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Abstract— Traffic congestion is one of the major issues for
urban traffic networks. The connected and autonomous vehicles
(CAV) is an emerging technology that has the potential to
address this issue by improving safety, efficiency, and capacity
of the transportation system. In this paper, the problem of
optimal trajectory planning of battery-electric CAVs in the
context of cooperative crossing of an unsignalized intersection is
addressed. An optimization-based centralized intersection con-
troller is proposed to find the optimal velocity trajectory of each
vehicle so as to minimize electric energy consumption and traffic
throughput. Solving the underlying optimization problem for a
group of CAVs is not straightforward because of the nonlinear
and nonconvex dynamics, especially when the powertrain model
is explicitly modelled. In order to ensure a rapid solution search
and a unique global optimum, the optimal control problem
(OCP) is reformulated via convex modeling techniques. Several
simulation case studies show the effectiveness of the proposed
approach and the trade-off between energy consumption and
traffic throughput is illustrated.

I. INTRODUCTION

With the aim of addressing the mobility and safety issues
related to transportation systems, significant developments
of connected and autonomous vehicle (CAV) technology
have been achieved during the last decade [1]. With the
popularization of CAVs, the cooperative vehicle intersection
control has been a popular topic in the research field of in-
telligent transportation systems. Traditionally, traffic signals
are used to regulate flows at intersections even when the
vehicles are autonomous. Numerous studies have been con-
ducted to increase the efficiency of traffic light crossing and
therefore the fuel economy of the vehicles passing through
the intersection [2], [3]. More recently, the advancement of
information and communication technologies incentivizes the
development of signal-free autonomous intersections, which
have the potential of further reducing traffic delays and
improving road capacity [4]–[6].

A comprehensive overview of existing autonomous inter-
section control methods, from centralized to decentralized,
can be found in [7], [8]. The centralized approach relies on
a single central controller that determines the trajectory of

This work has been supported by the EPSRC Grant EP/N022262/1
and partially funded by the Research Promotion Foundation (Project:
CULTURE/BR-NE/0517/14), the European Unions Horizon 2020 research
and innovation programme under grant agreement No 739551 (KIOS CoE)
and the Government of the Republic of Cyprus through the Directorate
General for European Programmes, Coordination and Development.

X. Pan and S. A. Evangelou are with the Dept. of Electri-
cal and Electronic Engineering at Imperial College London, UK
(xiao.pan17@ic.ac.uk, s.evangelou@ic.ac.uk).

B. Chen is with the Dept. of Electronic and Electrical Engineering at
University College London, UK (boli.chen@ucl.ac.uk).

S. Timotheou is with the Dept. of Electrical and Computer Engineering
and the KIOS Research and Innovation Center of Excellence, University of
Cyprus (timotheou.stelios@ucy.ac.cy).

all the CAVs crossing the intersection. Common centralized
approaches are optimization-based with the main objective of
increasing the throughput of an intersection [9], which can be
achieved by minimizing the travel time. However, the mini-
mization of travel time usually implies high levels of vehicle
energy consumption. As such, some effort has focused on the
co-optimization of energy consumption and travel time [10],
[11], where convex and hierarchical optimization approaches
are also utilized to speed up otherwise computationally ex-
pensive centralized optimization schemes. Computationally
efficient alternatives are the heuristic control strategies [12],
[13], which however yield non-optimal control solutions in
most cases. There have been numerous other efforts reported
in the literature based on decentralized control frameworks,
where the velocity of each individual CAV is cooperatively
controlled by a local (to each vehicle) controller [14], [15].
In such frameworks, however, a global optimal solution is
usually not guaranteed as the decentralized controllers are
based only on local information.

Despite the significant progress in studying the traffic
management of autonomous vehicles at intersections, the
available methods only utilize a highly simplified linear ve-
hicle longitudinal model, in which the energy losses and the
powertrain model are neglected. In this context, the energy
consumption (objective) is conventionally approximated by
the L2-norm of the vehicle acceleration, which might not
be realistic. The earlier work of the authors [11] proposed
a centralized intersection controller with consideration of
a realistic longitudinal model involving various resistance
losses (such as aerodynamic drag and tire rolling resistance
losses) and the possible brake energy recovery to enable more
accurate control solutions. In order to make the optimization
computational burden manageable, this previous work, how-
ever, it still did not take into account the powertrain losses
and furthermore it assumed a constant cruising speed for all
CAVs within the center of the intersection. The present paper
addresses both of these important deficiencies of autonomous
intersection control, while managing to maintain tractability
of the associated optimal control problem (OCP). Hence,
the contributions of the present work are: 1) a fundamental,
and widely used and applicable battery electric powertrain
model is integrated into the vehicle dynamics model and
thus it permits a more realistic and accurate paradigm of the
vehicle energy consumption, 2) the conservative assumption
that presumes a constant cruising speed for all CAVs within
the center of the intersection is removed and the benefit
of this in terms of overall energy and time consumption is
verified by numerical examples, and 3) with the additional
complexities introduced by 1) and 2), the convexity of the
resulting OCP is preserved owing to the employed space-



domain modeling approach and a non-conservative convex
formulation of the electric powertrain. Hence, the overall
enhanced centralized intersection problem can be solved to
optimality very efficiently.

The remainder of this paper is organized as follows.
Section II introduces the intersection crossing problem, along
with the electric powertrain model of the CAVs. The inter-
section problem is formulated as a convex optimization in
Section III. Numerical examples are presented in Section IV.
Concluding remarks are given in Section V.

II. PROBLEM STATEMENT

Fig. 1 shows a two-phase four-approach signal-free in-
tersection with two lanes per road studied in this work.
As it can be seen, the center of the intersection is the

Fig. 1. Scheme of autonomous intersection crossing with connected and
autonomous vehicles.

Merging Zone (MZ), where vehicles from different directions
merge together, and therefore, it is the area of potential
lateral collision of vehicles. Before entering the MZ, CAVs
intending to cross the intersection will first enter a Control
Zone (CZ), in which the motion of each CAV is fully
controlled by an Intersection Controller (IC). Both the MZ
and CZ are considered to be squares of sides S and 2L+S,
respectively, with L > S. The IC determines the trajectories
of all the CAVs within the CZ in a centralized manner to
achieve safe intersection crossing with optimized objectives
related to the total energy consumption and the total travel
time. In this work, it is assumed the IC has no delay and error
in communication with the CAVs and the First-In-First-Out
(FIFO) policy is imposed to regulate all the CAVs to enter
and leave the MZ in the same order they arrive at the CZ.
For simplicity, it is assumed the CAVs studied in this work
maintain their initial directions throughout the MZ and CZ.

For the sake of further discussion, let us denote N ∈ N the
total number of CAVs arriving at the CZ within a predefined
time-window T and N = {1, 2, . . . , N} ∈ ZN the set to
designate the order in which the vehicles enter the CZ. In
this context, given an arbitrary CAV i, the rest of the CAVs
can be categorized into the following three subsets of N :
1) Li collects vehicles traveling in the same direction as the
ith vehicle; 2) Oi collects vehicles traveling in the opposite
direction to the ith vehicle; 3) Ci collects vehicles traveling
in the perpendicular directions to the ith vehicle.

All the CAVs in this work are considered as identical
battery electric vehicles (BEVs) governed by the longitudinal

dynamics:

d

dt
vi(t) =

Fw,i(t)− Fb,i(t)− Fr − Fd,i(t)

m
, i∈N , (1)

where vi(t) is the linear (forward) velocity of the ith CAV, m
is the vehicle mass, Fw,i(t) = gr

rw
Ti is the traction force, gr

and rw are the transmission gear ratio and the wheel radius
respectively, Ti corresponds to the electric motor torque,
Fb,i(t) denotes the mechanical brake force, and Fr = frmg
and Fd,i(t)=fdv

2
i (t) are the resistance forces of rolling and

air drag respectively, in which fr and fd are the coefficients
of rolling and air drag resistances respectively. The velocity
and the motor torque of each CAV are bounded by:

vmin ≤ vi(t) ≤ vmax, (2a)
Tmin ≤ Ti(t) ≤ Tmax, (2b)

where the speed limits vmax and vmin are set depending on
the infrastructure requirements and traffic regulations [10],
and the motor torque limits Tmax and Tmin are specified
later in Fig. 2 and in Table I.

It is reasonable to consider the control horizon of the IC is
[0, L+S] rather than the whole CZ as the remaining segment
[L+S, 2L+S] can be integrated into the next intersections
with properly sized CZs. Since the travel distance for each
CAV is fixed, the problem can be easily formulated in the
space domain with an alternative independent variable, the
traveled distance, s, by a transformation of (1) from the time
to the space domain via d

ds = 1
vi

d
dt . Instead of the variable

speed vi(t) of the ith vehicle, it is convenient to use the
kinetic energy Ei(s) = 1

2mv
2
i (s) in the space domain [16].

Therefore, the associated vehicle longitudinal dynamics (1)
for all s∈ [0, L+ S] are governed by:

d

ds
Ei(s) = Fw,i(s)−Fb,i(s)−Fr− 2

fd
m
Ei(s), i∈N . (3)

As the variable time t is substituted after domain transfor-
mation, it is redefined as a system dynamics state for each
vehicle i in the space domain:

d

ds
ti(s) =

1√
2Ei(s)/m

, i∈N . (4)

The assumption made in previous work [10], [11], [15]
that the CAVs follow constant speeds within the MZ is
removed in the present work. Instead, the proposed frame-
work allows the velocity trajectories of all CAVs to be fully
optimized throughout the mission (over the horizon L+ S).
As such, a globally optimal solution can be found rather than
a suboptimal solution formed by optimized speed profiles
over [0, L] and periods of cruising at non-optimal speeds.
The benefit of removing the constant velocity requirement
inside the MZ in terms of the energy and travel time saving
will be shown in the simulation Section IV (see Fig. 8).

For obvious safety reasons, it is obligatory for the CAVs
to avoid rear-end and lateral collisions at all times. The
following constraint is imposed to avoid rear-end collisions:

ti(s)−tk(s)≥ vi(s)− vk(s)

|amin|
, k ∈ Li , i∈N , (5)

where k denotes the index of the vehicle in front of the ith



CAV, and the right hand side of the inequality represents
the time-to-collision (TTC) [17] with amin the maximum
available deceleration during emergency braking subject to
tire friction limits. Note that the TTC constraint (5) is
active only when vi(s)−vk(s)> 0, and therefore, it is less
conservative compared to a nominal time gap as used in [11].

To avoid lateral collisions in the MZ, the following con-
straint needs to be satisfied for any CAV j ∈ Ci that enters
the CZ after CAV i:

ti(L+ S) ≤ tj(L) , i∈N , j ∈ Ci, j > i, (6)

which guarantees that that vehicle j enters the MZ only after
vehicle i has left the MZ. Finally, for any CAV h∈Oi the
following constraints are imposed:

ti(L) < th(L), ti(L+ S) < th(L+ S),

i∈N , h ∈ Oi, h > i
(7)

which allows multiple CAVs in the MZ at the same time.
The following assumption is imposed to validate the FIFO

priority model:
Assumption 1: The entry times of all CAVs at the CZ are

different, such that ti(0) 6= tj(0), i 6=j, i, j ∈ {1, 2, · · · , N}.
Thus, the FIFO policy can be guaranteed by satisfying (5),

(6), (7) and Assumption 1. To guarantee all CAVs arriving at
the CZ have feasible initial states and initial control inputs,
a further assumption is proposed as follows:

Assumption 2: For each CAV i, the constraints (2) and (5)
are inactive at ti(0).

Since all CAVs in this work are of BEV powertrain archi-
tecture, the energy consumption of a CAV is evaluated by the
energy cost in its battery. This architecture enables electro-
chemical power to be absorbed/delivered by the battery to
save energy from braking. Such a property may turn out to
be beneficial in practice as the maneuvers of CAVs will be
regulated and optimized by the IC. The powertrain connected
to the battery contains a DC/DC converter, an electric motor
and a transmission set, where both the converter and the
transmission are simply modelled of constant efficiency
values 0.96, and the efficiency of the motor is modelled as a
static efficiency map [18], illustrated in Fig. 2. According to
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Fig. 2. Efficiency map of the electric motor (positive torque indicates
battery discharging and negative torque represents battery charging) and op-
erational bounds (dotted lines) for the reversible motor. The area surrounded
by red rectangle denotes the operation region for the feasible vehicle speed
specified by (2a) with vmin and vmax defined in Table I.

established literature, the battery power can be represented

as a quadratic function of motor torque, given by [19]:

Pb,i(s) = b1Ti(s)ωi(s) + b2T
2
i (s), i∈N , (8)

where b1 and b2 are fitting parameters, and ωi(s)= gr
rw
vi(s)

is the angular speed of the electric motor. By applying (4),
the total battery energy usage of all the CAV can be found
by integration in the space domain as follows:

Jb =

N∑
i

∫ L+S

0

Pb,i(s)√
2Ei(s)/m

ds. (9)

III. OPTIMAL CONTROL PROBLEM FORMULATION

The present work proposes optimal control strategies for
energy and time management of all electric CAVs crossing
a signal-free intersection, subjected to constraints related to
vehicle physical limits and safety regulations. The multi-
objective cost function of both travel time and battery usage
to be minimized is defined as follows:

J = W1 · Jt +W2 · Jb , (10)

where Jt =
∑N

i=1

(
ti(L+ S)−ti(0)

)
is the total travel time

of all the CAVs. Due to the complexity introduced in (10)
by the BEV powertrain architecture through the term Jb, this
section formulates the autonomous intersection problem as
a convex OCP by certain approximations. These approxima-
tions are made under the condition that the approximated
problem is conservative and feasible to the original problem.

To convexify the nonlinearity in the state dynamics of the
travel time (4), a new control variable ζi(s) is introduced:

d

ds
ti(s) = ζi(s) , (11a)

ζi(s) ≥
1√

2Ei(s)/m
, i∈N (11b)

such that the nonlinear constraint (4) is replaced by a linear
differential equation (11a) and a convex inequality constraint
(11b). Since the total travel time objective is minimized in
(10), the new input ζi(s) finds at all times its minimum
boundaries as solutions, which guarantees indirectly the fea-
sibility and conservativeness of the convex solutions. Further
verification of the validity of (11b) is performed later in the
simulation results (see Fig. 9).

For the TTC constraint (5), after replacing vi(s) with
Ei(s) the vi(s) term on the right hand side of the in-
equality becomes non-convex. Thus, a linear approximation
is performed between the kinetic energy and the velocity,
vi(s) =

√
2Ei(s)/m, as follows:

f(Ei(s)) = a0 + a1Ei(s), ∀Ei(s) ∈ [Emin, Emax] , (12)

where f(Ei(s)) represents the approximated velocity, and
a0 and a1 are obtained through a constrained least-squares
optimization for all Emin≤Ei≤Emax:

min
a0,a1

[f(Ei)−
√

2Ei/m]2 (13a)

s.t.: f(Ei) > 0 , (13b)

f(Ei)−
√

2Ei)/m ≥ 0 , (13c)

This optimization (13) guarantees that the linear regression
(12) is tangentially fitted to the original relationship, which



ensures the conservativeness and feasibility of the linear
approximation, as shown in Fig. 3. Thus, the TTC constraint
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Fig. 3. Linearly approximated relationship between kinetic energy and
velocity with R-square fit of 92.27%.

(5) becomes a convex inequality for all s∈ [0, L+ S]:

ti(s)−tk(s)≥
a0 + a1Ei(s)−

√
2Ek(s)/m

|amin|
, k ∈ Li,

(14)
which is a relaxed and conservative constraint with a larger
tolerance on the car-following safety distance, particularly
during the low and high speed ranges under the junction
speed limit conditions vmin and vmax specified in Table. I.

The battery energy usage defined in (9) is also a non-
convex function, and an approximated battery power P̃b,i(s)
based on a quadratic equation is proposed for OCP convex-
ification, as follows:

P̃b,i(s) = b̃1T
2
i (s)ωi(s) + b̃2Ti(s)ωi(s) + b̃3ωi(s) , (15)

where b̃1, b̃2 and b̃3 are fitting parameters, with the ap-
proximation result having an R-square fit of 99.53% (see
Fig. 4). The expression 15 not only does it help with OCP

Fig. 4. Motor power P̃b,i approximated model (15) (red dots denote the
motor power Pb,i calculated by (8)).

convexification but it also results in better accuracy than the
electric motor model fitted in [19].

By substituting (15) into (9), the battery energy usage
integral can be rewritten in a convex form:

J̃b =
gr
rw

N∑
i

∫ L+S

0

b̃1T
2
i (s) + b̃2Ti(s) + b̃3 ds. (16)

Thus, the convex OCP for the autonomous intersection
problem can be formulated as follows: the system dynamics
collect (3) and (11a) as (17b), inequality constraints (17c)

collect (2), (6), (11b), and (14), and boundary constraints
(17d) contain states initial conditions (vi(0), ti(0)):

min
ũ

W1 · Jt +W2 · J̃b (17a)

s.t.: d

ds
x̃(s) = f(x̃(s), ũ(s)) , (17b)

Ψ(x̃(s), ũ(s)) ≤ 0 , (17c)
b(x̃(0), x̃(L+ S)) = 0 , (17d)

and the system state x̃ and inputs ũ of the convex OCP are

x̃ = [E1, E2, . . . , EN , t1, t2, . . . , tN ],

ũ = [T1, T2, . . . , TN , Fb,1, Fb,2, . . . , Fb,N , ζ1, ζ2, . . . , ζN ].

IV. NUMERICAL RESULTS

The performance of the proposed scheme is evaluated
in this Section. The parameters of the intersection are
L= 245 m and S= 35 m. To streamline the formulation and
to make it easy to compare solutions in different cases, it
is assumed that all the CAVs leave the MZ at the same
terminal speed vi(L + S) = v̄ = 10 m/s; this condition is
introduced to the OCP as an additional boundary condition,
similarly to (17d), although it is not a general requirement of
the proposed scheme and it is applied here merely to enable
meaningful comparisons. The characteristic parameters of the
battery electric CAVs considered in this work are presented
in Table I. Note that the lower bound of the velocity is

TABLE I
ELECTRIC VEHICLE MODEL MAIN PARAMETERS

symbol value description
m 1200 kg vehicle mass
rw 0.3 m wheel radius
gr 3.5 transmission gear ratio
fr 0.01 rolling resistance coefficient
fd 0.47 air drag resistance coefficient
vmin 0.1 m/s minimum velocity
vmax 15 m/s maximum velocity
Tmax /min ±300 Nm motor torque limits
amin −6.5 m/s2 vehicle maximum deceleration

set to a small positive value, rather than zero, in order to
guarantee at all times the feasibility of the travel time state
dynamics (4) in the space domain. It can be inferred from the
vehicle limit vmax that the motor for the studied intersection
problem is operated under 1800 rpm, which enables fixed
torque boundaries for the problem formulation (see Fig. 2).
Without loss of generality, the arrival times and initial speeds
of all the CAVs are generated randomly. In particular, the
initial speeds vi(0) follow a uniform distribution within
[vmin, vmax], while the arrival times ti(0) are modelled using
Poisson processes, under the constraints of Assumptions 1
and 2. The evaluation of the proposed scheme (convex OCP
(17)) is performed in the Matlab environment using the
convex optimization tool CVX with MOSEK solver [20] on
an Intel i5 2.9 GHz CPU with 8 GB of memory.

The computation time of the convex OCP (17) is inves-
tigated with fixed weights (W1, W2) of the objective (17a)
and for different numbers of vehicles crossing at CZ, ranging



from N=10 to N=100 at a fixed arrival rate of 1000 veh/h.
The resulting computation times are reported in Table II.
As it can been seen, the optimal solution in each case can

TABLE II
COMPUTATIONAL TIME OF THE CONVEX OCP (17) FOR DIFFERENT N

UNDER ARRIVAL RATE OF 1000 VEH/HOUR.

Number of CAVs, N 10 20 30 50 100
Computation time [s] 1.03 1.74 2.17 3.28 5.89

be efficiently solved and the time required for computation
is much smaller than the total travel time; see for example
Fig. 5. To verify that the FIFO policy and safety constraints
are followed during the simulations, the traveled distance of
each CAV is plotted against time in Fig. 5 for the case with
N = 20, as an example. The profiles illustrated in Fig. 5
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Fig. 5. Traveled distance trajectories of CAVs by solving the OCP (17)
with N=20 CAVs at arrival rate of 1000 veh/h. The two dashed lines and
the solid line correspond to the entrance and exit of the MZ, respectively.

verify that the FIFO policy and both rear-end (5) and lateral
(6) safety constraints are followed throughout the simulation,
and therefore, the validity of the convex solution for the
original problem is verified.

Next, the optimal solutions for various combination of
weighting factors (under the same initial conditions) are
investigated to study the trade-off between travel time and
energy consumption. In Fig. 6, the Pareto fronts for four
different arrival rates and fixed number of vehicles, N=20,
are shown. The results indicate that for all cases an increase
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Fig. 6. Trade-offs between average battery energy cost and average travel
time per vehicle for arrival rate from 600 veh/h to 3000 veh/h.

in travel time of 20% can lead to a roughly 50% reduction in
fuel consumption, while further increase in travel time can
eventually lead to up to 62% fuel consumption reduction.

These results highlight the importance of examining the fuel
consumption-travel time trade-off, as small compromises in
the travel time produce significant fuel savings.

By comparing the optimal solutions for different arrival
rates, it follows that the optimality deteriorates as the arrival
rate increases. The reason is that a high traffic intensity
brings more restriction on the motion of CAVs, and tends
to yield a constrained solution, which is less optimal than
an unconstrained one. Furthermore, the degradation becomes
much more significant when the weight emphasizes more on
the travel time than the energy usage, and when W1 � W2

the reduction of average travel time is saturated by the upper
limit of the velocity through (S + L)/vmax (that is 18.7s
in this example). Conversely, the energy usages for all four
cases are close to each other when the energy outweighs the
travel time, W2 �W1.

For illustrative purposes, the optimal speed profiles for
two representative cases are shown in Fig. 7. In the top two
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Fig. 7. Optimal speed profiles for all CAVs at an arrival rate of 1000 veh/h
with W1�W2 (top) and W1�W2 (bottom). The speed limit vmax is
shown by dash lines.

figures, with much higher weight on the travel time than the
energy, most vehicles accelerate to vmax and cruise at this
speed until they approach the exit of the MZ, at which point
they slow down to 10 m/s to satisfy the boundary condition.
The heavy braking at the end allows substantial energy
recovery, which can reduce the total energy consumption.
When the weights emphasize more on the battery usage,
the differences in the optimal solutions of different weight
cases become negligible as all CAVs have sufficient time
to drive efficiently, as shown in the bottom two figures of
Fig. 7. Finally, by reference to Fig. 6, it has been found
that further decrease in the arrival rate below 600 makes a
negligible impact on the optimality as the traffic intensity is
low enough to allow each CAV to follow the unconstrained
optimal solutions.

To verify the benefit of removing the conservative assump-
tion that presumes a constant cruising speed for all CAVs
over the MZ, we compare the solutions of two optimiza-
tion frameworks: 1) proposed scheme with non-constrained
velocity within MZ and vi(L + S) = v̄, and 2) scheme in
[11] with constrained velocity within MZ vi(s) = v̄, s ∈
[L,L + S]. In case 1), the optimization is solved over the



full horizon [0, L+S] and the energy and time consumption
are obtained straightforwardly. In contrast, the energy and
time consumption for case 2) are obtained by adding up the
results from the optimization over [0, L] and the energy and
time required to pass through the MZ at v̄. For the sake of
fair comparison, the same initial conditions are employed in
both cases. The comparative results are presented in Fig. 8.
As it can be seen, the removal of the assumption can enhance
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Fig. 8. Trade-offs of solving OCP (17) for two constraints cases: a) vi(L+
S) = v̄, and b) vi(s) = v̄, s ∈ [L,L+ S], at 1000 veh/h arrival rate.

the optimality because of the extended optimization horizon.
Finally, it is important to verify that the equality condition

of (11b) holds at all times. A representative case with W1 �
W2 shows this to be the case in Fig. 9. This example further
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Fig. 9. The integration of ζi(s) and 1/
√

2Ei(s)/m from an example
solution of the convex OCP with W1 �W2.

implies the validity of the formulation, as further emphasis on
the time consumption (an increase in W1) can only reinforce
the equality condition (11b).

V. CONCLUSIONS

The problem of optimally controlling CAVs crossing a
signal-free intersection is addressed in this paper. With
the popularization of electrified vehicles, all the CAVs are
assumed to be battery electric vehicles. The control objective
is to minimize a weighted sum of the aggregate electric
energy consumption and traveling time of all CAVs subject
to safety constraints and powertrain operational limits. By
utilizing convex modeling techniques, the overall optimal
control problem is formulated as a convex optimization
problem, which can be efficiently solved. The numerical
examples investigate the trade-off between travel time and
energy consumption for different traffic conditions, charac-
terized by the arrival rates of the intersection. Moreover,
the conservativeness of the convex OCP formulation and the
validity of the optimal solution are also verified.

Future work consists in developing a robust optimization
scheme (e.g., robust MPC), where uncertainties in initial
conditions (arrival time and speed) and the impact of commu-
nication delays and noise can be addressed. Moreover, the
optimality can be further enhanced by removing the FIFO
policy to enable global scheduling of all CAVs.

REFERENCES

[1] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and
automated vehicles: State of the art and future challenges,” Annual
reviews in control, vol. 45, pp. 18–40, 2018.

[2] H. Yang, H. A. Rakha, and M. V. Ala, “Eco-cooperative adaptive cruise
control at signalized intersections considering queue effects,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 1, pp.
1575–1585, 2017.

[3] Z. Wang, G. Wu, P. Hao, and M. J. Barth, “Cluster-wise cooperative
eco-approach and departure application along signalized arterials,”
in IEEE 20th International Conference on Intelligent Transportation
Systems. IEEE, 2017.

[4] Y. Bian, Y. Zheng, W. Ren, S. E. Li, J. Wang, and K. Li, “Reducing
time headway for platooning of connected vehicles via v2v communi-
cation,” Transportation Research Part C: Emerging Technologies, vol.
102, pp. 87–105, 2019.

[5] M. Choi, A. Rubenecia, and H. H. Choi, “Reservation-based traf-
fic management for autonomous intersection crossing,” International
Journal of Distributed Sensor Networks, vol. 15, no. 12, 2019.

[6] D. Čakija, L. Assirati, E. Ivanjko, and A. L. Cunha, “Autonomous
intersection management: A short review,” in 2019 International
Symposium ELMAR. IEEE, 2019, pp. 21–26.

[7] E. Namazi, J. Li, and C. Lu, “Intelligent intersection management
systems considering autonomous vehicles: A systematic literature
review,” IEEE Access, vol. 7, pp. 91 946–91 965, 2019.

[8] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 5, pp. 1066–1077, 2017.

[9] S. A. Fayazi and A. Vahidi, “Mixed-integer linear programming for
optimal scheduling of autonomous vehicle intersection crossing,” IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 287–299, 2018.

[10] A. Hadjigeorgiou and S. Timotheou, “Optimizing the trade-off be-
tween fuel consumption and travel time in an unsignalized autonomous
intersection crossing,” in 2019 IEEE Intelligent Transportation Sys-
tems Conference (ITSC). IEEE, 2019, pp. 2443–2448.

[11] B. Chen, X. Pan, S. A. Evangelou, and S. Timotheou, “Optimal control
for connected and autonomous vehicles at signal-free intersections,”
in IFAC World Congress, 2020.

[12] K. Zhang, D. Zhang, A. de La Fortelle, X. Wu, and J. Gregoire,
“State-driven priority scheduling mechanisms for driverless vehicles
approaching intersections,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 5, pp. 2487–2500, 2015.

[13] A. P. Chouhan and G. Banda, “Autonomous intersection management:
A heuristic approach,” IEEE Access, vol. 6, pp. 53 287–53 295, 2018.

[14] X. Qian, J. Gregoire, A. De La Fortelle, and F. Moutarde, “Decentral-
ized model predictive control for smooth coordination of automated
vehicles at intersection,” in 2015 European Control Conference (ECC).
IEEE, 2015, pp. 3452–3458.

[15] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang, “A decen-
tralized energy-optimal control framework for connected automated
vehicles at signal-free intersections,” Automatica, vol. 93, pp. 244–
256, 2018.
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