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Abstract

The application of machine learning (ML) methods has proven to be promising in dealing 

with a wide range of geotechnical engineering problems in recent years. ML methods have already 

been used for the prediction of soil water retention curves (SWRC) and estimation of air-entry 

values (AEV). However, the reported works in the literature are generally based on limited data and 

conventional, less accurate approaches for AEV estimation.  In this paper, a large database, known 

as UNsaturated SOil hydraulic DAtabase (UNSODA), is studied and the conventional and true 

AEVs of 790 soil samples are estimated based on determination methods reported in the literature. 

A ML approach is then employed for the development of a predictive model for the estimation of 

true AEV from water content-based SWRCs of a wide range of soil types taking into account the 

impact of bulk density and grain size distribution parameters. The obtained results reveal an 

enhanced accuracy in AEV determination, featuring R2 values of 0.964, 0.901 and 0.851 for 
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training, validation, and testing data, respectively, which confirm the marked performance of the 

developed ML model. Based on the results of a sensitivity analysis, the particle sizes of 50 and 250 

µm are found to have the highest impact on the AEV estimation.

Keywords: Air-entry value, Soil water retention, Grain size distribution, Machine learning

List of Notations

P particle size
p´c preconsolidation pressure
R2 coefficient of determination
s soil suction 
sae suction at air-entry 
srs residual soil suction 
Sr degree of saturation
w gravimetric water content
θ volumetric water content
AEV air-entry value 
AI artificial intelligence 
ANN artificial neural network 
EPR evolutionary polynomial regression 
GSD grain size distribution
GP genetic programming
HCT high-capacity tensiometer
MEP multi-expression programming 
ML machine learning
MLP multilayer perceptron 
RF random forest 
RMSE root mean square error 
SVM support vector machine 
SWRC soil water retention curve
UNSODA UNsaturated SOil hydraulic DAtabase
USDA United States Department of Agriculture
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Introduction

In unsaturated soil mechanics, the relationship between the amount of water held by the soil 

and the pore-water tension (suction) is generally presented in the form of water content (w) versus 

suction (s), or degree of saturation (Sr) versus suction in a semi-logarithmic graph known as soil 

water retention curve (SWRC). Generally, three distinct parts are recognized on an SWRC (Figure 

1). Initially, with the soil undergoing drying, the curve remains a relatively flat line until the air-

entry value (AEV); during this stage, with an increase of suction, the pores remain saturated (Sr = 

100%) with pore-water being under tension (saturated state or boundary effect zone). As suction 

exceeds the AEV, air breaks into the larger pores, and a continuous network of air-filled and water-

filled pores is formed. During this stage, the degree of saturation (or water content) is progressively 

decreased as more water evaporates or leaves the pores (partially saturated state or transition effect 

zone). Finally, with an increase in suction, a state is reached where water only remains at the 

particle contacts and is no longer continuous with the pore space. At this stage, the SWRC almost 

flattens meaning that much less water will be expelled with an increase in suction, and the soil dries 

without significant volume changes (residual state). The two inflation points, namely AEV and 

residual suction (srs), are considered as fundamental parameters for the determination of soils’ water 

retention properties, with the former being a key input parameter in several unsaturated constitutive 

models (e.g., Alonso et al. 1990; Russell and Khalili 2006), hence, highlighting the importance of 

its accurate estimation from SWRCs. 
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Figure 1 Typical SWRC in Sr – s plane: (a) boundary effect zone; (b) transition zone; (c) residual 

zone

On a degree of saturation-based SWRC, the AEV is graphically determined as the 

intersection point of a horizontal tangent line drawn to the saturated portion, with a tangent line 

drawn to the transition portion of the curve (see Figure 1). Pasha et al. (2016) showed that using the 

same method to derive AEV from water content-based SWRCs can produce highly erroneous 

results. They proposed a simple method for estimation of true AEV from water content-based 

SWRC. This method was based on plotting the data on both semi–log and log–log scales on the 

same graph. In this way, the saturated part of the curve is identified by a linear or bilinear behavior 

in a semi–log plot, and the unsaturated part of the curve is represented by a straight line (linear 

behavior) on the log–log plot. Therefore, by drawing these two complementary curves on a single 

graph, the AEV as the boundary between saturated and transition (unsaturated) zones can be readily 

identified. This graphical technique can be used for the evaluation of true AEV from SWRC data 

where the information on the volume change of the sample during testing is not available.
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SWRCs are generally developed based on experimental methods such as axis translation 

(Bagheri et al. 2019a), negative water column (Pagano et al. 2016) and pressure plate (Tarantino et 

al. 2011). Such methods are generally time-consuming and expensive, and in most cases produce 

discontinuous measurements, bringing difficulties in the accurate determination of the AEV. For 

such measurements, the method proposed by Pasha et al. (2016) appears promising. Bagheri (2018), 

Bagheri et al. (2018), and Bagheri and Rezania (2022) later showed that direct measurement of soil 

suction changes using high-capacity tensiometers (HCT) can rectify the need for such 

approximation methods, as an accurate estimation of AEV can be readily obtained from continuous 

measurements of suction variations with water content. However, this method is also limited to the 

maximum capacity of HCTs which is typically in the range of 1.5 – 2.0 MPa. Other methods 

including estimation of SWRC based on the soils’ grain size distribution (GSD) curve (Alves et al. 

2020; Zhai et al. 2020), statistical methods (Saxton et al. 1986; Chiu et al. 2012), and artificial 

intelligence (AI) -based methods (Schaap and Leij 1998) are also available. However, it is apparent 

that accurate estimation of AEV is profoundly subordinate to the accuracy of predicted SWRCs. 

Furthermore, the reported works on statistical and AI methods generally utilized databases that were 

not large enough to include a variety of soil types. It is therefore imperative to consider a relatively 

large database to directly estimate true AEV from common soil parameters. 

Recently, machine learning (ML) approaches have proven to be promising in solving 

nonlinear and complicated problems using large databases (Rezania 2008; Javadi and Rezania 

2009a; Jin and Yin 2020; Zhang et al. 2020; Zhang et al. 2021; Wang et al. 2020 Aug; Zhang et al. 

2022; Wang et al. 2020 Nov). In geotechnical engineering, the ML algorithms have been favorably 

employed for predicting various phenomena such as the settlement of shallow foundations on 

cohesionless soils (Rezania and Javadi 2007), thermo-hydro-mechanical behavior of hydrate 

reservoirs (Zhou et al. 2020), non-stationary and non-Gaussian geotechnical properties (Shi and 

Wang 2021), soil constitutive modeling (Javadi and Rezania 2009b; Rezania and Ma 2019) and 
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suction distribution in shallow soil layers (Cheng et al. 2020). In these studies, various ML 

algorithms including support vector machine (SVM), multi-expression programming (MEP), 

genetic programming (GP), evolutionary polynomial regression (EPR), and random forest (RF) 

have been used. The effectiveness of ML methods has led to their employment in the estimation of 

SWRCs (Jain et al. 2004; Moreira de Melo and Pedrollo 2015). A few works have been also 

reported in the literature on the estimation of the SWRC from GSD curves employing ML methods 

(D’Emilio et al. 2018; Amanabadi et al. 2019; Li and Vanapalli 2021). However, estimation of the 

AEV by ML algorithms has been rarely studied. Recently, Wang et al. (2020) utilized ML 

algorithms for the prediction of AEV of compacted soils based on some physical properties. The 

authors have used the parameters of sand content, fines content, plasticity index, initial water 

content and initial void ratio as input variables. In addition, they consider the conventional less 

accurate method of estimating AEV from water content-based SWRC which can be considered as 

the shortcoming of this study. With these explanations, a thorough understanding of ML algorithms 

in the prediction of the true AEV is imperative and worth investigating. 

In this paper, the UNsaturated SOil hydraulic DAtabase (UNSODA) (Leij et al. 1996) has 

been thoroughly reviewed and for a considerable number of soil samples, true AEVs are estimated 

from water content-based SWRCs using the method proposed by Pasha et al. (2016) and compared 

to the conventional method for AEV evaluation. Furthermore, the influence of physical soil 

parameters (e.g., bulk density, grain size, etc.) on AEV is investigated. Finally, a neural network 

model is employed to estimate true AEV. A sensitivity analysis is also performed in order to 

indicate which parameters are essential for true AEV prediction.

UNSODA

UNSODA (UNsaturated SOil hydraulic DAtabase) is a collection of data for unsaturated 

hydraulic soil properties in Microsoft Access-97 format. Data for 790 soil samples have been 
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deposited in 36 tables, which have stored data in rational groups of fields including relevant 

information. A 4-digit code has been allocated to each sample. Figure 2 shows the frequency 

histogram of soil classification of 790 samples according to USDA (United States Department of 

Agriculture) system and the summary of their geographical distribution represented in UNSODA. 

Most of the samples of the database are from Europe and North America. Most of the samples are 

coarse-textured soils although there is an acceptable number of soil samples with fine textures. 
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Figure 2 Geographical and textural distribution according to the USDA classification of soils in 

UNSODA (S: Sand, lS: loamy Sand, sL: sandy Loam, L: Loam, SiL: silty Loam, Si: Silt, scL: 

sandy clay Loam, cL: clay Loam, sicL: silty clay Loam, sC: sandy Clay, siC: silty Clay, C: Clay, 

N/D: Not Determined)

UNSODA provides a wide range of soil properties as shown in Table 1. It must be noted 

here that bulk density, particle density, porosity, saturated conductivity, and saturated water content 

are the only parameters required for the estimation of true AEV in the present study. In addition, 

UNSODA provides appropriate information about the grain size distribution of samples; however, 

unfortunately, there is no uniform set of particle sizes in UNSODA, and the reported values of 

particle fraction are presented for different sizes in different samples due to the diversity in 
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experimental methods. For instance, in the soil sample 1090, particle fractions for the particle sizes 

of 2, 50, 125, 250, 500, 1000, and 2000 μm have been determined; however, in the soil sample 1087 

only the particle size of 2, 50, and 2000 μm have been considered. 

 In this study, the particle size fractions of 2, 20, 50, 250, 500, 1000, and 2000 µm, which 

have the most frequency are used. Figure 3 presents the frequency of particle sizes in the UNSODA 

database.

Table 1.  Soil properties provided in UNSODA database

Parameter Definition Available 
Values

Missing 
Values

Considered 
in this 
study?

bulk density Bulk density as a mass of solids per bulk volume 762 28 Yes
particle density Mass of solids per volume of solids 339 391 Yes
porosity Volume of voids per bulk volume 270 420 Yes

OM content
Organic Matter Content. The mass of organic 
matter content as a percentage of the total solid 
mass.

388 402 No

ksat
Saturated Conductivity. The measured saturated 
hydraulic conductivity

429 361 Yes

thetasat
Saturated Water Content. The experimental 
water content of a water-saturated sample

305 485 Yes

CEC
Cation Exchange Capacity. in cmol of charge 
per kg of dry soil (i.e., meq/100 g soil)

150 640 No

pH Measured soil pH 300 490 No

electrolyte level
The approximate total solute concentration of the 
soil solution during the experiments

26 764 No

SAR Sodium Adsorption Ratio 80 710 No
ESP Exchangeable Sodium Percentage 19 771 No
EC Electrical conductivity of the saturation extract 62 728 No

free Fe Al oxide
The mass fraction of the Fe and Al oxides as a 
percentage of the total solid phase

14 776 No
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Figure 3 Frequency of the particle size in UNSODA database

Table 2 presents the number of hydraulic curves and the number of data pairs partitioned 

into drying and wetting parts, as well as curves obtained from laboratory or field measurements. In 

this study, the water retention curves (a total of 902 curves) which have the most data were used. 

From the 902 water retention (h-θ) curves, the drying curves, having a total number of 867 curves 

obtained from both laboratory and field measurements, were deemed sufficient and considered for 

the analysis.

Table 2.  Summary of the number of hydraulic curves

Number of Curves
Total Number of 

Data Pairs

Average Number of Data 

Pairs in each CurveHydraulic Curves

Field Lab Field Lab Field Lab

Drying 137 730 2621 8066 19.1 11.0

Wetting 2 33 8 528 4.0 16.0Water Retention (h-θ)

Total 902 11223 12.4

Drying 133 730 2826 6187 21.2 8.5

Wetting 0 8 0 71 - 8.9Hydr. Conductivity (h-K)

Total 871 9084 10.4

Drying 294 293 5391 5177 18.3 17.7

Wetting 0 20 0 216 - 10.8Hydr. Conductivity (θ-K)

Total 607 10784 17.8

Soil Water Diffusivity (θ-D) Drying 56 92 1282 1456 22.9 15.8
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Wetting 0 2 0 13 - 6.5

Total 150 2751 18.3

Figure 4 presents the scatter plot of the main drying branch of SWRCs reported in the 

UNSODA database for both field and lab measurements. In this Figure, the range of changes and 

how suction and water content data are distributed for the lab and field data are well described. As it 

turns out, in lab-based methods, the results involve a wider range of suction and water content 

values.

Figure 4 Main drying branch of SWRCs in UNSODA database (S: Sand, lS: loamy Sand, sL: sandy 

Loam, L: Loam, SiL: silty Loam, Si: Silt, scL: sandy clay Loam, cL: clay Loam, sicL: silty clay 

Loam, sC: sandy Clay, siC: silty Clay, C: Clay, N/D: Not Determined)

True air entry value

Although numerous researchers recognize the first break in the drying branch of the water 

content-based SWRC as evidence of air-entry point (Fredlund and Xing 1994; Zhai and Rahardjo 
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2012; Bagheri et al., 2019b, Rezania et al., 2020), this may not be true for some deformable soils, 

depending on factors such as the mechanical characteristics of the soil, pore-size distribution index, 

and the stress history of the soil. In the graphical method presented by Pasha et al. (2016), 

estimation of the true AEV was carried out based on the stress history of the soil, and consideration 

of three stress states, namely normally consolidated, overconsolidated with , and 𝑠𝑎𝑒 > 𝑝′𝑐

overconsolidated with  , where  is the suction at air-entry and  is the preconsolidation 𝑠𝑎𝑒 < 𝑝′𝑐 𝑠𝑎𝑒 𝑝′𝑐

pressure of the soil. 

UNSODA database contains 867 SWRCs, 221 of which could not be used for various 

reasons, such as an insufficient number of data points or soil not entering the transition zone 

Therefore, only SWRCs that would allow for appropriate graphical estimation of AEV were 

selected and considered in his study. Of the remaining 644 curves, 212 curves are related to 

normally consolidated state, 182 related to overconsolidated state with , and 250 related to 𝑠𝑎𝑒 > 𝑝′𝑐

overconsolidated state with  . For all these 644 curves, one by one, the AEVs were obtained 𝑠𝑎𝑒 < 𝑝′𝑐

following the method proposed by Pasha et al. (denoted true AEV) and also following the 

conventional method of intersection of the tangent lines to the boundary effect zone and transition 

zone (denoted AEV) as shown in Figure 5. The horizontal axis of the graphs of Figure 5 represents 

the codes allocated to the samples, which can be traced in the UNSODA database. As some 

examples including the soils of 4440, 4612, 2670 and 1135, the way to obtain the true AEV value is 

shown in Figure 6. In addition, Figure 7 presents the difference between the true AEV and 

conventional AEV which can be in a range of 30 to 300 kPa.
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Figure 5. AEV and true AEV for each sample of UNSODA (Blue: true AEV, Green: miscalculated AEV, 
Triangle: normally consolidated, Square: overconsolidated with , and Circle: overconsolidated with  )𝑠𝑎𝑒 > 𝑝′𝑐 𝑠𝑎𝑒 < 𝑝′𝑐
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Figure 6. Graphical determination of True and Miscalculated AEVs for some soil samples in the 
UNSODA database (a: sample 4440, b: sample 4612, c: sample 2670, d: sample 1135)
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Figure 7. Histogram of the difference between the conventional and true AEVs 

Preparing the database

The extracted data from UNSODA database is presented in a way that is not convenient for 

training the ML models. On the other hand, as it is shown in Table 1, some of the parameters are 

not provided for all samples. For instance, the data points of GSD curves are presented in different 

particle size values (see Figure 3). Therefore, at first, to extract information from UNSODA and 

arrange it so that it could be used to train neural networks, coding was done in MATLAB software. 

The developed code allowed also for extrapolation of the missing data and formation of the 

complete database required for ML.

As shown in Figure 3, the most common particle size values in UNSODA are P2µ, P20µ, P50µ, 

P250µ, P500µ, P1000µ, and P2000µ. As a result, the fraction corresponding to these values were selected 

from the GSD curve as part of the ML inputs, and for samples that did not have these particle size 

distribution values, the corresponding values were estimated using the method proposed in Vaz et 

al. (2020). To overcome the common limitation of GSD curves, which is the lack of standardization 
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for granulometric fractions collected from various soil analysis methods, Vaz et al. (2020) evaluated 

and compared the performance of several GSD equations and showed that the three-parameter 

Equation 1 has an acceptable performance with root mean square error (RMSE) of 0.463, 0.205, 

and 0.013, respectively for sand, silt, and clay. Therefore, this equation was used in this study: 

𝐹(𝑑) = [1 + (
𝑎
𝑑)

𝑏]
―𝑐

(1)

In the above equation, a, b, and c are equation parameters, d is the particle size and F(d) is 

the fraction corresponding to the particle size of d. Thus, for each sample, the parameters of 

Equation 1 were extracted and the fraction values in demanded particle size (if not present) were 

calculated. For instance, in Figure 8, the fitted curve for sample 3340 in UNSODA is presented and 

the value of P20µ and P50µ for this sample were estimated. This process was done for all samples to 

complete the database. 
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Figure 8. Fitted GSD curve for sample 3340 

The detailed statistics of all variables in the database, with the values of minimum, 

maximum, median, mean, and standard deviation are summarized in Table 3 and their descriptive 

frequency histograms are shown in Figure 9. Bulk density and porosity have the highest frequency 
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at 1.4 to 1.6 and 0.4 to 0.5 respectively and follow an approximately normal distribution (Figures 9a 

and 9b). Regarding mass fractions (Figures 9c to 9j), it is observed that the highest frequency of P2µ 

is between 0.0 and 0.1 for 279 soils (Figure 9c), while the highest frequency of P2000µ is between 0.9 

and 1.0 for 641 soils (Figure 9j). In terms of the true and conventional AEVs, most of the values are 

located in the range between 0 to 50 kPa (Figures 9k and 9l), while the true AEV distribution is 

slightly more uniform than the conventional AEV distribution. Since the parameters of P2000µ and 

P1000µ do not differ in various samples, they are not considered in subsequent analyses.

Table 3.  Descriptive statistics of all variables in the database

Variable Min Max Median Mean Standard deviation

Bulk Density (g/cm3) 0.459 1.970 1.500 1.472 0.212

Porosity 0.264 0.915 0.444 0.461 0.093

P2µ 0.000 0.697 0.116 0.153 0.132

P20µ 0.000 0.920 0.277 0.282 0.226

P50µ 0.000 1.000 0.393 0.416 0.303

P250µ 0.000 1.000 0.853 0.783 0.225

P500µ 0.200 1.000 0.976 0.909 0.145

P1000µ 0.651 1.000 0.997 0.971 0.061

In
pu

ts

P2000µ 0.776 1.000 1.000 0.998 0.016

AEV (kPa) 3.548 1621.800 30.199 51.232 102.882

O
ut

pu
ts

True AEV (kPa) 4.898 3890.400 50.119 185.427 371.372
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Figure 9. Frequency histograms of the variables: (a) Bulk Density, (b) Porosity, (c) P2µ , (d) P20µ , 

(e) P50µ , (f) P250µ , (g) P500µ , (h) P1000µ , (i) P2000µ , (j) AEV , (k) True AEV

Figure 10 presents a comparison of the AEV and true AEV obtained for different soil 

classifications. It is obvious that the range of true AEV has shifted to larger values than 

conventional AEV.
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Figure 10. Comparison of AEV and true AEV of soils with different classifications in the 

UNSODA database

Variations of AEV and true AEV with each input soil property are shown in graphs of 

Figure 11. Also shown in the figure is the linear trend lines fitted to the data along with the 

coefficient of determination (COD), R2. The COD allows for assessment of the fitting accuracy and 

is mathematically expressed as:

𝑅2 = 1 ― [∑𝑁
𝑖 = 1(𝑌𝑖 ― 𝑌𝑖)2 ∑𝑁

𝑖 = 1(𝑌𝑖 ― 𝑌𝑖)2] (2)

𝑌𝑖 =
1
𝑁

𝑁

∑
𝑖 = 1

𝑌𝑖 (3)

where  and  are real and predicted output values for the ith dataset, N is the number of outputs, 𝑌𝑖 𝑌𝑖

and  is the average value of the real outputs. Overall, a comparatively low fitting accuracy (R2 < 𝑌𝑖

0.177) was obtained for variations of both AEV and true AEV with input soil properties. The 

parameters P50µ, P250µ, P500µ, P20µ, P2µ, P1000µ, and bulk density, having the highest R2 values were 

selected for developing the ML model and the parameters P2000µ and porosity, having the lowest R2 

values, were omitted. This was done to avoid complexity associated with developing the ML model.
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Figure 11. Basic linear fittings between AEV and true AEV and each input soil property: (a) Bulk 

Density, (b) Porosity, (c) P2µ, (d) P20µ, (e) P50µ, (f) P250µ, (g) P500µ, (h) P1000µ, (j) P2000µ 

Results of analysis

According to Figure 11, the database is described by seven input parameters namely, bulk density, 

P2µ, P20µ, P50µ, P250µ, P500µ, and P1000µ, and one output parameter namely, true AEV. In order to 

accurately generate the prediction model, the ML method of multilayer perceptron (MLP) was 

selected because of its simplicity and availability (comparison between different methods of 
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machine learning is not the purpose of the current study). MLP, developed in the 1960s, is a class of 

artificial neural networks (ANNs). 

A basic building block in many machine learning applications is an artificial neural network 

(ANN), which is a method based on consideration of the nervous system of living things. These 

networks prepare a technique for dealing with complex pattern-oriented problems. The 

nonparametric nature of ANNs permits models to be established without including any previous 

awareness of the distribution of the input population or conceivable interaction influences between 

variables as required by frequently used parametric statistical methods.

For instance, in multiple regression it is imperative that the error term of the regression equation be 

distributed normally (in other words, ) and also be nonheteroscedastic. Another statistical  𝜇 = 0

technique is discriminant analysis which is usually used for doing classification, however, 

discriminant analysis needs that the predictor variables be multivariate normally distributed. The 

easiness of developing a domain problem solution is expanded with ANNs because such 

presumptions are eliminated from ANN models. In addition, ANNs' ability to constitute nonlinear 

models as well as conventional linear models is another point contributing to the success of them 

and, therefore, artificial neural network solutions are useful across a more varied range of problem 

varieties (both linear and nonlinear) (Walczak, 2019).

 ANN can be described as a multivariate and multi-dimensional function . It consists of  𝑓:ℝ𝑛⟶ℝ𝑚

an input layer of n neurons (input values), an output layer of m neurons (output values) and an 

arbitrary number of interior layers with a variable number of neurons, called hidden layers. The 

neurons are storage cells for scalar values obtained by an activation function applied to the neuron 

values in the previous layer (Figure 12). In particular, to each neuron in the output and the hidden 

layers, a vector of weights and a scalar bias are associated, and the value  stored by the th neuron 𝑢𝑙
𝑘 𝑘

in the th layer can be written in the form (Krenker et al. 2011):𝑙
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𝑢𝑙
𝑘 = 𝜎𝑙(∑

𝑗
𝜔𝑙

𝑘𝑗𝑢𝑙 ― 1
𝑗 + 𝑏𝑙

𝑘) (4)

where  is the activation function for the th layer, and  and  are the weights and biases 𝜎𝑙 𝑙 𝜔𝑙
𝑘𝑗 𝑏𝑙

𝑘

respectively. Typical activation functions used can be linear (i.e. ), or non-linear e.g.  𝜎(𝑥) = 𝑥 𝜎(𝑥)

. Under mild assumptions on the activation functions, it can be shown that a neural = tanh (𝑥)

network with even a single hidden layer is a universal function approximator, as given enough 

neurons, any continuous function on a compact domain can be approximated with arbitrary 

precision (Csáji, 2001). In case where more than one hidden layer is used (there is a so-called deep 

neural network), very efficient approximations can be achieved with a relatively small number of 

network parameters i.e. weights and biases (Huang, 2003).

Figure 12: A Sample Artificial Neural Network

To recognize the best structure of the MLP, an initial analysis was carried out to determine the 

optimal number of layers and neurons in order to perfectly represent the relationship between the 

input and output of the database. To speed up the optimization procedure, only 25% of the database 

was considered. Figure 13 presents a comparison of the performance of all the examined structures 

for one-hidden-layer and two-hidden-layer ANNs, at the end of the training process. The various 

architecture of ANNs were compared in terms of the RMSE given by: 
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𝑅𝑀𝑆𝐸 =
1
𝑛

𝑛

∑
𝑖 = 1

(𝑌𝑖 ― 𝑌𝑖)2 (5)

In Figure 13, the continuous line describes the result of the one-hidden-layer ANN, which is 

obviously uniquely determined by the neurons number in the hidden layer itself, and the 

discontinuous lines show the solutions for the two-hidden-layer ANNs. Each point of this graph has 

been calculated as the average of ten repetitions of the training process, to guarantee robustness 

against stochastic impacts. As shown in Figure 13, the two-hidden-layer ANN with 5 and 23 

neurons in the first and second layers provides the best performance. Moreover, for a total number 

of neurons larger than that value, there is no considerable change in the RMSE. Therefore, the 7-5-

23-1 ANN architecture was selected.

To prevent overfitting, 70% of the dataset was just used for the training process, 15% was kept for 

validation, and 15% was used for testing. Therefore, out of the total 644 data, 450 were used for 

training, 96 for testing, and 96 for validation.
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Figure 13. Dependence of the RMSE at the end of training on the total number of neurons in the 

ANN, featuring either one or two hidden layers.

Figure 14 presents a comparison between the predicted and the existing true AEV of the dataset. It 

is recognized that although the model exhibits a higher prediction accuracy for the training data, 

similar accuracy can be recognized for testing and validation data, with the R2 diverging from 0.851 

to 0.964. Overall, satisfying prediction efficiency was proved by the MLP model for the true AEV 

of soils.
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Figure 14. Performances of the ML algorithms: parity plots showing the ML output against the 

corresponding ground-truth numerical values for (a) all the data; (b) training data; (c) validation 

data; (d) test data.

Figure 15 presents a comparison between the data obtained from UNSODA and the predicted true 

AEVs. It is seen that the true AEV estimated by the ML technique matches relatively well with their 

UNSODA counterparts; the insignificant scattering around them is clearly in accordance with the 

results described in Figure 14.
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Figure 15. Performance of the MLP algorithm: comparison between the UNSODA data and the 

MPL algorithm predictions in terms of the true AEV. 

Sensitivity analysis

To check the contribution of the input soil property on the model predictions, a sensitivity analysis 

was performed using the method proposed by Vu-Bac et al. (2016). An uncertainty or sensitivity 

analysis quantifies the impact of all uncertain input parameters with respect to the specific outputs 

of interest, which are, in our case, the AEV and true AEV. Therefore, the results from UNSODA 

have been assessed for this purpose. The sensitivities of the AEV and true AEV for the different 

independent input variables are presented in Figure 16 confirming that the AEV is most sensitive 
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respectively to P50µ and P250µ, and the true AEV is most sensitive respectively to P250µ and P50µ. The 

bulk density and P1000µ are less important input parameters.
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Figure 16. Sensitivity analysis about the relevance of the input variables on the predicted AEVs and 

true AEVs. 

Conclusions

In this paper, pitfalls in the interpretation of water content-based SWRC and estimation of AEV for 

a significant number of soil samples were investigated. UNSODA database was used and 

thoroughly examined for this purpose. For the 644 SWRCs, the AEVs were obtained using the 

conventional method and compared with the corresponding true AEVs obtained using the method 

proposed by Pasha et al. (2016) and considering the stress history of the samples. The differences 

between AEVs and true AEVs were found to be generally in the range of 30 – 300 kPa, although 

this could reach as high as 1500 kPa. A machine learning approach was considered to predict the 

true AEVs based on the bulk density and grain size distribution as input parameters. The obtained 

results revealed that the developed ML model operates reasonably well and provides an accurate 

estimation of the true AEVs with R2 values of 0.964, 0.901 and 0.851 for the training, validation 

and testing data, respectively. Furthermore, the sensitivity analysis showed that P250µ and P50µ are 

the most important parameters for AEV estimation. The study shows that methodically trained ML 
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approaches can be readily used for derivation of true AEVs of a wide range of soils, provided 

appropriate information regarding the grain size distributions are available. 
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Highlights

 Pitfalls in the interpretation of water content-based SWRC and estimation of AEV are 

investigated.

 Notable differences between AEVs and true AEVs are obtained for a significant number of 

soil samples in the large UNSODA database.

 A machine learning model is developed to predict the true AEVs based on the bulk density 

and grain size distributions (GSDs).

 The developed ML model operates very well and provides an accurate estimation of the true 

AEVs from GSDs.
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