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Abstract

Motivation: Few Bayesian methods for analyzing high-dimensional sparse survival data provide scalable
variable selection, effect estimation and uncertainty quantification. Such methods often either sacrifice
uncertainty quantification by computing maximum a posteriori estimates, or quantify the uncertainty at
high (unscalable) computational expense.
Results: We bridge this gap and develop an interpretable and scalable Bayesian proportional hazards
model for prediction and variable selection, referred to as SVB. Our method, based on a mean-field
variational approximation, overcomes the high computational cost of MCMC whilst retaining useful
features, providing a posterior distribution for the parameters and offering a natural mechanism for variable
selection via posterior inclusion probabilities. The performance of our proposed method is assessed via
extensive simulations and compared against other state-of-the-art Bayesian variable selection methods,
demonstrating comparable or better performance. Finally, we demonstrate how the proposed method can
be used for variable selection on two transcriptomic datasets with censored survival outcomes, and how
the uncertainty quantification offered by our method can be used to provide an interpretable assessment
of patient risk.
Availability and implementation: our method has been implemented as a freely available R package
survival.svb (https://github.com/mkomod/survival.svb).
Contact: mk1019@ic.ac.uk
Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction
The development of high-throughput sequencing technologies has led to
the production of large-scale molecular profiling data, allowing us to
gain insights into underlying biological processes (Widłak, 2013). One
such technology is microarray sequencing, in which mRNA counts are
used to describe gene expression. Such data, known as transcriptomics,
are widely used in the biomedical domain and when analyzed alongside
survival times have provided extraordinary opportunities for biomarker
characterization and prognostic modelling (Bøvelstad et al., 2007; Lloyd

et al., 2015; Lightbody et al., 2019; Lu et al., 2021). However, profiling data
is often high-dimensional, which introduces several statistical challenges
including: (i) variable selection, (ii) effect estimation of the features, (iii)
uncertainty quantification, and (iv) scalable computation. The task of
variable selection is particularly important, as few genes typically have
an effect on the outcome. Motivated by clinical applicability, we propose
a state-of-the-art scalable (variational) Bayesian variable selection method
for the proportional hazards model.

In recent years, several methods have been proposed to analyze sparse
high-dimensional data, with one of the most popular being the LASSO
(Tibshirani, 1996). As biomedical studies are often concerned with clinical
phenotypes, such as time to disease recurrence or overall survival time,
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2 Komodromos et al.

these methods have been adapted to support survival analysis (Antoniadis
et al., 2010; Witten and Tibshirani, 2010). For instance, the LASSO, ridge
and elastic-net penalties have all been extended to the proportional hazards
model (Tibshirani, 1997; Gui and Li, 2005; Zou and Hastie, 2005; Simon
et al., 2011). More recently, Bayesian shrinkage and variable selection
methods have grown in popularity (Park and Casella, 2008; O’Hara and
Sillanpää, 2009; Carvalho et al., 2010; Li and Zhang, 2010; Bhadra
et al., 2019; Lewin et al., 2019; Bai et al., 2021), with several methods
being extended to survival data (Tang et al., 2017; Maity et al., 2020;
Nikooienejad et al., 2020).

Bayesian approaches to variable selection are popular, not least since
the relevance of a covariate can be assessed simply by computing the
posterior probability that it is included in a model. This recasts variable
selection as a model selection problem (Mitchell and Beauchamp, 1988;
George and McCulloch, 1993), with every possible model assigned an
individual posterior probability. One of the most popular such model
selection priors is the spike-and-slab prior, see (Banerjee et al., 2021) for
a recent survey. However, exact posterior computation involves summing
over 2p models, where p is the number of covariates, which is intractable
for even moderate p. Markov chain Monte Carlo (MCMC) methods avoid
this problem, but are known to have difficulty efficiently exploring the
model space for high-dimensional covariates (Ormerod et al., 2017),
especially for the problem sizes found in many modern omics studies which
motivate our work. This high computational cost has led to several methods
either making continuous relaxations, giving rise to continuous shrinkage
priors (O’Hara and Sillanpää, 2009; Banerjee et al., 2021), or computing
only maximum a posteriori (MAP) estimates, thereby not offering the
full Bayesian machinery. Since we wish to preserve certain interpretable
features arising from the original discrete model selection approach, such
as inclusion probabilities of particular covariates for variable selection, we
instead turn to variational inference.

Variational inference (VI) is a popular scalable approximation
technique, which has proven to be an effective tool for approximate
Bayesian inference in many settings. VI involves minimizing the
Kullback-Leibler divergence between a family of tractable distributions,
called the variational family, and the posterior distribution; thereby
recasting conditional inference as an optimization problem. The resulting
minimizer is then used for downstream Bayesian inference. Though the
approximation does not provide exact Bayesian inference, computationally
convenient variational families can dramatically increase scalability. A
common choice being mean-field families, under which the model
parameters are independent. For a detailed review of VI, we direct the
reader to Blei et al. (2017) and Zhang et al. (2019).

We propose a scalable and interpretable Bayesian proportional hazards
model using a sparsity-inducing spike-and-slab prior with Laplace
slab and Dirac spike, referred to as sparse variational Bayes (SVB).
Since the posterior is computationally intractable, we use a mean-
field variational approximation based on a factorizable family of spike-
and-slab distributions, thereby preserving certain desirable discrete
model selection aspects while providing scalable approximate Bayesian
inference. We derive a coordinate-ascent algorithm for our implementation
and investigate its performance in extensive simulations, comparing it
against the posterior obtained via MCMC and demonstrating that the
variational Bayes posterior can be used as a viable alternative, whilst
being orders of magnitude faster to compute. We further compare with
other state-of-the-art Bayesian variable selection methods, demonstrating
comparable or better performance in many settings. Finally, we analyze
two transcriptomic datasets involving ovarian and breast cancer data with
censored survival outcomes, yielding biologically interpretable results.

Various versions of this sparse variational family have been employed
in linear and logistic regression models (Logsdon et al., 2010; Titsias and
Lázaro-Gredilla, 2011; Carbonetto and Stephens, 2012; Ormerod et al.,

2017; Ray et al., 2020; Ray and Szabó, 2021) with some of these works
specifically motivated by high-dimensional genomic applications. While
most of these works use Gaussian distributions for the slab component, we
instead follow Ray and Szabó (2021) in using a Laplace prior slab since
Gaussian prior slabs are known to cause excessive shrinkage leading to
potentially poor performance, even when exact posterior computation is
possible (Castillo and van der Vaart, 2012). Our work can thus be viewed
as extending ideas from the sparse VI literature to the setting of survival
analysis under censoring.

More generally, (not necessarily sparse) VI has proven to be
an effective tool for approximate Bayesian inference and has seen
wide use in several settings, including linear and logistic regression
(Jaakkola and Jordan, 1996; Knowles and Minka, 2011), group factor
analysis (Klami et al., 2015), topic modelling (Blei and Lafferty, 2007),
clustering (Teschendorff et al., 2005) and Gaussian processes (Opper
and Arachambeau, 2009) amongst others, with many of these methods
employed in genomic and transcriptomic studies (Logsdon et al., 2010;
Papastamoulis et al., 2014; Zhang and Flaherty, 2017; Svensson et al.,
2020).

2 Materials and Methods
Notation: Let D = {(ti, δi, xi)}ni=1 denote the observed data, where
ti ∈ R+ is an observed (possibly right censored) survival time, δi ∈
{0, 1} is a censoring indicator with δi = 0 if the observation is right
censored and δi = 1 if the observation is uncensored, and xi =

(xi1, . . . , xip)
⊤ ∈ Rp is a vector of explanatory variables.

2.1 Survival Analysis and the proportional hazards model

Let T denote a random variable for an event time with density f(t) and
cumulative distribution function F (t). Then the survival function, the
probability a subject survives past time t, is given by

S(t) = 1− F (t) = exp

(
−
∫ t

0
h(s)ds

)
= exp (−H(t)) , (1)

where H(t) =
∫ t
0 h(s)ds is the cumulative hazard rate and h(t) =

f(t)/S(t) is the hazard rate, the instantaneous rate of failure at time t.
Importantly, expressing S(t) in terms of the hazard function h provides a
natural mechanism for analysing survival times by assuming a form for h
(Ibrahim et al., 2001; Clark et al., 2003).

One such form, used to quantify the effect of features collected
alongside survival times, is the proportional hazards model (PHM),
wherein,

h(t;x, β) = h0(t) exp
(
β⊤x

)
, (2)

where h0(t) is a baseline hazard rate and β = (β1, . . . , βp)⊤ ∈ Rp are
the model coefficients corresponding to the potential covariates of interest.
Typically, estimating β is done by maximizing the partial likelihood,

Lp(D;β) =
∏

{i:δi=1}

exp
(
β⊤xi

)∑
r∈R(ti)

exp
(
β⊤xr

) , (3)

where R(ti) = {r : tr ≥ ti} (Cox, 1972, 1975). Under the partial
likelihood, the baseline hazard rateh0(t) is treated as a nuisance parameter
and not specified, meaning the survival function is not directly accessible
without further assumptions on the hazard rate. This approach is commonly
used when the main interest is on quantifying the effect of covariates on
the survival time to understand the underlying mechanisms, rather than
purely for predictive purposes. Since our focus is on variable selection
and analysing effect sizes, we use the partial likelihood to compute the
posterior.
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VB for proportional hazards models 3

The use of the partial likelihood (3) is common in Bayesian survival
analysis, and can be understood via multiple Bayesian and frequentist
justifications (Ibrahim et al., 2001). For the frequentist, the partial
likelihood is the empirical likelihood with the maximum likelihood
estimator (MLE) for the cumulative baseline hazard function H0 plugged
in, i.e. the profile likelihood (Murphy and Van Der Vaart, 2000). Using it
in a Bayesian way thus means we are fitting a prior to our parameter of
interest β and an MLE on the nuisance parameter H0. For the Bayesian,
assigning a Gamma process prior to H0, marginalizing the posterior over
H0 and taking the limit as the prior on H0 becomes non-informative,
gives a marginal posterior for β exactly based on the partial likelihood
(3) (Kalbfleisch, 1978). Thus using (3) can be viewed as using a diffuse
Gamma process prior on the nuisance parameter H0.

2.2 Prior and variational family

We consider a spike-and-slab prior (George and McCulloch, 1993;
Mitchell and Beauchamp, 1988) for the model coefficients β. Our choice
of prior is conceptually natural for variable selection problems as it leads to
interpretable inference regarding the inclusion probabilities of individual
features. However, unlike the original formulation which uses Gaussian
slabs, we use Laplace slabs, since Gaussian slabs are known to overly
shrink the true large signals (Castillo and van der Vaart, 2012; Ray and
Szabó, 2021). Formally, the prior distribution,Π(β, z, w), has hierarchical
representation,

βj |zj
ind∼ zjLaplace(λ) + (1− zj)δ0

zj |wj
ind∼ Bernoulli(wj)

wj
iid∼ Beta(a0, b0),

(4)

where δ0 is a Dirac mass at zero, Laplace(λ) has density function λ
2
e−λ|x|

on R and λ, a0, b0 > 0. Placing a hyperprior on (wj) allows mixing
over the sparsity level and allows adaptation to the unknown sparsity. The
posterior density is proportional to the partial likelihood Lp in (3) times
the joint prior density, formally,

π(β, z, w|D) ∝ Lp(D;β)π(β, z, w), (5)

where β = (β1, . . . , βp)⊤ ∈ Rp, z = (z1, . . . , zp)⊤ ∈ {0, 1}p and
w = (w1, . . . , wp)⊤ ∈ [0, 1]p.

Since the posterior (5) is computationally intractable, we use a
variational approximation. For the variational family, we choose a
mean-field family given by the product of independent spike-and-slab
distributions with normal slab and Dirac spike for each coefficient:

Q =

Qµ,σ,γ =

p⊗
j=1

[
γjN(µj , σ

2
j ) + (1− γj)δ0

] , (6)

where µj ∈ R, σj ∈ R+, γj ∈ [0, 1]. The notation ⊗ means a product
measure implying coordinate independence, so that β ∼ Qµ,σ,γ means

βj
ind∼ γjN(µj , σ

2
j ) + (1− γj)δ0.

Our choice ofQ thereby provides scalability and maintains the property of
variable selection via the Dirac mass, since the quantities γj = Q(βj ̸=
0) are the inclusion probabilities. The variational posterior is then given
by finding an element Q ∈ Q minimizing the KL divergence between Q

and the posterior distribution Π(·|D),

Π̃ = argmin
Qµ,σ,γ∈Q

KL (Qµ,σ,γ ∥ Π(·|D)) , (7)

which is then used for inference. Note this approximation has O(p)

parameters compared to the full posterior dimension O(2p). As

with all mean-field approximation, dependent information between the
components of β are lost, such as whether two coefficients βi and βj are
likely to be selected simultaneously or not.

2.3 Coordinate-ascent algorithm

A convenient method for computing the mean-field variational posterior
Π̃ is coordinate-ascent variational inference (CAVI) (Blei et al., 2017).
In CAVI, the parameters µj , σj , γj for j = 1, . . . , p are sequentially
updated by finding the values that minimize the KL divergence between
the variational family and the posterior, whilst all other parameters are kept
fixed, iterating until convergence. This reduces the overall optimization
problem to a sequence of one-dimensional optimization problems.

Minimizing the objective (7) is intractable for the Bayesian PHM due
to the form of likelihood (3) and so we instead minimize an upper bound
for the KL divergence. Such surrogate type functionals are well-used in
variational inference, for example in logistic regression (Jaakkola and
Jordan, 1996; Knowles and Minka, 2011; Depraetere and Vandebroek,
2017), and can lead to an increase in accuracy.

The component-wise variational updates for µj and σj are given by
the minimizers of

f(µj ;µ−j , σ, γ, zj = 1) = (8)

∑
{i:δi=1}

log
∑

r∈R(ti)

M(xrj , µj , σj)Pj(xr, µ, σ, γ)− µjxij


+ λσj

√
2/πe−µ2

j/(2σ
2
j ) + λµj(1− 2Φ(−µj/σj))

and

g(σj ;µ, σ−j , γ, zj = 1) =

∑
{i:δi=1}

log
∑

r∈R(ti)

M(xrj , µj , σj)Pj(xr, µ, σ, γ)

 (9)

+ λσj

√
2/πe−µ2

j/(2σ
2
j ) + λµj(1− 2Φ(−µj/σj))− log σj

where M(xrj , µj , σj) = exp(µjxrj + 1
2
σ2
jx

2
rj), Pj(xr, µ, σ, γ) =∏

k ̸=j (γkM(xrk, µk, σk) + (1− γk)) and Φ denotes the CDF of the
standard normal distribution. The minimizers of these expressions do not
have closed-form solutions, and therefore optimization routines are needed
to find them, for instance via Brent’s method (Brent, 1973). Finally, the
component-wise variational update for γj is given by solving,

log
γj

1− γj
= log

a0

b0
−
(
λσj

√
2/πe

−
µ2
j

2σ2
j + λµj(1− 2Φ(−

µj

σj
))

+
∑

{i:δi=1}

(
log

∑
r∈R(ti)

M(xrj , µj , σj)Pj(xr, µ, σ, γ) (10)

− log
∑

r∈R(ti)

Pj(xr, µ, σ, γ)− µjxij

)
+ log

√
2

√
πσjλ

)
+

1

2

A full derivation of these expressions is provided in Section A of the
Supplement.

Algorithm 1 summarizes the coordinate-ascent variational inference
algorithm. We denote the RHS of (10) by ζ(γj ;µ, σ, γ−j), and assess
convergence by computing the change in µ, σ and γ after each iteration,
stopping when the total absolute change is below a specified threshold
(e.g. 10−3). While the evidence lower bound (ELBO) is often used to
assess convergence, the ELBO is not analytically tractable in the present
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4 Komodromos et al.

setting, which instead requires computationally expensive Monte Carlo
integration to evaluate it. For this reason, we instead choose to assess
convergence using the absolute change in µ, σ and γ.

Due to the non-convex objective in (7), CAVI generally only guarantees
convergence to a local optimum, and therefore can be sensitive to
initialization (Blei et al., 2017). We found this to be the case for our
method, particularly for µ and γ, therefore providing good starting values
is generally important (see Section D of the Supplementary materials for
more details). In turn, we initialized µ using the LASSO with a small
regularization hyperparameter, sinceµ corresponds to the unshrunk means
if the variables are included in the model, and γ as (0.5, . . . , 0.5)⊤, since
this corresponds to an initial inclusion probability of 0.5 for each feature.
We found the proposed method is less sensitive to initial value of σ, for
example initializing σ as (0.05, . . . , 0.05)⊤ is sufficient.

Algorithm 1 CAVI for VB approximation to posterior (5)
1: require D, λ, a0, b0
2: Initialize µ, σ, γ

3: while not converged
4: for j = 1, . . . , p

5: µj ← argminµj∈R f(µj ;µ−j , σ, γ, zj = 1) // (8)
6: σj ← argminσj∈R+ g(σj ;µ, σ−j , γ, zj = 1) // (9)
7: γj ← sigmoid ζ(γj ;µ, σ, γ−j) // (10)

8: return µ, σ, γ.

2.4 Parameter tuning

The proposed method involves three prior parametersλ, a0 and b0 defined
in (4), where λ controls the shrinkage imposed on βj |zj = 1, with
large values imposing more shrinkage, and a0 and b0 control the shape
of the Beta distribution, whose expectation a0/(a0 + b0) reflects the
a priori proportion of non-zero coefficients. Generally, our method is
not particularly sensitive to the prior parameters (see Section D of the
Supplement for a numerical investigation) and in practice using sensible
a priori choices is appropriate for most settings. For example, if it is
believed there are a small number of non-zero coefficients with moderate
effect sizes, taking a0 as a small constant (such as 1, 10, p/100), b0 = p

and λ between 0.5 and 2.0 is appropriate.
If an a priori choice is unavailable, the prior parameters can be tuned

using the data. To do so, we suggest performing a grid search over a
predefined set of values, selecting the element that maximizes a given
goodness of fit measure, several options of which are presented in section
B of the Supplement. Furthermore, when tuning a0 and b0, to limit
computation we suggest fixing b0 and searching across a set of values for
a0, thereby exploring different values of the a priori inclusion probability.

2.5 Implementation

A freely available implementation is available for the R programming
language via the package survival.svb, with functions available for
fitting and evaluating models.

3 Simulation study
We use simulations to validate the proposed method, referred to as
SVB. Firstly, we compare the variational posterior to the posterior
obtained via Markov-Chain Monte-Carlo (MCMC), assessing whether our
approximation can be used as a viable alternative. Secondly, we compare
against other state-of-the-art Bayesian variable selection methods for the
proportional hazards model. R scripts to reproduce our results can be found
at https://github.com/mkomod/svb.exp

3.1 Simulation design

Data is simulated for i = 1, . . . , n observations, each having a survival
time ti, censoring indicator δi, and p continuous predictors xi ∈ Rp.
The survival time is sampled independently from T | xi, β0, h0, which

has density f(t;x, β0, h0) = h0(t) exp
(
β⊤
0 x− eβ

⊤
0 x
∫ t
0 h0(s)ds

)
,

where we have taken h0(t) = 1 and where the coefficient vector β0 ∈ Rp

contains s non-zero elements with values sampled iid. uniformly from
[−2.0,−0.5] ∪ [0.5, 2.0] and indices chosen uniformly at random. To

introduce censoring, we sample di
iid∼ U(0, 1), letting δi = I(di > c)

where c ∈ [0, 1] is the censoring proportion, and set ti ← t′i where

t′i
ind∼ U(0, ti) if δi = 0, leaving ti unchanged otherwise. Finally, the

predictors are generated from one of four different settings designed to
examine the behaviour under varying degrees of difficulty:

• Setting 1, an independent setting where xi
iid∼ N(0p, Ip).

• Setting 2, a fairly challenging setting where predictors are moderately
correlated within groups and independent between groups, formally

xi
iid∼ N(0,Σ) with diag(Σ) = 1, Σij = 0.6 for i ̸= j, i, j =

50k+1, . . . , 50(k+1), k = 0, . . . , p/50− 1, Σij = 0 otherwise.
The setting is similar to Tang et al. (2017).

• Setting 3, a challenging setting where xi
iid∼ N(µ,Σ) with µ,Σ

estimated from the design of the TCGA dataset analyzed in Section 4.1.
The s causal variables are randomly selected to correspond to features
with a variance of at least 1.0.

• Setting 4, a realistic setting where the first p predictors are taken from
the TCGA dataset analyzed in Section 4.1 and the s causal features
are selected as in setting 3.

To evaluate the methods, we examine the accuracy of the corresponding
point estimates, quality of the variables selected, and (if applicable)
the uncertainty quantification. The point estimates are assessed via the
ℓ2-error, ∥β0 − β̂∥ and the ℓ1-error, |β0 − β̂|, where β̂ is either a MAP
estimate for β or the posterior mean if a distribution is available. For
the variables selected the: (i) true positive rate (TPR) (ii) false discovery
rate (FDR) and (iii) area under the curve (AUC) of the receiver operator
characteristic curve are computed. For the TPR and FDR a coefficient is
considered to have been selected if the posterior inclusion probability is
at least 0.5. Finally, regarding uncertainty quantification, we evaluate the
marginal credible sets by computing the: (i) empirical coverage, i.e. the
proportion of times the true coefficientβ0,j is contained in the credible set,
and (ii) set size, given by the Lebesgue measure of the set. Details regarding
the construction of the credible sets are presented where appropriate. For
all metrics, we report the median, 5% and 95% quantiles across 100
replicates unless otherwise stated.

3.2 Simulation results

3.2.1 Comparison to MCMC
To assess how well the variational posterior matches the target
(computationally challenging) posterior from (5), we compare the
performance of our approach against the approximate yet asymptotically
exact posterior obtained via MCMC. To do so, data is generated as
described in Section 3.1, taking (n, p, s) = (200, 1000, 10) and c ∈
{0.25, 0.4}, where we have kept n and p small so we can run our MCMC
sampler in a reasonable amount of time. The MCMC sampler (described in
Section C.1 of the Supplement) was run for 10,000 iterations with a burn-
in period of 1,000 iterations. For both methods we used prior parameters
λ = 1, a0 = 1 and b0 = p. Results are presented in Table 1.

Regarding the point estimates, for both the MCMC and the variational
posteriors we took β̂ = (β̂1, . . . , β̂p) ∈ Rp as the posterior mean,
which for the latter is given by β̂j = γjµj . Promisingly, both methods
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VB for proportional hazards models 5

Table 1. Comparison of variational to MCMC posterior taking (n, p, s) = (200, 1000, 10) and c ∈ {0.25, 0.4}, presented is the median and (5%, 95%) quantiles.

Setting c Method ℓ2-error ℓ1-error TPR FDR AUC runtime

Setting 1
0.25

SVB 0.368 (0.21, 0.70) 1.000 (0.52, 1.86) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 18.5s (13.5s,25.6s)
MCMC 0.412 (0.20, 0.75) 1.017 (0.48, 2.01) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1h 24m (1h 7m,1h 50m)

0.4
SVB 0.428 (0.23, 0.89) 1.138 (0.63, 2.45) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (0.95, 1.00) 21.9s (14.5s,30.5s)
MCMC 0.506 (0.26, 0.98) 1.300 (0.69, 2.74) 1.000 (0.80, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1h 28m (1h 25m,1h 30m)

Setting 2
0.25

SVB 0.376 (0.20, 0.73) 1.031 (0.58, 2.07) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 18.9s (14.4s,25.4s)
MCMC 0.405 (0.21, 0.81) 1.059 (0.58, 2.18) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1h 14m (1h 6m,1h 17m)

0.4
SVB 0.472 (0.23, 1.08) 1.176 (0.61, 2.96) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (0.95, 1.00) 24.0s (17.3s,33.1s)
MCMC 0.520 (0.25, 1.08) 1.319 (0.62, 2.91) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1h 38m (1h 25m,2h 4m)

Setting 3
0.25

SVB 0.392 (0.18, 1.40) 1.079 (0.53, 3.28) 1.000 (0.90, 1.00) 0.000 (0.00, 0.09) 1.000 (0.95, 1.00) 29.2s (16.9s,44.9s)
MCMC 0.418 (0.21, 1.01) 1.092 (0.54, 2.58) 1.000 (0.90, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00) 1h 45m (1h 24m,1h 49m)

0.4
SVB 0.470 (0.24, 1.57) 1.263 (0.63, 4.16) 1.000 (0.80, 1.00) 0.000 (0.00, 0.10) 1.000 (0.95, 1.00) 21.7s (13.7s,33.2s)
MCMC 0.508 (0.23, 1.26) 1.236 (0.61, 3.45) 1.000 (0.80, 1.00) 0.000 (0.00, 0.09) 1.000 (1.00, 1.00) 1h 36m (1h 30m,1h 45m)

Setting 4
0.25

SVB 0.393 (0.18, 1.12) 1.067 (0.50, 2.54) 1.000 (0.90, 1.00) 0.000 (0.00, 0.10) 1.000 (0.95, 1.00) 17.0s (9.2s,24.9s)
MCMC 0.382 (0.17, 0.95) 1.007 (0.44, 2.47) 1.000 (0.90, 1.00) 0.000 (0.00, 0.10) 1.000 (1.00, 1.00) 1h 5m (1h 3m,1h 8m)

0.4
SVB 0.425 (0.18, 1.38) 1.171 (0.50, 2.85) 1.000 (0.90, 1.00) 0.000 (0.00, 0.10) 1.000 (0.95, 1.00) 25.8s (14.8s,39.9s)
MCMC 0.486 (0.21, 1.13) 1.158 (0.53, 3.17) 1.000 (0.80, 1.00) 0.000 (0.00, 0.00) 1.000 (0.95, 1.00) 1h 38m (1h 14m,1h 46m)

Note: simulations were ran on Intel® Xeon® E5-2680 v4 2.40GHz CPUs.

produce similar results, with near identical performance in all settings
(Table 1). In particular, the similarity of the ℓ2-error and ℓ1-error suggests
the posterior means are near identical. In terms of variable selection, both
methods performed similarly. In particular, the TPR is comparable across
the different settings, suggesting both methods are selecting a similar set
of truly associated features. However, the upper quantile for the FDR is
slightly larger for the variational posterior, meaning the MCMC posterior
selects fewer spurious variables.

Finally, we examine the uncertainty quantification of each method
via 95% marginal credible sets Sj , j = 1, . . . , p, which are given by:
Sj = Ij if the posterior inclusion probability is greater than 0.95,
Sj = {0} if the posterior inclusion probability is less than 0.05, and
Sj = Ij ∪ {0} otherwise, where Ij is the smallest interval from the
continuous component of our posterior such that Sj contains 95% of the
posterior mass. As expected, for the non-zero coefficients, the coverage of
the MCMC posterior is slightly better than the coverage of the variational
posterior (Table 2), meaning the credible sets of the variational posterior
are sometimes not large enough to capture the true non-zero coefficients.
This is further reflected by the smaller set sizes, highlighting the well
known fact that VI can underestimate the posterior variance (Carbonetto
and Stephens, 2012; Blei et al., 2017; Zhang et al., 2019; Ray et al., 2020).
Promisingly, the coverage of the zero coefficients is equal to one for both
methods, meaning the credible sets contain zero, and typically, as reflected
by the set size, contain only zero.

Overall, the variational posterior displays similar performance to the
MCMC posterior in key aspects for this setting with p = 1000, and can be
computed orders of magnitude faster (Table 1). Our results highlight that
the variational posterior is particularly good at capturing the key features
(posterior means and inclusion probabilities) and provides reasonable
uncertainty quantification for individual features.

3.2.2 Comparison to other methods
We perform a large-scale simulation study to empirically compare the
performance of our method to two Bayesian variable selection methods.
Within our study, data is generated as described in Section 3.1, taking
(n, p, s) = (500, 5000, 30) and c ∈ {0.25, 0.4} for all settings. Notably,
under such a setting running MCMC would be computationally prohibitive,
as highlighted in the previous section.

We compare against BhGLM (Tang et al., 2017), a spike-and-slab
LASSO method that uses a mixture of Laplace distributions with one

Table 2. Coverage and set size for variational and MCMC posterior. Presented
are means and std. dev.

Set. c Meth. cov. β0 ̸= 0 set size β0 ̸= 0 cov. β0 = 0 set size β0 = 0

1
0.25

SVB 0.770 (0.202) 0.320 (0.013) 1.000 (0.000) 0.000 (0.000)
MCMC 0.928 (0.138) 0.506 (0.039) 1.000 (0.000) 0.000 (0.000)

0.4
SVB 0.774 (0.208) 0.355 (0.021) 1.000 (0.000) 0.000 (0.000)
MCMC 0.914 (0.127) 0.570 (0.054) 1.000 (0.000) 0.000 (0.000)

2
0.25

SVB 0.703 (0.227) 0.306 (0.028) 1.000 (0.001) 0.000 (0.000)
MCMC 0.904 (0.161) 0.522 (0.053) 1.000 (0.000) 0.000 (0.000)

0.4
SVB 0.683 (0.262) 0.333 (0.039) 1.000 (0.001) 0.000 (0.000)
MCMC 0.845 (0.218) 0.567 (0.101) 1.000 (0.000) 0.000 (0.000)

3
0.25

SVB 0.626 (0.288) 0.251 (0.020) 1.000 (0.000) 0.000 (0.000)
MCMC 0.903 (0.140) 0.482 (0.047) 1.000 (0.000) 0.000 (0.000)

0.4
SVB 0.619 (0.278) 0.276 (0.028) 1.000 (0.000) 0.000 (0.000)
MCMC 0.873 (0.197) 0.540 (0.078) 1.000 (0.000) 0.000 (0.000)

4
0.25

SVB 0.672 (0.224) 0.252 (0.021) 1.000 (0.000) 0.000 (0.000)
MCMC 0.921 (0.144) 0.483 (0.047) 1.000 (0.000) 0.000 (0.000)

0.4
SVB 0.660 (0.249) 0.277 (0.025) 1.000 (0.001) 0.000 (0.000)
MCMC 0.906 (0.156) 0.547 (0.059) 1.000 (0.000) 0.000 (0.000)

acting as the spike and the other the slab, and BVSNLP (Nikooienejad
et al., 2020), which uses a mixture prior composed of a point mass at zero
and an inverse moment prior. Notably, both BhGLM and BVSNLP use
Cox’s partial likelihood in the posterior and return a MAP estimate for β
as well as posterior inclusion probabilities for each feature. Finally, for
each method we use the default hyperparameters and let λ = 1, a0 = 1

and b0 = p for SVB.
Generally, all methods produced excellent point estimates, with SVB

obtaining the smallest median ℓ2-error and ℓ1-error in settings 1 and 2, and
BhGLM in setting 4 (Table 3). Notably, SVB obtained the smallest lower
(5%) quantile for the ℓ2-error and ℓ1-error in settings 3 and 4, meaning
the method can perform better than BhGLM but may be sensitive to the
design matrix.

Regarding the variables selected, all methods performed exceptionally
well achieving the ideal values for the TPR, FDR and AUC in Settings 1
and 2 (Table 3). Within settings 3, BhGLM obtained the best TPR, FDR
and AUC closely followed by SVB and BVSNLP. Within setting 4, all
three methods obtained the ideal values when the censoring was low (c =

0.25) and BhGLM performed best under moderate censoring (c = 0.40).
Further, BhGLM best controlled the FDR in settings 3 and 4, obtaining
the lowest upper (95%) quantile, closely followed by SVB. Finally, we
note, SVB is the only method that provides uncertainty quantification, a
direct application of which is demonstrated in Section 4.2.
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Table 3. Comparison of Bayesian variable selection methods, taking (n, p, s) = (500, 5000, 30) and c ∈ {0.25, 0.4}, presented is the median and (5%, 95%)

quantiles.

Setting c Method ℓ2-error ℓ1-error TPR FDR AUC

Setting 1

0.25
SVB 0.378 (0.26, 0.89) 1.747 (1.16, 4.17) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)
BhGLM 1.206 (0.79, 1.78) 9.590 (7.22, 12.88) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)
BVSNLP 0.456 (0.33, 0.96) 2.007 (1.41, 4.57) 1.000 (1.00, 1.00) 0.000 (0.00, 0.03) 1.000 (1.00, 1.00)

0.4
SVB 0.449 (0.31, 0.99) 2.056 (1.37, 4.87) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)
BhGLM 0.807 (0.53, 1.35) 6.458 (4.52, 9.31) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)
BVSNLP 0.518 (0.35, 1.44) 2.231 (1.52, 6.85) 1.000 (0.96, 1.00) 0.000 (0.00, 0.03) 1.000 (0.99, 1.00)

Setting 2

0.25
SVB 0.405 (0.29, 0.80) 1.823 (1.28, 3.78) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)
BhGLM 0.596 (0.45, 1.04) 4.494 (3.51, 6.89) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)
BVSNLP 0.475 (0.33, 0.90) 2.130 (1.47, 4.01) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

0.4
SVB 0.491 (0.33, 1.05) 2.208 (1.45, 5.03) 1.000 (0.97, 1.00) 0.000 (0.00, 0.03) 1.000 (1.00, 1.00)
BhGLM 0.551 (0.44, 0.86) 3.716 (2.98, 5.36) 1.000 (0.97, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)
BVSNLP 0.515 (0.37, 1.47) 2.238 (1.54, 6.71) 1.000 (1.00, 1.00) 0.000 (0.00, 0.00) 1.000 (1.00, 1.00)

Setting 3

0.25
SVB 1.040 (0.30, 3.17) 3.881 (1.36, 15.37) 0.967 (0.83, 1.00) 0.000 (0.00, 0.14) 0.983 (0.92, 1.00)
BhGLM 0.590 (0.36, 1.57) 3.279 (2.23, 6.73) 1.000 (0.93, 1.00) 0.000 (0.00, 0.03) 1.000 (0.97, 1.00)
BVSNLP 3.107 (1.74, 9.73) 12.262 (6.88, 47.67) 0.967 (0.53, 1.00) 0.000 (0.00, 0.53) 0.983 (0.78, 1.00)

0.4
SVB 1.379 (0.36, 3.47) 5.728 (1.55, 17.47) 0.933 (0.77, 1.00) 0.033 (0.00, 0.13) 0.967 (0.88, 1.00)
BhGLM 0.796 (0.41, 2.18) 4.035 (2.25, 10.92) 0.967 (0.87, 1.00) 0.000 (0.00, 0.07) 1.000 (0.95, 1.00)
BVSNLP 3.867 (1.98, 11.44) 15.874 (7.99, 51.07) 0.967 (0.20, 1.00) 0.033 (0.00, 0.69) 0.983 (0.65, 1.00)

Setting 4

0.25
SVB 0.603 (0.29, 2.02) 2.298 (1.21, 8.84) 1.000 (0.90, 1.00) 0.000 (0.00, 0.08) 1.000 (0.95, 1.00)
BhGLM 0.503 (0.35, 1.36) 3.141 (2.25, 5.59) 1.000 (0.93, 1.00) 0.000 (0.00, 0.03) 1.000 (0.97, 1.00)
BVSNLP 2.946 (1.96, 8.72) 11.426 (6.98, 36.46) 1.000 (0.90, 1.00) 0.000 (0.00, 0.07) 1.000 (0.95, 1.00)

0.4
SVB 1.092 (0.32, 2.83) 3.878 (1.40, 14.06) 0.967 (0.83, 1.00) 0.000 (0.00, 0.08) 0.983 (0.92, 1.00)
BhGLM 0.674 (0.40, 1.64) 3.610 (2.28, 7.72) 1.000 (0.93, 1.00) 0.000 (0.00, 0.04) 1.000 (0.97, 1.00)
BVSNLP 3.163 (2.14, 10.53) 12.227 (8.14, 45.64) 1.000 (0.73, 1.00) 0.000 (0.00, 0.32) 1.000 (0.87, 1.00)

4 Application

4.1 TCGA ovarian cancer data

The first dataset we analyzed is a transcriptomic dataset where the outcome
of interest is overall survival. The dataset was collected from patients
with ovarian cancer and has a sample size of n = 580, of which 229

samples are right censored and351 samples are uncensored, corresponding
to a censoring rate of 39.5% (TCGA, 2022). Within the dataset there are
p = 12, 042 covariates, which we pre-processed by removing features
with a coefficient of variation below the median value (Mar et al., 2011),
leaving 6,021 covariates which we centered before fitting our method.

When applying our method, we set a0 = p/100 and b0 =

p, reflecting our prior belief that few genes are associated with the
response. As we had no prior belief for λ, we performed 10-fold
cross validation to select the value, exploring a grid of values Λ =

{0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0,
5.0}. To evaluate model fit we compute the: (i) ELBO= EQ [logLp] −
KL(Q∥Π), (ii) expected log-likelihood under the variational posterior
(ELL = EQ[logLp(D;β)]), and (iii) c-index, reporting the mean and
standard deviation across the 10 folds for the training and validation sets
in Table 2 of the Supplement. Notably, no single hyperparameter value
stands out as being best, meaning the model is not particularly sensitive to
the value of λ.

To assess the model’s convergence diagnostics we examine the fit for
λ = 1, and examine the change in: (i) ELBO, (ii) ELL, and (iii) KL
between the variational posterior and the prior, as we iterate our co-ordinate
ascent algorithm (Figure 1). Note the ELBO and ELL are computed for the
training and validation sets, whereas KL(Q∥Π) need only be computed for
the training set. Notably, across the different folds the ELBO is increasing
as the co-ordinate ascent algorithm is iterated [Figures 1 (A) and (B)],
suggesting that the model fit is improving. Interestingly, the training ELL is
decreasing [Figure 1 (C)], whereas the inverse is true for the validation ELL
[Figure 1 (D)], meaning, initially the model is overfitting to the training
data, and as we iterate begins to fit better to the unseen validation set.
Further, the KL(Q∥Π) is decreasing [Figure 1 (E)], therefore a greater

degree of sparsity is enforced as we iterate, excluding more features and
preserving the ones that best explain the variation in the response.

As we are using our model for variable selection, we examine the genes
selected across the different values of λ and folds. Table 4 reports the
names and selection proportion of genes, where the selection proportion
is the number of times a particular gene has posterior inclusion probability
greater than

k∗ = argmax
k∈[0,1]

{∑p
j=1(1− γj)I{γj > k}∑p

j=1 I{γj > k}
< α

}
(11)

Notably, k∗ is computed for each fit and is a threshold used to control
the Bayesian false discovery rate at significance level α, which we have
set as α = 0.10 (Newton et al., 2004). Promisingly, the most frequently
selected gene, PI3, has a known, albeit limited, role in ovarian cancer, a
disease characterised by copy number aberration. Clauss et al. (2010)
reported the first link of PI3 gene product (elafin) to ovarian cancer
(Clauss et al., 2010). Elafin, a serine proteinase inhibitor involved in
inflammation and wound healing, is overexpressed in ovarian cancer and
overexpression is associated with poor overall survival and is due, in part,
to genomic gains on chromosome 20q13.12, a locus frequently amplified
in ovarian carcinomas. There is less known about the gene encoding the
alpha isoform of the calcineurin catalytic subunit (PPP3CA) in ovarian
cancer. A recent report indicates that higher expression of calcineurin
predicts poor prognosis in ovarian cancer, particularly those of serous
histology (Xin et al., 2019). It is also plausible that other know functions
of calcineurin/nuclear factor of activated T cells (NFAT), in controlling
adaptive T-cell function or innate immunity (Fric et al., 2012), in this
cancer that warrants further investigation. Finally, CCR7, the third most
abundant gene was recently reported, in single cell RNA-seq analysis, to
be emphasised in high-grade serous ovarian cancer (Izar et al., 2020).

Table 4. Gene names and selection proportions for ovarian cancer dataset.

PI3 PPP3CA CCR7 SDF2L1 D4S234E VSIG4 DAP IL7R
0.7 0.379 0.293 0.286 0.229 0.171 0.136 0.136

TBP ACSL3 SLAMF7 UBD IL2RG GALNT10 FLJ20323 RNF128
0.121 0.114 0.1 0.1 0.064 0.057 0.05 0.05
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4.2 Breast cancer data set

The second dataset we analyzed is a transcriptomic dataset collected
from patients with breast cancer, where the outcome of interest is overall
survival (Yau et al., 2010). The dataset consists of n = 682 samples
and p = 9, 168 features which we preprocessed as before, leaving
p = 4, 584 features. Within the dataset 454 observations are right
censored, corresponding to a censoring rate of 66.5%.

As in the previous section, we set a0 = p/100 and b0 = p, and
tuned the prior parameter λ via 10-fold cross validation using the same
set Λ. Table 3 in the Supplement reports the ELBO, ELL and c-index
averaged across the validation and training sets. We note that the model
is not particularly sensitive to the value of λ. Furthermore, an assessment
of the convergence diagnostics for λ = 2.5, presented in Figure 12 of the
Supplement, carries a similar interpretation as with the TCGA data.

Table 5 reports the names and selection proportions of the genes within
the dataset. The most frequently selected gene, Rho GTPase activating
protein 28 (ARHGAP28) is a negative regulator of RhoA. There is paucity
of data on this gene in cancer generally, however, a report by Planche
et al. (2011) identified the gene as downregulated in reactive stroma of
prostate tumours. Further assessment of this gene in breast cancer is
warranted. Notably, NEK2, GREM1 and ABCC5 have been examined
in the biomedical literature, and have been associated with cancer cell
proliferation and metastasis. More specially, overexpression of NEK2
induces epithelial-to-mesenchymal transition, a process which leads to
functional changes in cell invasion, overexpression of GREM1 has been
associated with metastasis and poor prognosis, and ABCC5 has been
associated with breast cancer skeletal metastasis (Rivera-Rivera et al.,
2021; Park et al., 2020; Mourskaia et al., 2012). As with the TCGA data, it
is encouraging that genes with pre-existing biological interpretation have
been selected by our model.

Table 5. Gene names and selection proportions for the breast cancer dataset.

ARHGAP28 NEK2 ABCC5 GREM1 DUSP4 ITGA5 CCL2 IGFBP7
0.386 0.25 0.2 0.2 0.193 0.193 0.164 0.143

NFE2L3 TRPC1 PKMYT1 DDX31 EMILIN1 SSPN ABO HSPC072
0.114 0.114 0.1 0.086 0.086 0.086 0.079 0.079

Finally, we want to highlight that our method, in contrast to the methods
compared in Section 3.2.2, quantifies the uncertainty of β. Crucially,
the availability of uncertainty serves as a powerful inferential tool for
computing (variational) posterior probabilities with respect to risk scores
(β⊤x). Such probabilities can be useful in comparing patients between
one another, or assessing the risk of patients against chosen benchmarks
(depending on the aims of the practitioner).

To demonstrate, we opt to compute the posterior probability that one
patient is at greater risk than another, formally, Π̃(β⊤xi ≥ β⊤xj), where
i ̸= j. To illustrate the application, we split patients into low and high risk
groups based on the estimated prognostic index, η̂i = β̂⊤xi, where β̂ is
the posterior mean. Patients with prognostic index less than the median
(computed for the training set) are considered low risk, whilst patients
with prognostic index greater than or equal to the median are considered
high risk. The Kaplan-Meier (KM) curves for these groups are shown in
Figure 2 (A). Critically, Bayesian approaches that only compute the MAP
of β are only able to provide a point estimates for η̂. In turn, our method is
able to provide uncertainty around this quantity and therefore with respect
to the ranking of the patients. For instance, in Figure 2 (B) we present the
posterior probabilities comparing the risks between patients. We observe
that the highest risk patients in the low risk group are comparable to the
lowest risk patients in the high risk group, and that the highest risk patients
within the high risk group are with high probability more at risk than the
patients within the low risk group.
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Fig. 1. Ovarian cancer dataset model convergence diagnostics for λ = 1.
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Fig. 2. (A) Kaplan-Meier curves for patients in low and high risk groups. (B) Comparison
of patients in the low and high risk groups (ordered by η̂) – within each cell the (variational)
posterior probability patient in row i is at greater risk than patient in column j is computed.
Samples are taken from the second validation fold and the fit with λ = 2.5 is used.
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5 Discussion
Variable selection and effect estimation for high-dimensional survival data
has been an issue of great interest in recent years, particularly given the
ever growing production of large scale omics data. However, the high-
dimensionality and heterogeneity in the predictors, alongside the censoring
in the response, makes the analysis a non-trivial task. While many recent
methods have tackled these issues through a Bayesian approach, due to
long compute times they often only produce point estimates rather than
the full posterior and thereby fall short in providing the full Bayesian
machinery.

We have bridged this gap and developed a scalable and interpretable
mean-field variational approximation for Bayesian proportional hazards
models with a spike-and-slab prior. We have demonstrated that the
resulting variational posterior displays similar performance to the posterior
obtained via MCMC whilst requiring a fraction of the compute time.
Furthermore, we have demonstrated via an extensive simulation study that
our proposed method performs comparably to state-of-the art Bayesian
variable selection methods.

Finally, we have demonstrated that our method can be used for variable
selection on two real world transcriptomics datasets, giving rise to results
with pre-existing biological interpretations, thereby validating the practical
utility of our method. We have also shown that the risk of patients can be
compared through (variational) posterior probabilities, highlighting that
the availability of a posterior distribution can be a powerful inferential
tool. For illustrative purposes we examined the pairwise probabilities
of patients grouped based on the prognostic index, however, patients
could have alternatively been compared to other baselines e.g. the feature
vector corresponding to median prognostic index. Furthermore, although
this is not an aspect we have considered, grouping based on: age,
cancer status, stage etc. may yield insightful results for practitioners and
bioinformaticians.

A natural extension of our work would be to develop approximations
with relaxed independence assumptions by using a more flexible
variational family (Ning, 2021). Finally, we would like to highlight that
improving the uncertainty quantification is an active area of research in
the general VI community, see e.g. (Jerfel et al., 2021).
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