
Department of Mathematics

Imperial College London

On the Theory and Applications

of Stochastic Gradient Descent in

Continuous Time

Louis Sharrock

A thesis submitted to Imperial College London

for the degree of Doctor of Philosophy





Abstract

Stochastic optimisation problems are ubiquitous across machine learning, engineering, the

natural sciences, economics, and operational research. One of the most popular and widely

used methods for solving such problems is stochastic gradient descent. In this thesis, we

study the theoretical properties and the applications of stochastic gradient descent in

continuous time.

We begin by analysing the asymptotic properties of two-timescale stochastic gradient

descent in continuous time, extending well known results in discrete time. The proposed

algorithm, which arises naturally in the context of stochastic bilevel optimisation problems,

consists of two coupled stochastic recursions which evolve on different timescales. Under

weak and classical assumptions, we establish the almost sure convergence of this algorithm,

and obtain an asymptotic convergence rate.

We next illustrate how the proposed algorithm can be applied to an important problem

arising in continuous-time state-space models: joint online parameter estimation and op-

timal sensor placement. Under suitable conditions on the process consisting of the latent

signal process, the filter, and the filter derivatives, we establish almost sure convergence

of the online parameter estimates and optimal sensor placements generated by our algo-

rithm to the stationary points of the asymptotic log-likelihood of the observations, and

the asymptotic covariance of the state estimate, respectively. We also provide extensive

numerical results illustrating the performance of our approach in the case that the hidden

signal is governed by the two-dimensional stochastic advection-diffusion equation, a model

arising in many meteorological and environmental monitoring applications.

In the final part of this thesis, we introduce a continuous-time stochastic gradient descent

algorithm for recursive estimation of the parameters of a stochastic McKean-Vlasov equa-

tion equation, and the associated system of interacting particles. Such models arise in a

variety of applications, including statistical physics, mathematical biology, and the social

sciences. We prove that our estimator converges in L
1 to the stationary points of the

asymptotic log-likelihood of the McKean-Vlasov SDE in the joint limit as t→ ∞ and the

number of particles N → ∞, under suitable conditions which guarantee ergodicity and

uniform-in-time propagation of chaos. We also establish, assuming also strong concavity

for the asymptotic log-likelihood, an L
2 convergence rate to the unique maximiser of this

asymptotic log-likelihood function. Our theoretical results are demonstrated via a range

of numerical examples, including a stochastic Kuramoto model and a stochastic opinion

dynamics model.
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1
Introduction

1.1 Background

Countless problems across machine learning, engineering, the natural sciences, economics,

and operational research, involve the task of mathematical optimisation. That is, the task

of obtaining α∗ ∈ Λ ⊆ R
d such that

α∗ = argmin
α∈Λ

f(α) (1.1)

where f : Rd → R is a suitably defined objective function. In many cases, this function

cannot be computed directly; rather, its values are only available via noise corrupted

observations. This is the topic of stochastic optimisation.

There are various methods available for solving problems of this kind (e.g., [185, 425]).

One of the most popular and widely applicable of these is stochastic gradient descent,

a stochastic optimisation method of the stochastic approximation type. Initialised at

α0 ∈ R
d, stochastic gradient descent methods generate a sequence of estimates {αn}n≥0

according to the recursion

αn+1 = αn − γnh(αn, ξn) (1.2)

where {h(αn, ξn)}n≥0 represents a sequence of noisy estimates of the gradients {∇f(αn)}n≥0,

{ξn}n≥0 is a sequence of R
d-valued random variables to be interpreted as noise, and

{γn}n≥0 is a sequence of positive real step-sizes.

Example 1. Let {ξn}n≥0 be a sequence of independent identically distributed (i.i.d.)
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random variables with common law µ. Suppose that the objective function to be optimised

is given by f(α) = Eµ [F (α, ξ)], with ∇f(α) = Eµ [∇F (α, ξ)]. For any n ≥ 0, suppose that

it is possible to observe ∇F (αn, ξn), an unbiased estimate of ∇f(αn). Then the stochastic

gradient descent algorithm for optimising f(α) is given by

αn+1 = αn − γn∇F (αn, ξn). (1.3)

Example 2. Let {ξn}n≥0 be a sequence of i.i.d. random variables, each with dis-

tribution U{1, N}. Suppose that the objective function to be optimised is given by

f(α) =
∑N

i=1 fi(α), with ∇f(α) =
∑N

i=1∇fi(α). For any n ≥ 0, suppose that it is

only possible to observe ∇fξn(αn), which represents a single component of ∇f(αn). Then

the stochastic gradient descent algorithm for estimating f(α) is given by

αn+1 = αn − γn∇fξn(αn) (1.4)

The theory of stochastic approximation was initiated in the early 1950s through the pio-

neering work of Robbins and Monro [396], who proposed a recursive algorithm to obtain

the root(s) of an unknown function. This is often referred to as the Robbins-Monro (RM)

algorithm. This approach was later applied to the setting of stochastic optimisation by

solving for the zero of the gradient of an objective function. The gradient free setting

was subsequently addressed by Kiefer and Wolfowitz [245], who proposed an alternative

stochastic approximation algorithm - the Kiefer-Wolowitz (KW) algorithm - based on

estimating the gradient using finite differences.

The key insight of Robbins and Monro was that if the sequence of step-sizes {γn}n≥0 is

chosen such that

γn → 0 ,
∞∑

n=0

γn = ∞ ,
∞∑

n=0

γ2n <∞, (1.5)

then there is an averaging effect which eliminates the effect of the noise in the long run.

Under some additional assumptions, it is then possible to show that αn → α∗ as n→ ∞ in

L2 and thus in probability [245, 396]. Following this seminal result, there were significant

advances in both the theory and applications of stochastic approximation. The original

RM and KW algorithms applied to one-dimensional problems, but were subsequently

extended by Blum to the multi-dimensional case [55, 56]. In addition, the conditions

used to obtain convergence for both algorithms were weakened to obtain convergence in

probability [471] and with probability one [55].

Many weaker conditions have since been obtained for the almost sure (a.s.) convergence of

stochastic approximation algorithms, which apply in rather more general settings than the

i.i.d. noise case considered in these early papers. These results have largely evolved out

of two general approaches: a purely probabilistic approach, usually based on martingale
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theory (e.g., [46, 314, 402, 484]), and the ‘ODE approach’, originally due to Ljung [310]

(see also [44, 265]). We will explore both of these approaches later in this thesis. A third,

purely deterministic approach based on deterministic conditions on the noise sequence has

also been proposed by Kulkarni and Horn [260] and Delyon [147].

Once the convergence of a stochastic approximation algorithm has been established, the

natural next step is to obtain its convergence rate. General results on the asymptotic distri-

bution of the stochastic approximation iterate were obtained by Fabian [175] who demon-

strated that the iterate was asymptotically normal with rate of convergence O(n−1/2).

These results extended the earlier work of Chung [112] and Sacks [403]. For other relevant

results, we refer also to [267, 269].

Other more recent advances in the theory and applications of stochastic approximation

(and stochastic gradient descent) include asymptotic efficiency (e.g., [270, 380, 381, 401,

482]), finite-time convergence performance (e.g., [199] and references therein), the develop-

ment of new algorithms, and modifications of existing ones. For a comprehensive account

of such results, we refer to any one of a number of excellent monographs, including the

books of Albert and Gardner [8], Wasan [463], Tsypkin [448], Nevel’son and Khasminskii

[361], Kushner and Clark [272], Benveniste, Metivier and Priouret [44], Duflo [169], Solo

and Kong [424], Benaim [36], Spall [425], Chen [107], and Kushner and Yin [265, 271], and

Borkar [62]. For some more recent results, we point towards the work of Tadic [439, 440],

Bottou [66], and Karimi et al. [240].

With some notable exceptions, the vast majority of the literature on stochastic approxima-

tion is formulated in discrete time. In this thesis, we focus instead on the continuous-time

setting. In this framework, the RM algorithm takes the form

αt = α0 −
t∫

0

γsdh(αs, ξs), (1.6)

where now {h(αs, ξs)}s≥0 represents a continuous sequence of noisy estimates of the inte-

grals {
∫ s
0 ∇f(αu)du}s≥0, {ξs}s≥0 is an R

d-valued continuous-time stochastic process which

corresponds to the measurement noise, and γs : R+ → R+ is a positive function known as

the learning rate. This algorithm represents the natural continuous-time analogue of the

discrete-time RM procedure, something which is clear upon rewriting the discrete-time

recursion (1.2) in the form

αn = α0 −
n−1∑

i=0

γih(αi, ξi) (1.7)

The first rigorous treatment of stochastic approximation algorithms in continuous time

was provided by Nevel’son and Khasminskii [361], who considered an algorithm of the
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form (1.6) in the case that

h(αs, ξs) =

s∫

0

∇f(αu)du+

s∫

0

σu(αu)dwu, (1.8)

where σu : R
d → R

d×d is a Borel measurable function, and {wu}u≥0 denotes an R
d-

valued Brownian motion. Under relatively weak assumptions, these authors established,

using probabilistic arguments, a.s. convergence to the set {α : ∇f(α) = 0}, a.s. and L
2

convergence rates, as well as asymptotic normality. Under different assumptions, Sen and

Athreya [411] later also established convergence of this algorithm, both a.s. and in L
2.

Following these early results, Chen [103, 104, 105, 106, 108] made several significant con-

tributions to the theory of continuous-time stochastic approximation. Using an approach

which combined the probabilistic method and the ODE method, he obtained sufficient

conditions for the a.s. convergence of continuous-time RM and KW procedures in the

case that the measurement error is a process with dependent increments expressed as the

output of a linear system driven by an Ito integral [103, 104], generalising the results in

[361]. He later also demonstrated asymptotic normality in this case [105]. In [108], Chen

and coworkers established the a.s. convergence of a modified continuous-time stochas-

tic approximation procedure containing randomly varying truncations, under significantly

weaker conditions than before. Finally, in [106], asymptotic efficiency was established for

the time-averaged estimates of the form ᾱt = 1
t

∫ t
0 αsds. Similar results, under slightly

different conditions on the noise process, were also independently obtained by Yin and

Gupta [483].

Several authors have also considered continuous-time stochastic approximation for the

problem of recursive estimation, which will be a central theme of this thesis.1 This problem

can naturally be formulated as a stochastic optimisation problem, in which the objective

function is given by the negative log-likelihood of the observed data. Aside from the

book of Nevel’son and Khasminskii [361], one of the first results along these lines is due

to Gerencser, Gyongy, and Michaletzky [196], who established the a.s. convergence of

a recursive estimator for the parameters of a partially observed linear diffusion process.

This analysis was later extended in [197]. A similar convergence result was obtained by

DeWolf and Wiberg [157] via the ODE method. More recently, Sirignano and Spiolopolous

[420, 422] established the a.s. convergence, L2 convergence rate, and asymptotic normality,

of a continuous-time stochastic gradient descent method for recursively estimating the

parameters of a fully observed diffusion process. The a.s. convergence result has since

been extended to partially observed [430] and jump [50] diffusion processes.

While it is somewhat beyond the scope of this thesis, it would be remiss of us to conclude

1There is, unsurprisingly, also a substantial body of literature on recursive estimation in discrete time.
We do not attempt to review this literature here, but refer to [312, 315] for some classical references.
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this introduction without mentioning the work of Mel’nikov and Valkeila [341, 342, 343,

344, 456], who proposed a generalised stochastic approximation procedure which unified

the discrete-time and continuous-time frameworks. In particular, these authors considered

noisy observations of the form

h(αs, ξs) =

s∫

0

∇f(αu−)dau +

s∫

0

σu(αu−)dmu (1.9)

where {au}u≥0 is a predictable, increasing càdlàg process, {mu}u≥0 is a locally square

integrable martingale, and αu− = limv↑u αv. This defines the estimate {αt}t≥0 as the

strong solution of a stochastic integral equation with respect to a semi-martingale (see,

e.g., [163, 174, 188, 331, 339, 340] for relevant results on the existence and uniqueness of

such solutions). In the case that au = u and mu = wu, one recovers the continuous-time

stochastic gradient descent algorithm in (1.8). On the other hand, setting au = ⌊u⌋, and
defining a suitable discrete-time martingale, one can recover the original discrete-time RM

procedure in (1.2) (e.g., [343]). In [343, 456], the asymptotic properties (a.s. convergence,

asymptotic normality) of this procedure, as well as an averaged version of this procedure,

were obtained under rather strong and technical conditions based on stochastic Lyapunov

arguments. The same properties were later established by Lazrieva and coworkers, under

somewhat weaker and more natural conditions, for an even more general version of this

algorithm [283, 284, 285, 286, 287, 288, 447].

There are several reasons for considering stochastic approximation algorithms in contin-

uous time. Firstly, continuous-time algorithms have not been studied nearly as widely as

their discrete-time counterparts. Thus, inevitably, there are many results in discrete time

which are yet to be established rigorously in continuous time. It is natural to ask whether

such results can be extended to continuous-time, and whether any differences arise in this

setting. Secondly, studying algorithms in continuous time can lead to new perspectives

on discrete-time algorithms (see, e.g., [370]). Thirdly, one can often leverage powerful ex-

isting tools (e.g., the Itô calculus) to study the convergence properties of continuous-time

algorithms. This can lead to cleaner proofs, as well as insights into the corresponding

proofs in discrete time.

In addition to the mathematical interest, continuous-time stochastic approximation algo-

rithms are the natural choice for solving continuous-time optimisation problems, which

arise in many applications. For example, models in engineering, finance, and the natural

sciences are often formulated in continuous time. There are often unknown parameters or

functions in such models, which one may wish to recursively estimate from the continuous

stream of data. This results in a continuous-time optimisation problem, since the objective

function to be optimised (e.g., the negative log-likelihood), and its gradients, are defined

in continuous time (i.e., in terms of the continuous-time process). Beyond recursive es-
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timation, continuous-time optimisation problems are also common in stochastic optimal

control (e.g., [378]) and reinforcement learning (e.g., [166, 481]). Regardless of the specific

application, it is clear that the theoretically correct statistical learning equation in any of

these cases must be defined in continuous time. Indeed, any statistical learning equation

defined in discrete time can only be approximate, since it must rely on approximations

for the objective function and its gradients derived from an (approximate) discretisation

of the continuous-time model.

We should emphasise, at this point, that the continuous-time algorithms studied in this

thesis are not directly applicable to discrete-time stochastic optimisation problems. In-

stead, as outlined above, the algorithms which we will analyse are designed for continuous-

time optimisation problems. It is worth highlighting, however, that there is a growing body

of literature which considers continuous-time stochastic gradient descent algorithms as an

approximation to their discrete-time counterparts (e.g., [177, 298, 299, 330, 370, 470]).

Indeed, continuous-time algorithms have long been viewed, at least formally, as good ap-

proximations to their discrete-time analogues in cases where the sampling is very frequent

(e.g., [296, 483]). There is also a long tradition of deriving discrete-time stochastic optimi-

sation algorithms from continuous-time dynamics (e.g., [111, 191, 192] for some classical

references, and [347, 388, 475, 476] for some more recent contributions). While both of

these directions are somewhat tangential to the line of work pursued in this thesis, we

highlight them here with the expectation that some of the theoretical results obtained

herein (and, in particular, in Chapter 2) may also be relevant in these contexts.

In practice, it is evident that any stochastic gradient scheme in continuous time must

be discretised. Thus, when designing statistical learning algorithms for continuous-time

optimisation problems, it is natural to ask why we prefer to use a discrete-time ap-

proximation of a continuous-time stochastic gradient descent algorithm (the ‘continuous-

time approach’) over the traditional approach, which first discretises the continuous-time

model, and then applies a classical discrete-time stochastic gradient descent algorithm

(the ‘discrete-time approach’). Providing a satisfactory answer to this question, namely, a

detailed comparison of the relative advantages and disadvantages of these two approaches,

is beyond the scope of this thesis. Nonetheless, let us provide some brief motivation for

the continuous-time approach.

Firstly, this approach may overcome problems which arise when using the discrete-time

approach, particular when the sampling rate increases (e.g., [355, 483]). These include

ill conditioning [405], biased estimates [102, 420], or even divergence [355, 420]. One

well known example, which highlights the challenges associated with first discretising

the system dynamics, is the problem of estimating the value function associated with

a continuous-time Markov (decision) process. This problem is central to continuous-time

reinforcement learning (e.g., [20, 166, 246, 359, 481]), and also commonly arises in financial
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applications (e.g., [378, 420]). In this case, the continuous-time approach corresponds to

applying continuous-time stochastic gradient descent to an objective function based on

the Hamilton-Jacobi-Bellman equation [166, 420]. Meanwhile, the discrete-time approach

corresponds to discretising the system dynamics, and then applying discrete-time stochas-

tic gradient descent to a cost function based on the approximate discrete-time Bellman

equation (see, e.g., [431]). One can show that the continuous-time approach is unbiased,

while the discrete-time approach is biased. Moreover, as the time step size decreases (i.e.,

the sampling rate increases), the discrete-time approach can explode (see [420] for further

details). Finally, numerical results indicate that the continuous-time approach can result

in significantly faster convergence [166].

Another advantage of the continuous-time approach is that it allows one to apply any ap-

propriate numerical discretisation scheme to the theoretically correct statistical learning

equations. This can lead to entirely new discrete-time algorithms, with improved conver-

gence properties (see, e.g., [282, 298, 299, 475, 476]). It can also be more computationally

efficient, particularly when the dimensions of the model are significantly larger than the

number of model parameters (see Chapter 4). This is common in large scale reinforce-

ment learning problems [166]. Finally, it enables direct control of the numerical error of the

resulting algorithm, which can result in more accurate and robust parameter updates. In-

deed, there is no guarantee that discretising the model dynamics using a numerical scheme

with certain numerical properties (e.g., higher order accuracy in time), and then applying

traditional stochastic gradient descent, will result in a statistical learning algorithm which

also has these properties. Conversely, the desired numerical properties will certainly hold

if one applies the discretisation of choice directly to the continuous-time learning equation.

1.2 Contributions & Thesis Organisation

In this thesis, we make several contributions to the theory and applications of stochastic

gradient descent in continuous time. The main contributions of each chapter are sum-

marised below.

In Chapter 2, we analyse the asymptotic properties of two-timescale stochastic gra-

dient descent in continuous time, extending well known results in discrete time. This

algorithm, which arises naturally in the context of bilevel optimisation, consists of two

coupled stochastic recursions which evolve on different timescales. Under relatively weak

and classical assumptions, we establish the a.s. convergence of this algorithm in continu-

ous time. Our analysis covers algorithms with both additive, state-dependent noise, and

those with non-additive, state-dependent noise. Our proof of this result closely follows

the classical ODE method, adapted appropriately to the continuous-time setting. We also
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obtain the asymptotic convergence rate of the proposed algorithm.

In Chapter 3, we illustrate how the continuous-time, two-timescale stochastic gradient

descent algorithm analysed in Chapter 2 can be applied to an important problem arising

in continuous time state-space models. The problem of interest is joint online parameter

estimation and optimal sensor placement. Our approach represents a significant departure

from the existing literature, in which these two problems have, until now, been studied

separately. We first illustrate in detail how this problem can be formulated as a bilevel

optimisation problem, with objective functions given by the asymptotic log-likelihood of

the observations and the trace of the asymptotic filter covariance. Then, under suitable

conditions on the process consisting of the latent signal process, the filter, and the filter

derivatives, we establish a.s. convergence of the online parameter estimates and optimal

sensor placements to the stationary points of these two objective functions.

In Chapter 4, we demonstrate how the methodology in Chapter 3 can be applied to the

partially observed stochastic advection-diffusion partial differential equation, an equation

which arises in many meteorological and environmental modelling applications. This rep-

resents a formal extension of the joint online parameter estimation and optimal sensor

placement algorithm introduced in Chapter 3 to the case in which the hidden state is

infinite-dimensional. We also provide extensive numerical results illustrating the perfor-

mance of this method in different scenarios of practical interest.

In Chapter 5, we finally turn our attention away from two-timescale stochastic gradient

descent in continuous time. We propose a continuous-time (single-timescale) stochastic

gradient descent algorithm for online estimation of the parameters of a McKean-Vlasov

stochastic differential equation (SDE), and the associated system of interacting particles.

We prove that this estimator converges in L
1 to the stationary points of the asymptotic

log-likelihood of the McKean-Vlasov SDE in the joint limit as t → ∞ and the number

of particles N → ∞, under suitable conditions which guarantee ergodicity and uniform-

in-time propagation of chaos. We also establish, assuming also strong concavity for the

asymptotic log-likelihood, an L
2 convergence rate to the unique maximiser of this asymp-

totic log-likelihood function.

In Chapter 6, we provide some concluding remarks, summarising our main contributions

and outlining some potential areas for future research.
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2
Asymptotic Properties of Two-Timescale

Stochastic Gradient Descent in

Continuous Time

Summary. In this chapter, we establish the almost sure convergence of two-

timescale stochastic gradient descent algorithms in continuous time under gen-

eral noise and stability conditions, extending well known results in discrete

time. We analyse both algorithms with additive, state-dependent noise and

those with non-additive, state-dependent noise. In the non-additive case, our

analysis is carried out under the assumption that the noise is a continuous-time

Markov process, controlled by the algorithm states. In the additive case, we also

establish the weak convergence rate of the two-timescale stochastic gradient de-

scent algorithm. The obtained results cover a broad class of highly non-linear

two-timescale stochastic gradient descent algorithms in continuous time.

2.1 Introduction

Many modern problems in engineering, the sciences, economics, and machine learning,

involve the optimisation of two or more interdependent performance criteria. These in-

clude, among others, unsupervised learning [214], reinforcement learning [241, 250], meta-

learning [389], game theory [399], and hyper-parameter optimisation [182]. In this chapter,

we formulate such problems as unconstrained bilevel optimisation problems, in which the
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objective is to obtain α∗ ∈ Λα ⊆ R
d1 , β∗(α∗) ∈ Λβ ⊆ R

d2 , such that

α∗ ∈ argmin
α∈Λα

f
(
α, β∗(α)

)
, β∗(α) ∈ argmin

β∈Λβ

g(α, β) (2.1)

where f, g : Rd1×R
d2 → R are continuously differentiable functions, and Λα, Λβ are closed

subsets of Rd1 , Rd2 , respectively. We will assume, as in many applications, that we only

have access to noisy estimates of f and g.

There are, unsurprisingly, several significant challenges associated with this optimisation

problem. Firstly, in order to evaluate the upper-level objective function, f(·, ·), one must

obtain the global minimiser of the lower-level objective function g(α, ·), for all α ∈ Λα.

This may be very difficult, particularly if g(α, ·) is a complex function. In many practical

applications of interest, one or both of the objective functions may be prohibitively costly

to compute (e.g., they may depend on very high-dimensional data), which compounds this

problem. Secondly, it may not be possible to compute the gradient of the function β∗(α).

Thus, even if we could obtain β∗(α) and evaluate f(α, β∗(α)) for all α ∈ Λα, it would not

be possible to solve the upper-level optimisation problem directly using gradient-based

methods.

In practice, and with these considerations in mind, it is typical to consider a slightly weaker

optimisation problem, in which the objective is to obtain α∗, β∗ such that, simultaneously,

α∗ locally minimises f(·, β∗), and β∗ locally minimises g(α∗, ·). That is, such that

α∗ = argmin
α∈Uα∗

f(α, β∗) , β∗ = argmin
β∈Uβ∗

g(α∗, β) (2.2)

where Uα∗ ⊂ Λα and Uβ∗ ⊂ Λβ are local neighbourhoods of α∗ and β∗, respectively. We

will not assume any form of convexity, and thus we weaken this objective further, seeking

values of α∗ and β∗ which satisfy the following local stationarity condition

∇αf(α
∗, β∗) = 0 , ∇βg(α

∗, β∗) = 0. (2.3)

In this chapter, we analyse the use of gradient methods for this problem, under the as-

sumption that we continuously observe noisy estimates of these gradients.

A natural candidate for a solution to this class of bilevel optimisation problems is two-

timescale stochastic gradient descent. As outlined in the introduction, stochastic gradient

descent is a sequential method for determining the minima or maxima of an objective

function whose values are only available via noise-corrupted observations (e.g., [44, 62,

107, 271], and references therein).

Two-timescale stochastic gradient descent algorithms represent one of the most important

and complex subclasses of stochastic gradient descent methods. These algorithms consist
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of two coupled recursions, which evolve on different timescales (e.g., [61, 62, 241, 437]). In

particular, the step-sizes of the ‘slow’ recursion are considerably smaller than the step sizes

of the ‘fast’ recursion. They can thus be considered as singularly perturbed SDEs.1 in

discrete time, this approach has found success in a wide variety of applications, including

deep learning [214], reinforcement learning [29, 241, 249, 252, 432, 433], signal process-

ing [49], power control in wireless networks [317], admission control in communication

networks [48], optimisation [162, 462], and statistical inference [480], to name but a few.

Consequently, the analysis of its asymptotic properties has been the subject of a large

number of papers (e.g., [61, 62, 241, 251, 252, 354, 437, 442]).

Although these papers provide an excellent insight, they only explicitly consider two-

timescale algorithms in discrete time. Indeed, to the best of our knowledge, there are no

existing works which explicitly consider the a.s. convergence, or the convergence rate, of

two-timescale stochastic gradient descent algorithms in continuous time, viz,

dαt = −γ1t
[
∇αf(αt, βt)dt+ dξ1t

]
, (2.4a)

dβt = −γ2t
[
∇βg(αt, βt)dt+ dξ2t

]
, (2.4b)

where {γit}t≥0, i = 1, 2 are learning rates; and {ξit}t≥0, i = 1, 2, are additive, possibly state-

dependent noise processes.2 Even upon restriction to the single timescale case, asymptotic

results for continuous-time stochastic approximation are somewhat sparse, and generally

apply only to algorithms with relatively simple dynamics (e.g., [103, 105, 106, 108, 283,

411, 456, 483]). There are, however, some notable recent exceptions. In particular, a.s.

convergence of a continuous-time stochastic gradient descent algorithm for the parameters

of a fully observed diffusion process was recently established in [420], and has since been

extended to partially observed [430] and jump [50] diffusion processes. In the first case,

the same authors have since also established an asymptotic L
p convergence rate and a

central limit theorem [422].

2.1.1 Contributions

In this chapter, we establish the a.s. convergence of two-timescale stochastic gradient de-

scent algorithms in continuous time, under general noise and stability conditions, namely,

lim
t→∞

∇αf(αt, βt) = lim
t→∞

∇βg(αt, βt) = 0 a.s. (2.5)

1For more details on singularly perturbed SDEs, we refer to [375] and references therein.
2It is worth emphasising that the superscripts in {γi

t}t≥0 are indices, rather than exponents. In what
follows, whenever it is necessary to consider powers of the learning rates, we will use brackets to avoid any
confusion. For example, we will write (γ1

t )
2 and (γ2

t )
2 to denote the square of the learning rates γ1

t and
γ2
t , respectively.

11



Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

where {αt}t≥0 and {βt}t≥0 are generated according to the recursions (2.4a) - (2.4b). The

noise conditions, as well as the conditions on the objective functions, are some of the

weakest under which a.s. convergence can still be obtained. We consider algorithms with

additive, state-dependent noise, and, importantly, also those with non-additive, state-

dependent noise. In the second case, our analysis is carried out under the assumption that

the non-additive noise can be represented by an ergodic diffusion process, controlled by

the algorithm states. To our knowledge, this is the first rigorous analysis of two-timescale

stochastic approximation with Markovian dynamics in continuous time.

Our proof of these results closely follows the classical ODE method (e.g., [44, 59, 271, 310]),

adapted appropriately to the continuous-time setting (e.g., [108, 272]). In the Markovian

noise case, it also draws upon well known regularity results relating to the solution of

the Poisson equation associated with the infinitesimal generator of the ergodic diffusion

process (e.g., [371, 372]). The obtained results cover a broad class of non-linear, two-

timescale stochastic gradient descent algorithms in continuous time. In particular, they

can be applied to the two-timescale stochastic gradient descent algorithm which we develop

for the problem of joint online parameter estimation and optimal sensor placement in a

continuous-time state space model in Chapter 3. They also include, upon restriction to

a single timescale, the continuous-time stochastic gradient descent algorithms recently

studied in [420, 430].

In the non-additive noise case, we also establish, under some additional assumptions, the

weak convergence rate of two-timescale stochastic gradient descent algorithms in continu-

ous time. In particular, we obtain a central limit theorem of the form

((
γ1t

)− 1
2 (αt − α∗)

(
γ2t

)− 1
2 (βt − β∗)

)

D−→ N
(

0,

(

Σα 0

0 Σβ

))

. (2.6)

This result, which indicates that asymptotically the two algorithm iterates ‘decouple’,

represents a careful extension of a long standing and well known result in discrete time

[354] to the continuous-time setting.

2.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. In Section 2.2, we present our main

results. In particular, in Section 2.2.1, we establish the a.s. convergence of continuous-

time, two-timescale stochastic gradient descent algorithms with additive, state-dependent

noise. In Section 2.2.2, we extend our analysis to continuous-time, two-timescale stochastic

gradient descent algorithms with Markovian dynamics. In Section 2.3, we provide proofs

of our main results. In Section 2.4, we provide a detailed discussion of several important

extensions to our results, and establish the weak convergence rate of the two-timescale

12



2.2: Main Results

stochastic gradient descent algorithm with additive noise. Finally, in Section 2.5, we offer

some concluding remarks.

2.2 Main Results

We will assume, throughout this section, that (Ω,F ,P) is a complete probability space,

equipped with a filtration (Ft)t≥0 which satisfies the usual conditions.3

2.2.1 Two Timescale Stochastic Gradient Descent in Continuous Time

Let f, g : Rd1 × R
d2 → R be continuously differentiable functions. Suppose that, for any

inputs {αt}t≥0, {βt}t≥0, it is possible to obtain noisy estimates {h1t }t≥0, {h2t }t≥0 of ∇αf

and ∇βg as the output of the following SDEs

dh1t = ∇αf(αt, βt)dt+ dξ1t , (2.7a)

dh2t = ∇βg(αt, βt)dt+ dξ2t , (2.7b)

where {ξ1t }t≥0 and {ξ2t }t≥0 are R
d1 and R

d2 valued continuous semi-martingales on (Ω,F ,P),
which are assumed to be measurable, random functions of {αs}0≤s≤t and {βs}0≤s<t.

4 The

functions f and g are to be regarded as the objective functions in the bilevel optimisation

(2.2), while the semi-martingales {ξit}t≥0, i = 1, 2, can be considered as additive noise.

On the basis of these noisy observations, it is natural to seek the stationary points of f

and g via the following algorithm:

dαt = −γ1t
[
∇αf(αt, βt)dt+ dξ1t

]
, (2.9a)

dβt = −γ2t
[
∇βg(αt, βt)dt+ dξ2t

]
, (2.9b)

where {γit}t≥0, i = 1, 2, are positive, non-increasing, deterministic functions known as the

learning rates; and α0 ∈ R
d1 , β0 ∈ R

d2 are random variables on (Ω,F ,P). We will assume

directly the existence and uniqueness of strong solutions to (2.9a) - (2.9b). The interested

reader can find some standard sufficient conditions in [343, Chapter II] or [383].

3See, for example, [19] for a definition of the usual conditions.
4In order to aid intuition, the reader may find it instructive to consider the formal time derivative of

these measurement equations, viz

ḣ
1
t = ∇αf(αt, βt) + ξ̇

1
t , (2.8a)

ḣ
2
t = ∇βg(αt, βt) + ξ̇

2
t . (2.8b)

This formulation, while lacking rigour, is useful in order to emphasise the connection with the standard
form of noisy gradient measurements assumed in (two-timescale) stochastic approximation algorithms in
discrete time (e.g., [62, 437]).

13



Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

We will refer to this algorithm as two-timescale stochastic gradient descent in continu-

ous time. This algorithm represents the continuous-time, gradient descent analogue of the

two-timescale stochastic approximation algorithm originally introduced in [61]. For further

details, see [62] and references therein. It can also be considered a two-timescale gener-

alisation of the continuous-time stochastic approximation algorithms introduced in [167],

and later studied in, for example, [103, 105, 361, 411, 483]. Finally, this algorithm can

also be viewed as a two-timescale generalisation of the Robbins-Monro type semimartin-

gale stochastic differential equations studied in [283, 284, 285, 286, 287, 288, 343, 456].

We should note, however, that in this final set of references, there is no requirement that

the stochastic processes are continuous.

Before we proceed, it is worth noting that Algorithm (2.9a) - (2.9b) is not the only possi-

ble two-timescale stochastic gradient descent scheme that one can use to simultaneously

optimise f(α, β) and g(α, β). This algorithm is certainly a natural choice if one only has

access to noisy estimates of the partial derivatives ∇αf(α, β) and ∇βg(α, β), and is inter-

ested in solving the bilevel optimisation problem in (2.2). It is less well suited, however,

to the stronger version of the bilevel optimisation problem in (2.1), since it ignores the

dependence of the true upper level objective f(α, β∗(α)) on α in its second argument. As

such, if one has access to additional gradient information, then it may be preferable to use

higher order updates to capture the dependence on β∗(α). We provide details of one such

approach in Section 2.4.1 (see also [218] in discrete time).

We will analyse Algorithm (2.9a) - (2.9b) under the following set of assumptions. These

are imposed in addition to any assumptions required for the existence and uniqueness of

strong solutions to (2.9a) - (2.9b).5 Broadly speaking, these assumptions represent the

continuous-time analogues of standard assumptions used in the a.s. convergence analysis of

two-timescale stochastic approximation algorithms in discrete time (see, e.g., [62, Chapter

6] or [437]).

Assumption 2.1.1. The learning rates {γit}t≥0, i = 1, 2, are positive, non-increasing

functions which satisfy

lim
t→∞

γ1t = lim
t→∞

γ2t = lim
t→∞

γ1t
γ2t

= 0, (2.10a)

∞∫

0

γ1t dt =

∞∫

0

γ2t dt = ∞. (2.10b)

This assumption relates to the asymptotic properties of the learning rates {γit}t≥0, i = 1, 2.

5It is worth noting that there is a non-empty intersection between the set of assumptions typically
required for existence and uniqueness, and the set of assumptions required for a.s. convergence. Wherever
an assumption required for a.s. convergence does coincide with an assumption already required for existence
and uniqueness, we will highlight this in the corresponding discussion.
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2.2: Main Results

It is the continuous-time analogue of the standard step-size assumption used for the a.s.

convergence analysis of two-timescale stochastic approximation algorithms in discrete time

(e.g., [61, 62, 437]). This assumption implies that the process {αt}t≥0 evolves on a slower

time-scale than the process {βt}t≥0. Thus, intuitively speaking, the fast component, βt,

will see the slow component, αt, as quasi-static, while the slow component will see the fast

component as essentially equilibrated [61]. A standard choice of step sizes which satisfies

this assumption is γ1t = γ01(δ1+ t
η1)−1, γ2t = γ02(δ2+ t

η2)−1 for t ≥ 0, where γ01 , γ
0
2 > 0 and

δ1, δ2 > 0 are positive constants, and η1, η2 ∈ (0, 1] are constants such that η1 > η2.
6

Assumption 2.1.2. The functions ∇αf : Rd1 × R
d2 → R

d1 and ∇βg : Rd1 × R
d2 → R

d2

are locally Lipschitz continuous. That is, for each α1 ∈ R
d1 and β1 ∈ R

d2, there exist

positive constants Lα, Lβ > 0 and δα, δβ > 0 such that, for all α2 ∈ R
d1 , β2 ∈ R

d2 with

||α2 − α1|| < δα and ||β2 − β1|| < δβ,

||∇αf(α1, β1)−∇αf(α2, β2)|| ≤ Lα [||α1 − α2||+ ||β1 − β2||] , (2.11a)

||∇βg(α1, β1)−∇αg(α2, β2)|| ≤ Lβ [||α1 − α2||+ ||β1 − β2||] . (2.11b)

This assumption relates to the smoothness of the objective functions f(·) and g(·), and
is a standard assumption used in the convergence analysis of two-timescale stochastic ap-

proximation algorithms in discrete time [61, 241, 250], as well as single-timescale stochas-

tic approximation algorithms in continuous time [106, 343, 411, 483], although slightly

weaker assumptions may also be possible (see, e.g., [284]). This is also a standard condi-

tion required for the existence and uniqueness of strong solutions of (2.9a) - (2.9b).7 This

assumption implies, in particular, that the functions ∇αf(·) and ∇βg(·) locally satisfy

linear growth conditions.

Assumption 2.1.3. For all T ∈ [0,∞), the noise processes {ξit}t≥0, i = 1, 2, satisfy

lim
s→∞

sup
t∈[s,s+T ]

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

s

γivdξ
i
v

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

= 0 a.s. (2.12)

This assumption relates to the asymptotic properties of the noise processes

{ξit}t≥0, i = 1, 2. It can be regarded as the continuous-time, two-timescale generalisation

of the Kushner-Clark condition [272]. This assumption is significantly weaker than the

6The constants δ1, δ2 ensure regularity at t = 0. Another standard choice of step sizes which satisfies
this assumption is γ1

t = γ0
1(δ1 + t)−η1 , γ2

t = γ0
2(δ2 + t)−η2 , with all constants defined as previously (e.g.,

[251].)
7To be precise, this condition, in addition to an analogous local Lipschitz condition on the components

of the continuous semi-martingales {ξit}t≥0, i = 1, 2, is sufficient for the existence and uniqueness of
strong solutions to (2.9a) - (2.9b) up to some (possibly finite) explosion time (e.g., [383, Theorem 4.3]). If
these conditions were replaced by rather stronger global Lipschitz conditions, one would instead have the
existence and uniqueness of strong solutions to (2.9a) - (2.9b) for all t ≥ 0 [383, Theorem 3.1]. .
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Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

noise conditions adopted in many of the existing results on a.s. convergence of continuous-

time, single-timescale stochastic approximation algorithms. In particular, it includes the

cases when {ξit}t≥0, i = 1, 2, are continuous (local) martingales [411],8 continuous finite

variation processes with zero mean [483], or diffusion processes [106]. It also holds, under

certain additional assumptions, for algorithms with Markovian dynamics [420, 430]. We

discuss this case further in Section 2.2.2. The discrete-time analogue of this condition

first appeared in [437], weakening the noise condition originally used in [61]. In fact, in

the context of single-timescale stochastic approximation, the Kushner-Clark condition is

the weakest condition under which it is possible to establish a.s. convergence (e.g., [271]).

Furthermore, under certain stability conditions, the Kushner-Clark condition is both nec-

essary and sufficient for the a.s. convergence of discrete-time, single-timescale stochastic

approximation algorithms [460].

Assumption 2.1.4. The iterates {αt}t≥0, {βt}t≥0 are almost surely bounded:

sup
t≥0

[||αt||+ ||βt||] <∞. (2.13)

This assumption is necessary in order to prove a.s. convergence. This condition also

ensures the existence of strong solutions of (2.9a) - (2.9b) for all times. In general, however,

it is far from automatic, and not very straightforward to establish [62]. Indeed, sufficient

conditions tend to be highly problem specific, or else somewhat restrictive (e.g., [283, 411,

456]). To circumvent this issue, a common approach is to include a truncation or projection

device in the algorithm, which ensures that the iterates remain bounded with probability

one, at the expense of an additional error term (e.g., [106, 108, 271, 430]). In addition,

this may introduce spurious fixed points on the boundary of the domain (e.g., [430]).

An alternative method, which avoids this shortcoming, is the ‘continuous-time stochastic

approximation procedure with randomly varying truncations’, originally introduced in

[108]. It is possible to partially extend this approach to the two-timescale setting, to

establish a.s. boundedness of iterates on the fast-timescale {βt}t≥0. It is currently unclear,

however, whether this approach can also be used to relax the assumption of boundedness

for the slow-timescale.

Another common approach is to omit the boundedness assumption, and instead state

asymptotic results which are local in nature (e.g., [44, 61, 437]). That is, which hold

almost surely on the event

Λ = {sup
t≥0

||αt|| <∞} ∩ {sup
t≥0

||βt|| <∞}. (2.14)

In the single-timescale setting, it is often then straightforward to establish the global coun-

8The case when the noise process is a local martingale is also considered by [283, 284, 285, 286, 343, 456].
In these works, however, there is no requirement that this local martingale is continuous.
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terparts of these results, by combining them with existing methods for verifying stability

(e.g., [44, 59, 265]). In contrast, the stability of two-timescale stochastic approximation

algorithms has thus far not received much attention. Indeed, to the best our knowledge,

the only existing result along these lines is [281].

Assumption 2.1.5. For all α ∈ R
d1, the ordinary differential equation

dβt
dt

= −∇βg(α, βt) (2.15)

has a discrete, countable set of equilibria {β∗i }i≥1 = {β∗i (α)}i≥1, where β
∗
i : Rd1 → R

d2,

i ≥ 1, are locally Lipschitz-continuous maps.

This is a stability condition relating to the fast recursion. It is somewhat weaker than

the standard fast-timescale assumption used in the analysis of discrete-time, two-timescale

stochastic approximation algorithms, which requires that this ordinary differential equa-

tion must have a unique global asymptotically stable equilibrium (e.g., [61, 252, 437]).

We note, however, that a similar assumption has previously appeared in [241]. It may

be possible to weaken this assumption further - that is, to remove the requirement for a

discrete, countable set of equilibria - using the tools recently established in [439]. There, in

the context of discrete-time, single-timescale stochastic gradient descent, a.s. single-limit

point convergence is proved in the case of multiple or non-isolated equilibria, using tools

from differential geometry (i.e., the Lojasiewicz gradient inequality). It remains an open

problem to determine whether these results can be extended to the two-timescale setting.

In order to state our final assumption, we will require the following additional notation.

Let x ∈ R
d, and let h : Rd → R

d. Consider an ordinary differential equation of the form

ẋ(t) = h(x(t)). We say that a set A ⊂ R
d is invariant for this equation if any trajectory

x(t) satisfying x(0) ∈ A satisfies x(t) ∈ A for all t ∈ R. In addition, we say that A is

internally chain transitive for this equation if for any x ∈ A, and for any ε > 0, T > 0,

there exists n ∈ N, points x0, x1, . . . , xn = x in A, and times t1, . . . , tn ≥ T , such that, for

all 1 ≤ i ≤ n, the trajectory of the equation initialised at xi−1 is in the ε-neighbourhood

of xi at time ti. We can now state our final assumption.

Assumption 2.1.6. For all i ≥ 1, the only internally chain transitive invariant sets of

the ordinary differential equation

dαt

dt
= −∇αf(αt, β

∗
i (αt)) (2.16)

are its equilibrium points.

This is a stability condition relating to the slow recursion. It can be regarded as a slightly

weaker version of the standard slow-timescale assumption used in the analysis of two-
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timescale stochastic approximation algorithms, which stipulates that this ordinary dif-

ferential equation must have a unique, globally asymptotically stable equilibrium (e.g.,

[61, 62, 252]). This assumption is required in order to rule out the possibility that (2.16)

admits other internally chain transitive invariant sets aside from equilibria, such as cyclic

orbit chains (see [36]). One can alternatively assume that this equation has a unique limit

for each initial condition.

It is worth noting that, under additional assumptions on β∗i (·), one can replace this with

the weaker assumption that (2.16) has a discrete, countable set of isolated equilibria.

Unfortunately, without additional assumptions on β∗i (·), one cannot use this condition

directly, since f(·, β∗i (·)) is not, in general, a strict Lyapunov function for (2.16). We

discuss this point in further detail in Section 2.4.1.

We conclude this commentary with the remark that our condition(s) on the objective

function(s) are, broadly speaking, more general than those adopted in many of the existing

results on the convergence of continuous-time, single-timescale stochastic approximation

algorithms. In particular, we do not insist on the existence of a unique root for the gradient

of the objective functions, as is the case in [106, 283, 343, 411, 456].

Our main result on the convergence of Algorithm (2.9a) - (2.9b) is contained in the fol-

lowing theorem.

Theorem 2.1. Assume that Assumptions 2.1.1 - 2.1.6 hold. Then, almost surely,

lim
t→∞

∇αf(αt, βt) = lim
t→∞

∇βg(αt, βt) = 0. (2.17)

Proof. See Section 2.3.1.

The proof of Theorem 2.1 follows the ODE method. This approach was first introduced

in [310], and extensively developed by Kushner et al. (e.g., [44, 268, 271, 272]) and later

Benäım et al. [35, 36, 37]. It was first used to prove a.s. convergence of a two-timescale

stochastic approximation algorithm in [61], which considered a discrete-time stochastic

approximation algorithm with state-independent additive noise. It has since also been

used to establish the convergence of more general discrete-time, two-timescale stochastic

approximation algorithms [241, 252, 437].

In the context of continuous-time, single-timescale stochastic approximation, this method

of proof has largely been neglected, with a small number of notable exceptions [103, 108,

272, 483]. While other approaches (e.g., [106, 283, 343, 411, 456]) may be more direct, they

may also require slightly more restrictive assumptions. Moreover, it is unclear whether

these approaches can straightforwardly be adapted to the two-timescale setting, or even to

more complex single-timescale algorithms, such as those with Markovian dynamics (e.g.,

[420]). One other advantage of this method of proof is that it is straightforwardly adapted
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to other variations of Algorithm (2.9a) - (2.9b), as discussed prior to the statement of our

assumptions. In Section 2.4.1, we show rigorously how to use this approach to establish

an a.s. convergence result for one such algorithm.

We should emphasise, at this point, that Theorem 2.1 establishes a.s. convergence precisely

to the stationary points of the objective functions f and g. In particular, the stated

assumptions do not guarantee convergence to the set of local (or global) minima. On this

point, two remarks are pertinent. Firstly, results of this type are standard in the recent

literature on stochastic gradient descent in continuous time (e.g., [420, 430]), and the

more classical literature on two-timescale stochastic approximation (e.g., [62]). Secondly,

under additional assumptions, it should be possible to extend our analysis to guarantee

that our algorithm converges a.s. to local minima of the two objective functions. Indeed,

when a single timescale is considered, there are several existing ‘avoidance of saddle’ type

results of this kind [67, 189, 346, 377]. While no explicit results of this type exist in the

two-timescale framework, we outline details of the (minimal) assumptions which would be

required to obtain such a result in Section 2.4.2, and discuss briefly how they can be used

together with the results of this section.

2.2.2 Two Timescale Stochastic Gradient Descent in Continuous Time

with Markovian Dynamics

Using the results obtained in Section 2.2.1, we now consider the situation in which the noisy

estimates of ∇αf and ∇βg are governed by some additional continuous-time dynamical

process. In particular, we now analyse the convergence of the algorithm

dαt = −γ1t
[
F (αt, βt,Xt)dt+ dζ1t

]
, (2.18a)

dβt = −γ2t
[
G(αt, βt,Xt)dt+ dζ2t

]
, (2.18b)

where {γit}t≥0, i = 1, 2, are positive, decreasing functions; F,G : Rd1×R
d2×R

d3 → R
d1 ,Rd2

are Borel measurable functions; α0 ∈ R
d1 , β0 ∈ R

d2 are random variables on (Ω,F ,P); and
{ζit}t≥0, i = 1, 2, are Rd1 , Rd2 valued continuous semi-martingales on the same probability

space, which are measurable, random functions of {αs, βs}0≤s<t.
9 In this algorithm, the

functions F (·) and G(·) are to be regarded as noisy estimators of ∇αf(·) and ∇βg(·); the
precise relationship between these functions will be clarified below. The semi-martingales

{ζit}t≥0, i = 1, 2, can once more be considered as additive noise; while the Markov process

{Xt}t≥0 can be regarded as non-additive noise.

We will refer to Algorithm (2.18a) - (2.18b) as two-timescale stochastic gradient descent

in continuous time with Markovian dynamics. This algorithm represents the continuous-

9Once more, we will assume directly the existence and uniqueness of strong solutions to (2.18a) - (2.18b).
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time analogue of the discrete-time, two-timescale stochastic approximation algorithm with

state-dependent non-additive noise analysed in [437, Section IV]. In fact, our presentation

is slightly more general than in [437], as we also allow for the possibility of additive, state-

dependent noise via the terms {ζit}t≥0, i = 1, 2. This increases the number of applications

in which our algorithm can be applied, while not significantly complicating the analysis.

The a.s. convergence of discrete-time, two-timescale stochastic approximation algorithms

with Markovian dynamics is also studied, under various assumptions, in [241, 249, 250,

419]. Conversely, there are no existing works which provide a rigorous analysis of two-

timescale stochastic approximation algorithms with Markovian dynamics in continuous

time. In fact, even in the single-timescale setting, such algorithms have only recently

received attention [50, 420, 430]. In particular, [420] established the a.s. convergence

of a continuous-time stochastic gradient descent algorithm for the parameters of a fully

observed diffusion process. This analysis has since been extended to the case of a partially-

observed diffusion process [430], and a fully observed jump-diffusion process [50].

We analyse this algorithm under the assumption that X = {Xt}t≥0 is a diffusion process

on R
d3 , controlled by the algorithm states {αt}t≥0, {βt}t≥0. In particular, we suppose that

this process evolves according to

dXt = Φ(αt, βt,Xt)dt+Ψ(αt, βt,Xt)dbt, (2.19)

where, for all α ∈ R
d1 , β ∈ R

d2 , Φ(α, β, ·) : Rd3 → R
d3 and Ψ(α, β, ·) : Rd3 → R

d3×d4

are Borel measurable functions; X0 is a random variable defined on (Ω,F ,P); and {bt}t≥0

is a R
d4 valued Wiener process on the same probability space. We should remark that,

whenever α ∈ R
d1 , β ∈ R

d2 are fixed, we will denote the corresponding diffusion process

by {Xt(α, β)}t≥0, making explicit the dependence on these parameters.

Our motivation for this choice of dynamics is threefold: firstly, the existence, uniqueness,

and asymptotic properties of this class of processes are very well studied (e.g., [229, 239,

371]). Secondly, this choice is sufficiently broad for many practical situations of interest.

Finally, under the assumption that {Xt(α, β)}t≥0 is ergodic for all α ∈ R
d1 , β ∈ R

d2 ,

with unique invariant measure µα,β(·) (see Assumption 2.2.2a), one can obtain an explicit

relation between the estimators F (·) and G(·) and the gradients of the objective functions

∇αf(·) and ∇βg(·). In particular, in this case the gradients of the true objective functions

are defined as ergodic averages of the noisy estimators:

∇αf(α, β) =

∫

Rd3

F (α, β, x)µα,β(dx), (2.20a)

∇βg(α, β) =

∫

Rd3

G(α, β, x)µα,β(dx). (2.20b)
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We remark that, in general, it is not possible to obtain the unique invariant measure

µα,β(·) of the ergodic diffusion process X in closed form, let alone compute these integrals.

Thus, in the Markovian framework we typically cannot compute the gradients ∇αf and

∇βg exactly, even in the absence of the additive noise processes {ζit}t≥0, i = 1, 2.

We analyse this algorithm under the following set of assumptions. Similarly to before,

these assumptions can be viewed both as the continuous-time analogues of standard as-

sumptions used for the a.s. convergence analysis of two-timescale stochastic approxima-

tion algorithms with Markovian dynamics in discrete time (e.g., [437, Section IV]), and

as the two-timescale generalisation of assumptions more recently introduced to analyse

the convergence of single-timescale stochastic gradient descent algorithms with Markovian

dynamics in continuous time [420, 430].

Assumption 2.2.1. The learning rates {γit}t≥0, i = 1, 2, satisfy Assumption 2.1.1. Fur-

thermore,

∞∫

0

(γit)
2dt <∞,

∞∫

0

∣
∣γ̇it

∣
∣ dt <∞, (2.21)

and there exist ri > 0, i = 1, 2, such that limt→∞(γit)
2t

1
2
+2ri = 0.

This assumption corresponds to the asymptotic properties of the step sizes {γit}t≥0, i =

1, 2. It can be regarded as the two-timescale generalisation of the standard step-size

assumptions used for the a.s. convergence analysis of single-timescale stochastic gradient

descent algorithms with Markovian dynamics in continuous time (e.g., [420, 430]). As

previously, it implies that the process {αt}t≥0 evolves on a slower time-scale than the

process {βt}t≥0. A standard choice of step sizes which satisfies this assumption is γ1t =

γ01(δ1 + tη1)−1, γ2t = γ02(δ2 + tη2)−1 for t ≥ 0, where γ01 , γ
0
2 > 0 and δ1, δ2 > 0 are positive

constants, and now η1, η2 ∈ (12 , 1] are constants such that η1 > η2. We remark, as in

[420], that the condition relating to the derivatives, namely that
∫∞
0 |γ̇it |dt <∞, i = 1, 2,

is satisfied automatically if the step sizes are monotonic functions of t.

Assumption 2.2.2a. The process {Xt(α, β)}t≥0 is ergodic for all α ∈ R
d1, β ∈ R

d2,

with unique invariant probability measure µα,β on (Rd3 ,Bd3), where Bd3 denotes the Borel

σ-algebra on R
d3.

This assumption relates to the asymptotic properties of the non-additive, state-dependent

noise process {Xt(α, β)}t≥0. In the context of discrete-time stochastic approximation with

Markovian dynamics, the requirement of ergodicity is relatively standard, in both single-

timescale (e.g., [44, 268, 269]) and two-timescale (e.g., [249, 250, 437]) settings.10 This

10It should be noted that it is possible to relax this assumption, and to establish a.s. convergence
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Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

assumption is also central to the existing results on the convergence of stochastic gradient

descent with Markovian dynamics in continuous time [50, 420, 430].

Assumption 2.2.2b. For any q > 0, α ∈ R
d1, β ∈ R

d2, there exists constants Kq,K
α
q ,K

β
q >

0, such that

∫

Rd3

(1 + ||x||q)µα,β(dx) ≤ Kq, (2.22a)

∫

Rd3

(1 + ||x||q)|ν(α)α,β,i(dx)| ≤ Kα
q , (2.22b)

∫

Rd3

(1 + ||x||q)|ν(β)α,β,i(dx)| ≤ Kβ
q , (2.22c)

where |ν(α)α,β,i(dx)|, |ν
(β)
α,β,i(dx)| denote the total variations of the finite signed measures

ν
(α)
α,β,i = ∂αi

µα,β, i = 1, . . . , d1, and ν
(β)
α,β,i = ∂βi

µα,β, i = 1, . . . , d2.

This assumption relates to the regularity of the invariant measure and its derivatives. It

can be regarded as a two-timescale extension of the regularity conditions used for the

convergence analysis of the continuous-time, single-timescale stochastic gradient descent

algorithm with Markovian dynamics in [430].11 This condition ensures that the objective

functions f(·) and g(·), and their first two derivatives, are uniformly bounded in both

arguments.12

In order to state the remaining assumptions, we will require the following additional

notation. We will say that a function H : Rd1 × R
d2 × R

d → R satisfies the polynomial

growth property (PGP) if there exist q,K > 0 such that, for all α ∈ R
d1 , β ∈ R

d2 ,

|H(α, β, x)| ≤ K(1 + ||x||q). (2.23)

We will write Hi+δ,j(Rd), i, j ∈ N, δ ∈ (0, 1), to denote the space of all functions H : Rd1 ×
R
d2 × R

d → R such that H(·, ·, x) ∈ Cj(Rd1×d2) and H(α, β, ·) ∈ Ci(Rd); and such that

∇i′
x∇j′

αH(α, β, ·), ∇i′
x∇j′

βH(α, β, ·) are Hölder continuous with exponent δ, uniformly in α

and β, for 0 ≤ i′ ≤ i, 0 ≤ j′ ≤ j. We will also writeHi+δ,j
c (Rd) for the subspace consisting of

all H ∈ H
i+δ,j(Rd) such that H is centered, in the sense that

∫

Rd3 H(α, β, x)µα,β(dx) = 0.

under the slightly weaker assumptions introduced in [348] (see also [44, 271]). These assumptions relate
to the existence of solutions to a related Poisson equation, and automatically hold under the assumption
of ergodicity.

11We refer to [44, Part II] for a detailed discussion of the corresponding conditions used in the convergence
analysis of discrete-time stochastic approximation algorithms with Markovian dynamics. We remark only
that, in this case, it is typical to require that the transition kernels of the Markov process satisfy certain
regularity conditions, rather than the invariant measure (if this exists).

12In the analysis of discrete-time stochastic approximation algorithms with Markovian dynamics, it is
not uncommon for boundedness to be assumed a priori. See, for example, [348] in the single-timescale
case, and [249] in the two-timescale case.
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Finally, we will write H̄i+δ,j(Rd) to denote the subspace consisting of H ∈ H
i+δ,j(Rd) such

that H and all of its first and second derivatives with respect to α and β satisfy the PGP.

Assumption 2.2.2c. There exist differentiable functions f, g : Rd1 × R
d2 → R such that

∇αf(·) and ∇βg(·) are locally Lipschitz continuous, and unique Borel measurable functions

F̃ : Rd1 ×R
d2 ×R

d3 → R
d1, G̃ : Rd1 ×R

d2 ×R
d3 → R

d2 such that, for all α ∈ R
d1, β ∈ R

d2,

x ∈ R
d3,

AX F̃ (α, β, x) = ∇αf(α, β)− F (α, β, x), (2.24a)

AX G̃(α, β, x) = ∇βg(α, β)−G(α, β, x), (2.24b)

where AX is the infinitesimal generator of X . In addition, the functions F̃ (α, β, x) and

G̃(α, β, x) are in H̄
1+δ,2(Rd3), and their mixed first partial derivatives with respect to (α, x)

and (β, x) have the PGP.

Assumption 2.2.2d. The diffusion coefficient Ψ has the PGP componentwise. In par-

ticular, it grows no faster than polynomially with respect to the x variable.

Assumption 2.2.2e. For all q > 0, and for all t ≥ 0, E[||Xt||q] <∞. Furthermore, there

exists K > 0 such that for all t sufficiently large,

E

[

sup
s≤t

||Xs(α, β)||q
]

≤ K
√
t , ∀α ∈ R

d1 , ∀β ∈ R
d2 , (2.25a)

E

[

sup
s≤t

||Xs||q
]

≤ K
√
t. (2.25b)

These three assumptions relate to the properties of the diffusion process {Xt(α, β)}t≥0, and

the definitions of the objective functions f(·) and g(·). In particular, the first condition

establishes the relationship between the gradients of the true objective functions ∇αf(·)
and ∇βg(·), and the unbiased estimators F (·) and G(·). It also relates to the existence,

uniqueness, and properties of solutions of the associated Poisson equations. The second

condition pertains to the growth properties of the ergodic diffusion process, while the third

condition provides bounds on its moments. Together, these conditions ensure that error

terms which arise due to the noisy estimates of ∇αf(·) and ∇βg(·), tend to zero sufficiently

quickly as t→ ∞. They are therefore essential, whether or not they are required explicitly,

to existing results on the a.s. convergence of continuous-time stochastic gradient descent

with Markovian dynamics [50, 420, 430].13

The discrete-time analogues of these conditions, and variations thereof, also appear in

almost all of the existing convergence results for stochastic approximation algorithms

13We remark that an analogue of these conditions only appears explicitly in [430]. Meanwhile, in [50, 420],
it follows from the other stated assumptions and standard results on the solutions of the associated Poisson
equation.
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Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

with Markovian dynamics in discrete time (e.g., [44, 271, 348, 439]), including those with

two-timescales (e.g., [249, 250, 437]).14,15 Our particular choice of assumptions can be

considered as the two-timescale, continuous-time generalisation of the conditions appearing

in [348, Section III] and [44, Part II]. It also closely resembles a continuous-time analogue

of the assumptions used in [437, Section IV] for a discrete-time, two-timescale stochastic

approximation algorithm with non-additive, state-dependent noise.

It remains only to provide our assumptions on the additive noise processes

{ζit}t≥0, i = 1, 2. In order to state these assumptions, we will now require an explicit

form for these semi-martingales. In particular, we will assume that they evolve according

to

dζit = ζ
(1)
i (αt, βt,Xt)da

i
t + ζ

(2)
i (αt, βt,Xt)dz

i
t (2.26)

where, for all α ∈ R
d1 , β ∈ R

d2 , ζ
(1)
i (α, β, ·) : Rd3 → R

di , ζ
(2)
i (α, β, ·) : Rd3 → R

di×di5 are

Borel measurable functions; {ait}t≥0 are predictable, increasing processes, and {zit}t≥0 are

R
di5 valued Wiener processes defined on (Ω,F ,P).

Assumption 2.2.3a. For all T > 0, the processes {ζit}t≥0, i = 1, 2 satisfy

lim
s→∞

sup
t∈[s,s+T ]

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

s

γivdζ
i
v

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

= 0 , a.s. (2.27)

Assumption 2.2.3b. The functions ζ
(2)
i , i = 1, 2, have the PGP componentwise. In

particular, they grow no faster than polynomially with respect to the x variable.

Assumption 2.2.3c. There exist constants Az1,z2 , Azi,b > 0, i = 1, 2, such that, component-

wise,

cz1,z2t =
d[z1, z2]t

dt
≤ Az1,z2 , c

zi,b
t =

d[zi, b]t
dt

≤ Azi,b. (2.28)

where [·, ·] denotes the quadratic variation.

The first of these conditions is analogous to the noise condition which appeared in the

analysis of the two-timescale stochastic gradient descent algorithm in Section 2.2.1. Once

again, this can be regarded as a continuous-time version of the Kushner-Clark condition.

The other two assumptions are unique to the continuous-time, two-timescale stochastic

gradient descent algorithm with Markovian dynamics introduced in this chapter. We

should note, however, that similar assumptions have previously appeared in the analysis

of the single-timescale stochastic approximation schemes in [283, 284, 285, 286, 287, 288,

343, 456].

14in discrete time, these conditions are often stated in terms of the Markov transition kernel. They were
first introduced in [348, Section III] (see also [44, Part II]), and later generalised in [271].

15Interestingly, the final two equations in Assumption 2.2.2e are peculiar to the continuous-time setting.
in discrete time, only the first moment bound appears in the analysis of algorithms with Markovian
dynamics (e.g., [44, 348, 439]), including the two-timescale case (e.g., [249, 437]).
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2.2: Main Results

The remaining assumptions required by Theorem 2.2 are identical to those required by

Theorem 2.1.

Our main result on the convergence of Algorithm (2.18a) - (2.18b) is contained in the

following theorem.

Theorem 2.2. Assume that Assumptions 2.2.1 - 2.2.3c and 2.1.4 hold. In addition,

assume that Assumptions 2.1.5 - 2.1.6 hold for the functions f(·) and g(·) defined in

Assumption 2.2.2c. Then, almost surely,

lim
t→∞

∇αf(αt, βt) = lim
t→∞

∇βg(αt, βt) = 0. (2.29)

Proof. See Section 2.3.2.

Our proof of Theorem 2.2 is obtained by rewriting Algorithm (2.18a) - (2.18b) in the form

of Algorithm (2.9a) - (2.9b), viz

dαt = −γ1t
[

∇αf(αt, βt)dt+
(
F (αt, βt,Xt)−∇αf(αt, βt)

)
dt+ dζ1t

︸ ︷︷ ︸

=dξ1t

]

, (2.30a)

dβt = −γ2t
[

∇βg(αt, βt)dt+
(
G(αt, βt,Xt)−∇βg(αt, βt)

)
dt+ dζ2t

︸ ︷︷ ︸

=dξ2t

]

, (2.30b)

and proving that the conditions of Theorem 2.2 (Assumptions 2.2.1 - 2.2.3c) imply the

conditions of Theorem 2.1 (Assumptions 2.1.1 - 2.1.3). Clearly, if this is the case, then

Theorem 2.2 follows directly from Theorem 2.1. This statement holds trivially for all

conditions except those relating to the noise processes. It thus remains to establish that,

under the noise conditions in Theorem 2.2 (Assumptions 2.2.2a - 2.2.2e, 2.2.3a - 2.2.3c), the

noise condition in Theorem 2.1 (Assumption 2.1.3) holds for the noise processes {ξit}t≥0,

i = 1, 2, as defined above. The central part of this proof is thus to control terms of the

form,

t∫

0

γ1s [F (αs, βs,Xs)−∇αf(αs, βs)] ds, (2.31)

t∫

0

γ2s [G(αs, βs,Xs)−∇βg(αs, βs)] ds. (2.32)

This is achieved by rewriting each such term using the solution of an appropriate Poisson

equation, and applying regularity results. This approach - namely, the use of the Pois-

son equation - is standard in the a.s. convergence analysis of stochastic approximation

algorithms with Markovian dynamics, both in discrete time, including the single-timescale
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Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

case (e.g. [44, 90, 271, 315, 348]) and two-timescale case (e.g. [249, 250, 437]), and in

continuous time (e.g. [50, 420, 430]).

This part of our proof most closely resembles the proofs of [420, Lemma 3.1] and [430,

Lemma 1], adapted to the current, somewhat more general setting. In general, however,

our proof follows an entirely different approach to those in [420, 430]. Indeed, the ODE

method is central to our proof, while the proofs in these papers are based on more classical

stochastic descent arguments. In particular, they represent a continuous-time, Markovian

extension of the method introduced in [46], under the additional assumption that the

objective function is bounded from below. This method, broadly speaking, demonstrates

that whenever the magnitude of the gradient of the objective function is large, it remains

so for a sufficiently long time interval, guaranteeing a decrease in the value of the objec-

tive function which is significant and dominates the noise effects. Under the additional

assumption that the objective function is bounded from below, it must converge a.s. to

some finite value, and its gradient must converge to zero [46].16

Crucially, these arguments do not rely on the assumption that the algorithm iterates

remain bounded, which represents a significant advantage over the ODE method. It

is thus of clear interest to extend this approach to the two-timescale setting. Thus far,

however, our attempts to do so have been unsuccessful, due to the presence of the secondary

process.17 As such, this remains an interesting direction for future study.

We conclude this section with the remark that Theorem 2.2, and its proof, still hold

upon restriction to a single-timescale (i.e., under the assumption that either αt or βt is

held fixed). In this case, of course, we only require assumptions which pertain to that

timescale. In this context, our theorem includes, as a particular case, the convergence

result in [420]. Moreover, our proof provides an entirely different proof of that result.

2.3 Proof of Main Results

2.3.1 Proof of Theorem 2.1

In this Section, we provide a proof of Theorem 2.1. Our proof follows the approach in [62,

Chapter 6], adapted appropriately to the continuous-time setting.

16If the boundedness assumption is removed, then either f(αt) → −∞, or else f(αt) converges to a finite
value and ∇αf(αt) → 0 [46].

17In the single-timescale case, one proves that when ∇f(·) is ‘large’, the objective function f(·) decreases
by at least δ > 0, and that when ∇f(·) is ‘small’, the objective function f(·) increases by no more than
some smaller positive constant amount 0 < δ1 < δ. In the two-timescale case, the second of these steps is
no longer possible, due to the presence of the secondary process.
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2.3.1.1 Additional Notation

We will require the following additional notation. Firstly, in a slight abuse of notation,

we will write (x1, x2) to denote the concatenation of x1 ∈ R
d1 and x2 ∈ R

d2 . We will also

write {qit}t≥0, {pit}t≥0, i = 1, 2, to denote the processes

qit =

t∫

0

γisds (2.33a)

pit =






s :

s∫

0

γisdv = t






= (qit)

−1. (2.33b)

where in the second line we have used (·)−1 to denote the inverse function. We then define

the time-scaled processes {αγi
t }t≥0, {βγit }t≥0, i = 1, 2, by

αγi
t = αpit

, (2.34a)

βγit = βpit . (2.34b)

2.3.1.2 The Fast Timescale

2.3.1.2.1 Additional Notation

We will write {ᾱt}t≥0, {β̄t}t≥0 to denote the solutions of the coupled ordinary differential

equations

˙̄αt = 0, (2.35a)

˙̄βt = −∇βg(ᾱt, β̄t). (2.35b)

We can then define {ᾱ(s)
t }0≤s≤t, {β̄(s)t }0≤s≤t, as the unique solutions of equations (2.35a)-

(2.35b) which ‘start at s’, and coincide with the time-scaled processes {αγ2
t }t≥0, {βγ2t }t≥0,

at s. That is,

˙̄α
(s)
t = 0 , ᾱ(s)

s = αγ2
s , t ≥ s, (2.36a)

˙̄β
(s)
t = −∇βg(ᾱ

(s)
t , β̄

(s)
t ) , β̄(s)s = βγ2s , t ≥ s. (2.36b)

We can similarly define {ᾱ[s]
t }0≤t≤s, {β̄[s]t }0≤t≤s, as the unique solutions of equations

(2.35a)-(2.35b) which ‘end at s’, and coincide with the time-scaled processes {αγ2
t }t≥0,

{βγ2t }t≥0, at s. That is,

˙̄α
[s]
t = 0 , ᾱ[s]

s = αγ2
s , t ≤ s, (2.37a)
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˙̄β
[s]
t = −∇βg(ᾱ

[s]
t , β̄

[s]
t ) , β̄[s]s = βγ2s , t ≤ s. (2.37b)

2.3.1.2.2 Proof of Convergence

We first establish, using the processes defined above, that the process (αγ2
t , β

γ2
t ) is an

asymptotic pseudo-trajectory (APT) of the flow induced by the coupled ODEs (2.35a) -

(2.35b). Broadly speaking, this means that (αγ2
t , β

γ2
t ) tracks the flow induced by these

coupled ODEs with arbitrary accuracy over windows of arbitrary length as time goes to

infinity. This provides a notion of “asymptotic closeness” between the paths generated

by Algorithm (2.9a) - (2.9b), and the flow of the coupled ODEs. The motivation for this

comparison is that, provided the trajectories generated by Algorithm (2.9a) - (2.9b) are

“good enough” approximations to the solutions of the coupled ODEs, one can expect that

the two sets of equations will enjoy similar convergence properties. For further details, we

refer to [35, 36].

Lemma 2.1.1. Assume that Assumptions 2.1.1-2.1.4 hold. Then, for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

αγ2
t

βγ2t

)

−
(

ᾱ
(s)
t

β̄
(s)
t

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= 0 , a.s. (2.38a)

lim
s→∞

sup
t∈[s−T,s]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

αγ2
t

βγ2t

)

−
(

ᾱ
[s]
t

β̄
[s]
t

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= 0 , a.s. (2.38b)

Proof. We will prove only the first part of this Lemma, as the method for proving the

second part is entirely analogous. We will begin by considering {αt}0≤s≤t. By definition,

we have

αt = αs −
t∫

s

γ1u∇αf(αu, βu)du−
t∫

s

γ1udξ
1
u (2.39)

= αs −
t∫

s

γ1u
γ2u
γ2u∇αf(αu, βu)du−

t∫

s

γ1udξ
1
u (2.40)

It follows immediately from the definition of {αγ2
t }0≤s≤t that

αγ2
t = αγ2

s −
p2t∫

p2s

γ1u
γ2u
γ2u∇αf(αu, βu)du−

p2t∫

p2s

γ1udξ
1
u (2.41)

= αγ2
s −

t∫

s

γ1p2u
γ2
p2u

∇αf(α
γ2
u , β

γ2
u )du−

p2t∫

p2s

γ1udξ
1
u. (2.42)
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We also have, making use of the ODE for {ᾱ(s)
t }0≤s≤t, that

ᾱ
(s)
t = αγ2

s . (2.43)

It follows straightforwardly from equations (2.42), (2.43) that

||αγ2
t − ᾱ

(s)
t || =

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

−
t∫

s

γ1p2u
γ2
p2u

∇αf(α
γ2
u , β

γ2
u )du−

p2t∫

p2s

γ1udξ
1
u

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

(2.44)

≤

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

s

γ1p2u
γ2
p2u

∇αf(α
γ2
u , β

γ2
u )du

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Ω1,α(s,t)

+

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

p2t∫

p2s

γ1udξ
1
u

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Ω2,α(s,t)

(2.45)

For the first term, by Assumptions 2.1.2 and 2.1.4, which together imply the boundedness

of ||∇αf(·, ·)||, we have that for all T > 0,

sup
t∈[s,s+T ]

Ω1,α(s, t) = sup
t∈[s,s+T ]

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

s

γ1p2u
γ2
p2u

∇αf(α
γ2
u , β

γ2
u )du

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(2.46)

≤ sup
t∈[s,s+T ]

||∇αf(α
γ2
t , β

γ2
t )||

s+T∫

s

γ1p2u
γ2
p2u

du (2.47)

≤ K

s+T∫

s

γ1p2u
γ2
p2u

du (2.48)

≤ KT
γ1p2s
γ2
p2s

. (2.49)

It follows immediately, using also Assumption 2.1.1, that, for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

Ω1,α(s, t) = 0 , a.s. (2.50)

For the second term, using the definition of {p2t }t≥0, we have that, for sufficiently large s,

sup
t∈[s,s+T ]

Ω2,α(s, t) = sup
t∈[s,s+T ]

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

p2t∫

p2s

γ1udξ
1
u

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

(2.51)

≤ sup
t∈[s,s+T ]

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

p2t∫

s

γ1udξ
1
u

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

= sup
t∈[s,s+τ ]

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

s

γ1udξ
1
u

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(2.52)

where, in the second line, we have used the fact that s ≤ p2s for sufficiently large s, and in
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the final line, we have defined τ = τT = p2T . It then follows directly from the first part of

Assumption 2.1.3 that, for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

Ω2,α(s, t) = 0 , a.s. (2.53)

We will now consider {βt}0≤s≤t. By definition, we have that

βt = βs −
t∫

s

γ2u∇βg(αu, βu)du−
t∫

s

dξ2u (2.54)

It follows immediately from the definition of {βγ2t }0≤s≤t that

βγ2t = βγ2s −
p2t∫

p2s

γ2u∇βg(αu, βu)du−
p2t∫

p2s

γ2udξ
2
u (2.55)

= βγ2s −
t∫

s

∇βg(α
γ2
u , β

γ2
u )du−

p2t∫

p2s

γ2udξ
2
u. (2.56)

We also have, now making use of the ODE for {β̄(s)t }0≤s≤t, that

β̄
(s)
t = βγ2s −

t∫

s

∇βg(ᾱ
(s)
u , β̄(s)u )du (2.57)

It follows straightforwardly from equations (2.56), (2.57) that

||βγ2t − β̄
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Ω2,β(s,t)

(2.59)

For the first term, using the second part of Assumption 2.1.3, and arguing as in equations

(2.51)-(2.52), we have that, for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

Ω1,β(s, t) = 0 , a.s. (2.60)

For the second term, using elementary properties of the Euclidean norm, and Assumption
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2.1.2 (i.e., Lipschitz continuity of ∇αg(·, ·)), we have that, for all T > 0,

Ω2,β(s, t) =
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≤
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≤
t∫

s

Lβ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(
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(s)
u

βγ2u − β̄
(s)
u
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∣
du (2.63)

It remains to observe that, combining inequalities (2.45) and (2.59), and using Grömwall’s

Inequality, we have
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≤ ||αγ2

t − ᾱ
(s)
t ||+ ||βγ2t − β̄

(s)
t || (2.64)

≤ Ω1,α(s, t) + Ω2,α(s, t) + Ω1,β(s, t)
︸ ︷︷ ︸

Ω(s,t)

+Ω2,β(s, t) (2.65)

= Ω(s, t) +

t∫

s

Lβ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

αγ2
u − ᾱ
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≤ Ω(s, t) exp





t∫

s

Lβdu



 (2.67)

= Ω(s, t) exp [Lβ(t− s)] , (2.68)

where, from (2.50), (2.53) and (2.60), we have that, for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

Ω(s, t) = 0 , a.s. (2.69)

It follows immediately from (2.68) and (2.69) that, for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]
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βγ2t

)

−
(

ᾱ
(s)
t

β̄
(s)
t

)∣
∣
∣
∣
∣

∣
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∣
≤ lim

s→∞
sup

t∈[s,s+T ]
[Ω(s, t) exp [Lβ(t− s)]] (2.70)

≤ exp [LβT ] lim
s→∞

sup
t∈[s,s+T ]

Ω(s, t) (2.71)

= 0 , a.s. (2.72)

Lemma 2.1.2. Assume that Assumptions 2.1.1-2.1.5 hold. Then, almost surely, for some
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Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

i ≥ 1,

(αt, βt)
t→∞−→ {(α, β∗i (α)) : α ∈ R

d1}. (2.73)

Proof. We begin with the observation that, by Lemma 2.1.1, (αγ2
t , β

γ2
t ) are asymptotic

pseudo-trajectories of (2.35a) - (2.35b). Moreover, by Assumption 2.1.4, they are pre-

compact. We can thus apply Theorem 5.7 in Benäım [36] to conclude that (αγ2
t , β

γ2
t )

converges to an internally chain transitive set for (2.35a) - (2.35b).

We next observe that the function g : Rd1 × R
d2 → R is a strict Lyapunov function for

(2.35a) - (2.35b) in the sense of Benäım [36, Chapter 6.2]. In particular, g(ᾱt, β̄t) is strictly

decreasing in t, unless (ᾱt, β̄t) is an equilibrium point of (2.35a) - (2.35b). This follows

straightforwardly from

ġ(ᾱt, β̄t) = −||∇βg(ᾱt, β̄t)||2 ≤ 0. (2.74)

with equality if and only if ∇βg(ᾱt, β̄t) = 0. By Assumption 2.1.5, the set of critical values

of g is given by Eg = ∪i=1{(α, β∗i (α) : α ∈ R
d}. Since β∗i (·) are discrete and countable, this

set has Lebesgue measure zero, and hence empty topological interior. Thus, by Proposition

6.4 in Benäım [36], every internally chain transitive set for (2.35a) - (2.35b) is contained in

Eg. Moreover, by Assumption 2.1.5, the internally chain transitive sets of Eg are precisely

the sets {(α, β∗i (α)) : α ∈ R
d1}.

It follows from our two observations that, for some i ≥ 1, we have that (αγ2
t , α

γ2
t ) :=

(αp2t
, βp2t ) → {(α, β∗i (α)) : α ∈ R

d1} as t → ∞. Finally, noting that t ≥ p2t for sufficiently

large t, the result holds.

2.3.1.3 The Slow Timescale

2.3.1.3.1 Additional Notation

For i = 1, 2, . . . , we will write {αi
t}t≥0 to denote the solutions of the ordinary differential

equations

α̇i
t = −∇αf(α

i
t, β

∗
i (α

i
t)) (2.75)

where β∗i (·) : Rd1 → R
d2 , i = 1, . . . , are defined in Assumption 2.1.5.

We can then define {αi,(s)
t }0≤s≤t, i = 1, 2, . . . , as the unique solutions of (2.75) which ‘start

at s’, and coincide with the time-scaled process {αγ1
t }t≥0 at s. That is,

α̇
i,(s)
t = −∇αf(α

i,(s)
t , β∗i (α

i,(s)
t )) , αi,(s)

s = αγ1
s . (2.76)

We can also define {αi,[s]
t }0≤s≤t, i = 1, 2, . . . , as the unique solutions of (2.75) which ‘end
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2.3: Proof of Main Results

at s’, and coincide with the time-scaled process {αγ1
t }t≥0 at s. That is,

α̇
i,[s]
t = −∇αf(α

i,[s]
t , β∗i (α

[s]
i (t))) , αi,[s]

s = αγ1
s . (2.77)

2.3.1.3.2 Proof of Convergence

We now demonstrate, using these processes, that for some i ≥ 1, the time-scaled process

αγ1
t is an asymptotic pseudo-trajectory of the flow induced by the ODE for αi

t.

Lemma 2.1.3. Assume that Assumptions 2.1.1-2.1.5 hold. Then, for any T > 0, and the

i ≥ 1 given in Lemma 2.1.2,

lim
s→∞

sup
t∈[s,s+T ]

||αγ1
t − α

i,(s)
t || = 0 , a.s. (2.78a)

lim
s→∞

sup
t∈[s−T,s]

||αγ1
t − α

i,[s]
t || = 0 , a.s. (2.78b)

Proof. This proof is similar in style to the proof of Lemma 2.1.1. Once more, we will prove

only the first part of this Lemma, as the method for proving the second part is entirely

analogous. By definition of the process {αt}0≤s≤t, we have

αt = αs −
t∫

s

γ1u∇αf(αu, βu)du−
t∫

s

γ1udξ
1
u (2.79)

It follows immediately from the definition of {αγ2
t }0≤s≤t that

αγ1
t = αγ1

s −
p1t∫

p1s

γ1u∇αf(αu, βu)du−
p1t∫

p1s

γ1udξ
1
u (2.80)

= αγ1
s −

t∫

s

∇αf(α
1
u, β

1
u)du−

p1t∫

p1s

γ1udξ
1
u. (2.81)

We also have, making use of the ODE for {αi,(s)
t }0≤s≤t, that

α
(s)
i (t) = α

(s)
i (s)−

t∫

s

∇αf(α
i,(s)
u , β∗i (α

i,(s)
u ))ds. (2.82)

It follows straightforwardly from equations (2.81), (2.82) that

∣
∣
∣

∣
∣
∣α

γ1
t − α

i,(s)
t

∣
∣
∣

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

−
t∫

s

[

∇αf(α
γ1
u , β

γ1
u )−∇αf(α
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u
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(2.83)
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Π2,α(s,t)

(2.84)

For the first term, using the first part of Assumption 2.1.3, and arguing as in equations

(2.51)-(2.52), we have that, a.s., for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

Π1,α(s, t) = 0. (2.85)

For the second term, using the triangle inequality, Assumptions 2.1.2 and 2.1.4, which

together imply the boundedness of ||∇αf(·, ·)||, and Assumption 2.1.5, which guarantees

the Lipschitz continuity of β∗i (·), we have that, a.s., for all T > 0,

Π2,α(s, t) ≤
t∫

s

∣
∣
∣
∣∇αf(α

γ1
u , β

γ1
u )−∇αf(α

i,(s)
u , β∗i (α

i,(s)
u ))

∣
∣
∣
∣du (2.86)

≤
t∫

s

∣
∣
∣
∣∇αf(α

γ1
u , β

γ1
u )−∇αf(α

γ1
u , β

∗
i (α

γ1
u ))

∣
∣
∣
∣du

+

t∫

s

∣
∣
∣
∣∇αf(α

γ1
u , β

∗
i (α

γ1
u ))−∇αf(α

i,(s)
u , β∗i (α

i,(s)
u )

∣
∣
∣
∣du (2.87)

≤
t∫

s

Lα

[∣
∣
∣
∣αγ1

u − αγ1
u

∣
∣
∣
∣+

∣
∣
∣
∣βγ1u − β∗i (α

γ1
u )

∣
∣
∣
∣
]
du

+

t∫

s

Lα

[∣
∣
∣
∣αγ1

u − αi,(s)
u

∣
∣
∣
∣+

∣
∣
∣
∣β∗i (α

γ1
u )− β∗i (α

i,(s)
u )

∣
∣
∣
∣

]

du (2.88)

≤
t∫

s

Lα

∣
∣
∣
∣βγ1u − β∗i (α

γ1
u )

∣
∣
∣
∣du

︸ ︷︷ ︸

Π
(1)
2,α(s,t)

+

t∫

s

Lα(1 + Lβ∗
i
)
∣
∣
∣
∣αγ1

u − αi,(s)
u

∣
∣
∣
∣du

︸ ︷︷ ︸

Π
(2)
2,α(s,t)

. (2.89)

For the first term, we have that, a.s., for all T > 0,

sup
t∈[s,s+T ]

Π
(1)
2,α(s, t) = sup

t∈[s,s+T ]

t∫

s

Lα

∣
∣
∣
∣βγ1u − β∗i (α

γ1
u )

∣
∣
∣
∣du (2.90)

≤ LαT sup
t≥s

∣
∣
∣
∣βγ1t − β∗i (α

γ1
t )

∣
∣
∣
∣. (2.91)
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It then follows, using Lemma 2.1.2, that, a.s., for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

Π
(1)
2,α(s, t) ≤ LαT lim sup

s→∞

∣
∣
∣
∣βγ1s − β∗i (α

γ1
s )

∣
∣
∣
∣ (2.92)

= LαT lim
s→∞

∣
∣
∣
∣βγ1s − β∗i (α

γ1
s )

∣
∣
∣
∣ (2.93)

= 0. (2.94)

It remains to observe, combining inequalities (2.84) and (2.89), and making use of Grömwall’s

Inequality, that

∣
∣
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∣
∣
∣α

γ1
t − α

i,(s)
t

∣
∣
∣

∣
∣
∣ ≤ Π1,α(s, t) + Π

(1)
2,α(s, t)

︸ ︷︷ ︸

Π(s,t)

+Π
(2)
2,α(s, t) (2.95)

= Π(s, t) +

t∫

s

Lα(1 + Lβ∗
i
)
∣
∣
∣
∣αγ1

u − αi,(s)
u

∣
∣
∣
∣du (2.96)

≤ Π(s, t) exp





t∫

s

Lα(1 + Lβ∗
i
)du



 (2.97)

= Π(s, t) exp
[
Lα(1 + Lβ∗

i
)(t− s)

]
(2.98)

where, from (2.85) and (2.94), we have that, a.s., for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

Π(s, t) = 0. (2.99)

It follows immediately from (2.98) and (2.99) that, a.s., for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

∣
∣
∣

∣
∣
∣α

γ1
t − α

i,(s)
t

∣
∣
∣

∣
∣
∣ ≤ lim

s→∞
sup

t∈[s,s+T ]

[
Π(s, t) exp

[
Lα(1 + Lβ∗

i
)(t− s)

]]
(2.100)

≤ exp
[
Lα(1 + Lβ∗

i
)
]
lim
s→∞

sup
t∈[s,s+T ]

Π(s, t) (2.101)

= 0. (2.102)

Lemma 2.1.4. Assume that Assumptions 2.1.1-2.1.6 hold. Then, almost surely

αt
t→∞−→ {α ∈ R

d1 : ∇αf(α, β
∗
i (α)) = 0}. (2.103)

Proof. The proof follows a similar trajectory to the proof of Lemma 2.1.2, now with

some simplifications. By Lemma 2.1.3, αγ1
t is an asymptotic pseudo-trajectory for (2.75).

Moreover, it is pre-compact by Assumption 2.1.4. Thus, applying Theorem 5.7 in Benäım

[36], it follows that αγ1
t := αp1t

converges to an internally chain transitive set of (2.75). The
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Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

same is thus also true for αt, noting as before that t ≥ p1t for sufficiently large t. Finally,

by Assumption 2.1.6, the only internally chain transitive sets of (2.75) are its (possibly

non-isolated) equilibrium points. The result follows immediately.

2.3.1.4 Proof of Theorem 2.1

Theorem 2.1. Assume that Assumptions 2.1.1-2.1.6 hold. Then, almost surely,

lim
t→∞

∇αf(αt, βt) = lim
t→∞

∇βg(αt, βt) = 0. (2.104)

Proof. The result is an immediate consequence of Lemmas 2.1.2 and 2.1.4. By Lemma

2.1.2, the process (αt, βt) → {(α, β∗i (α)) : α ∈ R
d1} a.s., for some i ≥ 1. By Lemma 2.1.4,

the process αt → {α ∈ R
d1 : ∇αf(α, β

∗
i (α)) = 0} a.s.. Together, these lemmas imply that,

for some i ≥ 1,

(αt, βt) → {(α, β∗i (α)) ∈ R
d1 × R

d2 : ∇αf(α, β
∗
i (α)) = 0} a.s. (2.105)

It follows, in particular, that ∇αf(αt, βt) → 0 and ∇βg(αt, βt) → 0 with probability

one.

2.3.2 Proof of Theorem 2.2

In this Section, we provide a proof of Theorem 2.2. Our proof combines the methods in

[420, Lemma 3.1] and [430, Lemma 1], adapted appropriately to the two-timescale setting,

with the results of Theorem 2.1.

Lemma 2.2.1. For 0 ≤ s ≤ t, define

Γα(s, t) =

t∫

s

γ1u [F (αu, βu,Xu)−∇αf(αu, βu)] du (2.106a)

Γβ(s, t) =

t∫

s

γ2u [G(αu, βu,Xu)−∇βg(αu, βu)] du. (2.106b)

Assume that Assumptions 2.2.1-2.2.3a hold. Then, for all T ∈ [0,∞), with probability

one,

lim
s→∞

sup
t∈[s,s+T ]

||Γα(s, t)|| = lim
s→∞

sup
t∈[s,s+T ]

||Γβ(s, t)|| = 0. (2.107)

Proof. We will prove only the first part of the Lemma, as the method for proving the

second part is entirely analogous. By Assumption 2.2.2c, there exists a differentiable
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function f : Rd1 ×R
d2 → R, and a unique Borel-measurable function F̃ : Rd1 ×R

d2 ×R
d3

such that ∇αf(·) is Lipschitz continuous, and moreover, such that the Poisson equation

AX F̃ (α, β, x) = F (α, β, x)−∇αf(α, β) (2.108)

has a unique, twice-differentiable solution which grows at most polynomially in x. In

particular, there exist K ′, q′ > 0 such that

2∑

i=0

||∂iαF̃ (α, β, x)||+ ||∂x∂αF̃ (α, β, x)|| ≤ K(1 + ||x||q′), (2.109a)

2∑

i=0

||∂iβF̃ (α, β, x)||+ ||∂x∂βF̃ (α, β, x)|| ≤ K(1 + ||x||q′). (2.109b)

Now consider the vector-valued function F̂ (α, β, x, t) = γ1t F̃ (α, β, x), with F̃ as defined in

(2.108). Applying Itô’s Lemma to each component of F̂ , we obtain, for i = 1, . . . , d1,

F̂i(αt, βt,Xt, t)− F̂i(αs, βs,Xs, s) (2.110)

=

t∫

s

∂τ F̂i(ατ , βτ ,Xτ , τ)dτ +

t∫

s

AX F̂i(ατ , βτ ,Xτ , τ)dτ

−
t∫

s

γ1τF (ατ , βτ ,Xτ ) · ∇αF̂i(ατ , βτ ,Xτ , τ)dτ

−
t∫

s

γ2τG(ατ , βτ ,Xτ ) · ∇βF̂i(ατ , βτ ,Xτ , τ)dτ

+
1

2

t∫

s

(γ1τ )
2∇α∇αF̂i(ατ , βτ ,Xτ , τ) : d [ζ1, ζ1]τ

+
1

2

t∫

s

(γ2τ )
2∇β∇βF̂i(ατ , βτ ,Xτ , τ) : d [ζ2, ζ2]τ

−
t∫

s

γ1τ∇αF̂i(ατ , βτ ,Xτ , τ) · dζ1τ

−
t∫

s

γ2τ∇βF̂i(ατ , βτ ,Xτ , τ) · dζ2τ

+

t∫

s

∇xF̂i(ατ , βτ ,Xτ , τ) ·Ψ(ατ , βτ ,Xτ )dbτ
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+

t∫

s

γ1τγ
2
τ∇α∇βF̂i(ατ , βτ ,Xτ , τ) : d [ζ1, ζ2]τ

−
t∫

s

γ1τ∇α∇xF̂i(ατ , βτ ,Xτ , τ) : Ψ(ατ , βτ ,Xτ )d [ζ1, b]τ

−
t∫

s

γ2τ∇β∇xF̂i(ατ , βτ ,Xτ , τ) : Ψ(ατ , βτ ,Xτ )d [ζ2, b]τ

For the sake of brevity, we will proceed under the assumption that the continuous semi-

martingales {ζit}t≥0, i = 1, 2 are, in fact, diffusion processes. We should emphasise, how-

ever, that this assumption does not change the subsequent analysis in any meaningful way,

and can be easily relaxed. In particular, we will thus assume that

dζit = ζ
(1)
i (αt, βt,Xt)dt+ ζ

(2)
i (αt, βt,Xt)dz

i
t (2.111)

where ζ
(1)
i (α, β, ·) : Rd3 → R

di and ζ
(2)
i (α, β, ·) : Rd3 → R

di×di5 are Borel measurable func-

tions; and {zit}t≥0 are R
di5 valued Wiener processes. In this case, recalling the definition

of the functions cz1,z2 , cz1,b and cz2,b in Assumption 2.2.3c, the previous equation becomes

F̂i(αt, βt,Xt, t)− F̂i(αs, βs,Xs, s) (2.112)

=

t∫

s

∂τ F̂i(ατ , βτ ,Xτ , τ)dτ +

t∫

s

AX F̂i(ατ , βτ ,Xτ , τ)dτ

+

t∫

s

AαF̂i(ατ , βτ ,Xτ , τ)dτ +

t∫

s

AβF̂i(ατ , βτ ,Xτ , τ)dτ

−
t∫

s

γ1τ∇αF̂i(ατ , βτ ,Xτ , τ) · ζ(2)1 (τ)dz1τ

−
t∫

s

γ2τ∇βF̂i(ατ , βτ ,Xτ , τ) · ζ(2)2 (τ)dz2τ

+

t∫

s

∇xF̂i(ατ , βτ ,Xτ , τ) ·Ψ(τ)dbτ

−
t∫

s

γ1τTr
[

∇α∇xF̂i(ατ , βτ ,Xτ , τ)Ψ(τ)ζ
(2)
1 (τ)cz1,bτ

]

dτ

−
t∫

s

γ2τTr
[

∇β∇xF̂i(ατ , βτ ,Xτ , τ)Ψ(τ)ζ
(2)
2 (τ)cz2,bτ

]

dτ
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+

t∫

s

γ1τγ
2
τTr

[

∇α∇βF̂i(ατ , βτ ,Xτ , τ)ζ
(2)
1 (τ)ζ

(2)
2 (τ)cz1,z2τ

]

dτ,

where, Aα and Aβ are the infinitesimal generators of the processes {αt}t≥0 and {βt}t≥0;

and ∇α∇βuk(α, β, x, τ)ij = ∂αi
∂βj

uk(α, β, x, τ), with ∇α∇x and ∇β∇x defined similarly.

For the sake of simplicity, we have temporarily suppressed the dependence of the functions

ζ
(1)
i , ζ

(2)
i , i = 1, 2, and Ψ on {αt}t≥0, {βt}t≥0 and {Xt}t≥0. It follows straightforwardly that

Γα(s, t) =

t∫

s

γ1τ [F (ατ , βτ ,Xτ )−∇αf(ατ , βτ )] dτ (2.113)

=

t∫

s

γ1τAX F̃ (ατ , βτ ,Xτ )dτ (2.114)

=

t∫

s

AX F̂ (ατ , βτ ,Xτ )dτ (2.115)

= γ1t F̃ (αt, βt,Xt)− γ1s F̃ (αs, βs,Xs) (2.116)

−
t∫

s

γ̇1τ∂τ F̃ (ατ , βτ ,Xτ )dτ

−
t∫

s

γ1τAαF̃ (ατ , βτ ,Xτ )dτ −
t∫

s

γ1τAβF̃ (ατ , βτ ,Xτ )dτ

+

t∫

s

(γ1τ )
2∇αF̃ (ατ , βτ ,Xτ , τ) · ζ(2)1 (τ)dz1τ

+

t∫

s

γ1τγ
2
τ∇βF̃ (ατ , βτ ,Xτ , τ) · ζ(2)2 (τ)dz2τ

−
t∫

s

γ1τ∇xF̃ (ατ , βτ ,Xτ ) ·Ψ(τ)dbτ

+

t∫

s

(γ1τ )
2Tr

[

∇α∇xF̃ (ατ , βτ ,Xτ )Ψ(τ)ζ
(2)
1 (τ)cz1,bτ

]

dτ

+

t∫

s

γ1τγ
2
τTr

[

∇β∇xF̃ (ατ , βτ ,Xτ )Ψ(τ)ζ
(2)
2 (τ)cz2,bτ

]

dτ

−
t∫

s

(γ1τ )
2γ2τTr

[

∇α∇βF̃ (ατ , βτ ,Xτ )ζ
(2)
1 (τ)ζ

(2)
2 (τ)cz1,z2τ

]

dτ
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We will now bound each of these terms in turn. We first define

J
(1)
t = γ1t sup

τ∈[0,t]
||F̃ (ατ , βτ ,Xτ )||. (2.117)

By Assumption 2.2.2c and Assumption 2.2.2e, there exists q > 0, and K,K ′ > 0 such that

for all t sufficiently large, we have

E
[(
J
(1)
t

)2]
= E

[
(γ1t )

2 sup
τ∈[0,t]

||F̃ (ατ , βτ ,Xτ )||2
]

(2.118)

≤ K(γ1t )
2
[
1 + E sup

τ∈[0,t]
||Xτ ||q

]
(2.119)

≤ K(γ1t )
2
[
1 +K ′

√
t
]

(2.120)

≤ K ′′(γ1t )
2
√
t. (2.121)

By Assumption 2.2.1, there exists r1 > 0 such that limt→∞(γ1t )
2t

1
2
+2r1 = 0. In particular,

there exists T > 0 such that for all t ≥ T ,

(γ1t )
2t

1
2
+2r1 ≤ 1. (2.122)

Now suppose that, for any 0 < δ < r1, we define the event Aδ
t = {J (1)

t · tr1−δ ≥ 1}. Then,
by Markov’s inequality, equation (2.121), and equation (2.122), we have that, for all t ≥ T ,

P(Aδ
t ) ≤ E

[

(J
(1)
t )2

]

t2(r1−δ) ≤ K ′′(γ1t )
2t

1
2
+2r1−2δ ≤ K ′′t−2δ (2.123)

It follows that
∑∞

n=1 P(A
δ
2n) <∞. By the Borel-Cantelli Lemma, this observation implies

that only finitely many events Aδ
2n can occur. Therefore, there exists a random index

n0(ω) such that

J
(1)
2n · 2n(r1−δ) ≤ 1 (2.124)

for all n ≥ n0. Equivalently, there exists a finite positive random variable d(ω) and a

deterministic 0 < n1 <∞ such that for all n ≥ n1,

J
(1)
2n · 2n(r−δ) ≤ d(ω). (2.125)

Thus, for t ∈ [2n, 2n+1], and n ≥ n1, we have, for some constant 0 < K <∞,

J
(1)
t = γ1t sup

τ∈[0,t]
||F̃ (ατ , βτ ,Xτ )|| (2.126)

≤ Kγ12n+1 sup
τ∈[0,2n+1]

||F̃ (ατ , βτ ,Xτ )|| (2.127)

= KJ
(1)
2n+1 (2.128)
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≤ K
d(ω)

2(n+1)(r1−δ)
(2.129)

≤ K
d(ω)

tr1−δ
. (2.130)

It follows that, for all t ≥ 2n0 , with probability one,

J
(1)
t ≤ K

d(ω)

tr1−δ
→ 0 as t→ ∞. (2.131)

We next define

J
(2)
t =

t∫

0

∣
∣
∣
∣

∣
∣
∣
∣
γ̇1τ∂τ F̃ (ατ , βτ ,Xτ ) (2.132)

+ γ1τAαF̃ (ατ , βτ ,Xτ ) + γ1τAβF̃ (ατ , βτ ,Xτ )

− (γ1τ )
2Tr

[

∇α∇xF̃ (ατ , βτ ,Xτ )Ψ(τ)ζ
(2)
1 (τ)cz1,bτ

]

− γ1τγ
2
τTr

[

∇β∇xF̃ (ατ , βτ ,Xτ )Ψ(τ)ζ
(2)
2 (τ)cz2,bτ

]

+ (γ1τ )
2γ2τTr

[

∇α∇βF̃ (ατ , βτ ,Xτ )ζ
(2)
1 (τ)ζ

(2)
2 (τ)cz1,z2τ

]
∣
∣
∣
∣

∣
∣
∣
∣
dτ.

By Assumptions 2.2.1, 2.2.2d, 2.2.2c, 2.2.2e, 2.2.3b and 2.2.3c, there exists q > 0, and

constants K,K ′,K ′′ > 0 such that

sup
t≥0

E[J
(2)
t ] ≤ K

∞∫

0

(
γ̇1τ + (γ1τ )

2 + γ1τγ
2
τ + (γ1τ )

2 (2.133)

+ γ1τγ
2
τ + (γ1τ )

2γ2τ
)
(1 + E||X (τ)||q)dτ

≤ KK ′

∞∫

0

(
γ̇1τ + (γ1τ )

2 + (γ2τ )
2 + (γ1τ )

2 (2.134)

+ γ1τγ
2
τ + (γ1τ )

2γ2τ
)
dτ

≤ KK ′K ′′ <∞. (2.135)

In particular, the first inequality follows from Assumptions 2.2.2d, 2.2.2c, 2.2.3b and 2.2.3c,

using additionally the fact that Aα contains at least a factor of γ1t , and Aβ contains at least

a factor of γ2t . The second inequality follows from the first part of Assumption 2.2.2e. The

final inequality follows from Assumption 2.2.1. It follow that there exists a finite random

variable, say J̄
(2)
∞ , such that, with probability one,

lim
t→∞

J
(2)
t = J̄ (2)

∞ . (2.136)
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Finally, we define

J
(3)
t =

t∫

0

(γ1τ )
2∇αF̃ (ατ , βτ ,Xτ , τ) · ζ(2)1 (τ)dz1τ (2.137)

+ γ1τγ
2
τ∇βF̃ (ατ , βτ ,Xτ , τ) · ζ(2)2 (τ)dz2τ

− γ1τ∇xF̃ (ατ , βτ ,Xτ ) ·Ψ(τ)dbτ

By the Itô Isometry, and Assumptions 2.2.1, 2.2.2d, 2.2.2c, 2.2.2e, 2.2.3b and 2.2.3c, similar

calculations to those for J
(2)
t show there exists q > 0, and constants K,K ′,K ′′ > 0 such

that

sup
t≥0

E[||J (3)
t ||2] ≤ K

∞∫

0

(
(γ1τ )

4 + (γ1τ )
2(γ2τ )

2 + (γ1τ )
2 + 2(γ1τ )

3γ2τ (2.138)

+ 2(γ1τ )
2γ2τ + 2(γ1τ )

3
)
(1 + E||X (τ)||q)dτ

≤ KK ′

∞∫

0

(
(γ1τ )

4 + (γ1τ )
2(γ2τ )

2 + (γ1τ )
2 (2.139)

+ 2(γ1τ )
3γ2τ + 2(γ1τ )

2γ2τ + 2(γ1τ )
3
)
dτ

≤ KK ′K ′′ <∞. (2.140)

Thus, by Doob’s martingale convergence theorem, there exists a square integrable random

variable, say J̄
(3)
∞ , such that, with probability one and in L2,

lim
t→∞

J
(3)
t = J̄ (3)

∞ . (2.141)

It remains only to observe that

||Γα(s, t)|| ≤ J
(1)
t + J (1)

s + J
(2)
t − J (2)

s + ||J (3)
t − J (3)

s ||. (2.142)

Together with (2.131), (2.136) and (2.141), this expression implies that for all T ∈ [0,∞),

with probability one,

lim
s→∞

sup
t∈[s,s+T ]

||Γα(s, s+ T )|| = 0. (2.143)

Theorem 2.2. Assume that Assumptions 2.2.1 - 2.2.3c and 2.1.4 hold. In addition,

assume that Assumptions 2.1.5 - 2.1.6 hold for the functions f(·) and g(·) defined in
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Assumption 2.2.2c. Then, almost surely,

lim
t→∞

∇αf(αt, βt) = lim
t→∞

∇βg(αt, βt) = 0. (2.144)

Proof. We begin with the observation that Algorithm (2.18a) - (2.18b) can be written in

the form of Algorithm (2.9a) - (2.9b), viz

dαt = −γ1t
[

∇αf(αt, βt)dt+
(
F (αt, βt,Xt)−∇αf(αt, βt)

)
dt+ dζ1t

︸ ︷︷ ︸

=dξ1t

]

, (2.145a)

dβt = −γ2t
[

∇βg(αt, βt)dt+
(
G(αt, βt,Xt)−∇βg(αt, βt)

)
dt+ dζ2t

︸ ︷︷ ︸

=dξ2t

]

. (2.145b)

It is thus sufficient to prove that the alternative conditions in Theorem 2.2 (Assumptions

2.2.1 - 2.2.3c) imply the original conditions of Theorem 2.1 (Assumptions 2.1.1 - 2.1.3).

Indeed, if this is the case, then Theorem 2.2 follows directly from Theorem 2.1. This

statement holds trivially for all conditions except those relating to the noise processes. It

thus remains to establish that, under the noise conditions in Theorem 2.2 (Assumptions

2.2.2a - 2.2.2e, 2.2.3a - 2.2.3c), the noise condition in Theorem 2.1 (Assumption 2.1.3)

holds for the noise processes {ξit}t≥0, i = 1, 2, as defined above. That is, for all T > 0,

and i = 1, 2,

lim
s→∞

sup
t∈[s,s+T ]

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

s

γivdξ
i
v

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

= 0 (2.146)

But this is an immediate consequence of Assumption 2.2.3a and Lemma 2.2.1. The result

follows immediately.

2.4 Extensions

In this section, we provide details of several possible extensions to Theorem 2.1. In par-

ticular, we discuss how to obtain an a.s. convergence result for an alternative version of

Algorithm (2.9a) - (2.9b) which makes use of higher order gradient information, as well as

the additional assumptions required in order to establish convergence of Algorithm (2.9a)

- (2.9b) to the set of local and global minima of the two objective functions (in a sense to

be made precise below). We also establish an asymptotic convergence rate.

2.4.1 Higher Order Updates

In Theorem 2.1, we analysed a two-timescale stochastic gradient descent algorithm de-

signed to solve a weak formulation of the original bilevel optimisation problem in (2.1), as
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stated in (2.2). This, we now recall for convenience, refers to the task of obtaining (α∗, β∗)

which jointly satisfy

α∗ = argmin
α∈Uα∗

f(α, β∗) , β∗ = argmin
β∈Uβ∗

g(α∗, β) (2.147)

where Uα∗ ⊂ R
d1 and Uβ∗ ⊂ R

d2 are local neighbourhoods of α∗ and β∗, respectively.

That is, equivalently, values (α∗, β∗) such that α∗ locally minimises f(α, β∗) with respect

to α, and β∗ which locally minimises g(α∗, β) with respect to β. To tackle this problem

using gradient methods, it is natural to consider an algorithm which only utilises noisy

estimates of the partial derivatives ∇αf(α, β) and ∇βg(α, β). This is precisely the form

of Algorithm (2.9a) - (2.9b).

Suppose, instead, that we would like to solve a local version of the original bilevel op-

timisation problem (2.1) more directly. In particular, suppose that we wish to obtain

(α∗, β∗) = (α∗, β∗(α∗)) which satisfy

α∗ = argmin
α∈Uα∗

f
(
α, β∗(α)

)
s.t. β∗(α) = argmin

β∈Uβ∗(α)

g(α, β) (2.148)

where, similarly to above, Uα∗ ⊂ R
d1 and Uβ∗(α) ⊂ R

d2 are local neighbourhoods of α∗

and β∗(α), respectively. The crucial difference between (2.147) and (2.148) is that, in the

latter, we insist that α∗ minimises f(α, β∗(α)) with respect to α. In particular, the second

argument in the upper level optimisation function now depends explicitly on α.

To tackle this problem using gradient methods, we can still use the partial derivative

∇βg(α, β) to minimise the lower-level objective function. If possible, however, we should

now use the total derivative ∇f(α, β∗(α)) to minimise the upper-level objective function.

This will, of course, require additional assumptions on the two-objective functions (to be

specified below). To make progress in this direction, first note that, via the chain rule, we

have

∇f(α, β∗(α)) = ∇αf(α, β
∗(α)) + [∇αβ

∗(α)]T∇βf(α, β
∗(α)). (2.149)

Moreover, owing to the first order optimality condition for β∗(α), under appropriate ad-

ditional assumptions on g, it holds that (see, e.g., [200])

∇αβ
∗(α) = −∇2

αβg(α, β
∗(α))

[
∇2

ββg(α, β
∗(α))

]−1
. (2.150)

In practice, β∗(α) is not available in closed form. Thus, one typically approximates

∇f(α, β∗(α)) by replacing β∗(α) with β ∈ R
d2 . This yields, instead of (2.149), the ‘surro-

gate’ gradient

∇̄f(α, β) = ∇αf(α, β)−∇2
αβg(α, β)

[
∇2

ββg(α, β)
]−1∇βf(α, β). (2.151)
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Using this surrogate gradient, we can now obtain an alternative version of Algorithm

(2.9a) - (2.9b). In particular, suppose that we continuously observe noisy gradients of

∇̄f(α, β) and ∇βg(α, β), as in (2.7a) - (2.7b). Then it is natural to consider the following

continuous-time two-timescale stochastic gradient descent algorithm:

dαt = −γ1t
[
∇̄f(αt, βt)dt+ dξ1t

]
, (2.152a)

dβt = −γ2t
[
∇βg(αt, βt)dt+ dξ2t

]
, (2.152b)

where f : Rd1×R
d2 → R is a continuously differentiable function, g : Rd1×R

d2 → R is now

a twice continuously differentiable function, ∇̄f : Rd1 × R
d2 → R

d1 is defined in (2.151),

and all other terms are as defined in Section 2.2.1. This represents the continuous-time

version of the two-timescale stochastic gradient descent algorithm in discrete time recently

introduced in [218].

We can analyse this algorithm using similar assumptions to those used to establish the

convergence of Algorithm (2.9a) - (2.9b) in Theorem 2.1. Let us briefly highlight the

required modifications. We will first require the following stronger version of Assumption

2.1.2.

Assumption 2.1.2.i’. The outer function f : Rd1 ×R
d2 → R has the following properties

• The function ∇αf : Rd1 × R
d2 → R

d1 is locally Lipschitz continuous.

• The function ∇βf : Rd1 × R
d2 → R

d2 is locally Lipschitz continuous.

Assumption 2.1.2.ii’. The inner function g : Rd1×R
d2 → R has the following properties.

• The function ∇βg : Rd2 × R
d2 → R

d2 is locally Lipschitz continuous.

• For all α ∈ R
d1, the function g(α, ·) : Rd1 → R is strongly convex.

• The function ∇2
αβg : Rd1 × R

d2 → R
d1×d2 is bounded.

These assumptions, which also appear in [200, 218], ensure that the surrogate ∇̄f(α, β)
is well-defined and locally Lipschitz continuous. In particular, it is necessary to assume

strong convexity for g(α, ·) to ensure that the Hessian of this function, whose inverse ap-

pears in the definition of ∇̄f(α, β) in (2.151), is bounded away from zero. An immediate

consequence of this assumption is that, for all α ∈ R
d1 , g(α, ·) has a single global min-

imiser. This, in turn, implies that, for all α ∈ R
d1 , the equation β̇t = −∇βg(α, βt) has a

globally asymptotically stable equilibrium β∗(α), thus doing away with with the need for

Assumption 2.1.5.

Finally, we will now replace Assumption 2.1.6 with the following condition.
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Assumption 2.1.6’. The set f(Ef , β
∗
i (Ef )) contains no open sets of Rd1 other than the

empty set (i.e., has empty interior), where

Ef =
{
α ∈ R

d1 : ∇f(α, β∗(α)) = 0
}
. (2.153)

Interestingly, this assumption is actually slightly weaker than Assumption 2.1.6. This

condition was first introduced in [36], in the context of single-timescale stochastic approx-

imation, and later also appeared in [436] in a slightly different form: namely, that the set

f(Ef , β
∗(Ef )) ∩ f(Ec

f , β
∗(Ec

f )) has Lebesgue measure zero. Both versions have since also

appeared in the two-timescale setting [241, 437].

Broadly speaking, this condition ensures that the function f(·, β∗(·)) admits a certain

topological property: namely, that each closed continuous path starting and ending in Ec
f

has a subpath contained in Ec
f along which f(·, β∗(·)) does not increase. This property

prevents the noise processes from forcing the slow process to drift from one connected

component of Ef to another. In turn, this ensures that the slow process converges to a

connected component of Ef . This assumption is satisfied under several more easily ver-

ifiable conditions. In particular, it holds if Ef or f(Ef ) are countable (e.g., [36]). By

the Morse-Sard Theorem [217], it also holds if the function f(·, β∗(·)) is d1-times differen-

tiable, a situation which is somewhat common in two-timescale stochastic approximation

algorithms (e.g., [250]).

Our main result on the convergence of Algorithm (2.152a) - (2.152b) is contained in the

following theorem.

Theorem 2.1’. Assume that Conditions 2.1.1, 2.1.2.i’ - 2.1.2.ii’, 2.1.3, 2.1.4, and 2.1.6’

hold. Then, almost surely,

lim
t→∞

∇f(αt, β
∗(αt)) = lim

t→∞
∇βg(αt, βt) = 0. (2.154)

The second limit implies, in particular, that limt→∞ ||βt − β∗(αt)|| = 0, where β∗(α) =

argminβ∈Rd2 g(α, β).

Proof. Under the stated assumptions, the proof of Theorem 2.1’ is essentially identical to

the proof of Theorem 2.1. Let us briefly highlight the main changes. Lemma 2.1.1 goes

through unchanged, replacing ∇αf(α, β) with ∇̄f(α, β) where required. Lemma 2.1.2,

which now states that (αt, βt) → {(α, β∗(α)) : α ∈ R
d1}, is now much more straightfor-

ward, since the only internally chain transitive set for (the analogue of) (2.35a) - (2.35b)

is now the globally asymptotically stable equilibrium point β∗(α).

Lemma 2.1.3 is essentially unchanged, again replacing ∇αf(α, β) with ∇̄f(α, β), and also

replacing β∗i (α) with β∗(α). Finally, Lemma 2.1.4 is proved along the same lines as the
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original proof of Lemma 2.1.2. In particular, this proof begins by noting that, by (the

modified version of) Lemma 2.1.3, αγ1
t is an asymptotic pseudo-trajectory for the ODE

α̇t = −∇̄f(αt, β
∗(αt)), (2.155)

or, using the fact that ∇f(α, β∗(α)) and ∇̄f(α, β) coincide when β = β∗(α), the ODE

α̇t = −∇f(αt, β
∗(αt)). (2.156)

By Assumption 2.1.4, this trajectory is also pre-compact. Thus, by Theorem 5.7 in Benaim

[36], αγ1
t converges to an internally chain transitive set for (2.156). We next observe

that f : Rd1 × R
d2 → R is a strict Lyapunov function for (2.156). Indeed, this follows

immediately from

ḟ(αt, β
∗(αt)) = α̇t∇αf(αt, β

∗(αt)) + β̇∗(αt)∇βf(αt, β
∗(αt))

= α̇t

[

∇αf(αt, β
∗(αt)) + [∇αβ

∗(αt)]
T ∇βf(αt, β

∗(αt))
]

= −||∇f(αt, β
∗(αt))||2 ≤ 0. (2.157)

In addition, by Assumption 2.1.6’, the set of critical values of f , namely Ef , has Lebesgue

measure zero. We can thus apply Proposition 6.4 in Benäım [36] to conclude that every

internally chain transitive set for (2.156) is contained in Ef . Lemma 2.1.4 now follows

straightforwardly.

Finally, combining the results of the modified versions of Lemma 2.1.2 and Lemma 2.1.4,

one obtains the result of Theorem 2.1’.

2.4.2 Convergence to Local or Global Minima

In Theorem 2.1, we established the convergence of Algorithm (2.9a) - (2.9b) to the sta-

tionary points of the two objective functions. In this section, we outline the additional

assumptions required in order to establish a.s. convergence to the set of local or global

minima of these functions, in the sense of (2.147). That is, (α∗, β∗) such that jointly α∗

(locally) minimises f(α, β∗) with respect to α, and β∗ which (locally) minimises g(α∗, β)

with respect to β.

2.4.2.1 Local Minima

In order to guarantee convergence to the set of local minima, we will require the following

conditions in addition to Assumptions 2.1.1 - 2.1.6.

47



Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

Assumption 2.1.3 (L). The quadratic variations of the noise processes {ξit}t≥0, i = 1, 2,

are uniformly positive definite.

Assumption 2.1.5 (L). For all α ∈ R
d1, the function g(α, ·) : Rd2 → R is twice contin-

uously differentiable. Moreover, this function is strict saddle.18

Assumption 2.1.6 (L). For all β ∈ R
d2, the function f(·, β) : Rd1 → R is twice contin-

uously differentiable. Moreover, this function is strict saddle.19

The analogue of these assumptions (for a single objective function) appear in both classical

[67, 377] and more recent [189, 346] results on the ‘avoidance of saddles’ in the discrete-time

stochastic approximation literature. See also [479] for a related result in continuous time.

Broadly speaking, the first of these assumptions is required in order to ensure that the

additive noise processes are ‘sufficiently exciting’, that is, that they have sufficiently large

components in all directions. Meanwhile, the final two assumptions rule out degenerate

cases in which the Hessian does not contain sufficient information to characterise the

nature of a critical point.

Using these assumptions, one can establish (in single-timescale, discrete-time stochastic

gradient descent) that unstable equilibria (i.e., saddle points) are avoided with probability

one via the central manifold theorem (e.g., [416]). We leave the rigorous extension of these

results to the continuous-time, two-timescale framework to future work.

2.4.2.2 Global Minima

It is somewhat more straightforward to establish convergence to the global minima of

the two objective functions. In this case, we can simply replace Assumption 2.1.5 and

Assumption 2.1.6 with the following conditions.

Assumption 2.1.5 (G). For all α ∈ R
d1, the ordinary differential equation

dβt
dt

= −∇βg(α, βt) (2.158)

has a globally asymptotically stable equilibrium β∗(α), where β∗ : Rd1 → R
d2 is a Lipschitz-

continuous map.

Assumption 2.1.6 (G). The ordinary differential equation

dαt

dt
= −∇αf(αt, β

∗(αt)) (2.159)

18A twice differentiable function h : Rd → R
d is said to be strict saddle if all of its local minima satisfy

∇2
xh(x) ≻ 0, and all of its other stationary points satisfy λmin(∇

2
xh(x)) < 0 (i.e., the minimum eigenvalue

of the Hessian evaluated at the critical points is negative).
19Strictly speaking one would only require that this holds for β ∈ R

d2 such that β = β∗
i (α) for some

i ≥ 1, α ∈ R
d1 .
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has a globally asymptotically stable equilibrium α∗.

These are rather classical assumptions used to establish a.s. convergence of discrete-

time two-timescale stochastic approximation algorithms to a unique equilibrium point

(α∗, β∗(α∗)) (e.g., [61, 62, 252, 437]). In the context of two-timescale stochastic gradient

descent, it is common to instead use the assumptions that the functions g(α, ·) : Rd2 → R
d2

and f(α, β∗(α)) : Rd1 → R
d1 are (strongly) convex, with some additional assumptions

on the mixed partial derivatives of g to ensure that β∗(α) is Lipschitz continuous (e.g.,

[160, 200, 218]).

Under these assumptions, the proof of Theorem 2.1 only requires minor modifications in

order to establish convergence to the global minima, that is, (αt, βt) → (α∗, β∗(α∗)) as

t → ∞. In particular, Assumption 2.1.5 (G) implies that Lemma 2.1.2 can now conclude

(αt, βt) → {(α, β∗(α)) : α ∈ R
d1}. Meanwhile, Assumption 2.1.6 (G) implies that Lemma

2.1.4 yields αt → α∗. The remainder of the proof is unchanged.

2.4.3 Convergence Rates

In this section, we make some progress towards obtaining the convergence rate of two-

timescale stochastic gradient descent in continuous time. Once more, we restrict our

attention to the algorithm analysed in Theorem 2.1 (i.e., the additive noise case). In order

to do so, we will require the following assumptions. These will be required either in place

of, or in addition to, our previous assumptions.

Assumption 2.1.1’. The learning rates {γi(t)}t≥0, i = 1, 2, are of the form

γ1t = γ10(δ1 + t)−η1 , γ2t = γ20(δ2 + t)−η2 (2.160)

where γ10 , γ
2
0 > 0, δ1, δ2 > 0 are positive constants, and η1, η2 ∈ (12 , 1] are positive constants

such that η2 < η1. In the case that η1 = 1, we have γ10ΛH > 1
2 , where ΛH is the constant

defined in Assumption 2.1.7’b.

This is a standard choice of learning rates for two-timescale stochastic approximation

algorithms. In particular, these learning rates satisfy the conditions required to establish

a.s. convergence of the algorithm iterates (see Assumptions 2.1.1 and 2.2.1). While one

can use a slightly more general form for the learning rates (e.g., [422, Proposition 2.13] in

the single-timescale case), this choice significantly simplifies our subsequent analysis, and

corresponds to the choice most commonly used in practice.

Assumption 2.1.3’a. The additive noise processes {ξit}t≥0, i = 1, 2, are of the form

dξit = ξ
(1)
i (αt, βt)dt+ ξ

(2)
i (αt, βt)dw

i
t (2.161)
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where ξ1i : Rd1×R
d2 → R

di, ξ
(2)
i : Rd1×R

d2 → R
di×di, and {wi

t}t≥0 are Rdi valued standard

Brownian motions, whose components may coincide.

Assumption 2.1.3’b. The functions ξ
(1)
i : Rd1 × R

d2 → R
di satisfy

ξ
(1)
i (αt, βt) = o

(

(γ1t )
1
2

)

. (2.162)

Assumption 2.1.3’c. The functions ξ
(2)
i : Rd1 × R

d2 → R
di have the following property.

Let Γ11
t ∈ R

d1×d1, Γ22
t ∈ R

d2×d2, Γ12
t ∈ R

d1×d2 be the matrices such that

[

ξ
(2)
1 dw1

]

t
= Γ11

t dt (2.163a)
[

ξ
(2)
2 dw2

]

t
= Γ22

t dt (2.163b)
[

ξ
(2)
1 dw1, ξ

(2)
2 dw2

]

t
= Γ12

t dt (2.163c)

where [·]t and [·, ·]t denote the quadratic and cross variation, respectively.20 Then there

exist Γ11 ∈ R
d1×d1, Γ22 ∈ R

d2×d2, Γ12 ∈ R
d1×d2 such that

lim
t→∞

Γ11
t = Γ11 (2.165a)

lim
t→∞

Γ22
t = Γ22 (2.165b)

lim
t→∞

Γ12
t = Γ12 (2.165c)

These assumptions relate to the properties of the additive noise processes {ξit}t≥0, i = 1, 2.

They represent a continuous-time analogue of the conditions used to establish the weak

convergence rate of two-timescale stochastic gradient in discrete time in [354]. They are

also sufficient for the noise conditions used to establish a.s. convergence in Theorem 2.1

and Theorem 2.2. While more general assumptions are possible, these assumptions are

sufficiently broad to cover most cases of practical interest.

Assumption 2.1.7’a. There exists a neighbourhood Uα∗,β∗ of (α∗, β∗) such that, for all

20In particular, using the notation [A]ij to denote the ijth element of the matrix A, and writing [zi]k to
denote the kth element of the di-dimensional Brownian motion zi, i = 1, 2, we have

[Γ11
t ]ij =

d1
∑

k=1

[

ξ
(2)
1 (αt, βt)

]

ik

[

ξ
(2)
1 (αt, βt)

]

jk
(2.164a)

[Γ22
t ]ij =

d1
∑

k=1

[

ξ
(2)
2 (αt, βt)

]

ik

[

ξ
(2)
2 (αt, βt)

]

jk
(2.164b)

[Γ12
t ]ij =

d1
∑

k=1

[

ξ
(2)
1 (αt, βt)

]

ik

[

ξ
(2)
2 (αt, βt)

]

jk
1{[z1]k=[z2]k}. (2.164c)

We remark that, in the case that z1 and z2 are independent, so that [z1]k 6= [z2]k for any k, it follows from
(2.164c) that Γ12

t ≡ 0.
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(α, β) ∈ Uα∗,β∗,

−
(

∇αf(α, β)

∇βg(α, β)

)

=

(

A11 A12

A21 A22

)(

α− α∗

β − β∗

)

+O

(

|| α− α∗

β − β∗
||2
)

(2.166)

where α∗ ∈ R
d1, β∗ ∈ R

d2 are the values such that limt→∞ αt = α∗ and limt→∞ βt = β∗.

Assumption 2.1.7’b. The matrices A22 and H = A11 −A12A
−1
22 A21 are stable (or Hur-

witz). That is,

ΛH = −λmax(H) > 0 , ΛA22 = −λmax(A22) > 0 (2.167)

where the notation λmax(M) denotes the maximum real part of the eigenvalues of the

matrix M .

These assumptions relate to the nature of the equilibrium point (α∗, β∗), and are essential

in establishing the (asymptotic) convergence rate of two-timescale stochastic approxima-

tion algorithms. Assumption 2.1.7’b was first introduced by Konda and Tsitsiklis to

establish the asymptotic convergence rate of linear two-timescale stochastic approxima-

tion [251] and has since also be used to obtain non-asymptotic convergence rates for this

algorithm (e.g., [134, 158, 159, 206, 236]).21 Meanwhile, Assumption 2.1.7’a was used by

Mokkadem and Pelletier to obtain asymptotic convergence rates in the non-linear case

[354].

We are now ready to state our main result on the weak convergence rate of Algorithm

(2.9a) - (2.9b).

Theorem 2.3. Assume that Assumptions 2.1.1’, 2.1.2, 2.1.3’a - 2.1.3’c, 2.1.4, 2.1.5,

2.1.6, and 2.1.7’a - 2.1.7’b are satisfied. Then

((
γ1t

)− 1
2 (αt − α∗)

(
γ2t

)− 1
2 (βt − β∗)

)

D−→ N
(

0,

(

Σα 0

0 Σβ

))

. (2.168)

where, defining Γα = Γ11 +A12A
−1
22 Γ22[A

−1
22 ]

TAT
12 − Γ12[A

−1
22 ]

TAT
12 −A12A

−1
22 Γ21,

Σα =

∞∫

0

exp

[(

H +
1η1=1

2γ00
I

)

t

]

Γα exp

[(

H +
1η1=1

2γ00
I

)

t

]

dt (2.169a)

Σβ =

∞∫

0

exp [A22t] Γ22 exp [A22t] dt. (2.169b)

21We should remark that several of these papers actually use a slightly weaker assumption; in particular,
in [134, 158, 159], it is assumed that these matrices are negative definite.
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Proof. In what follows, we sketch the proof of this result. Our proof relies on several key

lemmas, whose own proofs are deferred to Appendix 2.A.

Without loss of generality, we will assume throughout this proof that α∗ = β∗ = 0. We

begin with the observation that Assumptions 2.1.1’, 2.1.2, 2.1.3’a - 2.1.3’c, 2.1.4, 2.1.5,

2.1.6 are sufficient for Assumptions 2.1.1 - 2.1.6. Thus, we can apply Theorem 2.1, which

implies in particular that αt → α∗ and βt → β∗ a.s. as t→ ∞. This observation, together

with Assumption 2.1.7’a, means that for sufficiently large t we can write

dαt = γ1t
[
A11αtdt+A12βtdt+ ε1tdt+ dξ1t

]
, (2.170a)

dβt = γ2t
[
A21αtdt+A22βtdt+ ε2tdt+ dξ2t

]
. (2.170b)

where εit = O(||αt||2 + ||βt||2), i = 1, 2. Rearranging (2.170b), we obtain

βtdt = A−1
22

[
(γ2t )

−1dβt −A21αtdt− ε2tdt− dξ2t
]
. (2.171)

Substituting this expression into (2.170a), it follows that

dαt = γ1t
[
A11αtdt+A12A

−1
22

[
(γ2t )

−1dβt −A21αtdt− ε2tdt− dξ2t
]
+ ε1tdt+ dξ1t

]

= γ1t (A11 −A12A
−1
22 A21)

︸ ︷︷ ︸

H

αtdt+
γ1t
γ2t
A12A

−1
22 dβt

+ γ1t
[
dξ1t −A12A

−1
22 dξ

2
t

]
+ γ1t

[
ε1t −A12A

−1
22 ε

2
t

]
dt (2.172)

Let us now define the matrices

Φ
(1)
s,t = exp



H

t∫

s

γ1udu



 , Φ
(2)
s,t = exp



A22

t∫

s

γ2udu



 (2.173)

and the real numbers

Ψ
(1)
s,t = exp



−µ1
t∫

s

γ1udu



 , Ψ
(2)
s,t = exp



−µ2
t∫

s

γ2udu



 (2.174)

We remark that, by Assumption 2.1.7’b, there exists K > 0 such that, for any µ1 ∈ (0,ΛH)

and µ2 ∈ (0,ΛA22), it holds that (see, e.g., [106, page 121])

||Φ(1)
s,t || ≤ KΨ

(1)
s,t (2.175a)

||Φ(2)
s,t || ≤ KΨ

(2)
s,t (2.175b)
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We can now write the solution of (2.172) as

αt = α0Φ
(1)
0,t

︸ ︷︷ ︸

Iαt

+

t∫

0

Φ
(1)
s,t γ

1
s

[

ξ
(2)
1 (αs, βs)dw

1
s −A12A

−1
22 ξ

(2)
2 (αs, βs)dw

2
s

]

︸ ︷︷ ︸

Lα
t

+

t∫

0

Φ
(1)
s,t

γ1s
γ2s
A12A

−1
22 dβs

︸ ︷︷ ︸

Rα
t

+

t∫

0

Φ
(1)
s,t γ

1
s

[

ξ
(1)
1 (αs, βs)−A12A

−1
22 ξ

(1)
2 (αs, βs)

]

ds+

t∫

0

Φ
(1)
s,t γ

1
s

[
ε1s −A12A

−1
22 ε

2
s

]
ds

︸ ︷︷ ︸

∆α
t

(2.176)

:= Iαt + Lα
t +Rα

t +∆α
t (2.177)

and, thus, the solution of (2.170b) as

βt = β0Φ
(2)
0,t

︸ ︷︷ ︸

Iβt

+

t∫

0

Φ
(2)
s,t γ

2
sξ

(2)
2 (αs, βs)dw

2
s

︸ ︷︷ ︸

Lβ
t

+

t∫

0

Φ
(2)
s,t γ

2
sA21 [L

α
s +Rα

s ] ds

︸ ︷︷ ︸

Rβ
t

(2.178)

+

t∫

0

Φ
(2)
s,t γ

2
sA21∆

α
s ds+

t∫

0

Φ
(2)
s,t γ

2
sξ

(1)
2 (αs, βs)ds+

t∫

0

Φ
(2)
s,t γ

2
sε

2
sds

︸ ︷︷ ︸

∆β
t

(2.179)

:= Iβt + Lβ
t +Rβ

t +∆β
t . (2.180)

By Lemmas 2.1, 2.3, 2.4 and 2.5 (see Appendix 2.A), we have that

||Iαt || = o

(√

γ1t

)

(2.181)

||Lα
t || = O






√
√
√
√
√γ1t log

t∫

0

γ1sds




 (2.182)

||Rα
t || = o

(√

γ1t

)

(2.183)

||∆α
t || = o

(√

γ1t

)

(2.184)

and, in addition, that

||Iβt || = o

(√

γ2t

)

(2.185)

53



Chapter 2: Asymptotic Properties of Two-Timescale Stochastic Gradient Descent

||Lβ
t || = O






√
√
√
√
√γ2t log

t∫

0

γ2sds




 (2.186)

||Rβ
t || = O






√
√
√
√
√γ1t log

t∫

0

γ1sds




 (2.187)

||∆β
t || = o

(√

γ1t

)

(2.188)

Thus, the asymptotic convergence rates of {αt}t≥0 and {βt}t≥0 are determined by {Lα
t }t≥0

and {Lβ
t }t≥0. It remains only to note that, by Lemma 2.2 (see Appendix 2.A), we have

((
γ1t

)− 1
2 Lα

t
(
γ2t

)− 1
2 Lβ

t

)

D−→ N
(

0,

(

Σα 0

0 Σβ

))

, (2.189)

which completes the proof.

Our proof of Theorem 2.3 represents a careful adaptation of the approach in [354] to

the continuous-time setting. Indeed, in discrete time, convergence rates of two-timescale

stochastic approximation algorithms are the subject of several classical papers (e.g., [251,

354]), and have also received renewed attention in recent years (e.g., [133, 160, 477]). In

the presence of Markovian dynamics (see Section 2.2.2), the analysis required to establish

asymptotic normality for the two-timescale stochastic gradient descent algorithm is rather

more involved (see [160, 236] for some relevant results in discrete time). We leave this

extension for future work, noting that the recent results in [422] will likely prove useful in

this direction.

2.5 Conclusions

In this chapter, we have analysed the asymptotic properties of two-timescale stochastic

gradient in continuous time, under general noise and stability conditions. Our analysis

covers algorithms with both additive, state-dependent noise, and also those with non-

additive, state-dependent noise. In the second case, our results were obtained under the

rather weak assumption that the non-additive noise process can be represented by an

ergodic diffusion process controlled by the algorithm states.

We conclude this chapter with some remarks regarding possible directions for future work.

There are a number of additional extensions to the results presented in this chapter which

may be of theoretical or practical interest. These include relaxing the assumption that

the algorithm iterates are continuous, and thus considering a more general algorithm in
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which {ξit}t≥0, i = 1, 2, are arbitrary semi-martingales. This can be regarded, in some

sense, as as a two-timescale extension of the Robbins-Monro type semimartingale SDEs

studied in [283, 284, 285, 286, 287, 288, 343, 456]. Obtaining asymptotic results under this

somewhat more general framework is of considerable interest, as such results would apply

to two-timescale stochastic gradient descent schemes in both discrete-time and continuous-

time. Another natural extension is to transfer other existing results from discrete-time to

continuous-time. These include establishing asymptotic normality in the Markovian case,

a finite-time analysis (e.g., [133, 134, 158, 159, 160, 161, 206, 218, 236]), and obtaining

concentration bounds [60].
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Appendices

2.A Proof of Lemmas for Theorem 2.3

.

In this Appendix, we state and prove the Lemmas required for the proof of Theorem 2.3.

2.A.0.1 Main Lemmas

Lemma 2.1. The processes {Iαt }t≥0, {Iβt }t≥0 satisfy

||Iαt || = o(
(
γ1t

) 1
2 ) (2.190)

||Iβt || = o(
(
γ2t

) 1
2 ). (2.191)

Proof. This result is an immediate consequence of Lemma 2.10. In particular, we have

that

||Iαt || ≤ ||α0||||Φ(1)
0,t || ≤ K||Ψ(1)

0,t || = o((γ1t )
1
2 ) (2.192)

||Iβt || ≤ ||β0||||Φ(2)
0,t || ≤ K||Ψ(2)

0,t || = o((γ2t )
1
2 ) (2.193)

where in the second inequality we have used the stability of the matrices H and A22, c.f.

(2.175a) - (2.175b), and in the final inequality we have used Lemma 2.10.

Lemma 2.2. The processes {Lα
t }t≥0, {Lβ

t }t≥0 satisfy

(

(γ1t )
− 1

2Lα
t

(γ2t )
− 1

2Lβ
t

)

D−→ N
(

0,

(

Σα 0

0 Σβ

))

. (2.194)

Proof. Let us define Σ = {Σt}t≥0 according to

Σt =

(

(γ1t )
− 1

2Lα
t

(γ2t )
− 1

2Lβ
t

)

(2.195)

This process is a (continuous) martingale, with quadratic variation given by

[Σ] t =

(

Σ1,1
t Σ1,2

t

(Σ1,2
t )T Σ2,2

t

)

(2.196)
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where, due to Assumptions 2.1.3’a - 2.1.3’c,

Σ1,1
t = (γ1t )

−1

t∫

0

(γ1s )
2Φ

(1)
s,t

[
Γ11
s +A12A

−1
22 Γ

22
s [A−1

22 ]
TAT

12

−Γ12
s [A−1

22 ]
TAT

12 −A12A
−1
22 (Γ

12
s )T

]
[Φ

(1)
s,t ]

Tds (2.197)

Σ1,2
t =

√

(γ1t )
−1(γ2t )

−1

t∫

0

γ1sγ
2
sΦ

(1)
s,t

[
Γ22
s −A12A

−1
22 Γ

22
s

]
[Φ

(2)
s,t ]

Tds (2.198)

Σ2,2
t = (γ2t )

−1

t∫

0

(γ2s )
2Φ

(2)
s,tΓ

22
s [Φ

(2)
s,t ]

Tds (2.199)

We will begin by showing that

Σ2,2
t

P−→ Σβ =

∞∫

0

exp [A22t] Γ22 exp [A22t] dt (2.200)

We will do so by using the decomposition

E

[

||Σ2,2
t − Σβ ||

]

≤ E

[

||Σ2,2
t − Σ̄2,2

t ||
]

+ E

[

||Σ̄2,2
t − Σβ ||

]

, (2.201)

where we have introduced

Σ̄2,2
t = (γ2t )

−1

t∫

0

(γ2s )
2Φ

(2)
s,tΓ22[Φ

(2)
s,t ]

Tds (2.202)

In particular, if we can prove that both terms on the RHS of (2.201) converge to zero as

t→ ∞, then it follows that E
[

||Σ2,2
t − Σβ ||

]

→ 0. In turn, this implies that Σ2,2
t

P→ Σβ .

We will begin with the first term in (2.201). Observe that

||Σ2,2
t − Σ̄2,2

t || ≤ (γ2t )
−1

t∫

0

(γ2s )
2||Φ(2)

s,t ||2||Γ22
s − Γ22||ds (2.203)

≤ (γ2t )
−1

t∫

0

(γ2s )
2[Ψ

(2)
s,t ]

2||Γ22
s − Γ22||ds (2.204)

≤ (γ2t )
−1

t∫

0

γ2sΨ
(2)
s,t

[
γ2s ||Γ22

s − Γ22||
]
ds (2.205)

≤ K(γ2t )
−1γ2t ||Γ22

s − Γ22|| = K||Γ22
s − Γ22|| (2.206)
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where in the second line we have used the stability of A22 to pass from Φ
(2)
s,t to Ψ

(2)
s,t (e.g.,

[106, pg 121], and in the final line we have applied Lemma 2.9 with ws = γ2s ||Γ22
s − Γ22||.

Taking expectations, and using Assumption 2.1.3’c, we obtain

E

[

||Σ2,2
t − Σ̄2,2

t ||
]

≤ KE
[
||Γ22

s − Γ22||
]
→ 0. (2.207)

We now turn our attention to the second term in (2.201). We are required to show that

E





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(γ2t )
−1

t∫

0

(γ2s )
2Φ

(2)
s,tΓ22[Φ

(2)
s,t ]

Tds−
∞∫

0

exp[A22s]Γ22 exp[A22s]ds

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣



 → 0. (2.208)

To do so, we begin by writing the inside of this expectation as

(γ2t )
−1Φ

(2)
0,t





t∫

0

(γ2s )
2Φ

(2)
s,0Γ22[Φ

(2)
s,0]

Tds− γ2tΦ
(2)
t,0

∞∫

0

exp[A22s]Γ22 exp[A22s]ds[Φ
(2)
t,0 ]

T



 [Φ
(2)
0,t ]

T

(2.209)

:= (γ2t )
−1Φ

(2)
0,t





t∫

0

(γ2s )
2Φ

(2)
s,0Γ22[Φ

(2)
s,0]

Tds− Pt



 [Φ
(2)
0,t ]

T := Bt (2.210)

where we have defined

Pt := γ2tΦ
(2)
t,0

∞∫

0

exp[A22s]Γ22 exp[A22s]ds

︸ ︷︷ ︸

Σβ

[Φ
(2)
t,0 ]

T := γ2tΦ
(2)
t,0Σβ [Φ

(2)
t,0 ]

T (2.211)

Next, we observe that

d

dt
Pt = γ̇2tΦ

(2)
t,0Σβ [Φ

(2)
t,0 ]

T − (γ2t )
2Φ

(2)
t,0A22Σβ [Φ

(2)
t,0 ]

T − (γ2t )
2Φ

(2)
t,0ΣβA

T
22[Φ

(2)
t,0 ]

T (2.212)

= γ̇2tΦ
(2)
t,0Σβ [Φ

(2)
t,0 ]

T − (γ2t )
2Φ

(2)
t,0

[
A22Σβ +ΣβA

T
22

]
[Φ

(2)
t,0 ]

T (2.213)

= γ̇2tΦ
(2)
t,0Σβ [Φ

(2)
t,0 ]

T + (γ2t )
2Φ

(2)
t,0Γ22[Φ

(2)
t,0 ]

T (2.214)

where in the final line we have used the well known fact that Σβ is the solution of the

Lyapunov equation (e.g., [354, page 5])

A22Σβ +ΣβA
T
22 = −Γ22. (2.215)

We thus have

Pt − P0 =

t∫

0

Ṗsds =

t∫

0

γ̇2sΦ
(2)
s,0Σβ [Φ

(2)
s,0]

T + (γ2s )
2Φ

(2)
s,0Γ22[Φ

(2)
s,0]

Tds (2.216)
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=

t∫

0

γ2sΦ
(2)
s,0

[
γ̇2s
γ2s

Σβ + γ2sΓ22

]

[Φ
(2)
s,0]

Tds (2.217)

Substituting back into (2.210), we have

γ2tΦ
(2)
t,0Bt[Φ

(2)
t,0 ]

T =

t∫

0

γ2sΦ
(2)
s,0

[

γ2sΓ22 −
γ̇2s
γ2s

Σβ − γ2sΓ22

]

[Φ
(2)
s,0]

Tds+ P0 (2.218)

=

t∫

0

γ2sΦ
(2)
s,0

[

− γ̇
2
s

γ2s
Σβ

]

[Φ
(2)
s,0]

Tds+ γ20Σβ (2.219)

It follows that

||Bt|| ≤ K(γ2t )
−1

t∫

0

γ2s

[
γ̇2s
γ2s

]

||Σβ ||||Φ(2)
s,t ||2ds+

γ20
γ2t

||Σβ ||||Φ(2)
0,t ||2 (2.220)

≤ K(γ2t )
−1

t∫

0

γ2sΦ
(2)
s,t

[
γ̇2s
γ2s

]

ds+K
[

(γ2t )
− 1

2Ψ
(2)
0,t

]2
(2.221)

For the first term, we begin with the observation that

γ̇2t
γ2t

= o(γ2t ) = O((γ2t )
1+δ) (2.222)

for some δ > 0. It follows from Lemma 2.9 that, for sufficiently large t,

t∫

0

γ2sΦ
(2)
s,t

[
γ̇2s
γ2s

]

ds ≤ K(γ2t )
1+δ. (2.223)

Thus, the first term converges to zero as t → ∞. Meanwhile, the second term converges

to zero by Lemma 2.11. This completes the proof that Σ2,2
t

P−→ Σβ as t→ ∞.

Using an essentially identical argument, but now appealing to Lemma 2.8, 2.10, and the

fact that Σα is the solution of the Lyapunov equation (e.g., [354, page 5])

(

H +
1η1=1

2γ00
I

)

Σα +Σα

(

H +
1η1=1

2γ00
I

)T

= −Γα (2.224)

we can also show that Σ1,1
t

P−→ Σα as t→ ∞. It remains to deal with Σ1,2
t . For this term,
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observe that, for sufficiently large t,

||Σ1,2
t || ≤ K

√

(γ1t )
−1(γ2t )

−1

t∫

0

γ1sγ
2
sΨ

(1)
s,tΨ

(2)
s,t ds (2.225)

≤ K
√

(γ1t )
−1(γ2t )

−1

t∫

0

γ2sΨ
(2)
s,t γ

1
sds (2.226)

≤ K
√

(γ1t )
−1(γ2t )

−1γ1t = K
√

γ1t (γ
2
t )

−1 → 0 (2.227)

where in the first line we have used the stability of H and A22, in the third line we have

used Lemma 2.8, and in the final line we have used Assumption 2.1.1’. It follows that

[Σ]t
P−→

(

Σα 0

0 Σβ

)

(2.228)

The convergence in distribution to a normal random variable with zero mean and this

covariance now follows from standard results (e.g., [276, Section 1.2.2]).

Lemma 2.3. The processes {Lα
t }t≥0, {Lβ

t }t≥0 satisfy, for sufficiently large t,

||Lα
t || ≤ K

√
√
√
√
√γ1t log

t∫

0

γ1sds (2.229)

||Lβ
t || ≤ K

√
√
√
√
√γ2t log

t∫

0

γ2sds (2.230)

Proof. We will prove that the desired bound holds for Lβ
t ; an almost identical argument

can be used for Lα
t . Let −µ2 be an eigenvalue of AT

22, and let v2 be an eigenvector

associated with −µ2. Let {Nt}t≥0 be the martingale defined according to

Nt =

t∫

0

Ψ
(2)
s,0γ

2
sv

T
2 ξ

(2)
2 (αs, βs)dw

2
s. (2.231)

where we recall, c.f. (2.174), that

Ψ
(2)
s,0 = exp



−µ2
0∫

s

γ2udu



 = exp



µ2

s∫

0

γ2udu



 . (2.232)
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The (predictable) quadratic variation of this martingale is given by

[N ]t =

t∫

0

(γ2s )
2Ψ

(2)
s,0v

T
2 Γ

22
s [Ψ

(2)
s,0]

T v2ds (2.233)

Arguing as in the proof of Lemma 2.2, c.f. (2.199) - (2.223), we can show that

lim
t→∞

(γ2t )
−1Ψ

(2)
0,t [N ]t[Ψ

(2)
0,t ]

T = vT2 Σβv2 (2.234)

That is, re-ordering (note that Ψ is a scalar, and thus re-ordering is permitted here)

lim
t→∞

(γ2t )
−1[Ψ

(2)
0,t ]

2[N ]t = vT2 Σβv2 (2.235)

Now, according to Lemma 2.11, we have that

lim
t→∞

(γ2t )
−1[Ψ

(2)
0,t ]

2 = 0. (2.236)

Thus, it follows that limt→∞[N ]t = ∞ a.s. Now, applying the law of the iterated logarithm

for stochastic integrals (e.g, [456, 461]), we have that

lim sup
t→∞

|Nt|
√

2[N ]t ln ln[N ]t
≤ 1 (2.237)

In view of (2.234), it follows that, for sufficiently large t,

|Nt| ≤ K
√

[N ]t ln ln[N ]t (2.238)

≤ K

√

γ2t [Ψ
(2)
t,0 ]

2vT2 Σβv2 ln ln
(

γ2t [Ψ
(2)
t,0 ]

2vT2 Σβv2

)

(2.239)

≤ KΨ
(2)
t,0

√
√
√
√
√γ2t ln

t∫

0

γ2sds (2.240)

It remains to note, using the fact that v2 is an eigenvector of AT
22, that

vT2 L
β
t :=

t∫

0

vT2 Φ
(2)
s,t γ

2
sξ

(2)
2 (αs, βs)dw

2
s (2.241)

=

t∫

0

Ψ
(2)
s,t γ

2
sv

T
2 ξ

(2)
2 (αs, βs)dw

2
s (2.242)

= Ψ
(2)
0,t

t∫

0

Ψ
(2)
s,0γ

2
sv

T
2 ξ

(2)
2 (αs, βs)dw

2
s := Ψ

(2)
0,tNt (2.243)
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It follows, combining (2.240) and (2.243), that for any eigenvector w2 of AT
22, and for

sufficiently large t

|vT2 Lβ
t | ≤ KΨ

(2)
0,tΨ

(2)
t,0

√
√
√
√
√γ2t ln

t∫

0

γ2sds = K

√
√
√
√
√γ2t ln

t∫

0

γ2sds (2.244)

and thus, in particular, that

||Lβ
t || ≤ K

√
√
√
√
√γ2t ln

t∫

0

γ2sds. (2.245)

Lemma 2.4. There exists δ > 0 such that, for sufficiently large t, the processes {Rα
t }t≥0,

{Rβ
t }t≥0 satisfy

||Rα
t || ≤ K(γ1t )

1
2
+δ (2.246)

||Rβ
t || ≤ K

√
√
√
√
√γ1t

t∫

0

log γ1sds (2.247)

Lemma 2.5. There exist δ > 0 such that, for sufficiently large t, the processes {∆α
t }t≥0,

{∆β
t }t≥0 satisfy

||∆α
t ||+ ||∆β

t || ≤ K(γ1t )
1
2
+δ (2.248)

Proof. Suppose that {wt}t≥0 is a sequence of positive numbers satisfying Conditions (A1)

and (A2) (see Definition 2.1). Suppose also that ||βt|| = O(wt). Since limt→∞∆β
t = 0 (see

the proof of Lemma 2.7), we know that ||∆β
t || = O(1). We can thus apply Lemma 2.7

with w1
t := wt, w

2
t := 1, to obtain

||∆α
t ||+ ||∆β

t || ≤ K

[
(γ1t )

2

(γ2t )
2
(wt)

2 +
γ1t
γ2t

+ (γ1t )
1
2
+δ

]

(2.249)

We in fact claim that, for all k ∈ N, it holds that

||∆α
t ||+ ||∆β

t || ≤ K

[

(γ1t )
2

(γ2t )
2
(wt)

2 +

[
γ1t
γ2t

]k

+ (γ1t )
1
2
+δ

]

(2.250)

We will prove this inductively. Clearly, the base case is true. Let us assume that the

hypothesis holds for some k ∈ N. Since wt satisfies Conditions (A1) and (A2), so too does
(γ1

t )
2

(γ2
t )

2 (wt)
2 +

γk
1 (t)

γk
2 (t)

+ (γ1t )
1
2 . It follows from Lemma 2.7, with w1

t = wt, w
2
t equal to the
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sequence just defined, that

||∆α
t ||+ ||∆β

t || ≤ K

[

(γ1t )
2

(γ2t )
2
(wt)

2 +

[
γ1t
γ2t

]k+1

+ (γ1t )
1
2
+δ

]

(2.251)

Thus, by induction, the bound (2.250) holds for all k ∈ N. By Assumption 2.1.1’, there

exists k ∈ N such that, for sufficiently large t,
(γ1

t )
k

(γ2
t )

k ≤ K(γ1t )
1
2
+δ. Thus, it follows from

(2.250) that, for any sequence of positive numbers {wt}t≥0 satisfying Conditions (A1) and

(A2) and such that ||βt|| = O(wt), we have

||∆α
t ||+ ||∆β

t || ≤ K

[
(γ1t )

2

(γ2t )
2
(wt)

2 + (γ1t )
1
2
+δ

]

(2.252)

To complete the proof, it remains for us to find an appropriate w. We claim that, for all

k ∈ N0, the function defined according to

wt =

√
√
√
√
√γ2t log

t∫

0

γ2sds+

[
γ1t
γ2t

]k

(2.253)

is one such function. Certainly, this function satisfies Conditions (A1) and (A2). It remains

to show that ||βt|| = O(wt) . We will once more prove this by induction. By Assumption

2.1.4, we have that βt is bounded a.s., and so this bound holds for k = 0. For the inductive

step, using Lemma 2.3, Lemma 2.6, and the bound in (2.252), we have that for sufficiently

large t,

||βt|| ≤ K
[

||Lβ
t ||+ ||Rβ

t ||+ ||∆β
t ||

]

(2.254)

≤ K






√
√
√
√
√γ2t log

t∫

0

γ2sds+
γ1t
γ2t






√
√
√
√
√γ2t log

t∫

0

γ2sds+

[
γ1t
γ2t

]k




 (2.255)

+

√
√
√
√
√γ1t log

t∫

0

γ1sds+
(γ1t )

2

(γ2t )
2






√
√
√
√
√γ2t log

t∫

0

γ2sds+

[
γ1t
γ2t

]k






2

+ γ
1
2
+δ

1







(2.256)

≤ K






√
√
√
√
√γ2t log

t∫

0

γ2sds+

[
γ1t
γ2t

]k+1




 (2.257)

where in going from the first line to the second line we have made repeated use of As-

sumption 2.1.1’. This completes the inductive proof of (2.253). In fact, Assumption 2.1.1’

ensures that, for sufficiently large k, there exists K such that, for sufficiently large t,
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[
γ1
t

γ2
t

]k ≤ K[γ2t
∫ t
0 γ

2
sds]

1
2 . Thus, we in fact have that

||βt|| ≤ K

√
√
√
√
√γ2t log

t∫

0

γ2sds. (2.258)

and we can improve upon the choice of wt in (2.253) by choosing

wt =

√
√
√
√
√γ2t log

t∫

0

γ2sds (2.259)

To prove Lemma 2.4, it remains to apply Lemma 2.6 with this choice of wt. In particular,

this yields that for all s ∈ (12 , γ
1
0ΛH),

||Rα
t || ≤ K





γ1t
γ2t

√
√
√
√
√γ2t log

t∫

0

γ2sds+ t−s




 ≤ K

[

t−(η10−
η20
2
)
√

log t+ t−s

]

. (2.260)

By Assumption 2.1.1’, we have that η10 − η20
2 >

η10
2 and s >

η10
2 . It follows that, for some

s >
η10
2 , for sufficiently large t it holds that ||Rα

t || ≤ Kt−s. Equivalently, for some δ > 0,

for sufficiently large t we have that

||Rα
t || ≤ K(γ1t )

1
2
+δ. (2.261)

In addition, once more using Lemma 2.6, we have that

||Rβ
t || ≤ K





γ1t
γ2t

√
√
√
√
√γ2t

t∫

0

γ2sds+

√
√
√
√
√γ1t

t∫

0

γ1sds




 (2.262)

= K





(γ1t )

1
2

(γ2t )
1
2

√
√
√
√
√γ1t

t∫

0

γ2sds+

√
√
√
√
√γ1t

t∫

0

γ1sds




 (2.263)

≤ K

√
√
√
√
√γ1t

t∫

0

γ1sds. (2.264)

To prove Lemma 2.5, we will apply (2.252) with wt =
√

γ2t
∫ t
0 γ

2
sds. This gives that, for

sufficiently large t, there exists K > 0 and (small) δ > 0 such that

||∆α
t ||+ ||∆β

t || ≤ K




(γ1t )

2

(γ2t )
2



γ2t

t∫

0

γ2sds



+ (γ1t )
1
2
+δ



 ≤ K(γ1t )
1
2
+δ (2.265)
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where the second inequality follows from Assumption 2.1.1’.

2.A.0.2 Intermediate Lemmas

Definition 2.1. Let {wt}t≥0 be a positive, bounded, non-increasing, continuous sequence

of real numbers. We say that wt satisfies Condition (A1) if:

(i) In the case η1 = 1, there exists ω ≥ 0 and a non-decreasing slowly varying function

L such that

wt = (δ0 + t)−ωL(t). (2.266)

(ii) In the case η1 < 1, for all s ≤ t,

ws

wt
≤ exp



o(1)

t∫

s

γ1udu



 (2.267)

where o(1) → 0 as s→ ∞.

Definition 2.2. Let {wt}t≥0 be a positive, bounded, non-increasing, continuous sequence

of real numbers. We say that wt satisfies Condition (A2) if, for all s ≤ t,

ws

wt
≤ exp



o(1)

t∫

s

γ2udu



 (2.268)

where o(1) → 0 as s→ ∞.

Lemma 2.6. Assume there exists a function wt satisfying Conditions (A1) and (A2) such

that ||βt|| = O(wt) for sufficiently large t. Then, for sufficiently large t, there exists K > 0

such that, for all s ∈ (12 , γ
1
0ΛH),

||Rα
t || ≤ K

[
γ1t
γ2t
wt + t−s

]

(2.269)

||Rβ
t || ≤ K





γ1t
γ2t
wt +

√
√
√
√
√γ1t log

t∫

0

γ1sds




 (2.270)

Proof. We will begin by considering Rα
t . Applying Itô’s formula to the function h(s, βs) =

Φ
(1)
s,t

γ1
s

γ2
s
A12A

−1
22 βs, we obtain

Φ
(1)
t,t

γ1t
γ2t
A12A

−1
22 βt − Φ

(1)
0,t

γ10
γ20
A12A

−1
22 β0 (2.271)
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=

t∫

0

Φ
(1)
s,t

γ1s
γ2s
A12A

−1
22 dβs

︸ ︷︷ ︸

Rα
t

+

t∫

0

Φ̇
(1)
s,t

γ1s
γ2s
A12A

−1
22 βsds+

t∫

0

Φ
(1)
s,t

γ̇1s
γ2s
A12A

−1
22 βsds

from which it follows that

Rα
t =

γ1t
γ2t
A12A

−1
22 βt − Φ

(1)
0,t

γ10
γ20
A12A

−1
22 β0 (2.272)

−
t∫

0

Φ
(1)
s,t

(γ1s )
2

γ2s
HA12A

−1
22 βsds−

t∫

0

Φ
(1)
s,t

γ̇1s
γ2s
A12A

−1
22 βsds. (2.273)

We thus have

||Rα
t || ≤ K

γ1t
γ2t

||βt||+K||Φ(1)
0,t || ||β0||+K

t∫

0

||Φ(1)
s,t ||

[

(γ1s )
2

γ2s
+
γ̇1s
γ2s

]

||βs||ds (2.274)

≤ K
γ1t
γ2t
wt +K||Φ(1)

0,t ||+K

t∫

0

Ψ
(1)
s,t γ

1
s

[
γ1s
γ2s

]

wsds. (2.275)

Now, observe that, for all µ ∈ (0,ΛH), it holds that

||Φ(1)
0,t || ≤ KΦ

(1)
0,t := K exp



−µ
t∫

0

γ1udu



 ≤ exp



−µ
t∫

0

γ10(δ1 + s)−1ds



 ≤ Kt−µγ1
0 .

(2.276)

Moreover, if wt satisfies Condition (A1), then so too does w̃t =
γ1
t

γ2
t

wt. We can thus apply

Lemma 2.8 to w̃t to conclude that, for all µ ∈ (0,ΛH),

t∫

0

Ψ
(1)
s,t γ

1
s

[
γ1s
γ2s

]

wsds ≤ K

[
γ1t
γ2t
wt + t−µγ1

01η1=1

]

. (2.277)

Combining (2.276) and (2.277), we thus have that

||Rα
t || ≤ K

[
γ1t
γ2t
wt + t−µγ1

0

]

(2.278)

for all µ ∈ (0,ΛH). Thus, in particular, this bound holds for all µ ∈ ( 1
2γ1

0
,ΛH) or,

equivalently, for all µγ10 ∈ (12 , γ
1
0ΛH). It follows that, for all s ∈ (12 , γ

1
0ΛH), for sufficiently

large t we have that

||Rα
t || ≤ K

[
γ1t
γ2t
wt + t−s

]

. (2.279)

We now turn our attention to Rβ
t . For this term, substituting the existing bounds for
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||Lα
t || and ||Rα

t ||, c.f. (2.229) and (2.269), we obtain

||Rβ
t || ≤ K

t∫

0

||Φ(2)
s,t ||γ2s [||Lα

s ||+ ||Rα
s ||] ds (2.280)

≤ K

t∫

0

Ψ
(2)
s,t γ

2
s








γ1s log

s∫

0

γ1udu





1
2

+

[
γ1s
γ2s
ws + t−s

]




 ds (2.281)

≤ K

t∫

0

Ψ
(2)
s,t γ

2
s








γ1s log

s∫

0

γ1udu





1
2

+

[
γ1s
γ2s
ws

]




 ds (2.282)

where in going from (2.281) to (2.282), we have used the fact that the final term is smaller

than the first term. It remains to note that both terms in the square brackets in (2.282)

satisfy Condition (A2), and thus we can apply Lemma 2.9 to conclude that, for sufficiently

large t,

||Rβ
t || ≤ K





γ1t
γ2t
wt +

√
√
√
√
√γ1t log

t∫

0

γ1sds




 . (2.283)

Lemma 2.7. Assume that there exist functions wi
t satisfying Conditions (A1) and (A2)

such that ||βt|| ≤ Kw1
t and ||∆β

t || ≤ Kw2
t for sufficiently large t. Then there exist K, δ > 0

such that, for sufficiently large t,

||∆α
t || ≤ K

[
(γ1t )

2

(γ2t )
2
(w1

t )
2 +

γ1t
γ2t
w2
t + (γ1t )

1
2
+δ

]

(2.284)

||∆β
t || ≤ K

[
(γ1t )

2

(γ2t )
2
(w1

t )
2 +

γ1t
γ2t
w2
t + (γ1t )

1
2
+δ

]

. (2.285)

Proof. From the definition, we have

d

dt
∆α

t − γ1tH∆α
t = γ1t

[

ξ
(1)
1 (αt, βt)−A12A

−1
22 ξ

(1)
2 (αt, βt)

]

+ γ1t
[
ε1t −A12A

−1
22 ε

2
t

]
(2.286)

d

dt
∆β

t − γ2tA22∆
β
t = γ2t

[

A21∆
α
t + ξ

(1)
2 (αt, βt) + ε2t

]

(2.287)

Let µ1 ∈ (
1η1=1

2γ1
0
,ΛH) and µ2 ∈ (0,ΛA22). It follows, taking norms, using the triangle

inequality, and arguing in a similar fashion to [354, page 12], that

d

dt
||∆α

t || ≤ −µ1γ1t ||∆α
t ||+K1γ

1
t

[

||ξ(1)1 (αt, βt)||+ ||ξ(1)2 (αt, βt)||+ ||ε1t ||+ ||ε2t ||
]

(2.288)

d

dt
||∆β

t || ≤ −µ2γ2t ||∆β
t ||+K2γ

2
t

[

||∆α
t ||+ ||ξ(1)2 (αt, βt)||+ ||ε2t ||

]

(2.289)
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Now, using Assumption 2.1.7’a and Assumption 2.1.3’b, and the decomposition (2.177) -

(2.180), it follows, allowing the values of the constants K1,K2 to vary from line to line,

that

d

dt
||∆α

t || ≤ −µ1γ1t ||∆α
t ||+K1γ

1
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2 + ||∆α
t ||2 + ||∆β

t ||2
]

(2.290)

d

dt
||∆β

t || ≤ −µ2γ2t ||∆β
t ||+K2γ

2
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2

+||∆α
t ||+ ||∆α

t ||2 + ||∆β
t ||2

]

(2.291)

By Theorem 2.1, limt→∞ αt = limt→∞ βt = 0 a.s. In addition, Lemma 2.6 implies that

limt→∞Rα
t = limt→∞Rβ

t = 0 a.s. and Lemma 2.3 implies that limt→∞ Lα
t = limt→∞ Lβ

t =

0 a.s. It follows immediately that limt→∞∆α
t = limt→∞∆β

t = 0. Let µ̃1 ∈ (
1η1=1

2γ1
0
, µ1) and

µ2 ∈ (0, µ2). Then, from the previous expressions, it follows that there exists K̃2 > 0 such

that for sufficiently large t, we have (see also [354, page 13])

d

dt
||∆α

t || ≤ −µ̃1γ1t ||∆α
t ||+K1γ

1
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2 + ||∆β
t ||2

]

(2.292)

d

dt
||∆β

t || ≤ −µ̃2γ2t ||∆β
t ||+ K̃2µ̃2γ

2
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2 + ||∆α
t ||

]

(2.293)

Now, from (2.294), we have that

||∆β
t || ≤ − 1

µ̃2γ2t

d

dt
||∆β

t ||+ K̃2

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2 + ||∆α
t ||

]

(2.294)

Let K̃1 ∈
(

0, 1
K̃2

(µ̃1 − 1η1=1

2γ1
0
)
)

. Then substituting (2.294) into (2.292), and once more

making use of the fact that limt→∞∆β
t = 0, it follows that, for sufficiently large t, we have

d

dt
||∆α

t || ≤ −µ̃1γ1t ||∆α
t ||+K1γ

1
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2
]

+ K̃1γ
1
t ||∆β

t ||

(2.295)

≤ −µ̃1γ1t ||∆α
t ||+K1γ

1
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2
]

− K̃1γ
1
t

µ̃2γ2t

d

dt
||∆β

t ||+ K̃1K̃2γ
1
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2 + ||∆α
t ||

]

(2.296)

Let µ̄1 ∈ (
1η1=1

2γ1
0
, µ̃1 − K̃1K̃2), and K̄1 = max{K1, K̃1K̃2}. Then, for sufficiently large t, it

follows from (2.296) that

d

dt
||∆α

t || ≤ −µ̄1γ1t ||∆α
t ||+ K̄1γ

1
t

[

||Lα
t ||2 + ||Lβ

t ||2 + ||Rα
t ||2 + ||Rβ

t ||2
]

− K̃1γ
1
t

µ̃2γ2t

d

dt
||∆β

t ||

(2.297)
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Let Ψ̄
(1)
s,t = exp

[

−µ̄1
∫ t
s γ

1
udu

]

. Then it follows from the previous expression that

||∆α
t || ≤ ||∆α

0 ||Ψ̄(1)
0,t + K̄1

t∫

0

Ψ̄
(1)
1,tγ

1
s

[

||Lα
s ||2 + ||Lβ

s ||2 + ||Rα
s ||2 + ||Rβ

s ||2
]

ds

+
K̃1

µ̃2

t∫

0

Ψ̄
(1)
1,t

γ1s
γ2s

d

ds
||∆β

s ||ds (2.298)

:= ||∆α,1
t ||+ ||∆α,2

t ||+ ||∆α,3
t || (2.299)

Let us consider each of these terms in turn. Using Assumption 2.1.1’, and the fact that

||∆α
0 || = O(1), Lemma 2.10 implies that, for sufficiently large t,

||∆α,1
t || ≤ KΨ̄

(1)
0,t ≤ K(γ1t )

1
2
+δ (2.300)

for some δ > 0. Using the existing bounds for ||Lα
t ||, ||Lβ

t ||, |Rα
t ||, and ||Rβ

t || in Lemma

2.3 and Lemma 2.6, for the second term we have that

||∆α,2
t || ≤ K

t∫

0

Ψ̄
(1)
s,t γ

1
t



γ1t log

t∫

0

γ1sds+ γ2t log

t∫

0

γ2sds+
(γ1t )

2

(γ2t )
2
(w1

t )
2 + t−2s



 (2.301)

≤ K

t∫

0

Ψ̄
(1)
s,t γ

1
t



γ2t log

t∫

0

γ2sds+
(γ1t )

2

(γ2t )
2
(w1

t )
2



 (2.302)

Now, since {w1
t }t≥0 satisfies Condition A1, so too does

(γ1
t )

2

(γ2
t )

2 (w
1
t )

2. It follows from Lemma

2.8 that, for sufficiently large t, there exists K > 0 such that

||∆α,2
t || ≤ K



γ2t log

t∫

0

γ2sds+
(γ1t )

2

(γ2t )
2
(w1

t )
2 + (γ1t )

1
2
+δ + t−µγ1

01{η1=1}



 . (2.303)

for all µ ∈ (0, µ̄1). By definition, we have that µ̄1 ∈ (
1η1=1

2γ1
0
, µ̃1 − K̃1K̃2). Thus, in particu-

lar, there exists µ ∈ (0, µ̄1) such that µ > 1
2γ1

0
, or equivalently, µγ10 >

1
2 = 1

2 + δ, for some

δ > 0. Noting also that γ2t log
∫ t
0 γ

2
sds ≤ (γ1t )

1
2
+δ for sufficiently large t, it follows that

||∆α,2
t || ≤ K

[
(γ1t )

2

(γ2t )
2
(w1

t )
2 + (γ1t )

1
2
+δ

]

. (2.304)

We now turn our attention to ||∆α,3
t ||. For this term, integrating by parts yields

||∆α,3
t || ≤

[

Ψ̄
(1)
s,t

γ1s
γ2s

||∆β
s ||

]s=t

s=0

+

t∫

0

∣
∣
∣
∣

∣
∣
∣
∣

d

ds

[

Ψ̄
(1)
s,t

γ1s
γ2s

]∣
∣
∣
∣

∣
∣
∣
∣
||∆β

s ||ds (2.305)
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≤ γ1t
γ2t

||∆β
t ||+ Ψ̄0,t

γ10
γ20

||∆1
0||+

t∫

0

∣
∣
∣
∣

∣
∣
∣
∣

d

ds

[

Ψ̄
(1)
s,t

γ1s
γ2s

]∣
∣
∣
∣

∣
∣
∣
∣
||∆β

s ||ds (2.306)

≤ K

[
γ1t
γ2t
w2
t + (γ1t )

1
2
+δ

]

+

t∫

0

∣
∣
∣
∣

∣
∣
∣
∣

d

ds

[

Ψ̄
(1)
s,t

γ1s
γ2s

]∣
∣
∣
∣

∣
∣
∣
∣
||∆β

s ||ds (2.307)

where in the final line we have used the assumed bound for ||∆β
t || in the first term, and a

similar argument to that used in (2.300) for the second term. For the third term, observe

∣
∣
∣
∣

∣
∣
∣
∣

d

ds

[

Ψ̄
(1)
s,t

γ1s
γ2s

]∣
∣
∣
∣

∣
∣
∣
∣
≤ K

[

Ψ̄
(1)
s,t γ

1
s

γ1s
γ2s

+ Ψ̄
(1)
s,t

˙[
γ1s
γ2s

]]

≤ K

[

Ψ̄
(1)
s,t γ

1
s

γ1s
γ2s

]

(2.308)

where the final inequality follows from Assumption 2.1.1’ after some straightforward cal-

culations. It follows, again using the assumed bound for ||∆β
t ||, and also now Lemma 2.8,

that

t∫

0

∣
∣
∣
∣

∣
∣
∣
∣

d

ds

[

Ψ̄
(1)
s,t

γ1s
γ2s

]∣
∣
∣
∣

∣
∣
∣
∣
||∆β

s ||ds ≤ K

t∫

0

Ψ̄
(1)
s,t γ

1
s

γ1s
γ2s
w2
sds (2.309)

≤ K

[
γ1t
γ2t
w2
t + t−µγ1

01{η1=1}

]

(2.310)

≤ K

[
γ1t
γ2t
w2
t + (γ1t )

1
2
+δ

]

(2.311)

where, as previously, the second line holds for all µ ∈ (0, µ̄1), and the final line follows by

arguing as we did above to obtain (2.304). Combining this with (2.307), we have that

||∆α,3
t || ≤ K

[
γ1t
γ2t
w2
t + (γ1t )

1
2
+δ

]

(2.312)

Finally, putting everything together, we have that

||∆α
t || ≤ K

[
(γ1t )

2

(γ2t )
2
(w1

t )
2 +

γ1t
γ2t
w2
t + (γ1t )

1
2
+δ

]

(2.313)

It remains to handle ||∆β
t ||. Let Φ̃

(2)
s,t = exp[−µ̃2

∫ t
s γ

2
udu]. Then, returning to (2.294),

classical computations yield

||∆β
t || ≤ Φ̃

(2)
0,t ||∆β

0 ||+ K̃2

t∫

0

Φ̃
(2)
s,t γ

2
s

[

||Lα
s ||2 + ||Lβ

s ||2 + ||Rα
s ||2 + ||Rβ

s ||2 + ||∆α
s ||

]

ds

Arguing similarly to above, this time using Lemma 2.9, Lemma 2.11, and the bound just

obtained for ||∆α
t ||, it follows straightforwardly that, for sufficiently large t, there exists

70



2.A: Proof of Lemmas for Theorem 2.3

K > 0 such that

||∆β
t || ≤ K

[
(γ1t )

2

(γ2t )
2
(w1

t )
2 +

γ1t
γ2t
w2
t + (γ1t )

1
2
+δ

]

. (2.314)

2.A.0.3 Technical Lemmas

Lemma 2.8. Let {wt}t≥0 be a sequence of numbers satisfying Condition (A1). Let {vt}t≥0

be R
d2-valued random sequence such that ||vt|| = O(wt). Then, for sufficiently large t, we

have

(i) For all µ ∈ (0, µ1),

t∫

0

Ψ
(1)
s,t γ

1
swsds ≤ K

(

wt + t−µγ1
01{η1=1}

)

. (2.315)

(ii) For all µ ∈ (0,ΛH),

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

0

Φ
(1)
s,t γ

1
svsds

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤ K
(

wt + t−µγ1
01{η1=1}

)

. (2.316)

Proof. We will begin by proving (i). Let us consider the case η1 = 1. That is, γ1t =

γ10(δ0 + t)−1. In this case, we have

Ψ
(1)
s,t = exp



−µ1
t∫

s

γ1udu



 = exp

[

−µ1γ10 ln
(
δ0 + t

δ0 + s

)]

=

(
δ0 + t

δ0 + s

)−µ1γ1
0

. (2.317)

We thus have, allowing the value of the constant K to increase from line to line, that

t∫

0

Ψ
(1)
s,t γ

1
swsds = γ10(δ0 + t)−µ1γ1

0

t∫

0

(δ0 + s)µ1γ1
0−1wsds (2.318)

= γ10(δ0 + t)−µ1γ1
0

t∫

0

(δ0 + s)µ1γ1
0−1−ωL(s)ds (2.319)

≤ K(δ0 + t)−µ1γ1
0L(t)

[

(δ0 + t)µ1γ1
0−ω + log(δ0 + t)

]

(2.320)

≤ K
[

(δ0 + t)−ωL(t) + (δ0 + t)−µ1γ1
0L(t) log(δ0 + t)

]

(2.321)

≤ K
[

t−ωL(t) + t−µ1γ1
0L(t) log(t)

]

= K
[

wt + t−µ1γ1
0L(t) log(t)

]

(2.322)
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where in (2.320) we have made use of the Karamata’s integral theorem for slowly varying

functions (e.g., [51]), and in (2.322) we have used some elementary inequalities and the

definition of (wt)t≥0. Since L(t) is a slowly varying function, it follows that, for all µ ∈
(0, µ1), and for sufficiently large t, we have (see also [354, Lemma 9])

t∫

0

Ψ
(1)
s,t γ

1
swsds ≤ K

[

wt + t−µγ1
0

]

. (2.323)

We now turn our attention to the case η1 < 1. For sufficiently large t0, we have, using

Condition (A1), that

1

wt

t∫

0

Ψ
(1)
s,t γ

i
swsds =

t0∫

0

Ψ
(1)
s,t γ

1
s

ws

wt
ds+

t∫

t0

Ψ
(1)
s,t γ

1
s

ws

wt
ds (2.324)

≤ K +

t∫

t0

exp



−µ1
t∫

s

γ1udu



 γ1s exp




µ1
2

t∫

s

γ1udu



 ds (2.325)

≤ K +

t∫

t0

exp



−µ1
2

t∫

s

γ1udu



 γ1sds ≤ K. (2.326)

It remains to prove (ii). In fact, this now follows straightforwardly as a consequence of

(i). In particular, using the stability of the matrix A, we have that

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

0

Φ
(1)
s,t γ

1
svsds

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤
t∫

0

||Φ(1)
s,t ||γ1s ||vs||ds ≤

t∫

0

Ψ
(1)
s,t γ

1
swsds (2.327)

where the final inequality holds for any µ1 ∈ (0,ΛH). The result now follows straightfor-

wardly from (i).

Lemma 2.9. Let {wt}t≥0 be a sequence of numbers satisfying Condition (A2). Let {vt}t≥0

be R
d2-valued random sequence such that ||vt|| = O(wt). Then, for sufficiently large t,

∣
∣
∣
∣
∣
∣

t∫

0

Ψ
(2)
s,t γ

2
swsds

∣
∣
∣
∣
∣
∣

≤ Kwt. (2.328)

and ∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

0

Φ
(2)
s,t γ

2
swsds

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤ Kwt. (2.329)

Proof. The proof follows the proof of Lemma 2.8 in the case η1 < 1.
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Lemma 2.10. Suppose γ1t satisfies Condition (A1). Then, for sufficiently large t,

Ψ
(1)
0,t (γ

1
t )

− 1
2 → 0. (2.330)

Proof. The proof proceeds in much the same way as the proof of Lemma 2.8. First consider

the case η1 = 1. In this case, it is straightforward to compute

Ψ
(1)
0,t = exp



−µ1
t∫

0

γ1udu



 = exp

[

−µ1γ10 ln
(
δ0 + t

δ0

)]

≤ K (δ0 + t)−µ1γ1
0 . (2.331)

It follows, on account of Assumption 2.1.1’, that

Ψ
(1)
0,t (γ

1
t )

− 1
2 ≤ K (δ0 + t)

1
2
−µ1γ1

0 → 0. (2.332)

Now consider the case η1 < 1. In this case, we have

(γ1t )
− 1

2 ≤ (γ1t )
−1 ≤ exp



o(1)

t∫

0

γ1udu



 . (2.333)

It follows straightforwardly that, for sufficiently large t,

Ψ
(1)
0,t (γ

1
t )

− 1
2 ≤ exp



−µ1
t∫

0

γ1udu



 exp




µ1
2

t∫

0

γ1udu



 = exp



−µ1
2

t∫

0

γ1udu



 → 0. (2.334)

Lemma 2.11. Suppose γ2t satisfies Condition (A2). Then, for sufficiently large t,

Ψ
(2)
0,t (γ

2
t )

− 1
2 → 0. (2.335)

Proof. The proof follows the proof of Lemma 2.10 in the case η1 < 1.
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3
An Application of Two-Timescale

Stochastic Gradient Descent in

Continuous Time

Summary. In this chapter, we analyse the problem of joint online param-

eter estimation and optimal sensor placement for a partially observed, finite-

dimensional, non-linear diffusion process. We demonstrate in detail how this

problem can be formulated as a bilevel optimisation problem, and solved using a

continuous-time, two-timescale, stochastic gradient descent algorithm. Under

suitable conditions on the latent signal, the filter, and the filter derivatives, we

establish almost sure convergence of the online parameter estimates and opti-

mal sensor placements to the stationary points of the asymptotic log-likelihood

and asymptotic filter covariance, respectively. In addition, we provide a simple

numerical example, illustrating the application of the proposed methodology to

a partially observed Beneš equation.
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3.1 Introduction

Let (Ω,F ,P) be a complete probability space with filtration {Ft}t≥0, which satisfies the

usual conditions. In this chapter, we consider a problem arising in the following family

of partially observed finite dimensional diffusion processes1 under the probability measure

Pθ,

dxt = A(θ, xt)dt+B(θ, xt)dvt , x(0) = x0, (3.1)

dyt = C(θ,o, xt)dt+ dwt , y(0) = 0, (3.2)

where {xt}t≥0 denotes a hidden R
nx-valued signal process, {yt}t≥0 denotes a R

ny -valued

observation process, and {vt}t≥0, {wt}t≥0 are independent Rnx-, Rny -valued Wiener pro-

cesses, with incremental covariances Q(θ) ∈ R
nx×nx andR(o) ∈ R

ny×ny , which correspond

to signal noise and measurement noise, respectively. Meanwhile, θ ∈ Θ ⊆ R
nθ is an nθ-

dimensional parameter, and o = {oi}ny

i=1 ∈ Ωny ⊆ R
nyno is a set of ny sensor locations,

with oi ∈ Ω ⊆ R
no for i = 1, . . . , ny. We assume that, for all (θ,o) ∈ Θ× Ωny , the initial

conditions x0 ∼ p0(θ,o) are independent of {wt}t≥0 and {vt}t≥0. We also suppose that

A(θ, ·), B(θ, ·), and C(θ,o, ·) are measurable functions which ensure the existence and

uniqueness of strong solutions to these equations for all t ≥ 0 (e.g., [19]).

The central problem underlying this partially observed stochastic dynamical system is

that of optimal state estimation, or filtering. This consists in determining the conditional

probability distribution of the latent signal process (i.e., the filter), given the history of

observations, under the assumption that any model parameters are known, and the loca-

tions of the measurement sensors are fixed (e.g., [19]). In practical applications, however,

it is often the case that the parameters of this model are unknown, and must be inferred

from the data. Indeed, inferring the model parameters is often the primary problem of

interest (e.g., [261, 353]).

It is often also the case that the locations of the measurement sensors are not fixed,

and thus it may be possible to improve upon the optimal state estimate by determining

an ‘optimal sensor placement’. Alternatively, one may have access to a large number of

measurement sensors, but it may only be possible to utilise a small subset of these at any

given time instant (e.g., due to communication constraints). In this case, it is of interest

to obtain an ‘optimal sensor selection’ or ‘optimal sensor schedule’.

The first of these two scenarios is particularly relevant to applications in engineering and

the applied sciences, including meteorology, environmental monitoring, and fluid dynam-

ics. In such applications, the process of interest, even if defined continuously over space

1We will sometimes also refer to such processes as finite-dimensional state space models, or lumped
parameter systems.
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and in time, can only be measured at a finite number of spatial locations. Moreover, the

spatial density of observations is generally very low, due either to prohibitive expense (i.e.,

the sensors are expensive, or expensive to place), or geographical inaccessibility (i.e., the

sensors cannot be placed in particular locations). Furthermore, measurements at certain

points in the domain may yield more information about the system than measurements

at other points, due to correlations in the signal. Thus, to a greater or lesser extent, the

accuracy of the estimate of the signal is dependent on location of the measurement sensors.

In this chapter, we address, for the first time, the problems of parameter estimation

and optimal sensor placement (for the purpose of optimal state estimation) together.

This represents a significant departure from the existing literature, in which these two

problems have, until now, been studied separately. Before we provide further details on

our approach, let us briefly review the existing literature on these two important problems.

3.1.1 Literature Review

3.1.1.1 Parameter Estimation

The problem of parameter estimation for partially observed stochastic processes in con-

tinuous time has been somewhat well studied, particularly in the offline setting (e.g.,

[14, 132, 148, 275]). This being said, it remains the case that the majority of litera-

ture on this subject has been formulated for discrete-time systems (e.g., [88, 238] for an

overview).2 Among the different methods that have been considered for this problem,

those based on direct maximisation of the likelihood are arguably the most ubiquitous

(e.g., [259, 275, 430]), although other approaches based on the maximum likelihood prin-

ciple such as expectation-maximisation (EM) have also been considered (e.g., [83, 148]).

In the offline setting, maximum likelihood (ML) methods seek the value of θ that maximises

the log-likelihood of the observations, or incomplete data log-likelihood, after some fixed

time-period T . That is,

θ̂T = argmax
θ∈Θ

LT (θ,o). (3.3)

The asymptotic properties of this estimator, including asymptotic consistency, asymptotic

efficiency, and asymptotic normality, have been the subject of several papers (see, e.g., the

survey paper [275] and references therein). The results in these papers only hold, however,

under somewhat restrictive assumptions on the model dynamics: namely, linearity [14, 15,

16, 17, 22, 196, 451, 452], small noise [231, 253, 274], or both [277, 278].3

2We also note that there is a significant body of work on parameter estimation for fully observed
stochastic processes in continuous time (e.g., [52, 63, 273, 296]).

3We should also mention [83, 132, 148, 293], which consider the offline parameter estimation problem
for general non-linear, partially observed, continuous-time diffusion processes, but do not provide any
asymptotic results.
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We are primarily concerned with online parameter estimation methods, which recursively

estimate the unknown model parameters based on the continuous stream of observations.

In comparison to classical methods, which process the observed data in a batch fashion,

online methods perform inference in real time, can track changes in parameters over time,

are more computationally efficient, and have significantly smaller storage requirements.

Various methods have been proposed for online parameter estimation in partially observed

state space models, although these methods are typically formulated in the discrete-time

setting. These include an online variant of the EM algorithm (e.g., [10, 86, 87, 119, 172,

180, 289] in discrete time and [96, 97, 148, 173, 487] in continuous time), state augmenta-

tion algorithms (e.g., [179, 305, 428] in discrete time), and recursive minimum prediction

error schemes (e.g., [115, 180, 181, 295] in discrete time).4 In this chapter, we will focus

exclusively on recursive maximum likelihood (RML) methods, which use stochastic gradi-

ent descent to recursively seek the value of θ which maximises an asymptotic log-likelihood

function (e.g., [196, 197, 430])

L̃(θ,o) = lim
t→∞

1

t
Lt(θ,o). (3.4)

The asymptotic properties of this method for partially observed, discrete-time systems

(e.g., [116, 165, 258, 294, 295, 382, 409, 438, 441]), and for fully-observed, continuous-

time systems (e.g., [52, 63, 273, 296]), have been studied extensively. In comparison,

the partially observed, continuous-time case has received relatively little attention. The

use of a continuous-time RML method for online parameter estimation in a partially-

observed linear diffusion process was first proposed in [196], and later extended in [197].

In this paper, a recursive maximum likelihood estimator for the parameters of a partially-

observed, linear diffusion process was derived using the Itô-Venzel formula (e.g., [457]), and

an a.s. convergence result for this estimator was provided without proof. In particular, it

was established that the estimator θ̂t → θ∗ a.s. on the event Ω = {θ̂t <∞ for all t ≥ t0},
for some fixed, non-random initial time t0. This analysis was later extended in [197],

which established the a.s. convergence of a modified version of the estimator in [196],

which included an additional resetting mechanism.5

The use of a continuous-time RML method for online parameter estimation was more

recently revisited in [430]. In this paper, the authors derived a RML estimator for the

parameters of a general, non-linear partially observed diffusion process, and established the

a.s. convergence of this estimator under appropriate conditions on the process consisting

of the latent state, the filter, and the filter derivative. This paper extended the results in

4For a more comprehensive overview of online parameter estimation methods in discrete-time partially
observed state space models, the reader is referred to [88, 238, 244].

5We remark that the evolution equations for the estimators considered in [196, 197] include an additional
second order term compared to the estimator analysed later in this chapter. This arises when the Itô-Venzel
formula is applied to the score function.
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[420] to the partially-observed setting. We should remark that the use of a continuous-time

RML method for non-linear partially observed diffusion processes was also considered in

[311, 358]. In these papers, however, in addition to the model parameters, the hidden

state was estimated via maximum likelihood, rather than the usual filtering paradigm.

3.1.1.2 Optimal Sensor Placement

The problem of optimal sensor placement (and optimal sensor selection) for optimal state

estimation in partially observed finite-dimensional diffusion processes has been studied by

a very large number of authors, and in a wide variety of contexts.6 Arguably the first

mathematically rigorous treatment of this problem for linear systems was provided by

Athans [11], who formulated it as an application of optimal control on the Ricatti equation

governing the covariance of the optimal filter (see also [211, 256, 279, 337, 349, 350]).

In this framework, the sensor placement oT is treated as a control variable, and the optimal

sensor placement ôT is obtained as the minima of a suitable objective function, that is,

ôT = argmin
o∈O

JT (θ,o). (3.5)

This objective function is typically defined as the trace of the filter covariance at some finite

time (e.g., [114]), or the integral of the trace of the filter covariance over some finite time

interval (e.g., [109]), which are designed to minimise the uncertainty in the state estimate.

One can also consider optimal sensor placement with respect to asymptotic versions of

these functions (e.g [3, 9, 386, 485]) in which case the optimal sensor placements are

obtained, possibly recursively, as the minima of an asymptotic version of the objective

function

J̃ (θ,o) =
1

t
lim
t→∞

Jt(θ,o). (3.6)

In the case of optimal sensor placement, the design variable o is continuous, denoting

the location of the measurement sensors. One can thus optimise the objective function

directly, and at relatively low computational cost, by using gradient based methods (e.g.,

[2, 3, 9, 114, 151, 154, 155]).

3.1.2 Contributions

In this chapter, we present a principled method for performing joint online parameter esti-

mation and optimal sensor placement in a partially observed, possibly non-linear diffusion

process. We show how to formulate this as a bilevel optimisation problem, in which the

6While we do not consider it here, the problem of optimal sensor placement for the purpose of parameter
estimation, rather than optimal state estimation, has also been studied extensively (see, e.g., [373, 453]
and references therein).
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objective is to obtain estimates θ̂ ∈ Θ and ô(θ̂) ∈ Πny which simultaneously maximise the

log-likelihood of the observations and minimise an appropriately chosen sensor placement

objective function. That is,

θ̂ = argmax
θ∈Θ

L̃
(
θ, ô(θ)

)
, ô(θ)= argmin

o∈Πny

J̃
(
θ,o

)
. (3.7)

On the basis of the theoretical results established in Chapter 2, we propose a solution to

this bilevel optimisation problem in the form of a two-timescale, stochastic gradient de-

scent algorithm in continuous time. Moreover, under reasonable conditions on the process

consisting of the latent signal process, the filter, and the filter derivatives, we establish a.s.

convergence of the online parameter estimates and recursive optimal sensor placements

generated by this algorithm to the stationary points of the asymptotic log-likelihood and

the asymptotic filter covariance, respectively. The effectiveness of this algorithm is demon-

strated via a one-dimensional, partially observed stochastic differential equation (SDE) of

Beneš class.

3.1.3 Chapter Organisation

The remainder of this chapter is organised as follows. In Section 3.2, we demonstrate

rigorously how to formulate the problem of joint online parameter estimation and optimal

sensor placement as an unconstrained bilevel optimisation problem; and propose a solution

to this problem in the form of a continuous-time, two-timescale stochastic gradient descent

algorithm. In Section 3.3, we prove the a.s. convergence of this algorithm. In Section 3.4,

we provide a numerical example illustrating the performance of the proposed algorithm.

Finally, in Section 3.5, we offer some concluding remarks.

3.2 Main Results

3.2.1 Parameter Estimation

We first review the problem of parameter estimation. We will suppose that the model gen-

erates the observation process {yt}t≥0 according to a true, but unknown, static parameter

θ∗. The objective is then to obtain an estimator {θt}t≥0 of θ
∗ which is both FY

t -measurable

and recursively computable. That is, an estimator which can be computed online using

the continuous stream of observations, without revisiting the past. In this subsection, we

will assume that the sensor locations o ∈ Ωny are fixed. We will, however, make explicit

the dependence of functions on o, where appropriate.

One such estimator can be obtained as a modification of the classical offline maximum
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likelihood estimator (e.g., [358, 430]). We thus recall the expression for the log-likelihood

of the observations, or incomplete data log-likelihood, for a partially observed diffusion

process (e.g., [22, 184, 196, 430, 452]), namely

Lt(θ,o) =

t∫

0

R−1(o)Ĉs(θ,o) · dys −
1

2

t∫

0

||R− 1
2 (o)Ĉs(θ,o)||2ds, (3.8)

where Ĉs(θ,o) denotes the conditional expectation of C(θ,o, xs), given the observation

sigma-algebra FY
s , viz

Ĉs(θ,o) = Eθ,o

[
C(θ,o, xs)|FY

s

]
. (3.9)

3.2.1.1 Offline Parameter Estimation

In the offline setting, one seeks to obtain the value of θ that maximises the incomplete data

log-likelihood after some fixed time-period, say T . In particular, the maximum likelihood

estimator (MLE) is defined as

θ̂T = argmax
θ∈Θ

LT (θ,o). (3.10)

In practice, various methods can be used to solve this optimisation problem. Perhaps the

most popular of these is gradient ascent, which, initialised at θ0 ∈ Θ, generates a sequence

of parameter estimates {θk}k≥1 via the recursion

θk+1 = θk + γk

T∫

0

R−1(o)[dys − Ĉs(θ,o)ds]
T∇θ[Ĉs(θ,o)]

︸ ︷︷ ︸

∇θLT (θ,o)

∣
∣
∣
∣
θ=θk

, (3.11)

where {γk}k≥1 is a non-negative, non-increasing sequence of step-sizes.7 Clearly, at each

iteration of this algorithm, the derivative of the log-likelihood function must be recomputed

using the current values of the parameters.

7Another popular approach, which we will not consider here, is the Expectation-Maximisation (EM)
algorithm (e.g., [83, 148]).
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3.2.1.2 Online Parameter Estimation

In the online setting, a standard approach is to recursively seek the value of θ which

maximises the asymptotic log-likelihood, viz

L̃(θ,o) = lim
t→∞

1

t
Lt(θ,o) = lim

t→∞

[
1

t

t∫

0

R−1(o)Ĉs(θ,o) · dys (3.12)

− 1

2t

t∫

0

R−1(o)||Ĉs(θ,o)||2ds
]

. (3.13)

Typically, neither the asymptotic log-likelihood, nor its gradient, are available in analytic

form. It is, however, possible to compute noisy estimates of these quantities at any finite

time, using the integrand of the log-likelihood and the integrand of its gradient, respec-

tively. This optimisation problem can thus be tackled using continuous-time stochastic

gradient ascent, whereby the parameters follow a noisy ascent direction given by the inte-

grand of the gradient of the log-likelihood, evaluated with the current parameter estimate.

In particular, initialised at θ0 ∈ Θ, the parameter estimates {θt}t≥0 are generated accord-

ing to the SDE [430]

dθt =







γt
[
Ĉθ
t (θt,o)

]TR−1(o)
[
dyt − Ĉt(θt,o)dt

]
, θt ∈ Θ,

0 , θt 6∈ Θ,
(3.14)

where γ : R+ → R+ is a non-negative, non-increasing, continuous function (i.e., the

learning rate), and where we have written Ĉθ
t (θ,o) = ∇θĈt(θ,o) to denote the gradient of

Ĉt(θ,o) with respect to the parameter vector.8 Following [430], this algorithm includes a

projection device which ensures that the parameter estimates {θt}t≥0 remain in Θ ⊂ R
nθ

with probability one. This is common for algorithms of this type (e.g., [107, 313]).9 In the

literature on statistical inference and system identification, this algorithm is commonly

referred to as recursive maximum likelihood (RML).

3.2.2 Optimal Sensor Placement

We now turn our attention to the problem of optimal sensor placement. We will suppose

that the observation process {yt}t≥0 is generated using a finite set of ny sensors. Our

objective is to obtain an estimator of the set of ny sensor locations o∗ = {oi}ny

i=1 which

are optimal with respect to some pre-determined criteria, possibly subject to constraints.

8We use the convention that the gradient operator adds a covariant dimension to the tensor field upon
which it acts. Thus, for example, since Ĉt(θ,o) = Eθ,o[C(θ,o, xt)|F

Y
t ] takes values in R

ny , its gradient
Ĉθ

t (θ,o) = ∇θĈt(θ,o), takes values in R
ny×nθ .

9Other, more complex, projection devices are of course possible, but will not be considered here.
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Once more, we require our estimator to be FY
t -measurable and recursively computable.

In this subsection, we will assume that the parameter θ ∈ Θ is fixed. We will, however,

make explicit the dependence of functions on θ, where appropriate.

A standard approach to this problem is to define a suitable objective function, say Jt(θ, ·) :
Ωny → R, and then to define the optimal estimator as

ôt = argmin
o∈Ωny

Jt(θ,o). (3.15)

We focus on the objective of optimal state estimation. In this case, following [80, 109,

211, 254], we consider the following objective function

Jt(θ,o) =

t∫

0

Tr
[

MsΣ̂s(θ,o)
]

︸ ︷︷ ︸

ĵs(θ,o)

ds :=

t∫

0

ĵs(θ,o)ds, (3.16)

where Ms : Rdx×dx → R
dx×dx is a matrix which allows one to weight significant parts of

the state estimate, and

Σ̂s(θ,o) = Covθ,o
[
xs|FY

s

]
(3.17)

= Eθ,o

[
xsx

T
s |FY

s

]
− Eθ,o

[
xs|FY

s

]
Eθ,o

[
xs|FY

s

]T
(3.18)

denotes the conditional covariance of the latent state xs, given the history of obser-

vations FY
s . Broadly speaking, the use of this objective corresponds to seeking the

sensor placement which minimises the uncertainty in the estimate of the latent state.

Other choices for the objective function are, of course, possible. These include, among

many others, the trace of the conditional covariance at some finite, terminal time (e.g.,

[41, 43, 84, 109, 128, 368, 472]), and variants thereof (e.g., [262, 360]), and the trace of

the steady-state conditional covariance (e.g., [3, 9, 386, 485, 488]).

3.2.2.1 Offline Optimal Sensor Placement

In the offline setting, the objective is to obtain the optimal sensor placement with respect

to state estimation over some fixed-time period, say [0, T ]. One thus seeks to minimise

the value of the objective function at time T . In this instance, the optimal estimator is

straightforwardly defined as

ôT = argmin
o∈Ωny

JT (θ,o). (3.19)

This optimisation problem can be tackled via a simple gradient descent scheme, which,

initialised at o0 ∈ Ωny , generates a sequence of sensor placement estimates {ok}k≥1 via
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the recursion

ok+1 = ok − γk

T∫

0

∇oTr
[

M tΣ̂t(θ,o)
]

dt

︸ ︷︷ ︸

∇oJT (θ,o)

∣
∣
∣
∣
o=ok

, (3.20)

where {γk}k≥1 is a non-negative, non-increasing sequence of step-sizes.10 The use of

gradient descent for the optimal sensor placement problem is very well established (e.g., [2,

3, 9, 114]). Most recently, a gradient descent scheme for the objective function considered

in this paper was proposed in [80], and implemented in a numerical example involving the

stochastic convection-diffusion equation, for both stationary and moving sensor networks.

3.2.2.2 Online Optimal Sensor Placement

In the online setting, the objective is to recursively estimate the optimal sensor locations

ô in real time using the continuous stream of observations. In this case, in the spirit of

the previous section, one approach is to recursively seek the value of o which minimises

the asymptotic objective function (e.g., [488]), namely

J̃ (θ,o) = lim
t→∞

1

t
Jt(θ,o) = lim

t→∞




1

t

t∫

0

ĵs(θ,o)ds



 . (3.21)

Typically, neither the asymptotic objective function, nor its gradient, are available in

analytic form.11 It is, however, possible to compute noisy estimates of these quantities at

any finite time, using the integrand of the objective function and its gradient, respectively.

Similar to online parameter estimation, this optimisation problem can thus also be tackled

using continuous-time stochastic gradient descent, whereby the sensor locations follow a

noisy descent direction given by the integrand of the gradient of the objective function,

evaluated with the current estimates of the sensor placements. In particular, initialised at

o0 ∈ Ωny , the sensor locations {ot}t≥0 are generated according to the ordinary differential

10Another popular approach, somewhat different in spirit to the approach considered here, first discretises
the spatial domain, and then solves the combinatorial optimisation problem of determining the optimal
subset of locations at which to place the available sensors (at each time point). This approach, as mentioned
in the introduction, is commonly referred to as ‘optimal sensor selection’ or ‘optimal sensor scheduling’
(e.g., [30, 178, 291, 362, 363, 473]).

11A notable exception to this is the linear Gaussian case, in which case the asymptotic objective function
is the solution of the so-called algebraic Ricatti equation, which is independent of the observation process
(e.g., [237]). This independence no longer holds, however, when online parameter estimation and optimal
sensor placement are coupled (see Section 4.3.3). In this case, the (asymptotic) objective function depends
on the parameter estimates via equation (3.21), and the parameter estimates depend on the observations
via equation (3.14). Thus, implicitly, the sensor placements estimates do now depend on the observations.
We explore this in more detail in Chapter 4.
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equation

dot =







−γt
[
ĵot (θ,ot)

]T
dt , ot ∈ Ωny

0 , ot 6∈ Ωny

(3.22)

where {γt}t≥0 is a non-negative, non-increasing continuous sequence of real step-sizes, and

where ĵot (θ,o) = ∇oĵt(θ,o) = ∇oTr[MtΣ̂t(θ,o)] is used to denote the gradient of ĵt(θ,o)

with respect to the sensor locations. Similar to the online parameter estimation algorithm,

this recursion includes a projection device to ensure that the sensor placements {ot}t≥0

remain in Ωny ⊂ R
nyno with probability one.

3.2.3 The Filter and Its Gradients

In order to implement either of these algorithms, it is necessary to compute the conditional

expectations Ĉt(θ,o) and ĵt(θ,o), as well as their gradients, Ĉθ
t (θ,o) and ĵot (θ,o). In

principle, this requires one to obtain solutions of the Kushner-Stratonovich equation for

arbitrary integrable ϕ : Rnx → R, viz (e.g., [19, 266])

dϕ̂t = ( ˆAxϕ)t +
(
(Ĉϕ)t − Ĉtϕ̂t

)
·
(
dyt − Ĉtdt

)
, (3.23)

where ϕ̂t = E[ϕ(xt)|FY
t ] denotes the conditional expectation of ϕ(xt) given the history of

observations FY
t , and Ax denotes the infinitesimal generator of the latent signal process.

In general, exact solutions to the Kushner-Stratonovich equation are very rarely available

[297, 332, 365, 366]. In order to make any progress, we must therefore introduce the

following additional assumption.

Assumption 3.2.1. The Kushner-Stratonovich equation admits a finite dimensional re-

cursive solution, or a finite-dimensional recursive approximation.

There are a small but important class of filters for which finite-dimensional recursive

solutions do exist, namely, the Kalman-Bucy filter [176, 237], the Beneš filter [39, 40]

and extensions thereof [98, 99, 136, 137, 173, 208, 364]. In addition, there are a much

larger class of processes for which finite-dimensional recursive approximations are available,

and thus, crucially, for which the proposed algorithm can still be applied. Standard

approximation schemes include, among others, the extended Kalman-Bucy filter [144], the

unscented Kalman-Bucy filter [406], projection filters [69], assumed-density filters [70, 230]

the ensemble Kalman-Bucy filter (EnKBF) [143], and other particle filters (e.g., [142], [19,

Chapter 9], and references therein).

This assumption implies, in particular, that there exists a finite-dimensional, FY
t -adapted

processM(θ,o) = {Mt(θ,o)}t≥0, taking values in R
p, and functions ψC(θ,o, ·) : Rp → R

ny ,
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ψj(θ,o, ·) : Rp → R
nx such that, in the case of an exact solution,

Ĉt(θ,o) = ψC(θ,o,Mt(θ,o)), (3.24a)

ĵt(θ,o) = ψj(θ,o,Mt(θ,o)), (3.24b)

or, in the case of an approximate solution, such that these equations hold only approxi-

mately. The processM(θ,o) is typically referred to as the finite-dimensional (approximate)

filter representation, or more simply, the filter. We provide an illustrative example of one

such finite-dimensional filter representation after stating our remaining assumptions.

We are also required to compute the gradients Ĉθ
t (θ,o) and ĵ

o
t (θ,o) in order to implement

our algorithm. We must therefore also introduce the following additional assumption.

Assumption 3.2.2. The finite-dimensional filter representation is continuously differen-

tiable with respect to θ and o.

Following this assumption, we can define M θ(θ,o) = {M θ
t (θ,o)}t≥0 = {∇θMt(θ,o)}t≥0

and Mo(θ,o) = {Mo
t (θ,o)}t≥0 = {∇oMt(θ,o)}t≥0 as the R

p×nθ and R
p×nyno valued

processes consisting of the gradients of the finite dimensional filter representation with

respect to θ and o, respectively. We will refer to these processes as the (finite-dimensional)

tangent filters.

It follows, upon formal differentiation of equations (3.24a) and (3.24b), that, either exactly

or approximately, we have

Ĉθ
t (θ,o) = ψθ

C(θ,o,Mt(θ,o),M
θ
t (θ,o)) (3.25a)

= ∇θψC(θ,o,Mt(θ,o)) +∇MψC(θ,o,Mt(θ,o))M
θ
t (θ,o), (3.25b)

and

ĵot (θ,o) = ψo
j (θ,o,Mt(θ,o),M

o
t (θ,o)) (3.26a)

= ∇oψj(θ,o,Mt(θ,o)) +∇Mψj(θ,o,Mt(θ,o))M
o
t (θ,o). (3.26b)

We are now ready to introduce our final assumption on the filter. This assumption will

allow us to rewrite the joint online parameter estimation and optimal sensor placement

algorithm in the form of Algorithm (2.18a) - (2.18b), and thus to apply Theorem 2.2.

Assumption 3.2.3. The finite-dimensional filter representation satisfies a stochastic dif-

ferential equation of the form

dMt(θ,o) = S(θ,o,Mt(θ,o))dt+ T (θ,o,Mt(θ,o))dyt (3.27)
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+ U(θ,o,Mt(θ,o))dat,

where a = {at}t≥0 is a R
q valued Wiener process independent of FX,Y

t , and the functions

S, T , and U map R
nθ × R

nyno × R
p to R

p, Rp×nyno, and R
p×q, respectively.

This assumption can be shown to hold for a broad class of filters. In particular, the

inclusion of the independent noise process means that this SDE holds for a large number

of approximate filters, including many of those mentioned after Assumption 3.2.1. It

follows from this assumption, upon differentiation of (3.27), that the finite-dimensional

tangent filters satisfy the SDEs

dM θ
t (θ,o) = S′

θ(θ,o,Mt(θ,o),M
θ
t (θ,o))dt (3.28a)

+ T ′
θ(θ,o,Mt(θ,o),M

θ
t (θ,o))dyt

+ U ′
θ(θ,o,Mt(θ,o),M

θ
t (θ,o))dat,

dMo
t (θ,o) = S′

o(θ,o,Mt(θ,o),M
o
t (θ,o))dt (3.28b)

+ T ′
o(θ,o,Mt(θ,o),M

o
t (θ,o))dyt

+ U ′
o(θ,o,Mt(θ,o),M

o
t (θ,o))dat.

where, for example, the tensor field S′
θ is obtained explicitly according to

S′
θ(θ,o,Mt(θ,o),M

θ
t (θ,o)) = ∇θS(θ,o,Mt(θ,o)) (3.29)

+∇MS(θ,o,Mt(θ,o))M
θ
t (θ,o).

with analogous expressions for the tensor fields T ′
θ, U

′
θ, S

′
o, T

′
o and U ′

o .

We can now summarise the evolution equations for the latent signal, the finite-dimensional

filter, and the finite-dimensional tangent filters, into a single SDE. In particular, let us

define X (θ,o) = {Xt(θ,o)}t≥0 as the R
N valued diffusion process consisting of the concate-

nation of the latent signal, the (vectorised) finite-dimensional filter, and the (vectorised)

finite-dimensional tangent filters, with N = nx + p + pnθ + pnyno. That is, in a slight

abuse of notation,

Xt(θ,o) =
(
xt, vec(Mt(θ,o)), vec(M

θ
t (θ,o)), vec(M

o
t (θ,o))

)T
. (3.30)

It then follows straightforwardly, stacking the equation for the signal process (3.1), the

filter (3.27), and tangent filters (3.28a) - (3.28b), and substituting the equation for the

observation process (3.2), that

dXt(θ,o) = Φ(θ,o,Xt(θ,o))dt+Ψ(θ,o,Xt(θ,o))dbt, (3.31)

where the functions Φ and Ψ take values in R
N and R

N×(nx+ny+q), respectively, and where
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b = {bt}t≥0 is the R
nx+ny+q valued Wiener process obtained by concatenating the signal

noise process v = {vt}t≥0, the observation noise process w = {vt}t≥0, and the indepen-

dent noise process arising in the equations for the finite-dimensional filter representation

a = {at}t≥0.

Example. To help to illustrate the notation introduced in this section, let us consider a

simple one-dimensional linear Gaussian model with a single unknown parameter, and a

single sensor location, viz

dxt = −θxtdt+ dvt , x(0) = x0, (3.32)

dyt = xtdt+ dwt , y(0) = 0, (3.33)

where v = {wt}t≥0 and w = {vt}t≥0 are one-dimensional Brownian motions with incre-

mental variances Q(θ) = 1 and R(o) = (o − o0)
2, and x0 ∼ N (0, 1

2θ ). Clearly, this is an

example of a partially observed diffusion process of the form (3.1) - (3.2), with θ ∈ R,

o ∈ R, and operators A(θ, x) = −θx, B(θ, x) = 1, and C(θ,o, x) = x. We can also

identify, using (3.9) and (3.16), the conditional expectations

Ĉt(θ,o) = Eθ,o[C(θ,o, xt)|FY
t ] = Eθ,o[xt|FY

t ] (3.34a)

ĵt(θ,o) = Tr[Varθ,o[xt|FY
t ]] = Varθ,o

[
xt|FY

t

]
. (3.34b)

Let us consider each of the assumptions introduced in this section in turn, starting with

Assumption 3.2.1. For the linear Gaussian model, the optimal filter has a Gaussian dis-

tribution with mean x̂t(θ, o) = Eθ,o[xt|FY
t ] and variance Σ̂t(θ, o) = Varθ,o[xt|FY

t ], both of

which can be computed recursively. The precise form of these equations is presented below

in (3.37). This is known as the Kalman-Bucy filter [237]. We thus have a p = 2 dimen-

sional filter representation Mt(θ,o) = (x̂t(θ,o), Σ̂t(θ,o))
T . It follows straightforwardly

that, in the case,

ψC(θ,o,Mt(θ,o)) := Ĉt(θ,o) = x̂t(θ,o) (3.35a)

ψj(θ,o,Mt(θ,o)) := ĵt(θ,o) = Σ̂t(θ,o). (3.35b)

We next consider Assumption 3.2.2. In the current example, it is clear that the two-

dimensional filter Mt(θ,o) is continuously differentiable with respect to both θ and o. In-

deed, this follows directly from the differentiability of A(θ, x), B(θ, x), C(θ,o, x), Q(θ) and

R(o) with respect to these variables. We can thus define the finite-dimensional tangent

filters M θ
t (θ,o) = (x̂θt (θ,o), Σ̂

θ
t (θ,o))

T and Mo
t (θ,o) = (x̂ot (θ,o), Σ̂

o
t (θ,o))

T , and compute

ψθ
C(θ,o,Mt(θ,o),M

θ
t (θ,o)) := Ĉθ

t (θ,o) = x̂θt (θ,o) (3.36a)

ψo
j (θ,o,Mt(θ,o),M

o
t (θ,o)) := ĵot (θ,o) = Σ̂o

t (θ,o) (3.36b)
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Finally, we consider Assumption 3.2.3. The Kalman-Bucy filter evolves according to the

following SDE

(

dx̂t(θ,o)

dΣ̂t(θ,o)

)

︸ ︷︷ ︸

dMt(θ,o)

=




−θx̂t(θ,o)− (o− o0)

−2x̂t(θ,o)Σ̂t(θ,o)

1− 2θΣ̂t(θ,o)− (o− o0)
−2Σ̂2

t (θ,o)





︸ ︷︷ ︸

S(θ,o,Mt(θ,o))

dt (3.37)

+




(o− o0)

−2Σ̂t(θ,o)

0





︸ ︷︷ ︸

T (θ,o,Mt(θ,o))

dyt,

Thus, the filter does indeed evolve according to an SDE of the form (3.27), with the final

term identically equal to zero. Taking formal derivatives of this SDE, we can obtain the

SDEs for the tangent filters, namely












dx̂θt (θ,o)

dΣ̂θ
t (θ,o)












︸ ︷︷ ︸

dMθ
t (θ,o)

=












−x̂t(θ,o)− θx̂θt (θ,o)

−(o− o0)
−2x̂θt (θ,o)Σ̂t(θ,o)

−(o− o0)
−2x̂t(θ,o)Σ̂

θ
t (θ,o)

−2Σ̂t(θ,o)− 2θΣ̂θ
t (θ,o)

−2(o− o0)
−2Σ̂t(θ,o)Σ̂

θ
t (θ,o)












︸ ︷︷ ︸

S′
θ
(θ,o,Mt(θ,o))

dt (3.38)

+












(o− o0)
−2Σ̂θ

t (θ,o)

0












︸ ︷︷ ︸

T ′
θ
(θ,o,Mt(θ,o))

dyt.

and, similarly,















dx̂ot (θ,o)

dΣ̂o
t (θ,o)















︸ ︷︷ ︸

dMo
t (θ,o)

=















−θx̂ot (θ,o)
+2(o− o0)

−3x̂t(θ,o)Σ̂t(θ,o)

−(o− o0)
−2x̂ot (θ,o)Σ̂t(θ,o)

−(o− o0)
−2x̂t(θ,o)Σ̂

o
t (θ,o)

−2θΣ̂o
t (θ,o) + 2(o− o0)

−3Σ̂2
t (θ,o)

−2(o− o0)
−2Σ̂t(θ,o)Σ̂

o
t (θ,o)















︸ ︷︷ ︸

S′
o(θ,o,Mt(θ,o))

dt (3.39)

89



Chapter 3: An Application of Two-Timescale Stochastic Gradient Descent

+













−2(o− o0)
−3Σ̂t(θ,o)

+(o− o0)
−2Σ̂o

t (θ,o)

0













︸ ︷︷ ︸

T ′
o(θ,o,Mt(θ,o))

dyt.

Finally, we can concatenate the (one-dimensional) signal, the (two-dimensional) filter,

and the two (two-dimensional) tangent filters into a single diffusion process, namely,

Xt(θ,o) =
(
xt, x̂t(θ,o), Σ̂t(θ,o)

︸ ︷︷ ︸

vec(Mt(θ,o))

, x̂θt (θ,o), Σ̂
θ
t (θ,o)

︸ ︷︷ ︸

vec(Mθ
t (θ,o))

, x̂ot (θ,o), Σ̂
o
t (θ,o)

︸ ︷︷ ︸

vec(Mo
t (θ,o))

)T
. (3.40)

This process evolves according to an SDE of the form (3.31), which we obtain by stacking

the signal equation (3.32), the Kalman-Bucy filtering equations (3.37), and the tangent

Kalman-Bucy filtering equations (3.38) - (3.39), before substituting the observation equa-

tion (3.33). For brevity, the explicit form of this equation is omitted.

3.2.4 Joint Parameter Estimation and Optimal Sensor Placement

We can finally now turn our attention to the problem of simultaneous online parameter

estimation and online optimal sensor placement. As outlined in the introduction, we cast

this as a bilevel optimisation problem, in which the objective is to obtain θ̂ ∈ Θ, ô(θ̂) ∈ Ωny

such that

θ̂ ∈ argmin
θ∈Θ

[

−L̃
(
θ, ô(θ)

)]

, ô(θ) ∈ argmin
o∈Ωny

J̃
(
θ,o

)
. (3.41)

We should remark that, depending on our primary objective, we may instead specify J̃ as

the upper-level objective function, and −L̃ as the lower-level objective function. Indeed,

the subsequent methodology is generic to either case. As in Chapter 2, we will consider a

weaker version of this problem, in which we simply seek to obtain joint stationary points

of L̃ and J̃ .

There are two possible approaches to this task. The first is to alternate between online

parameter estimation and optimal sensor placement, periodically updating the locations of

the measurement sensors on the basis of the current parameter estimates. The second is to

jointly perform online parameter estimation and optimal sensor placement, simultaneously

and recursively updating the parameter estimates and the locations of the measurement

sensors. We strongly advocate the second approach, which is not only more numerically

convenient, but can be implemented in a truly online fashion. Moreover, in the case of
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mobile sensors, this approach can provide real-time motion guidance.

3.2.4.1 The ‘Ideal’ Algorithm

To solve this bilevel optimisation problem, we propose a continuous-time, stochastic gradi-

ent descent algorithm, which combines the schemes in Sections 3.2.1 and 3.2.2, c.f., (3.14)

and (3.22). In particular, suppose some initialisation at θ0 ∈ Θ, o0 ∈ Ωny . Then, simul-

taneously, we generate parameter estimates {θt}t≥0 and optimal sensor locations {ot}t≥0

according to

dθt=

{

γ1t
[
Ĉθ
t (θt,ot)

]T
R−1(ot)

[
dyt − Ĉt(θt,ot)dt

]

0

, θt ∈ Θ,

, θt 6∈ Θ,
(3.42a)

dot=

{

−γ2t
[
ĵot (θt,ot)

]T
dt

0

, ot ∈ Ωny ,

, ot 6∈ Ωny .
(3.42b)

3.2.4.2 The Implementable Algorithm

In general, it is not possible to implement Algorithm (3.42a) - (3.42b) in its current

form, since it depends on the possibly intractable conditional expectations Ĉ, Ĉθ, and ĵo.

We can, however, obtain an implementable version of this algorithm by replacing these

quantities by their (possibly approximate) finite-dimensional filter representations ψC , ψ
θ
C ,

and ψo
j .

For the purpose of our theoretical analysis, it will also be useful to rewrite Algorithm

(3.42a) - (3.42b) in the form of Algorithm (2.18a) - (2.18b), the generic two-timescale

algorithm analysed in Section 2.2.2. It is worth noting that this requires us to rewrite dyt

using the observation equation (3.2). After taking these steps, we finally arrive at

dθt =

{

−γ1t
[
F (θt,ot,Xt)dt+ dζ1t

]

0

, θt ∈ Θ,

, θt 6∈ Θ,
(3.43a)

dot =

{

−γ2t
[
G(θt,ot,Xt)dt

]

0

, ot ∈ Ωny ,

, ot 6∈ Ωny ,
(3.43b)

where F and G are the R
nθ - and R

nyno-valued functions defined according to

F (θt,ot,Xt) = −
[
ψθ
C(θt,ot,Mt,M

θ
t )
]T
R−1(ot) (3.44)

[
C(θ∗,ot, xt)− ψC(θt,ot,Mt)

]
,

G(θt,ot,Xt) = ψo
j (θt,ot,Mt,M

o
t )

T , (3.45)
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where ζ1 is the R
nθ -valued semi-martingale which evolves according to the SDE

dζ1t (θt,ot) =
[
ψθ
C(θt,ot,Mt,M

θ
t )
]TR−1(ot)

︸ ︷︷ ︸

ζ
(2)
1 (θt,ot,Xt)

dwt, (3.46)

and where X = {Xt}t≥0 = {Xt(θt,ot)}t≥0 is the R
N -valued diffusion process defined in

(3.31), consisting of latent state, the filter, and the tangent filters, now integrated along

the path of the algorithm iterates. We emphasise that this algorithm can be implemented

for both exact (e.g. Kalman-Bucy, Beneš) and approximate (e.g., ensemble Kalman-Bucy,

unscented Kalman-Bucy, projection) filters.

Example. Let us return to the one-dimensional linear Gaussian example considered in the

previous section. We can now provide the specific joint online parameter estimation and

optimal sensor placement algorithm for this model. In particular, substituting our previous

expressions for C(θ,o, x), R(o), ψC(θ,o,M), ψθ
C(θ,o,M,M θ), and ψo

j (θ,o,M,Mo), c.f.

(3.33), (3.35a), (3.36a) and (3.36b), into the equations for F , G, and ζ1, c.f. (3.44) ,

(3.45) and (3.46), we obtain the update equations

dθt = −γ1t
[

−x̂θt (θt,ot)(ot − o0)
−2(xt − x̂t(θt,ot))dt (3.47a)

+x̂θt (θt,ot)(ot − o0)
−2dwt)

]

dot = −γ2t
[

Σ̂o
t (θt,ot)

]

dt. (3.47b)

where the filter mean x̂t(θt,ot), and filter derivatives x̂θt (θt,ot), Σ̂
o
t (θt,ot), evolve according

to the Kalman-Bucy filter equation (3.37), and the tangent Kalman-Bucy filter equations

(3.38) - (3.39), now evaluated along the path of the algorithm iterates.

3.2.4.3 Main Result

We will analyse Algorithm (3.43a) - (3.43b) under most of the assumptions introduced

in Section 2.2.2 for the general two-timescale gradient descent algorithm with Markovian

dynamics,12 in addition to the assumptions introduced in Section 3.2.3 for the filter and

filter derivatives. In order to state our main result, we must first define the (possibly

approximate) representations of the asymptotic log-likelihood and the asymptotic sensor

placement objective, c.f. (3.13) and (3.21), in terms of the (possibly approximate) finite

12In particular, we now no longer require two of the conditions relating to the additive, state-dependent
noise processes {ζit}t≥0, namely Conditions 2.2.3a and 2.2.3c, as these can be shown to follow directly from
Condition 2.2.3b.
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dimensional filter. In particular, we will write

L̃(filter)(θ,o) = lim
t→∞

1

t





t∫

0

R−1(o)ψC(θ,o,Ms(θ,o)) · dys (3.48)

−1

2

t∫

0

||R− 1
2 (o)ψC(θ,o,Ms(θ,o))||2ds





J̃ (filter)(θ,o) = lim
t→∞

1

t





t∫

0

ψj(θ,o,Ms(θ,o))ds



 . (3.49)

We are now ready to state our main result on the convergence of Algorithm (3.43a) -

(3.43b).

Proposition 3.1. Assume that Conditions 2.2.1, 2.2.2a - 2.2.2e, 2.2.3b, 2.1.4 - 2.1.6,

and 3.2.1 - 3.2.3 hold.13 Then, with probability one,

lim
t→∞

∇θL̃(filter)(θt,ot) = lim
t→∞

∇oJ̃ (filter)(θt,ot) = 0, (3.50)

or

lim
t→∞

(θt,ot) ∈ {(θ,o) : θ ∈ ∂Θ ∪ o ∈ ∂Ωny}. (3.51)

Proof. See Section 3.3.

Proposition 3.1 is obtained as a corollary of Theorem 2.2. In particular, Algorithm (3.43a)

- (3.43b) is a special case of Algorithm (2.18a) - (2.18b), in which the additive noise for

the slow process is defined by equation (3.46), and the additive noise for the fast process

is identically equal to zero. Aside from notational differences, the modifications in the

statement of this theorem, when compared to Theorem 2.2, are due solely to the inclusion

of the projection which ensures that the algorithm iterates remain in the open sets Θ ∈ R
nθ ,

Ωny ∈ R
nyno with probability one.

Proposition 3.1 extends Theorem 1 in [430], in which a.s. convergence of the online

parameter estimate was established under slightly weaker conditions. In particular, the

a.s. convergence results in [430] does not depend on a.s. boundedness of the algorithm

iterates. The method of proof, however, is entirely different (see discussion in Section

2.2.2). We remark, as in the previous section, that our theorem (and its proof) still

13In particular, we assume that these conditions hold for X , the R
N - valued diffusion process defined

in (3.31), F and G, the functions defined in (3.44) and (3.45), and ζ1, the semi-martingale defined in
(3.46), replacing the algorithm iterates α ↔ θ, β ↔ o and the functions f ↔ L̃(filter), g ↔ J̃ (filter) where
necessary, with L̃(filter) and J̃ (filter) the functions defined in (3.48) and (3.49).
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holds upon restriction to a single-timescale; that is, under the assumption that only the

parameters are estimated, while the sensor locations are fixed, or vice versa. In this case,

of course, we only require assumptions which relate to the quantity of interest. Thus, upon

restriction to a single-timescale (i.e., assuming that the sensors are fixed), our theorem

reduces to the result in [430], while our proof provides an entirely different proof for that

result.

3.2.4.4 Extensions for Approximate Filters

Proposition 3.1 guarantees that the online parameter estimates and the optimal sensor

placements generated by Algorithm (3.43a) - (3.43b) converge to the stationary points

of the finite-dimensional filter representations of the asymptotic log-likelihood and the

sensor placement objective function, namely, L̃(filter)(θ,o) and J̃ (filter)(θ,o). In the case

that one can obtain exact solutions to the Kushner Stratonovich equation (e.g., using the

Kalman-Bucy filter for a linear Gaussian model), these representations will be exact, and

thus this proposition implies convergence to the stationary points of the ‘true’ objective

functions L̃(θ,o) and J̃ (θ,o).

On the other hand, if it is only possible to obtain approximate solutions to the Kushner-

Stratonovich equation (e.g., using a continuous-time particle filter for a non-linear model),

Proposition 3.1 still guarantees convergence, but now to the stationary points of an ‘ap-

proximate’ asymptotic log-likelihood and an ‘approximate’ asymptotic sensor placement

objective function, namely, the representations of these functions in terms of the approx-

imate finite-dimensional filter. In this case, it is clear that the asymptotic properties of

the online parameter estimates and optimal sensor placements with respect to the ‘true’

objective functions will be determined by the properties of the approximate filter. In par-

ticular, in order to obtain convergence (e.g., in L
p) to the stationary points of the true

objective functions, one now requires bounds, preferably uniform in time, on terms such

as

E

[

||ψC(θ,o,Mt)− Ĉt(θ,o)||n
]

, E
[

||ψj(θ,o,Mt)− ĵt(θ,o)||n
]

(3.52)

We discuss this point in greater depth in Appendix 3.A, and sketch the details of how one

can obtain an L
p convergence result of this type for the Ensemble Kalman-Bucy Filter

(EnKBF) (e.g., [141, 143]).

3.2.4.5 Other Extensions

It is worth emphasising that Proposition 3.1 only establishes the convergence of the pa-

rameter estimates and the sensor placements generated by Algorithm (3.43a) - (3.43b)
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to stationary points of L̃(filter)(θ,o) and J̃ (filter)(θ,o). In particular, it does not guaran-

tee convergence of the parameter estimates to a global maximum of the asymptotic log-

likelihood function, or of the sensor placements to a global minimum of the asymptotic

sensor placement objective function. It is possible to extend Proposition 3.1 in this direc-

tion, establishing a.s. convergence of the algorithm iterates to global optima of these two

objective functions (see Section 2.4). This implies, under the assumption that the model

is well-specified, that the parameter estimates converge to the true parameter value, and

the sensor placements converge to an optimal sensor placement, respectively.14,15

However, such an extension comes at the expense of rather strong conditions which are

often not satisfied in practice (e.g., global convexity of the objective functions). Thus, in

practice, we can generally only hope that our two-timescale stochastic gradient descent

descent algorithm will converge to local optima of the two objective functions. This

being said, there are various ways in which one can improve the chance of converging to

‘good’ local optima, or even the global optima. These include multiple random restarts,

interacting particles (e.g., [64]), annealing noise (e.g., [111]), momentum (e.g., [306]),

amongst others. While many of these techniques have only rigorously been analysed

in the single-timescale case, it is reasonable to expect that they could also improve the

performance of our two-timescale algorithm.

3.2.4.6 Sufficient Conditions

Let us make some brief remarks on the assumptions required for Proposition 3.1 (see also

[430]). The majority of these assumptions are fairly classical, namely, those on the learning

rate (Condition 2.2.1), the additive noise process ζ1 (Condition 2.2.3b), the stability of the

algorithm iterates (Condition 2.1.4), and the stationary points of the asymptotic objective

functions (Conditions 2.1.5 - 2.1.6). Meanwhile, our assumptions on the filter (Conditions

3.2.1 - 3.2.3) are relatively weak, and are satisfied by many exact and approximate filters.

In fact, using the results recently established in [50], it may be possible to relax Condition

3.2.3 further, and allow the evolution equation for the filter to include a jump process.

This would further extend the applicability of this result, allowing for a broader class of

continuous-time particle filters (e.g., [142]).

It remains to consider the assumptions relating to the diffusion process X consisting of the

latent signal, the filter, and the tangent filters (Conditions 2.2.2a - 2.2.2e). These include

14To be precise, in order to identify the global maximum of the asymptotic log-likelihood with the true
parameter value, we also require some weak identifiability assumptions (e.g., [296]).

15In the case that the model is not well-specified, we can no longer identify the global maximum of
the asymptotic log-likelihood with the true parameter value, since we no longer have a notion of a ‘true
parameter’. However, one can still show that the global maximum of the asymptotic log-likelihood occurs
when the ‘distance’ between the true observation operator and the filter estimate of the observation operator
is minimised (e.g., [333] for some relevant results in the fully observed case). Thus, in this case, the online
parameter estimates would still converge to a parameter which is in some sense ‘optimal’.
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ergodicity (Condition 2.2.2a), uniformly bounded moments (Condition 2.2.2b, Condition

2.2.2e), polynomial growth for the diffusion term in the associated SDE (Condition 2.2.2c),

and existence and regularity of solutions of the Poisson equations associated with the gen-

erator of this process and the asymptotic objective functions (Condition 2.2.2d). One can

find sufficient conditions for one of these assumptions (Condition 2.2.2c) in [413, Appendix

F]. In particular, there we show that this assumption can be replaced by the slightly weaker

assumptions that (i) certain functions appearing in the definition of Algorithm (3.43a) -

(3.43b) have the polynomial growth property and (ii) for certain functions satisfying the

polynomial growth property, the Poisson equation admits a unique solution which also has

this property.

In general, while our conditions are necessary in order to establish a.s. convergence, they

are somewhat strong, and in general must be verified on a case by case basis. This being

said, in the linear Gaussian case, one can obtain sufficient conditions which are straight-

forward to verify [412]. In particular, the required conditions coincide with standard

conditions required for stability of the Kalman-Bucy filter, and are thus arguably the

weakest under which an asymptotic result of this type can be established.

More broadly, the problem of obtaining more easily verifiable sufficient conditions remains

open. Indeed, the diffusion process is generally highly degenerate, and thus standard

sufficient conditions for non degenerate elliptic diffusion processes (see [413, Appendix D]),

do not apply (e.g., [371, 372]). In the case that an exact, finite-dimensional solution to the

Kushner-Stratonovich equation exists, ergodicity of the optimal filter follows directly from

ergodicity of the latent signal process and the non-degeneracy of the observation process

(e.g., [75, 263]), but ergodicity of the tangent filter(s) must still established. Meanwhile, in

the case that only an approximate, finite-dimensional solution to the Kushner-Stratonovich

equation exists, there is no guarantee that the approximate filter is ergodic, let alone the

tangent filter(s).

3.2.4.7 Discussion

In practice, it is evident that our continuous-time, two-timescale stochastic gradient scheme

must be discretised. It is thus natural to ask why we prefer to use a discrete-time approxi-

mation of this continuous-time algorithm over the traditional approach, which first discre-

tises the continuous-time model, and then applies a classical discrete-time, two-timescale

stochastic gradient descent algorithm (see, e.g., [62]). This question was discussed in some

detail in Chapter 1, where we provided motivation for this approach. Let us briefly make

some additional remarks here.

Using the first approach, the parameter update equations are defined in terms of stochas-

tic estimates of the gradient of the true, continuous-time log-likelihood function. That
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is, the log-likelihood function defined in terms of the continuous-time model and the cor-

responding continuous-time filter. On the other hand, using the second approach, the

parameter update equations are defined in terms of stochastic estimates of the gradient of

an approximate, discrete-time log-likelihood function. That is, a log-likelihood function

defined in terms of a discretisation of the continuous-time model, and the corresponding

discrete-time filter.

The approximate, discrete-time log-likelihood will always differ from the true, continuous-

time log-likelihood.16 It follows, in particular, that stochastic estimates of the gradient of

the approximate, discrete-time log-likelihood are biased estimates of the gradient of the

true, continuous-time log-likelihood. Thus, at least in principle, the parameter update

equations obtained from discretising the continuous-time parameter update equations are

defined in terms of unbiased gradient estimates, while the parameter update equations

obtained by first discretising the model are necessarily defined in terms of biased gradient

estimates.17

From a mathematical perspective, it thus seems reasonable to prefer the first of these ap-

proaches over the second. Indeed, while it is possible to analyse the asymptotic behaviour

of stochastic gradient algorithms with biased gradient estimates, one can only hope to

obtain rather weaker convergence results in this case (see, e.g., [440]). Moreover, while

there are several approaches for obtaining unbiased estimates of the gradient of the log-

likelihood for partially observed diffusion processes (e.g., [26, 210]), incorporating these

into our theoretical analysis would undoubtedly incur a significant technical overhead.

From a practical perspective, the picture is somewhat less clear. Indeed, while in theory

the discretisation of the continuous-time learning equations can still be defined in terms

of the continuous-time log-likelihood function, in practice this quantity will also need to

be approximated. This will certainly require a discretisation of the continuous-time filter,

and possibly also a discretisation of the model dynamics. Thus, numerically, there may

be little difference between the two approaches, particularly if one restricts attention to

simple (e.g., first-order) discretisation schemes for the model, the filter, and the learning

equations. For example, in the linear Gaussian case, one can show that a first-order

discretisation of the continuous-time Kalman-Bucy filter coincides with the discrete-time

Kalman filter, applied to a first-order discretisation of the continuous-time model, up to

first order terms (e.g., [423]).

This being said, it is worth emphasising that the first approach allows one to apply any

16The error in this approximation will depend, amongst other factors, on the model dynamics, the
discretisation scheme, the discrete-time filter, and the method used to approximate the log-likelihood
function.

17We note that, while we have framed this discussion in terms of the recursive parameter estimates and
the log-likelihood function, analogous statements hold for the recursive optimal sensor placements and the
sensor placement objective function.
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numerical discretisation scheme directly to the continuous-time equations. This has the

potential to result in algorithms with improved convergence properties (e.g., [298, 299]).

There may also be other practical reasons to prefer the first approach. In particular, if

the dimensions of the model parameters (and the filter) are significantly smaller than the

dimensions of the model, then discretising the low-dimensional learning equations (and the

low-dimensional filter) while avoiding the need to discretise the high-dimensional model

dynamics could result in significant computational benefits. We leave a more detailed

analysis of these issues to future work.

3.3 Proof of Main Results

In this Section, we provide a proof of Proposition 3.1. For convenience, we now recall the

statement of this result.

Proposition 3.1. Assume that Conditions 2.2.1, 2.2.2a - 2.2.2e, 2.2.3b, 2.1.4 - 2.1.6,

and 3.2.1 - 3.2.3 hold.18 Then, with probability one,

lim
t→∞

∇θL̃(filter)(θt,ot) = lim
t→∞

∇oJ̃ (filter)(θt,ot) = 0, (3.53)

or

lim
t→∞

(θt,ot) ∈ {(θ,o) : θ ∈ ∂Θ ∪ o ∈ ∂Ωny}. (3.54)

Proof. We begin by defining the first exit times from Θ, Ωny , respectively, as

τθ = inf{t ≥ 0 : θt 6∈ Θ}, (3.55)

τo = inf{t ≥ 0 : ot 6∈ Ωny}. (3.56)

First suppose that τθ < ∞. Since the paths of {θt}t≥0 are continuous, it follows that

θτθ ∈ ∂Θ. Furthermore, since dθt = 0 on ∂Θ, we in fact have θt ∈ ∂Θ for all t ≥ τθ. In

particular, it follows that

lim
t→∞

(θt,ot) ∈ {(θ,o) : θ ∈ ∂Θ ∪ o ∈ ∂Ωny}. (3.57)

Using an identical argument, the same conclusion holds under the assumption that τo <∞.

It remains to consider the case when τθ = τo = ∞. That is, equivalently, when θt ∈ Θ and

ot ∈ Ωm for all t ≥ 0. In this instance, it is straightforward to see that Algorithm (3.43a)

18In particular, we assume that these conditions hold for X , the R
N - valued diffusion process defined

in (3.31), F and G, the functions defined in (3.44) and (3.45), and ζ1, the semi-martingale defined in
(3.46), replacing the algorithm iterates α ↔ θ, β ↔ o and the functions f ↔ L̃(filter), g ↔ J̃ (filter) where
necessary, with L̃(filter) and J̃ (filter) the functions defined in (3.48) and (3.49).
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- (3.43b) is a special case of Algorithm (2.18a) - (2.18b), in which the noise sequences

{ζit}t≥0, i = 1, 2, are defined according to

dζ1t = −ζ(2)1 (θt,ot,Xt)dwt, (3.58)

dζ2t = 0, (3.59)

and where the function ζ
(2)
1 : Rnθ × R

nyno × R
N → R

nθ×ny is defined in equation (3.46).

It is thus sufficient to prove that the single condition relating to these noise sequences

in Proposition 3.1 (Condition 2.2.3b) is sufficient for the additional conditions in Propo-

sition 2.2 (Conditions 2.2.3a, 2.2.3c). Indeed, in this case, it follows immediately from

Proposition 2.2 that

lim
t→∞

∇θL̃(θt,ot) = lim
t→∞

∇oJ̃ (θt,ot) = 0. (3.60)

We begin by considering Condition 2.2.3a. We wish to prove that for all T > 0, the noise

sequences {ζit}t≥0, i = 1, 2, a.s. satisfy

lim
s→∞

sup
t∈[s,s+T ]

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

s

γivdζ
i
v

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

= 0 (3.61)

This condition holds trivially for {ζ2t }t≥0. We thus turn our attention to {ζ1t }t≥0. Using

the Itô Isometry, and Conditions 2.2.1, 2.2.2e, and 2.2.3b, there exist constants q > 0 and

constants K,K ′,K ′′ > 0 such that

sup
t≥0

E









∞∫

0

γ1t dζ
1
t





2

 = E










t∫

0

γ1t ζ
(2)
1 (θt,ot,Xt)dwt





2



 (3.62)

≤ KE





t∫

0

(γ1t )
2(1 + E||Xt||q)dt



 (3.63)

≤ KK ′

t∫

0

(γ1t )
2dt (3.64)

≤ KK ′K ′′ <∞. (3.65)

Thus, by Doob’s martingale convergence theorem, there exists a square integrable random

variable, say M∞, such that, both a.s. and in L2, limt→∞

∫ t
0 γ

1
t dζ

1
t = M∞. The required

result follows.

It remains to consider Condition 2.2.3c. We wish to prove that there exist constants

99



Chapter 3: An Application of Two-Timescale Stochastic Gradient Descent

Az1,z2 , Azi,b > 0, i = 1, 2, such that, componentwise,

cz1,z2t =
d[z1, z2]t

dt
≤ Az1,z2 , c

zi,b
t =

d[zi, b]t
dt

≤ Azi,b. (3.66)

where, in the general case, {zit}t≥0 are the R
di5-valued Wiener processes appearing in the

definition of the noise processes {ζit}t≥0, c.f. (2.26), and {bt}t≥0 is the R
d4-valued Wiener

process appearing in the definition of the ergodic diffusion process {Xt}t≥0, c.f. (2.19).

In the case of Algorithm (3.43a) - (3.43b), we identify z1t = wt, z
2
t = 0 from equations (3.58)

- (3.59), and bt = (vt, wt, at)
T from equation (3.31). Thus, using elementary properties of

the quadratic variation, we have, componentwise,

d[z1, z2]t
dt

= 0 ,
d[z1, b]t

dt
= 1 or 0 ,

d[z2, b]t
dt

= 0. (3.67)

In particular, Condition 2.2.3c is satisfied. The result now follows immediately from our

previous remarks.

3.4 Numerical Example

To illustrate the results of Section 3.2, we now provide an example of joint online pa-

rameter estimation and optimal sensor placement. In particular, we study the numerical

performance of the proposed two-timescale stochastic gradient descent algorithm, and ver-

ify numerically the convergence of the parameter estimates and the sensor placements. We

also provide explicit derivations of the parameter and sensor update equations.

3.4.1 One-Dimensional Benes Filter

We will consider a one-dimensional, partially observed diffusion process defined by

dxt = µσ tanh
[µ

σ
xt

]

dt+ dwt , x(0) = 0, (3.68)

dyt = cxtdt+ dvt , y(0) = 0, (3.69)

where w = {wt}t≥0 and v = {vt}t≥0 are independent, one-dimensional Brownian motions

with incremental variances q(θ) = σ2 and r(o) = τ2 + (o − o∗)
2, respectively, for some

fixed positive constant τ ∈ R+. We assume that the initial condition x0 ∈ R, that the

parameters µ, c ∈ R and σ ∈ R+, respectively, and that the sensor location o ∈ R. We

thus have a three-dimensional parameter vector θ = (µ, c, σ) ∈ R
2 × R+, and a single,

one-dimensional sensor location o ∈ R.

This system has an analytic, finite-dimensional solution, known as the Beneš filter [39].
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Namely, the conditional law of the latent signal process x = {xt}t≥0 given the history of

observations FY
t = σ(ys : 0 ≤ s ≤ t) is a weighted mixture of two normal distributions

[19, Chapter 6], which takes the form

πt = w+
t (θ,o)N

(
A+

t (θ,o)

2Bt(θ,o)
,

1

2Bt(θ,o)

)

(3.70)

+ w−
t (θ,o)N

(
A−

t (θ,o)

2Bt(θ,o)
,

1

2Bt(θ,o)

)

,

where

w±
t (θ,o) =

exp
(A±

t (θ,o)2

4Bt(θ,o)

)

exp
(A+

t (θ,o)2

4Bt(θ,o)

)
+ exp

(A−
t (θ,o)2

4Bt(θ,o)

) (3.71a)

A±
t (θ,o) = ±µ

σ
+ cr−1(o)

t∫

0

sinh(cσr−
1
2 (o)s)

sinh(cσr−
1
2 (o)t)

dys (3.71b)

Bt(θ,o) =
cr−

1
2 (o)

2σ
coth(cσr−

1
2 (o)t). (3.71c)

It follows, in particular, that the optimal filter has a (non-unique) two-dimensional repre-

sentation, which we will write as Mt(θ,o) = (mt(θ,o), Pt(θ,o))
T . In this case, we choose

to define

mt(θ,o) = c
A±

t (θ,o)∓ µ
σ

2Bt(θ,o)
= cσr−

1
2 (o)

∫ t
0 sinh

(

cr−
1
2 (o)σs

)

dyt

cosh
(

cr−
1
2 (o)σt

) (3.72a)

Pt(θ,o) =
1

2Bt(θ,o)
=
σr

1
2 (o)

c
tanh

(

cr−
1
2 (o)σt

)

. (3.72b)

This choice implies that the finite-dimensional filter evolves according to an SDE of the

required form, namely (e.g., [407])

dMt(θ,o) =

(

−c2r−1(o)Pt(θ,o)mt(θ,o)

σ2 − c2r−1(o)P 2
t (θ,o)

)

dt+

(

cr−1(o)Pt(θ,o)

0

)

dyt. (3.73)

The equations for the tangent filters, namely Mµ
t (θ,o), M

σ
t (θ,o), M

c
t (θ,o) andM

o
t (θ,o),

can then be obtained by (formal) differentiation of this equation with respect to the

relevant variable. Illustratively, for the first parameter, we have

dMµ
t (θ,o) =








−c2r−1(o)Pµ
t (θ,o)mt(θ,o)

−c2r−1(o)Pt(θ,o)m
µ
t (θ,o)

−2c2r−1(o)Pt(θ,o)P
µ
t (θ,o)








dt+







cr−1(o)Pµ
t (θ,o)

0







dyt. (3.74)
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We should remark that mt(θ,o) and Pt(θ,o) do not correspond directly to the mean

x̂t(θ,o) and variance Σ̂t(θ,o) of the optimal filter. However, these quantities can be

computed as [407]

x̂t(θ,o) = mt(θ,o) +
µ

σ
Pt(θ,o) tanh

(µ

σ
mt(θ,o)

)

, (3.75a)

Σ̂t(θ,o) = Pt(θ,o) +
µ2

σ2

(

1− tanh2(
µ

σ
mt(θ,o))

)

P 2
t (θ,o). (3.75b)

We can then compute the conditional expectations

Ĉt(θ,o) = ψC(θ,o,Mt(θ,o)) = cx̂t(θ,o), (3.76a)

ĵt(θ,o) = ψj(θ,o,Mt(θ,o)) = Tr
[
Σ̂t(θ,o)

]
. (3.76b)

It is now straightforward to obtain the explicit form of the two-timescale, joint online pa-

rameter estimation and optimal sensor placement algorithm for this system. In particular,

we have

dµt = −γ1,µt cx̂µt (θt,ot) [cx̂t(θt,ot)dt− dyt] (3.77a)

dσt = −γ1,σt cx̂σt (θt,ot) [cx̂t(θt,ot)dt− dyt] (3.77b)

dct = −γ1,ct [x̂t(θt,ot) + cx̂ct(θt,ot)] [cx̂t(θt,ot)dt− dyt] (3.77c)

dot = −γ2,ot Tr
[
Σ̂o
t (θt,ot)

]
. (3.77d)

where x̂µ, x̂σ, x̂c and Σ̂o are the filter derivatives of the posterior mean and the posterior

variance, respectively. These quantities are obtained by differentiating (3.75a) - (3.75b)

with respect to the relevant variable, and substituting the filter and the relevant tangent

filter where appropriate.

Illustratively, we can compute the first of these quantities, by formal differentiation of

equation (3.75a), as

x̂µt (θt,ot) = mµ
t (θt,ot) (3.78)

+
1

σt
Pt(θt,ot) tanh

(
µt
σt
mt(θt,ot)

)

+
µt
σt
Pµ
t (θt,ot) tanh

(
µt
σt
mt(θt,ot)

)

+
µt
σ2t
Pt(θt,ot)mt(θt,ot) sech

2

(
µt
σt
mt(θt,ot)

)

+
µ2t
σ2t
Pt(θt,ot)m

µ
t (θt,ot) sech

2

(
µt
σt
mt(θt,ot)

)

,

and where, for example, the filter derivative with respect to the first parameter evolves

102



3.4: Numerical Example

according to

dmµ
t (θt,ot) =− c2R−1(ot)P

µ
t (θt,ot)mt(θt,ot)dt (3.79a)

− c2R−1(ot)Pt(θt,ot)m
µ
t (θt,ot)dt

+ cR−1(ot)P
µ
t (θt,ot)dyt

dPµ
t (θt,ot) =− 2c2R−1(ot)Pt(θt,ot)P

µ
t (θt,ot)dt. (3.79b)

The performance of the two-timescale stochastic gradient descent algorithm is illustrated in

Figure 3.1. In this simulation, we assume that the parameters σ2 = σ2∗ = 4, c = c∗ = 0.7

and τ2 = τ2∗ = 2 are fixed, while the parameter µ is learned. The true value of this

parameter is given by µ∗ = 3, and we consider two initial parameter estimates µ0 = {1, 7}.
Meanwhile, the optimal sensor placement and the initial sensor placement is given by

o∗ = 4, and we consider initial sensor placements o0 = {2, 6}. We remark that, as in

any gradient based algorithm, the convergence of the proposed scheme may be sensitive

to initialisation. In this case, however, it appears to be robust to this choice.

For simplicity, we choose to integrate all SDEs using a standard Euler-Maruyama dis-

cretisation, with ∆t = 0.01, though similar results are obtained for other choices of

∆t. We provide results for several choices of learning rates of the form γµt = γµ0 t
−ηµ and

γot = γo0t
−ηo , where 0 < γµ0 , γ

o
0 <∞, and 0 < ηµ < ηo < 1. We consider both learning rates

for which the learning rate condition in Proposition 3.1 is satisfied (when 0.5 ≤ ηµ, ηo ≤ 1),

and learning rates for which this condition is violated (when 0 < ηµ, ηo < 0.5). In this

case, the online parameter estimates and optimal sensor converge to their true values,

regardless of the choice of learning rate or the initialisation. We note, however, that the

rate of convergence does depend on the choice of learning rate.

To obtain (optimal) convergence rates which are independent of the choice of learning

rate, a standard approach in discrete time, including the two-timescale case [354], is to

use Polyak-Ruppert averaging [13, 381, 401]. In the spirit of this scheme, in the continuous-

time, two-timescale setting, we can consider new parameter estimates {θ̄t}t≥0 and {ōt}t≥0

defined according to

θ̄t =
1

t

t∫

0

θsds , ōt =
1

t

t∫

0

osds. (3.80)

A detailed theoretical analysis of this approach, which extends the results in [354] to the

continuous-time setting using the tools established in [371, 372, 420, 422], is beyond the

scope of this chapter. We do provide tentative numerical evidence, however, to suggest

that such results can also be expected to hold in continuous time. In particular, in Figure

3.2, we plot the sequence of averaged optimal sensor placements (Figure 3.2a) and the
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(a) Online parameter estimates.
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(b) Optimal sensor placements.

Figure 3.1: The sequence of online parameter estimates & optimal sensor placements for
the partially observed Beneš SDE, for several choices of the learning rates {γθt}t≥0 and
{γot}t≥1.

corresponding L
1 error for large times (Figure 3.2b), for several choices of the learning

rate. The latter illustration, in particular, indicates that the convergence rate is now

independent of the learning rate. One can obtain similar results for the corresponding

sequence of averaged online parameter estimates (plots omitted).
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(a) Optimal sensor placements.
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(b) L1 error (log-log plot).

Figure 3.2: The sequence of averaged optimal sensor placements for the partially observed
Beneš SDE, for several choices of the learning rates {γθt }t≥0 and {γot }t≥1.

We conclude this section by investigating the performance of the stochastic gradient de-

scent algorithm under the assumption that the true model parameters and the optimal

sensor placements are no longer static, but now change in time. This is a scenario of

particular practical interest. In this case, we must specify constant learning rates for both
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the parameter estimates and the sensor placements. While this violates the learning rate

condition in Proposition 3.1, it is a standard choice when the model parameters are dy-

namic (e.g., [315]). In particular, although there is no longer any guarantee that that the

algorithm iterates will converge to the stationary points of the two objective functions,

they can be expected to oscillate around these points, with amplitude proportional to the

learning rate. The performance of the algorithm is shown in Figure 3.3. As anticipated,

the online parameter estimates (sensor placements) are able to track changes in the true

model parameter (optimal sensor placement) in real time. It is worth noting that, while

here we have considered the case in which the model parameters change discontinuously in

time, we obtain similar results when the model parameters change continuously in time.
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(a) Online parameter estimates.
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(b) Optimal sensor placements.

Figure 3.3: The sequence of online parameter estimates & optimal sensor placements for
the partially observed Beneš SDE, in the case of a time-varying parameter and optimal
sensor location.

3.5 Conclusions

In this chapter, we have demonstrated in detail how a two-timescale stochastic gradient

descent algorithm in continuous time can be applied to the problem of joint online param-

eter estimation and optimal sensor placement for a partially observed diffusion processes.

Moreover, under suitable assumptions on the process consisting of the latent signal, the fil-

ter, and the filter derivatives, we have established a.s. convergence of this algorithm to the

stationary points of the asymptotic log-likelihood and the asymptotic sensor placement

objective function. Although we have focused on this specific application, it is impor-

tant to emphasise that the proposed methodology is applicable to any problem involving

the optimisation of two interdependent objective functions, either or both of which may

depend on an ergodic diffusion process.
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A natural extension of the work presented in this chapter is to consider the problem of op-

timal sensor scheduling (rather than optimal sensor placement). This, we recall, refers to

determining the optimal subset of a finite number of measurement sensors at each instant

in time. In this case, the picture is not quite as straightforward. In particular, the design

variable ot ∈ {0, 1}no is now discrete, being a vector of zeros and ones which represents

which sensors are ‘activated’ at each time (e.g., [30, 211, 291]). As such, the gradient

based methods proposed in this chapter are not immediately applicable. One can, how-

ever, recover a continuous version of this problem via the so-called control parametrisation

enhancing transform (CPET) [178, 290, 291, 292, 300, 446], or via an appropriate relax-

ation (e.g., [233]). Thus, in principle, the joint online parameter estimation and optimal

sensor scheduling problem should also be amenable to a two-timescale stochastic gradient

descent scheme similar to the one proposed here.
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Appendices

3.A Extensions to Proposition 3.1

In this Appendix, we discuss in more detail extensions to Proposition 3.1 in the case the

Kushner-Stratonovich equation only admits a finite-dimensional recursive approximation.

Under the stated assumption, Proposition 3.1 guarantees that19

lim
t→∞

∇θL̃(filter)(θt,ot) = lim
t→∞

∇θJ̃ (filter)(θt,ot) = 0 , a.s. (3.81)

where L̃(filter)(θ,o) and J̃ (filter)(θ,o) are the representations of the asymptotic log-likelihood

and the asymptotic sensor placement objective in terms of the approximate finite dimen-

sional filter, and θt and ot are the parameter estimates and optimal sensor placements

generated by Algorithm (3.43a) - (3.43b). In the case that one only has access to an

approximate filter, the functions L̃(filter)(θ,o) and J̃ (filter)(θ,o) are only approximations

of the true objective functions L̃(θ,o) and J̃ (θ,o). As such, it would clearly be preferable

to obtain a result of the form

lim
t→∞

∇θL̃(θt,ot) = lim
t→∞

∇θJ̃ (θt,ot) = 0 , a.s. (3.82)

For now, we will consider the slightly easier task of trying to obtain a result of the form

lim
t→∞

||∇θL̃(θt,ot)|| = lim
t→∞

||∇θJ̃ (θt,ot)|| = 0 (3.83)

where the mode of convergence is to be specified. To make progress towards this goal, let

us consider the simple decomposition

||∇θL̃(θt,ot)|| ≤ ||∇θL̃(θt,ot)−∇θL̃(filter)(θt,ot)|| (3.84)

+ ||∇θL̃(filter)(θt,ot)||

where, for the sake of brevity, we have now restricted our attention to the log-likelihood (an

analogous decomposition holds for the asymptotic sensor placement objective function).

Proposition 3.1 guarantees that the second term in this decomposition converges to zero

a.s. as t→ ∞. It thus remains to bound the first term. Evidently this bound will depend

on the properties of the filter, and vanishes if the filter is exact. To obtain such a bound,

19For the purpose of this discussion, we will ignore the projection device which ensures that the algorithm
iterates remain within Θ and Ω, respectively.
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we can write

||∇θL̃(θt,ot)−∇θL̃(filter)(θt,ot)|| (3.85)

≤ ||∇θL̃(θt,ot)−
1

t
∇θLt(θt,ot)|| (3.86)

+ ||1
t
∇θLt(θt,ot)−

1

t
∇θL(filter)

t (θt,ot)||

+ ||1
t
∇θL(filter)

t (θt,ot)−∇θL̃(filter)(θt,ot)||

where Lt(θ,o) denotes the true log-likelihood at time t, and L(filter)
t (θ,o) denotes the filter

representation of the log-likelihood at time t. Under our assumptions, it is straightforward

to show that the first term and the third term in this decomposition converge to zero a.s.

as t → ∞ (see also [430, Proposition 1]). We thus turn our attention to the central

term. Using our previous expression for the log-likelihood function, c.f. (3.8), and its

representation in terms of the approximate filter, c.f. (3.48), we have that

1

t
∇θLt(θ,o)−

1

t
∇θL(filter)

t (θ,o) (3.87)

=
1

t
∇θ





t∫

0

R−1(o)Ĉs(θ,o) · dys −
1

2

t∫

0

||R− 1
2 (o)Ĉs(θ,o)||2ds



 (3.88)

− 1

t
∇θ





t∫

0

R−1(o)ψC(θ,o,Ms) · dys −
1

2

t∫

0

||R− 1
2 (o)ψC(θ,o,Ms)||2ds



 . (3.89)

It follows, after some rearrangement of this expression, that given suitable bounds on the

quantities ||ψC(θ,o,Ms)− Ĉs(θ,o)|| and ||ψθ
C(θ,o,Ms,M

θ
s )− Ĉθ

s (θ,o)||, it will be possible
to bound this term. In many cases (e.g., linear observations), this corresponds to bounds

on ||ψx(θ,o,Ms)− x̂s(θ,o)|| and ||ψθ
x(θ,o,Ms)− x̂θs(θ,o)||, where, for example, ψx denotes

the estimate of the conditional mean x̂ in terms of the approximate filter. In general,

it will be necessary to verify these bounds on a case by case basis. There are, however,

some notable exceptions, including the Ensemble Kalman-Bucy Filter (EnKBF) (e.g.,

[141, 143]). Let us briefly demonstrate how existing results on this filter can be applied

in our context. In order to simplify the presentation, in what follows we will assume that

the observations are linear: that is, C(θ,o, x) = C(θ,o)x.

Suppose that (vi,Nt , wi,N
t , xi,N0 )Ni=1 are independent copies of (vt, wt, x0). The EnKBF con-

sists of N interacting particles (xi,Nt (θ,o)Ni=1 which evolve according to following system

of interacting stochastic differential equations

dxi,Nt (θ,o) = A(θ, xi,Nt (θ,o))dt+B(θ, xi,Nt (θ,o))dvi,Nt (3.90)

+ PN
t (θ,o)CT (θ,o)R−1(o)(dyt − C(θ,o)xi,Nt (θ,o)dt− dwi,N

t )
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where

PN
t (θ,o) =

1

N − 1

N∑

i=1

(xi,Nt (θ,o)−mN
t (θ,o))(xi,Nt (θ,o)−mN

t (θ,o))T (3.91)

mN
t (θ,o) =

1

N

N∑

i=1

xi,Nt (θ,o).

represent the (empirical) filter estimates of the conditional covariance Σ̂t(θ,o) and the

conditional mean x̂t(θ,o). Under additional assumptions (e.g., A(θ,o, x) is linear), it is

possible to show that, for all p ≥ 1, and for sufficiently large N , (e.g., [143, Theorem 3.6])

E
[
||mN

t (θ,o)− x̂t(θ,o)||p
] 1
p ≤ K(p)

N
1
2

(3.92)

where K(p) < ∞ is a constant independent of N . Suppose, in addition, that one could

establish a similar bound for the tangent EnKBF (this remains an open problem in the

general case). Then, using these results, our existing assumptions (e.g., polynomial growth,

uniformly bounded moments for the filter and the tangent filter), and the Hölder inequality,

after some algebra one arrives at

E

[

||1
t
∇θLt(θ,o)−

1

t
∇θL(filter)

t (θ,o)||p
] 1

2p

≤ K(p)

N
1
2

(3.93)

It follows, substituting this bound into (3.86), substituting (3.86) into (3.84), that

lim
t→∞

E

[

||∇θL̃(θt,ot)||p
] 1

2p ≤ K(p)

N
1
2

(3.94)

One can follow the same argument to obtain an identical bound for ∇θJ̃ (θ,o). It follows

immediately from these bounds that the limit (3.83) holds in L
p, for all p ≥ 1, under

the additional limit that N → ∞ (i.e., as the number of particles goes to infinity). We

remark that a rigorous result of this type has recently been established for (discrete-time)

recursive maximum likelihood estimation in non-linear state-space models [435].
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4
Online Parameter Estimation and

Optimal Sensor Placement for the

Partially Observed Stochastic

Advection-Diffusion Equation

Summary. In this chapter, we consider the problem of jointly performing on-

line parameter estimation and optimal sensor placement for a partially observed

infinite dimensional linear diffusion process. We present a principled solution

to this problem in the form of a continuous-time, two-timescale stochastic gra-

dient descent algorithm, which recursively seeks to maximise the log-likelihood

with respect to the unknown model parameters, and to minimise the expected

mean squared error of the hidden state estimate with respect to the sensor loca-

tions. This represents an extension of the algorithm introduced in the previous

chapter to the case in which the hidden state is infinite dimensional. We also

demonstrate in detail how to apply the proposed approach in the case that the

hidden signal is governed by the two-dimensional stochastic advection-diffusion

equation, and provide extensive numerical results demonstrating its efficacy in

several cases of practical interest.
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Chapter 4: Joint Online Parameter Estimation and Optimal Sensor Placement for the

Partially Observed Stochastic Advection-Diffusion Equation

4.1 Introduction

High dimensional spatio-temporal data are increasingly common across epidemiology, en-

gineering, meteorology, environmental monitoring, and the applied sciences. In such ap-

plications, statistical spatio-temporal models are essential tools for performing inference

and prediction. The phenomena of interest, even if defined continuously over space and

in time, can typically only be measured at a limited number of spatial locations. Further-

more, they are often highly complex insofar as the dependence structure across time and

space is non-trivial, non-separable, or non-stationary. It is often also the case that infer-

ence is desired at a very large number of spatial locations, that the data are obtained with

significant observational uncertainty, and that there are missing observations at numerous

spatial or temporal locations.

Various regimes have been proposed for modelling spatiotemporal processes (see also [125]

for an excellent overview). Traditional approaches to this problem have focused on the

geostatistical paradigm, which requires complete specification of the joint space-time co-

variance structure [122, 202, 326], or on the use of multivariate time series methods, which

specify a set of spatially correlated time series [190, 280, 400, 469]. Alternatively, authors

have considered time as an extra dimension, in which case standard spatial statistical

techniques can be applied [124].

Each of these formulations is flawed, however. The first is limited by the relatively small

known class of valid spatiotemporal covariance functions, despite some significant efforts

at extension [186, 203, 394, 427], and by the inability of such covariance functions to realis-

tically capture correlations in complex dynamical processes. The second approach doesn’t

provide for accurate predictions at unmonitored sites, due to the lack of a continuous

spatial component in the model [469]. Perhaps more critically, it is difficult and costly

to implement when the number of spatial locations is high. The final approach ignores

the fundamental differences between space and time: in particular, time has a natural

ordering, while space does not.

In the presence of complex temporal and spatial components, it is natural to combine

the first two of these approaches, to obtain a statistical model that is both temporally

dynamic and spatially descriptive. In the geostatistical setting, such models are tradi-

tionally referred to as space-time dynamic models [123, 469] or dynamical spatiotemporal

models [125]. In such models, the temporal evolution of the spatiotemporal process of

interest can be defined in various ways, common choices being simple random walk dy-

namics (e.g., [82, 227, 429]) or via a stochastic partial differential (or difference) equation

(e.g., [72, 219, 220, 308, 417, 418, 428, 467, 468, 474].

In this chapter, we consider a dynamic spatio-temporal statistical model governed by a dis-
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sipative stochastic partial differential equation (SPDE), namely, the stochastic advection-

diffusion equation. This equation, typically as part of a larger hierarchical model (see,

e.g., [125]), is frequently used in environmental monitoring applications to model phenom-

ena such as precipitation [71, 308, 418], air pollution [31, 309], chemical contamination of

surface soil [353], groundwater flow [261, 455], and sediment transport [329].

In particular, we will consider the case in which the hidden state of interest is a space-time

varying scalar field, ut(x), on some bounded two-dimensional domain Π ⊆ R
2. This state

is modelled using the stochastic advection-diffusion equation, which is given by

∂ut(x)

∂t
= −µ(x)T∇ut(x) +∇ · Σ(x)∇ut(x)− ζ(x)ut(x) + ft(x) + b(x)εt(x) (4.1)

where x = (x1, x2)
T ∈ Π, ∇ = (∂/∂x1, ∂/∂x2)

T is the gradient operator, ∇· is the di-

vergence operator, ft(x) is a deterministic forcing, and εt(x) is a Gaussian noise process

which is temporally white and spatially coloured. This might appear as a restrictive choice

for the dynamics, but much of the subsequent methodology is generic, and could thus the-

oretically be applied to other models of interest (see Chapter 3 for a rigorous treatment).

Moreover, this model results in a tractable but non-separable space-time covariance oper-

ator [418], and thus its spatiotemporal dynamics are interpretable for practitioners.

In addition, the terms in this equation can, if desired, be given a clear physical interpre-

tation. In particular, the first term describes transport effects, also termed convection or

advection, with µ(x) = (µ1(x), µ2(x))
T ∈ R

2 the drift or velocity field. The second term

describes a possibly anisotropic diffusion, with Σ(x) = [Σi,j(x)]i,j=1,2 ∈ R
2×2 the diffusiv-

ity or diffusion matrix. This matrix can further be parametrised as (e.g., [418])

Σ−1(x) =
1

ρ21(x)

(

cosα(x) sinα(x)

−γ(x) sinα(x) γ cosα(x)

)T (

cosα(x) sinα(x)

−γ(x) sinα(x) γ cosα(x)

)

(4.2)

in which case ρ1(x) ∈ R+ can be viewed as the range, which determines the amount

of diffusion; γ(x) ∈ R+ as the anisotropic amplitude, which determines the amount of

anisotropy; and α(x) ∈ [0, π2 ] as the anisotropic direction, which determines the direction

of the anisotropy. In the case that γ(x) ≡ 1, this matrix is symmetric, and the diffusion

is isotropic. The third term describes damping, with ζ(x) ∈ R+ the damping rate, or

damping coefficient. The fourth term ft(x) describes a deterministic forcing, i.e., a source

or sink, while the final term b(x)εt(x) describes a spatially weighted stochastic forcing.

We will assume, as in many typical applications, that the unknown state of the SPDE can-

not be observed directly, but that it generates a continuous sequence of noisy observations

via a finite set of measurement sensors. In the spirit of data assimilation and uncertainty

quantification, we are then interested in determining the conditional distribution of the

latent state, given the history of observations. Under the assumption that the model pa-
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rameters are known, this distribution can be obtained directly via the infinite-dimensional

Kalman-Bucy filter (see, e.g., [43, 127]). In practice, however, the model parameters are

unknown, are must be estimated from the data (e.g., [18, 24, 63, 259]). Moreover, the lo-

cations of the measurement sensors are not fixed, and it may be possible to improve upon

the state estimate by obtaining an optimal sensor placement (e.g., [41, 80, 128, 472]).

4.1.1 Literature Review

4.1.1.1 Parameter Estimation

The study of parameter estimation for stochastic partial differential equations, or dis-

tributed parameter systems, was initiated in the late 1960s (e.g., [259, 379]), and has since

been the subject of numerous papers and several monographs (e.g., [28, 33, 113, 319] and

references therein). Although the majority of literature on this subject has been written for

fully observed processes, several authors have also consider the ‘partially observed’ case,

in which observations of the infinite dimensional system are corrupted by some additional

noise process [4, 5, 6, 7, 15, 18].

We will focus on parameter estimation methods based on the maximum likelihood princi-

ple. In the offline setting, the asymptotic properties (e.g., consistency, asymptotic normal-

ity) of such methods for partially observed linear distributed parameter systems have been

relatively well studied (e.g., [7, 15, 18, 24, 247, 255, 352]). Perhaps somewhat surprisingly,

a rigorous treatment of online maximum likelihood estimation in the infinite-dimensional

setting remains an open problem.1 While we will not attempt to review them here, it is

worth noting that rigorous treatments of other approaches to online parameter estimation

in infinite-dimensional systems have also been proposed (e.g., [33]).

4.1.1.2 Optimal Sensor Placement

In contrast to online parameter estimation, the problem of optimal sensor placement for

state estimation in linear distributed parameter systems, has been studied by a large

number of authors, and in a wide variety of contexts. The first comprehensive treatment

of this problem was provided by Bensoussan [41, 43], who formulated it as an application

of optimal control on the infinite dimensional Ricatti equation governing the covariance

operator of the optimal filter. In particular, sensor locations were treated as control

variables, and the performance index was taken as the sum of a measurement cost term

and an accuracy cost term, the latter being the trace of the covariance operator at some

terminal time. The solution was obtained in the form of a two-point boundary value

1We refer to Chapter 3 for a comprehensive survey of the relevant literature in the finite-dimensional
setting.
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problem, on the basis of which Bensoussan derived necessary and sufficient conditions for

optimality by using the variational inequality. This extended the work of Athans [11],

who obtained similar conditions in the finite dimensional case. Chen and Seinfeld [109],

Omatu [368], and Curtain and Ichikawa [128] later also derived necessary and/or sufficient

conditions for optimality from alternative perspectives. In particular, the first derived

necessary conditions via an application of a minimum principle for distributed parameter

systems. The second derived necessary and sufficient conditions, in the case of pointwise

observations, using the existence and uniqueness theorem and the comparison theorem

for partial differential equations of Riccati type. The third derived necessary conditions

by introducing an appropriate Hilbert space formulation, and formulating the distributed

parameter system in terms of mild evolution operators.

Following these early results, subsequent works focused largely on recursive computational

methods which could be applied to determine the set of optimal sensor locations as the

minima of the trace of the covariance operator of the optimal filter at some terminal time,

or some variant thereof. Yu and Seinfeld [485] developed a sub-optimal technique for

sequentially locating sensors in linear distributed parameter systems, which was extended

by Chen and Seinfeld [109] to allow for the optimal simultaneous allocations of a finite

number of a sensors among a set of locations given a priori. Subsequently, Aidarous et

al. [2, 3] and Amouroux et al. [9] proposed gradient methods which could be applied for

the optimal simultaneous allocation of a finite number of sensors to any set of locations

in the domain of interest. Later computational efforts tended to focus on suboptimal, but

more computationally tractable approaches [84, 262, 360, 368, 386], given the difficulty of

solving the nonlinear infinite-dimensional Ricatti equation [408].

A common feature of all these computational methods was the requirement to transform

the infinite dimensional system into a finite dimensional system. This was typically ap-

proached by the use of a truncated eigenvalue-eigenfunction expansion for either the state

[89, 109, 485] or the state estimate [2, 3, 9] in its first K terms, sorted in increasing order

of the eigenvalues.2,3 The second of these approaches was largely motivated by the work

of Curtain et al. [127, 128, 129]. By introducing an appropriate Hilbert space formu-

2In the former case, the idea was to represent the state variable as an infinite series of eigenfunctions
of the relevant partial differential operator. This yielded an equivalent model described by an infinite
sequence of ordinary differential equation in the time-varying coefficients of that expansion. This infinite
sequence could then then approximated by an K-dimensional vector, by truncating in the first K terms.
It was then possible to apply a finite dimensional filtering algorithm to this finite dimensional system, to
obtain the a finite dimensional approximation of the Ricatti equation governing the filter covariance.

3In the latter case, the idea was to apply an infinite dimensional filtering algorithm to the original
infinite dimensional system, to obtain the infinite dimensional state filtered estimate, and the infinite di-
mensional Ricatti equation governing the filter covariance. The filtered estimate could then be represented
as an infinite series of eigenfunctions, yielding an equivalent estimate in terms of the infinite sequence
of coefficients of that expansion. This infinite sequence could then be approximated by a K-dimensional
vector, by truncating in the first K terms. This procedure could also be used to obtain a finite dimensional
approximation of the covariance operator.

115



Chapter 4: Joint Online Parameter Estimation and Optimal Sensor Placement for the

Partially Observed Stochastic Advection-Diffusion Equation

lation, Curtain showed that, for distributed parameter systems whose solutions can be

expressed as a linear combination of eigenfunctions, one is justified in computing optimal

locations using a suitable approximation of the covariance operator. In particular, it was

proved that, under certain conditions, the trace of this finite dimensional approximation

converges to the trace of the infinite dimensional covariance operator, and thus optimal

sensor locations for the approximate finite dimensional system converge to the true op-

timal sensor locations for the finite dimensional system. We note that, using a slightly

different operator formulation, Colantouni [114] also established conditions under which

minimising the trace of the covariance operator is equivalent to minimising the trace of a

finite dimensional approximate covariance matrix.

Recently, and in the spirit of Bensoussan’s original approach, Burns et al. [77, 78, 79, 80,

216, 391] have provided a rigorous general framework for determining optimal location and

trajectories of sensor networks for linear stochastic distributed parameter systems. The

optimisation problem is precisely formulated as the minimisation of a functional involving

the trace of a solution to the integral Ricatti equation, with constraints given by the

trajectory of the sensor network [80]. The existence of Bochner integrable solutions to

this equation, and thus the existence of optimal sensor locations, has been established

[78, 79], and a Galerkin type numerical scheme for the approximation of these solutions

developed, for which convergence is proved in L
p norm [80]. A suitable gradient descent

scheme has also been proposed [80], and implemented in numerical examples for both

stationary and moving sensor networks. In these authors’ most recent contribution, the

functional that penalises deviations with respect to the Kalman-Bucy filter is combined

with a ‘worst case scenario’ functional, which involves a further optimisation problem for

directional sensitivities over a set of admissible perturbations [216].

Morris et al. and Wu et al. [356, 445, 472, 488] have also recently revisited the problem of

optimal sensor locations for linear stochastic, possibly time-varying, distributed parameter

systems, and have developed a rigorous mathematical framework for this problem based

on its duality with the problem of optimal actuator locations for linear control distributed

parameter systems. In [472], Wu et al. consider the minimisation of the trace of the

mild solution of the infinite dimensional Ricatti equation at some finite time as the sensor

placement criterion, and prove the existence and convergence of optimal sensor locations

for this problem. The obtained results were then applied to a simple advection-diffusion

model. In [488], Zhang and Morris consider the minimisation of the trace of the mild

solution of the infinite dimensional algebraic Ricatti equation as the sensor placement

criterion. It is shown that the steady-state error variance is the trace of the solution

of this equation, extending a well known result in the finite dimensional setting. The

existence and convergence of optimal sensor locations for this problem is then derived,

using results previously obtained for optimal actuator locations in [356]. The obtained

results are applied to a number of simple examples, using the algorithm derived for the
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dual control problem in [135]. Tang and Morris have since extended this approach to the

case that the form of the observation operator is not assumed fixed; that is, the shape as

well as the location of the sensors is a design variable [445].

In recent years, significant contributions have also been made by Demetriou and coworkers

(e.g.,[149, 150, 151, 152, 153, 154, 156]). These include the development of various schemes

for the guidance of static and mobile sensors.

We conclude this section with the remark that the problem of optimal sensor placement for

parameter estimation in distributed parameter systems has also been studied extensively.

This is not the focus of the current study, and thus we will not review the literature on the

topic in great depth. We do, however, remark that popular approaches to this problem

originate in the classical theory of optimum experimental design [12, 121]. In this frame-

work, the adopted optimisation criteria are essentially the same, i.e. the maximisation

of various scalar measures of performance based on the Fisher information matrix (FIM)

associated with the parameters to be estimated [454]. This approach dates back to the

work of Rafajlowicz [385, 387]. For a comprehensive overview of this research area, we

refer to [373, 453].

4.1.2 Contributions

In this chapter, we tackle the problem of joint online parameter estimation and optimal

sensor placement for the partially observed stochastic advection-diffusion equation. There

is clear motivation for this combined approach. In the vast majority of practical appli-

cations, both parameter estimation and optimal sensor placement are relevant. It would

thus be highly convenient to solve them simultaneously, and, if possible, in an online fash-

ion (i.e., in real time). Moreover, they are often interdependent, in the sense that the

optimal sensor placement can vary significantly according to the current parameter esti-

mate. Thus, tackling them together can result in significant performance improvements

(see Figure 4.1).

To solve this problem, we propose a continuous-time, two-timescale stochastic gradient

descent algorithm, formulated for the partially observed, infinite-dimensional linear diffu-

sion process governed by the stochastic advection-diffusion equation. This algorithm can

be seen as a formal extension of the algorithm in Chapter 3 to the setting in which the

latent state is infinite-dimensional. We establish, using the theoretical results in Chapter

3, a.s. convergence of the online parameter estimates and recursive optimal sensor place-

ments generated by a suitable finite dimensional approximation of this algorithm to the

stationary points of the asymptotic log-likelihood and the asymptotic filter covariance,

respectively. These results are obtained under a set of easy-to-verify sufficient conditions,

specific to the linear Gaussian case.
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Figure 4.1: A comparison of the true, hidden state ut(x) (Fig. 4.1a) and the optimal state
estimate ût(θ,o,x) obtained in three possible scenarios: using the true parameters and
an optimal sensor placement (Fig. 4.1b), using the true parameters but a sub-optimal
sensor placement (Fig. 4.1c), and using an optimal sensor placement but the incorrect
parameters (Fig. 4.1d). In this example, the hidden state is only accurately reconstructed
in the first scenario, when the model parameters are successfully estimated and the sensors
are optimally placed.

We then provide several detailed numerical case studies illustrating the performance of

this method in different scenarios of practical interest. Our numerical results indicate that

the algorithm is highly effective, and applicable to cases involving static and non-static

model parameters, moving source terms, multiple noise and bias parameters, different

specifications of the sensor placement objective function, and different specifications of

the upper and lower-level objective functions.

4.1.3 Chapter Organisation

The remainder of this chapter is organised as follows. In Section 4.2, we precisely formulate

the stochastic advection-diffusion equation as a functional stochastic differential equation

on an appropriate separable Hilbert space. In Section 4.3, we present the two-timescale

stochastic gradient descent algorithm for joint parameter estimation and optimal sensor

placement. We present our methodology in a generic abstract framework, and thus in

principle it could be applied to partially observed linear SPDEs other than the stochastic

advection-diffusion equation. In Section 4.4, we provide several numerical examples illus-

trating the application of the proposed methodology. Finally, in Section 4.5, we provide

some concluding remarks.
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4.2 The Partially Observed Stochastic Advection-Diffusion

Equation

In this section, we provide some background on the stochastic advection-diffusion par-

tial differential equation. In particular, we now outline how this SPDE can be defined

as a functional evolution equation on an appropriate separable Hilbert space (see also,

e.g., [27, 80, 472]). We restrict our attention to the case of periodic boundary conditions

following the treatment in [418]. This choice is largely motivated by expositional con-

venience, and the ability to efficiently perform numerical approximations using the Fast

Fourier Transform (FFT). We should emphasise, however, that the joint online parameter

estimation and optimal sensor placement algorithm subsequently introduced in Section

4.3 is generic, and does not rely on this assumption.

4.2.1 Preliminaries

We will suppose that the region of interest is the unit torus Π := [0, 1]2, with x =

(x1, x2)
T ∈ Π a point on this space. We are interested in a space-time varying scalar field

u : Π× [0,∞) → R, and will write ut(x) to denote the value of the field at spatial location

x ∈ Π and time t ∈ [0,∞). We will assume that this field satisfies periodic boundary

conditions. The function space of interest is thus given by H = Lper.
2 (Π), the space of

periodic square-integrable functions on Π = [0, 1]2.

It is natural to work with the Fourier characterisation of this space. In particular, sup-

pose we write {φk}k∈Z2 for the set of orthonormal Fourier basis functions for H, namely,

φk(x) = exp(ikTx). We can then write

H =

{

ϕ : ϕ(x) =
∑

k∈Z2

αkφk(x) : α−k = αk,
∑

k∈Z2

(αk)
2 <∞

}

. (4.3)

4.2.2 The Signal Equation

Using standard results on infinite dimensional systems (e.g., [130, 369]), we can formulate

the stochastic advection-diffusion partial differential equation (4.1) as a functional evo-

lution equation on H. Let ut = ut(·) = {ut(x) : x ∈ Π} ∈ H denote the state of the

infinite-dimensional system. Then we can write

dut = A(θ)utdt+ Bdvθt , u(0) = u0 ∈ H (4.4)

where θ ∈ Θ ⊂ R
nθ is an nθ-dimensional parameter, A(θ) and B are abstract operators to

be defined below, vθt = vθt (·) = {vθt (x) : x ∈ Π} is a space-time Brownian motion, and u0
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is a H-valued Gaussian random variable, which is independent of vθ. We are interested in

weak solutions of this equation, to be understood path-wise on the complete probability

space (Ω,F ,P).

The terms in this equation are defined explicitly as follows. Firstly, A(θ) : D(A(θ)) → H
is the two-dimensional advection diffusion operator, defined according to

A(θ)ϕ = −
2∑

i=1

µi(x)
∂ϕ

∂xi
+

2∑

i,j=1

∂

∂xi

(

Σi,j(x)
∂ϕ

∂xj

)

− ζ(x)ϕ+ f(x) , ϕ ∈ D(A(θ)) (4.5)

whereD(A(θ)) = {ϕ ∈ H : ∂ϕ
∂xi
, ∂2ϕ
∂xi∂xj

∈ L2(Π) , i, j = 1, 2}, and µi(x), Σi,j(x), ζ(x), f(x):

Π → R, i, j = 1, 2, are the real-valued, continuously differentiable functions defined in the

introduction. For the chosen parametrisation of Σ(x), the operator −A(θ) is (strongly)

elliptic of order 2 (e.g., [138, 376, 410]), bounded and coercive [156]. Moreover, A(θ)

generates an exponentially stable C0-semigroup S(θ, t) = eA(θ)t over L2(Π) [80, 410].4

Meanwhile, B : H → H is a spatial disturbance operator defined, for some spatial distur-

bance function b ∈ H, via

Bϕ = b(x)ϕ , ϕ ∈ H. (4.6)

Finally, vθt is an H-valued Wiener process with incremental covariance operator Q(θ) :

H → H. We will assume that this covariance operator satisfies Q(θ)φk = η2k(θ)φk for all

k ∈ Z
2, for some bounded sequence of real numbers {η2k(θ)}k∈Z2 satisfying η−k(θ) = ηk(θ)

and
∑

k η
2
k(θ) < ∞.5 We thus work with a diagonal covariance operator with respect

to the Fourier basis, although other choices could easily be considered. It follows from

standard results (see, e.g., [129, 131]) that

vθt :=
∑

k∈Z2

ηk(θ)φk(x)z
k
t , (4.7)

where {zkt }k∈Z are a set of suitably defined independent Brownian motions (see, e.g., [316]

for a precise definition). Following [302, 418], we will assume that {η2k(θ)}k∈Z2 are defined

by

ηk(θ) =
σ

2π

(

kTk +
1

ρ20

)−ν

, (4.8)

where σ > 0 is a marginal variance parameter, ρ0 > 0 is a spatial range parameter,

and ν > 0 is a smoothness parameter.6 This yields a noise process with the Matérn

4For ease of exposition, we have assumed here that A(θ) is time-invariant. It is straightforward, however,
to extend all of the results in this chapter to the case of a time-dependent operator A(θ, t). In this
case, we would also require some standard assumptions on the regularity of the map t → A(θ, t) (e.g.,
[303, 376, 444]).

5We will additionally require that η2
k(θ) = O(|k|−2(1+ε)) for some ε > 0. This ensures that

∑

k
ηk(θ)

2 <

∞, so that the operator Q(θ) is of trace class.
6It is straightforward to verify that, in this case, η2

k(θ) = O(|k|−2(1+ε)) for some ε > 0.
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covariance function in space, which is perhaps the most widely used covariance function

in spatial statistics [124, 207, 426]. In many applications, the smoothness parameter is

difficult to estimate [302, 418]. Thus, as in [418], we will henceforth assume that ν = 1.

This particular choice corresponds to the so-called Whittle covariance function in space,

which can arguably be regarded as ‘the elementary correlation in two dimensions’ [466].

In principle, however, other values of ν could also be considered.

4.2.3 The Spectral Signal Equation

Using the Fourier characterisation, it is possible to write the solution of the signal equation

as

ut =
∑

k∈Z2

αk
t φk , αk

t = 〈ut, φk〉 =
∫

Π

ut(x)φk(x)dx. (4.9)

It is thus equivalent to consider the parametrisation of ut via the set of Fourier coefficients

{αk
t }k∈Z2 . Taking the inner product of both sides of the signal equation with φk, we see

that the αk
t ’s obey the following infinite dimensional stochastic differential equation

dαk
t =

∑

j∈Z2

λj,k(θ)α
j
t dt+

∑

j∈Z2

ξj,kηj(θ)dz
j
t , k ∈ Z

2, (4.10)

where λj,k(θ) = 〈A(θ)φj , φk〉 and ξj,k = 〈Bφj , φk〉. We will sometimes refer to this as the

‘spectral’ signal equation. This parametrisation of the signal process is highly convenient,

as it allows us to perform inference on a vector whose coordinates evolve according to a

SDE, even if this vector happens to have infinite length. In our numerical simulations,

we will restrict attention to the case in which the advection-diffusion operator A(θ) is

spatially invariant, in which case we obtain a particularly simple form for the λj,k(θ),

namely,

λj,k(θ) = −
(
ijTµ+ jTΣj + ζ

)
δj,k, (4.11)

where δj,k denotes the standard Kronecker delta function. We will also assume, unless

otherwise stated, that the spatial weighting operator B is the identity operator, in which

case we also have ξj,k = δj,k. Under these assumptions, the spectral signal equation (4.10)

diagonalises completely; that is, the αk
t ’s evolve independently of one another.

4.2.4 The Observation Equation

We will assume, as in many typical applications, that the signal process cannot be observed

directly, but that instead we obtain a continuous sequence of noisy observations y =

{yt}t≥0, taking values in R
ny , via a set of ny sensors located at o = {oi}ny

i=1 ∈ Πny . In
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particular, we will assume that the observations are generated according to

dyt = C(θ,o)utdt+ dwo
t , y(0) = 0, (4.12)

where C(θ,o) : H → R
ny is a bounded linear operator to be specified below, and wo

t is a Rny

valued Wiener process with incremental covariance R(o) ∈ R
ny×ny , which is independent

of both vθ and u0. While the use of a linear observation equation is somewhat restrictive,

it does encompass most typical observation schemes used in practice.

We suppose that each sensor provides a noisy, possibly biased, average of the latent signal

around its current location, in which case the observation operator takes the form

C(θ,o)ϕ =







C1(θ,o1)ϕ
...

Cny(θ,ony)ϕ







, Ci(θ,oi)ϕ =

∫

ΠKoi
(x)ϕ(x)dx

∫

ΠKoi
(x)dx

+ βi , ϕ ∈ H (4.13)

where Koi
: Π → Π are suitably chosen weighting functions, which decrease as |x − oi|

increases, and βi ∈ R are bias terms. In our numerics, we restrict our attention to the case

in which each sensor provides an unweighted average of the latent signal process within a

small fixed region of its current location (e.g., [80, 316]). This corresponds to the choice

Koi
(x) = 1 {x ∈ Π : |x− oi| ≤ r} , r > 0. (4.14)

For simplicity, we will also assume that the sensors are independent, in which case the co-

variance matrixR(o) reduces to a diagonal matrix; and that the sensors can be categorised

into p1 distinct ‘noise classes’, and into p2 distinct ‘bias’ classes, where 1 ≤ p1, p2 ≤ ny.

By this, we mean that all observations generated by sensors belonging to a particular class

have the same variance (or the same bias).

4.3 Joint Online Parameter Estimation and Optimal Sensor

Placement

In this section, we present the joint online parameter estimation and optimal sensor place-

ment algorithm for a generic partially observed infinite dimensional linear diffusion process.

The material presented in this section follows closely the material presented in Section 3.2,

adapted appropriately to the infinite-dimensional setting.
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4.3.1 Preliminaries

Let (Ω,F ,P) be a complete probability space together with a filtration {Ft}t≥0 which

satisfies the usual conditions. Let G, H be separable Hilbert spaces. We will write L1(G,H)

to denote the space of bounded linear operators from G toH, and L1(H) in the case G = H.

We consider the following family of partially observed infinite dimensional linear diffusion

processes:

dut = A(θ)utdt+ Bdvθt , u0 ∈ H, (4.15)

dyt = C(θ,o)utdt+ dwo
t , y0 = 0, (4.16)

where θ ∈ Θ ⊂ R
nθ is an nθ-dimensional parameter, o = {oi}ny

i=1 ∈ Πny ⊂ R
2ny is a set

of ny sensor locations, with oi ∈ Π ⊆ R
2 for i = 1, . . . , ny, u = {ut}t≥0 denotes the

latent H-valued signal process, y = {yt}t≥0 denotes the R
ny -valued observation process,

and vθ = {vθt }t≥0, wo = {wo
t }t≥0 are independent Wiener processes, with incremental

covariances Q(θ) ∈ L1(H), R(o) ∈ L1(R
ny), which correspond to the signal noise and the

measurement noise, respectively.

We assume that, for all θ ∈ Θ, A(θ) : H → H is the infinitesimal generator of a C0-

semigroup St(θ) on H. We also assume that, for all θ ∈ Θ, o ∈ Ωny , B : H → H and

C(θ,o) : H → R
ny are bounded linear operators: B ∈ L1(H) and C(θ,o) ∈ L1(H,Rny).

Finally, we assume that the initial state u0 is a H-valued Gaussian random variable with

mean û0(θ) ∈ H and covariance Σ0(θ) ∈ L1(H), which is independent of vθ and wo for all

θ ∈ Θ, o ∈ Ωny . Clearly, this abstract framework includes the partially observed stochastic

advection-diffusion equation defined in Section 4.2.

4.3.2 The Infinite-Dimensional Kalman-Bucy Filter

We begin with a brief review of the infinite dimensional linear filtering problem. That

is, the problem of determining the conditional law of the latent signal process, given the

history of observations FY
t = σ{y(s) : 0 ≤ s ≤ t}. In the linear Gaussian case, it is well

known that that conditional distribution of the latent signal process is Gaussian, and

thus determined uniquely by its mean and covariance. These quantities can be obtained

explicitly via the infinite-dimensional Kalman-Bucy filter (e.g., [43, 127, 129]).

In particular, suppose we write û(θ,o) = {ût(θ,o)}t≥0 to denote the conditional mean of

the signal given FY
t , and Σ(θ,o) = {Σt(θ,o)}t≥0 its conditional covariance. Then Σt(θ,o)

is a weak solution of the operator Ricatti equation [129, Theorem 6.10]

Σ̇t(θ,o) = A(θ)Σt(θ,o) + Σt(θ,o)A∗(θ) (4.17)

+ BQ(θ)B∗ − Σt(θ,o)C∗(θ,o)R−1(o)C(θ,o)Σt(θ,o),
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and ût(θ,o) is a mild solution of the stochastic evolution equation [129, Theorem 6.21]

dût(θ,o) = A(θ)ût(θ,o)dt (4.18)

+ Σt(θ,o)C∗(θ,o)R−1(o)
(
dyt − C(θ,o)ût(θ,o)dt

)

We refer to [42, 129] for a precise definition of ‘weak’ and ‘mild’ solutions. It is worth

noting that the differential form for ût(θ,o) only holds under certain additional technical

assumptions on the noise processes (see [128, Theorem 6.21] for details). More generally,

the optimal estimator ût(θ,o) is obtained as the solution of the following integral equation

[128, Corollary 6.11])

ût(θ,o) = St(θ)û0(θ,o) +

t∫

0

St(θ)Σs(θ,o)C∗(θ,o)R−1(o)dρs(θ,o), (4.19)

where ρ(θ,o) = {ρt(θ,o)}t≥0 is the so-called innovations process, defined according to

ρt(θ,o) = yt −
∫ t
0 C(o)ûs(θ,o)ds.

In what follows, it will also be useful to define ûθ(θ,o) = {ûθt (θ,o)}t≥0 and ûo(θ,o) =

{ûot (θ,o)}t≥0 as the ‘filter derivatives’ of the conditional mean, and Σθ(θ,o) = {Σθ
t (θ,o)}t≥0

and Σo(θ,o) = {Σo
t (θ,o)}t≥0, to denote the ‘filter derivatives’ of the conditional covari-

ance, respectively. By this we mean, for example, that ûθ(θ,o) = {ûθt (θ,o)}t≥0 is the

process defined, for all t ≥ 0, according to ûθt (θ,o) = ∇θût(θ,o). By definition, these

quantities are the solutions, interpreted in the appropriate sense, of the equations ob-

tained upon formal differentiation of equations (4.17) - (4.18). For brevity, the explicit

forms of these equations are omitted.

Using the infinite-dimensional Kalman-Bucy filter, we can now obtain the log-likelihood

of the observations (e.g., [5, 18, 22, 23, 304]), and define the optimal sensor placement

objective function (e.g., [80, 109, 211, 254]) as

Lt(θ,o) =

t∫

0

〈
R−1(o)C(θ,o)ûs(θ,o), dy(s)

〉
− 1

2

t∫

0

||R− 1
2 (o)C(θ,o)ûs(θ,o)||2ds, (4.20a)

Jt(θ,o) =

t∫

0

Tr [MsΣs(θ,o)] ds (4.20b)

where Ms ∈ L1(H) is a bounded, possibly time-varying linear operator designed to weight

significant parts of the state estimate. In the online setting, as discussed in Chapter 3, we

are interested in optimising the asymptotic variants of these two functions, viz

L̃(θ,o) = lim
t→∞

1

t
Lt(θ,o) , J̃ (θ,o) = lim

t→∞

1

t
Jt(θ,o) (4.21)
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4.3.3 Joint Online Parameter Estimation and Optimal Sensor Place-

ment

We will achieve this, as in the finite-dimensional case, using a continuous-time, two-

timescale stochastic gradient descent algorithm. In particular, suppose some initialisation

at θ0 ∈ Θ, o0 ∈ Ωny . Then, simultaneously, the parameter estimates {θt}t≥0 and the

sensor locations {ot}t≥0 are generated according to

dθt =







−γθt
[
C(θ,o)ûθt (θ,o)

]TR−1(o)
[
C(θ,o)ût(θ,o)dt− dyt

]∣
∣
θ=θt
o=ot

0

, θt ∈ Θ,

, θt 6∈ Θ,

(4.22a)

dot =







−γot Tro
[
M(t)Σt(θ,o)

]T
dt
∣
∣
θ=θt
o=ot

0

, ot ∈ Ωny ,

, ot 6∈ Ωny .

(4.22b)

where {γθt }t≥0 and {γot }t≥0 are non-negative, non-increasing real functions such that

limt→∞ γθt /γ
o
t = 0 or limt→∞ γot /γ

θ
t = 0. The choice between these two conditions on the

learning rates determines which of the algorithm iterates moves on a slower timescale.

The first choice implies that the parameter estimates move on a slower timescale than the

sensor placements, and is generally preferred if parameter estimation is the primary objec-

tive. The second implies that the sensor placements move on a slower timescale than the

parameter estimates, and is generally preferred if optimal sensor placement is the primary

objective.

This algorithm represents a formal extension of Algorithm (3.43a) - (3.43b) in Chapter 3

to the infinite-dimensional linear Gaussian setting. Let us briefly provide some justifica-

tion for this extension. Firstly, under weak conditions, the log-likelihood for a partially

observed infinite-dimensional linear diffusion process is both well-defined and consistent

(e.g., [22, Theorem 8.4] or [15, Theorem 2] in the general case, and [7, Corollary 4.1] for

hyperbolic systems). Meanwhile, assuming that the observation operator is continuous

with respect to the sensor locations, the sensor placement objective function admits an

infimum, i.e., an optimal sensor placement ([80, Theorem 5.3] and [488, Theorem 4.1]).

We should remark that, if the true model parameters were known, then one could compute

the asymptotic sensor placement objective function (and its gradient) prior to receiving

any observations by solving the algebraic Ricatti equation

0 = A(θ)Σ∞(θ,o) + Σ∞(θ,o)A†(θ) (4.23)

+ BQ(θ)B† − Σ∞(θ,o)C†(θ,o)R−1(o)C(θ,o)Σ∞(θ,o).
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In particular, provided Mt → M∞ as t→ ∞, in this case it is possible to show that

J̃ (θ,o) := lim
t→∞

1

t
Jt(θ,o) = Tr [M∞Σ∞(θ,o)] . (4.24)

In this case, it would arguably be preferable to use a (non-stochastic) gradient descent

algorithm on the asymptotic objective function directly in order to obtain the optimal

sensor placement. Indeed, this approach is rather more standard in the literature (e.g.,

[3, 9, 488]). If, however, the true model parameters are unknown, then one can no longer

compute the true asymptotic sensor placement objective function (or its gradient) prior

to receiving any observations, since the true solution of the algebraic Ricatti equation

(and thus the true asymptotic objective function and the true optimal sensor placement)

depends on knowledge of the true parameters (see Figure 4.2). This observation high-

lights the need to tackle the parameter estimation and optimal sensor placement problems

together using Algorithm (4.22a) - (4.22b).
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Figure 4.2: The ‘optimisation landscape’. Plots of the asymptotic sensor placement
objective function, J̃ (θ,o), and the corresponding optimal sensor placement, ô =
argmino∈Ω J̃ (θ,o), for two possible specifications of the model parameters θ.

In practice, we cannot implement this algorithm directly, as it depends on the infinite-

dimensional solutions of the Kalman-Bucy filtering equations. We are thus required to

use a Galerkin discretisation, and project onto a finite-dimensional Hilbert space (e.g.,

[198, 398]). Under standard assumptions, the approximate, finite-dimensional solutions

of the Kalman-Bucy filtering equations (4.17) - (4.18), and the algebraic Ricatti equation

(4.23), converge to the true, infinite-dimensional solutions as the order of the projection

is increased, uniformly in time (e.g., [27, 80, 140, 198, 472, 488]). We remark that these

conditions are satisfied by the partially observed stochastic advection-diffusion equation

introduced in Section 4.2 (see, for example, [80, Section 6.1]).

On this basis, it is reasonable to expect that, under similar conditions, the finite-dimensional

approximations of the asymptotic log-likelihood and the asymptotic objective function,
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namely, L̃n(θ,o) and J̃n(θ,o), will converge to their true, infinite-dimensional counter-

parts; as will the corresponding approximations of the maximum likelihood estimate and

the optimal sensor placement, namely,

θ̂n := argmax
θ∈Θ

L̃n(θ,o) and ôn := argmin
o∈Ωny

J̃n(θ,o). (4.25)

In fact, rigorous convergence results of this type have already been obtained in the case

of the sensor placement objective function, and the optimal sensor placement. In par-

ticular, under precisely those conditions required for convergence of the approximate,

finite-dimensional filter, the finite-dimensional approximation of the sensor placement ob-

jective function, and the corresponding approximation of the optimal sensor placement,

do indeed converge to their true values (e.g., [80, Theorem 6.3], [472, Theorem 4.1.2], and

[488, Theorem 4.3]). While corresponding results have not explicitly been derived for the

asymptotic log-likelihood and the maximum likelihood estimate, very similar arguments

could be applied in this setting (see [52, 113, 222, 223, 224, 225, 226, 320, 321] for some

relevant results in the fully observed case).

In this context, we have strong justification for implementing a finite-dimensional version

of Algorithm (4.22a) - (4.22b), in which the filter and filter derivatives are replaced by

their finite-dimensional approximations. As noted above, the resulting algorithm is a

particular case of the joint online parameter estimation and optimal sensor placement

algorithm analysed in Proposition 3.1 in Chapter 3. Thus, under suitable conditions on

the process consisting of the latent state, the optimal filter, and the filter derivatives, the

parameter estimates and the optimal sensor placements generated by this algorithm are

guaranteed to converge to the stationary points of the (finite-dimensional approximation)

of the asymptotic log-likelihood and the asymptotic sensor placement objective function,

respectively. That is,

lim
t→∞

∇θL̃n(θt,ot) = lim
t→∞

∇oJ̃n(θt,ot) = 0. (4.26)

These conditions can be found in full in [412, Appendix A], as well as sufficient conditions

in the linear Gaussian case. The required conditions coincide with standard conditions

required for stability of the Kalman-Bucy filter, and are thus in some sense the weakest

conditions under which an asymptotic result of this type can be established.

4.4 Numerical Results

In this section, we provide extensive numerical examples illustrating the performance of

the joint online parameter estimation and optimal sensor placement algorithm for the

partially observed stochastic advection-diffusion equation. The R code is available at
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https://github.com/louissharrock/RML-ROSP. All simulations are performed on a 2012

MacBook Pro with 2.7 GHz Intel Core i7 processor and 16GB RAM.

4.4.1 Numerical Considerations

For numerical purposes, we are required to project the infinite-dimensional solution of the

signal equation onto a finite dimensional Hilbert space. In particular, we will consider

the finite dimensional subspace Hn ⊂ H spanned by the truncated set of Fourier basis

functions {φk}k∈Λn
, where Λn ⊂ Z

2 is the following set of wave-numbers

Λn =
{

k ∈ Z
2 : −

(n

2
− 1

)

≤ k1, k2 ≤
n

2

}

, n ∈ 2N , |Λn| = n2. (4.27)

We should emphasise that this choice of basis is not unique. Indeed, in principle, one can

consider any finite dimensional basis (e.g., Chebyshev polynomials, finite-elements, etc.),

provided that the resulting projection converges in an appropriate sense as its dimension

is increased (see, e.g., Theorem 4.2 in [488] for some precise conditions). Indeed, other

choices of the finite dimensional basis may be more appropriate in the case of non-periodic

boundary conditions or other more complex geometries. We highlight, in particular, the

Gaussian Markov Random Field approach introduced in [302], which makes use of piece-

wise linear basis functions on a triangulation of the domain.

For n ≥ 1, let Πn : H → Hn denote the orthogonal projection onto this space, defined in

the usual fashion. The Galerkin projection of ut is then given by unt = unt (·) = {unt (x) :
x ∈ Π} ∈ Hn, where

unt (x) = Πnut(x) =
∑

k∈Λn

αk
t φk(x) , αk

t = 〈ut, φk〉 =
∫

Π

ut(x)φk(x)dx, (4.28)

and the vector of Fourier coefficients {αk
t }k∈Λn

now obey the finite dimensional SDE

dαk
t =

∑

j∈Λn

λj,k(θ)α
j
t dt+

∑

j∈Λn

ξj,kηj(θ)dz
j
t , k ∈ Λn, (4.29)

with λj,k(θ) and ξj,k(θ) defined as previously. This high dimensional SDE will provide

an approximation for the original, infinite dimensional SPDE. Indeed, as n → ∞, one

can show that the finite-dimensional approximation unt does indeed converge in law to

the true solution ut (see, e.g., [418]). It is convenient to rewrite this equation, as well as

the corresponding observation equation, in vector form. Let αn
t = {αk

t }k∈Λn
denote the

n2-dimensional vector of Fourier coefficients. We can then write

dαn
t = An(θ)α

n
t dt+Bndv

n,θ
t , αn

0 ∈ Hn (4.30)

dynt = Cn(θ,o)α
n
t dt+ dwo

t , yn0 = 0, (4.31)
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where An(θ) ∈ R
n2×n2

, Bn ∈ R
n2×n2

, and Cn(θ,o) = C(θ,o)|
Rn2 ∈ R

ny×n2
are the matrices

[An(θ)]j,k = λj,k(θ) , [Bn]j,k = ξj,k , [Cn(θ,o)]j,k = Cj(θ,o)φk, (4.32)

and where vn,θ(t) is the R
n2
-valued Wiener process with incremental covariance matrix

Qn(θ) = diag{η2k(θ)}k∈Λn
}. In our numerical simulations, we will typically set n = 50, so

that the simulated observations correspond to noisy realisations of the projection of the

true infinite dimensional signal onto an n2 = 2500 dimensional subspace. We observe nu-

merically that coefficients for larger wave-numbers (i.e., the higher frequency components)

are very close to zero. This agrees with the results reported by Sigrist et al. [418] and Liu

et al. [308], and suggests that the model dynamics are dominated by the low-frequency

components.

Given this, it is permissible to apply the finite-dimensional Kalman-Bucy filter and tangent

filter, and implement the joint online parameter estimation and optimal sensor placement

algorithm, using a reduced Fourier basis of K ≪ n2 basis functions. This is typical in

similar applications (e.g., [125, 418]). In particular, following [418], we used a reduced

Fourier basis given by {φk}k∈Γm,n
, where Γm,n ⊆ Λn ⊂ Z

2 is the following set of wave-

numbers

Γm,n = {k ∈ Z
2 : k21 + k22 ≤ m} ∩ Λn , m ∈ N0 , K = |Γm,n|. (4.33)

In our simulations, we will set m = 5, which yields a Fourier truncation with K = 21

basis functions. Numerical results indicate that, for our purposes, this choice represents a

reasonable trade-off between accuracy - both of the optimal sensor placement (see Table

4.1) and the optimal state estimate (see Figure 4.3a) - and computational cost. This choice

is also comparable with other related works (e.g., [80, 418, 488]). It is worth noting that,

even if high-frequency components were more dominant, it may not be possible to capture

these when using a small number of sensors, spaced at large intervals. A similar observation

was previously made in [418]. Regarding the time discretisation, we use an exponential

Euler scheme for the finite-dimensional approximation of the partially observed diffusion

process (4.30) - (4.31), and implement the discrete-time analogue of the stochastic gradient

descent algorithm (4.22a) - (4.22b).

4.4.2 Numerical Experiments

4.4.2.1 Simulation I

We first investigate the convergence of the parameter estimates and the optimal sensor

placements under conditions which guarantee convergence to the stationary points of the

asymptotic log-likelihood and the asymptotic sensor placement objective function, respec-
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K 5 13 21 37 57 81 101

Case I
MSE (×10−2) 5.75 4.28 2.23 2.67 1.43 0.28 0.13
CPU Time per Iteration (s) 0.03 0.05 0.06 0.11 0.23 0.54 0.87

Case II
MSE (×10−2) 12.49 9.07 0.32 0.16 0.05 0.02 0.01
CPU Time per Iteration (s) 0.04 0.05 0.07 0.12 0.24 0.52 0.83

Table 4.1: The mean squared error (MSE) of the approximate optimal sensor placement,
and the CPU time per iteration, for different choices of the number of basis functions
K, in two cases of interest. In Case I, there are 25 sensors, all of whose positions are to
be optimised. In Case II, there are 40 sensors, 5 of whose positions are to be optimised.
In both cases, the sensors are initially uniformly placed at random over Π = [0, 1]2, and
the algorithm is run for T = 1 × 104 iterations. While increasing the number of basis
functions beyond K = 21 can further decrease the error in the approximate optimal
sensor placement, this choice is adequate to obtain a relatively accurate approximation
at a relatively low computational cost, particularly when there are relatively few movable
sensors (Case II).
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Figure 4.3: The MSE of the optimal state estimate, and the CPU time (per iteration), for
different choices of (a) the number of basis functions K and (b) the number of movable
sensors. In (a) we use 25 sensors, all of which are movable. In (b) we use 40 sensors,
varying the number of movable sensors, and use K = 45 basis functions. In both cases,
the sensors are initially uniformly placed at random over Π = [0, 1]2, and the algorithm is
run for T = 1× 104 iterations.

tively (see [412, Appendix A]). We assume that the true model parameters and the initial

parameter estimates are given respectively by

θ∗ = (ρ0 = 0.50, σ2 = 0.2, ζ = 0.5, ρ1 = 0.1, γ = 2.0, α = π
4 , µx = 0.30, µy = −0.3, τ2 = 0.01),

θ0 = (ρ0 = 0.25, σ2 = 0.8, ζ = 0.1, ρ1 = 0.2, γ = 1.2, α = π
3 , µx = 0.1, µy = −0.15, τ2 = 0.10).

We also assume that we have ny = 8 sensors in Π = [0, 1]2. We suppose that the sensors are

independent, have zero bias, and generate noisy measurements with variance τ2. Thus,

in the observation equation, we have β = (0, . . . , 0)T and R = diag(τ2). In this test

simulation, in order to verify the convergence of our algorithm, we suppose that our

objective is to obtain the optimal sensor placement with respect to the state estimate at
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a set of known ‘target’ locations. This is achieved by choosing an operator M in the

sensor placement objective function J̃ (θ,o), c.f. (4.20b), which places an emphasis on

minimising the uncertainty in the state estimate at these target locations. We provide

an explicit definition of this operator in Appendix 4.A. In particular, we assume that the

target sensor locations and the initial sensor locations are given, respectively, by

o∗ =

{(

0.00

0.59

)

,

(

0.50

0.66

)

,

(

0.33

0.33

)

,

(

0.75

0.50

)

,

(

0.08

0.08

)

,

(

0.58

0.83

)

,

(

0.83

0.92

)

,

(

0.25

0.83

)}

,

(4.34)

o0 =

{(

0.84

0.65

)

,

(

0.34

0.50

)

,

(

0.43

0.31

)

,

(

0.60

0.34

)

,

(

0.27

0.26

)

,

(

0.51

0.18

)

,

(

0.08

0.23

)

,

(

0.25

0.08

)}

.

(4.35)

It remains to specify the learning rates {γi,θt }i=1,...,9
t≥0 and {γj,ot }j=1,...,8

t≥0 , where the indices i, j

now make explicit the fact that the step sizes are permitted to vary between parameters,

and between sensors. In this simulation, we assume that our primary objective is to

estimate the true model parameters, and our secondary objective is to optimally place the

measurement sensors. We thus set γi,θt = γθ,i0 t−εi,θ and γj,ot = γj,o0 t−εj,o , where γi,θ0 , γj,o0 > 0

and 0.5 < εjo < εiθ ≤ 1 for all i = 1, . . . , 9 and j = 1, . . . , 8, with the values of γi,θ0 , εi,θ, γj,o0 ,

and εj,o tuned individually. In our numerics, the specific values of the learning rates are

chosen on the basis of initial experiments. In principle, however, one can use any one of a

number of adaptive learning rate methods to automate this choice, including backtracking

line search, Adagrad [168], Adadelta [486], Adam [248], AMSgrad [393], and others. This

choice of learning rate satisfies all of the conditions of Proposition 3.1 in Chapter 3. In

particular, it guarantees that

lim
t→∞

γi,θt

γj,ot

= 0 ∀i = 1, . . . , 9 , j = 1, . . . , 8. (4.36)

This implies that the parameter estimates {θt}t≥0 move on a slower timescale than the

sensor placements {ot}t≥0. Thus, the sensor placements see the parameter estimates as

quasi-static, while the parameter estimates see the sensor placements as almost equili-

brated. In practice, this means that ot will asymptotically track the sensor placements

which are optimal with respect to the current parameter estimates. This is particularly

advantageous when the optimal sensor placement depends significantly on the parameters

(see Section 4.4.2.2).

The performance of the two-timescale stochastic gradient descent algorithm is visualised

in Figure 4.4, in which we plot the sequence of online parameter estimates and optimal

sensor placements, Figure 4.5, in which we plot a single component of the optimal state

estimate, and in Figure 4.6, in which we plot the time evolution of the mean squared error
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(MSE) for the corresponding filter. As expected, all of the parameter estimates converge

to within a small neighbourhood of their true values (Figure 4.4a), and all of the sensors

converge to one of the target locations (Figure 4.4b). As a result, the performance of the

filter is improved to near-optimal after approximately T = 2×104 iterations (black line in

Figure 4.6). This number is largely determined by the initial magnitudes of the learning

rates {γi,θt }i=1,...,9
t≥0 and {γj,ot }j=1,...,8

t≥0 . In particular, increasing one or more of these values

will often decrease the time taken for the algorithm iterates to converge.
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Figure 4.4: Simulation Ia. The online parameter estimates and optimal sensor placements

(black); and the true parameters and optimal sensor placements (red, dashed). In this

simulation, the parameter estimates move on the slower timescale, and the sensor place-

ments move on the faster timescale. The total CPU time required for this simulation was

2368 seconds (0.02368 seconds per iteration).

It is also possible to apply our algorithm when the primary objective is to obtain the

optimal sensor placement, and the secondary objective is to estimate the true model

parameters. That is, the order of the two optimisation problems is reversed. In particular,

this is achieved by choosing learning rates which no longer satisfy (4.36), but instead

satisfy

lim
t→∞

γj,ot

γi,θt
= 0 ∀i = 1, . . . , 9 , j = 1, . . . , 8. (4.37)

This implies, of course, that the sensor placements {ot}t≥0 now move on a slower timescale

than the parameter estimates {θt}t≥0. The performance of the two-timescale stochastic

gradient descent algorithm in this scenario, with all other assumptions unchanged from
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Figure 4.5: Simulation Ia. A single component of the optimal state estimate α̂n(t) obtained
using the true parameters and the target sensor locations (black), and using the sequence
of online parameters and optimal sensor placements (red).
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Figure 4.6: Simulation Ia. The moving average of the MSE of the optimal state estimate
under different learning scenarios (various colours). We also plot the average of the MSE
for the true parameters and the initial sensor placement (red, dashed), and the average of
the MSE for the true parameters and the optimal sensor placement (blue, dashed). The
MSE is calculated at n2 = 502 uniformly spaced grid points on Π = [0, 1]2.

the first simulation, is illustrated in Figure 4.7. Once more, we observe that all of the

parameter estimates converge to within a small neighbourhood of their true values, and

that the sensors converge to the target locations. Unsurprisingly, given the alternative

learning rates, the convergence of the parameter estimates is somewhat faster than before,

while the convergence of the optimal sensor placements is somewhat slower.

It is worth re-emphasising, at this stage, that the convergence of our algorithm does not

depend on whether the learning rates satisfy (4.36) or (4.37). That is to say, a priori, the

algorithm has no preference over which of the parameter estimates or the optimal sensor

placements moves on the faster time scale, and which moves on the slower time scale. This

is a clear advantage of the two-timescale approach.
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(b) Optimal sensor placements.

Figure 4.7: Simulation Ib. The online parameter estimates and optimal sensor placements
(black); and the true parameters and optimal sensor placements (red, dashed). In this sim-
ulation, the parameter estimates move on the faster timescale, and the sensor placements
move on the slower timescale.

4.4.2.2 Simulation II

In our second numerical experiment, we investigate the performance of our algorithm in a

scenario where the optimal sensor placement depends to a significant extent on the value

of one of the model parameters. In this simulation, we will assume that the values of

θ2:9 = (σ2, ζ, ρ1, γ, α, µx, µy, τ
2) are known, and fixed equal to their true values, while

the value of θ1 = ρ0 is unknown. The true value and the initial value of the unknown

parameter are given by ρ∗0 = 0.3 and ρ0 = 0.01, respectively.

We now assume that we have ny = 5 sensors in Π = [0, 1]2, all of which are independent,

have zero bias, and the same variance. The locations of the first 4 sensors are fixed, while

the location of the final sensor is to be optimised. In contrast to the previous simulation,

we now suppose our objective is to obtain the optimal sensor placement with respect to

the state estimate over the entire spatial domain (i.e., not weighted towards a set of target

locations). The locations of the fixed sensors, and the initial location of the sensor whose

location is to be optimised, are shown in Figure 4.9b.

It remains to specify the learning rates {γρ0t }t≥0 and {γo5
t }t≥0. In this case, we set

γρ0t = 0.1t−0.55 and γo5
t = 0.1t−0.51, implying that the sensor placements move on a faster

timescale than the parameter estimates. Thus, as outlined previously, ot should asymptot-

ically track o∗(ρ0(t)), the sensor placement which is optimal with respect to the current

parameter estimate. This is clearly advantageous in the current scenario, in which the
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optimal sensor placement is known to depend on the unknown model parameter. This is

clearly visualised in Figure 4.8, which contains plots of the asymptotic sensor placement

objective function, and the corresponding optimal sensor placement, for several different

values of the unknown model parameter. For this configuration of fixed sensors, the op-

timal location of the additional sensor is to the south-east (or north-west) of centre for

small ρ0 (Figure 4.8a), and converges to the centre as ρ0 increases (Figures 4.8b - 4.8d).

The performance of the two-timescale gradient descent algorithm is illustrated in Figure

4.9, in which we have plotted the sequence of online parameter estimates {(ρ0)t}t≥0 and

optimal sensor placements {(o5)t}t≥0. As expected, the online parameter estimate, on the

slow-timescale, is seen to converge to the true value of ρ∗0 = 0.3 over the course of the

entire learning period. Meanwhile, the optimal sensor placement, on the fast-timescale,

begins by moving rapidly from its initial position to a location to the south-east of centre.

It then moves slowly towards the centre of the domain as the online parameter estimate of

ρ0 increases towards its true value. Thus, the optimal sensor placement does indeed track

the local optimum of the sensor placement objective function, while the online parameter

estimate converges to its true value.
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Figure 4.8: Simulation II. Heat maps of the sensor placement objective function, and the
optimal sensor placement, for different values of ρ0.
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Figure 4.9: Simulation II. The online parameter estimates and optimal sensor placements
(various colours); and the true parameter (red, dashed). The total CPU time required for
this simulation was 185s (0.00925s per iteration).
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We should note, at this point, that the asymptotic sensor placement objective function

(and the asymptotic log-likelihood function) can admit multiple local optima (see Figure

4.8). There is thus no guarantee that the sensor placements (or the parameter estimates)

generated by our algorithm will always converge to the global optimum (i.e., the true

optimal sensor placements or the true parameter values). On this point, let us make

several remarks. Firstly, this is a necessary feature of any gradient based method; such

methods are only guaranteed to converge to a global optimum under the rather restrictive

assumption of global convexity (see [413]). Secondly, we use a stochastic gradient descent

method, updating the sensor placements and the parameter estimates in the directions

of noisy estimates of the gradients of the asymptotic sensor placement objective and the

asymptotic log-likelihood. In comparison to a (non-stochastic) gradient descent scheme,

this approach is significantly more likely to avoid local minima and saddle points (e.g.,

[65, 189]). One can also use momentum [384] or additional random noise to help to escape

local minima. Finally, one could run the algorithm multiple times using random restarts.

4.4.2.3 Simulation III

In our third numerical experiment, we investigate the performance of our algorithm under

the assumption that the true model parameters θ∗ = θ∗t are no longer static, and contain

change-points at certain points in time. The values of these parameters are shown in

Figure 4.10. Meanwhile, the initial parameter estimates are now given by

θ0 = (ρ0 = 0.25, σ2 = 0.5, ζ = 0.3, ρ1 = 0.2, γ = 1.5, α = π
3 , µx = 0.1, µy = −0.15, τ2 = 0.1).

We also now suppose that the optimal sensor locations o∗ = o∗
t vary in time. In particular,

we now consider a scenario in which our objective is to obtain the sensor placement which

minimises the uncertainty in the state estimate over the entire spatial domain, but now

weighted slightly towards a set of four time-varying spatial locations. Once again, this

is achieved by a suitable choice of spatial weighting operator in the sensor placement

objective function (see Appendix 4.A). On this occasion, we assume that we have ny = 25

sensors in Π = [0, 1]2, each with zero bias and equal variance. The first 16 sensors are

distributed evenly towards the boundary of the spatial domain, with their locations fixed.

Meanwhile, the locations of the final 9 sensors are to be optimised. We show the locations

of the fixed sensors (red), the initial sensor locations of the nine sensors to be optimised

(green) and the weighted spatial locations at four time points (purple) in Figure 4.10b.

It remains, once more, to specify the learning rates {γi,θt }i=1,...,9
t≥0 , {γj,ot }j=17,...,20

t≥0 . In this

simulation, we set the learning rates for the parameter estimates and the sensors place-

ments as constant. That is, γi,θt = γi,θ0 and γj,ot = γj,o0 , with the specific values of γi,θ0 , γj,o0

tuned individually. This is a standard choice when the true parameters are no longer static
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(e.g., [315]). The choice of constant learning rates violates one of the conditions required

for convergence of the parameter estimates and the optimal sensor placements, namely,

that
∫∞
0 (γθt )

2dt <∞ and
∫∞
0 (γot )

2dt <∞. There is thus no longer any guarantee that the

algorithm iterates will converge to the stationary points of the two objective functions.

They are, however, expected to oscillate around the optimal points. The advantage of

constant learning rates is that the algorithm iterates can now adapt rapidly to changes in

the true model parameters and the optimal sensor placements.

In practice, the two-timescale stochastic gradient algorithm still performs remarkably well

in this scenario (Figure 4.10). The online parameter estimates generated by the algorithm

are able to track the changes in the dynamic model parameters in real time (Figure 4.10a),

while the sensor placements update in response to changes in the time-varying weighted

spatial locations (Figure 4.10b).
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Figure 4.10: Simulation III. The online parameter estimates and optimal sensor place-
ments; and the true parameters (red, dashed). The total CPU time required for this
simulation was 9345s (0.0623s per iteration).

Let us make some brief remarks regarding the optimal sensor placements shown in Figure

4.10b. In general, we see that, at any given time instant, the sensors tend to be positioned

closer to the current locations of the four weighted points than they would be in a com-

pletely uniform configuration. For example, at t = 30000, all of the sensors, to a greater or

lesser extent, have moved towards the south-west of the domain (top right hand panel in

Figure 4.10b). At the same time, the sensors also maintain a relatively even distribution

across the entire centre of the domain. This should not come as a surprise; indeed, for the

chosen sensor placement objective, this does indeed represent the optimal placement of
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the available measurement sensors. In particular, this configuration represents a trade-off

between attempting to minimise the uncertainty of the state estimate over the entire spa-

tial domain (which favours a uniform placement of sensors), while also placing a slightly

greater emphasis on the accuracy of the state estimate at the four time-varying weighted

locations (which favours a placement of sensors close to these locations).

4.4.2.4 Simulation IV

In our fourth numerical experiment, we investigate the ability of our algorithm to estimate

multiple unknown bias and variance parameters. We thus relax our previous assumption

that the sensors all have zero bias, and the same variance. This scenario is of significant

practical interest: in real-data applications, it is often necessary to calibrate the bias and

variance of many measurement sensors simultaneously, and in real time.

In this simulation, we assume that we have ny = 11 sensors in Π = [0, 1]2, six of which have

unknown bias and variance. The true values, and initial estimates, of these parameters,

are given respectively by

τ ∗2 = (τ21 = 0.01, τ22 = 0.01, τ23 = 0.05, τ24 = 0.05, τ25 = 0.10, τ26 = 0.10) (4.38)

τ 2
0 = (τ21 = 0.05, τ22 = 0.03, τ23 = 0.15, τ23 = 0.20, τ25 = 0.02, τ26 = 0.25) (4.39)

and

β∗ = (β1 = 1.00, β2 = 1.00, β3 = 1.00, β4 = 2.00, β5 = 2.00, β6 = 2.00) (4.40)

β0 = (β1 = 0.10, β2 = 3.00, β3 = 1.50, β4 = 2.50, β5 = 0.00, β6 = 0.50). (4.41)

We estimate the bias and variance of each of these sensors independently. In terms of the

parameters in the signal equation, we now assume that the values of θ3:6 = (ζ, ρ1, γ, α) are

known, while the values of θ1,2,7:8 = (ρ0, σ
2, µx, µy) are to be estimated. The true values

and initial values of these parameters are shown in Figure 4.11a.

Regarding the sensor placement, we assume that the locations of the six sensors whose

biases and variances are unknown are to be optimised, while the locations of the remaining

five sensors are fixed. The objective is to minimise the uncertainty in the state estimate

over the entire spatial domain, as in Simulation II. The locations of the fixed sensors are

distributed non-uniformly, close to the boundary of the domain, while the initial locations

of the movable are distributed non-uniformly, close to the centre of the domain. Finally,

the step-sizes are of the same form as those in the Simulation Ib.

The performance of the two-timescale algorithm is shown in Figure 4.11, in which we

have plotted the sequence of online parameter estimates for the unknown parameters. As
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previously, the parameter estimates are all seen to converge to their true values. Thus,

in particular, the algorithm correctly identifies the biases and variances of each of the

measurement sensors. Meanwhile, the final locations of the movable measurement sensors

are distributed more evenly throughout the domain (plot omitted), leading to a 27%

reduction in the error in the optimal state estimate (0.026 to 0.019).
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Figure 4.11: Simulation IV. The online parameter estimates (black); and the true param-
eters (red, dashed). The total CPU time required for this simulation was 888s (0.0355s
per iteration).

4.4.2.5 Simulation V

In our final numerical simulation, we investigate the performance of the two-timescale

stochastic gradient descent algorithm in the presence of a spatially weighted disturbance

in the signal noise. We will assume, in this simulation, that θ1:6 = (ρ0, σ
2, ζ, ρ1, γ, α) are

known, while θ7:9 = (µx, µy, τ
2) are to be estimated. The true values and initial estimates

of these parameters are given respectively by

θ∗ = (µx = 0.10, µy = −0.10, τ2 = 0.01), (4.42)

θ0 = (µx = 0.39, µy = −0.41, τ2 = 0.50). (4.43)

We now assume that we have ny = 10 sensors Π = [0, 1]2, each with zero bias and equal

variance. The locations of nine of these sensors are fixed, while the location of the final

sensor is to be optimised. The locations of the fixed sensors, and the initial location of

the sensor whose location is to be optimised, are shown in Figure 4.12b. As in the second

numerical experiment, we will suppose that the objective is to obtain the optimal state
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estimate over the entire spatial domain (i.e., not only at a set of target locations). We

also now suppose that there is a localised disturbance in the signal noise around the point

( 5
12 ,

5
12). Thus, in the signal equation, we now specify the spatial weighting function

b(x) = b(x, y) = sech

[(
(x− 5

12)
2

0.22
+

(y − 5
12)

2

0.22

) 1
2
]

. (4.44)

The performance of the two-timescale algorithm is illustrated in Figures 4.12 and 4.13, in

which we have plotted trial averaged sequences of the optimal sensor placements, and the

online parameter estimates, respectively. As previously, the online parameter estimates all

converge to a small neighbourhood of their true values. Meanwhile, the movable sensor is

seen to converge to a location close to, but not directly at, the centre of the local distur-

bance. The slight offset to the south-west of the centre of this disturbance is explained by

the presence of the fixed sensor at (0.5, 0.5), which is just to the north-east of the centre of

the disturbance. These numerical results corroborate those also obtained in, e.g., [80, 488].
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Figure 4.12: Simulation V. The optimal sensor placements for four different initial condi-
tions. The average CPU time required for this simulation was 41s (0.016s per iteration).
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Figure 4.13: Simulation V. The online parameter estimates and optimal sensor placements
(various colours, solid); and the true parameters and centre of the signal noise disturbance
(red, dashed). The plots are averaged over 400 trials which use different initialisations of
the movable sensor.
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4.5 Conclusions

In this chapter, we have considered the problem of joint online parameter estimation and

optimal sensor placement for a partially observed, infinite-dimensional linear diffusion

process. We have presented a solution to this problem in the form of a two-timescale

stochastic gradient descent algorithm, and shown in detail how this algorithm can be

successfully applied to a partially observed stochastic advection-diffusion equation, which

depends in a highly non-linear fashion on a set of nine or more unknown model parameters.

Our numerical results have illustrated the effectiveness of the proposed approach in a

number of scenarios of practical interest. Moreover, they have highlighted the advantages

of tackling the problems of online parameter estimation and optimal sensor placement

together.
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Appendices

4.A The Spatial Weighting Operator

In this appendix, we provide an explicit definition of the spatial weighting operator Mt :

H → H. Let mt(·) ∈ H be a spatial weighting function (to be defined below). Then we

define the operator Mt according to

(Mtϕ)(x) = mt(x)ϕ(x) , ϕ ∈ H. (4.45)

Let us now motivate a suitable definition for the spatial weighting function. We first note

that, using Mercer’s Theorem [345], it is possible to show that (e.g., [109, 114, 262])

Tr [MtΣt(θ,o)] =

∫

Π

mt(x)Σ̃t(θ,o,x,x)dx, (4.46)

where Σ̃t(θ,o, ·, ·) : Π× Π → R is the kernel operator (or covariance function) associated

with the covariance operator Σt(θ,o). It follows, in particular, that the sensor placement

objective function can be written in the form

Jt(θ,o) =

t∫

0





∫

Π

ms(x)Σ̃s(θ,o,x,x)dx



 ds. (4.47)

On the basis of this expression, one appropriate choice for the spatial weighting function

is given by

mt(x) = c01x∈Πw
t
+ c11x∈Π\Πw

t
, x ∈ Π, (4.48)

where Πw
t ⊆ Π denotes a ‘weighted’ or ‘target’ spatial region, which corresponds to the

region in which we are most interested in minimising the uncertainty in the optimal state

estimate, and 0 ≤ c1 ≤ c0 ≤ 1 are positive constants. The choice of the constants c0

and c1, or equivalently the ratio c0
c1

∈ [1,∞), determines the extent to which the objective

function will prioritise minimising the uncertainty in the state estimate in the region Πw
t ,

relative to the region Π \Πw
t . In our numerics, we use the following specific definitions of

c0, c1, and Πw
t .
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Simulation I

In this simulation, we set c0 = 1, c1 = 0, and Πw
t = Πw =

⋃8
i=1{x ∈ Π : |x − xi| ≤ r},

where {xi}8i=1 are the 8 ‘target’ locations defined in (4.34), and r > 0 is a small positive

constant. This yields mt(x) =
∑8

i=1 1{x∈Π:|x−xi|≤r}, and thus

Tr [MtΣt(θ,o)] =

8∑

i=1

∫

{x∈Π:|x−xi|<r}

Σ̃t(θ,o,x,x)dx (4.49)

so that the objective function only seeks to minimise the uncertainty in the state estimate

close to the target locations {xi}8i=1. We remark that similar results are obtained if one

sets c1 = ε, for some ε≪ 1. In this case, the weighted trace of the covariance is given by

a similar expression to (4.51) (see below).

Simulation II, IV, V

In these simulations, we set c0 = c1 = 1, or equivalently c0
c1

= 1. In this case, the spatial

weighting function reduces to the identity, since mt(x) = 1x∈Πw + 1x∈Π\Πw
= 1x∈Π, and

we have

Tr [MtΣt(θ,o)] =

∫

Π

Σ̃t(θ,o,x,x)dx (4.50)

so that the objective function equally weights the uncertainty in the state estimate at all

spatial locations.

Simulation III

In this simulation we set c0 = 1, c1 = 0.01, and Πw
t =

⋃4
i=1{x ∈ Π : |x− xi

t| ≤ r}, where
{xi

t}4i=1 are the 4 time-varying locations shown in purple in Figure 4.10b. This yields

mt(x) =
∑4

i=1 1{x∈Π:|x−xi
t|≤r} + 0.011{x∈Π:∩4

i=1|x−xi
t|>r} and

Tr [MtΣt(θ,o)] =

4∑

i=1

∫

{x∈Π:|x−xi
t|<r}

Σ̃t(θ,o,x,x)dx + 0.01

∫

{x∈Π:∩4
i=1|x−xi

t|>r}

Σ̃t(θ,o,x,x)dx (4.51)

so that the objective function strongly weights the uncertainty in the state estimate in the

regions close to the time-varying locations {xi
t}4i=1, but also contains a contribution from

the uncertainty in the state estimate at all other locations.
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5
Parameter Estimation for the

McKean-Vlasov Stochastic

Differential Equation

Summary. In this chapter, we consider the problem of parameter estimation

for a stochastic McKean-Vlasov equation, and the associated system of weakly

interacting particles. We first establish consistency and asymptotic normality

of the offline maximum likelihood estimator for the interacting particle system

in the limit as the number of particles N → ∞. We then turn our attention to

online parameter estimation. We propose a recursive estimator for the param-

eters of the McKean-Vlasov SDE, which evolves according to a continuous-time

stochastic gradient descent algorithm on the asymptotic log-likelihood of the in-

teracting particle system. We prove that this estimator converges in L
1 to the

stationary points of the asymptotic log-likelihood of the McKean-Vlasov SDE in

the joint limit as N → ∞ and t→ ∞, under suitable conditions which guaran-

tee ergodicity and uniform-in-time propagation of chaos. We then demonstrate,

under the additional condition of global strong concavity, that our estimator

converges in L
2 to the unique maximiser of this asymptotic log-likelihood func-

tion, and establish an L
2 convergence rate. We also obtain analogous results

under the condition that, rather than observing multiple trajectories of the in-

teracting particle system, we instead observe multiple independent replicates of

the McKean-Vlasov SDE itself or, less realistically, a single sample path of the

McKean-Vlasov SDE and its law. Our theoretical results are demonstrated via

several numerical examples, including a linear mean field model and a stochas-

tic opinion dynamics model.
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5.1 Introduction

In this chapter, we consider a family of McKean-Vlasov stochastic differential equations

(SDEs) on R
d, parametrised by θ ∈ R

p, of the form

dxθt = B(θ, xθt , µ
θ
t )dt+ σ(xθt )dwt, t ≥ 0 (5.1)

µθt = L(xθt ), (5.2)

where B : Rp ×R
d ×P(Rd) → R

d, σ : Rd → R
d×d are Borel measurable functions, (wt)t≥0

is a R
d-valued standard Brownian motion, and L(xθt ) denotes the law of xθt . We assume

that x0 ∈ R
d, or that x0 is a R

d-valued random variable with law µ0, independent of

(wt)t≥0. This equation is non-linear in the sense of McKean [334, 335, 434]; in particular,

the coefficients depend on the law of the solution, in addition to the solution itself. We will

restrict our attention to the case in which the dependence on the law only enters linearly

in the drift, namely, that

B(θ, x, µ) = b(θ, x) +

∫

Rd

φ(θ, x, y)µ(dy), (5.3)

for some Borel measurable functions b : Rp × R
d → R

d and φ : Rp × R
d × R

d → R
d. This

choice of dynamics, while not the most general possible, is sufficiently broad for many

applications of interest. Moreover, it includes the popular case in which b and φ both

have gradient forms, that is, b(θ, x) = ∇Vθ(x) and φ(θ, x, y) = ∇Wθ(x − y), in which

case Vθ and Wθ are referred to as the confinement potential and the interaction potential,

respectively (e.g., [170, 327]).

The McKean-Vlasov SDE arises naturally as the hydrodynamical limit (N → ∞) of the

mean-field interacting particle system (IPS)

dxθ,i,Nt = B(θ, xθ,i,Nt , µθ,Nt )dt+ σ(xθ,i,Nt )dwi
t , i = 1, . . . , N (5.4)

where (wi
t)t≥0 are N independent Rd-valued independent standard Brownian motions, xi0

are a family of i.i.d. R
d-valued random variables with common law µ0, independent of

(wi
t)t≥0, and µθ,Nt = 1

N

∑N
i=1 δxθ,i,N

t
is the empirical law of the interacting particles. In

particular, under relatively weak assumptions, it is well known that the empirical law

µθ,Nt → µθt weakly as N → ∞ (e.g., [367]). This phenomenon is commonly known as the

propagation of chaos [434].

The McKean-Vlasov SDE also has a natural connection to a non-linear, non-local partial

differential equation on the space of probability measures (e.g., [95]). In particular, under

some regularity conditions on b and φ, one can show that L(xθt ) is absolutely continuous
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with respect to the Lebesgue measure for all t ≥ 0 [335, 443] and its density, which we

will denote by uθt , satisfies a non-linear partial differential equation of the form

∂uθt (x)

∂t
= ∇




1

2
σ(x)σT (x)∇uθt (x) + uθt (x)



b(θ, x) +

∫

Rd

φ(θ, x, y)uθt (y)dy







 . (5.5)

In the particular case that b(x) = ∇V (x) and φ(x, y) = ∇W (x − y), this is commonly

referred to as the granular media equation or the kinetic Fokker-Planck equation (e.g.,

[34, 95]).

5.1.1 Literature Review

The systematic study of McKean-Vlasov SDEs was first initiated by McKean [334] in the

1960s, inspired by Kac’s programme in Kinetic Theory [235]. We refer to [187, 338, 434,

459] for some other classical references. In the last two decades, the study of non-linear

diffusions has continued to receive considerable attention, with extensive results on well-

posedness (e.g., [100, 221]), existence and uniqueness (e.g., [32, 234, 351]), ergodicity (e.g.,

[57, 93, 95, 171, 212, 327, 449]), and propagation of chaos (e.g., [34, 81, 170, 327, 328]). This

has no doubt been motivated, at least in part, by the increasing number of applications for

McKean-Vlasov SDEs, including in statistical physics [38], multi-agent systems [34], mean-

field games [91], stochastic control [74], filtering [126], mathematical biology (including

neuroscience [21] and structured models of population dynamics [76]), epidemic dynamics

[25], social sciences (including opinion dynamics [101] and cooperative behaviours [85]),

financial mathematics [201], and, perhaps most recently, high dimensional sampling [307]

and neural networks [421].

Despite the recent renewed interest in the study of McKean-Vlasov SDEs, however, the

problem of parameter estimation for this class of equations has received relatively little at-

tention. This is contrast to the wealth of literature on parameter inference in linear (i.e.,

not measure dependent) diffusion processes (e.g., [52, 63, 273, 304]). Recently, Wen et

al. [465] established the asymptotic consistency and asymptotic normality of the (offline)

maximum likelihood estimator (MLE) for a broad class of McKean-Vlasov SDEs, based

on continuous observation of (xt)t∈[0,T ]. These results have since been extended by Liu et

al. to the path-dependent case [306]. We also mention the work of Catalot and Laredo

[194, 195], who have studied parametric inference for a particular class of one-dimensional

nonlinear self-stabilising SDEs using an approximate log-likelihood function, again based

on continuous observation of the non-linear diffusion process, and established the asymp-

totic properties (consistency, normality, convergence rates) of the resulting estimators in

several asymptotic regimes (e.g., small noise and long time limit). More recently, Gomes

et al. [205] have considered parameter estimation for a McKean-Vlasov PDE, based on
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independent realisations of the associated non-linear SDE, in the context of models for

pedestrian dynamics.

In a slightly different framework, Maestra and Hoffmann [146] consider non-parametric

estimation of the drift-term in a McKean-Vlasov SDE, and the solution of the correspond-

ing non-linear Fokker-Planck equation, based on continuous observation of the associated

IPS over a fixed time horizon, namely (xit)
i=1,...,N
t∈[0,T ] , in the limit as N → ∞. The authors

obtain adaptive estimators based on the solution map of the Fokker-Planck equation,

and prove their optimality in a minimax sense. Moreover, in the case of the so-called

Vlasov model, which in our notation corresponds to the case in which b(x) = ∇V (x) and

φ(x, y) = ∇W (x − y), the authors derive an estimator of the interaction potential, and

establish its consistency. We also refer to [322, 323, 324] for some other recent contribu-

tions on non-parametric inference for IPSs. While these approaches are interesting and

potentially very useful, we should emphasise that they are tangential and very different

to this contribution.

Despite these recent contributions, however, to our knowledge there are no existing works

which tackle the problem of online parameter estimation for McKean-Vlasov SDEs. The

main purpose of this chapter is to address this gap. There is significant motivation for this

approach. Indeed, in comparison to classical (offline) methods, which process observations

in a batch fashion, online methods perform inference in real time, can track changes in

parameters over time, are more computationally efficient, and have significantly smaller

storage requirements. Even for standard diffusion processes, literature on online parameter

estimation is somewhat sparse, with some notable recent exceptions [420, 422, 430]. The

problem of recursive estimation in continuous time stochastic processes was first rigorously

analysed by Levanony et al. [296], who proposed an online MLE which, irrespective of

initial conditions, was shown to be consistent and asymptotically efficient. This estimator,

however, involves computing gradients of a Girsanov log-likelihood, Lt(θ), every time

a new observation arrives; as a result, it is computationally expensive, and cannot be

implemented in a truly online fashion, since∇θLt(θ) depends on the entire trajectory of the

process xt. This problem has recently been revisited by Sirignano and Spiliopoulos [420,

422], who propose an online statistical learning algorithm - ‘stochastic gradient descent in

continuous time’ - for the estimation of the parameters in a fully observed ergodic diffusion

process. These authors establish the a.s. convergence of this estimator in the sense that

||∇θg(θt)|| → 0 as t → ∞ a.s., for some suitably defined objective function g(θ) [420],

and, under additional assumptions, also obtain an L
p convergence rate and a central limit

theorem [422]. These results have since also been extended to partially observed diffusion

processes [430] and jump-diffusion processes [50].

There also exists relatively little previous literature on statistical inference for IPSs, in the

limit as the number of particles N → ∞. Let us briefly review the main existing results
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on this subject. In the context of parameter estimation, the mean field regime was first

analysed by Kasonga [242], who considered a system of interacting diffusion processes,

depending linearly on some unknown parameter, and established that the MLE based on

continuous observations over a fixed time interval [0, T ] is consistent and asymptotically

normal in the limit as N → ∞. Bishwal [53] later extended these results to the case

in which the parameter to be estimated is a function of time, proving consistency and

asymptotic normality of the sieve estimator (in the case of continuous observations) and

an approximate MLE (in the case of discrete observations). In this chapter, we extend the

results in [242] in another direction, establishing consistency and asymptotic normality of

the offline MLE when the parametrisation is not linear.

More recently, Giesecke et al. [201] have established the asymptotic properties (consis-

tency, asymptotic normality, and asymptotic efficiency) of an approximate MLE for a

much broader class of dynamic interacting stochastic systems, widely applicable in finan-

cial mathematics, which additionally allow for discontinuous (i.e., jump) dynamics. In

addition, Chen [110] has established the optimal convergence rate for the MLE in an in-

teracting parameter system with linear interaction for φ, simultaneously in the large N

(mean-field limit) and large T (long-time dynamics) regimes. None of the these works,

however, considers parameter estimation for the IPS in the online setting.

5.1.2 Contributions

The main contributions of this chapter relate to both the methodology and the theory of

parameter estimation for the McKean-Vlasov SDE (5.1) - (5.2). Regarding methodology:

• We discuss how one can formulate an appropriate approximation to the true likeli-

hood function in this problem, under various modelling assumptions.

• We distinguish between cases in which the data consists of multiple paths of the IPS

(Case I), multiple independent samples of the McKean-Vlasov SDE (Case II), or,

less realistically, a single sample path of the McKean-Vlasov SDE and its law (Case

III).

In each of these cases, we perform a rigorous asymptotic analysis of the MLE, with a focus

on online parameter estimation. Our main theoretical contributions can be summarised

as follows:

• In Case I, we establish asymptotic consistency and asymptotic normality of the

offline MLE, in the limit as the number of particles N → ∞. Our results generalise

those in [242] to the case in which b and φ depend non-linearly on the parameter.
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• In all three cases, we propose online estimators for the parameters of the McKean-

Vlasov SDE, which evolve according to continuous-time stochastic gradient descent

algorithms with respect to appropriate asymptotic log-likelihood functions.

• We prove that each of these estimators converges in L
1 to the stationary points of

the asymptotic log-likelihood of the McKean-Vlasov SDE, under suitable conditions

which guarantee ergodicity and uniform-in-time propagation of chaos. In Cases I - II,

this convergence holds in the joint limit as N → ∞ and t→ ∞. In Case III, it holds

solely in the limit as t→ ∞. These proofs combine ideas from [81, 171, 327, 420].

• We prove, under the additional condition that the asymptotic log-likelihood of the

McKean Vlasov SDE is strongly concave, that these estimators converge in L
2 to its

unique global maximiser, in the same limits outlined above. In each case, we also

obtain explicit convergence rates.

Finally, we provide numerical examples to illustrate the application of these results to sev-

eral cases of interest, namely, a linear mean-field model, and a stochastic opinion dynamics

model. It is worth emphasising that, given the connection between the McKean-Vlasov

SDE (5.1) - (5.2) and the non-linear, non-local PDE (5.5), the results of this chapter are

also applicable when one is primarily interested in parameter estimation for the non-linear

PDE (5.5).

5.1.3 Chapter Organisation

The remainder of this chapter is organised as follows. In Section 5.2, we formulate the

estimation problem, and propose a recursive estimator for the McKean-Vlasov SDE. In

Section 5.3, we state our conditions and our main results regarding the asymptotic prop-

erties of the offline and online MLEs. In Section 5.4, we provide the proofs of these results.

In Section 5.5, we provide several numerical examples illustrating the performance of the

proposed algorithm. Finally, in Section 5.6, we provide some concluding remarks.

5.1.4 Additional Notation

We will assume throughout this chapter that all stochastic processes are defined canoni-

cally on a complete probability space (Ω,F ,P), equipped with filtration (Ft)t≥0. We will

use 〈·, ·〉 and || · || to denote, respectively, the Euclidean inner product and the correspond-

ing norm on R
d. We write P(Rd) and Pp(R

d), p > 0, for the collection of all probability

measures on R
d, and the collection of all probability measures on R

d with finite pth mo-

ment. In a slight abuse of notation, we will frequently write µ(|| · ||p) for the pth moment

of µ; that is, µ(|| · ||p) =
∫

Rd ||x||pµ(dx). For µ, ν ∈ Pp(R
d), we write Wp(µ, ν) to denote
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the Wasserstein distance between µ and ν, viz

Wp(µ, ν) = inf
π∈Π(µ,ν)






∫

Rd×Rd

||x− y||pπ(dx, dy)






1
max{1,p}

. (5.6)

where Π(µ, ν) for the set of all couplings of µ, ν. That is, if π ∈ Π(µ, ν), then π(A×R
d) =

µ(A) and π(Rd × A) = ν(A) for all A ∈ B(Rd). Finally, if (xt)t≥0 is a solution of the

McKean-Vlasov SDE with x0 = x ∈ R
d, we will occasionally make explicit the dependence

on the initial condition by writing µxt = L(xt) for the law of xt. We can also then write

Ex [f(xt)] =
∫

Rd f(y)µ
x
t (dy).

5.2 Parameter Estimation for the McKean-Vlasov SDE

We will assume, throughout this chapter, that there exists a true (static) parameter

θ0 ∈ R
p which generates observations (xt)t≥0 := (xθ0t )t≥0 of the McKean-Vlasov SDE

(5.1). Thus, we operate under the standard well specified regime, and in our notation will

suppress the dependence of the observed path on the true parameter θ0. We will assume

the same condition when instead we observe trajectories of the IPS (5.4), in which case

the observations are given by (xi,Nt )i=1,...,N
t≥0 = (xθ0,i,Nt )i=1,...,N

t≥0 .

5.2.1 The Likelihood Function

Let Pθ
t denote the probability measure induced by a path (xθs)s∈[0,t] of the McKean-Vlasov

SDE (5.1). Then, under certain regularity conditions, to be specified below, one can use

the Girsanov formula to obtain a likelihood function as (e.g., [465])

Lt(θ) = log
dPθ

t

dPθ0
t

=

t∫

0

〈[
B(θ, xs, µs)−B(θ0, xs, µs)

]
, (σ(xs)σ

T (xs))
−1dxs

〉
(5.7)

− 1

2

t∫

0

[∣
∣
∣
∣σ−1(xs)B(θ, xs, µs)

∣
∣
∣
∣
2 −

∣
∣
∣
∣σ−1(xs)B(θ0, xs, µs)

∣
∣
∣
∣
2
]

ds.

Suppose, for a moment, that the diffusion coefficient σ also depended on the unknown

parameter. In this case, the measures {Pθ} would be mutually singular, and the likelihood

function would not be well defined. We thus adopt the standard condition of parameter

independence for the diffusion coefficient, and for convenience set σ = 1 (e.g., [63, 296,

465]). In the case that σ is an unknown constant, it can be estimated separately using

standard methods (e.g., [193]). In fact, there are various different approaches in this case,
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including those based on a quasi log-likelihood function [215], or on a least squares type

function for the diffusion coefficient [420]. The methods outlined in this chapter can be

extended to either of these cases, as well as to parameter estimation under other criteria.

In order to proceed, it will be convenient to define the functions G : Rp×R
d×P(Rd) → R

d

and L : Rp × R
d × P(Rd) → R according to

G(θ, x, µ) := B(θ, x, µ)−B(θ0, x, µ) (5.8)

L(θ, x, µ) := −1

2
||G(θ, x, µ)||2. (5.9)

We are now ready to state our first basic assumption. This is a Novikov-type condition

which ensures that
dPθ

t

dP
θ0
t

exists and is a martingale. We note that several slightly weaker

versions of this condition are also possible (e.g., [306, 465]).

Assumption A.1. For all θ ∈ R
p, t ≥ 0, the function G : Rp×R

d×P(Rd) → R
d satisfies

E



exp




1

2

t∫

0

||G(θ, xs, µs)||2ds







 <∞. (5.10)

Under this assumption, it follows from Girsanov’s Theorem that P
θ
t is absolutely contin-

uous with respect to P
θ0
t for all θ ∈ R

p, t > 0 (e.g. [304, Theorem 7.19], [306, 465]), and

that the log-likelihood for an observed path of the McKean-Vlasov SDE (5.1) - (5.2) is

given by

Lt(θ) =

t∫

0

L(θ, xs, µs)ds+

t∫

0

〈G(θ, xs, µs), dws〉. (5.11)

While, in general, it is possible to observe a sample path (xt)t≥0 of a (McKean-Vlasov)

SDE, in general one does not have direct access to its law (µt)t≥0. As such, it is generally

not possible to compute the likelihood function Lt(θ) in (5.11) directly. On this basis,

even if one is interested in fitting data to the McKean-Vlasov SDE, it will typically be

necessary to approximate the corresponding likelihood function.

In order to make such an approximation, we will henceforth assume that we can simul-

taneously observe multiple continuous sample paths, which is much more typical of the

data that we observe in practice. There are now two possibilities. The first is to assume

that the observed paths correspond to the trajectories of N particles (xi,Nt )i=1,...,N
t≥0 from

the IPS (5.4). In this case, we can approximate Lt(θ) by the Girsanov log-likelihood for
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Case Data-Generating Model Observation(s) Likelihood Function

Approximate Ideal

Case I IPS (5.4) (xi,N
t )i=1,...,N

t≥0 LN
t (θ) in (5.12) Lt(θ) in (5.11)

Case II MVSDE (5.1) - (5.2) (xi
t)

i=1,...,N
t≥0 L

[N ]
t (θ) in (5.13) Lt(θ) in (5.11)

Case III MVSDE (5.1) - (5.2) (xt, µt)t≥0 - Lt(θ) in (5.11)

Table 5.1: Parameter Estimation: Summary of Different Cases

the IPS, which is given by (e.g., [53, 110, 242])

LN
t (θ) :=

1

N

N∑

i=1

Li,N
t (θ) =

1

N

N∑

i=1

[ t∫

0

L(θ, xi,Ns , µNs )ds+

t∫

0

〈
G(θ, xi,Ns , µNs ), dwi

s

〉
]

,

(5.12)

where µNt = 1
N

∑N
j=1 δxj,N

t
denotes the empirical measure of the IPS, and we have included

1
N as a normalisation factor. We will refer to this as Case I. The second possibility is

to instead assume the observed paths are N independent instances (xit)
i=1,...,N
t≥0 of the

McKean-Vlasov SDE (5.1). In this case, we can approximate Lt(θ) by

L[N ]
t (θ) :=

1

N

N∑

i=1

L[i,N ]
t (θ) =

1

N

N∑

i=1

[ t∫

0

L(θ, xis, µ
[N ]
s )ds+

t∫

0

〈
G(θ, xis, µ

[N ]
s ), dwi

s

〉
]

,

(5.13)

where µ
[N ]
t = 1

N

∑N
i=1 δxi

t
denotes the empirical measure of the sample paths. In this

approximation, the functions L[i,N ]
t (θ), i = 1, . . . , N , correspond to N Monte Carlo ap-

proximations of Lt(θ), obtained by substituting µ
[N ]
t for µt. The approximation L[N ]

t (θ)

then follows by independence. We will refer to this case as Case II. Finally, we will

refer to the rather unrealistic case in which we directly observe a single path (xt)t≥0 of

the McKean-Vlasov SDE (5.1), as well as its law (µt)t≥0, as Case III. These cases are

summarised in Table 5.1.

In what follows, our exposition will primarily focus on Case I, which provides the most

interesting and challenging case in which to perform asymptotic analysis in both N and

t. One can consider Case I and Case II as approximations to Case III that are amenable

to implementation. In the limit as N → ∞, standard propagation-of-chaos results (e.g.,

[327]) show that the dynamics of the observations in Cases I and II will coincide. In our

results, we will establish rigorously that this also holds for the different implied likelihood

functions, LN
t (θ) and L[N ]

t (θ). This should not be a surprise given the similarities between

these two functions: in particular, they are identical as functions of x and µN . We will
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also demonstrate that, as N → ∞, these two ‘approximations’ also coincide with Lt(θ),

the ‘ideal’ likelihood function implied by the less realistic Case III. Moreover, we show

that the same is true of the resulting parameter estimates.

5.2.2 Offline Parameter Estimation

In the offline setting, the objective is to estimate the true parameter θ0 after receiving a

batch of data over a fixed time interval [0, t]. Let us first consider the ‘idealised’ framework

of Case III, in which one directly observes both (xs)s∈[0,t] and (µs)s∈[0,t] from the McKean-

Vlasov SDE (5.1) - (5.2). In this case, one can achieve this objective directly by seeking

to maximise the value of Lt(θ) in order to obtain the MLE

θ̂t = arg sup
θ∈Rp

Lt(θ). (5.14)

The asymptotic properties (i.e., consistency, asymptotic normality) of this estimator in

the limit as t → ∞, under similar conditions to our own (see Section 5.3), have recently

been established [306, 465]. In this chapter, we are more interested in Case I, in which we

assume that we observe N sample paths (xi,Nt )i=1,...,N
s∈[0,t] following the dynamics of the IPS

(5.4). In this case, we aim instead to maximise the value of LN
t (θ), and are thus interested

in the asymptotic properties of the following MLE

θ̂Nt = arg sup
θ∈Rp

LN
t (θ). (5.15)

The asymptotic properties of this estimator as t → ∞, for fixed N , are covered by well

established results for parameter estimation in standard SDEs (e.g., [52, 296, 304]). Con-

versely, there are very few results on the properties of this MLE in the limit as N → ∞,

aside from in the case of a linear parametrisation [53, 242]. We thus find it instructive to

revisit this problem. In Theorems 5.1 - 5.2, we extend previous results to the more general

and possible non-linear setting (in the sense of parametrisation), establishing consistency

and asymptotic normality of this estimator as N → ∞, for fixed t.

5.2.3 Online Parameter Estimation

In the online setting, our objective is to estimate the true parameter θ0 in real time,

using the continuous stream of observations. Once more, let us begin in the ‘idealised’

framework of Case III. In this case, a standard approach to this task would be to seek to

recursively maximise the asymptotic log-likelihood function L̃(θ) of the McKean-Vlasov

154



5.2: Parameter Estimation for the McKean-Vlasov SDE

SDE, which, provided the limit exists, could be defined according to

L̃(θ) = lim
t→∞

1

t
Lt(θ). (5.16)

In the spirit of [50, 420, 430], this could be achieved using stochastic approximation by

defining an estimator θ = (θt)t≥0 which follows the gradient of the integrand of the log-

likelihood in (5.11), evaluated with the current parameter estimate. Thus, initialised at

θinit ∈ R
p, θt evolves according to a McKean-Vlasov SDE of the form

dθt = γt

(

∇θL(θt, xt, µt)dt
︸ ︷︷ ︸

(noisy) ascent term

+∇θB(θt, xt, µt)dwt
︸ ︷︷ ︸

noise term

)

(5.17)

where γt : R+ → R
p
+ is a positive, non-increasing function known as the learning rate.1

This evolution equation represents a continuous-time stochastic gradient ascent scheme on

the asymptotic log-likelihood function. To see this, let us rewrite the parameter update

equation (5.17) in the form

dθt = γt

(

∇θL̃(θt)dt
︸ ︷︷ ︸

(true) ascent term

+(∇θL(θt, xt, µt)−∇θL̃(θt))dt
︸ ︷︷ ︸

fluctuations term

+∇θB(θt, xt, µt)dwt
︸ ︷︷ ︸

noise term

)

(5.18)

The first term in this decomposition represents the true ascent direction ∇θL̃(θt), the

second term the deviation between the stochastic gradient ascent direction ∇θL(θt, xt, µt)

and the true (deterministic) gradient ascent direction ∇θL̃(θt), while the third term is a

zero-mean noise term. Heuristically, we might expect that, provided the learning rate γt

decreases (sufficiently quickly) with time, the ascent term will dominate the fluctuations

term and the noise term when t is sufficiently large. If this is the case, we could then

reasonably expect that θt will converge to a local maximum of L̃(θ).

Similarly to the offline case, the ‘ideal’ online estimator (5.17) cannot typically be imple-

mented in practice, since we do not have access to the law (µt)t≥0. Instead, as remarked

previously, we will typically observe multiple continuous sample paths. Once again, let us

first consider the case in which the N sample paths (xt)
i=1,...,N
s∈[0,t] are assumed to correspond

to the trajectories of the IPS (5.4) (Case I). In this case, it is natural to consider the

‘approximate’ update equation

dθi,Nt = γt

[

∇θL(θt, x
i,N
t , µNt )dt+∇θB(θt, x

i,N
t , µNt )dwi

t

]

, (5.19)

1One also arrives at this estimator by considering a ‘least-squares’ type objective, i.e., minimisation of
the function ||G(θ, x, µ)||2 [420].
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for some i = 1, . . . , N , or, averaging over all of the interacting particles,

dθNt = γt
1

N

N∑

i=1

[

∇θL(θt, x
i,N
t , µNt )dt+∇θB(θt, x

i,N
t , µNt )dwi

t

]

. (5.20)

We can also use these update equations in Case II, in which we instead assume that the N

sample paths (xit)
i=1,...,N
t≥0 correspond to independent replicates of the McKean-Vlasov SDE

(5.1). This should not be surprising on the basis of our previous remarks: in particular,

the likelihood functions in Cases I and II are identical up to specification of the data. In

Case II, we must simply replace xi,Nt by xit, and µ
N
t by µ

[N ]
t in (5.19) and (5.20). We will

denote the resulting estimates by (θ
[i,N ]
t )t≥0 and (θ

[N ]
t )t≥0.

Let us briefly remark on these two schemes. The advantage of (5.19) is that the com-

putation can be performed locally at each particle, following a message passing step for

retrieving µNt . It is thus convenient for a distributed implementation. On the other hand,

(5.20) will typically be more accurate, as we will later demonstrate (see Theorems 5.4 and

5.4∗). In Case I, these two schemes can be seen as stochastic gradient descent algorithms

for maximising the ‘partial’ asymptotic log-likelihood of the ith particle in the IPS, or the

‘complete’ asymptotic log-likelihood of all of the particles, respectively. That is,

L̃i,N (θ) = lim
t→∞

1

t
Li,N
t (θ) or L̃N (θ) = lim

t→∞

1

t
LN
t (θ). (5.21)

Reasoning as before, we expect that, under suitable conditions on the learning rate, θNt and

θi,Nt will converge to local maxima of L̃N (θ) and L̃i,N (θ) as t → ∞. Moreover, assuming

uniform-in-time propagation of chaos, we can also now expect that L̃N (θ) and L̃i,N (θ) will

converge to L̃(θ) as N → ∞. Thus, in the joint limit as t → ∞ and N → ∞ it seems

reasonable to hypothesise that θNt and θi,Nt will in fact converge to local maxima of L̃(θ),
the asymptotic log-likelihood of the original McKean-Vlasov SDE. In Theorems 5.3 - 5.4,

we will establish rigorously that this is indeed the case.

5.3 Main Results

In this section, we present our main results on the asymptotic properties of the offline and

online MLEs, as well as our assumptions.

5.3.1 Assumptions

Let us begin by stating our basic assumptions.

Assumption B.1. For all θ ∈ R
p, b(θ, ·) : Rd → R

d has the following properties.
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(i) b(θ, ·) is locally Lipschitz. That is, for all x, x′ ∈ R
d such that ||x||, ||x′|| < R, there

exists 0 < L1 <∞ such that

||b(θ, x)− b(θ, x′)|| ≤ L1||x− x′||. (5.22)

(ii) b(θ, ·) is ‘monotonic’. That is, for all x, x′ ∈ R
d, there exists α > 0 such that

〈
x− x′, b(θ, x)− b(θ, x′)

〉
≤ −α||x− x′||2. (5.23)

Assumption B.2. For all θ ∈ R
p, φ(θ, ·, ·) : Rd × R

d → R
d has the following properties.

(i) φ(θ, ·, ·) ∈ C2(Rd,Rd). That is, φ is twice continuously differentiable with respect to

both of its arguments.

(ii) φ(θ, ·, ·) is globally Lipschitz. In particular, there exists 0 < 2L2 < α such that, for

all x, y, x′, y′ ∈ R
d,

||φ(θ, x, y)− φ(θ, x′, y′)|| ≤ L2(||x− x′||+ ||y − y′||). (5.24)

or, in place of (ii),

(ii)’ φ(θ, ·, ·) is ‘anti-symmetric’. That is, for all x, y ∈ R
d, φ(θ, x, y) = −φ(θ, y, x).

(ii)” φ(θ, ·, ·) increases as a function of the distance between its arguments. That is, for

all x, y, x′, y′ ∈ R
d,

〈(x− y)− (x′ − y′), φ(x, y)− φ(x′, y′)〉 ≤ 0. (5.25)

These two conditions are used to establish existence and uniqueness of the strong solution

to the McKean-Vlasov SDE, uniform moment bounds, uniform-in-time propagation of

chaos, and the existence of, and exponential convergence to, a unique invariant measure

(e.g., [81, 458]). We provide a precise statement of these well known results in Appendix

5.A, which we will frequently make use of to prove the main results in this chapter.

In the literature on non-linear diffusions, it is typical, as noted previously, to consider

the case in which b(θ, x) = −∇V (θ, x) for some confinement potential V , and φ(θ, x, y) =

−∇W (θ, x − y) for some interaction potential W . In this context, Condition B.1(ii) is

equivalent to the condition that V is strongly convex with parameter α, and Conditions

B.2(ii)’-(ii)” are equivalent to the conditions that W is even and convex (see [327]). These

are perhaps the simplest and most well established conditions under which the results

listed above (uniform-in-time propagation of chaos, exponential convergence to a unique

invariant measure) can be obtained; we have thus adopted them here for ease of exposition.
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This being said, let us remark briefly upon some weaker conditions under which these

results still hold, and therefore under which the main results of our chapter will also

still hold (albeit with some additional technical overhead). In the case that there is no

confinement potential (i.e. V ≡ 0), and the interaction potential is uniformly convex with

gradient that is locally Lipschitz with polynomial growth, Malrieu established uniform-

in-time propagation of chaos and exponential convergence to equilibrium [328]. Cattiaux

et al. [95] later established the same results in the case that the interaction potential is

degenerately convex. Meanwhile, in [93, 94], the authors establish exponential convergence

to equilibrium under the strict convexity condition Hess(V + 2W ) ≥ βId, for some β > 0.

In the case that V + 2W is not convex, far fewer results are available; indeed, without

additional conditions on V and W , even the existence of a unique stationary distribution

is not guaranteed (see, e.g., [212, 213, 449, 450]). This being said, Bolley et al. [57] proved

uniform exponential convergence to equilibrium in both degenerately convex, and weakly

non-convex cases. More recently, [170, 171] have established uniform-in-time propagation

of chaos and exponential convergence to equilibrium in the non-convex case, provided the

confinement potential V is strictly convex outside a ball, and the interaction potential

is globally Lipschitz with sufficiently small Lipschitz constant. For a recent extension of

these results, see also [308].

We will also require the following regularity condition.

Assumption C.1. The functions b : Rp ×R
d → R

d and φ : Rp ×R
d ×R

d → R
d have the

following properties.

(i) ∇θb(·, x),∇θφ(·, x, y) ∈ C2(Rp) for all x, y ∈ R
d, ∂2

∂x2∇θb ∈ C(Rp,Rd), ∂2

∂x2∇θφ ∈
C(Rp,Rd,Rd), and ∇i

θb(θ, ·) ∈ C1+α(Rd), ∇i
θφ(θ, ·, ·) ∈ C1+α(Rd,Rd), i = 1, 2, uni-

formly in θ ∈ R
p for some α ∈ (0, 1).2

(ii) The functions ∇i
θb(θ, ·) and ∇i

θφ(θ, ·, ·) are locally Lipschitz with polynomial growth.

That is, there exist constants q,K <∞ such that, for i = 0, 1, 2, 3,

∣
∣
∣
∣∇i

θb(θ, x)−∇i
θb(θ, x

′)
∣
∣
∣
∣ ≤ K||x− x′||

[
1 + ||x||q + ||x′||q

]
(5.26)

∣
∣
∣
∣∇i

θφ(θ, x, y)−∇i
θφ(θ, x

′, y′)
∣
∣
∣
∣ ≤ K

[
||x− x′||+ ||y − y′||

]
(5.27)

·
[
1 + ||x||q + ||x′||q + ||y||q + ||y′||q

]
. (5.28)

(iii) b(θ0, ·) ∈ C2+α(Rd), φ(θ0, ·, ·) ∈ C2+α(Rd,Rd) with α ∈ (0, 1). Namely, these func-

tions have two derivatives, with all partial derivatives Hölder continuous with expo-

nent α.

2In fact, we only require that these properties hold for the function L(θ, x, µ), as defined in (5.8) -
(5.9). We find it more convenient, however, to specify this condition in terms of the functions b(θ, x) and
φ(θ, x, y).
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In the offline setting, these conditions are required in order to control the growth of the

log-likelihood function and its derivatives. In the online setting, they are required in order

to control the ergodic behaviour of the solution of the McKean-Vlasov SDE (and the asso-

ciated IPS), which is central to establishing convergence of the online MLE. In particular,

they ensure that fluctuations terms of the form
∫ t
0 γs(∇θL(θs, xs, µs)−∇θL̃(θs))ds, which

arise due to the noisy online estimate of the gradient of the asymptotic log-likelihood func-

tion ∇θL̃(θs), c.f. (5.18), tend to zero sufficiently quickly as t → ∞. Using an approach

which is now well established in the analysis of stochastic approximation algorithms in

continuous time (e.g., [50, 413, 420, 422, 430]), we control such terms by rewriting them

in terms of the solutions of some related Poisson equations. Condition C.1 ensures that

these solutions are unique, and that they grow at most polynomially in a suitable sense

(see Lemma 5.16 in Appendix 5.C).

We should remark that, for the sake of convenience and to remain in line with much of

the recent literature, we have restricted our attention to the case in which the measure

enters only linearly in the drift coefficient B(θ, x, µ). As such, our main conditions are

stated in terms of the functions b : Rp × R
d × R

d and φ : Rp × R
d × R

d → R
d. Our main

results, however, can be extended straightforwardly to more general choices of interaction

function, under suitable conditions on B : Rp × R
d × P(Rd) → R

d. In particular, in the

online setting, we simple require conditions which guarantee the existence of a unique

invariant measure, and uniform-in-time propagation of chaos. As an example, we can

replace Condition C.1(ii) by ||∇θB(θ, x, µ)|| ≤ K[1 + ||x||q + µ(|| · ||q)]. Finally, we will

require the following assumption on the initial condition.

Assumption D.1. The initial law satisfies µ0 ∈ Pk(R
d) for all k ∈ N.

This condition guarantees that the solutions of the McKean-Vlasov SDE and the associated

IPS have bounded moments of all orders (see Proposition 5.2), and so do their invariant

measures (see Lemma 5.3). In turn, this ensures that one can control the polynomial

growth of the log-likelihood and its derivatives (in the offline case), and the polynomial

growth of the solutions of the relevant Poisson equations (in the online case). We should

remark that, in the offline case, we can significantly weaken this assumption: in particular,

we only require that µ0 ∈ Pq(R
d), where q is the order of the polynomial growth of

the functions b(θ, ·) and φ(θ, ·, ·) (see Condition C.1). One can also slightly relax this

condition in the online case, though in a much more cumbersome fashion.3 We note that

this condition is trivially satisfied in the case that x0 ∈ R
d.

3In particular, in the online case, one requires µ0 ∈ Pk(R
d), where k is the maximum order of polynomial

growth of a solution of any of the relevant Poisson equations appearing in the proofs of Theorem 5.3 and
Theorem 5.4.
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5.3.2 Offline Parameter Estimation

In the case of offline parameter estimation, we will require the following additional as-

sumptions.

Assumption E.1. For all t > 0, and for all θ ∈ R
p, the function mt : R

p → R, defined

according to

mt(θ) =

t∫

0

∫

Rd

L(θ, x, µs)µs(dx)ds (5.29)

satisfies sup||θ−θ0||>δmt(θ) < 0 a.s. ∀δ > 0.

Assumption E.2. For all t > 0, the matrix It(θ0) = [It(θ0)]k,l=1,...,p ∈ R
p×p, defined

according to

[It(θ0)]kl =

t∫

0

∫

Rd

[∇θB(θ0, x, µs)]k[∇θB(θ0, x, µs)]lµs(dx)ds (5.30)

is positive-definite, with λT It(θ0)λ increasing for all λ ∈ R
p, and I0(θ0) = 0.

The first of these two conditions relates to parameter identifiability, guaranteeing the

uniqueness of θ0 as the optimal parameter in the sense of some asymptotic cost, and is

necessary in order to establish consistency of the MLE as N → ∞. It can be seen, in some

sense, as an analogue of the classical condition used to obtain consistency in the long-time

regime (e.g., [63], [312, pp. 137-139], [296, pp. 252 - 253] [390, Condition A5]). It is also

closely related to the so-called ‘coercivity condition’, introduced in [58], which appears in

the study of non-parametric inference for IPSs (see also [301, 322, 323, 324]). Notably,

this condition holds if the parametrisation is linear. Meanwhile, the second condition is

necessary in order to establish asymptotic normality, and can be seen as a generalisation

of a similar condition introduced in [242] (see also [53]).

We are now ready to state our two main results in the offline case.

Theorem 5.1. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and E.1 hold. Let

Θ ⊆ R
p be a compact set, and suppose θ0 ∈ Θ. Then, for all t > 0, θ̂Nt is a weakly

consistent estimator of θ0 as N → ∞. That is, as N → ∞,

θ̂Nt
P−→ θ0. (5.31)

Proof. See Section 5.4.1.

Theorem 5.2. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and E.1 - E.2 hold.

Let Θ ⊆ R
p be a compact set, and suppose θ0 ∈ Θ. Then, for all t > 0, N

1
2 (θ̂Nt − θ0) is

asymptotically normal with mean zero and variance I−1
t (θ0). That is, as N → ∞,
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N
1
2 (θ̂Nt − θ0)

D−→ N (0, I−1
t (θ0)). (5.32)

Proof. See Section 5.4.2.

5.3.3 Online Parameter Estimation

In the online case, we will first require the following standard condition on the learning

rate.

Assumption F.1. The learning rate γt : R+ → R+ is a positive, non-increasing function

such that
∫∞
0 γtdt = ∞,

∫∞
0 γ2t dt < ∞,

∫∞
0 γ′tdt < ∞. Moreover, there exists p > 0 such

that limt→∞ γ2t t
2p+ 1

2 = 0.

This condition can be seen as the continuous-time analogue of the standard step-size con-

dition used in the convergence analysis of stochastic approximation algorithms in discrete

time (e.g., [396, 420]).

We now proceed with some additional assumptions, which will only be required for our

L
2 convergence results (Theorems 5.4, 5.4∗, 5.4†, 5.4‡).

Assumption F.2. Let Φs,t = exp(−2η
∫ t
s γudu), for the constant η defined below in Con-

dition H.1. The learning rate γt : R+ → R+ satisfies
∫ t
0 γ

2
sΦs,tds = O(γt),

∫ t
0 γ

′
tΦs,tds =

O(γt),
∫ t
0 γsΦs,tds = O(1),

∫ t
0 γsΦs,te

−λsds = O(γt), and Φ1,t = O(γt).

This is another condition on the learning rate, first introduced in [422], and is specific to

stochastic gradient descent in continuous time. A standard choice of learning rate which

satisfies both of these conditions is γt = Cγ(C0 + t)−1, where Cγ , C0 > 0 are positive

constants such that Cγη > 1.

In addition, we introduce the following two assumptions.

Assumption G.1. There exists a positive constant R < ∞, and an almost everywhere

positive function κ : Rd × P(Rd) → R, such that, for all ||θ|| ≥ R,

〈∇θL(θ, x, µ), θ〉 ≤ −κ(x, µ)||θ||2. (5.33)

Assumption G.2. Define the function τ : Rp × R
d × P(Rd) → R according to

τ(θ, x, µ) =
〈
∇θB(θ, x, µ)∇θB

T (θ, x, µ)
θ

||θ|| ,
θ

||θ||
〉 1

2 (5.34)

Then, there exists 0 < q,K <∞ such that, for all θ, θ′ ∈ R
p, for all x, y ∈ R

d,

|τ(θ, x)− τ(θ′, x)|| ≤ K||θ − θ′||(1 + ||x||q + ||µ(|| · ||2)|| q2 ) (5.35)
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These two conditions ensure, via the comparison theorem (e.g., [228, 478]), that the online

parameter estimates generated by the McKean-Vlasov SDE and the IPS, namely (θt)t≥0

and (θi,Nt )t≥0, have uniformly bounded moments (see Lemma 5.1). We refer to [243]

for some more general conditions under which this result still holds. The first condition

relates to the drift terms in the two parameter update equations, and can be seen as a

recurrence condition; the second condition relates to the diffusion terms, and can be seen

as an extension of Condition B.2(ii). In particular, in the case that θ ∈ R, Condition G.2

essentially reduces to Condition B.2(ii). This condition was introduced in [420], and has

since also appeared in [50].

Finally, to establish consistency, we will require the following assumptions on the concavity

of the log-likelihood.

Assumption H.1. The function L̃(θ) is strongly concave. That is, there exists η > 0

such that, for all θ, θ′ ∈ R
p,

L̃(θ′) ≤ L̃(θ) +∇L̃(θ)T (θ′ − θ)− η

2
||θ′ − θ||2. (5.36)

Assumption H.1’. The function L̃i,N (θ) is strongly concave, for all N ∈ N, for all

i = 1, . . . , N . That is, there exists ηi,N > 0 such that, for all θ, θ′ ∈ R
p,

L̃i,N (θ′) ≤ L̃i,N (θ) +∇L̃i,N (θ)T (θ′ − θ)− ηi,N

2
||θ′ − θ||2. (5.37)

These conditions relate to the properties of the asymptotic log-likelihoods of the McKean

Vlasov SDE and the IPS, respectively. They imply, in particular, that L̃(θ) and L̃i,N (θ)

have unique maximisers, say θ∗ and θN∗ . Under certain identifiability assumptions, these

must in fact be equal to the true parameter θ0 (e.g., [296]). We note that the first of these

conditions is slightly weaker than the second. Indeed, under the first assumption, we only

establish that θi,Nt
L2

→ θ0 as t → ∞ and N → ∞ (Theorem 5.4), while under the second

assumption, we establish that θi,Nt
L2

→ θ0 as t → ∞ for all N ∈ N (Theorem 5.4†). Thus,

under the second assumption, there is no requirement to take the limit as N → ∞. We

also obtain a sharper L2 convergence rate.

We are now ready to state our main results in the online case. These results, categorised

according to different cases introduced in Section 5.2.1, are summarised in Table 5.2. We

begin by considering Case I.

Case I

In this case, we assume that we observe the trajectories of N particles (xit)
i=1,...,N
t≥0 of

the IPS (5.4). We can thus generate online parameter estimates according to (5.19) or

(5.20). We here show that, in the limit as N → ∞ and t→ ∞, these parameter estimates
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can maximise L̃(θ), the asymptotic log-likelihood of the McKean-Vlasov SDE. Thus, the

proposed approach with finite N can be thought of as a principled approximate method

for estimating the unknown parameter θ of the McKean-Vlasov SDE in an online fashion.

In our first result, we establish L
1 convergence of (5.19) and (5.20) to the stationary points

of L̃(θ).

Theorem 5.3. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and F.1 hold. Then,

in L
1, it holds that

lim
N→∞

lim
t→∞

||∇θL̃(θi,Nt )|| = lim
t→∞

lim
N→∞

||∇θL̃(θi,Nt )|| = 0, (5.38)

lim
N→∞

lim
t→∞

||∇θL̃(θNt )|| = lim
t→∞

lim
N→∞

||∇θL̃(θNt )|| = 0. (5.39)

Proof. See Section 5.4.3.

In our second result, under additional assumptions, we establish L
2 convergence to the

unique maximiser of L̃(θ).

Theorem 5.4. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2,

and H.1 hold. Then, for sufficiently large t, N ≥ 1, 1 ≤ i ≤ N , there exist positive

constants K1,K2,K3 such that

E

[

||θi,Nt − θ0||2
]

≤ (K1 +K2) γt +
K3

N
1
2

, (5.40)

E
[
||θNt − θ0||2

]
≤ (K1 +

K2

N
)γt +

K3

N
1
2

, (5.41)

Proof. See Section 5.4.4.

We can also obtain similar results in Cases II and III. Indeed, having established these

two convergence results in Case I, analogous results in the remaining cases follow via very

similar arguments. With this mind, and in the interest of brevity, we have chosen to omit

detailed proofs of the main results in Cases II and III. These proofs can be found in [414].

Case II

In this case, we assume that we observe independent sample paths (xit)
i=1,...,N
t≥0 of the

McKean-Vlasov SDE (5.1). We thus generate online parameter estimates according to

(5.19) or (5.20), replacing xi,Nt by xit, and µ
N
t by µ

[N ]
t where appropriate. In this case, we

obtain the following statement of our results, similarly to Case I.
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Case Theorems
Parameter
Estimates

Objective Function Convergence Rate

Case I 5.3 - 5.4
θ
i,N
t from (5.19)

L̃(θ) MSVDE
(K1 +K2)γt +

K3

N
1

2

θNt from (5.20) (K1 +
K2

N
)γt +

K3

N
1

2

Case II 5.3∗ - 5.4∗
θ
[i,N ]
t from (5.19)

L̃(θ) MSVDE
(K∗

1 +K∗
2 ) γt

θ
[N ]
t from (5.20) (K∗

1 +
K∗

2

N
)γt

Case III 5.3† - 5.4† θt from (5.17) L̃(θ) MSVDE (K†
1 +K

†
2)γt

Case I
(finite N)

5.3‡ - 5.4‡
θ
i,N
t from (5.19) L̃i,N (θ)

IPS
(Partial)

(K‡
1 +K

‡
2)γt

θNt from (5.20) L̃N (θ)
IPS

(Complete) (K‡
1 +

K
‡
2

N
)γt

Table 5.2: Online Parameter Estimation: Summary of Main Results

Theorem 5.3∗. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and F.1 hold. Then,

in L
1, it holds that

lim
N→∞

lim
t→∞

||∇θL̃(θ[i,N ]
t )|| = lim

t→∞
lim

N→∞
||∇θL̃(θ[i,N ]

t )|| = 0, (5.42)

lim
N→∞

lim
t→∞

||∇θL̃(θ[N ]
t )|| = lim

t→∞
lim

N→∞
||∇θL̃(θ[N ]

t )|| = 0. (5.43)

Theorem 5.4∗. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2,

and H.1 hold. Then, for sufficiently large t, there exist positive constants K∗
1 ,K

∗
2 , such

that

E

[

||θ[i,N ]
t − θ0||2

]

≤ (K∗
1 +K∗

2 ) γt, (5.44)

E

[

||θ[N ]
t − θ0||2

]

≤ (K∗
1 +

K∗
2

N
)γt. (5.45)

Proof. See [414, Appendix F].

Let us briefly compare the results obtained in Case I (Theorems 5.3 - 5.4) and in Case

II (Theorems 5.3∗ - 5.4∗). As remarked previously, the online parameter estimates in

both of these cases follow the same parameter update equations; the only difference is the

assumed form of the data-generating model. It is thus expected that the results obtained

in these two cases will be similar, if not identical. In Theorems 5.3 and 5.3∗, this is indeed

seen to be the case. These results establish that, regardless of the assumed form of the

data-generating mechanism, the online parameter estimates generated via (5.19) or (5.20)

converge to the stationary points of L̃(θ) as N → ∞ and t → ∞. On the other hand, in

Theorems 5.4 and 5.4∗, a difference does arise between the two L
2 convergence rates. In
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particular, in Case I (Theorem 5.4) there is an additional O( 1

N
1
2
) term. We can interpret

this term as a penalty for the mismatch between the likelihood implied by the assumed

data-generating model in Case I, namely the IPS (5.4), and the likelihood implied by the

McKean-Vlasov SDE (5.1) - (5.2), which is the function that we are seeking to optimise.

Case III

In this case, we assume that we can observe not only a sample path (xt)t≥0 of the non-

linear SDE, but also its law (µt)t≥0. We can thus generate online parameter estimates

according to (5.17). In this case, we obtain the following statement of our results.

Theorem 5.3†. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 hold. Then, in

L
1, it holds that

lim
t→∞

||∇θL̃(θt)|| = 0. (5.46)

Theorem 5.4†. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2

and H.1 hold. Then, for sufficiently large t, there exist positive constants K†
1,K

†
2, such

that

E
[
||θt − θ0||2

]
≤ (K†

1 +K†
2)γt. (5.47)

Proof. See [414, Appendix G].

These results represent an extension of [420, Theorem 2.4] and [422, Proposition 2.13],

respectively, to the McKean-Vlasov case. We should remark that a rather more direct

proof of these results may be possible, which does not require us to pass between the

McKean-Vlasov SDE and the IPS, but rather which works directly with the non-linear

equation. This would require a significant extension of the recent results obtained in [397]

regarding the regularity of the solutions of a non-linear, non-local Poisson equation.

In some sense, this scenario is mainly of theoretical interest, since in practice we do not

measure the law of the non-linear process. In principle, one could circumvent this by

integrating the McKean-Vlasov PDE (5.5) in parallel with the parameter update equation

(5.17). In particular, starting from some initial law µ0 and some initial parameter estimate

θ0, one would simultaneously update (µt)t≥0 according to (5.5), now integrated along

the path of the online parameter estimates, and update (θt)t≥0 according to (5.17), now

integrated along the path of the approximate laws. This yields an estimator which only

requires us to observe a single sample path (xt)t≥0 of the McKean-Vlasov SDE, but at the

cost of having to solve numerically the non-linear, non-local PDE (5.5), and analyse the

resulting numerical error. We leave a rigorous analysis of this approach to future work.
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Case I (finite N)

For the sake of completeness, we conclude this section by revisiting Case I, now under

the condition that the number of particles N if fixed and finite, and that we are only

interested in long-time asymptotics. In particular, our objective is now simply to maximise

the asymptotic log-likelihood of the IPS, L̃i,N (θ). In this case, we have the following.

Theorem 5.3‡. Assume that Conditions A.1, B.1 - B.2, C.1, D.1, and F.1 hold. Then,

in L
1, it holds that

lim
t→∞

||∇θL̃i,N (θi,Nt )|| = lim
t→∞

||∇θL̃i,N (θi,Nt )|| = 0. (5.48)

lim
t→∞

||∇θL̃N (θNt )|| = lim
t→∞

||∇θL̃N (θNt )|| = 0. (5.49)

Theorem 5.4‡. Assume that Conditions B.1 - B.2, C.1, D.1, F.1 - F.2, G.1 - G.2, and

H.1’ hold. Then, for sufficiently large t, there exist positive constants K‡
1,K

‡
2, such that

E

[

||θi,Nt − θ0||2
]

≤
(

K‡
1 +K‡

2

)

γt. (5.50)

E
[
||θNt − θ0||2

]
≤ (K‡

1 +
K‡

2

N
)γt. (5.51)

Proof. See [414, Appendix H].

Theorem 5.4‡ demonstrates that, if the asymptotic log-likelihood of the IPS is sufficiently

well-behaved (i.e., strongly concave) for finite values of N ∈ N, then the parameter esti-

mate generated using the IPS is guaranteed to converge to the true parameter value as

t→ ∞ for all values of N ∈ N. In particular, it is no longer necessary to take the limit as

N → ∞. This is clear upon comparison of the convergence rates (5.40) - (5.41) obtained

in Theorem 5.4 and the convergence rates (5.50) - (5.51) obtained in Theorem 5.4‡.

It is worth emphasising that the differences between (5.40) - (5.41) in Theorem 5.4 and

(5.50) - (5.51) in Theorem 5.4‡, arise solely due to the different assumptions imposed,

namely Assumption H.1 and Assumption H.1’. In particular, the additional terms appear-

ing in (5.40) - (5.41) can loosely be regarded as upper bounds on the difference between

the maxima of L̃(·) and L̃i,N (·), which only arise when L̃(·) if strongly concave, but L̃i,N (·)
is not. That is, if Assumption H.1 is satisfied but Assumption H.1’ is not. Meanwhile, if

Assumption H.1’ is satisfied, then the global maxima of L̃i,N (·) and L̃(·) will both coincide

with the true parameter, and thus this difference vanishes.
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5.4 Proof of Main Results

In this section, we provide proofs of our main results. Many of these proofs will rely on

additional auxiliary lemmas; in the interest of brevity, the statements and proofs of these

lemmas have been deferred to the appendices.

5.4.1 Proof of Theorem 5.1

We begin by establishing consistency of the offline MLE as N → ∞. We should emphasise

that, throughout this proof, the value of t will be fixed and finite. This being said,

our method of proof will broadly follow the classical approach for establishing strong

consistency of the MLE in a different asymptotic regime, namely, in the limit as t → ∞
(e.g., [63]). Since we consider an entirely different asymptotic regime, however, at times

we will need to rely on slightly different arguments (e.g., Lemma 5.2), and, of course,

different conditions (e.g., Condition E.1).

Proof. Let Pθ
t,N denote the probability measure induced by (xθ,i,Ns )i=1,...,N

s∈[0,t] . We begin with

the observation that, since Θ ⊆ R
p is compact, for all t ≥ 0, and for all N ∈ N, there

exists θ̂Nt ∈ Θ such that

dPθ
t,N

dPθ0
t,N

∣
∣
∣
∣
∣
θ=θ̂Nt

≥
dPθ̃

t,N

dPθ0
N,t

a.s. (5.52)

for all θ̃ ∈ Θ. We thus have, setting θ̃ = θ0 in the above, that
dPθ

t,N

dP
θ0
t,N

|θ=θ̂Nt
≥ 1 a.s. from

which it follows that LN
t (θ̂Nt ) = log[

dP
θN
t

dP
θN0,t

]θ=θ̂Nt
≥ 0 a.s., It follows, using the definition of

the log-likelihood, that, a.s. ,

1

N

N∑

i=1

t∫

0

〈
G(θ, xi,Ns , µNs ), dwi

s

〉

θ=θ̂Nt
≥ 1

2N

N∑

i=1

t∫

0

∣
∣
∣

∣
∣
∣G(θ̂Nt , x

i,N
s , µNs )

∣
∣
∣

∣
∣
∣

2
ds ≥ 0. (5.53)

In addition, by Lemma 5.2, we have that 1
N

∑N
i=1

∫ t
0 〈G(θ, x

i,N
s , µNs ), dwi

s〉θ=θ̂Nt

P→ 0 as

N → ∞. It follows straightforwardly that, as N → ∞,

lim
N→∞

1

N

N∑

i=1

t∫

0

∣
∣
∣

∣
∣
∣G(θ̂Nt , x

i,N
s , µNs )

∣
∣
∣

∣
∣
∣

2
ds

P→ 0. (5.54)

We next observe, making use of the Cauchy-Schwarz inequality, that

∣
∣
∣
∣

1

N

N∑

i=1

t∫

0

∣
∣
∣
∣G(θ, xi,Ns , µNs )

∣
∣
∣
∣2ds− 1

N

N∑

i=1

t∫

0

∣
∣
∣
∣G(θ′, xi,Ns , µNs )

∣
∣
∣
∣2ds

∣
∣
∣
∣

(5.55)
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≤
[
1

N

N∑

i=1

t∫

0

∣
∣
∣
∣G(θ, xi,Ns , µNs )−G(θ′, xi,Ns , µNs )

∣
∣
∣
∣2ds

] 1
2

(5.56)

·
[
1

N

N∑

i=1

t∫

0

∣
∣
∣
∣G(θ, xi,Ns , µNs ) +G(θ′, xi,Ns , µNs )

∣
∣
∣
∣2ds

] 1
2

≤ K||θ − θ′||
[
1

N

N∑

i=1

t∫

0

∣
∣
∣
∣
1

N

N∑

j=1

(1 + ||xi,Ns ||q + ||xj,Ns ||q)
∣
∣
∣
∣2ds

] 1
2

(5.57)

·
[
2

N

N∑

i=1

[ t∫

0

∣
∣
∣
∣G(θ, xi,Ns , µNs )

∣
∣
∣
∣2ds+

t∫

0

∣
∣
∣
∣G(θ′, xi,Ns , µNs )

∣
∣
∣
∣2ds

]] 1
2

where in the final line we have used Conditions C.1(i) - C.1(ii). In addition, the uniform

moment bounds on the IPS (Proposition 5.2), which follow from Condition D.1, together

with Condition C.1(ii), imply that all terms on the RHS of this inequality are bounded.

It follows immediately that the function 1
N

∑N
i=1

∫ t
0

∣
∣
∣
∣G(θ, xi,Ns , µNs )

∣
∣
∣
∣2ds is Lipschitz con-

tinuous in θ, uniformly in N . Combining this with (5.54), we have that, as N → ∞,

θ̂Nt
P→ DN

t =

{

θ ∈ Θ : lim
N→∞

1

N

N∑

i=1

t∫

0

∣
∣
∣
∣G(θ, xi,Ns , µNs )

∣
∣
∣
∣2ds = 0

}

(5.58)

by which we we mean more precisely that infθ∈Dt
||θ̂Nt − θ|| P→ 0 as N → ∞. It remains

to observe that, by a repeated application of the McKean-Vlasov Law of Large Numbers

(Proposition 5.6), as N → ∞, and for all t > 0, we have

DN
t

P→ Dt =

{

θ ∈ Θ :

t∫

0





∫

Rd

||G(θ, x, µs)||2 µs(dx)



 ds = 0

}

= {θ0}, (5.59)

where in the second equality we have also made use of the identifiability condition in

Condition E.1. It follows immediately, combining (5.58) and (5.59) that, for all fixed

t > 0, as N → ∞, θ̂Nt
P−→ θ0.

5.4.2 Proof of Theorem 5.2

The proof of this theorem, similarly to the previous proof, combines well known techniques

used to establishing strong consistency of the MLE as t → ∞ (e.g., [296]) with ideas

relevant to the asymptotic regime as N → ∞ (e.g., [242]). Once again, we emphasise that

throughout this proof the value of t will be fixed and finite, and we will consider the limit

only as N → ∞.

168



5.4: Proof of Main Results

Proof. We begin by considering a Taylor expansion of ∇θLN
t (θ) around the true value of

the parameter θ = θ0, viz,

0 = ∇θLN
t (θ̂Nt ) = ∇θLN

t (θ0) + (θNt − θ0)∇2
θLt(θ̄

N
t ) (5.60)

where θ̄Nt is point in the segment connecting θ̂Nt and θ0. The validity of this expansion

is based on the sample path continuity of the log-likelihood and its derivatives. It follows

that

N
1
2 (θ̂Nt − θ0)∇2

θLN
t (θ̄Nt ) = −N 1

2∇θLN
t (θ0) (5.61)

To deal with the terms in this equation, we will rely extensively on a multivariate version

of Rebolledo’s Central Limit Theorem [392], as stated in [242, Corollary to Theorem 2].

Let us begin by considering the RHS. First observe that

N
1
2∇θLN

t (θ0) = N− 1
2

N∑

i=1

t∫

0

〈
∇θB(θ0, x

i,N
s , µNs ), dwi

s

〉
(5.62)

+N− 1
2

N∑

i=1

t∫

0

∇θB(θ0, x
i,N
s , µNs )G(θ0, x

i,N
s , µNs )ds

= N− 1
2

N∑

i=1

t∫

0

〈
∇θB(θ0, x

i,N
s , µNs ), dwi

s

〉
(5.63)

where in the second line we have used the fact that, by definition, G(θ0, ·, ·) = 0 is iden-

tically equal to zero. It follows, using also Condition C.1(ii) (the polynomial growth

property) and Proposition 5.2 (uniform moment bounds for the solutions of the IPS),

that for all t ≥ 0, (N
1
2∇θLN

t (θ0))N∈N is a sequence of local square integrable martingales,

which implies that the first condition of [242, Corollary to Theorem 2] is satisfied.

Next, observe that the process (N
1
2∇θLN

t (θ))t≥0 is continuous (in time), and thus the

second condition of [242, Corollary to Theorem 2] (the Lindenberg condition) is satisfied.

Finally, we have that, for all k, l = 1, . . . , p, as N → ∞,

〈[
N

1
2∇θLN

t (θ0)
]

k
,
[
N

1
2∇θLN

t (θ0)
]

l

〉
(5.64)

=
1

N

N∑

i=1

t∫

0

[∇θB(θ0, x
i,N
s , µNs )]k[∇θB(θ0, x

i,N
s , µNs )]lds (5.65)

P→
t∫

0





∫

Rd

[∇θB(θ0, x, µs)]k [∇θB(θ0, x, µs)]l µs(dx)



 ds = [It(θ0)]kl , (5.66)

where in the final line, we have used a repeated application of the weak law of large

numbers for the empirical distribution of the IPS (Proposition 5.6), and the definition of
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It(θ) (see Condition E.2). Thus, the final condition in [242, Corollary to Theorem 2] is

satisfied. It follows from this result that

−N
1
2∇θLN

t (θ0)
D−→ Np(0, It(θ0)). (5.67)

It remains to prove that ∇2
θLN

t (θ̄Nt )
P−→ −It(θ0). In fact, since θ̂Nt

P→ θ0 as N → ∞ by

Theorem 5.1, the continuity of {∇2
θLN

t (·)}N∈N in θ implies that this limit holds provided

we can establish that ∇2
θLN

t (θ0)
P−→ −It(θ0). To do so, let us begin with the observation,

via a simple calculation, we have that

[
∇2

θLN
t (θ0)

]

kl
=

1

N

N∑

i=1

t∫

0

[
∇2

θB(θ0, x
i,N
s , µNs )

]

kl
dwi

s (5.68)

− 1

N

N∑

i=1

t∫

0

[∇θB(θ0, x
i,N
s , µNs )]k[∇θB(θ0, x

i,N
s , µNs )]lds

Arguing as in the proof of Lemma 5.2 (see Appendix 5.B), we can show that, as N → ∞,

we have

1

N

N∑

i=1

t∫

0

∇2
θB(θ0, x

i,N
s , µNs )dwi

s
P−→ 0. (5.69)

Moreover, we have already established, c.f. (5.66), that, as N → ∞, we have

1

N

N∑

i=1

t∫

0

[∇θB(θ0, x
i,N
s , µNs )]k[∇θB(θ0, x

i,N
s , µNs )]lds

P−→ [It(θ0)]kl. (5.70)

It follows, substituting (5.69) - (5.70) into (5.68), that ∇2
θLN

t (θ0)
P−→ −It(θ0) as N → ∞.

By our previous remarks, this completes the proof.

5.4.3 Proof of Theorem 5.3

We will prove Theorem 5.3 via a sequence of intermediate Lemmas. In fact, once these

lemmas have been established, the proof itself follows straightforwardly.

Before we present this proof, it will first be necessary to introduce some additional notation.

Recall from Section 5.2.1 (e.g., Table 5.1) that (xit)t≥0 denotes a solution of the McKean-

Vlasov SDE (5.1), where the Brownian motion (wt)t≥0 is replaced by (wi
t)t≥0. We will

now also write (µit)t≥0 to denote the law of this solution,4 and, for the corresponding

4We remark that (µt)
i
t≥0 = (µt)t≥0 for all i = 1, . . . , N . Nonetheless, we will use this notation to

emphasise that we are considering solution of the McKean-Vlasov SDE with Brownian motion (wi
t)t≥0.
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log-likelihood function, write

Li
t(θ) =

t∫

0

L(θ, xis, µ
i
s)ds+

t∫

0

〈G(θ, xis, µis), dwi
s〉. (5.71)

We can now proceed to the proof of Theorem 5.3.

Proof. Using the triangle inequality, we can decompose the asymptotic log-likelihood of

interest as

||∇θL̃(θi,Nt )|| ≤ ||∇θL̃(θi,Nt )− 1
t∇θLi

t(θ
i,N
t )||

︸ ︷︷ ︸

→0 as t → ∞ ∀N ∈ N by Lemma 5.4.A

+ ||1t∇θLi
t(θ

i,N
t )− 1

t∇θLi,N
t (θi,Nt )||

︸ ︷︷ ︸

→0 as N → ∞ ∀t ∈ R+ by Lemma 5.4.C

(5.72)

+ ||1t∇θLi,N
t (θi,Nt )−∇θL̃i,N (θi,Nt )||

︸ ︷︷ ︸

→0 as t → ∞ ∀N ∈ N by Lemma 5.4.B

+ ||∇θL̃i,N (θi,Nt )||
︸ ︷︷ ︸

→0 as t → ∞ ∀N ∈ N by Lemma 5.4.D

.

or, almost identically,

||∇θL̃(θNt )|| ≤ ||∇θL̃(θNt )− 1
t∇θLi

t(θ
N
t )||

︸ ︷︷ ︸

→0 as t → ∞ ∀N ∈ N by Lemma 5.4.A

+ ||1t∇θLi
t(θ

N
t )− 1

t∇θLN
t (θNt )||

︸ ︷︷ ︸

→0 as N → ∞ ∀t ∈ R+ by Lemma 5.4.C

(5.73)

+ ||1t∇θLN
t (θNt )−∇θL̃N (θNt )||

︸ ︷︷ ︸

→0 as t → ∞ ∀N ∈ N by Lemma 5.4.B

+ ||∇θL̃N (θNt )||
︸ ︷︷ ︸

→0 as t → ∞ ∀N ∈ N by Lemma 5.4.D

.

where L̃i,N (θ) and L̃N (θ) are defined in Lemma 5.4.B. In both of these inequalities, all of

the stated limits hold in L
1. This completes the proof.

Let us make brief two remarks regarding this result. Firstly, the first, third, and fourth

limits all hold a.s (see Lemmas 5.4.A, 5.4.B and 5.4.D). Thus, if we could extend Lemma

5.4.C to include a.s. convergence, Theorem 5.3 would also hold a.s. Secondly, we actually

obtain L
1 rates for the first, second, and third terms (see Lemmas 5.4.A, 5.4.B and 5.4.C).

Thus, if we could extend the results of Lemma 5.4.D to include an L
1 convergence rate

(e.g., on the infimum), possibly under additional assumptions, then Theorem 5.3 would

also include an L
1 convergence rate.

Before we proceed to the proofs of the intermediate Lemmas 5.4.A - 5.4.D, it is instructive

to provide a brief high level overview.

(i) In Lemma 5.4.A, we establish the existence of L̃(θ), the asymptotic log-likelihood of

the McKean-Vlasov SDE, as well as its derivatives. We provide explicit expressions

for these functions in terms of the unique invariant measure of the McKean-Vlasov

SDE, prove an appropriate convergence result as t → ∞ (both a.s. and in L
1), and
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establish convergence rates.

(ii) In Lemma 5.4.B, we establish the existence of L̃i,N (θ) and L̃N (θ), the ‘marginal’ and

‘joint’ asymptotic log-likelihoods of the IPS, as well as their derivatives. As above,

we provide explicit expressions for these functions in terms of the unique invariant

measure of the IPS, prove an appropriate convergence result as t → ∞ (both a.s.

and in L
1), and establish convergence rates.

(iii) In Lemma 5.4.C, we prove that, for all t ≥ 0, the gradient of the asymptotic log-

likelihood(s) of the IPS converges to the gradient of the asymptotic log-likelihood

of the McKean-Vlasov SDE as N → ∞ (in L
1). We also provide L

1 convergence

rates. The proof of this result relies on classical uniform-in-time propagation of chaos

results.

(iv) In Lemma 5.4.D, we establish that, for all N ∈ N, the gradient of the asymptotic

log-likelihood(s) of the IPS, evaluated at the relevant online parameter updates gen-

erated by the IPS, converges to zero as t → ∞ (both a.s. and in L
1). This result

can be seen as a generalisation of [420, Theorem 2.4].

5.4.3.1 Proof of Lemma 5.4.A

Lemma 5.4.A. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then the processes
1
t∇m

θ Li
t(θ), m = 0, 1, 2, converge, both a.s. and in L

1, to the functions

∇m
θ L̃(θ) =

∫

Rd

∇m
θ L(θ, x, µ∞)µ∞(dx). (5.74)

In addition, there exist positive constants K1
m, K2

m such that

∣
∣
∣
∣
E

[
1

t
∇m

θ Li
t(θ)−∇m

θ L̃(θ)
]∣
∣
∣
∣
≤ K1

m(1− e−λt)

λt
+
K2

m(1 +
√
t)

1
2

t
1
2

. (5.75)

Proof. We will prove Lemma 5.4.A for m = 0, with m = 1, 2 proved similarly. For

m = 1, 2, we remark only that the processes 1
t∇m

θ Li
t(θ), and hence also ∇m

θ L̃(θ), exist due
to Condition C.1. With this established, the proof when m = 1, 2 is essentially identical

to the proof when m = 0. Let us begin by recalling the definition of 1
tLi

t(θ), viz

1

t
Li
t(θ) =

1

t

t∫

0

L(θ, xis, µ
i
s)ds

︸ ︷︷ ︸

IN1 (θ,t)

+
1

t

t∫

0

〈G(θ, xis, µis), dwi
s

︸ ︷︷ ︸

IN2 (θ,t)

〉 (5.76)
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We first consider the first term on the RHS. We will characterise the asymptotic behaviour

of this term via the following decomposition

1

t

t∫

0

L(θ, xis, µ
i
s)ds

︸ ︷︷ ︸

IN1 (θ,t)

=
1

t

t∫

0

[
L(θ, xis, µ

i
s)− L(θ, xis, µ∞)

]
ds

︸ ︷︷ ︸

IN1,1(θ,t)

+
1

t

t∫

0

L(θ, xis, µ∞)ds

︸ ︷︷ ︸

IN1,2(θ,t)

(5.77)

where µ∞ is the unique invariant measure of the McKean-Vlasov SDE, which exists via

Proposition 5.3 (see Appendix 5.A). We begin with the observation that, as t→ ∞,

1

t

t∫

0

[L(θ, xis, µ
i
s)− L(θ, xis, µ∞)]ds

a.s.−→ 0, (5.78)

1

t

t∫

0

L(θ, xis, µ∞)ds
a.s.−→
L1

L̃(θ), (5.79)

the former by Proposition 5.3, and the latter by an appropriate version of the ergodic

theorem (e.g., [395, Chapter X]). Let us now demonstrate that IN1,1(θ, t) also converges to

zero in L
1. Using Lemma 5.7, we can write

∣
∣
∣
∣L(θ, xis, µ

i
s)− L(θ, xis, µ∞)

∣
∣
∣
∣ ≤ KW2(µ

i
s, µ∞)

[
1 + ||xis|||q + µ∞(|| · ||q) + µis(|| · ||q)

]

(5.80)

≤ K
[
1 + ||xis||q

]
e−λs (5.81)

where in the second line we have additionally made use of Proposition 5.2 (moment

bounds for the McKean-Vlasov SDE), Proposition 5.3 (the exponential contractivity of

the McKean-Vlasov SDE), and Lemma 5.3 (moment bounds for the invariant measure of

the McKean-Vlasov SDE). It follows straightforwardly, making use once more of Proposi-

tion 5.2, and allowing the value of K to change from line to line, that

E[|IN1,1(t)|] ≤
1

t

t∫

0

K
(
1 + E

[
||xis||q

])
e−λsds ≤ K

t

t∫

0

e−λsds ≤ K(1− e−λt)

λt
, (5.82)

so that the convergence of IN1,1(θ, t) to zero does also hold in L
1. We thus have, substituting

(5.78) - (5.79) into (5.77), that IN1 (θ, t) → L̃(θ), both a.s. and in L
1.

Let us now try to establish the convergence rate of this term. We have already established

a (non-asymptotic) bound for IN1,1(θ, t), so it remains to consider IN1,2(θ, t). We can bound

the deviation between this term and the asymptotic log-likelihood using arguments similar

to those found in, for example, [171]. First note that, using Lemma 5.7 and Lemma 5.3
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(moment bounds for the invariant measure of the McKean-Vlasov SDE), we have

|L(θ, x, µ∞)− L(θ, y, µ∞)| ≤ K||x− y||[1 + ||x||q + ||y||q]. (5.83)

We can thus utilise Lemma 5.5 to obtain

∣
∣
∣
∣
Exi

0
[L(θ, x, µ∞)]−

∫

Rd

L(θ, y, µ∞)µ∞(dy)

∣
∣
∣
∣
≤ K

[
1 + ||xi0||q

]
e−λs (5.84)

from which, in particular, it follows that

|E[I1,2(θ, t)]| ≤
∣
∣
∣
∣
Exi

0

[
1

t

t∫

0

L(θ, xis, µ∞)ds−
∫

Rd

L(θ, y, µ∞)µ∞(dy)

]∣
∣
∣
∣

(5.85)

≤ 1

t

t∫

0

∣
∣
∣
∣
Exi

0
[L(θ, xis, µ∞)]−

∫

Rd

L(θ, y, µ∞)µ∞(dy)

∣
∣
∣
∣
ds (5.86)

≤ K(1− e−λt)

λt

[
1 + ||xi0||q

]
≤ K(1− e−λt)

λt
. (5.87)

where, as previously, we have allowed the value of the constant K to change from line to

line. Substituting (5.82) and (5.87) into (5.77), we thus have that, for some K1
0 > 0,

∣
∣
∣
∣
E




1

t

t∫

0

L(θ, xis, µ
i
s)ds− L̃(θ)





∣
∣
∣
∣
≤ K1

0 (1− e−λt)

λt
. (5.88)

We now turn our attention IN2 (θ, t), the second term in (5.76). We begin with the ob-

servation that, by the Itô’s isometry, Condition C.1(ii) (the polynomial growth of G),

Proposition 5.2 (the bounded moments of the McKean-Vlasov SDE), and Lemma 5.4 (the

asymptotic growth rate of the moments of the McKean-Vlasov SDE), we have that

E






∣
∣
∣
∣
∣
∣

t∫

0

〈G(θ, xis, µis), dwi
s〉

∣
∣
∣
∣
∣
∣

2



 = E





t∫

0

||G(θ, xis, µis)||2ds



 (5.89)

≤ E





t∫

0

K
(
1 + ||xis||q + E

[
||xis||q

])
ds



 (5.90)

≤ Kt

[

1 + E[ sup
0≤s≤t

||xis||q]
]

≤ Kt

[

1 +
√
t

]

(5.91)

where the value of the constant K is allowed to change from line to line. It follows, making
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use of the triangle inequality and the Hölder inequality that, for some K2
0 > 0, we have

∣
∣
∣
∣
E

[
1

t
〈G(θ, xis, µis), dwi

s〉
]∣
∣
∣
∣
≤ K2

0 (1 +
√
t)

1
2

t
1
2

, (5.92)

so that this term converges in L
1 to zero, and we have the required rate. It remains only to

demonstrate a.s. convergence of this term to zero. To do so, consider the local martingale

Mt =

t∫

0

1

s
〈G(θ, xis, µis), dwi

s〉 =
1

t

t∫

0

〈G(θ, xis, µis), dwi
s〉+

t∫

0

1

s2





s∫

0

〈G(θ, xiu, µiu), dwi
u〉



 ds,

(5.93)

where the second line follows from Itô’s Lemma. Using the Itô isometry, Condition C.1(ii)

(the polynomial growth of G), and Proposition 5.2 (the bounded moments of the McKean-

Vlasov SDE), and arguing similarly to above, we have

sup
t>0

E
[
|Mt|2

]
= E





∞∫

0

1

s2
E
[
||G(θ, xis, µis)||2

]
ds



 ≤ K





t∫

0

1

s2
(
1 + E

[
||xis||q

])
ds



 <∞.

(5.94)

By Doob’s martingale convergence theorem [164], there thus exists a finite random variable

M∞ such that Mt → M∞ a.s. It follows immediately that 1
t

∫ t
0 〈G(θ, xis, µis), dwi

s〉 also

converges to zero a.s., as claimed. Putting everything together, we thus have that 1
tLi

t(θ)

converges to L̃(θ) both a.s. and in L
1, and, combining (5.76), (5.88) and (5.92), that

∣
∣
∣
∣
E

[
1

t
Li
t(θ)− L̃(θ)

]∣
∣
∣
∣
≤

∣
∣
∣
∣
E

[
1

t

t∫

0

L(θ, xis, µ
i
s)ds− L̃(θ)

]∣
∣
∣
∣
+

∣
∣
∣
∣
E

[
1

t

t∫

0

〈G(θ, xis, µis), dwi
s〉
]∣
∣
∣
∣

(5.95)

≤ K1
0 (1− e−λt)

λt
+
K2

0 (1 +
√
t)

1
2

t
1
2

.

5.4.3.2 Proof of Lemma 5.4.B

5.4.3.2.1 Additional Notation

In order to state and prove the next Lemma, it will be useful to introduce some additional

notation. Let x̂Nt ∈ (Rd)N be the process consisting of the concatenation of the N solutions

of the IPS (5.4), viz, x̂Nt = (x1,Nt , . . . , xN,N
t )T . Observe that this process is the solution of
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the following SDE on (Rd)N

dx̂Nt = B̂(θ, x̂Nt )dt+ dŵN
t , (5.96)

where ŵN
t is a (Rd)N -valued Brownian motion, and the function B̂(θ, ·) : (Rd)N → (Rd)N

is of the form B̂(θ, x̂N ) = (B̂1,N (θ, x̂N ), . . . , B̂N,N (θ, x̂N ))T , where, for i = 1, . . . , N ,

B̂i,N (θ, ·) : (Rd)N → R
d is defined according to

B̂i,N (θ, x̂N ) = b(θ, xi,N ) +
1

N

N∑

j=1

φ(θ, xi,N , xj,N ). (5.97)

It will also be useful to define, for i = 1, . . . , N , the functions Ĝi,N (θ, ·) : (Rd)N → R
d and

L̂i,N (θ, ·) : (Rd)N → R according to

Ĝi,N (θ, x̂N ) = B̂i,N (θ, x̂N )− B̂i,N (θ0, x̂
N ) (5.98)

L̂i,N (θ, x̂) = −1

2
||Ĝi,N (θ, x̂N )||2. (5.99)

Finally, we will write µ̂Nt = L(x̂Nt ) to denote the law of x̂Nt = (x1,Nt , . . . , xN,N
t ). We should

be careful not to confuse this with µNt = 1
N

∑N
i=1 δxi,N

t
, the empirical measure of the IPS.

Lemma 5.4.B. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then, for all

N ∈ N, the processes 1
t∇m

θ Li,N
t (θ) and 1

t∇m
θ LN

t (θ), m = 0, 1, 2, converge, both a.s. and in

L
1, to the functions

∇m
θ L̃i,N (θ) =

∫

(Rd)N

∇m
θ L̂

i,N (θ, x̂N )µ̂N∞(dx̂N ) , ∇m
θ L̃N (θ) =

1

N

N∑

i=1

∇m
θ L̃i,N (θ).

(5.100)

In addition, there exist positive constants K1
m, K2

m, independent of N , such that

∣
∣
∣
∣
E

[
1

t
∇m

θ Li,N
t (θ)−∇m

θ L̃i,N (θ)

]∣
∣
∣
∣
≤ K1

m(1− e−λt)

λt
+
K2

m(1 +
√
t)

1
2

t
1
2

(5.101)

and this bound also holds if Li,N
t (·) and L̃i,N (·) are replaced with LN

t (·) and L̃N (·).

Proof of Lemma 5.4.B. We will begin by proving that the two statements hold for the

function Li,N
t (θ). The proof, in this case, is very similar to the proof of Lemma 5.4.A,

with some simplifications. We will provide a sketch of the proof, signposting differences

with the previous proof where necessary. As previously, we will only consider the case

m = 0, with the results for m = 1, 2 proved analogously. We begin by recalling the
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definition of the function 1
tL

i,N
t (θ) from (5.12), which we now write in the form

1

t
Li,N
t (θ) =

1

t

t∫

0

L̂i,N (θ, x̂Ns )ds+
1

t

t∫

0

〈Ĝi,N (θ, x̂Ns ), dwi
s〉 (5.102)

We begin with the first term on the RHS. By Proposition 5.4, the IPS admits a unique

invariant measure µ̂N∞ ∈ P((Rd)N ). Thus, for all N ∈ N, by the ergodic theorem (e.g.,

[395, Chapter X]) we have that as t→ ∞,

1

t

t∫

0

L̂i,N
(
θ, x̂Ns

)
ds

a.s.−→
L1

∫

(Rd)N

L̂i,N
(
θ, x̂N

)
µ̂∞(dx̂N ) = L̃i,N (θ), (5.103)

Let us now obtain the required convergence rate. By the remark after Lemma 5.7, the

function L̂i,N (θ, x̂N ) satisfies the conditions of Lemma 5.5. Thus, we can apply Lemma

5.5 to obtain

∣
∣
∣
∣
Ex̂0 [L̂

i,N (θ, x̂Nt )]−
∫

(Rd)N

L̂i,N (θ, ŷ)µ̂N∞(dŷN )

∣
∣
∣
∣
≤ K

[

1 + ||xi,N0 ||q + 1

N

N∑

j=1

||xj,N0 ||q
]

e−λt

(5.104)

and so, arguing as in (5.85) - (5.87) in the proof of Lemma 5.4.A, we have

∣
∣
∣
∣
Ex̂0

[
1

t

t∫

0

L̂i,N (θ, x̂Ns )ds−
∫

(Rd)N

L̂i,N (θ, ŷN )µ̂N∞(dŷN )

]∣
∣
∣
∣

(5.105)

≤ K(1− e−λt)

λt

[

1 + ||xi,N0 ||q + 1

N

N∑

j=1

||xj,N0 ||q
]

≤ K1
0 (1− e−λt)

λt
. (5.106)

It remains to bound the second term on the RHS of (5.102). We show that this term con-

verges to zero a.s. and in L
1, and satisfies the required convergence rate, using essentially

identical arguments to those used in the proof of Lemma 5.4.A, c.f. (5.89) - (5.94). This

concludes the proof.

We now turn our attention to the function LN
t (θ). The proof of the statements regarding

this function now follows easily. In particular, using the definition of LN
t (θ), c.f. (5.12),

and the results above, we have (once more restricting attention to the case m = 0)

1

t
LN
t (θ) =

1

t

[

1

N

N∑

i=1

Li,N
t (θ)

]

=
1

N

N∑

i=1

[
1

t
Li,N
t (θ)

]

a.s.−→
L1

1

N

N∑

i=1

L̃i,N (θ) = L̃N (θ), (5.107)
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and, for the required bound,

∣
∣
∣
∣

∣
∣
∣
∣
E

[
1

t
∇m

θ LN
t (θ)−∇m

θ L̃N (θ)

]∣
∣
∣
∣

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

N

N∑

i=1

E

[
1

t
∇m

θ Li,N
t (θ)−∇m

θ L̃i,N (θ)

]
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(5.108)

≤ 1

N

N∑

i=1

∣
∣
∣
∣

∣
∣
∣
∣
E

[
1

t
∇m

θ Li,N
t (θ)−∇m

θ L̃i,N (θ)

]∣
∣
∣
∣

∣
∣
∣
∣

(5.109)

≤ 1

N

N∑

i=1

[

Km(1− e−λt)

λt
+
Km(1 +

√
t)

1
2

t
1
2

]

(5.110)

=
Km(1− e−λt)

λt
+
Km(1 +

√
t)

1
2

t
1
2

. (5.111)

5.4.3.3 Proof of Lemma 5.4.C

Lemma 5.4.C. Assume that Conditions B.1 - B.2, C.1, and D.1 hold. Then, for all

θ ∈ R
p, for all t ≥ 0, for all i = 1, . . . , N , we have, in L

1, that

lim
N→∞

||1t∇θLi,N
t (θ)|| = ||1t∇θLi

t(θ)||, (5.112)

lim
N→∞

||1t∇θLN
t (θ)|| = ||1t∇θLi

t(θ)||. (5.113)

In addition, there exists a positive constant K such that, for all θ ∈ R
p, for all N ∈ N,

E

[∣
∣
∣
∣

∣
∣
∣
∣

1

t
∇θLi

t(θ)−
1

t
∇θLi,N

t (θ)

∣
∣
∣
∣

∣
∣
∣
∣

]

≤ K√
N

(

1 +
1√
t

)

, (5.114)

and this bound also holds if Li,N
t (·) is replaced by LN

t (·).

Proof. We begin by proving that the two statements hold for Li,N
t (θ). First recall that

1

t
∇θLi

t(θ) = −1

t

t∫

0

∇θG(θ, x
i
s, µ

i
s)G(θ, x

i
s, µ

i
s)ds

︸ ︷︷ ︸

Ii1(θ,t)

+
1

t

t∫

0

〈
∇θG(θ, x

i
s, µ

i
s), dw

i
s

〉

︸ ︷︷ ︸

Ii2(θ,t)

(5.115)

1

t
∇θLi,N

t (θ) = −1

t

t∫

0




1

N

N∑

j=1

∇θG(θ, x
i,N
s , xj,Ns )








1

N

N∑

j=1

G(θ, xi,Ns , xj,Ns )



 ds

︸ ︷︷ ︸

Ii,N1 (θ,t)

(5.116)
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+
1

t

t∫

0

〈

1

N

N∑

j=1

∇θG(θ, x
i,N
s , xj,Ns ), dwi

s

〉

︸ ︷︷ ︸

Ii,N2 (θ,t)

Let us seek bounds for E||Ii1(θ, t)−Ii,N1 (θ, t)|| and E||Ii2(θ, t)−Ii,N2 (θ, t)||, starting with the

latter. By Lemma 5.10 (see Appendix 5.C), for all s ≥ 0, there exists a positive constant

K such that

E

[
∣
∣
∣
∣∇θG(θ, x

i
s, µ

i
s)−

1

N

N∑

j=1

∇θG(θ, x
i,N
s , xj,Ns )

∣
∣
∣
∣2
]

≤ K

N
. (5.117)

Thus, making using of the triangle inequality, the Itô isometry, and Fubini’s Theorem, we

have that

E

[

||Ii2(θ, t)− Ii,N2 (θ, t)||2
]

≤ 1

t2
E

[ t∫

0

∣
∣
∣
∣

∣
∣
∣
∣
∇θG(θ, x

i
s, µ

i
s)−

1

N

N∑

j=1

∇θG(θ, x
i,N
s , xj,Ns )

∣
∣
∣
∣

∣
∣
∣
∣

2

ds

]

(5.118)

≤ K

Nt
. (5.119)

and thus, by the Hölder inequality,

E
[
||Ii2(θ, t)− Ii,N2 (θ, t)||

]
≤ K√

Nt
(5.120)

We will now obtain, in much the same fashion, a bound for E[||Ii1(θ, t)− Ii,N1 (θ, t)||]. Once

again, by Lemma 5.10, for all s ≥ 0, we have that

E

[
∣
∣
∣
∣∇θG(θ, x

i
s, µ

i
s)−

1

N

N∑

j=1

∇θG(θ, x
i,N
s , xj,Ns )

∣
∣
∣
∣2
]

≤ K

N
, (5.121)

E

[
∣
∣
∣
∣G(θ, xis, µ

i
s)−

1

N

N∑

j=1

G(θ, xi,Ns , xj,Ns )
∣
∣
∣
∣2
]

≤ K ′

N
. (5.122)

To proceed, consider the following inequality, which follows straightforwardly from the

triangle inequality and the Cauchy-Schwarz inequality,

E [||Y Z − YNZN ||] ≤ E
[
||Y − YN ||2

] 1
2 E

[
||Z||2

] 1
2 + E

[
||YN ||2

] 1
2 E

[
||Z − ZN ||2

] 1
2

(5.123)

Suppose we let Y = ∇θG(θ, x
i
s, µ

i
s), YN = N−1

∑N
j=1∇θG(θ, x

i,N
s , xj,Ns ), Z = G(θ, xis, µ

i
s),

and ZN = N−1
∑N

j=1G(θ, x
i,N
s , xj,Ns ). Then, once more allowing the value of the constant
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K to change from line to line, this inequality yields

E

[
∣
∣
∣
∣∇θG(θ, x

i
s, µ

i
s)G(θ, x

i
s, µ

i
s)−

1

N

N∑

j=1

∇θG(θ, x
i,N
s , xj,Ns ) · 1

N

N∑

j=1

G(θ, xi,Ns , xj,Ns )
∣
∣
∣
∣

]

(5.124)

≤ E

[
∣
∣
∣
∣∇θG(θ, x

i
s, µ

i
s)−

1

N

N∑

j=1

∇θG(θ, x
i,N
s , xj,Ns )

∣
∣
∣
∣2
] 1

2

︸ ︷︷ ︸

≤ K√
N

by (5.121)

·E
[
∣
∣
∣
∣G(θ, xis, µ

i
s)
∣
∣
∣
∣2
] 1

2

︸ ︷︷ ︸

≤K

(5.125)

+ E

[
∣
∣
∣
∣G(θ, xis, µ

i
s)−

1

N

N∑

j=1

G(θ, xi,Ns , xj,Ns )
∣
∣
∣
∣2
] 1

2

︸ ︷︷ ︸

≤ K′√
N

by (5.122)

·E
[
∣
∣
∣
∣
1

N

N∑

j=1

G(θ, xi,Ns , xj,Ns )
∣
∣
∣
∣2
] 1

2

︸ ︷︷ ︸

≤K′

≤ K√
N
, (5.126)

where in the penultimate line we have used Condition C.1 (the polynomial growth of

G) and Proposition 5.2 (the moment bounds for the IPS), to conclude that each of the

expectations are bounded above by some positive constants. That is, for example,

E

[∣
∣
∣
∣G(θ, xis, µ

i
s)
∣
∣
∣
∣
2
]

≤ E



K



1 + ||xis||q +
∫

Rd

||y||qµis(dy)







 ≤ K
(
1 + E

[
||xis||q

])
≤ K2.

(5.127)

It follows straightforwardly that

E

[

||Ii1(θ, t)− Ii,N1 (θ, t)||
]

≤ 1

t

t∫

0

K√
N

ds =
K√
N
. (5.128)

Combining inequalities (5.120) and (5.128), and making use of the triangle inequality one

final time, we have that

E

[∣
∣
∣
∣

∣
∣
∣
∣

1

t
∇θLi

t(θ)−
1

t
∇θLi,N

t (θ)

∣
∣
∣
∣

∣
∣
∣
∣

]

≤ K√
N

(

1 +
1√
t

)

(5.129)

This establishes convergence in L
1 as N → ∞, for all t ≥ 0. It remains only to establish

that the statements of the lemma also hold for LN
t (θ). This is straightforward. Indeed,

we omit the calculations, which are essentially identical to those used at the end of the

proof of Lemma 5.4.B, c.f. (5.108) - (5.111).
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5.4.3.4 Proof of Lemma 5.4.D

Lemma 5.4.D. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Then, for all

N ∈ N, we have, both a.s. and in L
1, that

lim
t→∞

||∇θL̃i,N (θi,Nt )|| = 0, (5.130)

lim
t→∞

||∇θL̃N (θNt )|| = 0. (5.131)

Proof. We will prove the first statement of the lemma, with the second proved identically.5

In particular, we will use a modified version of the approach in [420], which itself is

a continuous-time version of the approach first introduced in [46]. In the interest of

completeness, we will include the proof in full here, adapted appropriately to the current

setting and our notation.

We will require the following additional notation. Define an arbitrary constant κ > 0,

with λ = λ(κ) > 0 to be determined. Set σ = 0, and define the cycle of random stopping

times

0 = σ0 ≤ τ1 ≤ σ1 ≤ τ2 ≤ σ2 ≤ . . . (5.132)

according to

τk = inf
{
t > σk−1 : ||∇θL̃i,N (θi,Nt )|| ≥ κ

}
(5.133)

σk = sup
{
t > τk : 1

2 ||∇L̃i,N (θi,Nτk )|| ≤ ||∇L̃N (θi,Ns )|| ≤ 2||∇L̃i,N (θi,Nτk )|| ∀s ∈ [τk, t],

(5.134)
t∫

τk

γ(s)ds ≤ ρ
}

The purpose of these stopping times is to control the periods of time for which ||∇L̃i,N (θi,Nt )||
is close to zero, and those for which it is away from zero. In addition, let η > 0, and set

σk,η = σk + η. First consider the case in which there are a finite number of stopping times

τk. In this case, there exists finite t0 such that, for all t ≥ t0, [||∇θL̃i,N (θi,Nt )||] < κ. Now

consider the case in which there are an infinite number of stopping times τk. Then, using

Lemmas 5.13 - 5.14 (see Appendix 5.C), there exist 0 < β1 < β, and k0 ∈ N, such that for

all k ≥ k0, a.s. ,

L̃i,N (θi,Nσk
)− L̃i,N (θi,Nτk ) ≥ β (5.135)

L̃i,N (θi,Nτk )− L̃i,N (θi,Nσk−1
) ≥ −β1. (5.136)

5We remark that Lemmas 5.11 - 5.14, which are essential to this proof, all apply to both Li,N
t (θ) and

LN
t (θ), and thus can still be used to establish the second statement.
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It follows straightforwardly that

L̃i,N (θi,Nτn+1
)− L̃i,N (θi,Nτk0

) =
n∑

k=k0

[

L̃i,N (θi,Nσk
)− L̃i,N (θi,Nτk ) + L̃i,N (θi,Nτk+1

)− L̃i,N (θi,Nσk
)
]

(5.137)

≥
n∑

k=k0

(β − β1) = (n+ 1− k0)(β − β1) (5.138)

Since β−β1 > 0, this implies that L̃i,N (θi,Nτn+1) → ∞ as n→ ∞. But this is in contradiction

with Lemma 5.8, which states that L̃i,N (θ) is bounded from above. Thus, there must exist

a finite time t0 such that, for all t ≥ t0, ||L̃i,N (θi,Nt )|| < κ. Since our original choice of κ

was arbitrary, this completes the proof that, for all N ∈ N, a.s. ,

lim
t→∞

||∇θL̃i,N (θi,Nt )|| = 0. (5.139)

Finally, we observe that, by Lemma 5.8, ||∇θL̃i,N (θ)|| is bounded above for all θ ∈ R
p.

Thus, we also have convergence in L
1 via Lebesgue’s dominated convergence theorem (e.g.,

[464, Chapter 5]).

5.4.4 Proof of Theorem 5.4

Before we proceed to the proof of Theorem 5.4, we state the following Lemma, which

provides uniform moment bounds for the online parameter estimate, and will be used

frequently in this proof.

Lemma 5.1. Assume that Conditions B.1 - B.2, C.1, D.1, F.1, and G.1 - G.2 hold.

Then, for all q ≥ 1, for all i = 1, . . . , N , for all N ∈ N, there exists K such that

sup
t>0

E [||θt||q] ≤ K (5.140)

sup
t>0

E

[

||θi,Nt ||q
]

≤ K. (5.141)

Proof. This Lemma follows straightforwardly as an extension of [422, Lemma A.1], making

use of the appropriate bounds in Conditions G.1 - G.2.

Proof of Theorem 5.4. The proof of this result closely follows the proof of [422, Theorem

2.7], adapted appropriately to our particular case. We will begin by proving the first

statement of the theorem. To begin, let us recall the following form of the parameter

update equation (5.19):

dθi,Nt = γt∇θL̃i,N (θi,Nt )dt+ γt
(
∇θL(θ

i,N
t , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

)
dt (5.142)
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+ γt∇θB(θi,Nt , xi,Nt , µNt )dwi
t

= γt∇θL̃(θi,Nt )dt+ γt
(
∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

)
dt (5.143)

+ γt
(
∇θL(θ

i,N
t , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

)
dt+ γt∇θB(θi,Nt , xi,Nt , µNt )dwi

t.

Using a first order Taylor expansion, we have that

∇θL̃(θi,Nt ) = ∇θL̃(θ0) +∇2L̃(θ̃i,Nt )(θi,Nt − θ0) = ∇2L̃(θ̃i,Nt )(θi,Nt − θ0) (5.144)

where θ̃i,Nt is point in the segment connecting θi,Nt and θ0. Substituting this into (5.143),

we obtain the following equation for Zi,N
t = θi,Nt − θ0

dZi,N
t = γt∇2

θL̃(θ̃i,Nt )Zi,N
t dt+ γt

(
∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

)
dt (5.145)

+ γt
(
∇θL(θ

i,N
t , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

)
dt+ γt∇θB(θi,Nt , xi,Nt , µNt )dwi

t.

Applying Itô’s formula to the function || · ||2, we obtain

d||Zi,N
t ||2 = 2γt

〈
Zi,N
t ,∇2

θL̃(θ̃i,Nt )Zi,N
t

〉
dt+ γt

〈
Zi,N
t ,∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

〉
dt

(5.146)

+ γt
〈
Zi,N
t ,∇θL(θ

i,N
t , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

〉
dt

+ γt
〈
Zi,N
t ,∇θB(θi,Nt , xi,Nt , µNt )dwi

t

〉
+ γ2t

∣
∣
∣
∣∇θB(θi,Nt , xi,Nt , µNt )

∣
∣
∣
∣2

F
dt

Due to the strong concavity of L̃(θ) (Condition H.1), it then follows that

d||Zi,N
t ||2 + 2ηγt||Zi,N

t ||2dt ≤ γt
〈
Zi,N
t ,∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

〉
dt (5.147)

+ γt
〈
Zi,N
t ,∇θL(θ

i,N
t , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

〉
dt

+ γt
〈
Zi,N
t ,∇θB(θi,Nt , xi,Nt , µNt )dwi

t

〉

+ γ2t
∣
∣
∣
∣∇θB(θi,Nt , xi,Nt , µNt )

∣
∣
∣
∣2

F
dt

where ||·||F is the Frobenius norm. Now, let us define the function Φt,t′ = exp[−2η
∫ t′

t γudu],

with ∂tΦt,t′ = 2ηγtΦt,t′ . Using the product rule, and (5.147), we obtain

d
[

Φt,t′ ||Zi,N
t ||2

]

= Φt,t′

[

d||Zi,N
t ||2 + 2ηγt||Zi,N

t ||2dt
]

(5.148)

≤ γtΦt,t′
〈
Zi,N
t ,∇θL̃i,N (θi,Nt )−∇θL̃(θi,Nt )

〉
dt (5.149)

+ γtΦt,t′
〈
Zi,N
t ,∇θL(θ

i,N
t , xi,Nt , µNt )−∇θL̃i,N (θi,Nt )

〉
dt

+ γtΦt,t′
〈
Zi,N
t ,∇θB(θi,Nt , xi,Nt , µNt )dwi

t

〉

+ γ2tΦt,t′
∣
∣
∣
∣∇θB(θi,Nt , xi,Nt , µNt )

∣
∣
∣
∣2

F
dt
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Rewriting this in integral form, setting t′ = t, and taking expectations, we obtain

E

[

||Zi,N
t ||2

]

≤ E

[

Φ1,t||Zi,N
1 ||2

]

(5.150)

+ E





t∫

1

γsΦs,t

〈
Zi,N
s ,∇θL̃i,N (θi,Ns )−∇θL̃(θi,Ns )

〉
ds





+ E





t∫

1

γsΦs,t

〈
Zi,N
s ,∇θL(θ

i,N
s , xi,Ns , µNs )−∇θL̃i,N (θi,Ns )

〉
ds





+ E





t∫

1

γ2sΦs,t

∣
∣
∣
∣∇θB(θi,Ns , xi,Ns , µNs )

∣
∣
∣
∣2

F
ds





= E

[

Ω
(1)
t,i,N

]

+ E

[

Ω
(2)
t,i,N

]

+ E

[

Ω
(3)
t,i,N

]

+ E

[

Ω
(4)
t,i,N

]

(5.151)

We will deal with each of these terms separately, beginning with Ω
(1)
t,i,N . For this term, we

have that, for sufficiently large t,

E

[

Ω
(1)
t,i,N

]

= Φ1,tE

[

||Zi,N
1 ||2

]

≤ K(1)γt (5.152)

which follows from Lemma 5.1 (the moment bounds for θi,Ns ), and Condition F.1 (the

conditions on the learning rate).

We now turn our attention to Ω
(2)
t,i,N . For this term, substituting the bound in Lemma

5.19 into (5.150), we immediately obtain

E

[

Ω
(2)
t,i,N

]

≤
t∫

1

γsΦs,tE

[

||Zi,N
s || sup

θi,Ns

||∇θL̃i,N (θi,Ns )−∇θL(θi,Ns )||
]

ds (5.153)

≤ K

[
1

N
1
2

] t∫

1

γsΦs,tds ≤ K(2)

[
1

N
1
2

]

. (5.154)

where in the last line we have used Condition F.1 (the conditions on the learning rate) to

bound the integral.

We now turn our attention to Ω
(3)
t,i,N . We will analyse this term by constructing an appro-

priate Poisson equation. Let us define

Ri,N (θ, x̂N ) =
〈

θ − θ0,∇θL̂
i,N (θ, x̂N )−∇θL̃i,N (θ)

〉

, (5.155)

where, as previously, x̂N = (x1,N , . . . , xN,N ). It is straightforward to verify that this

function satisfies all of the conditions of Lemma 5.15. Thus, by Lemma 5.15, the Poisson
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equation

Axv
i,N (θ, x̂N ) = Ri,N (θ, x̂N ) ,

∫

Rd

vi,N (θ, x̂N )µ̂N∞(dx̂N ) = 0 (5.156)

has a unique twice differentiable solution which satisfies

2∑

j=0

∣
∣
∣
∣

∂jvi,N

∂θi
(θ, x̂N )

∣
∣
∣
∣
+

∣
∣
∣
∣

∂2vi,N

∂θ∂x
(θ, x̂N )

∣
∣
∣
∣
≤ K

(

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
)

. (5.157)

Now, by Itô’s formula, we have that

vi,N (θi,Nt , x̂Nt )− vi,N (θi,Ns , x̂Ns ) =

t∫

s

Aθv
i,N (θi,Nu , x̂Nu )du+

t∫

s

Ax̂N vi,N (θi,Nu , x̂Nu )du (5.158)

+

t∫

s

γu∂θv
i,N (θi,Nu , x̂Nu )∇θB̂

i,N (θu, x̂
N
u )dwi

u

+

t∫

s

∂xv
i,N (θi,Nu , x̂Nu )dŵN

u

+

t∫

s

γu

[

∂θ∂x̂v
i,N (θi,Nu , x̂Nu )∇θB̂

i,N (θi,Nu , x̂Nu )
]

du

where ŵN
u was defined in (5.96). It follows, now writing vi,Nt := vi,N (θi,Nt , x̂Nt ), that

Ri,N (θi,Nt , x̂Nt )dt = Ax̂N vi,N (θi,Nt , x̂Nt )dt (5.159)

= dvi,Nt −Aθv
i,N (θi,Nt , x̂Nt )dt (5.160)

− γt∂θv
i,N (θi,Nt , x̂Nt )∇θB̂

i,N (θi,Nt , x̂Nt )dwi
t

− ∂x̂v
i,N (θi,Nt , x̂Nt )dŵN

t

− γt

[

∂θ∂x̂v
i,N (θi,Nt , x̂Nt )∇θB̂

i,N (θi,Nt , x̂Nt )
]

dt

Thus, we can rewrite Ω
(3)
t,i,N as

Ω
(3)
t,i,N =

t∫

1

γsΦs,t

〈

θi,Ns − θ0,∇θL̂
i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )

〉

ds
︸ ︷︷ ︸

Ri,N (θi,Ns ,x̂N
s )ds

(5.161)

=

t∫

1

γsΦs,tdv
i,N
s −

t∫

1

γsΦs,tAθv
i,N (θi,Ns , x̂Ns )ds (5.162)

−
t∫

1

γ2sΦs,t∂θv
i,N (θi,Ns , x̂Ns )∇θB̂

i,N (θi,Ns , x̂Ns )dwi
s

185



Chapter 5: Parameter Estimation for the McKean-Vlasov Stochastic Differential

Equation

−
t∫

1

γsΦs,t∂x̂v
i,N (θi,Ns , x̂Ns )dŵN

s

−
t∫

1

γ2sΦs,t∂θ∂xv
i,N (θs, x̂

N
s )∇θB̂

i,N (θi,Ns , x̂Ns )ds

We can rewrite the first term in this expression by applying Itô’s formula to the function

f(s, vs) = γsΦs,tvs. This yields

γtΦt,tv
i,N
t − γ1Φ1,tv

i,N
1 =

t∫

1

γsΦs,tdv
i,N
s +

t∫

1

γ̇sΦs,tv
i,N
s ds+

t∫

1

2ηγ2sΦs,tv
i,N
s ds. (5.163)

Substituting the resulting expression for
∫ t
1 γsΦs,tdv

i,N
s into (5.161), and taking expecta-

tions, we obtain

E

[

Ω
(3)
t,i,N

]

= E

[

γtΦt,tv
i,N (θi,Nt , x̂Nt )

]

− E

[

γ1Φ1,tv
i,N (θi,N1 , x̂N1 )

]

(5.164)

− E





t∫

1

γ̇sΦs,tv
i,N (θi,Ns , x̂Ns )ds



− E





t∫

1

2ηγ2sΦs,tv
i,N (θi,Ns , x̂Ns )ds





− E





t∫

1

γsΦs,tAθv
i,N (θi,Ns , x̂Ns )ds





− E





t∫

1

γ2sΦs,t∂θ∂xv
i,N (θi,Ns , x̂Ns )∇θB̂

i,N (θi,Ns , x̂Ns )ds





≤ K



γt +

t∫

1

(
γ̇s + γ2s

)
Φs,tds



 ≤ K(3)γt, (5.165)

where in the penultimate inequality we have used the polynomial growth of vi,N (θ, x̂N ) and

∂θ∂xv
i,N (θ, x̂N ), Condition C.1(ii) (which implies the polynomial growth of∇θB̂

i,N (θ, x̂N )),

Proposition 5.2 (the moment bounds for x̂Nt ), Lemma 5.1 (the moment bounds for θi,Ns ),

and in the final inequality we have used Condition F.1 (the conditions on the learning

rate). It remains only to bound Ω
(4)
t,i,N . For this term, once more making use of the above

assumptions, we obtain

E

[

Ω
(4)
t,i,N

]

= E





t∫

1

γ2sΦs,t

∣
∣
∣
∣∇θB(θs, xs, µs)

∣
∣
∣
∣2

F
ds



 ≤ K

t∫

1

γ2sΦs,tds ≤ K(4)γt. (5.166)

Combining inequalities (5.152), (5.153), (5.165), and (5.166), and settingK1 = max{K(1),K(3)},
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K2 = K(4), and K3 = K(2), we thus have that

E

[

||θi,Nt − θ0||2
]

≤ E

[

Ω
(1)
t,i,N

]

+ E

[

Ω
(2)
t,i,N

]

+ E

[

Ω
(3)
t,i,N

]

+ E

[

Ω
(4)
t,i,N

]

(5.167)

≤ (K1 +K2)γt +
K3

N
1
2

, (5.168)

which completes the proof of the first statement of the theorem.

Let us now turn our attention to the second statement. The proof of this bound goes

through almost verbatim. Let us briefly highlight the main points of difference. To begin,

we now have the following decomposition of the parameter update equation

dθNt = γt∇θL̃(θNt )dt+ γt
1

N

N∑

i=1

(
∇θL̃i,N (θNt )−∇θL̃(θNt )

)
dt (5.169)

+ γt
1

N

N∑

i=1

(
∇θL(θ

N
t , x

i,N
t , µNt )−∇θL̃i,N (θNt )

)
dt

+ γt
1

N

N∑

i=1

∇θB(θi,Nt , xi,Nt , µNt )dwi
t.

Using a Taylor expansion around θ0, defining Z
N
t = θNt − θ0, applying Itô’s formula to the

function ||ZN
t ||2, and using the strong concavity of L̃(θ), as in (5.144) - (5.147), we obtain

d||ZN
t ||2 + 2ηγt||ZN

t ||2dt ≤ γt
1

N

N∑

i=1

〈
ZN
t ,∇θL̃i,N (θi,Nt )−∇θL̃(θNt )

〉
dt (5.170)

+ γt
1

N

N∑

i=1

〈
ZN
t ,∇θL(θ

i,N
t , xi,Nt , µNt )−∇θL̃i,N (θNt )

〉
dt

+ γt
1

N

N∑

i=1

〈
ZN
t ,∇θB(θNt , x

i,N
t , µNt )dwi

t

〉

+ γ2t
1

N2

N∑

i=1

∣
∣
∣
∣∇θB(θt, xt, µt)

∣
∣
∣
∣2

F
dt

Continuing to follow our previous arguments, c.f. (5.148) - (5.151), we finally arrive at

E
[
||ZN

t ||2
]
≤ 1

N

N∑

i=1

[

E

[

Ω̃
(1)
t,i,N

]

+ E

[

Ω̃
(2)
t,i,N

]

+ E

[

Ω̃
(3)
t,i,N

]]

+
1

N2

N∑

i=1

E

[

Ω̃
(4)
t,i,N

]

(5.171)

where, up to minor modifications, Ω̃
(1)
t,i,N , . . . , Ω̃

(4)
t,i,N are identical to Ω

(1)
t,i,N , . . . ,Ω

(4)
t,i,N as

defined in (5.150) - (5.151). In particular, all instances of θi,Ns in Ω
(1)
t,i,N , . . . ,Ω

(4)
t,i,N have

been replaced by θNs in Ω̃
(1)
t,i,N , . . . , Ω̃

(4)
t,i,N . We thus have, using the bounds established
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previously, c.f. (5.152), (5.153), (5.165), and (5.166), that

E
[
||ZN

t ||2
]
≤ 1

N

N∑

i=1

(

K1γt +K3
1

N
1
2

)

+
1

N2

N∑

i=1

K2γt = (K1 +
K2

N
)γt +

K3

N
1
2

. (5.172)

5.5 Numerical Examples

To illustrate the results of Section 5.3, we now provide several illustrative examples of

parameter estimation in McKean-Vlasov SDEs, and the associated systems of interacting

particles. In particular, we consider a linear mean-field model, a model with bistable

potential, a stochastic Kuramoto model, and a stochastic opinion dynamics model. In

all cases, we simulate sample paths and implement the recursive MLE using a standard

Euler-Maruyama scheme with ∆t = 0.1.

5.5.1 Linear Mean Field Dynamics

We first consider a one-dimensional linear mean field model, parametrised by θ = (θ1, θ2)
T ∈

R
2, given by

dxt = −



θ1xt + θ2

∫

R

(xt − y)µt(dy)



 dt+ σdwt, (5.173)

µt = L(xt). (5.174)

where σ > 0 and w = (wt)t≥0 is a standard Brownian motion. We will assume that x0 ∈ R.

This is clearly of the form of the McKean-Vlasov SDE (5.1) - (5.2) with b(θ, x) = −θ1x
and φ(θ, x, y) = −θ2(x− y). The corresponding system of interacting particles is given by

dxi,Nt = −



θ1x
i,N
t + θ2

1

N

N∑

j=1

(xi,Nt − xj,Nt )



 dt+ σdwi,N
t , i = 1, . . . , N. (5.175)

In this model, the parameter θ1 controls the strength of attraction of the non-linear pro-

cess (or, in the IPS, of each individual particle) towards zero, while the strength of the

parameter θ2 controls the strength of the attraction of the non-linear process (of each

individual particle) towards its mean (the empirical mean). We remark that, in the case

θ2 = 0, the non-linear process reduces to a one-dimensional Orstein-Uhlenbeck process,

and the system of interacting particles reduces to N independent samples of this process.

It is straightforward to show that this model satisfies all of the conditions specified in
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Section 5.3.1. The full details can be found in [413, Appendix I].

5.5.1.1 Offline Parameter Estimation

We begin by illustrating the performance of the offline MLE. Since this model is linear

in both of the parameters, in this case it is possible to obtain the maximum likelihood in

closed form as (see also [242])

θ̂N1,t =
AN

t −BN
t

CN
t −DN

t

, θ̂N2,t =
DN

t A
N
t − CN

t B
N
t

(CN
t )2 − CN

t D
N
t

(5.176)

where we have defined, writing x̄Ns = 1
N

∑N
j=1 x

j,N
s ,

AN
t =

t∫

0

N∑

i=1

(xi,Ns − x̄Ns )dxi,Ns , BN
t =

t∫

0

N∑

i=1

xi,Ns dxi,Ns (5.177)

CN
t =

t∫

0

N∑

i=1

(xi,Ns − x̄Ns )2ds , DN
t =

t∫

0

N∑

i=1

(xi,Ns )2ds. (5.178)

For our first simulation, we assume that the true parameter is given by θ∗ = (1, 0.5)T ,

and that the diffusion coefficient is equal to the identity, σ = 1. The performance of the

MLE is visualised in Figure 5.1, in which we plot the mean squared error (MSE) of the

offline parameter estimate for t ∈ [0, 30], and N ∈ {2, 5, 10, 25, 50, 100}, averaged over

500 random trials. As expected, the parameter estimates converge to the true parameter

values (that is, the MSE converges to zero) as N increases with t fixed (see Theorem 5.1),

and also as t increases with N fixed (see, e.g., [63, 296]).
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t
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1(
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(a) θ̂N1,t.
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(b) θ̂N2,t.

Figure 5.1: L2 error of the offline MLE for t ∈ [0, 30] and N = {2, 5, 10, 25, 50, 100}. The
L
2 error is plotted on a log-scale.

We investigate the convergence rate of the offline MLE further in Figure 5.2, in which we
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plot the mean absolute error (MAE) of the parameter estimate for N ∈ {20, 21, . . . , 400}
with t = 5, and also for t ∈ [50, 2000] with N = 2, averaged over 500 random trials. Our

results suggest that the offline MLE for this model has an L
1 convergence rate of order

O((Nt)−
1
2 ). This is rather unsurprising: such a rate was recently established by Chen

[110] for a linear mean field model (of arbitrary dimension) in the absence of the global

confinement term.
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(a) θ̂N1,t=5.
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Figure 5.2: Log-log plot of the L1 error of the offline MLE for t = 5 and N ∈ {20, . . . , 400}
(top panel), and for t ∈ [50, 2000] and N = 2 (bottom panel).

To conclude this section, we provide numerical confirmation of the asymptotic normality

of the MLE (Theorem 5.2). For the linear mean field model of interest, it is in fact possible

to obtain the asymptotic information matrix in closed form (see also [242]). In particular,

it is given by

It(θ) =

(

Dt(θ) Ct(θ)

Ct(θ) Ct(θ)

)

, (5.179)

where, with γ(θ) = −2(θ1 + θ2),

Ct(θ) =
1

γ2(θ)
(eγ(θ)t − 1)− t

γ(θ)
+
σ20
γ
(eγ(θ)t − 1), (5.180)

Dt(θ) =
1

γ2(θ)
(eγ(θ)t − 1)− t

γ(θ)
+

σ20
γ(θ)

(eγ(θ)t − 1)− µ20
2θ1

(e−2θ1t − 1). (5.181)
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In Figure 5.3, we are thus able to provide a direct comparison of the asymptotic distribution

of the MLE, and the approximate distribution obtained with a finite number of particles.

Our results are computed using T = 2, N = 500, and n = 105 sample paths.
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Figure 5.3: A comparison between the asymptotic normal distribution and the approxi-
mate normal distribution of the MLE for N = 500 particles. The histograms were obtained
using n = 105 random samples.

5.5.1.2 Online Parameter Estimation

We now turn our attention to the online MLE, which for this model evolves according to

dθN1,t =
γ1,t
Nσ2

N∑

i=1

[

−xi,Nt dxi,Nt − xi,Nt (θN1,tx
i,N
t + θN2,t(x

i,N
t − x̄Nt ))dt

]

, (5.182)

dθN2,t =
γ2,t
Nσ2

N∑

i=1

[

−(xi,Nt − x̄Nt )dxi,Nt − (xi,Nt − x̄Nt )(θN1,tx
i,N
t + θN2,t(x

i,N
t − x̄Nt ))dt

]

.

(5.183)

We will initially assume that one of the parameters is fixed (and equal to the true value),

while the other parameter is to be estimated. The true parameters are given by θ∗1 = 0.5

and θ∗2 = 0.1. Meanwhile, the initial parameter estimates are randomly generated accord-

ing to θ01, θ
0
2 ∼ U([2, 5]). Finally, the learning rates are given by γi,t = min{γ0i , γ0i t−α}, i =
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1, 2, where γ01 = 0.05, γ02 = 0.30, and α = 0.51. The performance of the stochastic gradient

descent algorithm is visualised in Figures 5.4 and 5.5, in which we plot the MSE and the

variance of the online parameter estimates for t ∈ [0, 1000] and N = {2, 5, 10, 25, 50, 100}.
The results are computed over 500 independent random trials. Interestingly, increasing

the number of particles can result in a relatively significant reduction in the MSE of the

interaction parameter θ2, but has little consequence for the error of the confinement pa-

rameter θ1. Meanwhile, there is a relatively significant reduction in the variance of both

estimates.
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Figure 5.4: L
2 error of the online parameter estimates for t ∈ [0, 1000] and N =

{2, 5, 10, 25, 50, 100}. The time is plotted on a log-scale.
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Figure 5.5: Variance of the online parameter estimates for t ∈ [0, 1000] and N =
{2, 5, 10, 25, 50, 100}. The time is plotted on a log-scale.

We should remark that, in the linear mean field model, with one parameter fixed, the online

parameter estimates generated via the system of interacting particles will converge to the

true value of the parameter (which coincides with the global minimum of the asymptotic

log-likelihood of the McKean-Vlasov SDE) for all values of N . Indeed, for this model, the

(asymptotic) log-likelihood of the IPS is strongly concave for all values of N , with unique

global maximum at the true parameter values. This is visualised in Figures 5.6d and 5.7d,

in which we have plotted approximations of profile asymptotic log-likelihood of the IPS
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for several values of N . We are thus in the regime of Case I with finite N , meaning θNt

will converge to the true parameter as t→ ∞, regardless of the value of N .

Figures 5.6 and 5.7 also provide a numerical illustration of why the finite-time perfor-

mance of the online estimator improves with the number of particles (see Theorem 5.4‡),

and why this improvement is more pronounced for the interaction parameter θ2. As N

increases, we observe that the time weighted average of the log-likelihood LN
t (θ) (the noisy

objective function) much more closely resembles the asymptotic log-likelihood L̃N (θ) (the

true objective function), even for small time values. This means, in particular, that the

fluctuations terms appearing in the proof of Theorems 5.3‡ - 5.4‡ of the form

t∫

0

γs(∇θL̃N (θNs )− 1

N

N∑

i=1

∇θL(θ
N
s , x

N
s , µ

N
s ))ds, (5.184)

converge more rapidly to zero (as a function of time), for larger values of N . This disparity

in the convergence rate of the log-likelihood (as a function of the time), for different values

of N , appears to be much more significant for the interaction parameter θ2 (Figure 5.7)

than it is for the confinement parameter θ1 (Figure 5.6). Consequently, the online param-

eter estimate θN2,t converges more rapidly as N increases, while there is little difference in

the convergence rate of θN1,t.
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Figure 5.6: Plots of the average log-likelihood, 1
T LN

T (θ1), for T = {1, 2.5, 5.7.5} and N =

{5, 10, 50}.
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Figure 5.7: Plots of the average log-likelihood, 1
T LN

T (θ2), for T = {1, 2.5, 5.7.5} and N =

{5, 10, 50}.

We conclude this discussion with a comparison between the online parameter estimates

generated using N particles from the IPS, and those generated using a single sample path
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of McKean-Vlasov SDE, and its law. We should emphasise that the latter is only possible

when the solution of the non-linear equation is available. Illustrative results are provided

in Figure 5.8, in which we plot the percentage error of the online parameter estimates for

the interaction parameter, for several values of N . In each case, the estimate based on

the McKean-Vlasov SDE converges more rapidly to the true parameter value. We also

note, perhaps unsurprisingly, that this disparity becomes less apparent as the number

of particles increases, reflecting the fact that the dynamics of the interacting particles

increasingly resemble the dynamics of the solutions of the non-linear equation. Consistent

with our previous observations, this disparity is also less apparent for the online estimates

of the confinement parameter (results omitted).
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Figure 5.8: Percentage error of the online maximum likelihood estimates of the interaction
parameter θ2 for T ∈ [0, 1000] and N = {2, 5, 10, 25, 50, 100}, generated using the IPS and
the McKean-Vlasov SDE.

Let us now turn our attention to the case in which both parameters are unknown, and

to be estimated from the data. For the sake of comparison, we will once more assume

that that the true parameter is given by θ∗ = (θ∗1, θ
∗
2) = (0.5, 0.1). The initial parameter

estimates are now generated according to θ01 ∼ U([−1, 2]) and θ02 ∼ U([−2, 2]). Finally,

we use constant learning rates, with γ1,t = 0.1 and γ2,t = 0.2. The performance of the

stochastic gradient descent algorithm is illustrated in Figure 5.9, in which we plot the

MSE of the online parameter estimates for both of the unknown parameters, averaged

over 500 random trials.

In this case, the evolution of the MSE appears to indicate three distinct learning phases.

In the initial phase, the performance of the online estimator improves as a function of

the number of particles, with this improvement being more noticeable for the interaction
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parameter θ2, as observed previously. Conversely, in the middle phase, the online estimator

performs (significantly) better for smaller values of N . These observations are readily

explained with reference to the asymptotic log-likelihood of the IPS for different values of

N , as shown in Figure 5.10. In particular, far from the global maximum at θ∗ = (0.5, 0.1),

the asymptotic log-likelihood decreases more steeply as the value of N increases. Broadly

speaking, we can think of this region of the optimisation landscape as responsible for the

initial learning phase, hence the improved performance of the estimator for larger values

of N . On the other hand, close to the global maximum, the asymptotic log-likelihood

exhibits an increasingly large plateau as the value of N increases (i.e., an increasingly flat

maximum). This region of the optimisation landscape is largely responsible for the middle

learning phase, which explains the slower convergence of the estimator for larger values

of N . In the final learning phase, the steady-state error of the recursive MLE appears to

decrease as a function of the number of particles. This is unsurprising, given the O( 1

N
1
2
)

term appearing in Theorem 5.4.
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Figure 5.9: L
2 error of the online MLEs for T ∈ [0, 5000] and N = {2, 5, 10, 25, 50, 100}.

The time is plotted on a log-scale.
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Figure 5.10: Contour plots of the asymptotic log-likelihood L̃N (θ) for N = {2, 5, 10, 100}.
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5.5.2 A Bistable Potential

In this section, we consider a one-dimensional mean-field model, parametrised by θ ∈ R,

of the form

dxt = −



∇xV (x) +

∫

R

∇xW (θ, xt − y)µt(dy)



 dt+
√

2β−1dwt, (5.185)

µt = L(xt). (5.186)

where β > 0 is inverse temperature, w = (wt)t≥0 is a standard Brownian motion, V : R →
R is the bistable confinement potential

V (x) =

[
1

4
x4 − 1

2
x2

]

(5.187)

and W (θ, ·) : R → R is the Curie-Weiss (i.e., quadratic) interaction potential

W (θ, x− y) =
1

2
θ [x− y]2 (5.188)

As in the previous example, the parameter θ represents the interaction strength. The

corresponding system of interacting particles for this system is given by

dxi,Nt = −



∇xV (xi,Nt ) +
1

N

N∑

j=1

∇xW (θ, xi,Nt − xj,Nt )



 dt+
√

2β−1dwi,N
t . (5.189)

This model is interesting as, while the IPS always has a unique invariant measure (see [374,

Chapter 4]), for sufficiently high interaction strengths, the McKean-Vlasov SDE (5.185)

- (5.186) admits multiple invariant measures (e.g., [139, 204, 443]). Thus, in particular,

the assumptions of Theorems 5.3 - 5.4 are no longer satisfied. Nonetheless, it is still of

interest to investigate (recursive) parameter estimation for this model numerically.

For the quadratic interaction potential, a one-parameter family of invariant densities for

the McKean-Vlasov equation can be obtained as (e.g., [204])

p∞(x; θ, β,m) =
e−β([ 14x

4− 1
2
x2]+θ( 1

2
x2−xm))

∫

R
e−β([ 14x4− 1

2
x2]+θ( 1

2
x2−xm))dx

(5.190)

These solutions are subject to the constraint that they provide the correct formula for the

first moment, viz

m =

∫

R

xp∞(x; θ, β,m)dx = R(m; θ, β). (5.191)

This is sometimes referred to as the self-consistency equation. Once a solution to this equa-
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tion has been obtained, re-substituting into (5.190) yields the invariant density p∞. Thus,

the number of solutions to this equation determines the number of invariant measures of

the McKean-Vlasov equation.

For the bistable potential (5.187), the self-consistency equation admits precisely one solu-

tion (m = 0) for sufficiently low interaction strengths. Meanwhile, there are an additional

two solutions (m = m±) above a critical interaction strength θc (e.g., [139, Theorem 3.3.2],

[443, Theorem 4.1,4.2], [415]).6 This is shown in Figure 5.11. It follows that there exists

a unique invariant measure for θ < θc, and multiple invariant measures for θ > θc.
7 This

is shown in Figure 5.12.
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Figure 5.11: Plots of f(m) = m and f(m) = R(m; θ, β) for several values of θ, and fixed
β = 10. The intersection points correspond to solutions of the self-consistency equation.
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Figure 5.12: Plots of the empirical invariant density p̂∞(x; θ, β,m) (blue), and the true
invariant density (densities) p∞(x; θ, β,m) (green, orange) for several values of θ, and fixed
β = 10. We distinguish between the invariant density which exists for θ < θc (green) and
the two invariant densities which only exist for θ > θc (orange).

6We note that one can compute θc analytically by solving the equation (see [183, 415])

Varp∞(x)|m=0 =
1

βθc
. (5.192)

7This statement is typically given in terms of the temperature β−1. In particular, a unique invariant
measure exists at sufficiently high temperatures, while multiple invariant measures exist above a critical
temperature β−1

c .
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5.5.2.1 Offline Parameter Estimation

We begin by considering offline parameter estimation of the unknown interaction param-

eter θ ∈ R. Since the model is linear in this parameter, in this case we can explicitly

obtain

θ̂Nt =
−∑N

i=1

∫ t
0

(

xi,Ns − 1
N

∑N
j=1 x

j,N
s

)

dxi,Ns −
∫ t
0

∑N
i=1∇xV (xi,Ns )

(

xi,Ns − 1
N

∑N
j=1 x

j,N
s

)

ds

∑N
i=1

∫ t
0

(

xi,Ns − 1
N

∑N
j=1 x

j,N
s

)2
ds

.

(5.193)

We plot the L1 error of the MLE, for several values of N and t, in Figure 5.13 below. The

true value of the interaction parameter is θ0 = 0.1 (Figure 5.13a) and θ0 = 0.2 (Figure

5.13b). Our results illustrate a.s. convergence of the MLE in both large N and large T ,

and indicate that the MLE converges in N at a rate O((Nt)−
1
2 ). This provides further

evidence to suggest that the convergence rate recently obtained by Chen [110] also holds

in the presence of a global confinement term.
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Figure 5.13: Log-log plot of the L
1 error of the offline MLE for t = 0.5 and N ∈

{20, . . . , 200} (left hand panel), and for t ∈ [100, 1000] and N = 2 (right hand panel).

5.5.2.2 Online Parameter Estimation

We now turn our attention to the online case. For this model, the recursive maximum

likelihood estimator evolves according to

dθNt =
β

2N
γt

N∑

i=1

[

−(xi,Nt − x̄Nt )dxi,Nt − (xi,Nt − x̄Nt )(∇xV (xi,Nt ) + θNt (xi,Nt − x̄Nt ))dt
]

.

(5.194)
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The performance of the online estimator is shown in Figure 5.14, in which we plot an

illustrative sequence of online parameter estimates (Figure 5.14a), and the L
2 error of

the online parameter estimates, averaged over 500 independent runs (Figure 5.14b). In

this case, we consider a time-varying parameter, which takes the values θ0 = {θ10, θ20} =

{0.1, 0.5}.
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(a) Sequence of online parameter estimates.
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Figure 5.14: Performance of the online MLE for N ∈ {2, 5, 10, 25, 50, 100}. The true
value(s) of the time varying parameter are shown in black (dashed).

Let us make two brief observations. Firstly, and unsurprisingly, there is clear improvement

in the performance of the online estimator as the number of particles increases. Secondly,

as we have seen at various times throughout this thesis, the online estimator is able to

track changes in the true parameter in real time. One interesting feature of this simulation

is that initial true parameter value is below the critical threshold (θ10 < θc), while the final

true parameter value is above the critical threshold (θ20 > θc). This is evident from the

plots of self-consistency equation (Figure 5.11), or the plots of the invariant densities

(Figure 5.12). Thus, the corresponding mean-field system exhibits a phase transition. We

shall return to this point at the end of the next numerical example.

5.5.3 The Stochastic Kuramoto Model

We next consider a non-linear SDE on the one-dimensional torus T, parametrised by θ ∈ R,

of the form

dxt =



θ

∫

R

sin(xt − y)µt(dy)



 dt+
√

2β−1dwt, (5.195)

µt = L(xt). (5.196)
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where β > 0 and w = (wt)t≥0 is a T-valued Brownian motion, and all other terms are

as defined previously. This equation represents the mean-field limit of the stochastic

Kuramoto model (e.g., [45, 92]), or Kuramoto-Shinomoto-Sakaguchi model (e.g., [1, 264,

404]), which is given by

dxi,Nt =
θ

N

N∑

j=1

sin(xi,Nt − xj,Nt )dt+
√

2β−1dwi,N
t , (5.197)

This system of interacting particles models the synchronisation of noisy oscillators inter-

acting through their phases. Thus, the parameter θ can be interpreted as the coupling

strength between oscillators.

Aside from its wide applicability in various fields such as physics, chemistry, and biology

(e.g., [1] and references therein), our interest in the stochastic Kuramoto model stems from

the fact that its mean-field limit (5.195) - (5.196) exhibits a phase transition. Similarly to

the previous example, when the coupling strength θ is smaller than a critical value θc the

noise dominates, a uniform state is the only equilibrium, and the population always tends

towards this incoherent state. On the other hand, when θ > θc the coupling dominates,

and a family of non-trivial coherent (or synchronised) equilibria exists, and the population

tends to synchronise.

Let us now make this more precise. We first note that, if p∞(x) is a stationary solution,

then so too is p∞(x+ x0), for arbitrary x0. This is due to the invariance of (5.195) under

rotations. In general, every stationary solutions can be written as p∞(x + x0) for some

x0 ∈ [0, 2π), where (e.g., [45])

p∞(x; θ, β, r) =
eβθr cosx

2π
∫

S
eβθr cosxdx

. (5.198)

with r being a non-negative solution to the equation

r := Ψ(βθr) =

∫

S
cosx exp(βθr cosx)dx
∫

S
exp(βθr cosx)dx

(5.199)

There are precisely one or two solutions to this equation. The first is the trivial solution

r = 0, which holds for all values of θ. The second is a solution 0 < r < 1, which only

exists for θ > θc = 2β−1. This is shown in Figure 5.15. In terms of stationary solutions,

this means that for θ ≤ θc only the flat (incoherent) invariant measure p∞(x) = 1
2π is

stationary. Meanwhile, for θ > θc, {p∞(· + x0)}x0∈S is a family of stationary solutions.

These are the solutions which exhibit coherence or synchronisation. This is shown in

Figure 5.16.
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Figure 5.15: Plots of f(r) = r and f(r) = Ψ(βθr) for several values of θ, and fixed β = 10.
The intersection points correspond to solutions of the fixed point equation.
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(b) θ = 0.25.
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Figure 5.16: Plots of the empirical invariant density p̂∞(x; θ, β,m) (blue), and the true
invariant density (densities) p∞(x; θ, β,m) (green, orange) for several values of θ, and fixed
β = 10. We distinguish between the invariant density which exists for θ < θc (green) and
the invariant densities which only exist for θ > θc (orange).

5.5.3.1 Offline Parameter Estimation

We now turn our attention to offline estimation of the coupling strength θ ∈ R. Once

more, since the parametrisation is linear in this parameter, we can obtain the maximum

likelihood estimator in closed form as

θ̂MLE =
−∑N

i=1

∫ t
0

(
1
N

∑N
j=1 sin(x

i,N
s − xj,Ns )

)

dxi,Ns

∑N
i=1

∫ t
0

(
1
N

∑N
j=1 sin(x

i,N
s − xj,Ns )

)2
ds

. (5.200)

The performance of the MLE is illustrated in Figure 5.17. Our numerics indicate that the

interaction parameter is also successfully estimated in this model; and tentatively suggest

that the L
1 error of the MLE once more converges in both N and t at a rate O(Nt)−

1
2 ).
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Figure 5.17: Log-log plot of the L
1 error of the offline MLE (a) as a function of N , for

several values of t, and (b) as a function of t, for several values of N (b).

5.5.3.2 Online Parameter Estimation

We now consider the online case. For this model, the recursive maximum likelihood

estimator evolves according to the following SDE

dθNt =
β

2N
γt

N∑

i=1



− 1

N

N∑

j=1

sin(xi,Nt − xj,Nt )dxi,Nt (5.201)

− 1

N

N∑

j=1

sin(xi,Nt − xj,Nt )




θNt
N

N∑

j=1

sin(xi,Nt − xj,Nt )



 dt



 . (5.202)

We illustrate the performance of the online estimator, for several values of N , in Figure

5.18. In this case, the results are averaged over 10 independent runs. We suppose, once

more, that the true parameter is time-varying, with value

θ0 =

{

0.5 , t ∈ [0, 1000]

0.1 , t ∈ [1000, 4000]
(5.203)

Once again, the online estimator quickly reacts to the change point in the interaction pa-

rameter, closely tracking its true value. Interestingly, the estimator appears to react more

slowly to changes in this parameter as N increases. On the other hand, the asymptotic

performance of the estimator (in the sense of L2 error) improves as a function of N , as is

to be expected on the basis of our theoretical results.

While the ability to infer the unknown interaction parameter (in an online fashion) is

important in its own right, in this case it has some added significance. In particular,

given the relationship between this parameter and the invariant measure of the stochastic

Karumoto model, our results suggest that one could predict the asymptotic behaviour
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Figure 5.18: Performance of the online MLE for N ∈ {3, 5, 10, 25, 50, 100}. The true
value(s) of the time varying parameter are shown in black (dashed).

(i.e., synchronisation or disorder) of this system in real time using the online parameter

estimates. These remarks could equally apply to any mean-field model which admits

different asymptotic regimes on the basis one or more unknown parameters (e.g., the

model with bistable potential studied in the previous section).

Returning to the simulation at hand, we see in this case that the true parameter value

at small times (and, thus, the parameter estimates at small times) are above the critical

threshold (0.5 = θ10 > θc = 0.2). Thus, at this stage, one would likely predict on the

basis of the online parameter estimates that the population will synchronise. On the

other hand, the true value of the parameter are large times (and, thus, the parameter

estimates at large times) are below the critical threshold (0.1 = θ20 < θc = 0.2). Thus,

once more on the basis of the online parameter estimates, one would likely update the

original prediction to expect convergence towards an incoherent state. These predictions

are confirmed numerically in Figure 5.19.
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Figure 5.19: Plots of the empirical density p̂t(x) at two times.
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Clearly, our confidence in predicting which asymptotic regime will occur (i.e., in predicting

whether the true parameter is greater than or less than the critical parameter) is dependent

on a number of factors. Principle among these are (i) the number of particles, (ii) the

number of iterations, and (iii) the distance between the true parameter and the critical

parameter. In particular, the larger the number of particles or number of iterations, the

smaller the expected error of the parameter estimate, and thus the greater confidence in the

prediction. Meanwhile, the larger the distance |θc − θ0|, the greater the permissible error

in the parameter estimate, and thus the greater the confidence in the prediction. While

beyond the scope of this work, we believe that a precise probabilistic characterisation of

these intuitions is a fruitful direction for future work.

5.5.4 Stochastic Opinion Dynamics

Finally, we consider a one-dimensional stochastic opinion dynamics model, parametrised

by θ = (θ1, θ2)
T ∈ R

2, of the form

dxt = −





∫

R

ϕθ(||xt − y||)(xt − y)µt(dy)



 dt+ σdwt, (5.204)

where the interaction kernel ϕθ : R+ → R+ is defined according to

ϕθ(r) =







θ1 exp

[

− 0.01

1− (r − θ2)2

]

, r > 0

0 , r ≤ 0

(5.205)

This function provides an approximation, infinitely differentiable on R+, to a scaled indi-

cator function with magnitude θ1 and support [0, θ2 + 1]. That is, writing θ̃2 = θ2 + 1,

ϕ̃θ(r) =

{

θ1 , 0 ≤ r ≤ θ̃2

0 , θ̃2 < r <∞.
(5.206)

The system of interacting particles corresponding to (5.204) is given by

dxi,Nt = − 1

N

N∑

j=1

ϕθ(||xi,Nt − xj,Nt ||)(xi,Nt − xj,Nt )dt+ σdwt. (5.207)

Models of this form arise in various applications, from biology to the social sciences, in

which ϕθ determines how the dynamics of one particle (e.g., the opinions of one person)

may influence the dynamics of other particles (e.g., the opinions of other people). In

this setting, one can interpret θ1 as a scale parameter, which controls the strength of the

attraction between particles, and θ̃2 as a range parameter, which determines the distance

within which particles must be of one another to interact. For a more detailed account
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of such models, we refer to [54, 73, 120, 209, 257, 318, 357] and references therein. For

deterministic models of this type, it is well known that, asymptotically, the particles merge

into clusters, the number of which depends both on the interaction kernel (i.e., the range

and strength of the interaction between particles) and the initialisation. In the stochastic

setting, the random noise prohibits the formation of exact clusters; instead, the particles

merge into metastable ‘soft clusters’ (see also [322]). This is shown in Figure 5.20.
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Figure 5.20: Sample trajectories of the IPS for θ̃2 = {0.0, 0.3, 0.5, 1.0}.

We will focus on online parameter estimation in the case in which the scale parameter θ1

is fixed, and the range parameter θ̃2 is to be estimated. We assume that θ1 = θ∗1 = 2, and

that θ̃∗2 = 0.5. This corresponds to an interaction kernel with compact support on [0, 0.5].

The initial parameter estimates are generated according to θ̃02 ∼ U([1.5, 2.5]). Meanwhile,

the initial particles are uniformly distributed over the interval [−2, 2]. Finally, we use

constant learning rates with γt = 0.002.

The performance of the recursive MLE is illustrated in Figure 5.21, in which we plot the

sequence of online parameter estimates for θ̃2. We provide results for several values of

N , and for 50 different random initialisations. Encouragingly, (almost) all of the online

parameter estimates converge to within a small neighbourhood of the true value of the

parameter, suggesting that it is indeed possible to estimate the range of the interaction

kernel in an online fashion. As in our previous simulations, the performance of the online

estimator improves as the number of particles is increased.
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Figure 5.21: Sequence on online parameter estimates (blue) for the range parameter θ̃2,
for 50 different random initialisation θ02 ∼ U([1.5, 2.5]), and N = {10, 20, 50}. We also plot
the true parameter value (orange), the mean online parameter estimate plus/minus one
standard deviation (black: solid, dashed).
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We should remark that the performance of the online estimator is highly dependent on

the initial conditions of the particles. This should not come as a surprise; indeed, if the

distance between particles is greater than then support of the interaction kernel, then the

interaction kernel (and its gradient) are identically zero, and thus so too are all of the

terms in the parameter update equation. Thus, the value of the parameter estimate will

remain unchanged. We see this phenomenon in Figure 5.21, particularly when there are

fewer particles.

One can, of course, simulate even more interesting dynamics by considering sums of in-

teraction kernels of the form (5.205), namely

ϕθ(r) =

p
∑

i=1

ϕi
θ(r) :=







p
∑

i=1

θ1,i exp

[

− 0.01

1− (r − θ2,i)2

]

, r ≥ 0

0 , r < 0.

(5.208)

which provides an approximation for sums of indicator functions of the form (5.206). In

Figure 5.22, we show illustrative results in the case p = 2. Once again, we suppose that the

two scale parameters are fixed, and that the two range parameters are to be estimated. The

true values of the scale parameters are θ∗1,1 = θ∗1,2 = 1, while the true values of the range

parameters are θ̃∗2,1 = 0.6, θ̃∗2,2 = 1.0.8 This specifies an interaction kernel with compact

support on [0, 1.0], with interactions twice as strong in [0, 0.6], compared to in [0.6, 1.0].

In this simulation, the initial parameter estimates are fixed, and given by θ02,1 = 0.1 and

θ02,2 = 1.5. Meanwhile, the initial particles are uniformly distributed over [0, 5]. Finally,

we use a constant learning rate of γ2,t = 0.003.
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Figure 5.22: Sequence on online parameter estimates for the range parameters θ̃2,1 (blue)
and θ̃2,2 (orange), for 25 different independent runs. We also plot the true parameter value
(green), the mean online parameter estimate plus/minus one standard deviation (black:
solid, dashed).

8Similarly to before, we have defined θ̃2,i = θ2,i + 1. Clearly, this re-scaled parameter represents the
range of the ith indicator function in the interaction kernel.
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5.6 Conclusions

In this chapter, we have considered the problem of parameter estimation for a stochastic

McKean-Vlasov equation and the associated system of weakly interacting particles. We

established consistency and asymptotic normality of the offline MLE for the IPS as the

number of particles N → ∞, extending classical results in [242]. We also proposed an

online estimator for the parameters of the McKean-Vlasov SDE, under various modelling

assumptions. We demonstrated L
1 convergence of this estimator to the stationary points

of the asymptotic log-likelihood of the McKean-Vlasov SDE as N → ∞ and t → ∞ and,

under additional assumptions, obtained an L
2 convergence rate. Finally, we presented four

numerical examples as a proof of concept: a toy model with linear dependence on a one-

dimensional parameter in both the confinement potential and the interaction potential, a

model with bistable potential and unknown interaction potential, the stochastic Kuramoto

model, and a model commonly arising in the study of opinion dynamics.
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Appendices

5.A Existing Results on the McKean-Vlasov SDE

Proposition 5.1 (Existence and Uniqueness, [81, Theorem 2.2.3]). Assume that Condi-

tions B.1(i) - B.2(i) hold. If µθ0 ∈ P2(R
d), the McKean-Vlasov SDE (5.1) has a unique

strong solution xθ = (xθt )t≥0 for all t ≥ 0. In addition, the IPS (5.4) has a unique strong

solution xθ,N = (xθ,Nt )t≥0 for all t ≥ 0.

Proposition 5.2 (Moment Bounds, [81, Lemma 2.3.1]). Assume that Conditions B.1(i)

- B.2(i) and D.1 hold. Then, for all k ≥ 0, there exists Ck > 0 such that for all θ ∈ R
p,

and for all N ∈ N,

sup
t≥0

E||xθ,i,Nt ||k ≤ Ck





∫

Rd

xkµ0(dx) + 1



 (5.209)

sup
t≥0

E||xθt ||k ≤ Ck





∫

Rd

xkµ0(dx) + 1



 (5.210)

Proposition 5.3 (Unique Invariant Measure of the MVSDE [81, Theorem 2.3.3]). Assume

that Conditions B.1 - B.2 hold, and µ0 ∈ P(Rd). Then the McKean-Vlasov SDE admits a

unique equilibrium measure µ∞ which is independent of the initial condition µ0. Moreover,

with λ = α− 2L2, the following contraction rate holds

W2(µt, µ∞) ≤ e−λt
W2(µ0, µ∞) (5.211)

Proposition 5.4 (Unique Invariant Measure of the IPS, [414, Proposition A.4]). Assume

that Conditions B.1 - B.2 hold, and µ0 ∈ P(Rd). Then the IPS admits a unique equilibrium

measure µ̂N∞ which is independent of the initial condition µ̂N0 . Moreover, with λ = α−2L2,

and writing µ̂
(k),N
t for the law of a subset of 1 ≤ k ≤ N interacting particles, the following

contraction rate holds

W2(µ̂
(k),N
t , µ̂(k),N∞ ) ≤ e−λt

W2(µ
⊗k
0 , µ̂(k),N∞ ). (5.212)

Proposition 5.5 (Propagation of Chaos, [81, Lemma 2.4.1]). Let xi = (xit)t≥0 be N inde-

pendent copies of the solutions of (5.1) - (5.2) driven by independent Brownian motions

wi. Assume that Conditions B.1 - B.2 and D.1 hold. Then there exist 0 < C < ∞,
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independent of time, such that

sup
t≥0

E

[

||xi,Nt − xit||2
]

≤ C

N
. (5.213)

Proposition 5.6 (A Law of Large Numbers, [117, Theorem 1.2], [367]). Assume that

Conditions B.1(i) - B.2(i) hold. If (µN0 )N∈N converge weakly to µ0, then for all g ∈ C(Rd)

and for all t ≥ 0, as N → ∞,

lim
N→∞

[

1

N

N∑

i=1

g(xi,Nt )

]

P
=

∫

Rd

g(x)µt(dx). (5.214)

5.B Proof of Lemma for Theorem 5.1 and Theorem 5.2

Lemma 5.2. For all T ≥ 0, for all θ ∈ Θ ⊆ R
p,

lim
N→∞

sup
0≤t≤T

1

N

N∑

i=1

t∫

0

〈G(θ, xi,Ns , µNs ), dwi
s〉 = 0 (5.215)

Proof. For ease of notation, let us define

MN
t (θ) :=

1

N

N∑

i=1

t∫

0

〈G(θ, xi,Ns , µNs ), dwi
s〉. (5.216)

Now, for all N ∈ N, and for all θ ∈ R
p, (MN

t (θ))t≥0 is a zero mean continuous square

integrable martingale, with quadratic variation

[
MN (θ)

]

t
=

1

N2

N∑

i=1

t∫

0

||G(θ, xi,Ns , µNs )||2ds. (5.217)

It follow, using the elementary fact that supx [f(x)− g(x)] ≥ supx f(x) − supx g(x), and

the martingale inequality [336, page 25], that

P

(

sup
0≤t≤T

MN
t (θ)− sup

0≤t≤T

α

2

[
MN (θ)

]

t
> β

)

≤ P

(

sup
0≤t≤T

{

MN
t (θ)− α

2

[
MN (θ)

]

t

}

> β

)

(5.218)

< e−αβ . (5.219)
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Thus, substituting (5.217) and using symmetry, we have that

P



 sup
0≤t≤T

∣
∣MN

t (θ)
∣
∣ > β +

α

2N2

N∑

i=1

T∫

0

||G(θ, xi,Ns , µNs )||2ds



 < 2e−αβ . (5.220)

Let α = Na, β = N−b, for some 0 < a < b < 1. Then

P



 sup
0≤t≤T

|MN
t (θ)| > 1

N b
+

1

2N1−a

1

N

N∑

i=1

T∫

0

||G(θ, xi,Ns , µNs )||2ds



 < 2e−Na−b

. (5.221)

By a repeated application of Proposition 5.6 (the McKean-Vlasov Law of Large Numbers),

we have that, as N → ∞,

1

N

N∑

i=1

T∫

0

||G(θ, xi,Ns , µNs )||2ds P−→
T∫

0





∫

Rd

||G(θ, x, µs)||2µs(dx)



 ds. (5.222)

By definition, Condition C.1(ii), and Proposition 5.2 the limiting function on the RHS is

finite and non-random. Moreover, we have that
∑∞

N=1 e
−Na−b

< ∞. The Borel-Cantelli

Lemma thus implies

lim
N→∞

sup
0≤t≤T

MN
t (θ) = 0. (5.223)

5.C Proof of Lemmas for Theorem 5.3

5.C.1 Additional Lemmas for Lemmas 5.4.A and 5.4.B

Lemma 5.3. Assume that Conditions B.1 - B.2 and D.1 hold. Then, for all k ∈ N, there

exists a positive constant K > 0 such that, for all i = 1, . . . , N , and for all N ∈ N,

∫

Rd

||x||kµ∞(dx) ≤ K, (5.224)

∫

(Rd)N

||xi||kµ̂N∞(dx̂N ) ≤ K. (5.225)

Proof. By Proposition 5.3, the McKean-Vlasov SDE (5.1) - (5.2) admits a unique equilib-

rium measure µ∞ which is independent of the initial condition µ0. By the ergodic theorem
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(e.g., [395, Chapter X]), we thus have, for all k ∈ N, that

lim
t→∞

1

t

t∫

0

||xs||kds =
∫

Rd

||x||kµ∞(dx) , a.s. (5.226)

Using Jensen’s inequality and Proposition 5.2 (uniform moment bounds for the McKean-

Vlasov SDE), we obtain uniform integrability of the family {1
t

∫ t
0 ||xs||kds}t>0. In partic-

ular, for all 1 ≤ k′ < k, for all t > 0, we have, for some ε > 0,

E




1

t

t∫

0

||xs||k
′
ds





1+ε

≤ 1

t

t∫

0

E

[

||xs||k
′(1+ε)

]

ds ≤ Ck





∫

Rd

xkµ0(dx) + 1



 <∞ (5.227)

where in the final line we have used Condition D.1. It follows, taking expectations of

(5.226), using uniform integrability in order to interchange the limit and the expectation,

and once more making use of Proposition 5.2, that

∫

Rd

||x||kµ∞(dx) = lim
t→∞




1

t

t∫

0

E

[

||xs||k
]

ds



 <∞. (5.228)

The proof of the bound for the IPS is identical, noting that all of the relevant results

(Propositions 5.2 and 5.3) have analogues for for the IPS (Propositions 5.2 and 5.4).

Lemma 5.4. Assume that Conditions B.1 - B.2 and D.1 hold. Then, for all k ≥ 1, and

for all t ≥ 0, there exists K > 0 such that

E

[

sup
0≤s≤t

||xs||k
]

≤ Kt
1
2 , (5.229)

E

[

sup
0≤s≤t

||xi,Ns ||k
]

≤ Kt
1
2 , ∀i = 1, . . . , N. (5.230)

Proof. We will prove the first claim (the proof of the second being essentially identical).

By Itô’s Lemma, we have

||xt||2k = ||x0||2k +
t∫

0

2k||xs||2k−2〈xs, B(θ, xs, µs)〉ds (5.231)

+

t∫

0

k||xs||2k−2Tr[Id + (k − 2)[xisx
j
s]
d
i,j=1||xs||−2]ds

+

t∫

0

2k||xs||2k−2〈xs, dws〉
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It follows, taking the supremum and taking expectations, that

E

[

sup
0≤s≤t

||xt||2k
]

≤ E

[

||x0||2k
]

+ 2k

t∫

0

E

[∣
∣
∣||xs||2k−2〈xs, B(θ, xs, µs)〉

∣
∣
∣

]

ds

︸ ︷︷ ︸

Π1
t

(5.232)

+ k

t∫

0

E

[∣
∣
∣||xs||2k−2Tr[Id + (k − 2)[xisx

j
s]
d
i,j=1||xs||−2]

∣
∣
∣

]

ds

︸ ︷︷ ︸

Π2
t

+ 2kE



 sup
0≤s≤t

t∫

0

||xs||2k−2〈xs, dws〉





︸ ︷︷ ︸

Π3
t

We begin by bounding the first term. First note that, by Conditions B.1 - B.2, there exists

a positive constant C such that

〈xs, B(θ, xs, µs)〉 ≤ −(α− L2)||xs||2 + C||xs||+ L1||xs||E [||xs||]

It then follows that

Π1
t ≤ K

t∫

0

E

[

||xs||2k
]

+ E

[

||xs||2k−1
]

+ E

[

||xs||2k−1
]

E [||xs||] ds (5.233)

≤ K

t∫

0

E

[

||xs||2k
]

+ E

[

||xs||2k
] 2k−1

2k
+ E

[

||xs||2k
] 2k−1

2k
E
[
||xs||2

] 1
2 ds

≤ Kt

[

1 +

∫

Rd

x2kµ0(dx) +

[ ∫

Rd

x2kµ0(dx)

] 2k−1
2k

[

1 +

(∫

Rd

x2µ0(dx)

) 1
2
]]

≤ Kt

where in the penultimate line we have used Hölder’s inequality, and in the final line we

have used Proposition 5.2 (moment bounds for the McKean-Vlasov SDE) and Condition

D.1. Similarly, for the second term in (5.232), we have

Π2
t ≤ K

t∫

0

E

[

||xs||2k
]

ds ≤ Kt

[

1 +

∫

Rd

x2kµ0(dx)

]

≤ Kt. (5.234)

It remains to bound the final term in (5.232). For this term, we use the Burkholder-Davis-
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Gundy inequality, Proposition 5.2, and Condition D.1 to obtain

Π3
t ≤ KE





t∫

0

||xs||4k−4xTs xsds





1
2

≤ KE





t∫

0

||xs||4k−2ds





1
2

≤ Kt
1
2 . (5.235)

Combining equations (5.232), (5.233), (5.234), and (5.235), and using the Hölder inequal-

ity, we conclude that, for all t > 0, there exists a positive constant K such that

E

[

sup
0≤s≤t

||xs||k
]

≤ E

[

sup
0≤s≤t

||xs||2k
] 1

2

≤ Kt
1
2 . (5.236)

Lemma 5.5. Assume that Conditions B.1 - B.2 and D.1 hold. Suppose that, for all

θ ∈ R
p, f(θ, ·) : Rd → R is locally Lipschitz, and satisfies a polynomial growth condition,

viz

||f(θ, x)− f(θ, y)|| ≤ K||x− y|| [1 + ||x||q + ||y||q] . (5.237)

Then, for all θ ∈ R
p, x, y ∈ R

d, t ≥ 0, there exist positive constants q,K > 0 such that

∣
∣
∣
∣
Ex [f(θ, xt)]−

∫

Rd

f(θ, z)µ∞(dz)

∣
∣
∣
∣
≤ K[1 + ||x||q]e−λt. (5.238)

∣
∣
∣
∣
Ex [f(θ, xt)]− Ey [f(θ, xt)]

∣
∣
∣
∣
≤ K[1 + ||x||q + ||y||q]e−λt. (5.239)

Alternatively, suppose that, for all θ ∈ R
p, f(θ, ·) : (Rd)N → R is locally Lipschitz and

satisfies a polynomial growth condition in the sense that

∣
∣
∣
∣
f(θ, x̂N )− f(θ, ŷN )

∣
∣
∣
∣
≤ K

[

1 + ||xi,N ||q + ||yi,N ||q + 1

N

N∑

j=1

||xj,N ||q + 1

N

N∑

j=1

||yj,N ||q
]

(5.240)

·
[

||xi,N − yi,N ||+
(

1

N

N∑

j=1

||xj,N − yj,N ||2
) 1

2
]

where x̂N = (x1,N , . . . , xN,N ) ∈ (Rd)N . Then, for all i = 1, . . . , N , and for all θ ∈ R
p,

there exist positive constants q,K > 0 such that

∣
∣
∣
∣
Ex̂N [f(θ, x̂Nt )]−

∫

(Rd)N

f(θ, ẑN )µ̂N∞(dẑN )

∣
∣
∣
∣
≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

e−λt

(5.241)
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∣
∣
∣
∣
Ex̂N [f(θ, x̂Nt )]− EŷN [f(θ, x̂

N
t )]

∣
∣
∣
∣
≤ K

[

1 + ||xi,N ||q + ||yi,N ||q + 1

N

N∑

j=1

(||xj,N ||q + ||yj,N ||q)
]

e−λt

(5.242)

for all x̂N , ŷN ∈ (Rd)N , and for all t ≥ 0.

Proof. We will focus on the first statement of the first part of the Lemma. Let µ, ν ∈
P(Rd), and π ∈ Π(µ, ν). Then, using the Hölder inequality and the local Lipschitz as-

sumption, it follows that

∫

Rd×Rd

|f(θ, y)− f(θ, z)|π(dy, dz) (5.243)

≤ K

[ ∫

Rd×Rd

||y − z||2π(dy, dz)
] 1

2
[

1 +

[ ∫

Rd×Rd

||y||2qπ(dy, dz)
] 1

2

+

[ ∫

Rd×Rd

||z||2qπ(dy, dz)
] 1

2
]

(5.244)

= K

[ ∫

Rd×Rd

||y − z||2π(dy, dz)
] 1

2
[

1 +

[ ∫

Rd

||y||2qµ(dy)
] 1

2

+

[ ∫

Rd

||z||2qµ(dz)
] 1

2
]

(5.245)

Let xt be a solution of the McKean-Vlasov SDE starting from x ∈ R
d. Let µxt denote the

law of xt, and let µ∞ denote the invariant measure of the McKean-Vlasov SDE. Moreover,

let πx,∞t denote an arbitrary coupling of µxt and µ∞. It then follows straightforwardly

from the previous inequality that

∣
∣
∣
∣
Ex [f(θ, xt)]−

∫

Rd

f(θ, z)µ∞(dz)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Rd

f(θ, y)µxt (dy)−
∫

Rd

f(θ, z)µ∞(dz)

∣
∣
∣
∣

(5.246)

≤
∫

Rd×Rd

|f(θ, y)− f(θ, z)|πx,∞t (dy, dz) (5.247)

≤ K

[ ∫

Rd×Rd

||y − z||2πx,∞t (dy, dz)

] 1
2

(5.248)

·
[

1 +

[ ∫

Rd

||y||2qµxt (dy)
] 1

2

+

[ ∫

Rd

||z||2qµ∞(dz)

] 1
2
]

Finally, using the fact that the chosen coupling was arbitrary, and using Lemma 5.3 (the

bounded moments of the invariant measure of the McKean-Vlasov SDE), Proposition 5.2

(the moment bounds for the McKean-Vlasov SDE), Proposition 5.3 (exponential contrac-
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tivity of the McKean-Vlasov SDE), and Condition D.1, the previous inequality implies

∣
∣
∣
∣
Ex [f(θ, xt)]−

∫

Rd

f(θ, z)µ∞(dz)

∣
∣
∣
∣
≤ KW2(µ

x
t , µ∞)

[

1 +

[ ∫

Rd

||y||2qµxt (dy)
] 1

2

+K ′

]

(5.249)

≤ KW2(µ
x
0 , µ∞)

[
1 + ||x||q

]
e−λt (5.250)

≤ K
[
1 + ||x||q

]
e−λt (5.251)

This completes the proof of the first statement of the first part of the Lemma. The proof

of the second statement is essentially identical, this time considering an arbitrary coupling

of µxt and µyt , and making use of the bound W2(µ
x
t , µ

y
t ) ≤ e−λt

W2(µ
x
0 , µ

y
0). Finally, the

proof of the second part of the Lemma follows closely the previous proof, now using the

statements in Lemma 5.3, Proposition 5.2, and Proposition 5.4 that are relevant to the

IPS.

Lemma 5.6. Assume that Condition C.1 holds. Then, for k = 0, 1, 2, 3, there exist

constants q,K < ∞, such that ∇k
θL(θ, x, µ), satisfy the following polynomial growth con-

ditions:

||∇k
θL(θ, x, µ)|| ≤ K [1 + ||x||q + µ(|| · ||q)] . (5.252)

Proof. We first observe that, by Condition C.1(ii), there exist constants qk,Kk <∞ such

that ∇k
θb(θ, x) ≤ Kk(1+ ||x||qk) and ∇k

θφ(θ, x, y) ≤ Kk(1+ ||x||qk + ||y||qk). It follows from
the definition of B(θ, x, µ), c.f. (5.3), that

∇k
θB(θ, x, µ) = ∇k

θb(θ, x, µ) +

∫

Rd

∇k
θφ(θ, x, y)µ(dy) (5.253)

= Kk(1 + ||x||qk) +Kk

∫

Rd

(1 + ||x||qk + ||y||qk)µ(dy) (5.254)

≤ Kk [1 + ||x||qk + µ(|| · ||qk)] (5.255)

where we allow the values of qk,Kk to vary from line to line. Thus, from the definition of

G(θ, x, µ), c.f. (5.8), we have that

||∇k
θG(θ, x, µ)|| = ||∇k

θB(θ, x, µ)−∇k
θB(θ0, x, µ)|| ≤ Kk [1 + ||x||qk + µ(|| · ||qk)] . (5.256)

It now follows, recalling the definition of L(θ, x, µ), c.f. (5.9), that

||L(θ, x, µ)|| = 1

2
||G(θ, x, µ)||2 ≤ K2

0 [1 + ||x||q0 + µ(|| · ||q0)]2 ≤ K [1 + ||x||q + µ(|| · ||q)]
(5.257)
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where in the final inequality we have set K = 3K2
0 and q = 2q0, after applying Hölder’s

inequality. The bounds for ∇k
θL(θ, x, µ), for k = 1, 2, 3, are obtained in an almost identical

fashion.

Remark. This result implies, substituting x = xi,N and µ = µN , and recalling that

L̂i,N (θ, x̂N ) := L(θ, xi,N , µ̂N ), that for all i = 1, . . . , N , N ∈ N, we have

||∇k
θ L̂

i,N (θ, µ̂N )|| ≤ K



1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q


 (5.258)

Lemma 5.7. Assume that Condition C.1 holds. Then, for k = 0, 1, 2, 3, there exist

constants q,K <∞ such that ∇k
θL(θ, x, µ) satisfy

||∇k
θL(θ, x, µ)−∇k

θL(θ, x
′, µ′)|| ≤ K

[
||x− x′||+W2(µ, µ

′)
]

(5.259)

·
[
1 + ||x||q + ||x′||q + µ(|| · ||q) + µ′(|| · ||q)

]
(5.260)

Proof. We begin by recalling that, from Condition C.1(ii), there exist constants q,K <∞
such that ∇k

θφ(θ, x, y) ≤ K[||x−x′||+ ||y−y′||][1+ ||x||q+ ||x′||q+ ||y||q+ ||y′||q]. It follows,
letting π ∈ Π(µ, µ′) and using the Hölder inequality, that

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∫

Rd

∇k
θφ(θ, x, y)µ(dy)−

∫

Rd

∇k
θφ(θ, x, y

′)µ′(dy′)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(5.261)

≤ K

[ ∫

Rd×Rd

||y − y′||
[
1 + ||y||q + ||y′||q

]
π(dy, dy′)

]

(5.262)

≤ K

[ ∫

Rd×Rd

||y − y′||2π(dy, dy′)
] 1

2
[

1 +

[ ∫

Rd

||y||2qµ(dy)
] 1

2

+

[ ∫

Rd

||y′||2qµ(dy′)
] 1

2
]

(5.263)

≤ KW2(µ, µ
′)
[

1 + µ(|| · ||2q) 1
2 + µ′(|| · ||2q) 1

2

]

. (5.264)

We then have, via the triangle inequality, the bound (5.261), and another application of

both Condition C.1(ii) and the Hölder inequality, that

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∫

Rd

∇k
θφ(θ, x, y)µ(dy)−

∫

Rd

∇k
θφ(θ, x

′, y′)µ′(dy′)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(5.265)

≤

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∫

Rd

∇k
θφ(θ, x, y)µ(dy)−

∫

Rd

∇k
θφ(θ, x, y

′)µ′(dy′)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

+

∫

Rd

∣
∣
∣

∣
∣
∣∇k

θφ(θ, x, y
′)−∇k

θφ(θ, x
′, y′)

∣
∣
∣

∣
∣
∣µ′(dy′)

(5.266)

≤ KW2(µ, µ
′)
[

1 + µ(|| · ||2q) 1
2 + µ′(|| · ||2q) 1

2

]

+K||x− x′||
[

1 + µ′(|| · ||2q) 1
2

]

(5.267)
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≤ K
[
||x− x′||+W2(µ, µ

′)
] [

1 + µ(|| · ||2q) 1
2 + µ′(|| · ||2q) 1

2

]

. (5.268)

Thus, recalling the definition of B(θ, x, µ), c.f. (5.3), and once more making use Condition

C.1(ii), we obtain

||∇k
θB(θ, x, µ)−∇k

θB(θ, x′, µ′)|| ≤
∣
∣
∣

∣
∣
∣∇k

θb(θ, x)−∇k
θb(θ, x

′)
∣
∣
∣

∣
∣
∣ (5.269)

+

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∫

Rd

∇k
θφ(θ, x, y)µ(dy)−

∫

Rd

∇k
θφ(θ, x

′, y′)µ′(dy′)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(5.270)

≤ K
[
||x− x′||+W2(µ, µ

′)
]

(5.271)

·
[

1 + ||x||q + ||x′||q + µ(|| · ||2q) 1
2 + µ′(|| · ||2q) 1

2

]

.

From the definition of G(θ, x, µ), c.f. (5.8), we trivially then have

||∇k
θG(θ, x, µ)−∇k

θG(θ, x
′, µ′)|| ≤ K

[
||x− x′||+W2(µ, µ

′)
]

(5.272)

·
[

1 + ||x||q + ||x′||q + µ(|| · ||2q) 1
2 + µ′(|| · ||2q) 1

2

]

.

Finally, recalling the definition of L(θ, x, µ), c.f. (5.9), and combining (5.256) and (5.272),

we obtain

||L(θ, x, µ)− L(θ, x′, µ′)|| = 1

2

∣
∣
∣
∣GT (θ, x, µ)G(θ, x, µ)−GT (θ, x′, µ′)G(θ, x′, µ′)

∣
∣
∣
∣ (5.273)

≤ 1

2
||G(θ, x, µ)−G(θ, x′, µ′)|| ||G(θ, x, µ) +G(θ, x′, µ′)||

(5.274)

≤ K
[
||x− x′||+W2(µ, µ

′)
]

(5.275)

·
[

1 + ||x||q + ||x′||q + µ(|| · ||2q) 1
2 + µ′(|| · ||2q) 1

2

]2

≤ K
[
||x− x′||+W2(µ, µ

′)
]

(5.276)

·
[
1 + ||x||q + ||x′||q + µ(|| · ||q) + µ′(|| · ||q)

]
.

where in the final line we have replaced the unimportant constant q → 2q, after applying

the Hölder inequality. The bounds for ∇k
θL(θ, x, µ), k = 0, 1, 2, follow analogously.

Remark. In the case that substituting x = xi,N , x′ = yi,N , µ = µNx and µ′ = µNy , and

recalling that L̂i,N (θ, x̂N ) := L(θ, xi,N , µ̂N ), that for all i = 1, . . . , N , N ∈ N, it holds that

∣
∣
∣
∣
∇k

θL(θ, x̂
N )−∇k

θL(θ, ŷ
N )

∣
∣
∣
∣
≤ K

[

||yi,N − zi,N ||+
(

1

N

N∑

j=1

||yj,N − zj,N ||2
) 1

2
]

(5.277)
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·
[

1 + ||xi,N ||q + ||yi,N ||q + 1

N

N∑

j=1

||xj,N ||q + 1

N

N∑

j=1

||yj,N ||q
]

(5.278)

(5.279)

Lemma 5.8. Assume that Conditions B.1 - B.2, C.1 and D.1 hold. Then, for k = 0, 1, 2,

there exist K,K ′ > 0 such that, for all θ ∈ R
p, ||∇k

θ L̃(θ)|| ≤ K and ||∇k
θ L̃i,N (θ)|| ≤ K ′.

Proof. Using the definition of ∇k
θ L̃(θ) (Lemma 5.4.A), the polynomial growth property

of ∇k
θL(θ, x, µ) (Lemma 5.6), and the finite moments of the invariant measure of the

McKean-Vlasov SDE (Lemma 5.3), we have that

||∇k
θ L̃(θ)|| ≤

∫

Rd

||∇k
θL(θ, x, µ∞)||µ∞(dx) (5.280)

≤ K

∫

Rd

[
1 + ||x||q + [

∫

Rd

||y||qµ∞(dy)
]
µ∞(dy) (5.281)

≤ K

∫

Rd

(1 + ||x||q)µ∞(dx) ≤ K. (5.282)

The bound for ∇k
θ L̃i,N (θ) follows identically, this time using the defintion of ∇k

θ L̃i,N (θ)

(Lemma 5.4.B), and the finite moments of the invariant measure of the IPS (Lemma

5.3).

5.C.2 Additional Lemmas for Lemma 5.4.C

Lemma 5.9. Assume that Conditions B.1 - B.2 and D.1 hold. For all Lipschitz functions

ϕ, there exists K > 0 such that, for all t ≥ 0, for all N ∈ N,

E





∣
∣
∣
∣

∣
∣
∣
∣

∫

Rd

ϕ(y)µt(dy)−
1

N

N∑

i=1

ϕ(xi,Nt )

∣
∣
∣
∣

∣
∣
∣
∣

2


 ≤ K

N
(5.283)

Proof. Let xit, i = 1, . . . , N denote independent solutions of the McKean-Vlasov SDE (5.1)

- (5.2). We then have, using the elementary inequality ||a+ b||2 ≤ 2||a||2 + 2||b||2, that

E

[
∣
∣
∣
∣

∫

Rd

ϕ(y)µt(dy)−
1

N

N∑

i=1

ϕ(xi,Nt )
∣
∣
∣
∣2
]

≤2E

[
∣
∣
∣
∣

∫

Rd

ϕ(y)µt(dy)−
1

N

N∑

i=1

ϕ(xit)
∣
∣
∣
∣2
]

(5.284)

+ 2E

[
∣
∣
∣
∣
1

N

N∑

i=1

(

ϕ(xit)− ϕ(xi,Nt )
) ∣
∣
∣
∣2
]
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For the first term, we observe, using the independence of the variables xit, i = 1, . . . , N ,

that

E

[
∣
∣
∣
∣

∫

Rd

ϕ(y)µt(dy)−
1

N

N∑

i=1

ϕ(xit)
∣
∣
∣
∣2
]
≤ 1

N
E

[∣
∣
∣
∣ϕ(x1t )− E[ϕ(x1t )]

∣
∣
∣
∣2
]

(5.285)

We also have that E[(ϕ(x1t )−E[ϕ(x1t )])
2] = Var[ϕ(x1t )] = Var[ϕ(x1t )−ϕ(E[x1t ])] ≤ E[(ϕ(x1t )−

E[ϕ(x1t )])
2]. It follows, using also the fact that ϕ is Lipschitz, and Proposition 5.2 (the

bounded moments of the McKean-Vlasov SDE), that

E

[
∣
∣
∣
∣

∫

Rd

ϕ(y)µt(dy)−
1

N

N∑

i=1

ϕ(xit)
∣
∣
∣
∣2
]
≤ 1

N
E

[∣
∣
∣
∣ϕ(x1t )− ϕ(E[x1t ])

∣
∣
∣
∣2
]

≤ K

N
. (5.286)

where, as previously, the value of the constant K is allowed to vary from line to line. For

the second term, using the Cauchy-Schwarz inequality, the fact that ϕ is Lipschitz, and

Proposition 5.5 (uniform-in-time propagation of chaos), we obtain

E
[∣
∣
∣
∣
1

N

N∑

i=1

(
ϕ(xit)− ϕ(xi,Nt )

)∣
∣
∣
∣2
]
≤ K

N

N∑

i=1

E
[∣
∣
∣
∣xit − xi,Nt

∣
∣
∣
∣2
]
≤ K

N
. (5.287)

The result follows immediately.

Lemma 5.10. Assume that Conditions B.1 - B.2 and D.1 hold. Let xit denote a solution

of the McKean-Vlasov SDE, driven by wi = (wi
t)t≥0. Then, for all Lipschitz functions ϕ,

there exists K > 0 such that, for all t ≥ 0, for all N ∈ N,

E





∣
∣
∣
∣

∣
∣
∣
∣

∫

Rd

ϕ(xit, y)µt(dy)−
1

N

N∑

i=1

ϕ(xi,Nt , xj,Nt )

∣
∣
∣
∣

∣
∣
∣
∣

2


 ≤ K

N
(5.288)

Proof. The is an immediate corollary of Lemma 5.9. Indeed, using the Hölder inequality,

and that ϕ is Lipschitz, we have

∣
∣
∣
∣

∫

Rd

ϕ(xit, y)µt(dy)−
1

N

N∑

j=1

ϕ(xi,Nt , xj,Nt )
∣
∣
∣
∣2 (5.289)

≤ 2
∣
∣
∣
∣ϕ(xit, y)µt(dy)−

1

N

N∑

j=1

ϕ(xit, x
j,N
t )

∣
∣
∣
∣2 + 2

∣
∣
∣
∣
1

N

N∑

j=1

[ϕ(xit, x
j,N
t )− ϕ(xi,Nt , xj,Nt )]

∣
∣
∣
∣2

(5.290)

≤ 2
∣
∣
∣
∣ϕ(xit, y)µt(dy)−

1

N

N∑

j=1

ϕ(xit, x
j,N
t )

∣
∣
∣
∣2 +

2K

N

N∑

j=1

∣
∣
∣
∣xit − xi,Nt

∣
∣
∣
∣2 (5.291)
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It follows immediately, as required, that

E





∣
∣
∣
∣

∣
∣
∣
∣

∫

Rd

ϕ(xit, y)µt(dy)−
1

N

N∑

i=1

ϕ(xi,Nt , xj,Nt )

∣
∣
∣
∣

∣
∣
∣
∣

2


 (5.292)

≤ K E




∣
∣
∣
∣ϕ(xit, y)µt(dy)−

1

N

N∑

j=1

ϕ(xit, x
j,N
t )

∣
∣
∣
∣2





︸ ︷︷ ︸

≤K
N

by Lemma 5.9

+E




1

N

N∑

j=1

∣
∣
∣
∣xit − xi,Nt

∣
∣
∣
∣2





︸ ︷︷ ︸

≤K
N

by Proposition 5.5

≤ K

N
.

(5.293)

5.C.3 Additional Lemmas for Lemma 5.4.D

5.C.3.1 Main Lemmas

The lemmas in this section are variations of Lemmas 3.1 - 3.5 in [420]. For convenience, and

since modified versions of these lemmas are also required for the proofs of Theorems 5.3∗

and 5.3† (see [413]), we provide the proofs of these results in full, appropriately adapted

to the current setting.

Lemma 5.11. Assume that Conditions B.1 - B.2, C.1, D.1, and F.1 hold. Define, with

x̂N = (x1,N , . . . , xN,N ), the function

Γk,η =

σk,η∫

τk

γs

(

∇θL̂
i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )

)

ds. (5.294)

Then, a.s. , ||Γk,η|| → 0 as k → ∞.

Proof. Let x̂N = (x1,N , . . . , xN,N ) ∈ (Rd)N . Consider the function

Si,N (θ, x̂N ) = ∇θL̂
i,N (θ, x̂N )−∇θL̃i,N (θ). (5.295)

We begin by noting that this function is ‘centred’ with respect to the invariant measure

µ̂∞(·), using the definition of ∇θL̃i,N (·) from Lemma 5.4.B. In addition, observe that, by

Lemma 5.17 (see Appendix 5.C.3.3), the function Si,N (θ, x̂) ∈ C2,α(Rp, (Rd)N ), and there

exist positive constants q,K > 0 such that, for j = 0, 1, 2,

|∂jθSi,N (θ, x̂N )| ≤ K(1 + ||xi||q +
1

N

N∑

j=1

||xj ||q), (5.296)
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Thus, the function Si,N : Rp × (Rd)N → R
p satisfies the conditions of Lemma 5.16. It

follows that, for all i = 1, . . . , N , the Poisson equation

Ax̂v
i,N (θ, x̂N ) = Si,N (θ, x̂N ) ,

∫

(Rd)N

vi,N (θ, x̂N )µ̂N∞(dx̂N ) = 0 (5.297)

has a unique twice differentiable solution which satisfies

2∑

j=0

∣
∣
∣
∣

∂jvi,N

∂θi
(θ, x̂N )

∣
∣
∣
∣
+

∣
∣
∣
∣

∂2vi,N

∂θ∂x
(θ, x̂N )

∣
∣
∣
∣
≤ K

(

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
)

. (5.298)

Let ui,N (t, θ, x̂N ) = γtv
i,N (θ, x̂N ). Applying Ito’s formula to each component of this

vector-valued function, we obtain, for l = 1, . . . , p,

(5.299)

ui,Nl (t2, θ
i,N
t2
, x̂Nt2 )− ui,Nl (t1, θ

i,N
t1
, x̂Nt1 ) =

t2∫

t1

∂su
i,N
l (s, θi,Ns , x̂Ns )ds (5.300)

+

t2∫

t1

Ax̂u
i,N
l (s, θi,Ns , x̂Ns )ds+

t2∫

t1

Aθu
i,N
l (s, θi,Ns , x̂Ns )ds

(5.301)

+

t2∫

t1

γsTr

[

∇θB̂
i,N (θi,Ns , x̂Ns )∂θ∂x̂u

i,N
l (s, θi,Ns , x̂Ns )

]

ds

(5.302)

+

t2∫

t1

∂x̂u
i,N
l (s, θi,Ns , x̂Ns ) · dŵN

s (5.303)

+

t2∫

t1

γs∂θu
i,N
l (s, θi,Ns , x̂Ns ) · ∇θB̂

i,N (θi,Ns , x̂Ns )dwi
s

(5.304)

where Ax̂ and Aθ are the infinitesimal generators of x̂N and θ, respectively, and we recall

from (5.96) that ŵN
t = (w1

t , . . . , w
N
t )T . Rearranging this identity, and also recalling that

vi,N (θ, x̂N ) is the solution of the Poisson equation, we obtain

Γk,η =

σk,η∫

τk

γsAx̂v
i,N (θi,Ns , x̂Ns )ds (5.305)
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= γσk,η
vi,N (θi,Nσk,η

, x̂Nσk,η
)− γτkv

i,N (θi,Nτk , x̂Nτk)−
σk,η∫

τk

γ̇sv
i,N (θi,Ns , x̂Ns )ds

−
σk,η∫

τk

γsAθv
i,N (θi,Ns , x̂Ns )ds−

σk,η∫

τk

γ2sTr
[
∇θB̂

i,N (θi,Ns , ŝNx )∂θ∂x̂v
i,N (θi,Ns , x̂Ns )

]
ds

−
σk,η∫

τk

γs∂x̂v
i,N (θi,Ns , x̂Ns ) · dŵN

s −
σk,η∫

τk

γ2s∂θv
i,N (θi,Ns , x̂Ns ) · ∇θB̂

i,N (θi,Ns , x̂Ns )dwi
s

We now prove the convergence of each term on the right hand side of this equation. As

previously, we allow the value of K to change from line to line. First define

J
(1)
t = γt||vi,N (θi,Nt , x̂Nt )|| (5.306)

We have, make use of the polynomial growth of vi,N (θ, x̂N ), and Proposition 5.2 (the

bounded moments of the IPS), that

E[|J (1)
t |2] ≤ Kγ2t

(

1 + E[||xi,Nt ||q] + 1

N

N∑

j=1

E[||xj,Nt ||q]
)

≤ Kγ2t . (5.307)

Applying the Borel-Cantelli argument as in [422, Appendix B], it follows that J
(1)
t con-

verges to zero with probability one. We next consider the term

J
(2)
0,t =

t∫

0

∂sγ̇sv
i,N (θi,Ns , x̂Ns )ds+

t∫

0

γsAθv
i,N (θi,Ns , x̂Ns )ds (5.308)

+

t∫

0

γ2sTr
[
∇θB̂

i,N (θi,Ns , x̂Ns )∂θ∂xv
i,N (θi,Ns , x̂Ns )

]
ds

This term obeys the bound

sup
t>0

E|J (2)
0,t | ≤ K

∞∫

0

(|γ̇s|+ γ2s )(1 + E[||xi,Ns ||q] + 1

N

N∑

j=1

E[||xj,Ns ||q])ds (5.309)

≤ K

∞∫

0

(|γ̇s|+ γ2s )ds <∞. (5.310)

Here, the first inequality follows from the growth properties of the vi,N (θ, x̂N ) in (5.298),

the second inequality from Proposition 5.2 (the bounded moments of the IPS), and the

final inequality from Condition F.1 (the properties of the learning rate). It follows that
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there exists a finite random variable J
(2)
0,∞ such that, with probability one,

J
(2)
0,t → J

(2)
0,∞ , as t→ ∞. (5.311)

The last term to consider is the stochastic integral

J
(3)
0,t =

t∫

0

γs∂x̂v
i,N (θi,Ns , x̂Ns ) ·dŵN

s +

σk,η∫

τk

γ2s∂θv
i,N (θi,Ns , x̂Ns ) ·∇θB̂

i,N (θi,Ns , x̂Ns )dwi
s (5.312)

In this case, using the BDG inequality, and the same bounds as above, we have

E

[

|J (3)
0,t |2

]

≤ K

∞∫

0

(γ2s + γ4s )

[

1 + E[||xi,Ns ||q] + 1

N

N∑

j=1

E[||xj,Ns ||q]
]

ds ≤ K

∞∫

0

γ2sds <∞.

(5.313)

Thus, by Doob’s martingale convergence theorem, there exists a square integrable random

variable J
(3)
0,∞ such that, both a.s. and in L

2,

J
(3)
0,t → J

(3)
0,∞ , as t→ ∞. (5.314)

It remains only to observe, combining (5.311) and (5.314), we have

||Γk,η|| ≤ J (1)
σk,η

+ J (1)
τk

+ J (2)
τk,σk,η

+ J (3)
τk,σk,η

k→∞→ 0. (5.315)

Lemma 5.12. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Let ρ > 0 be

such that, for a given κ > 0, it is true that 3ρ + ρ
4κ = 1

2L , where L denotes the Lipschitz

constant of ∇θL̃i,N (θ). For k large enough, and for η > 0 small enough (potentially

random, and depending on k), one has

σk,η∫

τk

γsds > ρ and, a.s.,
ρ

2
≤

σk∫

τk

γsds ≤ ρ. (5.316)

Proof. We proceed by contradiction. Let us assume that
∫ σk,η

τk
γsds ≤ ρ. Choose arbitrary

ε > 0 such that ε ≤ ρ
8 . We begin with the observation that, via the Itô isometry, we have

that

sup
t≥0

E
∣
∣
∣
∣

t∫

0

γs
κ

||∇L̃i,N (θi,Nτk )||
∇θB̂

i,N (θi,Ns , x̂Ns )dwi
s

∣
∣
∣
∣2 ≤

t∫

0

Kγ2s
(
1 + E

[
||x̂Ns ||q

])
ds <∞

(5.317)
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where, we have used the polynomial growth of ∇θB̂
i,N (θ, x̂) (see the proof of Lemma 5.17),

Proposition 5.2 (the bounded moments of the IPS), and Condition F.1 (the properties of

the learning rate). Thus, by the Doob’s martingale convergence theorem, there exists a

finite random variable M such that, both a.s. and in L
2,

t∫

0

γs
κ

||∇L̃i,N (θi,Nτk )||
∇θB̂

i,N (θi,Ns , x̂Ns )dwi
s →M (5.318)

It follows that, for the chosen ε > 0, there exists k such that

σk,η∫

τk

γs
κ

||∇L̃i,N (θi,Nτk )||
∇θB̂

i,N (θi,Ns , x̂Ns )dwi
s < ε. (5.319)

Let us now also assume that, for the given k, η is small enough such that for all s ∈ [τk, σk,η],

we have ||∇θL̃i,N (θi,Ns )|| ≤ 3||∇θL̃i,N (θi,Nτk )||. We can then compute

(5.320)

||θi,Nσk,η
− θi,Nτk || =

∣
∣
∣
∣

σk,η∫

τk

γs∇θL̂
i,N (θi,Ns , x̂Ns )ds+

σk,η∫

τk

γs〈∇θB̂
i,N (θi,Ns , x̂Ns ), dwi

s〉
∣
∣
∣
∣ (5.321)

≤ 3||∇θL̃i,N (θi,Nτk )||
σk,η∫

τk

γsds+
∣
∣
∣
∣

σk,η∫

τk

γs[∇θL̂
i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )]ds

∣
∣
∣
∣

+
||∇L̃i,N (θi,Nτk )||

κ

∣
∣
∣
∣

σk,η∫

τk

γs
κ

||∇L̃i,N (θi,Nτk )||
〈∇θB(θi,Ns , x̂Ns ), dwi

s〉
∣
∣
∣
∣ (5.322)

≤ 3||∇θL̃i,N (θi,Nτk )||ρ+ ε+
||∇L̃i,N (θi,Nτk )||

κ
ε (5.323)

≤ ||∇θL̃i,N (θi,Nτk )||
[

3ρ+
ρ

4κ

]

(5.324)

where in the penultimate line we have used Lemma 5.11 and (5.319), and in the final line

we have used the fact that our choice of ε satisfies ε ≤ ρ
8 . We thus obtain

||θi,Nσk,η
− θi,Nτk || ≤ ||∇θL̃i,N (θi,Nτk )||

[

3ρ+
ρ

4κ

]

≤ ||∇θL̃i,N (θi,Nτk )|| 1
2L
. (5.325)

Thus, using also the definition of the Lipschitz constant L, we obtain

||∇θL̃i,N (θi,Nσk,η
)−∇θL̃i,N (θi,Nτk )|| ≤ L||θi,Nσk,η

− θi,Nτk || ≤ 1

2
||∇θL̃i,N (θi,Nτk )|| (5.326)
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which then yields

1

2
||∇θL̃i,N (θi,Nτk )|| ≤ ||∇θL̃i,N (θi,Nσk,η

)|| ≤ 2||∇θL̃i,N (θi,Nτk )||. (5.327)

But this implies that σk,η ∈ [τk, σk], which is a contradiction. Thus we do indeed have
∫ σk,η

τk
γsds > ρ. We now turn our attention to the second part of the Lemma. By definition,

we have that
∫ σk

τk
γsds ≤ ρ. Thus, it remains only to show that ρ

2 ≤
∫ σk

τk
γsds. From the

first part of the Lemma, we have that
∫ σk,η

τk
γsds > ρ. Moreover, for k sufficiently large

and η sufficiently small, we must have
∫ σk,η

σk
γsds ≤ ρ

2 . We thus obtain

σk∫

τk

γsds ≥ ρ−
σk,η∫

σk

γsds ≥ ρ− ρ

2
=
ρ

2
. (5.328)

Lemma 5.13. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Suppose that

there are an infinite number of intervals [τk, σk). Then there exists a fixed constant β =

β(κ) > 0 such that, for k large enough, a.s.,

L̃i,N (θi,Nσk
)− L̃i,N (θi,Nτk ) ≥ β. (5.329)

Proof. By Itô’s formula, we have that

L̃i,N (θi,Nσk
)− L̃i,N (θi,Nτk ) (5.330)

=

σk∫

τk

γs||∇θL̃i,N (θi,Ns )||2ds

︸ ︷︷ ︸

Ai,N
1,k

+

σk∫

τk

γs〈∇θL̃i,N (θi,Ns ),∇θL̂
i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )〉ds

︸ ︷︷ ︸

Ai,N
2,k

+

σk∫

τk

γs〈∇θL̃i,N (θi,Ns ),∇θB̂
i,N (θi,Ns , x̂Ns )dwi

s〉

︸ ︷︷ ︸

Ai,N
3,k

+

σk∫

τk

1

2
γ2sTr

[

∇θB̂
i,N (θi,Ns , x̂Ns )∇θB̂

i,N (θi,Ns , x̂Ns )T∇2
θL̃i,N (θi,Ns )ds

]

︸ ︷︷ ︸

Ai,N
4,k

We will deal with each of these terms individually. First consider Ai,N
1,k . For this term, we
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have that

Ai,N
1,k =

σk∫

τk

γs||∇θL̃i,N (θi,Ns )||2ds ≥ ||∇θL̃i,N (θi,Nτk )||2
4

σk∫

τk

γsds ≥
||∇θL̃i,N (θi,Nτk )||2

8
ρ

(5.331)

where, in the first inequality, we have used the definition of the {τk}k≥0, namely, that

||∇θL̃i,N (θi,Ns )|| ≥ 1
2 ||∇θL̃i,N (θi,Nτk )|| for all s ∈ [τk, σk], and in the second inequality we

have used Lemma 5.12.

We now turn our attention to Ai,N
2,k . We will handle this term using a very similar to

approach to that used in the proof of Lemma 5.11. Let us consider the function

T i,N (θ, x̂N ) = 〈∇θL̃i,N (θ),∇θL̂
i,N (θ, x̂N )−∇θL̃i,N (θ)〉. (5.332)

By Lemma 5.18, we have that T i,N (θ, x̂N ) ∈ C2,α(Rp,Rd), and that ||∂jθT i,N (θ, x̂N )| ≤
K(1+||xi,N ||q+ 1

N

∑N
j=1 ||xj ||q), for j = 0, 1, 2. Moreover, it is straightforward to show that

this function satisfies
∫

(Rd)N T
i,N (θ, x̂N )µ̂∞(dx̂N ) = 0. Thus, Lemma 5.16, the Poisson

equation

Ax̂v
i,N (θ, x̂N ) = T i,N (θ, x̂N ) ,

∫

(Rd)N

vi,N (θ, x̂N )µ∞(dx̂N ) = 0 (5.333)

has a unique twice differentiable solution which satisfies

2∑

j=0

∣
∣
∣
∣

∂jvi,N

∂θi
(θ, x̂N )

∣
∣
∣
∣
+

∣
∣
∣
∣

∂2vi,N

∂θ∂x
(θ, x̂N )

∣
∣
∣
∣
≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

. (5.334)

and, using the same steps as in the proof of Lemma 5.11, we can prove that, a.s.,

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

σk∫

τk

γs〈∇θL̃i,N (θi,Ns ),∇θL̂
i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )〉ds

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

k→∞→ 0. (5.335)

We next consider Ai,N
3,k . Using Itô’s isometry, Lemma 5.8, the polynomial growth of the

function ∇θB̂
i,N (θ, x̂) (see the proof of Lemma 5.17), Proposition 5.2 (the moment bounds

for solutions of the IPS) and Condition F.1 (the square summability of the learning rate),

we have that

sup
t≥0

E






∣
∣
∣
∣
∣
∣

t∫

0

γs〈∇θL̃i,N (θi,Ns ),∇θB̂
i,N (θi,Ns , x̂Ns )dwi

s〉

∣
∣
∣
∣
∣
∣

2



 (5.336)
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≤ KE

∞∫

0

γ2s ||∇θB̂
i,N (θi,Ns , x̂Ns )||2ds (5.337)

≤ K

∞∫

0

γ2s (1 + E
[
||xi,Ns ||q

]
+

1

N

N∑

j=1

E
[
||xj,Ns ||q

]
ds <∞. (5.338)

Thus, by Doob’s martingale convergence theorem, there exists a finite random variable

Ai,N
3,∞ such that, both a.s. and in L

2,

t∫

0

γs〈∇θL̃i,N (θi,Ns ),∇θB̂
i,N (θi,Ns , x̂Ns )dwi

s〉 → Ai,N
3,∞. (5.339)

as t → ∞. It follows that Ai,N
3,k → 0 a.s. as k → ∞. Finally, we turn our attention to

Ai,N
4,k . For this term, we observe that

sup
t≥0

E

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

0

1

2
γ2sTr

[

∇θB̂
i,N (θi,Ns , x̂Ns )∇θB̂

i,N (θi,Ns , x̂Ns )T∇2
θL̃i,N (θi,Ns )

]

ds

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

(5.340)

≤ K

∞∫

0

γ2s (1 + E
[
||xi,Ns ||q

]
+

1

N

N∑

j=1

E
[
||x̂j,Ns ||q

]
)ds <∞, (5.341)

where, as above, we have used Lemma 5.8, the polynomial growth of ∇θB̂
i,N (θ, x̂), Propo-

sition 5.2, and Condition F.1. It follows that the random variable

∞∫

0

1

2
γ2sTr

[

∇θB̂
i,N (θi,Ns , x̂Ns )∇θB̂

i,N (θi,Ns , x̂Ns )T∇2
θL̃i,N (θi,Ns )

]

ds (5.342)

is finite a.s., which in turn implies that there exists a finite random variable Ai,N
4,∞ such

that

t∫

0

1

2
γ2sTr

[

∇θB̂
i,N (θi,Ns , x̂Ns )∇θB̂

i,N (θi,Ns , x̂Ns )T∇2
θL̃i,N (θi,Ns )

]

ds→ A∞
4 a.s. (5.343)

It follows, in particular, that Ai,N
4,k → 0 a.s. as k → ∞. Summarising, we thus have that,

for all ε > 0, there exists k such that

L̃i,N (θi,Nσk
)− L̃i,N (θi,Nτk ) = Ai,N

1,k +Ai,N
2,k +Ai,N

3,k +Ai,N
4,k (5.344)

≥ Ai,N
1,k − ||Ai,N

2,k || − ||Ai,N
3,k || − ||Ai,N

4,k || (5.345)

=
||∇θL̃i,N (θi,Nτk )||2

8
ρ− 3ε (5.346)
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The claim follows by setting ε = ρ(κ)κ2

32 and β = ρ(κ)κ2

32 .

Lemma 5.14. Assume that Conditions B.1 - B.2, C.1, D.1 and F.1 hold. Suppose that

there are an infinite number of intervals [τk, σk). Then there exists a fixed constant 0 <

β1 < β such that, for k large enough,

L̃i,N (θi,Nτk )− L̃i,N (θi,Nσk−1
) ≥ −β1. (5.347)

Proof. Using Itô’s formula, we have that

L̃i,N (θi,Nτk )− L̃i,N (θi,Nσk−1
) ≥

τk∫

σk−1

γs〈∇θL̃i,N (θi,Ns ),∇θL̂
i,N (θi,Ns , x̂Ns )−∇θL̃i,N (θi,Ns )〉ds

︸ ︷︷ ︸

Bi,N
1,k

(5.348)

+

τk∫

σk−1

γs〈∇θL̃i,N (θi,Ns ),∇θB̂
i,N (θi,Ns , x̂Ns )dwi

s〉

︸ ︷︷ ︸

Bi,N
2,k

+

τk∫

σk−1

1

2
γ2sTr

[

∇θB̂
i,N (θi,Ns , x̂Ns )∇θB̂

i,N (θi,Ns , x̂Ns )T∇2
θL̃i,N (θi,Ns )ds

]

︸ ︷︷ ︸

Bi,N
3,k

.

Arguing as in the proof of Lemma 5.13, the magnitude of each of the terms converges to

zero a.s. as k → ∞. This is sufficient for the conclusion.

5.C.3.2 Technical Lemmas: On A Related Poisson Equation

Lemma 5.15. Assume that Conditions B.1 - B.2 and D.1 hold. Suppose that, for all

θ ∈ R
p, f(θ, ·) : (Rd)N → R satisfies a polynomial growth condition of the form

||f(θ, x̂N )|| ≤ K

(

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
)

(5.349)

Moreover, suppose that f(θ, ·) is centred, in the sense that
∫

(Rd)N f(θ, x̂
N )dµ̂N∞(dx̂N ) = 0.

Then, for all N ∈ N, the function

F (θ, x̂N ) =

∞∫

0

Ex̂N ,θ0

[
f(θ, x̂Nt )

]
dt (5.350)
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is a well defined, continuous function of Sobolev class ∩p≥1W
2
p,loc, which satisfies the Pois-

son equation

Ax̂N ,θ∗F (θ, x̂
N ) = −f(θ, x̂N ). (5.351)

Moreover, F is centred, in the sense that
∫

(Rd)N F (θ, x̂
N )µ̂N∞(dx̂N ) = 0, and there exist

constants q,K > 0 such that

|F (θ, x̂N )| ≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

(5.352)

|∇x̂NF (θ, x̂)N | ≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

(5.353)

Remark. This is essentially a statement of [371, Theorem 1], adapted appropriately to

the current statement. In our case, however, since we are interested in the solution of the

Poisson equation associated with the generator of the IPS x̂N = (x1,N , . . . , xN,N ) ∈ (Rd)N

for any N ∈ N, a little care is needed in places to ensure that arguments in the proof of

[371, Theorem 1], in particular those used to establish that the solution is well defined,

and that it satisfies the bounds in (5.352) - (5.353), are independent of N . Indeed, we

are interested in the solution of this Poisson equation for arbitrarily large N , since we will

later take the limit as N → ∞. As an example, if we were to use [371, Theorem 1] directly,

we would only have, in place of (5.352), the bound |F (θ, x̂)| ≤ K(1 + ||x̂N ||q), which, due
to the ||x̂N ||q term, is unbounded in the limit as N → ∞.

Proof. We begin by showing that the function F (θ, x̂N ) is well defined, and that it satisfies

(5.352). Let x̂Nt denote a solution of the IPS starting from x̂N ∈ (Rd)N . Let µ̂Nt denote

the law of x̂Nt . Using the bounds in Lemma 5.5, and that f is centred, we have

∣
∣
∣
∣
Ex̂N

[
f(θ, x̂Nt )

]
∣
∣
∣
∣
=

∣
∣
∣
∣
Ex̂N

[
f(θ, x̂Nt )

]
−

∫

(Rd)N

f(θ, ẑN )µ̂N∞(dẑN )

∣
∣
∣
∣

(5.354)

≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

e−λt (5.355)

We remark that, crucially, the constants q,K, λ > 0 are independent of N . Thus, for

all N ∈ N, the function F , as defined in (5.350), is absolutely integrable, and thus well

defined. Moreover, via the triangle inequality, we immediately obtain the bound in (5.352).

The remaining statements in Lemma 5.15 now follow directly from [371, Theorem 1]. In

particular, the arguments in the proof of [371, Theorem 1(b), 1(c), 1(d), 1(f)] show that

(5.350) defines a continuous, centred solution, unique in the class of solutions belonging

to ∩p≥1W
2
p,loc, of the Poisson equation (5.351).
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Finally, we can obtain the bound in (5.353) using the argument in the proof of [371,

Theorem 1(e)], replacing the intermediate bound on ||F (θ, ·, ·)|| by (5.352), and the inter-

mediate bound on ||f(θ, ·, ·)|| by our condition on the polynomial growth of f(·).9. This

completes the proof.

Lemma 5.16. Assume that Conditions B.1 - B.2 and D.1 hold. Suppose that the function

f(θ, x̂N ) ∈ Cα,2(Rp, (Rd)N ), for some α > 0, is centred in the same sense as Lemma 5.15,

and satisfies

|f(θ, x̂N )|+ |∂θf(θ, x̂N )|+ |∂2θf(θ, x̂N )| ≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

(5.356)

where x̂ = (x1,N , . . . , xN,N ). Then the solution (5.350) of the Poisson equation (5.351)

satisfies F (·, x̂N ) ∈ C2 for all x̂N ∈ (Rd)N . Moreover, there exist q′,K ′ > 0 such that

2∑

k=0

∣
∣
∣
∣

∂kF

∂θk

∣
∣
∣
∣
+

∣
∣
∣
∣

∂2F

∂x̂∂θ

∣
∣
∣
∣
≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

(5.357)

Proof. The first statement of the Theorem follows directly from [372, Theorem 3]. Now,

observe that, since ∂kθ f , k = 0, 1, 2, satisfies a polynomial growth condition in the required

sense, ∂kθ f
i,N can be shown to satisfy bounds of the form given in Lemma 5.5. It follows,

arguing as in (5.354) - (5.355), that

∣
∣
∣
∣
Ex̂N

[
∂kf

∂θk
(θ, x̂Nt )

]∣
∣
∣
∣
≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

e−λt (5.358)

We thus have that, allowing the value of the constant K to change from line to line, that

∣
∣
∣
∣

∂kF

∂θk
(θ, x̂N )

∣
∣
∣
∣
≤

∞∫

0

∣
∣
∣
∣
Ex̂N

[
∂kf

∂θk
(θ, x̂N )

]∣
∣
∣
∣
dt ≤ K

∞∫

0

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

e−λtdt

(5.359)

≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

. (5.360)

Finally, the bound on the mixed derivative follows from (5.353) in Lemma 5.15.

5.C.3.3 Technical Lemmas: Miscellaneous

Lemma 5.17. Assume that Conditions B.1 - B.2, C.1 and D.1 hold. Then, for all

i = 1, . . . , N , N ∈ N, the function Si,N (θ, x̂N ) = ∇θL̂
i,N (θ, x̂N ) − ∇θL̃i,N (θ) is in

9In the original notation, these are the bounds on ||u|| and ||Lu||, respectively. See [371, pg. 1070]
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C2,α(Rp, (Rd)N ). Moreover, for k = 0, 1, 2, there exists q and K such that

||∇k
θS

i,N (θ, x̂N )|| ≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

. (5.361)

Proof. By definition, we have that, for k = 0, 1, 2,

∇k
θS

i,N (θ, x̂N ) = ∇k+1
θ L̂i,N (θ, x̂N )−∇k+1

θ L̃i,N (θ). (5.362)

By Condition C.1(i),∇θb(θ, x) ∈ C2,α(Rp,Rd), and∇θφ(θ, x, y) ∈ C2,α,α(Rp,Rd,Rd). It fol-

lows from the definitions, c.f. (5.97), (5.98) and (5.99), that∇θB̂
i,N (θ, x̂N ),∇θĜ

i,N (θ, x̂N ),

and ∇θL̂
i,N (θ, x̂N ) are in C2,α(Rp, (Rd)N ). It also follows from the definition (Lemma

5.4.B) that ∇θL̃i,N (θ) is in C2(Rp). Thus, as claimed, Si,N (θ, x̂) is in C2,α(Rp, (Rd)N ). It

remains to note that the bound (5.361) follows immediately from Lemma 5.6 and Lemma

5.8

Lemma 5.18. Assume that Conditions B.1 - B.2, C.1 and D.1 hold. Then, for all i =

1, . . . , N , N ∈ N, the function T i,N (θ, x̂N ) = 〈∇θL̃i,N (θ),∇θL̂
i,N (θ, x̂N ) − ∇θL̃i,N (θ)〉 is

in C2,α(Rp, (Rd)N ). Moreover, for k = 0, 1, 2, there exists q, K such that

||∇k
θT

i,N (θ, x̂N )|| ≤ K

[

1 + ||xi,N ||q + 1

N

N∑

j=1

||xj,N ||q
]

. (5.363)

Proof. This lemma follows almost immediately from Lemma 5.17. First note that, by def-

inition, we can write T i,N (θ, x̂N ) = 〈∇θL̃i,N (θ), Si,N (θ, x̂N )〉. By Lemma 5.17, Si,N (θ, x̂N )

is in C2,α(Rp, (Rd)N ) and∇θL̃i,N (θ) is in C2(Rp). It follows immediately that also T i,N (θ, x̂N ) ∈
C2,α(Rp, (Rd)N ). Finally, the bound (5.363) follows from Lemma 5.8 and Lemma 5.17, via

an application of Holdër’s inequality.

5.D Proof of Lemma for Theorem 5.4

Lemma 5.19. Assume that Conditions A.1, B.1 - B.2, C.1, and D.1 hold. Let i =

1, . . . , N , and N ∈ N. Then, for all θ ∈ R
p, there exists K <∞ such that

||∇θL̃(θ)−∇θL̃i,N (θ)|| ≤ K

N
1
2

, a.s. (5.364)

Proof. Let us define g : Rp × R
d × R

d → R
d as the function which satisfies G(θ, x, µ) =

∫

Rd g(θ, x, y)µ(dy), where G(θ, x, µ) is defined in (5.8). Thus, in particular,

g(θ, x, y) = [b(θ, x) + φ(θ, x, y)]− [b(θ0, x) + φ(θ0, x, y)] (5.365)
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From the definition of L(θ, x, µ), c.f. (5.9), we have that

∇θL(θ, x, µ) = −∇T
θ G(θ, x, µ)G(θ, x, µ) = −

∫

Rd×Rd

∇T
θ g(θ, x, y)g(θ, x, z)µ(dy)µ(dz)

(5.366)

We can thus define l : Rp×R
d×R

d×R
d → R

p as the function which satisfies∇θL(θ, x, µ) =
∫

Rd×Rd l(θ, x, y, z)µ(dy)µ(dz). In particular, we identify

l(θ, x, y, z) = −∇T
θ g(θ, x, y)g(θ, x, z). (5.367)

We note that, via Condition C.1(ii), l(θ, ·, ·, ·) is locally Lipschitz with polynomial growth.

That is, for all x, x′, y, y′, z, z′ ∈ R
d, we have

||l(θ, x, y, z)− l(θ, x′, y′, z′)|| ≤ K
[
[1 + ||x||q + ||x′||q + ||y||q + ||y′||q + ||z||q + ||z′||q

]

·
[
||x− x′||+ ||y − y′||+ ||z − z′||] (5.368)

In terms of this function, we can now write

∇θL(θ, x
i, µ∞) =

∫

Rd×Rd

l(θ, xi, xj , xk)µ∞(dxj)µ∞(dxk) (5.369)

=
1

N2

N∑

j=1

N∑

k=1

∫

Rd×Rd

l(θ, xi, xj , xk)µ∞(dxj)µ∞(dxk) (5.370)

∇θL(θ, x
i,N , µN ) =

1

N2

N∑

j=1

N∑

k=1

l(θ, xi,N , xj,N , xk,N ). (5.371)

where, in the second line, we have simply summed over the dummy variables xj and xk.

and thus, from the definitions (see Lemmas 5.4.A - 5.4.B),

∇θL̃(θ) =
1

N2

N∑

j=1

N∑

k=1

∫

Rd






∫

Rd×Rd

l(θ, xi, xj , xk)µ∞(dxj)µ∞(dxk)




µ∞(dxi) (5.372)

=
1

N2

N∑

j=1

N∑

k=1

∫

(Rd)N

l(θ, xi, xj , xk)µ∞(dx1) · · ·µ∞(dxN ) (5.373)

∇θL̃i,N (θ) =
1

N2

N∑

j=1

N∑

k=1

∫

(Rd)N

l(θ, xi,N , xj,N , xk,N )µ̂N∞(dx̂). (5.374)

where in the second line we have simply integrated with respect to the invariant proba-

bility measure µ∞ over additional dummy variables, which does not change the value of

the integral. Let x̂Nt denote a solution of the IPS starting from x̂N0 = (x1,N0 , . . . , xN,N
0 ),
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and let x
[N ]
t denote N independent solutions of the McKean-Vlasov SDE starting from

x
[N ]
0 = (x10, . . . , x

N
0 ). Then, using the definition of an invariant measure, we can write

∇θL̃(θ) =
1

N2

N∑

j=1

N∑

k=1

∫

(Rd)3

E
(xi

0,x
j
0,x

k
0)

[

l(θ, xi, xj , xk)
]

µ∞(dx1) · · ·µ∞(dxN ) (5.375)

∇θL̃i,N (θ) =
1

N2

N∑

j=1

N∑

k=1

∫

(Rd)N

E
(xi,N

0 ,xj,N
0 ,xk,N

0 )

[

l(θ, xi,N , xj,N , xk,N )
]

µ̂N∞(dx̂). (5.376)

Let π∞ ∈ Π(µ̂N∞, µ
⊗N
∞ ) denote an arbitrary coupling of µ̂N∞ and µ⊗N

∞ . Then, using (5.375)

- (5.376), it follows straightforwardly that

||∇θL̃(θ)−∇θL̃i,N (θ)|| (5.377)

≤ 1

N2

N∑

j=1

N∑

k=1

∫

(Rd)N×(Rd)N

E
(xi

0,x
j
0,x

k
0 ,x

i,N
0 ,xj,N

0 ,xk,N
0 )

(5.378)

[∣
∣
∣
∣l(θ, xis, x

j
s, x

k
s)− l(θ, xi,Ns , xj,Ns , xk,Ns )

∣
∣
∣
∣
]
π∞(dx̂N , dx[N ])

Now, using the growth property (5.368) and Hölder’s inequality, we obtain (now suppress-

ing dependence of the expectation on the initial conditions)

E

[

||l(θ, xis, xjs, xks)− l(θ, xi,Ns , xj,Ns , xk,Ns )||
]

(5.379)

≤
[

1 + E
[
||xis||2q

] 1
2 + · · ·+

[

E||xk,Ns ||2q
] 1

2

]

(5.380)

·
[

E
[
||xis − xi,Ns ||2

] 1
2 + E

[
||xjs − xj,Ns ||2

] 1
2 + E

[

||xks − xk,Ns ||2
] 1

2

]

≤ K

N
1
2

, (5.381)

where in the final line we have used Proposition 5.2 (the bounded moments of the McKean-

Vlasov SDE and the IPS) and Proposition 5.5 (uniform in time propagation of chaos).

Finally, substituting (5.379) - (5.381) into (5.378), the result follows.
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6
Conclusions

6.1 Final Remarks

Stochastic gradient descent is undoubtedly one of the most popular and widely applicable

methods used in stochastic optimisation. In this thesis, we have made several contribu-

tions to both the theory and applications of stochastic gradient descent in continuous time.

In both theory and application, our primary focus has been on two-timescale algorithms,

which arise naturally in bilevel optimisation problems. We have also considered an impor-

tant optimisation problem - recursive parameter estimation - arising in McKean-Vlasov

SDEs. Let us briefly recap the main contributions of this thesis.

In Chapter 2, we analysed the asymptotic properties of two-timescale stochastic gradient

descent in continuous time under general noise and stability conditions. We considered

algorithms with both additive, state-dependent noise, and those with non-additive, state

dependent noise. The obtained results cover a broad class of non-linear, two-timescale

stochastic gradient descent algorithms in continuous time.

Chapter 3 considered the problem of joint online parameter estimation and optimal sensor

placement for a partially observed diffusion process. We proposed a continuous-time,

two-timescale stochastic gradient descent algorithm for this problem, which is both highly

principled and computationally efficient. In particular, our method seeks to simultaneously

maximise the asymptotic log-likelihood of the observations, and minimise the uncertainty

in the state estimate. This approach is entirely novel: until now, the problems of recursive

estimation and optimal sensor placement have been treated separately.

In Chapter 4, we demonstrated how to apply the joint online parameter estimation and
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optimal sensor placement algorithm to a dynamic spatio-temporal model governed by the

stochastic advection-diffusion partial differential equation. Our results in this chapter

not only demonstrate that our approach is highly effective in several scenarios of practical

interest, but also illustrate the significant advantages of tackling the problems of parameter

estimation and optimal sensor placement together.

Finally, in Chapter 5 we turned our attention to the problem of online parameter es-

timation for a stochastic McKean-Vlasov equation, and the associated system of inter-

acting particles. We proposed a principled solution to this problem in the form of a

continuous-time stochastic gradient descent algorithm, and provide a rigorous analysis of

its asymptotic properties. For completeness, we also obtained asymptotic results for the

offline maximum likelihood estimator. Our theoretical results were illustrated via several

numerical examples, including a model commonly used in the study of opinion dynamics.

6.2 Future Work

There are several interesting avenues for future research based on the work presented in

this thesis. Regarding the two-timescale stochastic gradient descent algorithm studied in

Chapter 2, an important open problem is to obtain sufficient conditions for the assumption

that the algorithm iterates remain a.s. bounded. While this assumption is necessary in

order to prove almost sure convergence, it is generally far from automatic, and not very

straightforward to establish. While methods for verifying stability are now relatively well

understood in the single-timescale case (e.g., [44, 59, 265]), to our knowledge, there is

only one existing result [281] along these lines in the two-timescale case. Currently, the

most promising approaches to this task appear to be extensions of the randomly varying

truncations method in [108], the stopping-times approach in [46, 420, 430], or the recent

results in [346], to the two-timescale setting.

In terms of the joint online parameter estimation and optimal sensor placement algorithm

considered in Chapter 3, the main open problem is to obtain conditions on the generative

model (i.e., the partially observed diffusion process) which are easy to verify, sufficient

for convergence, and not overly restrictive (see the discussion in Section 3.2.4.6). This

problem is particularly challenging when the filter is approximate. In this case, even if

the latent signal is ergodic, there is no guarantee that the filter is ergodic, let alone the

tangent filter.

There are several important extensions to the work presented in Chapter 4. From a theo-

retical perspective, the main open problem is to obtain rigorous convergence results for the

parameter estimates and optimal sensor placements generated by the finite-dimensional

approximation of the joint online parameter estimation and optimal sensor placement al-
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gorithm to the stationary points of the true, infinite-dimensional asymptotic log-likelihood

and asymptotic sensor placement objective function. This requires a careful extension of

the results in Chapter 3 to include the case in which the latent signal process is infinite-

dimensional. There are, in fact, several existing results along these lines for the optimal

sensor placement (e.g., [80, 488]). The main obstacle, therefore, is to obtain corresponding

results for the parameter estimates.

From a computational perspective, a natural extension of the numerical results in Chapter

4 is to consider the case in which the advection-diffusion operator is no longer spatially or

temporally invariant, with the drift, diffusion, and damping parameters allowed to vary

in space (see, e.g., [306]) or in time. It is also of interest to consider alternative, more

complex spatial domains and boundary conditions, which are typical of environmental

monitoring applications in urban settings. One may also be interested in considering other

sensor configurations, perhaps allowing explicitly for the possibility of mobile sensors whose

motion is governed by some controlled ODEs, or for differing levels of communication

between sensors (e.g., [80, 156]). Finally, we would like to extend the results in this

chapter to partially observed diffusion processes governed by non-linear dissipative SPDEs,

such as the stochastic Navier-Stokes or Kuramoto-Sivashinski equations [68, 232]. In such

models, of course, it will no longer be possible to compute the filter or tangent filter

analytically, and it will be necessary to replace these quantities by suitable approximations

(e.g., [47, 238]).

Regarding the results in Chapter 5, in the offline case a natural extension is to establish

a non-asymptotic L
p convergence rate for the MLE in both the mean-field (large N) and

long time (large T ) regimes, extending the recent results in [110] to a more general class

of IPSs. In the online case, it is of interest to obtain a central limit theorem for the

recursive estimator, extending the results in [422] to non-linear McKean-Vlasov diffusions.

One could also aim to extend our results to the case in which the diffusion coefficient is

unknown, and must be estimated online (see [420] for online estimation of the diffusion

coefficient in the linear case, and [221] for offline estimation of the diffusion coefficient in

IPSs). Finally, there has been significant recent interest in weakly interacting diffusions on

random graphs (e.g., [118, 145, 325]), for which the parameter estimation problem remains

almost entirely unexplored, even in the offline case.
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[320] S. V. Lototsky and B. L. Rosovskii. Spectral asymptotics of some functionals aris-

ing in statistical inference for SPDEs. Stochastic Processes and their Applications,

79(1):69–94, 1999.

[321] S. V. Lototsky and B. L. Rozovsky. Stochastic Partial Differential Equations.

Springer-Verlag, Cham, Switzerland, 2017.

[322] F. Lu, M. Maggioni, and S. Tang. Learning interaction kernels in heterogeneous

systems of agents from multiple trajectories. Journal of Machine Learning Research,

22(32):1–67, 2021.

[323] F. Lu, M. Maggioni, and S. Tang. Learning interaction kernels in stochastic systems

of interacting particles from multiple trajectories. Foundations of Computational

Mathematics, 21(4), 2021.

[324] F. Lu, M. Zhong, S. Tang, and M. Maggioni. Nonparametric inference of interaction

laws in systems of agents from trajectory data. Proceedings of the National Academy

of Sciences, 116(29):14424–14433, 2019.
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