

Tcloud

Ecloud

Acloud

PC1-10

CT1-10

IE1-10

AC1-10

ACh1-10
ACm1-10

PC2-3

CT2-3

IE2-3

AC2-3

ACh2-3
ACm2-3

PC4-5

CT4-5

IE4-5

AC4-5

ACh4-5
ACm4-5

PC4-10

CT4-10

IE4-10

AC4-10

ACh4-10
ACm4-10

P0

RT3-2-3

RE3-2-3

RAc3-2-3

RA3-2-3

RA4-2-3

RT5-4-4

RE5-4-4

RAc5-4-4

RA5-4-4

RT10-1-1

RE10-1-1

RAc10-1-1

RA10-1-1

RT10-4-4

RE10-4-4

RAc10-4-4

RA10-4-4

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1
1

1

1

1
1

11
1

11

11

1

1

1

1
11

1

1 1
1

11

1

1 1
1

1 1
1

Fig. 12. An example of the generalized LQN model generated by LINE

The parameter settings that consider the characteristics of
caching are presented in Table III. The cache capacity m for
each node is configured according to a standard Redis caching
package offered by Microsoft Azure [34]. Corresponding
cached items obey the Zipf distribution with parameter η and
are assumed of identical size, the total size n of which is
proportional to the node cache capacity. These cache-related
parameters shown in Table III are chosen as in earlier works
[29], [31]. Compared to Table II, the number of edge nodes d
and number of services s scales up to 16 and 40 respectively.
The distribution of service time is assumed as exponential with
a mean value same to the average execution time collected
from the Azure trace. The number of users is configured
considering the capacity of SBSs [35]. For each user, the
probability to request for a certain service is determined by
the invocation rate of the service.

For each combination of the parameters, we generate 30
models with different random seeds. In each model, different
services on each node are added with cache-tasks that specify
the size of total items and the allocated cache capacity for each
service. The sum of service capacities is equal to the node
cache capacity, which guarantees the maximum utilization of
the constrained storage for each edge node. We employ the
total system response time as the performance measure and
compare our JCSP method to the case of no cache and prefetch

TABLE III
PARAMETER SETTINGS FOR THE JCSP METHOD EVALUATION

Definition Parameter Range of Value
number of edge nodes M 2, 4, 8, 16

number of users N 5, 15, 25

number of services C 10, 20, 40

node cache capacity (MB) q 250, 750, 1024

average total size of items (GB) p 0.5, 1, 2, 4, 8

Zipf parameter η 0.6, 1.0, 1.4

5 15 25
Number of users N

0

5

10

15

20

T
o

ta
l r

es
p

o
n

se
 t

im
e

no cache
p/q=4
p/q=2
prefetch all

(a) M = 2, C/M = 5, η = 1

5 15 25
Number of users N

0

5

10

15

20

T
o

ta
l r

es
p

o
n

se
 t

im
e

no cache
p/q=4
p/q=2
prefetch all

(b) M = 4, C/M = 5, η = 1

Fig. 13. Total response time with respect to the increase of the number of
users N (Azure dataset)

all. The no cache scheme deploys no caching module that all
the jobs need to wait for the requested contents from origin
servers before being processed locally. While the prefetch all
scheme indicates each edge node caches all the items with a
full utilization of the local memory.

From Fig. 13 (a) and (b), we can see that the total response
time increases with the growth of the number of users under
same conditions, which attributes to the cumulative queueing
time. With same number of users, no cache scheme as the
baseline exhibits the highest response time, because jobs need
to obtain required contents from the origin server. Conversely,
prefetch all scheme exhibits the lowest response time but
ignoring the large memory consumption. Compared to the
prefetch all scheme, although our proposed JCSP method
shows an increase of the response time at most 35% and
30%, but reduces the memory usage by 500MB and 250MB
respectively. This is because our proposed system optimizes
the allocation of the cache capacity for each service based on
the job scheduling and service placement strategies on differ-
ent edge nodes, which achieves to maximize the utilization
of limited edge resources. Overall, the total response time
declines significantly when the number of nodes rises, which
is benefit from more concurrent servers that bring down the
waiting time.

From Fig. 14 (a) and (b), we can see that the total response
time decreases with the growth of the number of services, but
tends to be stable after C reaches 20. The decreasing trend
in the first stage is the case when the number of services is
less than the number of users. Under the circumstances, the
possibility of users to request for the same service is higher,
which results in the longer queueing time for the same server.
As the number of services grows to equal to or larger than the

10 20 40
number of services C

0

5

10

15

20

T
o

ta
l r

es
p

o
n

se
 t

im
e

no cache
p/q=4
p/q=2
prefetch all

(a) M = 4, N = 25, η = 1.4

10 20 40
number of services C

0

5

10

15

20

T
o

ta
l r

es
p

o
n

se
 t

im
e

no cache
p/q=4
p/q=2
prefetch all

(b) M = 8, N = 25, η = 1.4

Fig. 14. Total response time with respect to the increase of the number of
services C (Azure dataset)

2 4 8
p/q

0

0.1

0.2

0.3

0.4

0.5

 m
ap

e

q=250MB
q=750MB
q=1024MB

(a) M = 8, N = 25, C = 40

2.5 5 10
C/M

0

0.1

0.2

0.3

0.4

0.5

 m
ap

e

C=10
C=20
C=40

(b) N = 25, p = 0.5, q = 250

Fig. 15. Sensitivity to p/q and C/M ratio with η = 1 (Azure dataset)

number of users, the possibility of calling the same service
reduces, thus leading to the flat trend in the later stages. With
same number of services, our proposed JCSP method only sees
an increase of the response time at most 24% and 14%, but
with a less memory usage of 500MB and 250MB compared
to the prefetch all scheme.

Further, we analyze the sensitivity to p/q and C/M ratio
on these experiments. We focus on the miss ratio and define
the performance metric as

επmape =
1

Q

1

M

1

C

Q∑
k=1

M∑
j=1

C∑
i=1

∣∣∣∣1− π̂i,j
πi,j

∣∣∣∣ , (8)

where π̂i,j is the estimated miss ratio for service i at node j.
The services that are not requested by users on each node are
not included. From Fig. 15 (a), we can see that the average
percentage error επmape for p/q ratio approximately ranges
between 0.1 and 0.2. When the node cache capacity is high,
the error metric decreases with the size of total items increases.
From Fig. 15 (b), we can observe that the average percentage
error επmape for C/M ratio approximately ranges between 0.05
and 0.15.

D. Summary of Experimental Results

Overall, with the increase of the number of users, the JCSP
method indicates an increase of the response time at most
35% and 30%, but reduces the memory usage by 500MB
and 250MB, compared to the prefetch all scheme. With the
increase of the number of services, the JCSP method shows
an increase of the response time at most 24% and 14%, but a
less memory usage of 500MB and 250MB, compared to the
prefetch all scheme. This proves our proposed JCSP method

is better than simpler heuristics for edge caching resource
allocation.

Concerning time and space requirements for the execution
of the JCSP method, the above experiments are conducted on
an AMD EPYC 7302P 16-Core Processor. For each replica-
tion, the estimate of memory usage and execution time are
no more than 4.45MB and 0.2s, which reflects our proposed
JCSP method is scalable for multiple workloads.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel method to jointly analyze
edge content caching and service placement. We have first
jointly modeled the job scheduling and service placement
processes with LQNs. The LQN-based model is compared to
the method in [9] and shows an average gain of 16% with
respect to the response time. Then we have extended the LQN
model with caching components to facilitate the JCSP method.
An analytical model is given to analyze the generalized LQN
model numerically. We further have validated the generalized
LQN model by a QPN-based model with JMT and have im-
plemented the proposed class of integrated caching-queueing
models within the LINE tool. Finally, we have conducted
extensive trace-driven simulations to evaluate the performance
of our proposed JCSP method for a real-world dataset, which
show a better trade-off between the response time and memory
consumption.

Future work may extend the validation to general phase-
type distributions or those involving burstiness (e.g., Marko-
vian arrival processes). Although our implementation supports
them, the JCSP method could be further used to understand
the impact of splitting a cache into lists on end-to-end edge
workflow latency.

REFERENCES

[1] T. Taleb, K. Samdanis, B. Mada, and et al., “On Multi-Access Edge Com-
puting: A Survey of the Emerging 5G Network Edge Cloud Architecture
and Orchestration,” IEEE Commun. Surveys & Tuts., vol. 19, no. 3, pp.
1657-1681, May 2017.

[2] L. Lin, X. Liao, H. Jin, and et al., “Computation Offloading Toward Edge
Computing,” Proc. IEEE, vol. 107, no. 8, pp. 1584-1607, Aug. 2019.

[3] Y. Mao, C. You, J. Zhang, and et al., “A Survey on Mobile Edge
Computing: The Communication Perspective,” IEEE Commun. Surveys
& Tuts., vol. 19, no. 4, pp. 2322-2358, Aug. 2017.

[4] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,
vol. 50, no. 1, pp. 30-39, Jan. 2017.

[5] M. A. Maddah-Ali and U. Niesen, “Fundamental Limits of Caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[6] S. Wang, X. Zhang, Y. Zhang, and et al., “A Survey on Mobile Edge
Networks: Convergence of Computing, Caching and Communications,”
IEEE Access, vol. 5, pp. 6757-6779, Mar. 2017.

[7] J. Xu, L. Chen and P. Zhou, “Joint Service Caching and Task Offloading
for Mobile Edge Computing in Dense Networks,” in Proc. of IEEE
INFOCOM, Honolulu, HI, Apr. 2018, pp. 207-215.

[8] G. Franks, T. Al-Omari, M. Woodside, and et al., “Enhanced Modeling
and Solution of Layered Queueing Networks,” IEEE Trans. Softw. Eng.,
vol. 35, no. 2, pp. 148-161, Mar.-Apr. 2009.

[9] G. Zhao, H. Xu, Y. Zhao, and et al., “Offloading Dependent Tasks
in Mobile Edge Computing with Service Caching,” in Proc. of IEEE
INFOCOM, Toronto, ON, Canada, Jul. 2020, pp. 1997-2006.

[10] G. Casale, “Integrated Performance Evaluation of Extended Queueing
Network Models with LINE,” in Proc. of WSC, 2020, pp. 2377–2388.

[11] K. Shanmugam, N. Golrezaei, A. G. Dimakis, and et al., “Fem-
toCaching: Wireless Content Delivery Through Distributed Caching
Helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402-8413, Dec.
2013.

[12] B. N. Bharath, K. G. Nagananda and H. V. Poor, “A Learning-Based
Approach to Caching in Heterogenous Small Cell Networks,” IEEE Trans.
Commun., vol. 64, no. 4, pp. 1674-1686, Apr. 2016.

[13] A. Sengupta, S. Amuru, R. Tandon, and et al., “Learning Distributed
Caching Strategies in Small Cell Networks,” in Proc. of ISWCS,
Barcelona, Spain, Aug. 2014, pp. 917-921.

[14] P. Yang, N. Zhang, S. Zhang, and et al., “Content Popularity Prediction
Towards Location-Aware Mobile Edge Caching,” IEEE Trans. Multime-
dia, vol. 21, no. 4, pp. 915-929, Apr. 2019.

[15] Z. Xie and W. Chen, “Storage Efficient Edge Caching with Time Domain
Buffer Sharing at Base Stations,” in Proc. of IEEE ICC, Shanghai, China,
May 2019, pp. 1-6.

[16] S. Zhang, P. He, K. Suto, and et al., “Cooperative Edge Caching in
User-Centric Clustered Mobile Networks,” IEEE Trans. Mobile Comput.,
vol. 17, no. 8, pp. 1791-1805, Aug. 2018.

[17] Y. Liu, A. Zhang, X. Xia, and et al., “Proactive Data Caching and
Replacement in the Edge Computing Environment,” in Proc. of IEEE
CLOUD, Beijing, China, Oct. 2020, pp. 193-200.

[18] L. Wang, L. Jiao, T. He, and et al., “Service Entity Placement for
Social Virtual Reality Applications in Edge Computing,” in Proc. of IEEE
INFOCOM, Honolulu, HI, Apr. 2018, pp. 468-476.

[19] I. Lera, C. Guerrero and C. Juiz, “Availability-Aware Service Placement
Policy in Fog Computing Based on Graph Partitions,” IEEE Internet
Things J., vol. 6, no. 2, pp. 3641-3651, Apr. 2019.

[20] Z. Xu, L. Zhou, S. Chi-Kin Chau, and et al., ”Collaborate or Separate?
Distributed Service Caching in Mobile Edge Clouds,” in Proc. of IEEE
INFOCOM, Toronto, ON, Canada, Jul. 2020, pp. 2066-2075.

[21] L. Yang, J. Cao, G. Liang, and et al., “Cost Aware Service Placement
and Load Dispatching in Mobile Cloud Systems,” IEEE Trans Comput.,
vol. 65, no. 5, pp. 1440-1452, May 2016.

[22] J. Xu, L. Chen and P. Zhou, “Joint Service Caching and Task Offloading
for Mobile Edge Computing in Dense Networks,” in Proc. of IEEE
INFOCOM, Honolulu, HI, USA, Apr. 2018, pp. 207-215.

[23] X. Ma, A. Zhou, S. Zhang, and et al., “Cooperative Service Caching
and Workload Scheduling in Mobile Edge Computing,” in Proc. of IEEE
INFOCOM, Toronto, ON, Canada, Jul. 2020, pp. 2076-2085.

[24] L. Liu, H. Tan, S. H.-C. Jiang, and et al., “Dependent Task Placement
and Scheduling with Function Configuration in Edge Computing,” in
Proc. of IEEE/ACM IWQoS, Phoenix, AZ, USA, Jun. 2019, pp. 1-10.

[25] Multi-access Edge Computing (MEC); Phase2: Use Cases and Require-
ments, ETSI Group Spec. MEC 002, V2.1.1, Oct. 2018.

[26] G. Franks, T. Al-Omari, M. Woodside, and et al., “Enhanced Modeling
and Solution of Layered Queueing Networks,” IEEE Trans. Softw. Eng.,
vol. 35, no. 2, pp. 148-161, Mar.-Apr. 2009.

[27] W. Zhao, R. Chellappa, P. J. Phillips, and et al., “Face recognition:
A literature survey,” ACM Comput. Surv. (CSUR), vol. 35, no. 4, pp.
399–458, 2003.

[28] N. C. Fofack, P. Nain, G. Neglia, and et al., “Performance Evaluation
of Hierarchical TTL-based Cache Networks,” Comput. Netw., vol. 65, pp.
212-231, Jun. 2014.

[29] G. Casale and N. Gast, “Performance Analysis Methods for List-Based
Caches With Non-Uniform Access,” IEEE/ACM Trans. Netw., vol. 29,
no. 2, pp. 651-664, Dec. 2020.

[30] G. Bolch, S. Greiner, H. De Meer, and et al., Queueing networks and
Markov chains, John Wiley & Sons, 2006.

[31] N. Gast and B. V. Houdt, “Transient and Steady-state Regime of
a Family of List-based Cache Replacement Algorithms,” in Proc. of
SIGMETRICS, pp. 123–136, ACM, 2015.

[32] M. Bertoli, G. Casale and G. Serazzi, “JMT: Performance Engineering
Tools for System Modeling,” ACM SIGMETRICS PER, vol. 36, no. 4,
pp. 10–15, 2009.

[33] M. Shahrad, R. Fonseca, I. Goiri, and et al., “Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large Cloud
Provider,” in Proc. of USENIX ATC 20, Jul. 2020, pp. 205-218.

[34] D. T. Hoang, D. Niyato, D. N. Nguyen, and et al., “A Dynamic Edge
Caching Framework for Mobile 5G Networks,” IEEE Wireless Commun.,
vol. 25, no. 5, pp. 95-103, Oct. 2018.

[35] “A Guide to 5G Small Cells and Macrocells,” https://www.
essentracomponents.com/en-gb/news/guides/guide-to-5g-small-cells-
and-macrocells, Accessed: 2021-12-31.

	I Introduction
	II Related Work
	III Methodology
	III-A System Model
	III-B Problem Formulation

	IV Generalized LQN Model Design
	IV-A New Design Formalism
	IV-B Analysis of LQN Models with Caching
	IV-C Cache parameters and Markov process

	V Experimental Evaluation
	V-A Evaluation of LQNs for Edge Service Placement
	V-B Generalized LQN Model Validation
	V-C Evaluation of the JCSP Method
	V-D Summary of Experimental Results

	VI Conclusions and Future Work
	References
	References

