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Abstract

Time-dependent density functional theory has become state-of-the-art for describing

photophysical and photochemical processes in extended materials due to its a�ordable

cost. The inclusion of exact exchange was shown to be essential for the correct descrip-

tion of the long-range asymptotics of electronic interactions and thus a well-balanced de-

scription of valence, Rydberg and charge-transfer excitations. Several approaches for an

e�cient treatment of exact exchange have been established for the ground state, while

implementations for excited-state properties are rare. Furthermore, the high computa-

tional costs required for excited-state properties in comparison to ground-state compu-

tations often hinder large-scale applications on periodic systems with hybrid functional

accuracy. We therefore propose two approximate schemes for improving computational

e�ciency for the treatment of exact exchange. Within the auxiliary density matrix

method (ADMM), exact exchange is estimated using a relatively small auxiliary ba-

sis and the introduced basis-set incompleteness error is compensated by an exchange

density functional correction term. Benchmark results for a test set of 35 molecules

demonstrate that the mean absolute error introduced by ADMM is smaller than 0.30.2

pm for excited-state bond lengths and in the range of 0.02 - 0.070.06 eV for vertical

excitation, adiabatic excitation and �uorescence energies. Computational timings for
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a series of covalent-organic frameworks demonstrate that a speed-up of at least one

order of magnitude can be achieved for ES geometry optimizations in comparison to

conventional hybrid functionals. The second method is to use a semi-empirical tight

binding approximation for both Coulomb and exchange contributions to the excited-

state kernel. This simpli�ed Tamm-Danco� approximation (sTDA) achieves an accu-

racy comparable to approximated hybrid density functional theory when referring to

highly accurate coupled-cluster reference data. We �nd that excited-state bond lengths

deviate by 1.1 pm on average and mean absolute errors in vertical excitation, adiabatic

excitation and �uorescence energies are in the range of 0.2 - 0.5 eV. In comparison to

ADMM-approximated hybrid functional theory, sTDA accelerates the computation of

broad-band excitation spectra by one order of magnitude, suggesting its potential use

for large-scale screening purposes.
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1 Introduction

The description of excited states in large extended systems using quantum-mechanical ap-

proaches is still a challenge for theoretical spectroscopy.1 In contrast to the electronic ground

state, the quest of �nding an appropriate model with well-balanced accuracy-cost ratio for

the excited state is complicated by various electronic states of di�erent nature having to

be described simultaneously. For instance, this renders the parametrization of transferable

classical force �elds for excited states an almost impractical task. The cost of highly accu-

rate wave-function methods scales prohibitively with system size making routine large scale

applications impossible. When aiming for a robust and e�cient tool set for the treatment of

extended periodic systems, density functional theory and semi-empirical tight binding ap-

proaches therefore represent a suitable compromise. While time-dependent density functional

theory (TDDFT) has been established as e�cient and broadly applicable for the treatment

of excited states,2,3 there has also been a recent revival of semi-empirical approaches to ex-

tend treatable system sizes from hundreds to thousands of atoms.4 Both the re-emergence of

semi-empirical methods as well as the continuing improvement of density functional approx-

imations are among the most important future developments in computational chemistry.5

The correct description of exact exchange has proven to be crucial for an adequate treatment

of excited states in TDDFT. It has a much greater in�uence on the geometrical displacement

upon excitation, and thus on transition energies and spectra, than the exchange-correlation

functional.6 Benchmarks on molecular systems, including radicals and ions, suggest including

30-40% exact exchange to obtain reliable spectroscopic data.6 Straight-forward evaluation of

the two-electron exact exchange integrals leads to a formal scaling of N4 with system size N

for localized basis sets, emphasizing the need for more cost-e�cient approximation schemes.

An overview of recent developments and the various existing algorithms can e.g. be found

in Ref.7 One approach is the auxiliary density matrix method (ADMM),8 where the gain

in e�ciency is achieved by evaluating a model exact exchange energy within a relatively

small auxiliary basis augmented by a correction term based on a local exchange functional.

The assumption that the basis-set incompleteness error can be corrected in terms of a cost-

e�cient density functional correction term was shown to be well-founded7 and benchmarks

including liquids, solids as well as proteins in solution with up to 3000 atoms revealed that

memory requirements and computational e�ciency are improved by at least one order of

magnitude.8 Kumar et al. showed that ADMM achieves good accuracy for ground- and

excited-state energies, even though rather large errors were found for polarizabilities and hy-

perpolarizabilities.9 The least complex variant of ADMM is based on a simple least-squares

�tting projection of molecular orbitals onto the smaller auxiliary basis. More sophisticated
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ADMM variants have been proposed including density matrix puri�cation and projections

enforcing orthogonality or charge constraints.7 Comparing amongst the developed ADMM

variants, additional constraints as well as an adequate choice of the exchange functional for

the correction term were shown to further improve accuracy for total energies while retaining

a comparable e�ciency. With respect to other sophisticated exact exchange algorithms10

including the pair-atomic resolution-of-the-identity method (PARI-K)11,12 and the chain-of-

spheres algorithm (COSX),13�16 total as well as orbital, reaction and atomization energies

were found to be one to three orders of magnitude less accurate. However, ADMM achieves

a computational e�ciency comparable to the cost required for density �tting Coulomb al-

gorithms. ADMM was thus classi�ed as promising model with an �impressive speedup�,

encouraging further development to improve accuracy and calling for careful optimization of

the required auxiliary basis sets.10

For even larger system sizes of several thousands of atoms it is necessary to go from ab

initio excited-state calculations towards semi-empirical tight binding approximations. In

recent years, a class of tight binding approaches was suggested by Grimme et al.,4 based

on the idea of reducing the computational e�ort of electron repulsion integrals while re-

taining an adequate description of the physics of electronic interactions. More speci�cally,

Coulomb and exchange contributions are approximated using an electron repulsion operator

that captures the correct long-range 1/R asymptotics by construction17�19 but allows for a

short range empirical parametrization. It was shown that this choice provides a balanced

description of valence, charge-transfer as well as Rydberg states. The developed methods

were dubbed simpli�ed TDDFT (sTDDFT)20 or simpli�ed Tamm-Danco� approximation

(sTDA)21,22 corresponding to the related ab initio electronic structure method and were

extended to treat e.g. spin-�ip excitations23�26 or to be combined with the idea of range sep-

aration.27 In contrast to other common tight binding approaches like DFTB,28 sTDA and

sTDDFT involve only a limited number of global parameters which enables their straight-

forward application over the whole periodic table.29 Benchmark results demonstrated that

the simpli�ed approaches achieve computational savings of at least two orders of magnitude

while the loss in accuracy is minor with an average deviation of 0.2 − 0.3 eV for excitation

energies when being compared to conventional TDDFT or experiment. If based on a semi-

empirical ground state reference, sTDA errors were found to be slightly larger with mean

absolute deviations in the range of 0.3−0.5 eV. Most importantly, accuracy was found to be

consistent for both the low-energy valence as well as the high-energy Rydberg transitions.21,22

Simpli�ed approaches were also suggested for the Bethe-Salpeter equation (BSE) and the

GW approximation.30 These methods provided GW ionization potentials within the GW100

test set di�ering only by 0.2 eV while enabling cubic scaling with system size. Deviations

4



in sBSE excitation energies amount up to 0.5 eV and are thus in an error range comparable

to sTDA and sTDDFT.30 A closely related TDDFT+TB approach has been suggested by

Visscher et al. which relies on the same monopole approximation for the electron repulsion

integrals, but is - in contrast to sTDA and sTDDFT - not designed for hybrid, but pure

density functionals.31,32

The mentioned advantages of ADMM and sTDA regarding their physically correct descrip-

tion of exact exchange qualify both approaches as promising for an e�cient calculation

of excited-state properties. Excited-state gradients within the framework of linear response

TDDFT were pioneered for molecular systems by Van Caillie and Amos33,34 as well as Furche

and Ahlrichs.35,36 This work was extended to periodic systems and plane wave basis sets.37

Furthermore, TDDFT excited-state properties for exact exchange have been extended to

global and local hybrid functionals38,39 as well as range separation.40 Implementations are

also available for tight binding approaches including long-range corrections.41 However, algo-

rithms are most often restricted to molecular systems. We implemented sTDA and ADMM-

approximated hybrid density functional excited-state gradients based on the Gaussian and

plane wave (GPW) framework within the CP2K program package.42�44 The GPW methods

allow for a natural extension of algorithms to periodic boundary conditions and thus enable

the treatment of extended systems. The implementation is based on earlier works of Iannuzzi

et al.45 and Strand et al.46 already featuring the calculation of ADMM excitation energies

for model systems of up to 1000 atoms.47 As outlined in section 2.1, the CP2K implemen-

tation is based on the Sternheimer equations48�50, thus depending solely on the occupied

molecular and atomic orbital space48,49. Such a formulation requires e.g. adjustments in

the formulation of the ADMM equations and the sTDA eigenvalue problem, see sections 2.2

and 2.3. Going from molecular to periodic systems also requires Coulomb interactions to be

treated using Ewald summation techniques and the minimum image approximation to cap-

ture exact exchange, see section 2.4. We tested our excited-state gradient implementations

using a molecular benchmark set of Jacquemin et al.51 which is one of the state-of-the-art test

sets for excited-state properties. ADMM-approximated hybrid functional and semi-empirical

sTDA kernels are compared to conventional hybrid functional TDDFT exploiting the therein

provided EOM-CCSD geometries and ES data. Finally, in section 3.2, the computational

e�ciency of the proposed algorithms is demonstrated by applications on porous covalent

organic framework (COF) materials taken from the CURATED COFs database.52,53

5



2 Theoretical background

2.1 The Tamm-Danco� approximation

Within the Tamm-Danco� approximation,54 the excitation energy Ω and corresponding

excited-state eigenvectors X for each excited state are de�ned in terms of the variational

Lagrangian G,

G[X,C,Ω,W̄X] =
∑
κkσ

XT
κkσ

∑
λl

[Fκλσδkl − FklσSκλ]Xλlσ +
∑
κλσ

DX

κλσKκλσ[DX] (1a)

−
∑
κλklσ

Ω(XT
κkσSκλXλlσ − δkl) (1b)

−
∑
klσ

(W̄ X

klσ)T
∑
κλ

1
2
(CT

κkσSκλXλlσ +XT
κkσSκλCλlσ) , (1c)

implying the stationary conditions

∂G

∂X
= 0 →

∑
κk

[Fµκσδik − FikσSµκ]Xκkσ +
∑
κλ

QT
µκKκλσ[DX]Cλiσ =

∑
κ

ΩSµκXκiσ , (2)

∂G

∂Ω
= 0 →

∑
κλσ

XT
κiσSκλXλjσ = δij , (3)

∂G

∂W̄X
= 0 →

∑
κλklσ

(CT
κkσSκλXλlσ +XT

κkσSκλCλlσ) = 0 . (4)

Eq. (2) represents a hermitian eigenvalue problem which is for molecular orbital (MO) based

formulations solved under the constraint that the excited-state eigenvectors remain orthonor-

malized (Eq. (3)).55 The Lagrange multiplier introducing the normalization constraint of Eq.

(3) is thereby chosen to be equal to the excitation energy Ω according to the canonical gauge

(Eq. (1b)). In an atomic orbital (AO)-based formalism relying solely on occupied MOs,

{i, j, k, l, . . . }, and AOs, {µ, ν, κ, λ, . . . }, it furthermore has to be ensured that the excited-

state eigenvector X is orthogonal to the ground-state (GS) MO coe�cients C (Eq. (4)), a

constraint introduced in the Lagrangian G via the Lagrange multiplier W̄X (Eq. (1c)),

Xijσ =
∑
κλ

CT
κiσSκλXλjσ = 0 . (5)

By taking the derivative of G with respect to the excited-state eigenvectors X and projecting

onto the occupied MO coe�cients C, it can be shown that this second normalization con-

straint is representing a projection of the kernel contributions onto the virtual space, already
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inserted in the eigenvalue problem of Eq. (2) in terms of the projection operator Q,

Qµνσ = δµν −
∑
κk

CµkσC
T
κkσSκν , (6)

QT
µνσ = δνµ −

∑
κk

SνκCκkσC
T
µkσ . (7)

Thus the contribution of the W̄X constraint to Eq. (2) is taken into account by inserting

Q, a reformulation which is given in detail in section 1 of the supplementary information

(SI). Both Ω and W̄X constraints are ensured in the TDDFT module of CP2K by explicitly

orthonormalizing the ES eigenvectors as well as by orthogonalizing the ES eigenvectors with

respect to the MO coe�cients at each step of the Davidson algorithm. Eq. (5) implies the

transformation rules from AO to MO basis and vice versa, which are given for vectors V

and matrices M in general as

V AO

µiσ =
∑
k

CµkσV
MO

kiσ , (8)

V MO

ijσ =
∑
κλ

CT
κiσSκλV

AO

λjσ , (9)

MAO

µνσ =
∑
κλkl

SµκC
T
κkσM

MO

klσClλσSλν , (10)

MMO

ijσ =
∑
κλ

CT
κiσM

AO

κλσCλjσ , (11)

with the overlap matrix S being de�ned in terms of the AOs ϕµ(r),

Sµν =

∫
ϕµ(r)ϕν(r) dr . (12)

Depending on the applied density functional, the eigenvalue problem of Eq. (2) comprises

one-electron h, Coulomb J and exact exchange KEX contributions as well as contributions due

to the exchange-correlation (XC) potential V XC

σ (r) or kernel fXCσσ′(r, r
′), with the Kohn-Sham
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matrix F and the kernel matrix K being de�ned as

Fµνσ[D] = hµν + Jµνσ[D]− aEXKEX

µνσ[D] + V XC

µνσ ,

= hµν +
∑
κλσ′

Dκλσ′ [(µν|κλ)− aEXδσσ′(µκ|νλ)] + V XC

µνσ , (13)

Kµνσ[DX] = Jµνσ[DX]− aEXKEX

µνσ[DX] +
∑
κλσ′

fXCµνσ,κλσ′D
X

κλσ′ ,

=
∑
κλσ′

DX

κλσ′

[
(µν|κλ)− aEXδσσ′(µκ|νλ) + fXCµνσ,κλσ′

]
. (14)

aEX is a global parameter to scale the amount of exact exchange and the two-electron repulsion

integrals are de�ned as

(µν|κλ) =

∫
dr

∫
dr′ ϕµ(r)ϕν(r)

1

|r− r′|
ϕκ(r

′)ϕλ(r
′) . (15)

The corresponding density matrices D and DX are de�ned based on the MO coe�cients C

implying symmetrization,

Dµνσ =
∑
k

CµkσC
T
νkσ , (16)

DX

µνσ = 1
2

∑
k

(XµkσC
T
νkσ + CµkσX

T
νkσ) . (17)

Symmetrization is necessary to ensure that the linear response density is real. Furthermore,

within the implementation for periodic systems using a Γ-point only description, we can as-

sume real wave functions. The basis functions and MOs are periodically replicated, integrals

are over the computational unit cell, and all Coulomb terms evaluated using Ewald sums.

2.2 Exact exchange using the Auxiliary Density Matrix Method

(ADMM)

The basic idea of ADMM7,56 is to introduce a small and rapidly decaying auxiliary density

matrix ĎD̂ to speed up the calculation of the exact Hartree-Fock exchange matrix, KEX, with

the latter being evaluated within a smaller auxiliary basis, {µ̌, ν̌, κ̌, λ̌, . . . }{µ̂, ν̂, κ̂, λ̂, . . . }.
The total exchange energy contribution to the ES energy is thus approximated by a model

term, EEX[Ď]EEX[D̂], and to compensate the so-introduced basis-set incompleteness error, a
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correction term based on a local density functional EGGA is added,

EEX[D] ≈ EEX[ĎD̂] +
[
EGGA[D]− EGGA[ĎD̂]

]
. (18)

Di�erent approaches have been developed to obtain the auxiliary density matrix ĎD̂ and

corresponding MO coe�cients ČĈ, e.g. by minimizing solely the square di�erence between

the occupied orbital and auxiliary basis functions or by adding an orthonormality constraint

to the �tting procedure. We will restrict the discussion to the ADMM2 variant, which is

often also dubbed non-puri�ed wave function �tting and which can be expressed in terms

of the projection matrix ǓÛ. For the sake of convenience, we will nevertheless refer to

ADMM2-approximated results in the following by the general acronym ADMM. Auxiliary

basis functions and corresponding auxiliary matrices are indicated as µ̌µ̂ and M̌M̂. The

projection matrix ǓÛ is obtained according to

ǓÛ = Š−1V̌Ŝ−1V̂ , (19)

ĎD̂ = ČČTĈĈT = ǓDǓTÛDÛT , (20)

ČĈ = ǓÛC , (21)

based on the overlap matrices ŠŜ and V̌V̂ of the auxiliary and mixed auxiliary-primary

basis,

Šµ̌ν̌Ŝµ̂ν̂ =

∫
ϕ̌µ̌(r)ϕ̌ν̌(r)ϕ̂µ̂(r)ϕ̂ν̂(r) dr , (22)

V̌µ̌νV̂µ̂ν =

∫
ϕ̂µ̂ϕ̌µ̌(r)ϕν(r) dr . (23)

The exact exchange matrix KEX (Eq. (14)) is thus approximated within ADMM as

KEX

µνσ[DX] ≈ KEX,ADMM

µνσ [DX] =
∑
µ̌ν̌

ǓT
µ̌µǨ

EX

µ̌ν̌σ[ĎX]Ǔν̌ν +KGGA,ES

µνσ

∑
µ̂ν̂

ÛT
µ̂µK̂

EX

µ̂ν̂σ[D̂X]Ûν̂ν +KGGA,ES

µνσ ,

(24)

with the local GGA exchange density functional correction term

KGGA,ES

µνσ =
∑
κλσ′

fGGAµνσ,κλσ′ [D]DX

κλσ′ −
∑
µ̌ν̌

∑
κ̌λ̌σ′

ǓT
µ̌µf

GGA

µ̌ν̌σ,κ̌λ̌σ′
[Ď]Ǔν̌ν

∑
κλ

Ǔκ̌κD
X

κλσ′Ǔ
T

λ̌λ

∑
µ̂ν̂

∑
κ̂λ̂σ′

ÛT
µ̂µf

GGA

µ̂ν̂σ,κ̂λ̂σ′
[D̂]Ûν̂ν

∑
κλ

Ûκ̂κD
X

κλσ′Û
T

λ̂λ
.

(25)

9



If relying also on an ADMM-approximated GS reference, exchange contributions to the KS

matrix F of Eq. (13) imply an analogous correction with the second term of Eq. (24) now

depending on the XC potential,

KGGA,GS

µνσ = V GGA

µνσ [D]−
∑
µ̌ν̌

ǓT
µ̌µV

GGA

µ̌ν̌σ [Ď]Ǔν̌ν
∑
µ̂ν̂

ÛT
µ̂µV

GGA

µ̂ν̂σ [D̂]Ûν̂ν . (26)

2.3 Semi-empirical Coulomb and Exchange contributions within

the simpli�ed Tamm-Danco� approximation (sTDA)

In contrast to conventional TDA, sTDA21 neglects all contributions due to the exchange-

correlation kernel and approximates the remaining two-electron repulsion integrals based on

the semi-empirical Mataga-Nishimoto-Ohno-Klopman operator γ(A,B).17�19 The simpli�ed

kernel contribution to Eq. (2) is given as∑
λ

KsTDA

µλσ [DX]Cλiσ =
∑
AB

(1− s)γJ(A,B)
≈
CB
µiσ

∑
λAlσ′

C̃λAlσ′X̃λAlσ′

−
∑
AB

γEX(A,B)
∑
l

≈
XB
µlσq

A
ilσ (27)

with γ(A,B) describing either Coulomb (J) or exchange (EX) interactions depending on the

interatomic distance RAB of atoms A and B,

γJ(A,B) =

(
1

(RAB)α + η−α

)1/α

, (28)

γEX(A,B) =

(
1

(RAB)β + (aEXη)−β

)1/β

. (29)

Note that the nomenclature classifying Eqs. (28) and (29) as exchange- or Coulomb-like

interaction operators di�ers from the original paper21 to match with the de�nitions for

ADMM. The parameter s is equal to −1 for singlet closed-shell wave functions, for triplet

closed-shell it is set to s = 1 and for open-shell wave-functions to s = 0. Four di�erent

global parameters are included: the chemical hardness η which is speci�ed for each element

according to Ref.,57 powers of α and β allowing to modify the distance dependence of γ

independently for either Coulomb or exchange interactions, and, analogously to conventional

TDA, a Fock-exchange mixing parameter aEX. The latter can be chosen freely, it was adjusted

for molecular systems and global hybrids21 and in this case shows best performance for

aEX = 0.5.22 Furthermore, we chose to set γEX(A,B) to zero if aEX = 0. The transition
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density charge qA is de�ned as

qAijσ =
∑
κA

C̃T
κAiσ

C̃κAjσ (30)

with the sum over κA running over all atomic orbitals located at atom A. C̃ or X̃ are Löwdin

transformed MO coe�cients or excitation vectors and
≈
C and

≈
X related doubly contracted

intermediates,

C̃µiσ =
∑
η

S1/2
µη Cηiσ , (31)

≈
CA
µiσ =

∑
ηA

S1/2
µηA

C̃ηAiσ . (32)

2.4 Periodic boundary conditions

When generalizing the methods to account for periodic boundary conditions (PBC), an

adequate description of the long-range Coulomb forces using Ewald summation techniques

is required to ensure convergence of the slowly decaying potential at large distances.58 In

the case of sTDA, the Coulomb operator is therefore split into a semi-empirical short-range

and an exact long-range contribution,

γJ(A,B)
PBC−−→ γJ

PBC
(A,B) +

1

RAB

, (33)

implying that the semi-empirical electron repulsion operator γJ

PBC
for the short-range con-

tribution is cut o� at an atom-speci�c radius Rcut,

γJ
PBC

(A,B) = 0 if RAB > Rcut ,

γJ
PBC

(A,B) = η if RAB < 10−6 a.u. ,

γJ
PBC

(A,B) = γJ(A,B) if 10−6 a.u. ≤ RAB < (Rcut −Rsmooth) ,

γJ
PBC

(A,B) = f(R̄)γJ(A,B)− f(R̄)

RAB

if (Rcut −Rsmooth) ≤ RAB ≤ Rcut . (34)

Rcut is de�ned according to the cuto� radius of the atomic basis functions and the function

f(R̄) smoothes the potential around Rcut and is chosen such that both the �rst and second

derivative of γJ vanish at the cut-o� borders,

f(R̄) = −6R̄5 + 15R̄4 − 10R̄3 + 1 , (35)

R̄ = RAB − (Rcut −Rsmooth)/Rsmooth . (36)
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Thus, the polynomial f(R̄) is constructed to include those terms of the Taylor expansion

of 1/R which ensure that f(R̄ = 0) = df(R̄=0)
dR

= d2f(R̄=0)
dR2 = 1 and f(R̄ = 1) = df(R̄=1)

dR
=

d2f(R̄=1)
dR2 = 0 with integer expansion coe�cients chosen accordingly, so that γJ

PBC
(A,B) →

γJ(A,B) for the limit of RAB → Rcut − Rsmooth and γJ
PBC

(A,B) → 1/RAB for RAB → Rcut.

Rsmooth de�nes the width of the smoothing function and is set to Rsmooth = 1a.u.. The

long-range contribution 1
RAB

is calculated using the smooth particle mesh Ewald method as

implemented for tight binding approaches in CP2K,59 scaling as N logN with system size N .

Exchange interactions based on γEX are treated by implying the minimum image convention,

thus restricting the sum over AB to neighbors within the unit cell.

2.5 The excited-state Lagrangian in the Tamm-Danco� approxima-

tion

Nuclear gradients for the excited state are state-of-the-art in many program codes, so that the

general procedure will only be outlined in short to discuss modi�cations that are necessary

for ADMM and sTDA kernels. To avoid the computational cost of calculating the �rst-order

response of the MO coe�cients and to take into account the geometry dependence of the

AOs, the Lagrangian of Eq. (1) needs to be extended by means of two additional constraints

and thus is given as,

L[X,C,Ω,W̄X, Z̄,W̄C] = G[X,C,Ω,W̄X] (37a)

+
∑
κkσ

(Z̄κkσ)T
∑
λ

(FκλσCλkσ − SκλCλkσεkσ) (37b)

−
∑
klσ

(W̄ C

klσ)T(Sklσ − δkl) (37c)

The �rst additional constraint (Eq. (37b)) ensures the stationarity of the GS Kohn-Sham

(KS) equations, the Brillouin condition, which can be rearranged using the de�nition of Q

to emphasize the equivalence with MO-based formulations,∑
iaσ

Z̄iaσFaiσ =
∑
iκλσ

Z̄iλσQ
T
κλσFκiσ =

∑
iκλσ

Z̄iλσ(FλκσCκiσ − SλκCκiσεiσ) . (38)

Note that only the virtual-occupied part of the Z vector Z̄ is taken into account and that

the occupied-occupied part is implied to be zero,

Z̄ijσ =
∑
κλ

Z̄iλσSλκCκjσ = 0 . (39)
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The second additional constraint (Eq. (37c)) ensures the orthogonality of the occupied MOs

and, in analogy to W̄X and Z̄, the hereby introduced Lagrange multiplier W̄C is assumed to

be symmetric. W̄C and Z̄ are determined by taking the derivative of L with respect to the

MO coe�cients C and projecting onto either the virtual or occupied orbital space,

∂L

∂C
C = 0 → W̄C ;

∂L

∂C
Q = 0 → Z̄ . (40)

The �nal equations for the W̄C multiplier are given as

W̄ C

ijσ = 1
2
Hijσ[P] +

∑
κλ

XT
κiσ(ΩSκλ − Fκλσ)Xλjσ +

∑
κλσ′

∑
ητσ′′

DX

κλσ′D
X

ητσ′′g
XC

κλσ′,ητσ′′,ijσ , (41)

with the relaxed and unrelaxed di�erence density matrices P and T being de�ned as

P = T + DZ , (42)

DZ

µνσ = 1
2

∑
k

(Z̄µkσC
T
νkσ + CµkσZ̄

T
νkσ) , (43)

Tµνσ =
∑
k

XµkσX
T
νkσ − 1

2

∑
κλkl

(
CµkσX

T
κkσSκλXλlσC

T
νlσ + CµlσX

T
κlσSκλXλkσC

T
νkσ

)
. (44)

Note that the unrelaxed di�erence density matrix T in the AO basis as de�ned in Eq.

(44) corresponds to the sum of the virtual-virtual and occupied-occupied blocks of the cor-

responding MO matrix TMO with the mixed virtual-occupied blocks being equal to zero.

Regarding the comparison to MO formulations,35,36 the matrix W̄C as de�ned in Eqs. (37)

and (41) only comprises occupied-occupied contributions while analogous MO formulations

treat the combined occupied-virtual space. Contributions referring to the virtual space of

Refs. (35,36) are included in our formalism via Q projections, explicitly taken into account

due to the reformulated Brillouin condition (Eq. (38)) and the W̄X constraint. Furthermore,

the intermediate H stems from the KS matrix contributions of Eq. (14) and thus the ex-

plicit formula depends on the chosen GS reference, given here for hybrid functionals with or

13



without ADMM,

Hijσ[M] =
∑
κλσ′

Mκλσ′
[
2(κλ|ijσ)− aEXδσσ′ [(κiσ|λjσ) + (κjσ|λiσ)] + 2fXCκλσ′,ijσ

]
, (45)

HADMM

ijσ [M] =
∑
κλσ′

Mκλσ′
[
2(κλ|ijσ) + 2fXCκλσ′,ijσ

]

− aEX
∑
κ̂λ̂σ′

∑
κ̌λ̌σ′

δσσ′(ǓÛMǓTÛT)κ̌λ̌κ̂λ̂σ′

 ∑
ηη̌η̂τ τ̌ τ̂

CT
ηiσǓ Û

T
η̌η̂η

[
(κ̌η̌κ̂η̂|λ̌τ̌ λ̂τ̂) + (κ̌τ̌ κ̂τ̂ |λ̌η̌λ̂η̂)

]
Ǔ Û τ̌ τ̂ τCτjσ



− 2aEX

∑
κλσ′

δσσ′Mκλσ′f
GGA

κλσ′,ijσ +
∑
κ̌λ̌κ̂λ̂σ′

δσσ′(ǓÛMǓÛT)κ̌λ̌κ̂λ̂σ′

 ∑
ηη̌η̂τ τ̌ τ̂

CT
ηiσǓ Û

T
η̌η̂ηf

GGA

κ̌λ̌κ̂λ̂σ′,η̌τ̌ η̂τ̂σ
Ǔ Û τ̌ τ̂ τCτjσ


 .

(46)

The linear Z̄ vector equation,

AZ̄ = −R , (47)∑
κ

Z̄T
κiσ [Fκµσ − Sκµεiσ] +Hiµσ[DZ] = −Riµσ , (48)

contains contributions on the left-hand side, which stem from the KS matrix (Eq. (13)) and

are independent of the chosen excited-state kernel K (Eq. (14)). Such a dependence is solely

included on the right-hand side R, summarizing a �rst term stemming from the KS matrix

as well as kernel contributions which have to be adjusted for ADMM and sTDA,

Riµσ = Hiµσ[T]

+ 2
∑
κ

XT
κiσKκµσ[DX]− 2

∑
κk

XT
κkσSκµKikσ[DX] + 2

∑
κλσ′

∑
ητσ′′

DX

κλσ′D
X

ητσ′′g
XC

κλσ′,ητσ′′,µiσ .

(49)

Finally, the gradient Lζ with respect to the nuclear coordinate ζ can be written in terms

of the e�ective di�erence density matrix Γ analogously to the formulations of Refs.,35,36

Lζ =
∑
µνσ

[
hζµν + V XC(ζ)

µνσ

]
Pµνσ −

∑
µνσ

SζµνΛµνσ

+
∑

µνκλσσ′

[
(µν|κλ)ζ Γµνσκλσ′ + f

XC(ζ)
µνσκλσ′D

X

µνσD
X

κλσ′

]
, (50)
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with the intermediates

Λµνσ =
∑
kl

CµkσW̄
C

klσC
T

νlσ + 1
2

∑
k

εkσ(Z̄µkσC
T
νkσ + CµkσZ̄

T
νkσ)

+
∑
kl

[CT
µkσXνlσ +XT

µkσCνlσ]Kklσ[DX] +
∑
kl

(Ω + Fklσ)δklX
T
µkσXνlσ , (51)

Γµνσκλσ′ = PµνσDκλσ′ +DX

µνσD
X

κλσ′ − aEXδσσ′
[
PµκσDνλσ′ +DX

µκσD
X

νλσ′

]
. (52)

Note that the total nuclear forces sum contributions due to the ES energy functional and

the additional constraints, as listed in Eq. (50), as well as the GS energy contributions Eζ
GS.

Regarding the discussed kernel options, additional terms for the gradient have to be

considered for the transformed ADMM matrix of Eq. (24), with all contributions implying

the chain rule,

∂KEX,ADMM

µνσ [DX]

∂ζ
←
(

(ǓÛT)ζǨK̂EX

[
ǓÛDXǓÛT

]
ǓÛ

)
µνσ

+
(
ǓÛTǨK̂EX

[
ǓÛDXǓÛT

]
ǓÛζ

)
µνσ

+
(
ǓÛTǨK̂EX

[
ǓÛζDXǓÛT + ǓÛDX(ǓÛT)ζ

]
ǓÛ

)
µνσ

+
∑

µ̌ν̌κ̌λ̌µ̂ν̂κ̂λ̂

Ǔ ÛT
µ̌µ̂µ(µ̌κ̌µ̂κ̂|ν̌λ̌ν̂λ̂)ζǓ Û ν̌ν̂ν

∑
κλ

Ǔ Û κ̌κ̂κD
X

κλσǓ Û
T

λ̌λ̂λ
, (53)

encompassing the gradient for the ADMM projection matrix ǓζÛζ ,

ǓÛζ = ŠŜ−1
[
V̌V̂ζ − ŠŜζǓÛ

]
. (54)

Analogous contributions have to be considered for the correction term of Eq. (25). sTDA

kernels bear the advantage that they do not require third order derivatives of the XC kernel,

but additional derivatives of the overlap matrix S1/2,60(
∂S1/2

∂ζ

)
µν

=
∑
κλητ

U S

µκU
S

ηκ

(
∂S

∂ζ

)
ητ

U S

τλ(
√
sλ +

√
sκ)
−1U S

νλ , (55)

with the eigenvalues s and eigenvectors US of the overlap matrix. Based on the outlined

Lagrange formalism, nuclear gradients were implemented for both ADMM-approximated

hybrid functional theory and semi-empirical sTDA in the CP2K program package, relying

for the Z vector equation on already available linear response solvers.45,46 Details on the

applied Block-Davidson algorithm61 and the preconditioners can e.g. be found in.46,62 The

current implementation of ES nuclear gradients paves the way for adiabatic and non-adiabatic

nuclear dynamics, enabling e.g. the combination with trajectory surface hopping methods
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assuming time derivative or empirical coupling vectors.63

3 Results and discussion

3.1 Tests for accuracy � Benchmark results for 35 main-group

molecules

To assess the accuracy of ADMM and sTDA excited-state properties, we performed a bench-

mark on a molecular test set by Budzak et al. containing 35 small molecules. The test set

contains main-group atoms of the �rst and second row as well as sulfur, selenium, chlorine

and bromine. Reported EOM-CCSD geometries were obtained using Gaussian16,64 correlat-

ing all electrons (including core electrons) and choosing a def2-TZVPP basis.65 The nature

of the GS and ES reference structures was furthermore checked by performing frequency

calculations and computing T1 diagnostics. We selected these structures as highest-accuracy

level reference and performed, for comparison, all-electron PBE0 calculations with the Tur-

bomole program package,66 �rst using the def2-TZVPP basis to unravel the e�ect of the

underlying electronic structure method and then increasing the basis set to def2-QZVPP67

quality to get an estimate for the basis set error. Deviations of PBE0 computations with

CP2K to the mentioned EOM-CCSD and PBE0 reference data originate then mainly from

core shells being described in terms of pseudopotentials and correspondingly adapted basis

sets. More speci�cally, we used pseudopotentials and basis sets which were optimized for the

PBE0 functional with the numerical atom code of CP2K and which are available within the

database and distribution of CP2K.42,68 To check consistency of the chosen CP2K basis sets

and pseudopotentials, we investigated a hierarchy of MOLOPT as well as correlation consis-

tent ccGRB-X basis sets. Benchmark data on vertical singlet excitation energies, geometries

of the �rst excited state, adiabatic excitation and �uorescence energies (for PBE0, ADMM-

PBE0 and sTDA kernels based on PBE0 and ADMM-PBE0 references) are given for the two

basis set families in comparison to both EOM-CCSD/def2-TZVPP/Gaussian, PBE0/def2-

TZVPP/Turbomole, and PBE0/def2-QZVPP/Turbomole references in the supplementary

material, demonstrating that MOLOPT and ccGRB-X basis sets yield comparable accuracy

and that converged results are in general obtained for triple-zeta basis sets. For the sake of

convenience, we therefore restrict the following discussion to subsets of MOLOPT type basis

sets, concentrating on the assessment of the mentioned excited-state properties regarding

a) the accuracy of ADMM in comparison to conventional hybrid functional TDDFT as well

as b) the comparison of semi-empirical sTDA and ADMM-approximated hybrid functional

kernels in comparison to highly accurate EOM-CCSD reference data.
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Regarding the performed benchmark, a coupling parameter with a default value of aEX = 0.2

was chosen for the exchange contribution for sTDA computations throughout the following

discussion. As noted in the supplementary information (SI), adjustments only had to be

made in the case of Formylchloride to avoid dissociation upon ES geometry optimization. A

default value for aEX might not correspond to an optimal choice, but a thorough and careful

optimization of aEX for the investigated benchmark sets and the assessed extended materials

is beyond the scope of this work. The general idea of ADMM is to reduce computational

costs of the exact exchange contribution by trading in basis-set incompleteness with a GGA

correction term. The introduced error is then, however, dependent on both the auxiliary

basis-set size as well as the chosen exchange density functional. To discriminate between the

two error sources, the discussed ADMM calculations for the molecular benchmark set are

performed without correction. An optimally chosen GGA exchange functional contribution

could improve the discussed results, with the latter representing thus the lowest limit for the

ADMM accuracy. It was e.g. shown in Ref.7 that exchange functionals like KT3X and OPTX

improve over PBEX for ground-state properties, but analogous investigations for the excited

state are left for future work. For the subsequently discussed assessment of computational

timings for periodic systems, we however included a PBEX exchange functional correction

to account for the additionally required resources.

3.1.1 Excited-state geometries: Impact of the auxiliary basis set size for ADMM

kernels

Relaxed excited-state geometries for PBE0 and ADMM-PBE0 kernels using MOLOPT and

ccGRB-X basis sets as well as sTDA kernels based on PBE0 and ADMM-PBE0 references are

reported in Tables S3 and S4 in the SI. The data includes a corresponding statistical analysis

on the error in the geometrical data with respect to EOM-CCSD/def2-TZVPP, PBE0/def2-

TZVPP, and PBE0/def2-QZVPP references (Tables S6 - S10). In contrast to the study

of Ref.,51 we excluded �rst excited states of the eclipsed structures of Nitrosomethane and

Tri�uoronitrosomethane as these singlet states represent transition-state structures with an

imaginary frequency. Due to the large number of geometries that had to be optimized

considering di�erent kernels and basis sets, we calculated vibrational frequencies only for

those structures that di�ered signi�cantly from the reference geometries, ensuring that they

represent local minima. In the earlier benchmarks of Ref. 69 51, MAEsMADs for bond lengths

of GS structures are predicted to be in the range of 0.5 to 1.0 pm for hybrid functionals,

with largest errors found for CO, CN, CS, and CSe bonds. In general, it is concluded that

deviations are largest for polarized bonds. Furthermore, increased errors were found when

going from the GS to the ES rising up to a MAE range of 0.9 to 2.8 pm for bond lengths. In
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Figure 1 the error introduced by ADMM in bond lengths of GS or �rst singlet ES geometries

is depicted for selected bonds of the 35 molecules of the benchmark set, with �ADMM

error� being de�ned as the deviation that results from comparing the conventional PBE0

computations with approximated ADMM-PBE0 ones choosing the same primary basis set.

The assessment is thus re�ecting the accuracy of the auxiliary basis set size. Corresponding

statistical data can be found in Tables S11, S12, and S13 of the SI.The statistics are based

only on the selected geometrical data listed explicitly in the SI following the selection of

Ref.,51 omitting less polarized C H bonds for larger molecules, but including all bonds

that undergo signi�cant changes to ensure meaningful MEs and MAEs. For both GS and

ES, results relying on the smallest dzp basis, colored in green or blue depending on the

chosen primary basis, deviate signi�cantly from computations using larger auxiliary basis

sets, depicted in orange and red. Predicted bond lengths are too long, with dzp errors

amounting up to 3.8 / 3.5−3.9 / −4.1 pm for GS / ES geometries and being thus much

larger than the corresponding error range for the tzp and tz2p auxiliary basis sets; both tzp

and tz2p bonds combined with a TZVP or TZV2P primary basis deviate by at most 1.0−1.0

or −0.9 pm. Comparing GS and ES distributions, the error spread for the ES is asslightly

broad aser than for the GS. BHowever, both tzp distributions suggest a classi�cation in two

or more groups depending on the type of atoms involved and resulting in two maxima in the

histograms. Bonds including H, S, Se and C-C bonds can be associated with relatively small

errors corresponding to the �rst maximum and Gaussian distribution around 0.0 pm. Larger

deviations in the range of 0.3 to 0.6−0.3 to−0.5 pm can be found for oxygen or halogen bonds

contributing to the second maximum in both GS and ES histograms. Outliers corresponding

to the maximum errors of 1.0−1.0 pm can be traced back to Nitrogen bonds. An analogous

classi�cation and assignment for the dzp auxiliary basis is less conclusive for the ES due to

the broader distributions, but still holds true for the GS with the exception that C-C bonds

fall into the error range of the second maximum around 1.5−1.5 pm.

For comparison, the ADMM error in selected angles of the optimized ES geometries is

depicted in Figure 2, demonstrating that the impact of the chosen auxiliary basis on the

angles is less dependent on the basis set size than it is for the bond lengths even though the

width of the Gaussian distribution is reduced when going from double to triple-zeta basis

sets. An analogous plot for the GS, given in Figure S1 in the SI, looks nearly identical. with

the only di�erence that outliers with maximum errors in the angles rising up to 18.9◦ and 7.9◦

are found for the C-C-C and C-C-H angles of the dzp structures of cyanoacetylene. For the

dzp basis, the ES of this molecule is thus predicted to be signi�cantly less bent in comparison

to auxiliary basis sets with larger cardinal numbers as well as the conventional PBE0 results

with a DZVP, TZVP and TZV2P primary basis. Outliers were checked to con�rm they are
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Figure 1: Error in [pm] for selected bond lengths for a) optimized ground- and b) �rst singlet
excited-state geometries comparing conventional PBE0 and ADMM-PBE0 computations for
di�erent auxiliary (ABS) and primary basis sets (PBS) indicated as ABS / PBS.
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local minima, but further characterization of the excited state would be needed to draw �nal

conclusions. However, smaller angles, as predicted by the dzp auxiliary basis, are in better

agreement with EOM-CCSD and experimental reference data � an agreement which might

be due to fortuitous error cancellation.

Figure 2: Error in [◦] for selected angles for optimized �rst singlet excited-state geometries
comparing conventional PBE0 and ADMM-PBE0 computations.
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A similar and transferable result is found for dihedral angles investigated for a subset of

13 molecules for which excitation leads to a signi�cantly bent excited-state structure. While

dihedral angles of corresponding GS geometries are consistently predicted to describe a planar

geometry for all auxiliary and primary basis set sizes, the bending angle of the excited state

is more accurately described when increasing the cardinal number of the auxiliary basis from

double- to triple-zeta size. Again the e�ect of additional polarization functions as included

within the largest tz2p basis is negligible. A plot for the ADMM error in dihedral angles

analogous to Figure 2 is given in Figure S2 in the SI.

Taking a summarizing look at the corresponding statistical data of Table 1, listing mean

errorsdeviations (MEs)(MDs), mean absolute errorsdeviations (MAEs)(MADs), and stan-

dard deviations (STDs) for bond lengths, angles, and dihedral angles of ES geometries opti-

mized within the various primary and auxiliary basis set combinations, emphasizes again the

impact of the chosen auxiliary basis: while MAEsMADs of the dzp basis amount up to 1.4

pm for bond lengths and up to 0.8◦1.2◦ or 2.1◦ for bond and dihedral angles, tzp results are

converged with remaining errorsdeviations of 0.30.2 pm / 0.2◦0.3◦ / 0.3◦. The ADMM error

isdeviations are negligibly small in comparison to the error of PBE0 or hybrid functionals

in general which was found to be for MAEs in the range of 0.9 to 2.8 pm for bond lengths

in comparison to highly accurate coupled-cluster results69 0.5 to 1.0 pm that was found
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for bond lengths for hybrid functionals in comparison to highly accurate coupled-cluster

results69. ADMM error distributions are relatively broad for the dzp auxiliary basis and

nearly equally narrow for tzp and tz2p basis sets. MEsMDs and MAEsMADs are of the

same magnitude, indicating that the dzp auxiliary basis predicts bonds that are consistently

too long and angles too narrow. This trend is in agreement with the �nding that increas-

ing the amount of exact exchange in hybrid functionals results in shorter bond lengths and

larger bond angles:39,70,71 Going to larger ADMM auxiliary basis set sizes achieves a more

and more accurate description of the fraction of exact exchange that is included in the un-

derlying hybrid functional. It thus increases the Hartree-Fock nature of the bond with the

one-determinant Hartree Fock wave function representing the maximum amount of bond-

ing character and corresponding to shortest bonds. ADMM ES bond lengths are therefore

shortened and bond angles broadened when going from double to triple-zeta auxiliary basis

sets. Studies on the e�ect of exact exchange on dihedral angles furthermore reveal that

hybrid functionals improve on the overestimation of GGA functionals, a result which is thus

in line with our �ndings following the same rationale.72,73This trend is in agreement with the

conclusions of Ref. ,51 with the latter stating that global and range-separated hybrids yield

slightly too short bonds and that functionals with a rather small amount of exact exchange

show negative mean signed errors.

Table 1: Statistics including mean errorsdeviations (MEs)(MDs), mean absolute errors
deviations (MAEs)(MADs), and standard deviations (STDs) for di�erent auxiliary and pri-
mary basis sets (ABS/PBS) visualizing that the ADMM error in ES bond lengths [pm],
angles [◦], and dihedral angles [◦] as well as in the �rst adiabatic excitation (Ead), the �rst
10 vertical excitation (Evert), and the �rst �uorescence (E�) energy [eV] is converged for
auxiliary basis sets of triple-zeta size.

ABS/PBS Bonds [pm] Angles [◦] Dihedrals [◦]
MEMD MAEMAD STD MEMD MAEMAD STD MEMD MAEMAD STD

dzp/DZVP 1.31-1.33 1.311.33 0.550.62 -0.741.11 0.851.21 1.192.54 2.07-2.14 2.072.14 1.201.17
dzp/TZVP 1.37-1.39 1.371.39 0.570.66 -0.751.11 0.851.23 1.132.74 1.94-2.00 1.942.00 1.111.10
dzp/TZV2P 1.38-1.39 1.381.39 0.560.64 -0.731.13 0.831.23 1.182.72 2.05-2.11 2.052.11 1.231.18
tzp/TZVP 0.21-0.21 0.230.23 0.250.25 -0.110.20 0.210.33 0.350.66 0.07-0.11 0.340.17 0.540.18
tzp/TZV2P 0.25-0.21 0.260.22 0.240.23 -0.130.22 0.200.29 0.320.60 0.30-0.27 0.360.29 0.490.20
tz2p/TZV2P 0.21-0.21 0.220.23 0.260.26 -0.100.20 0.180.28 0.280.62 0.02-0.16 0.130.17 0.160.12
ABS/PBS EvertEad [eV] EadEvert [eV] E� [eV]

MEMD MAEMAD STD MEMD MAEMAD STD MEMD MAEMAD STD
dzp/DZVP -0.0640.002 0.0950.044 0.1170.061 -0.0230.030 0.0480.091 0.0540.117 -0.0550.043 0.0800.084 0.0740.094
dzp/TZVP -0.0580.008 0.0910.049 0.1090.063 -0.0250.035 0.0550.089 0.0610.111 -0.0570.045 0.0830.087 0.0750.097
dzp/TZV2P -0.0620.009 0.0930.048 0.1090.061 -0.0280.036 0.0540.088 0.0580.108 -0.0580.048 0.0810.085 0.0730.092
tzp/TZVP -0.012-0.007 0.0360.020 0.0570.030 0.0040.005 0.0220.035 0.0310.050 -0.002-0.003 0.0220.025 0.0300.037
tzp/TZV2P -0.015-0.004 0.0350.019 0.0480.029 0.0040.009 0.0220.036 0.0320.049 0.003-0.001 0.0220.024 0.0290.036
tz2p/TZV2P -0.021-0.006 0.0330.018 0.0440.028 -0.0040.014 0.0160.033 0.0220.046 -0.005-0.001 0.0190.022 0.0250.022
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3.1.2 Excited-state geometries: ADMM and sTDA kernels in comparison to

EOM-CCSD references

To analyze the performance of ADMM-PBE0 and sTDA kernels in comparison to highly

accurate EOM-CCSD reference data, we restricted investigations to basis sets of triple-zeta

size. In Figure 3 the error in the geometrical data is given as normal distributions based on

the corresponding MEsMDs and STDs; more detailed statistical analysis and explicit errors

listed for each molecule can be found in sections 3.4 and 3.5 in the SI. To give not only an

upper limit for a desired high-accuracy reference, but also a lower reference point of reachable

performance, conventional hybrid functional PBE0 results are depicted in black, deviating

by MEsMDs of −0.150.18 pm / 0.32◦−0.75◦ / 0.80◦−1.18◦ from the EOM-CCSD reference.

As for the preceding assessment on the ADMM auxiliary basis size, PBE0 results represent

the basis set limit for ADMM computations, a fact which is re�ected in the similarity of

the PBE0 error distributions with the ones obtained for analogous ADMM computations,

colored in orange and red for a tzp auxiliary and a TZVP or TZV2P primary basis, respec-

tively. PBE0 and ADMM-PBE0 results are thus in agreement with the conclusions of Ref.,69

with the latter stating that global hybrids yield slightly too short bonds and that functionals

with a rather small amount of exact exchange show negative signed MEs. MAEs are also

in agreement, with our result of 0.9 pm for the triple-zeta computations being at the lower

bound of the reported MAE range of 0.9 to 2.8 pm for CC3 or CCSDR(3) references. The

relatively good performance can probably be argued with our chosen EOM-CCSD reference

which was shown to yield underestimated TDDFT errors for strongly polarized bonds.69

All in all, we thus con�rm the tendency of PBE0 to provide to compact distances and

that errors are most pronounced for polarized carbonyl bonds. In comparison, error dis-

tributions for sTDA kernels are increasingly broadened when going from PBE0/TZVP to

ADMM-PBE0/TZVP+tzp references. The deviation of the semi-empirical results is most

pronounced for dihedral angles, with maximum errors amounting up to −13.29◦ and −14.1◦

for PBE0/TZVP and ADMM-PBE0/TZVP+tzp references. However, it should be noted

that the error distribution for the dihedrals is still nearly equally broad as the corresponding

PBE0 one with STDs of 3.2-3.4◦ for PBE0 and 4.0-4.1◦. The apparently large mean error of

sTDA in dihedral angles is biased due to the fact that sTDA consistently overestimates the

dihedral angle while PBE0 gives an equally broad distribution of both negative and positive

signed errors. Since the computations were performed using e.g. a default value of aEX = 0.2

for the exact exchange scaling parameter, it remains to be investigated if the overestimation

represents the general di�culty of recovering a weak stabilizing force or if it could be cured

by optimizing the amount of exact exchange in line with Ref.72,73
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Figure 3: Normal distribution based on the mean errors (ME)deviation (MD) and standard
deviation (STD) wrt EOM-CCSD reference geometries in [pm] / [◦] / [◦] for selected a) bond
lengths / b) angles / c) dihedral angles for optimized �rst singlet excited-state geometries
comparing conventional PBE0, ADMM-PBE0 and sTDA computations using triple-zeta ba-
sis sets.
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Table 2: Statistics including mean errors (MEs)deviations (MDs), mean absolute errors
(MAEs)deviations (MADs) and standard deviations (STDs) visualizing the error for both
ADMM-PBE0 and sTDA kernels for excited-state geometries comprising ES bond lengths
[pm], angles [◦] and dihedral angles [◦] as well as �rst adiabatic excitation (Ead), vertical
excitation (Evert) and �uorescence energies (E�) [eV]. Errors in the geometrical data and Ead

are calculated with respect to the EOM-CCSD reference data of Ref.;51 errors in Evert and
E� are referring to PBE0/def2-QZVPP/TURBOMOLE reference computations.

Kernel PBS+ABS
Bonds [pm] Angles [◦] Dihedrals [◦]

MEMD MAEMAD STD MEMD MAEMAD STD MEMD MAEMAD STD
PBE0 TZVP -0.150.18 0.930.96 1.181.22 0.32-0.75 1.241.59 2.203.16 0.80-1.18 2.342.19 3.213.07
ADMM-PBE0 TZVP+tzp 0.06-0.03 0.920.94 1.181.20 0.20-0.55 1.181.42 2.092.70 0.86-1.28 2.312.23 3.463.13
sTDA@PBE0 TZVP -0.10 1.06 1.50 -0.03 1.60 2.57 -3.98 4.06 3.95
sTDA@ADMM-PBE0 TZVP+tzp -0.28 1.03 1.35 -0.05 1.51 2.34 -4.03 4.14 4.06

Evert [eV]Ead [eV] Ead [eV]Evert [eV] E� [eV]
MEMD MAEMAD STD MEMD MAEMAD STD MEMD MAEMAD STD

PBE0 DZVP -0.020.16 0.050.16 0.060.12 -0.160.27 0.300.37 0.420.42 -0.050.16 0.060.16 0.050.10
PBE0 TZVP -0.010.15 0.030.15 0.030.11 -0.150.26 0.290.36 0.410.41 -0.040.15 0.050.15 0.040.10
PBE0 TZV2P 0.000.13 0.020.13 0.030.12 -0.130.24 0.280.34 0.400.41 -0.020.12 0.020.13 0.020.10
ADMM-PBE0 TZVP+tzp -0.010.13 0.030.13 0.040.10 -0.140.25 0.290.36 0.410.41 -0.050.15 0.070.15 0.060.08
sTDA@PBE0 TZVP -0.45 0.45 0.18 -0.23 0.34 0.39 -0.27 0.30 0.21
sTDA@ADMM-PBE0 TZVP+tzp -0.34 0.34 0.17 -0.10 0.33 0.44 -0.14 0.18 0.16

3.1.3 Vertical excitation energies

Benchmarking excited-state methods with the focus on vertical excitation energies has been

established as a common assessment tool (see e.g. Ref.74 and references therein). Here one

assumes that excitations occur without a change in geometry. Corresponding studies showed

that TDDFT excitation energies, which are classi�ed as Rydberg states or associated with

a signi�cant amount of charge transfer, are underestimated leading to errors in the order of

several eV.75 A common remedy is to include exact exchange, suggesting that the investi-

gated ADMM-approximated hybrid kernel as well as the sTDA kernel with its motivation to

capture the correct physics and asymptotics of electronic interactions could be well-suited

compromises to retain su�cient accuracy while reaching high e�ciency for a broad range of

applications. Analyzing the nature of a transition is beyond the scope of the current work

and, for the sake of convenience, we restricted the analysis of vertical excitation energies

to a direct comparison of the �rst 10 excitation energies with states being assigned solely

by the corresponding ES energy. Such a simpli�ed comparison might not be justi�ed and

lead to wrong assignments when comparing di�erent basis set sizes, but should give a valid

assessment of the accuracy of the di�erent kernels for basis sets of the same type. Figure

4 is displaying normal distributions based on the MEMD and STD for the �rst 10 vertical

excitation energies for optimized geometries, comparing ADMM-PBE0 computations with
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conventional PBE0 results as well as the performance of PBE0, ADMM-PBE0 and sTDA

kernels with respect to a PBE0/TZV2P/CP2K and a PBE0/def2-QZVPP/TURBOMOLE

reference. Corresponding statistical data is furthermore summarized in Tables 1 and 2 as

well as in section 4 in the SI. As shown by the upper plot on the left, the auxiliary basis set

size reduces � in analogy to our �ndings for the geometrical data � the ADMM error in the

vertical excitation energies when increasing from double-zeta to triple-zeta size and brings

only little further improvement when adding polarization functions. Taking the PBE0 com-

putations within the largest TZV2P basis as reference exposes the impact of the increasingly

large primary basis set as visualized in the upper plot on the right: PBE0 / DZVP as well

as ADMM-PBE0 / DZVP+dzp computations show an equally broad error distribution with

MEsMDs and STDs rising up to 0.42−0.39 eV and 0.720.71 eV, respectively. The broad

distribution emphasizes the insu�ciency of double-zeta basis sets and that discrepancies

between DZVP and TZV2P basis sets are, as already commented on at the beginning of

the section, presumably too large to allow for a straight-forward comparison of excitation

energies. On the other end of the accuracy spectrum, ADMM-PBE0 / TZV2P+tz2p results

have a relatively sharp distribution with a ME and STD of −0.020.01 eV and 0.040.22 eV.

TZVP errors for the PBE0, ADMM-PBE0 and sTDA kernels lie in between those extreme

values, highlighting that ADMM has only a negligible impact on excitation energies and that

MEsMDs of sTDA are below 0.280.44 or 0.190.36 eV depending on the chosen GS reference.

This result is in agreement with the error range of 0.2 − 0.5 eV of the original molecular

benchmark studies.21,22

3.1.4 Adiabatic excitation energies and �uorescence

Adiabatic excitation energies, de�ned as the energy di�erence between lowest vibrational

levels of the relaxed ground- and excited-state energies, are often benchmarked to assess ES

methods. In contrast to vertical excitation energies, adiabatic excitations have the advan-

tage of being experimentally observable and less structure sensitive. They show not a linear,

but a quadratic dependence on nuclear displacements.76 The di�erence between calculated

vertical and adiabatic excitation energy is the ES relaxation energy and �uorescence ener-

gies are de�ned as vertical de-excitation energies. The errors in adiabatic excitation and

�uorescence energies for the investigated 35 molecules are depicted in Figures 5 and 6, the

former comparing the ADMM errors for di�erent auxiliary basis set sizes with respect to

conventional PBE0 and the latter assessing the performance of ADMM and sTDA kernels

for adiabatic excitation energies with respect to EOM-CCSD reference data and for �uores-

cence energies with respect to the performed PBE0/def2-QZVPP/Turbomole computations,

respectively.The error in adiabatic excitation and �uorescence energies for the investigated
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Figure 4: Normal distribution based on the mean error (ME)deviation (MD) and standard
deviation (STD) for vertical excitation energies in [eV] depicting a) the error introduced
by ADMM-PBE0 in comparison to conventional PBE0 computations (upper left plot), b)
the performance of PBE0, ADMM-PBE0 and sTDA kernel computations using double-
and triple-zeta basis sets in comparison to a PBE0/TZV2P/CP2K reference (upper right
plot) as well as c) an analogous assessment of the kernels with respect to a PBE0/def2-
QZVPP/Turbomole reference (lower plot).
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35 molecules is depicted in Figures ?? and ??, each �gure showing in its upper plot ADMM

errors for di�erent auxiliary basis set sizes and in the lower plot the performance of ADMM

and sTDA kernels. The latter is assessed for adiabatic excitation energies with respect

to EOM-CCSD reference data and for �uorescence energies with respect to the performed

PBE0/def2-QZVPP/Turbomole computations. Explicit data and a corresponding statistical

analysis is given in sections 5 and 6 of the SI. Despite the varying references, ADMM errors

are comparable for both excitation and de-excitation process, ranging from −0.3 to -0.1−0.2

to 0.2 or 0.3 eV for the smallest dzp auxiliary basis. tzp and tz2p auxiliary basis sets reduce

the maximum error to 0.1 or −0.060.1 or 0.12 eV, respectively. Corresponding MEsMDs

are of meV magnitude and MAEsMADs smaller than 0.020.03 eV. Analysing the total error

of the di�erent kernels in the scatter plots of Figure 6the lower plots highlights that sTDA

errors are consistently shifted to larger and more positiveeither smaller or more negative

errors. The correlation between the relative shift of sTDA errors with respect to both PBE0

and EOM-CCSD results and the considered amount of exact exchange was not investigated

any further, but will be part of future work. However, even when choosing a non-optimized

fraction of 0.2 for the coupling parameter aEX of Eq. 29, sTDA curves are close to the hybrid

functional results when comparing to EOM-CCSD reference data achieving statistical mea-

sures of the same order of magnitude, with MEsMDs of 0.2 / −0.1 / −0.10.2 / 0.3 / 0.3 eV,

MAEsMADs of 0.3 / 0.3 / 0.30.3 / 0.4 / 0.4 eV and maximum errors of −1.3 / 1.0 / 1.01.3 /

1.3 / 1.4 eV for sTDA / ADMM-PBE0 / PBE0 adiabatic excitation energies. Switching to a

PBE0 / TURBOMOLE reference for �uorescence energies favors PBE0 and ADMM-PBE0

results over the semi-empirical ones with the former now only accounting for deviations in

the basis sets and the ADMM error with MEs of −0.05 / −0.05 eV, MAEs of 0.07 / 0.05 eV

and maximum errors of −0.2 / 0.1 eV for ADMM-PBE0 / PBE0. sTDA errors are however

consistent yielding an equivalent ME, MAE, and maximum error of 0.3 eV.and MDs of −0.3

/ 0.2 / 0.2 eV, MADs of 0.3 / 0.2 / 0.2 eV and maximum errors of −0.4 / 0.4 / 0.6 eV for

sTDA / ADMM-PBE0 / PBE0 �uorescence energies.
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Figure 5: ADMM error distribution in a) adiabatic excitation and b) �uorescence energies
comparing approximated ADMM-PBE0 and conventional PBE0 results for di�erent auxiliary
basis set sizes [in eV].
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Figure 6: Comparison of a) adiabatic excitation energies with respect to EOM-CCSD ref-
erence data and b) �uorescence energies with repsect to PBE0/def2-QZVPP/Turbomole
reference data for PBE0, ADMM-PBE0, and sTDA kernels [in eV].
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3.2 Increasing computational e�ciency � Treating extended sys-

tems using ADMM-PBE0 and sTDA kernels

To analyze computational timings of ADMM-PBE0 and sTDA excited-state properties and

to demonstrate the suitability of the two approaches for large-scale periodic systems, we

investigated a series of porous covalent organic framework (COF) materials taken from the

CURATED COFs database.52,53 The chosen subset includes the prototypes of the �rst ever
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synthesized COFs77 as well as pairs of COFs which were demonstrated to show more or less

bright �uorescence depending on either accordingly tuned linker molecules or the surround-

ing solvent.78,79 The CURATED COFs database provides cleaned-up DFT-optimized GS

structures at GGA level of accuracy, obtained with PBE functional, D3(BJ) correction, and

DZVP-MOLOPT-SR basis sets. We re-optimized these geometries using a corresponding

ADMM-PBE0 GS reference and triple-zeta ccGRB-T primary and tzp auxiliary basis sets

to ensure a consistent accuracy of both structural and electronic GS and ES properties. The

re-optimized ADMM-PBE0 GS and ES geometries are provided as supplementary informa-

tion. In all calculations a truncated Coulomb operator with a radius of 4 Å has been used.

In Table 3, detailed timings for the �rst 3 ES geometry optimization steps are given for

COF 05000N2 for ADMM-approximated and sTDA kernels in comparison to conventional

PBE0 results with the latter relying on an exact analytical evaluation of the two-electron-

four-center exchange integrals. The formal scaling of both excited-state energy and gradient

implementations is cubic with respect to the number of atomic orbital basis functions and

increases linearly with the number of computed excited states. Memory requirements and

execution times for the main computational steps of the algorithm are analogous to corre-

sponding density functional ground-state implementations, as analyzed in detail in Refs.56

and.43 As outlined in Ref.,46 the computation of electron repulsion integrals (ERIs) repre-

sents the main bottleneck for hybrid functional computations, with the number of integrals

and thus the required memory scaling quadratically with the number of atomic and occu-

pied molecular orbitals, N ×Nocc, when considering sparsity and applying Cauchy-Schwarz

screening. At best linear scaling with a still signi�cant prefactor can be achieved when rely-

ing on additional density matrix screening and when using truncated exchange operators.

The measured total computation time of ≈ 100 hours for a ccGRB-T basis with 2076

basis functions re�ects that an analytical computation of exchange integrals within a large

primary orbital basis cannot provide optimal e�ciency for large periodic systems. The fact

that 31%28% and 57%71%of the PBE0 computation time are solely attributed to the com-

putation of ERIs and derivative electron repulsion integrals (DERIs) emphasizes the need for

approximations. Applying ADMM with a triple-zeta auxiliary basis and thus reducing the

basis-set size by a factor of 2 to 1164 functions, accelerates the computation by a factor of

≈ 4≈ 20 with a remaining total time of 9.03.8 minutes. The small auxiliary basis reduces the

number of ERIs and, in combination with increased sparsity and thus more e�cient Schwarz

screening, the reduction of the basis size results in timings for the integral evaluation that

are reduced by a factor of ≈ 8≈ 10. More drastic is even the speed-up for the computation

of DERIs due to the here applied density-matrix screening. In comparison to PBE0, the

computation of DERIs is 115300 times faster for ADMM-PBE0 and thus represents not 57
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71%, but solely 26% of the total costs. Timings comparable to ADMM-PBE0 can also be

achieved with the semi-empirical tight binding setup: sTDA reduces the total costs to 4.7

2.4 minutes, thus by a factor of ≈840 in comparison to conventional PBE0 and by a factor

of ≈ 2 in comparison to ADMM. The speed-up with respect to ADMM is due to the faster

ERI evaluation relying on the semi-empirical description of both Coulomb and exchange

contributions when solving the ES eigenvalue problem. sTDA and ADMM timings are in

the same order of magnitude, but further acceleration could be expected when switching

to a complete semi-empirical setup for both GS and ES. We are also aware that absolute

timings for the sTDA ES gradient computations could still be improved by further code

optimization. To give an estimate on the required relative costs of ADMM and sTDA for

Table 3: Explicit computational timings [s] for COF 05000N2 comprising 84 atoms / 276
electrons in the unit cell for PBE0, ADMM-PBE0 and sTDA@ADMM-PBE0 kernels. Com-
putations were performed using a ccGRB-T primary basis (2076 basis functions) and a tzp
auxiliary basis (1164 basis functions). Timings are reported for a Intel Xeon E5-2670AMD
EPYC 7742 processor using in total 46081024 cores (256 MPI tasks with 4 OpenMP threads
each), analysing the cost for converging the GS self-consistent �eld (SCF) computation, for
calculating the ES energy and gradient as well as for the computation of the electron re-
pulsion integrals (ERI) needed for the ES energy calculation and the derivative integrals
(DERI) needed for the ES gradient.

PBE0 ADMM-PBE0 sTDA@ADMM-PBE0
GS SCF 301835 13767 13470
ES energy and gradient 19195151 403163 14872
ERI for ES energy 6871653 86131 3372
DERI for ES gradient 12654276 1113 710
Total computation time 22205986 540230 282142

the computation of broad-band absorption spectra and for the geometry optimization of

low-lying excited states we report timings for all six COFs in Table 4. Computations were

performed for the lowest 500 excited states and the geometry optimization of the �rst ES

when selecting a manifold of 8 singlet states. The investigated system sizes range from unit

cells of 84 to 300 atoms and include basis set sizes of 2076 to 7440 basis functions, respec-

tively. Comparing the computational timings for the calculation of the lowest 500 excitation

energies clearly shows the advantage of the semi-empirical setup. While computations using

the ADMM kernel take ≈ 42 to 108.5 hours, sTDA is one order of magnitude faster with a

maximum computation time of less than 4424 minutes. With the current setup, the tight

binding approach is however less favorable for ES geometry optimization. First, the number

of required optimization cycles is increased for �ve out of six COFsthe two COFs 05000N2

and 05001N2. Second, the averaged computation time per optimization cycle is accelerated
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only by a factor of 1.42.5 to 54, so that ADMM-PBE0 and sTDA computation times are of

the same order of magnitude. and for the two COFs 05000N2 and 05001N2, the total sTDA

timings even exceed the corresponding ADMM ones. For both ADMM-PBE0 and sTDA

computations, timings of 45-30 minutes per optimization cycle and total timings of 2.51.5 -

4012 hours for an ES geometry optimization can thus be expected for periodic systems in

the size range of hundreds of atoms and using the indicated computational resources.

Table 4: Computational timings [s] for ADMM-PBE0 and sTDA@ADMM-PBE0 kernels for
a series of �uorescent COFs as required for the computation of broad-band absorption spectra
over the lowest 500 excited states as well as for the ES geometry optimization of the �rst
excited state when selecting a manifold of the lowest 8 singlet states. Timings are reported
for a Intel Xeon E5-2670AMD EPYC 7742 processor using in total 23041024 cores(256 MPI
tasks with 4 OpenMP threads each).

# Atoms # Basis
Absorption Spectra 1. ES optimization
ADMM sTDA ADMM sTDA
Time Time Time Time/StepSteps Time Time/StepSteps

05000N2 84 2076 157586908 2157522 95905608 46118 89376130 32950
05001N2 192 4848 3367823258 24721447 7733220142 155611 3383725036 63755
15100N2 300 7440 3690730995 26232515 15569623473 172922 3780411316 43327
15101N2 192 5028 3093122636 19321328 6796244242 168050 2925812273 41747
20610N2 240 5700 3001421145 21191639 5960334452 108651 166279830 26654
20611N2 262 6188 2796523157 19931884 13612258916 181863 3595512508 36250

To compare the relative accuracy of ADMM-PBE0 and sTDA for periodic systems, the

computed broad-band spectra are depicted in Figure 7. Corresponding vertical excitation,

adiabatic excitation, and �uorescence energies, as well as Stoke's shifts are listed in Table 5.

As highlighted by the six plots of Figure 7, sTDA and ADMM provide absorption spectra

with qualitatively matching oscillator strengths. sTDA excitations are, however, in all cases

shifted to smaller energies, with MAEMADs for the �rst and the �rst ten vertical excitation

energies amounting both up to 0.310.35 eV. Since the exchange mixing parameter aEX was

set to the same value as for the molecular systems (aEX = 0.2), it remains to be investigated

if this apparently systematic shift could be improved by adjusting the amount of exchange.

However, even with this default setting, the MAEMAD in adiabatic excitation and �uores-

cence energies is within the error range found for molecular systems. ADMM-PBE0 and

sTDA energies di�er by 0.42 or 0.400.31 eV, respectively. Corresponding Stoke's shifts are

thus also predicted with a relatively small errordeviation of 0.170.13 eV.
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Figure 7: Comparison of ADMM-PBE0 and sTDA absorption spectra for a series of �uores-
cent COFs.
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Table 5: Vertical excitation (Evert), adiabatic excitation (Ead) and �uorescence energies (E�)
as well as corresponding Stoke's shifts (λ) [eV] for ADMM-PBE0 and sTDA kernels for the
�rst excited singlet state for a series of �uorescent COFs.

Evert Ead E� λ
ADMM sTDA ADMM sTDA ADMM sTDA ADMM sTDA

05000N2 4.714.22 4.954.18 4.404.12 3.873.82 4.494.00 4.163.37 0.220.22 0.790.06
05001N2 3.772.91 3.442.31 2.602.68 2.142.13 2.972.42 2.561.67 0.800.49 0.880.64
15100N2 3.542.42 3.081.98 2.272.56 1.852.10 2.431.43 1.980.96 1.110.99 1.101.02
15101N2 3.102.17 2.671.69 2.042.06 1.461.50 2.181.25 1.680.70 0.920.92 0.980.99
20610N2 3.972.97 3.672.74 2.822.75 2.452.46 3.082.14 2.741.82 0.890.83 0.930.92
20611N2 3.212.56 3.102.25 2.472.44 1.962.07 2.652.01 2.251.38 0.560.55 0.850.87
MAEMAD 0.310.35 0.420.42 0.400.31 0.170.13

4 Conclusions

Approaches based on TDDFT are well established to calculate excited state properties.

However, when dealing with periodic systems, the routine usage of hybrid functionals is

often hindered due to the increased computational costs in comparison to GGA function-

als. We presented two approximate schemes based on the ADMM and sTDA approaches

with the goal to reach hybrid functional accuracy at reduced cost. Benchmark results for
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molecular and periodic systems show that the two methods can indeed reach the required

accuracy for excited-state properties and allow for an e�cient calculation of many excited

states. First, the implemented ADMM-approximated hybrid functional kernel leads to a

speed-up of at least one order of magnitude in comparison to conventional hybrid functional

TDDFT and thus enables practical calculations on large systems of hundreds of atoms at

moderate cost. Timings could be further improved by accelerating the evaluation of the

exact exchange integrals using either standard resolution-of-the-identity approaches or semi-

numerical integration. In comparison to inherent methodological errors of TDDFT due to

the chosen density functional, the loss in accuracy for ADMM-approximated kernels is minor

when choosing auxiliary basis sets of at least triple-zeta size. ADMM / TZVP+tzp MAEs

MADs in excited-state bond lengths are in the range of 0.30.2 pm and corresponding vertical

and adiabatic excitation and �uorescence energies are o� by 0.02 to 0.070.02 to 0.04 eV. In

contrast, conventional PBE0 / TZVP bond lengths and adiabatic excitation energies show

MAEsMADs of 0.91.0 pm and 0.30.4 eV with respect to EOM-CCSD / def2-TZVPP refer-

ence data. The given ADMM accuracy estimate represents a lower limit that was found to be

reliable when choosing the simplest ADMM variant based on basis projection in combination

with a triple-zeta auxiliary basis. It could be further improved by either adding an exchange

density functional correction to compensate the incompleteness error or � regarding the per-

pendicular methodological error � by switching to more sophisticated ADMM schemes with

the latter however increasing the complexity of implementation. The semi-empirical sTDA

method is particularly useful when aiming for broad-band absorption or emission spectra and

e�cient pre-screening of large-scale test sets. An order of magnitude speedup was achieved

with sTDA in comparison to ADMM when computing spectra over the lowest 500 excitation

energies, with resulting timings being in the range of minutes rather than hours. Due to the

reduced amount of ERIs, the sTDA kernel also accelerates timings by a factor of two for

each ES geometry optimization cycle. However, an increased number of optimization steps

can lead to total timings comparable to ADMM. We expect that further savings could be

achieved when optimizing the current sTDA ES gradient implementation as well as when

choosing a semi-empirical GS reference. In comparison to hybrid functional kernels, sTDA

MAEsMADs in excited-state bond lengths with respect to EOM-CCSD reference results are

only slightly increased to 1.1 pm. According to the molecular benchmarks, the error estimate

for vertical and adiabatic excitation and �uorescence energies can be assumed to be below

0.5 eV, a deviation which is slightly increased, but still comparable to the MAEMAD of 0.3

0.4 eV of conventional PBE0 with respect to EOM-CCSD references. Similar relative error

ranges are found for the investigated COFs and a comparison of ADMM and sTDA oscilla-

tor strengths suggests qualitative accuracy of the tight binding method. The most critical
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parameter in the sTDA method is the exact exchange scaling. This parameter should be

adjusted with respect to the selected hybrid functional ground-state reference and a sub-

optimal value can lead to large geometrical errors and even negative excitation energies. In

the case of Formylchloride, the scaling parameter had to be adjusted to avoid dissociation

when optimizing the �rst excited singlet state. Further studies are required to investigate the

optimal fraction of exact exchange for periodic systems since the choice might di�er from the

values that were originally suggested for molecular systems. Further empirical shifts might

also be required when combining the sTDA excited-state method with corresponding semi-

empirical ground-state calculations. A consistent setup which remains to be investigated but

which we expect to pave the way to treat even larger systems. It also remains to be inves-

tigated in future work if e�ciency and accuracy of ADMM-approximated hybrid functional

TDDFT and sTDA are bene�cial for excited-state molecular dynamic simulations.
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