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Abstract
Deep reinforcement learning (DRL) is poised to revolutionise the field of artificial intel-
ligence (AI) by endowing autonomous systems with high levels of understanding of the 
real world. Currently, deep learning (DL) is enabling DRL to effectively solve various 
intractable problems in various fields including computer vision, natural language pro-
cessing, healthcare, robotics, to name a few. Most importantly, DRL algorithms are also 
being employed in audio signal processing to learn directly from speech, music and other 
sound signals in order to create audio-based autonomous systems that have many promis-
ing applications in the real world. In this article, we conduct a comprehensive survey on 
the progress of DRL in the audio domain by bringing together research studies across dif-
ferent but related areas in speech and music. We begin with an introduction to the general 
field of DL and reinforcement learning (RL), then progress to the main DRL methods and 
their applications in the audio domain. We conclude by presenting important challenges 
faced by audio-based DRL agents and by highlighting open areas for future research and 
investigation. The findings of this paper will guide researchers interested in DRL for the 
audio domain.
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1  Introduction

Artificial intelligence (AI) has gained widespread attention in different areas of research 
including computer vision, natural language processing (NLP), robotics, healthcare, and 
especially in audio signal processing. Audio processing covers many diverse fields includ-
ing speech, music and environmental sound processing. In all these areas, AI techniques 
are playing crucial roles in designing audio-based intelligent systems (Purwins et al. 2019). 
One of the prime goals of AI is to create fully autonomous audio-based intelligent agents 
that can listen or interact with their environments to improve their behaviour over time 
through trial and error. Designing such autonomous systems has been a long-standing 
problem, ranging from robots that can react to the changes in their environment, to purely 
software-based agents that can interact with humans using natural language and multime-
dia. Reinforcement learning (RL) (Sutton et al. 1998) represents a principled mathemati-
cal framework of such experience-driven learning. Although RL had some successes in 
the past (Kohl and Stone 2004; Ng et al. 2006; Singh et al. 2002), previous methods were 
inherently limited to low-dimensional problems due to lack of scalability. Moreover, RL 
also has issues of memory, computational and sample complexity—in the case of learn-
ing algorithms (Strehl et al. 2006). Recently, deep learning (DL) models have risen as new 
tools with powerful function approximation and representation learning properties to solve 
these issues.

The advent of DL has dramatically improved the state-of-the-art performance and sig-
nificantly impacted many areas from transportation to health and from social science to 
biology. Deep models such as deep neural networks (DNNs) (Hinton et al. 2012; Mohamed 
et al. 2009), convolutional neural networks (CNNs) (LeCun et al. 1989), and long short-
term memory (LSTM) networks (Hochreiter and Schmidhuber 1997) have also enabled 
many practical applications by outperforming traditional methods in audio signal process-
ing. The use of DL algorithms within RL has accelerated the progress of RL. This has 
given rise to the field of deep reinforcement learning (DRL). DRL embraces the advance-
ments in DL to establish the learning processes, performance and speed of RL algorithms. 
This enables RL to operate in high-dimensional state and action spaces to solve previously 
unsolvable complex problems. Inspired by previous works such as (Lange et al. 2012), two 
outstanding works kick-started the revolution in DRL. The first was the development of an 
algorithm that could learn to play Atari 2600 video games directly from image pixels at 
a superhuman level (Mnih et al. 2015). The second success was the design of the hybrid 
DRL system, AlphaGo, which defeated a human world champion in the game of Go (Silver 
et al. 2016). In addition to playing games, DRL has also been explored in a wide range of 
applications such as computer vision (Le et al. 2021), natural language processing (NLP) 
(Naeem et al. 2020), robotics to control policies (Levine et al. 2016); generalisable agents 
in complex environments with meta-learning (Duan et al. 2016; Wang et al. 2016); indoor 
navigation (Zhu et al. 2017), and many more (Arulkumaran et al. 2017). In particular, DRL 
is also gaining increased interest in audio signal processing.

In audio processing, DRL has been recently used as an emerging tool to address vari-
ous problems and challenges in automatic speech recognition (ASR), spoken dialogue sys-
tems (SDSs), speech emotion recognition (SER), audio enhancement, music generation, 
and audio-driven controlled robotics. In this work, we, therefore, focus on covering the 
advancements in audio processing by DRL. In Fig. 1, we present the cumulative distribu-
tion of publications in core DRL and applied to the audio domain. We note an emerging 
increased interest in the communities of both core and applied DRL. While core DRL grew 
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from 3 to 4 orders of magnitude from 2015 to 2021, applied DRL grew from 2 to 3 orders 
of magnitude in the same period.

There are multiple survey articles on DRL. For instance, Arulkumaran et al. (2017) pre-
sented a brief survey on DRL by covering seminal and recent developments in DRL—
including innovative ways in which DNNs can be used to develop autonomous agents. 
Similarly, in Li (2017), authors attempted to provide comprehensive details on DRL and 
cover its applications in various areas to highlight advances and challenges. Other relevant 
works include applications of DRL in communications and networking (Luong et al. 2019), 
human-level agents (Nguyen et  al. 2017), and autonomous driving (Sallab et  al. 2017). 
None of these articles has focused on DRL applications in audio processing as highlighted 
in Table 1. This paper aims to fill this gap by presenting an up-to-date literature review on 
DRL studies in the audio domain, discussing challenges that hinder the progress of DRL in 
audio, and pointing out future research areas. We hope this paper will help researchers and 
scientists interested in DRL for audio-driven applications.

This paper is organised as follows. A concise background of DL and RL is provided in 
Sect. 2, followed by an overview of recent DRL algorithms in Sect. 3. With those founda-
tions, Sect. 4 covers recent DRL works in the domains of speech, music, and environmen-
tal sound processing; and their challenges are discussed in Sect. 5. Section 6 summaries 
this review and highlights future pointers for audio-based DRL research and Sect. 7 con-
cludes the paper.

2 � Background

2.1 � Deep learning (DL)

Deep neural networks (DNNs) have been shown to produce state-of-the-art results in audio 
and speech processing due to their ability to distil compact and robust representations from 
large amounts of data. The first major milestone was significantly increasing the accuracy 
of large-scale automatic speech recognition (ASR) using fully connected DNNs and deep 
autoencoders around 2010 (Hinton et al. 2012). It focuses to use DNNs with multiple non-
linear modules arranged hierarchically in layers to automatically discover suitable repre-
sentations or features from raw data. These non-linearities allow DNNs to learn compli-
cated manifolds in speech and audio datasets. Various other deep architectures have shown 
the potentials to learn from audio to perform different tasks. Below we discuss these DL 
architectures, which are illustrated in Fig. 2.

Convolutional neural networks (CNNs) are a kind of feedforward neural networks that 
was specifically designed for processing images (Krizhevsky et al. 2012). However, CNNs 
have also been applied to various other fields including NLP (Arora et  al. 2019), audio 
processing (Latif et al. 2019), and text analysis (Wang et al. 2019), and they have shown 
state-of-the-art performance. CNNs consist of a series of convolutional layers interleaved 
with pooling layers, followed by one or more dense layers. Whilst pooling layers reduce 
the spatial size of feature maps to decrease the amount of parameters, the neurons in dense 
layers are connected to every neuron in the preceding layer. In contrast to DNNs, CNNs 
limit the number of parameters and memory requirements dramatically by leveraging on 
two key concepts: local receptive fields and shared weights. A local receptive field refers 
to the region of the layer that is connected to any particular neuron in the next layer—note 
that receptive field, kernel and filter are used interchangeably. Shared weights, on the other 



	 S. Latif et al.

1 3

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f o
ur

 p
ap

er
 w

ith
 th

at
 o

f t
he

 e
xi

sti
ng

 D
R

L-
ba

se
d 

su
rv

ey
s

Re
fe

re
nc

es
Fo

cu
s

D
R

L
A

ud
io

A
pp

lic
at

io
ns

O
th

er
A

pp
lic

at
io

ns
D

et
ai

ls

A
ru

lk
um

ar
an

 e
t a

l. 
(2

01
7)

✓
✗

✗
Th

is
 p

ap
er

 p
re

se
nt

s a
 b

rie
f o

ve
rv

ie
w

 o
f r

ec
en

t d
ev

el
op

m
en

ts
 in

D
R

L 
al

go
rit

hm
s a

nd
 h

ig
hl

ig
ht

s t
he

 b
en

efi
ts

 o
f D

R
L 

an
d 

se
ve

ra
l

cu
rr

en
t a

re
as

 o
f r

es
ea

rc
h

Li
 (2

01
7)

✓
✗

✓
Th

is
 p

ap
er

 p
re

se
nt

s a
 g

en
er

al
is

ed
 o

ve
rv

ie
w

 o
f r

ec
en

t e
xc

iti
ng

ac
hi

ev
em

en
ts

 o
f D

R
L 

an
d 

di
sc

us
se

s c
or

e 
el

em
en

ts
 a

nd
 m

ec
ha

ni
sm

s.
It 

al
so

 d
is

cu
ss

es
 v

ar
io

us
 fi

el
ds

 w
he

re
 D

R
L 

ca
n 

be
 a

pp
lie

d
Lu

on
g 

et
 a

l. 
(2

01
9)

✓
✗

co
m

m
un

ic
at

io
ns

an
d 

ne
tw

or
ki

ng
Th

is
 p

ap
er

 p
re

se
nt

s a
 c

om
pr

eh
en

si
ve

 li
te

ra
tu

re
 re

vi
ew

 o
n 

th
e

ap
pl

ic
at

io
ns

 o
f D

R
L 

in
 c

om
m

un
ic

at
io

ns
 a

nd
 n

et
w

or
ki

ng
, h

ig
hl

ig
ht

s
ch

al
le

ng
es

, a
nd

 d
is

cu
ss

es
 o

pe
n 

is
su

es
 a

nd
 fu

tu
re

 d
ire

ct
io

ns
K

ira
n 

et
 a

l. 
(2

02
0)

✓
✗

au
to

no
m

ou
s

dr
iv

in
g

Th
is

 p
ap

er
 su

m
m

ar
is

es
 D

R
L 

al
go

rit
hm

s a
nd

 a
ut

on
om

ou
s d

riv
in

g,
w

he
re

 (D
)R

L 
m

et
ho

ds
 h

av
e 

be
en

 e
m

pl
oy

ed
.It

 a
ls

o 
hi

gh
lig

ht
s k

ey
ch

al
le

ng
es

 to
w

ar
ds

 re
al

-w
or

ld
 d

ep
lo

ym
en

t o
f a

ut
on

om
ou

s c
ar

s
H

ay
da

ri 
an

d 
Y

ilm
az

 (2
02

0)
✓

✗
tra

ns
po

rta
tio

n
sy

ste
m

s
Th

is
 p

ap
er

 su
m

m
ar

is
es

 e
xi

sti
ng

 w
or

ks
 in

 th
e 

fie
ld

 o
f t

ra
ns

po
rta

tio
n,

an
d 

di
sc

us
se

s t
he

 c
ha

lle
ng

es
 a

nd
 o

pe
n 

qu
es

tio
ns

 re
ga

rd
in

g 
D

R
L

in
 tr

an
sp

or
ta

tio
n 

sy
ste

m
s

O
ur

s (
20

22
)

✓
✓

✗
W

e 
pr

es
en

t a
 c

om
pr

eh
en

si
ve

 re
vi

ew
 fo

cu
se

d 
on

 D
R

L 
ap

pl
ic

at
io

ns
in

 th
e 

au
di

o 
do

m
ai

n,
 h

ig
hl

ig
ht

 e
xi

sti
ng

 c
ha

lle
ng

es
 th

at
 h

in
de

r t
he

pr
og

re
ss

 o
f D

R
L 

in
 a

ud
io

, a
nd

 d
is

cu
ss

 p
oi

nt
er

s f
or

 fu
tu

re
 re

se
ar

ch



A survey on deep reinforcement learning for audio‑based…

1 3

hand, refers to the same weights used across all receptive fields in same layer of CNN, as 
opposed to each receptive field in the layer having its own set of weights. Recently, CNN-
based models have been extensively studied for a variety of audio processing tasks includ-
ing music onset detection (Schlüter and Böck 2014), speech enhancement (Mamun et al. 
2019), ASR (Abdel-Hamid et al. 2014), speech emotion recognition (Latif et al. 2020), etc. 
However, a raw audio waveform with high sample rates might have problems with limited 
receptive fields of CNNs, which can result in deteriorated performance. To handle this per-
formance issue, dilated convolution layers can be used in order to extend the receptive field 
by inserting zeros between their filter coefficients (Chang et al. 2018; Chen et al. 2019).

Recurrent neural networks (RNNs) follow a different approach for modelling sequen-
tial data (Lipton 2015). They introduce recurrent connections to enable parameters to be 
shared across time, which makes them very powerful in learning temporal structures from 
the input sequences (e.g., audio, video). They have demonstrated their superiority over 

Fig. 1   Cumulative distribution of publications per year (data gathered from 2015 to 2021)—from https://​
www.​scopus.​com

Fig. 2   Graphical illustration of different DL architectures

https://www.scopus.com
https://www.scopus.com
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traditional HMM-based systems in a variety of speech and audio processing tasks (Latif 
et al. 2020). Due to these abilities RNNs architectures including long-short term memory 
(LSTM) (Hochreiter and Schmidhuber 1997) and gated recurrent unit (GRU) (Cho et al. 
2014) networks have an enormous impact in the speech community and have been incor-
porated in state-of-the-art audio-based systems. Recently, RNNs have also extended to 
include information in the frequency domain besides temporal information in the form of 
frequency-LSTMs (Li et al. 2015) and time-frequency LSTMs (Sainath and Li 2016). In 
order to benefit from both neural architectures, CNNs and RNNs can be combined into a 
single network with convolutional layers followed by recurrent layers, often referred to as 
convolutional recurrent neural networks (CRNN). Related works have shown CRNNs abil-
ities in ASR (Qian et al. 2016), SER (Latif 2020), music classification (Ghosal and Kolekar 
2018), and other audio related applications (Latif et al. 2020).

Sequence-to-sequence (Seq2Seq) models were motivated due to problems requir-
ing sequences of unknown lengths (Sutskever et  al. 2014). Although they were initially 
applied to machine translation, they can be applied to many different applications involv-
ing sequence modelling. In a Seq2Seq model, while one RNN reads the inputs in order to 
generate a vector representation (the encoder), another RNN inherits those learnt features 
to generate the outputs (the decoder). Seq2Seq models have been gaining much popularity 
in the speech community due to their capability of transducing input to output sequences. 
DL frameworks are particularly suitable for this direct translation task due to their large 
model capacity and their capability to train in an end-to-end manner—to directly map the 
input signals to the target sequences (Zhang et al. 2017; Lu et al. 2016; Liu et al. 2019). 
Various Seq2Seq models have been explored in the speech, audio and language process-
ing literature including recurrent neural network transducer (RNNT) (Graves 2012), mono-
tonic alignments (Raffel et  al. 2017), listen, attend and spell (LAS) (Chan et  al. 2016), 
neural transducer (Jaitly et al. 2016), recurrent neural aligner (RNA) (Raffel et al. 2017), 
and transformer networks (Pham et  al. 2019), among others. In particular, transformer-
based models have achieved unprecedented success in numerous speech and audio process-
ing tasks including audio classification (Chi et al. 2021), speaker recognition (Wang et al. 
2021), and speech-to-text (Bae et al. 2021), to name a few. These transformer models con-
sist of an encoder-decoder architecture and work by leveraging the multi-head self-atten-
tion mechanism to consider the longer-distanced context around a word in a computation-
ally efficient way (Vaswani et al. 2017). This makes them not only pay equal attention to 
all the elements in the sequence to boost accuracy but also results in harnessing the power 
of modern GPUs parallel environment for faster sequence processing compared to RNNs 
(Karita et al. 2019). For a more in-depth discussion about applications of transformers in 
audio processing, we refer interested readers to recent relevant survey papers (Lin et  al. 
2021; Tay et al. 2020).

Generative models have been attaining much interest in the audio community due to 
their abilities to learn the underlying audio distribution. Generative adversarial networks 
(GANs) (Goodfellow et al. 2014), variational autoencoders (VAEs) (Kingma and Welling 
2013), and autoregressive models (Shannon et al. 2012) are extensively investigated in the 
speech and audio processing scientific community. Specifically, they are used to synthe-
sised audio signal from a low-dimensional representation to a high-resolution signal (Hsu 
et al. 2017; Ma et al. 2019; Latif et al. 2018). The synthesised samples are often used to 
augment the training material to improve the performance (Latif et al. 2020). In the autore-
gressive approach, the new samples are synthesised iteratively—based on an infinitely long 
context of previous samples via RNNs (for example, using LSTM or GRU networks)—but 
at the cost of expensive computation during training (Wang et al. 2018).
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2.2 � Reinforcement learning

Reinforcement learning (RL) is a popular paradigm of ML, which involves agents to learn 
their behaviour by trial and error (Sutton et al. 1998). RL agents aim to learn sequential 
decision-making by successfully interacting with the environment where they operate. At 
time t (0 at the beginning of the interaction, T at the end of an episodic interaction, or ∞ in 
the case of non-episodic tasks), an RL agent in state st takes an action a ∈ A , transits to a 
new state st+1 , and receives reward rt+1 for having chosen action a. This process—repeated 
iteratively—is illustrated in Fig. 3.

An RL agent aims to learn the best sequence of actions, known as policy, to obtain 
the highest overall cumulative reward in the task (or set of tasks) that is being trained on. 
While it can choose any action from a set of available actions, the set of actions that an 
agent takes from start to finish is called an episode. A Markov decision process (MDP) 
(Bellman 1966) can be used to capture the episodic dynamics of an RL problem. An MDP 
can be represented using the tuple (S, A, � , P, R). The decision-maker or agent chooses an 
action a ∈ A in state s ∈ S at time t according to its policy �(at|st)—which determines the 
agent’s way of behaving. The probability of moving to the next state st+1 ∈ S is given by 
the state transition function P(st+1|st, at) . The environment produces a reward R(st, at, st+1) 
based on the action taken by the agent at time t. This process continues until the maximum 
time step or the agent reaches a terminal state. The objective is to maximise the expected 
discounted cumulative reward, which is given by:

where � ∈ [0,1] is a discount factor used to specify that rewards in the distant future are less 
valuable than in the nearer future. While an RL agent may only learn its policy, it may also 
learn (online or offline) the transition and reward functions.

3 � Deep reinforcement learning

Deep reinforcement learning (DRL) combines conventional RL with DL to overcome 
the limitations of RL in complex environments with large state spaces or high computa-
tion requirements. DRL employs DNNs to estimate value, policy or model that are learnt 

(1)E�[Rt] = E�

[
∞∑

i=0

� irt+i

]

Fig. 3   Basic RL setting
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through the storage of state-action pairs in conventional RL (Li 2017). Deep RL algorithms 
can be classified along several dimensions. For instance, on-policy vs off-policy, model-
free vs model-based, value-based vs policy-based DRL algorithms, among others. The sali-
ent features of various key characteristics of DRL algorithms are presented and depicted 
in Fig. 4. Interested readers are referred to Li (2017) for more details on these algorithms. 
This section focuses on popular DRL algorithms employed in audio-based applications 
in three main categories: (i) value-based DRL, (ii) policy gradient-based DRL and (iii) 
model-based DRL.

3.1 � Value‑based DRL

One of the most famous value-based DRL algorithms is deep Q-network (DQN), intro-
duced by Mnih et al. (2015), that learns directly from high-dimensional inputs. It employs 
CNNs referred to as Q-network to estimate a value function Q(s, a) by minimizing the loss 
function at ith iteration given by

where yi = �s�∼s[r + �max
a�

Q(s�, a�;�i−1|s, a] defines the ith iteration target and � represents 
the weights of the Q-network. DQN enhances data efficiency and stability of the learning 
process using a technique known as experience replay, where the agent’s experience at 
each time step t, et = {st, at, rt, st+1} is stored in a replay memory. Subsequently, mini-
batches of experience e ∼ D , where D = {e1, e2, e3,… , eN } are randomly selected and 
updated using Q-learning. Post-experience replay, the agent applies �-greedy policy to 
select and execute an action. Although DQN, since inception, has rendered super-human 
performance in Atari games, it is based on a single max operator, given in (2), for selection 
as well as evaluation of an action. Thus, the selection of an overestimated action may lead 
to over-optimistic action value estimates that induces an upward bias. Double DQN 
(DDQN) (Van  Hasseltet et  al. 2016) eliminates this positive bias by introducing two 

(2)Li(�i) = �s,a∼p(.)[(yi − Q(s, a;�i))
2],

Fig. 4   Characteristics of different DRL algorithms
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decoupled estimators: one for the selection of an action, and one for the evaluation of an 
action. Schaul et al. in Schaul et al. (2016) show that the performance of DQN and DDQN 
is enhanced considerably if significant experience transitions are prioritised and replayed 
more frequently. Wang et al. (2016) present a duelling network architecture (DNA) to esti-
mate a value function V(s) and associated advantage function A(s, a) separately, and then 
combine them to get action-value function Q(s, a). Contrary to DQN that follows convolu-
tional layers with a single fully connected layer, DNA employs two fully connected layers 
for the estimation of scalar V(s;�, �) and |A|-dimensional vector A(s, a;�, �) . Here, � repre-
sents convolutional layers parameters, whereas � and � are parameters of two fully con-
nected streams (layers). The two fully connected layers are combined to output a single Q 
value as per the equation articulated below. Results show that DQN and DDQN having 
DNA and prioritised experience replay can lead to improved performance.

Unlike the aforementioned DQN algorithms that focus on the expected return, distribu-
tional DQN (Bellemare et al. 2017) aims to learn the full distribution of the value in order 
to have additional information about rewards. Despite both DQN and distributional DQN 
focusing on maximising the expected return, the latter comparatively results in performant 
learning. Dabney et al. (2018) propose distributional DQN with quantile regression (QR-
DQN) to explicitly model the distribution of the value function. Results demonstrate that 
QR-DQN successfully bridges the gap between theoretic and algorithmic results. Implicit 
quantile networks (IQN) (Dabney et al. 2018), an extension to QR-DQN, estimate quantile 
regression by learning the full quantile function instead of focusing on a discrete number 
of quantiles. IQN also provides flexibility regarding its training with the required number 
of samples per update, ranging from one sample to a maximum computationally allowed. 
IQN has shown to outperform QR-DQN comprehensively in the Atari domain.

The astounding success of DQN to learn rich representations is highly attributed to 
DNNs, while batch algorithms prove to have better stability and data efficiency (requir-
ing less tuning of hyperparameters). The authors in Levine et  al. (2017) propose a 
hybrid approach named as least-squares DQN (LS-DQN) that exploits the advantages of 
both DQN and batch algorithms. Deep Q-learning from demonstrations (DQfD) (Hes-
ter et  al. 2018) leverages human demonstrations to learn at an accelerated rate from 
the start. Deep quality-value (DQV) (Sabatelli et  al. 2018) is a novel temporal-differ-
ence-based algorithm that trains the Value network initially, and subsequently uses it to 
train a Quality-value neural network for estimating a value function. Results in the Atari 
domain indicate that DQV outperforms DQN as well as DDQN. The authors in Arjona-
Medina et  al. (2019) propose RUDDER (return decomposition for delayed rewards), 
which encompasses reward redistribution and return decomposition for Markov deci-
sion processes (MDPs) with delayed rewards. Pohlen et al. (2018) employ a transformed 
Bellman operator along with human demonstrations in the proposed algorithm Ape-X 
DQfD to attain human-level performance over a wide range of games. Results show 
that the proposed algorithm achieves average-human performance in 40 out of 42 Atari 
games with the same set of hyperparameters. Schulman et al. in Schulman et al. (2017) 
study the connection between Q-learning and policy gradient methods. They show that 
soft Q-learning (an entropy-regularised version of Q-learning) is equivalent to policy 
gradient methods and that they perform as well (if not better) than standard variants.

(3)Q(s, a;�, �, �) = V(s;�, �) +
(
A(s, a;�, �) −

1

|A|
∑

A(s, a�;�, �)
)
,
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Previous studies have also attempted to incorporate a memory element into DRL 
algorithms. For instance, the deep recurrent Q-network (DRQN) approach introduced 
by Hausknecht and Stone (2015) was able to successfully integrate information through 
time, which performed well on standard Atari games. A further improvement was made 
by introducing an attention mechanism to DQN, resulting in a deep recurrent Q-network 
(DARQN) (Sorokin et  al. 2015). This allows DARQN to focus on a specific part of the 
input and achieve better performance compared to DQN and DRQN on games. Some other 
studies (Oh et al. 2016; Parisotto and Salakhutdinov 2018) have also proposed methods to 
incorporate memory into DRL, but this area remains to be investigated further.

3.2 � Policy gradient‑based DRL

Policy gradient-based DRL algorithms aim to learn an optimal policy that maximises per-
formance objectives, such as expected cumulative reward. This class of algorithms make 
use of gradient theorems to reach optimal policy parameters. Policy gradient typically 
requires the estimation of a value function based on the current policy. This may be accom-
plished using the actor-critic architecture, where the actor represents the policy and the 
critic refers to value function estimate (Konda and Tsitsiklis 1999). Mnih et al. (Mnih et al. 
2016) proposed the advantage actor-critic (A2C) algorithm, which employs an advantage 
function instead of a value function for updating network weights. The advantage function 
A(st, at) = Q(st, at) − V(st) estimates the benefit of a chosen action over an average action 
for a given state. The authors of Mnih et al. (2016) demonstrate that actor-critic methods 
yield superior results over value-based methods in terms of training speed. They further 
show that asynchronous execution of multiple parallel agents on standard CPU-based hard-
ware leads to time-efficient and resource-efficient learning. The proposed asynchronous 
version of actor-critic, asynchronous advantage actor-critic (A3C) updates policy and value 
functions after every tmax actions or in case a terminal state is reached. For a single update, 
the agent first receives n-step returns by selecting actions based on its exploration policy 
till tmax steps or terminal state. Afterwards, n-step Q-learning updates are computed for 
every state-action pair that are further used in the calculation of a single gradient step. 
A3C exhibits remarkable learning in both 2D and 3D games with action spaces in discrete 
as well as continuous domains. The authors in Babaeizadeh et al. (2017) propose a hybrid 
CPU/GPU-based A3C —named as GA3C — showing significantly higher speeds as com-
pared to its CPU-based counterpart.

Asynchronous actor-critic algorithms, including A3C and GA3C, may suffer from 
inconsistent and asynchronous parameter updates. A novel framework for asynchronous 
algorithms is proposed in Alfredo et  al. (2017) to leverage parallelisation while pro-
viding synchronous parameters updates. The authors show that the proposed parallel 
advantage actor-critic (PAAC) algorithm enables true on-policy learning in addition 
to faster convergence. The authors in O’Donoghue et al. (2016) propose a hybrid pol-
icy-gradient-and-Q-learning (PGQL) algorithm that combines on-policy policy gradi-
ent with off-policy Q-learning. Results demonstrate PGQL’s superior performance on 
Atari games as compared to both A3C and Q-learning. Munos et  al. (2016) propose 
a novel algorithm by bringing together three off-policy algorithms: Instance Sampling 
(IS), Q(� ), and Tree-Backup TB(� ). This algorithm—called Retrace(�)—alleviates the 
weaknesses of all three algorithms (IS has low variance, Q(� ) is not safe, and TB(� ) 
is inefficient) and promises safety, efficiency and guaranteed convergence. Reactor 
(Retrace-Actor) (Gruslys et  al. 2017) is a Retrace-based actor-critic agent architecture 
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that combines time efficiency of asynchronous algorithms with sample efficiency of off-
policy experience replay-based algorithms. Results in the Atari domain indicate that 
the proposed algorithm performs comparably with state-of-the-art algorithms while 
yielding substantial gains in terms of training time. The importance of weighted actor-
learner architecture (IMPALA) (Espeholt et al. 2018) is a scalable distributed agent that 
is capable of handling multiple tasks with a single set of parameters. Results show that 
IMPALA outperforms A3C baselines in a diverse multi-task environment.

Schulman et al. (2015) propose a robust and scalable trust region policy optimisation 
(TRPO) algorithm for optimising stochastic control policies. TRPO promises guaran-
teed monotonic improvement regarding the optimisation of nonlinear and complex poli-
cies having an inundated number of parameters. This learning algorithm makes use of 
a fixed KL divergence constraint rather than a fixed penalty coefficient and outperforms 
a number of gradient-free and policy-gradient methods over a wide variety of tasks. 
Schulman et  al. (2017) introduce proximal policy optimisation (PPO), which aims to 
be as reliable and stable as TRPO but relatively better in terms of implementation and 
sample complexity.

3.3 � Model‑based DRL

Model-based DRL algorithms rely on models of the environment (i.e. underlying 
dynamics and reward functions) in conjunction with a planning algorithm. Unlike 
model-free DRL methods that typically entail a large number of samples to render ade-
quate performance, model-based algorithms generally lead to improved sample and time 
efficiency (Ravindran 2019).

Kaiser et al. (2019) propose simulated policy learning (SimPLe), a video prediction-
based model-based DRL algorithm that requires much fewer agent-environment inter-
actions than model-free algorithms. Experimental results indicate that SimPLe outper-
forms state-of-the-art model-free algorithms in Atari games. Whiteson (2018) propose 
TreeQN for complex environments, where the transition model is not explicitly given. 
The proposed algorithm combines model-free and model-based approaches in order to 
estimate Q-values based on a dynamic tree constructed recursively through an implicit 
transition model. Authors of Whiteson (2018) also propose an actor-critic variant named 
ATreeC that augments TreeQN with a softmax layer to form a stochastic policy network. 
They show that both algorithms yield superior performance than n-step DQN and value 
prediction networks (Oh et al. 2017) on multiple Atari games. Vezhnevets et al. (2016) 
introduce a Strategic Attentive Writer (STRAW), which is capable of making natural 
decisions by learning macro-actions. Unlike state-of-the-art DRL algorithms that yield 
only one action after every observation, STRAW generates a sequence of actions, thus 
leading to structured exploration. Experimental results indicate a significant improve-
ment in Atari games with STRAW. Value Propagation (VProp) (Nardelli et al. 2018) is 
a set of Value Iteration-based planning modules trained using RL and capable of solv-
ing unseen tasks and navigating in complex environments. It is also demonstrated that 
VProp is able to generalise in a dynamic and noisy environment. Schrittwieser et  al. 
(2019) present a model-based algorithm named MuZero that combines tree-based search 
with a learned model to render superhuman performance in challenging environments. 
Experimental results demonstrate that MuZero delivers state-of-the-art performance on 
57 diverse Atari games. Table  2 presents an overview of DRL algorithms at a glance.
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3.4 � Audio processing using DRL

Audio processing using DRL include different components including environment, agent, 
action, and reward. Audio is a 1-dimensional (1D) time-series signal that goes through 
different pre-processing and feature extraction procedures. Pre-processing steps involve 
noise suppression, silence removal, and channel equalisation, which enhances audio sig-
nal quality to build robust and efficient audio-based systems. It has been found that pre-
processing helps to improve DL-based audio systems (Latif et al. 2020). Feature extraction 
usually comes after pre-processing, which aims to convert an audio signal into meaning-
ful, informative, and a reasonably limited number of features. Mel-frequency cepstral coef-
ficients (MFCCs) and spectrograms are considered a popular choice of input features in 
audio-based systems (Latif et al. 2020). These features are given to the DRL agent to per-
form different tasks based on the application. An example scenario is a human speaking 
to a machine trained via DRL as in Fig. 5, where the machine has to act based on features 
derived from audio (among other) signals. We discuss in detail different audio-based sys-
tems next.

4 � Audio‑based DRL

This section surveys related works where audio is a key element in the learning environ-
ments of DRL agents. Table  3 summarises the characterisation of DRL agents for six 
audio-related areas: (I) automatic speech recognition; (II) spoken dialogue systems; (III) 
emotions modelling; (IV) audio enhancement; (V) music listening and generation; and 
(VI) human–robot interaction (HRI). There is a large literature on audio-based DRL and 
it is used in a wide variety of applications. Therefore and in order to keep this review to a 
manageable length, we limit ourselves to these six main areas here. In Sect. 4.7 we briefly 
mention some remaining audio-related areas and other applications.

Fig. 5   Schematic diagram of DRL agents for audio-based applications, where the DL model (via DNNs, 
CNN, RNNs, etc.) generates audio features from raw waveforms or other audio representations for taking 
actions that change the environment from state s

t
 to a next state s

t+1
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4.1 � Automatic speech recognition (ASR)

Automatic speech recognition (ASR) is the process of converting a speech signal into 
its corresponding text by using algorithms. Contemporary ASR technology has reached 
great levels of performance due to advancements in DL techniques. The performance of 
ASR systems, however, relies heavily on supervised training of deep models with large 
amounts of transcribed data. Even for resource-rich languages, additional transcription 
costs required for new tasks hinders the applications of ASR. To broaden the scope of 
ASR, different studies have attempted DRL based models to learn from feedback or 
environment. This form of learning aims to reduce transcription costs and time by pro-
viding positive or negative rewards instead of detailed transcriptions. For instance, Kala 
and Shinozaki (2018) proposed an RL framework for ASR based on the policy gradi-
ent method that provides a new view of existing training and adaptation methods. This 
makes the ASR system self-sufficient to learn from feedback of users and help achieve 
improved speech recognition performance and reduced Word Error Rate (WER) com-
pared to unsupervised adaptation. In ASR, sequence-to-sequence models have shown 
great success; however, these models fail to approximate real-world speech during infer-
ence. Tjandra et al. (2018) solved this issue by training a sequence-to-sequence model 
with a policy gradient algorithm. In contrast to standard training on maximum likeli-
hood estimation (MLE), they used policy gradient to sample the whole transcription 
by directly optimising the negative Levenshtein distance as the reward. Their results 
showed a significant improvement using an RL-based objective and an MLE objective 
compared to the model trained with only the MLE objective. In another study, (Tjandra 
et al. 2019) the authors found that using token-level rewards (intermediate rewards are 
given after each time step) provides improved performance compared to sentence-level 
rewards and baseline systems. In order to solve the issues of semi-supervised training of 
sequence-to-sequence ASR models, Chung et al. (2020) investigated the REINFORCE 
algorithm by rewarding the ASR to output more correct sentences for both unpaired and 
paired speech input data. Experimental evaluations showed that the DRL-based method 
was able to effectively reduce character error rates from 10.4 to 8.7%.

Karita et  al. (2018) propose to train an encoder-decoder ASR system using a 
sequence-level evaluation metric based on the policy gradient objective function. This 
enables the minimisation of the expected WER of the model predictions. In this way, 
the authors found that the proposed method improves speech recognition performance. 
The ASR system of Zhou et al. (2018) was jointly trained with maximum likelihood and 
policy gradient to improve via end-to-end learning. They were able to optimise the per-
formance metric directly with policy learning and achieve 4% to 13% relative improve-
ment for end-to-end ASR. In Luo et al. (2017), the authors attempted to solve sequence-
to-sequence problems by proposing a model based on supervised backpropagation and a 
policy gradient method, which can directly maximise the log probability of the correct 
answer. They achieved very encouraging results on a small scale and a medium scale 
ASR. Radzikowski et  al. (2019) proposed a dual supervised model based on a policy 
gradient methodology for non-native speech recognition. They evaluated tested warm-
start and semi warm-start approaches, and were able to achieve promising results for the 
English language pronounced by Japanese and Polish speakers.

To achieve the best possible accuracy, end-to-end ASR systems are becoming 
increasingly large and complex. DRL methods can also be leveraged to provide model 
compression (He et al. 2018). In Dudziak et al. (2019), RL-based ShrinkML is proposed 
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to optimise the per-layer compression ratios in a state-of-the-art LSTM-based ASR 
model with attention. They exploited RL to push the boundaries of singular value 
decomposition (SVD) based ASR mode compression. Evaluations were preformed on 
LibriSpeech data. Based on the results, the authors found that the RL-based model was 
able to effectively compress a ASR system compared to the manually-compressed mod-
els. For time-efficient ASR, Rajapakshe et  al. (2020) evaluated the pre-training of an 
RL-based policy gradient network. They found that pre-training in DRL offers faster 
convergence compared to non-pre-trained networks, and also achieve improved recogni-
tion in lesser time. To tackle the slow convergence time of the REINFORCE algorithm 
(Williams 1992; Lawson et al. 2018), evaluated Variational Inference for Monte Carlo 
Objectives (VIMCO) and Neural Variational Inference (NVIL) for phoneme recogni-
tion tasks in clean and noisy environments. The authors found that the proposed method 
(using VIMCO and NVIL) outperforms REINFORCE and other methods at training 
online sequence-to-sequence models.

The studies above highlight ways to improve the performance of ASRs by involving 
interaction with the environment using DRL. Despite these promising results, further 
research is required on DRL algorithms towards building autonomous ASR systems that 
can work in complex real-life settings. The REINFORCE algorithm is very popular in 
ASR, therefore, research is also required to explore other DRL algorithms to highlight its 
suitability for ASR.

4.2 � Spoken dialogue systems (SDSs)

Spoken dialogue systems are gaining interest due to many applications in customer ser-
vices and goal-oriented human-computer interaction. Typical SDSs integrate several key 
components including speech recogniser, intent recogniser, knowledge base and/or data-
base backend, dialogue manager, language generator, and speech synthesis, among others 
(Zue and Glass 2000). The task of a dialogue manager in SDSs is to select actions based 
on observed events (Levin et al. 2000; Singh et al. 2000). Researchers have shown that the 
action selection process can be effectively optimised using RL to model the dynamics of 
spoken dialogue as a fully or partially observable Markov Decision Process (Paek 2006). 
Numerous studies have utilised RL-based algorithms in spoken dialogue systems. In con-
trast to text-based dialogue systems that can be trained directly using large amounts of text 
data (Gao et al. 2019), most SDSs have been trained using user simulations (Schatzmann 
et al. 2006). The justification for that is mainly due to insufficient amounts of training dia-
logues to train or test from real data (Serban et al. 2018).

SDSs involve policy optimisation to respond to humans by taking the current state of the 
dialogue, selecting an action, and returning the verbal response of the system. For instance, 
Chen et  al. (Chen et  al. 2020) presented an online DRL-based dialogue state tracking 
framework in order to improve the performance of a dialogue manager. They achieved 
promising results for online dialogue state tracking in the second and third dialogue 
state tracking challenges (Henderson et al. 2014, 2014). Weisz et al. (2018) utilised DRL 
approaches, including actor-critic methods and off-policy RL. They also evaluated actor-
critic with experience replay (ACER) (Wang et al. 2016; Munos et al. 2016), which has 
shown promising results on simple gaming tasks. They showed that the proposed method 
is sample efficient and that performed better than some state-of-the-art DL approaches 
for spoken dialogue. A task-oriented end-to-end DRL-based dialogue system is proposed 
in Cuayáhuitl (2017). They showed that DRL-based optimisation produced significant 
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improvement in task success rate and also caused a reduction in dialogue length com-
pared to supervised training. Zhao and Eskenazi (2016) utilised deep recurrent Q-networks 
(DRQN) for dialogue state tracking and management. Experimental results showed that 
the proposed model can exploit the strengths of DRL and supervised learning to achieve 
faster learning speed and better results than the modular-based baseline system. To present 
baseline results, a benchmark study (Casanueva et al. 2017) is performed using DRL algo-
rithms including DQN, A2C and natural actor-critic (Su et al. 2017) and their performance 
is compared against GP-SARSA (Gašić et al. 2013). Based on experimental results on the 
PyDial toolkit (Ultes et al. 2017), the authors conclude that substantial improvements are 
still needed for DRL methods to match the performance of carefully designed handcrafted 
policies.

In addition to SDSs optimised via flat DRL, hierarchical RL/DRL methods have been 
proposed for policy learning using dialogue states with different levels of abstraction and 
dialogue actions at different levels of granularity (via primitive and composite actions) 
(Cuayáhuitl 2009; Cuayáhuitl et  al. 2010; Dethlefs and Cuayáhuitl 2015; Budzianowski 
et  al. 2017; Peng et  al. 2017; Zhang et  al. 2018). The benefits of this form of learning 
include faster training and policy reuse. A deep Q-network based multi-domain dialogue 
system is proposed in Cuayáhuitl et al. (2016). They train the proposed SDS using a net-
work of DQN agents, which is similar to hierarchical DRL but with more flexibility for 
transitioning across dialogues domains. Another work-related to faster training is pro-
posed by Gordon-Hall et al. (2020), where the behaviour of RL agents is guided by expert 
demonstrations.

The optimisation of dialogue policies requires a reward function that unfortunately is 
not easy to specify. Unless a clear and concrete performance function is available (rather 
unlikely), this stage may require annotated data for training a reward predictor instead of 
a hand-crafted one. In real-world applications, such annotations are either scarce or not 
available. Therefore, some researchers have turned their attention to methods for online 
active reward learning. In Su et al. (2016), the authors presented an online learning frame-
work for a spoken dialogue system. They jointly trained the dialogue policy alongside the 
reward model via active learning. Based on the results, the authors showed that the pro-
posed framework can significantly reduce data annotation costs and can also mitigate noisy 
user feedback in dialogue policy learning. Su et al. (2017) introduced two approaches: trust 
region actor-critic with experience replay (TRACER) and episodic natural actor-critic with 
experience replay (eNACER) for dialogue policy optimisation. From these two algorithms, 
they achieved the best performance using TRACER.

In Ultes et  al. (2017), the authors propose to learn a domain-independent reward 
function based on user satisfaction for dialogue policy learning. The authors showed 
that the proposed framework yields good performance for both task success rate and 
user satisfaction. Researchers have also used DRL to learn dialogue policies in noisy 
environments, and some have shown that their proposed models can generate dialogues 
indistinguishable from human ones (Fazel-Zarandi et  al. 2017). Carrara et  al. (2017) 
propose a clustering approach for online user adaptation in RL-based dialogue sys-
tems. They propose a distance metric and build on previous works in an attempt to 
reduce the number of possible transfers from similar users. Experiments were car-
ried out on a negotiation dialogue task, which showed significant improvements over 
baselines. In another study (Carrara et al. 2018), authors proposed �-safe, a Q-learning 
algorithm, for safe transfer learning for dialogue applications. A DRL-based chat-
bot called MILABOT was designed in Serban et al. (2017), which can converse with 
humans on popular topics through both speech and text—performing significantly 
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better than many competing systems. The text-based chatbot in Cuayáhuitl et al. (2019) 
used an ensemble of DRL agents and showed that training multiple dialogue agents 
performs better than a single agent.

Table  4 shows a summary of DRL-based (spoken) dialogue systems. While not 
all involve spoken interactions, they can be applied to speech-based systems by for 
example using the outputs from speech recognisers instead of typed interactions, i.e. 
ASR systems can be seen as feature extractors from audio data for dialogic interac-
tion. While at first instance it may look like text-based DRL agents would not be able 
to cope with noisy inputs, using ASR-based inputs can be useful because they can be 
enriched with word, sentence, and/or knowledge embeddings for dealing with unob-
served utterances during training. This form of generalisation would be hard to achieve 
(if not impossible) using only audio-based features. In addition, modelling dialogue 
history taking features from multiple utterances in a conversation can help to deal with 
noisy inputs. But what features to include in the dialogue history over multiple turns 
has been and it is still task-specific—task-agnostic features is something that needs to 
be investigated further to benefit the creation of applications bootstrapped by previ-
ous ones. Including low and high-level features ranging from speech features, to mul-
timodal and knowledge features is something that requires further understanding in 
order to draw recommendations for different applications. As a matter of fact and to 
our knowledge, the inclusion of audio features in the dialogue state has been over-
looked in SDSs (with the exception of Zorrilla et al. (2021)) and it could prove useful, 
but this remains to be investigated further.

In terms of application, we can observe in Table 4 that most systems focus on one or 
a few domains (or tasks)—systems trained with a large number of domains is usually 
not attempted, presumably due to the high requirements of data and compute involved. 
Regarding algorithms, the most popular are DQN-based or REINFORCE among other 
more recent algorithms—when to use one over another algorithm still needs to be 
understood better. We can also observe that user simulations are mostly used for train-
ing task-oriented dialogue systems, while real data is the preferred choice for open-
ended dialogue systems. We can note that while transfer learning is an important com-
ponent in a trained SDS, it is not commonplace yet. Given that learning from scratch 
every time a system is trained is neither scalable nor practical, it looks like transfer 
learning will naturally be adopted more and more in the future as more domains are 
taken into account. In terms of datasets, most of them are still small size. It is rare to 
see SDSs trained with millions of dialogues or sentences. As datasets grow, the need 
for more efficient training methods will take more relevance in future systems. Regard-
ing human evaluations, we can observe that about half of research works involve 
human evaluations. While human evaluations may not always be required to answer a 
research question, they certainly should be used whenever learnt conversational skills 
are being assessed or judged. We can also note that there is no standard for specify-
ing reward functions due to the wide variety of functions used in previous works—
almost every paper uses a different reward function. Even when some works use learnt 
reward functions (e.g. based on adversarial learning), they focus on learning to dis-
criminate between machine-generated and human-generated dialogues without taking 
other dimensions into accounts such as task success or additional penalties. Although 
there is advancement in the specification of reward functions by learning them instead 
of hand-crafting them, this area requires better understanding for optimising different 
types of dialogues including information-seeking, chitchat, game-based, negotiation-
based, etc.
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4.3 � Emotions modelling

Emotions are essential in vocal human communication, and they have recently received 
growing interest by the research community (Latif et  al. 2019; Wang et  al. 2020; Latif 
2020; Ali et al. 2021). Arguably, human–robot interaction can be significantly enhanced if 
dialogue agents can perceive the emotional state of a user and its dynamics (Ma et al. 2020; 
Majumder et al. 2019). This line of research is categorised into two areas: emotion recog-
nition in conversations (Poria et al. 2019), and affective dialogue generation (Young et al. 
2020; Zhou et al. 2018). Speech emotion recognition (SER) can be used as a reward for RL 
based dialogue systems (Heusser et al. 2019). This would allow the system to adjust the 
behaviour based on the emotional states of the dialogue partner. Lack of labelled emotional 
corpora and low accuracy in SER are two major challenges in the field. To achieve the best 
possible accuracy, various DL-based methods have been applied to SER, however, perfor-
mance improvement is still needed for real-time deployments. DRL offers different advan-
tages to SER, as highlighted in different studies. In order to improve audio-visual SER 
performance, Ouyang et  al. (2018) presented a model-based RL framework that utilised 
feedback of testing results as rewards from the environment to update the fusion weights. 
They evaluated the proposed model on the Multimodal Emotion Recognition Challenge 
(MEC 2017) dataset and achieved top 2 at the MEC 2017 Audio-Visual Challenge. To min-
imise the latency in SER, Lakomkin et al. (2018) proposed EmoRL for predicting the emo-
tional state of a speaker as soon as it gains enough confidence while listening. In this way, 
EmoRL was able to achieve lower latency and minimise the need for audio segmentation 
required in DL-based approaches for SER. In Sangeetha and Jayasankar (2019), authors 
used RL with an adaptive fractional deep Belief network (AFDBN) for SER to enhance 
human-computer interaction. They showed that the combination of RL with AFDBN is 
efficient in terms of processing time and SER performance. Another study (Chen et  al. 
2017) utilised an LSTM-based gated multimodal embedding with temporal attention for 
sentiment analysis. They exploited the policy gradient method REINFORCE to balance 
exploration and optimisation by random sampling. They empirically show that the pro-
posed model was able to deal with various challenges of understanding communication 
dynamics.

DRL is less popular in SER compared ASR and SDSs. The above-mentioned studies 
attempted to help solve different SER challenges using DRL, however, there is still a need 
for developing adaptive SER agents that can perform SER in the wild using small amounts 
(few) of samples of data (Latif et  al. 2020; Ntalampiras 2021; Latif et  al. 2020, 2021). 
Researchers have been motivated in exploring transfer learning in SER (Ntalampiras 2017) 
to utilise external knowledge for accelerating the learning process of agents.

4.4 � Audio enhancement

The performance of audio-based intelligent systems is critically vulnerable to noisy condi-
tions and degrades according to the noise levels in the environment (Li et al. 2015). Sev-
eral approaches have been proposed (Latif et al. 2018; Li et al. 2013) to address problems 
caused by environmental noise. One popular approach is audio enhancement, which aims 
to generate an enhanced audio signal from its noisy or corrupted version (Wang and Wang 
2016). DL-based speech enhancement has attained increased attention due to its superior 
performance compared to traditional methods (Baby et al. 2015; Wang and Chen 2018).



A survey on deep reinforcement learning for audio‑based…

1 3

In DL-based systems, the audio enhancement module is generally optimised separately 
from the main task such as minimisation of WER. Besides the speech enhancement mod-
ule, there are different other units in speech-based systems which increase their complex-
ity and make them non-differentiable. In such situations, DRL can achieve complex goals 
in an iterative manner, which makes it suitable for such applications. Such DRL-based 
approaches have been proposed in Shen et  al. (2019) to optimise the speech enhance-
ment module based on the speech recognition results. Experimental results have shown 
that DRL-based methods can effectively improve the system’s performance by 12.4% and 
19.2% error rate reductions for the signal to noise ratio at 0 dB and 5 dB, respectively. 
In Koizumi et al. (2017), authors attempted to optimise DNN-based source enhancement 
using RL with numerical rewards calculated from conventional perceptual scores such as 
perceptual evaluation of speech quality (PESQ) (Recommendation 2001) and perceptual 
evaluation methods for audio source separation (PEASS) (Emiya et al. 2011). They showed 
empirically that the proposed method can improve the quality of the output speech signals 
by using RL-based optimisation. Fakoor et al. (2017) performed a study in an attempt to 
improve the adaptivity of speech enhancement methods via RL. They propose to model 
the noise-suppression module as a black box, requiring no knowledge of the algorithmic 
mechanics. Using an LSTM-based agent, they showed that their method improves sys-
tem performance compared to methods with no adaptivity. In Alamdari et al. (2020), the 
authors presented a DRL-based method to achieve personalised compression from noisy 
speech for a specific user in a hearing aid application. To deal with non-linearities of 
human hearing via the reward/punishment mechanism, they used a DRL agent that receives 
preference feedback from the target user. Experimental results showed that the developed 
approach achieved preferred hearing outcomes.

Similarly to SER, very few studies have explored DRL for audio enhancement. Most 
of these studies have evaluated DRL-based methods to achieve a certain level of signal 
enhancement in controlled environments. Further research efforts are needed to develop 
DRL agents that can perform their tasks in real and complex noisy environments.

4.5 � Music listening and generation

DL models are widely used for generating content including images, text, and music. The 
motivation for using DL for music generation lies in its generality since it can learn from 
arbitrary corpora of music and be able to generate various musical genres compared to 
classical methods (Steedman 1984; Ebcioğlu 1988).

Here, DRL offers opportunities to impose rules of music theory for the generation of 
more real musical structures (Jaques et al. 2016). Various researchers have explored such 
opportunities of DRL for music generation. For instance, Kotecha (2018) explored DQN 
to impose greater global coherence and encourage exploration in music generation. Based 
on the evaluations, the authors achieved better quantitative and qualitative results using an 
LSTM-based architecture in generating polyphonic music aligned with musical rules. Jiang 
et  al. (2020) presented an interactive RL-Duet framework for real-time human-machine 
duet improvisation. They used actor-critic with generalised advantage estimator (GAE) 
(Schulman et al. 2016) based music generation agent to learn a policy for generating musi-
cal note generation based on the previous context. They trained the model on monophonic 
and polyphonic data and were able to generate high-quality musical pieces compared to a 
baseline method. Jaques et al. (2016) utilised a deep Q-learning agent with a reward func-
tion based on rules of music theory and probabilistic outputs of an RNN. They showed that 
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the proposed model can learn composition rules while maintaining the important infor-
mation of data learned from supervised training. For audio-based generative models, it is 
often important to tune the generated samples towards some domain-specific metrics. To 
achieve this, Guimaraes et al. (2017) proposed a method that combines adversarial training 
with RL. Specifically, they extend the training process of a GAN framework to include the 
domain-specific objectives in addition to the discriminator reward. Experimental results 
show that the proposed model can generate music while maintaining the information orig-
inally learned from data, and attained improvement in the desired metrics. In Lee et  al. 
(2017), the authors also used a GAN-based model for music generation and explored opti-
misation via RL. They used RNN based generator to learn musical distributions from the 
embedded space and found that the proposed framework was able to generate musically 
coherent sequences with improved quantitative and qualitative measures. RaveForce (Lan 
et al. 2019) is a DRL-based environment for music generation, which can be used to search 
new synthesis parameters for a specific timbre of an electronic musical note or loop.

Score following is the process of tracking a musical performance for a known symbolic 
representation (a score). Dorfer et al. (2018) modelled score following task with DRL algo-
rithms such as synchronous advantage actor-critic (A2C). They designed a multimodal 
RL agent that listens to music, reads the score from an image and follows the audio in 
an end-to-end fashion. Experiments on monophonic and polyphonic piano music showed 
promising results compared to state-of-the-art methods. The score following task is stud-
ied in Henkel et al. (2019) using the A2C and proximal policy optimisation (PPO). This 
study showed that the proposed approach could be applied to track real piano recordings of 
human performances.

4.6 � Human robot interaction (HRI)

There is a recent growing research interest in robotics to enable robots with abilities such 
as recognition of users’ gestures and intentions (Howard and Cambria 2013), and genera-
tion of socially appropriate speech-based behaviours (Goodrich and Schultz 2007). In such 
applications, RL is suitable because robots are required to learn from rewards obtained 
from their actions. Different studies have explored different DRL-based approaches for 
audio and speech processing in robotics. Gao et al. (2020) simulated an experiment for the 
acquisition of spoken language to provide a proof-of-concept of Skinner’s idea (Skinner 
et al. 1957), which states that children acquire language based on behaviourist reinforce-
ment principles by associating words with meanings. Based on their results, the authors 
were able to show that acquiring spoken language is a combination of observing the envi-
ronment, processing the observation, and grounding the observations with their true mean-
ing through a series of reinforcement attempts. In Yu et al. (2018), authors build a virtual 
agent for language learning in a maze-like world. It interactively acquires the teacher’s lan-
guage from question answering sentence-directed navigation. Some other studies (Sinha 
et al. 2019; Hermann et al. 2017; Hill et al. 2018) in this direction have also explored RL-
based methods for spoken language learning.

In human–robot interaction, researchers have used audio-driven DRL for robot gaze 
control and dialogue management. In Lathuilière et al. (2019), the authors used Q-learning 
with DNNs for audio–visual gaze control with the specific goal of finding good policies to 
control the orientation of a robot head towards groups of people using audio-visual infor-
mation. Similarly, the authors of Lathuilière et  al. (2018) used a deep Q-network taking 
into account visual and acoustic observations to direct the robot’s head towards targets of 
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interest. Based on the results, the authors showed that the proposed framework generates 
state-of-the-art results. Clark-Turner and Begum (2018) proposed an end-to-end learning 
framework that can induce generalised and high-level rules of human interactions from 
structured demonstrations. They empirically show that the proposed model was able to 
identify both auditory and gestural responses correctly. Another interesting work (Hussain 
et al. 2019) utilised a deep Q-network for speech-driven backchannels like laugh genera-
tion to enhance engagement in human–robot interaction. Based on their experiments, they 
found that the proposed method has the potential of training a robot for engaging behav-
iours. Similarly, Hussain et al. (2019) utilised recurrent Q-learning for backchannel genera-
tion to engage agents during human–robot interaction. They showed that an agent trained 
using off-policy RL produces more engagement than an agent trained from imitation learn-
ing. In a similar strand, Bui and Chong (2019) have applied a deep Q-network to control 
the speech volume of a humanoid robot in environments with different amounts of noise. 
In a trial with human subjects, participants rated the proposed DRL-based solution better 
than fixed-volume robots. DRL has also been applied to spoken language understanding 
(Zamani et al. 2018), where a deep Q-network receives symbolic representations from an 
intent recogniser and outputs actions such as (keep mug on sink). In Qureshi et al. 
(2018), the authors trained a humanoid robot to acquire social skills for tracking and greet-
ing people. In their experiments, the robot learnt its human-like behaviour from experi-
ences in a real uncontrolled environment. In Cuayáhuitl (2020), they propose an approach 
for efficiently training the behaviour of a robot playing games using a very limited amount 
of demonstration dialogues. Although the learnt multimodal behaviours are not always per-
fect (due to noisy perceptions), they were reasonable while the trained robot interacted with 
real human players. Efficient training has also been explored using interactive feedback 
from human demonstrators as in Moreira et al. (2020), who show that DRL with interactive 
feedback leads to faster learning and with fewer mistakes than autonomous DRL (without 
interactive feedback).

Robotics plays an interesting role in bringing audio-based DRL applications together 
including all or some of the above. For example, a robot recognising speech and under-
standing language (Zamani et al. 2018), aware of emotions (Lakomkin et al. 2018), carry 
out activities such as playing games (Cuayáhuitl 2020), greeting people (Qureshi et  al. 
2018), or playing music (Fryen et al. 2020), among others. Such a collection of DRL agents 
are currently trained independently, but we should expect more connectedness between 
them in the future.

4.7 � Other applications

Besides the above-mentioned applications, DRL has also been being explored in various 
audio-based domains including audio localisation, audio scene analysis, speech synthesis, 
soundscape, and bio-acoustics. In these domains, we found very few studies that focused 
on DRL. Speech synthesis, also known as text-to-speech (TTS), is an important audio tech-
nology that aims to generate human-like natural-sounding speech using text data as input 
(Latif et al. 2021). Most of the neural speech synthesis systems utilise linguistic or acous-
tic features as an intermediate representation to generate speech. In the speech synthesis 
domain, deep end-to-end models (e.g., Shen et al. 2018; Łańcucki et al. 2021; Ren et al. 
2019) have attained considerable attention by significantly enhancing the quality of syn-
thesised speech (Latif et al. 2021). Recently, some studies have explored DRL for TTS. For 
instance, Liu et al. (2021) used RL for emotional speech synthesis. The authors focused 
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on the use of RL to solve the problem of emotion confusion in TTS systems via inter-
action between the model and SER. In their experiments, they found that the proposed 
framework outperformed the state-of-the-art baselines by improving the emotion dis-
criminability of synthesised speech. Mohan et al. (2020) used RL for deciding interleaved 
actions in sequence-to-sequence models for incremental TTS. Based on their results, the 
authors found that RL agents can successfully balance the trade-off between the quality of 
the synthesised speech against the latency of generation. Chung et al. (2021) presented a 
Reinforce-Aligner—an RL based alignment search agent that can perform optimal duration 
predictions based on the actions and cumulative rewards. Results showed that the proposed 
framework can perform accurate alignments of phoneme-to-frame sequence, which help 
improve the naturalness and fidelity of synthesised speech. DRL has also been applied to 
bioacoustics (Ntalampiras 2018) and sound emotion (Huang et al. 2019), which need fur-
ther research.

Research studies have also explored the potentials of DRL for solving audio localisation 
problems. For instance, Giannakopoulos et  al. (2021) trained an autonomous agent that 
navigates in a two-dimensional space using audio information from a multi-speaker envi-
ronment. Based on their results, the authors found that the agent can successfully localise 
the target speaker among a set of predefined speakers in a room by avoiding confusion and 
going outside the predefined room boundaries. Self-supervised learning (SSL) has been 
actively studied recently in various research fields including audio, text, vision, and many 
more (Xin et  al. 2020; Latif et  al. 2021, 2022). (Gonzalez-Billandon et al. 2020) used a 
self-supervised RL-based iCub humanoid robot for speaker localisation in an autonomous 
way. During experimentation, they created a dataset of audio and location mapping which 
can be utilised to train an agent for accurate and robust speaker localisation. Seurin et al. 
(2020) presented an RL-based interactive speaker recognition system that aims to improve 
its performance by requesting personalised utterances to learn speaker representations. 
They empirically showed that the proposed architecture improves speaker identification 
compared to the non-interactive baseline models. Shah (Shah et al. 2018) et al. presented 
FollowNet, a DRL agent that navigates following natural language directions. They empiri-
cally showed that FollowNet can successfully navigate by learning to execute previously 
unseen instructions with a 30% improvement in results over a baseline. Some other studies 
have also exploited DRL methods for audio-visual navigation (Chen et al. 2020, 2019; Gan 
et al. 2020) and source separation (Majumder et al. 2021).

In reinforcement learning applications, defining an appropriate reward function to 
achieve the desired behaviour is challenging. Inverse reinforcement learning (IRL) facili-
ties an automatic way of finding a reward function based on the given set of trajectories in 
the environment (Ng et al. 2000; Abbeel and Ng 2004). A few studies have explored IRL to 
impose a learnt reward function, instead manually defined, for dialogue control (Sugiyama 
et al. 2012) and interactive systems. However, further research efforts are required in the 
audio domain for designing optimal reward functions.

5 � Challenges in audio‑based DRL

The research works in the previous section have focused on a narrow set of DRL algo-
rithms and have ignored the existence of many other algorithms, as can be noted in Fig. 6. 
This suggests the need for a stronger collaboration between core DRL and audio-based 
DRL, which may be already happening. Figure 7 help us to illustrate that previous works 
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have only explored a modest space of what is possible. Based on the related works above, 
we have identified three main challenges that need to be addressed by future systems. 
Those dimensions converge in what we call ‘very advanced systems’.

Fig. 6   A summary of audio-based DRL connecting the application areas and algorithms described in the 
previous two sections—the coloured circles correspond to the three groups of algorithms (from left to 
right: value-based, policy-based, model-based). Since the lack of connections between areas and algorithms 
denote no or little attention in previous works, the large amount of disconnections suggest opportunities for 
exploring different algorithms or more comprehensively in order to find the best algorithm(s) for different 
areas and tasks within each area

Fig. 7   A pictorial view of previous works on audio-based DRL and potential dimensions to explore in 
future systems. The inner cube refers to the fact that dimension Z is less developed than the other two 
dimensions (X,Y)
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5.1 � Real‑world audio‑based systems

Most of the DRL algorithms described in Sect.  3 carry out experiments on the Atari 
benchmark (Bellemare et al. 2013), where there is no difference between training and test 
environments. This is an important limitation in the literature, and it should be taken into 
account in the development of future DRL algorithms. Nonetheless, those efforts have been 
worth making progress in core DRL research, which have the potential of influencing a 
large amount of applications. In contrast, audio-based DRL applications tend to make use 
of a more explicit separation between training and test environments. While audio-based 
DRL agents may be trained from offline interactions or simulations, their performance 
requires to be assessed using a separate set of offline data or real interactions. The latter 
(often referred to as human evaluations) is very important for analysing and evidencing 
the quality of learnt behaviours. Learning behaviour offline is typically preferred for two 
main reasons: (i) large training times for inducing the best possible behaviour; and (ii) to 
avoid nonsensical or incoherent behaviour, due to exploration strategies used during train-
ing, unless one has is a mechanism in place to assure reasonable behaviour during online 
learning. In almost all (if not all) audio-based systems, the creation of data is difficult and 
expensive. This highlights the need for more data-efficient algorithms—especially if DRL 
agents are expected to learn from real data instead of synthetic data. In high-frequency 
audio-based control tasks, DRL agents have the requirements of learning fast and avoiding 
repeating the same mistake. Real-world audio-based systems require algorithms that are 
sample efficient and performant in their operations. This makes the application of DRL 
algorithms in real systems very challenging. Some studies such as (Finn et al. 2017; Chua 
et al. 2018; Buckman et al. 2018), have presented approaches to improve the sample effi-
ciency of DRL systems. These approaches, however, have not been applied to audio-based 
systems. This suggests that much more research is required to make DRL more practical 
and successful for its application in real audio-based systems.

5.2 � Knowledge transfer and generalisation

Learning behaviours from complex signals like speech and audio with DRL requires pro-
cessing high-dimensional inputs and performing extensive training on a large number of 
samples to achieve improved performance. The unavailability of large labelled datasets is 
indeed one of the major obstacles in the area of audio-driven DRL (Purwins et al. 2019; 
Latif et al. 2020). Moreover, it is computationally expensive to train a single DRL agent, 
and there is a need for training multiple DRL agents in order to equip audio-based systems 
with a variety of learnt skills. Therefore, some researchers have turned their attention to 
studying different schemes such as policy distillation (Rusu et al. 2015), progressive neu-
ral networks (Rusu et al. 2016), multi-domain/multi-task learning (Cuayáhuitl et al. 2017; 
Ultes et  al. 2017; Li et  al. 2015; Jaderberg et  al. 2016) and others (Yin and Pan 2017; 
Nguyen et al. 2020; Glatt et  al. 2016) to promote transfer learning and generalisation in 
DRL to improve system performance and reduce computational costs. Only a few studies 
in dialogue systems have started to explore transfer learning in DRL for the speech, audio 
and dialogue domains (Mo et al. 2018; Carrara et al. 2018; Chen et al. 2018; Narasimhan 
et al. 2018; Ammanabrolu and Riedl 2019), and more research is needed in this area. When 
large amounts of data exist, one could opt for ignoring knowledge transfer—but most of 
the time this is not the case. In the presence of small or medium-size datasets, it is worth 



A survey on deep reinforcement learning for audio‑based…

1 3

considering the idea of transferring knowledge induced from other datasets to the one at 
hand. DRL agents are often trained from scratch instead of inheriting useful behaviours 
from other agents. Some agents from Table  4 [such as (Williams and Zweig 2016; Liu 
et al. 2017; Zorrilla et al. 2021)] have avoided learning from scratch by showing that apply-
ing DRL on top of non-DRL or supervised methods yields improved performance due to 
the optimisation element that DRL brings instead of only mimicking demonstration data. 
But those systems typically focus a single dataset and the idea of transferring useful and 
effective knowledge from other/many tasks to a new or targeted task remains to be demon-
strated. Research efforts in these directions would contribute towards more practical, cost-
effective, and robust applications of audio-based DRL agents. On the one hand, to train 
agents less data-intensively, and on the other to achieve reasonable performance in the real 
world.

5.3 � Multi‑agent and truly autonomous systems

Audio-based DRL has achieved impressive performance in single-agent domains, where 
the environment stays mostly stationary. But in the case of audio-based systems operat-
ing in real-world scenarios, the environments are typically challenging and dynamic. For 
instance, multi-lingual ASR and spoken dialogue systems need to learn policies for dif-
ferent languages and domains. These tasks not only involve a high degree of uncertainty 
and complicated dynamics but are also characterised by the fact that they are situated in 
the real physical world, thus have an inherently distributed nature. The problem, thus, falls 
naturally into the realm of multi-agent RL (MARL), an area of knowledge with a relatively 
long history, and has recently re-emerged due to advances in single-agent RL techniques 
(Littman 1994; Hernandez-Leal et  al. 2019). Coupled with recent advances in DNNs, 
MARL has been in the limelight for many recent breakthroughs in various domains includ-
ing control systems, communication networks, economics, etc. However, applications in 
the audio processing domain are relatively limited due to various challenges. The learning 
goals in MARL are multidimensional—because the objectives of all agents are not neces-
sarily aligned. This situation can arise for example in simultaneous emotion and speaker 
voice recognition, where the goal of one agent is to identify emotions and the goal of the 
other agent is to recognise the speaker. As a consequence, these agents can independently 
perceive the environment, and act according to their individual objectives (rewards) thus 
modifying the environment. This can bring up the challenge of dealing with equilibrium 
points, as well as some additional performance criteria beyond return-optimisation, such as 
the robustness against potential adversarial agents. As all agents try to improve their poli-
cies according to their interests concurrently, therefore the action executed by one agent 
affects the goals and objectives of the other agents (e.g. speaker, gender, and emotion iden-
tification from the speech at the same time), and vice-versa.

One remaining challenging aspect is that of autonomous skill acquisition. Most, if not 
all, DRL agents currently require a substantial amount of pre-programming as opposed 
to acquiring skills autonomously to enable personalised/extensible behaviour. Such pre-
programming includes explicit implementations of states, actions, rewards, and policies. 
Examples of pre-programing agents are as follows: implementing a particular combina-
tion of features derived from audio/word/sentence embeddings among others; implement-
ing a particular set of dialogue actions instead of learned ones; implementing a particular 
reward function focused on optimising task success and dialogue length instead of other 
factors; and implementing a policy using purely learnt behaviour instead of rule-based 
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and DRL-based or supervised-based and DRL-based, among others. Pre-programming is 
needed due to not or partially knowing what the best representations are for different tasks. 
As agents become more advanced, those representations of states, actions, rewards and pol-
icies will be better known across tasks and therefore the amount of pre-programming will 
be reduced. Although substantial progress in different areas has been made, the idea of cre-
ating audio-driven DRL agents that autonomously learn their states, actions, and rewards 
in order to induce useful skills remains to be investigated further across applications. Such 
kind of agents would have to know when and how to observe their environments, identify 
a task and input features, induce a set of actions, induce a reward function (from audio, 
images, or both among others), and use all of that to train policies. Such agents have the 
potential to show advanced levels of intelligence, and they would be very useful for appli-
cations such as personal assistants or interactive robots.

6 � Summary of audio‑based DRL research and future directions

This literature review shows that DRL is becoming popular in audio processing and related 
applications. We collected DRL research papers in six different but related areas: automatic 
speech recognition (ASR), speech emotion recognition (SER), spoken dialogue systems 
(SDSs), audio enhancement, audio-driven robotic control, and music generation. A sum-
mary of our findings for each area is given below. 

1.	 In ASR, most of the studies have used policy gradient-based DRL, as it allows learning 
an optimal policy that maximises the performance objective. We found studies aiming 
to solve the complexity of ASR models (Dudziak et al. 2019), tackle slow convergence 
issues (Williams 1992), and speed up the convergence in DRL (Rajapakshe et al. 2020).

2.	 The development of SDSs with DRL is gaining interest and different studies have shown 
very interesting results that have outperformed current state-of-the-art DL approaches 
(Weisz et al. 2018). However, there is still room for improvement regarding the effective 
and practical training of DRL-based spoken dialogue systems.

3.	 Several studies have also applied DRL to emotion recognition and empirically showed 
that DRL can (i) lower latency while making predictions (Lakomkin et al. 2018), (ii) 
understand emotional dynamics in communication (Sangeetha and Jayasankar 2019), 
and (iii) enhance human-computer interaction (Chen et al. 2017).

4.	 In the case of audio enhancement, studies have shown the potential of DRL. While these 
studies have focused their attention on the speech signals, DRL can be used to optimise 
the audio enhancement module along with performance objectives such as those in ASR 
(Shen et al. 2019).

5.	 In music generation, DRL can optimise rules of music theory as validated in different 
studies (Jaques et al. 2016; Guimaraes et al. 2017). It can also be used to search for new 
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tone synthesis parameters (Lan et al. 2019). Moreover, DRL can be used to perform 
score following to track a musical performance (Dorfer et al. 2018), and it is even suit-
able for tracking real piano recordings (Henkel et al. 2019), among other possible tasks.

6.	 In robotics, audio-based DRL agents are in their infancy. Previous studies have trained 
DRL-based agents using simulations, which have shown that reinforcement principles 
help agents in the acquisition of spoken language. Some recent works (Hussain et al. 
2019, 2019) have shown that DRL can be utilised to train gaze controllers and speech-
driven backchannels like laughs in human–robot interaction—and this is only the begin-
ning of larger-scale embodied DRL-based agents.

The related works reviewed above highlight several benefits of using DRL for audio pro-
cessing and applications. Challenges remain before such advancements will succeed in the 
real world, including endowing agents with commonsense knowledge, knowledge transfer, 
generalisation, and autonomous learning, among others—see Fig. 7. Such advances need 
to be demonstrated not only in simulated and stationary environments but in real and non-
stationary ones as in real-world scenarios. Steady progress, however, is being made in the 
right direction for designing more adaptive audio-based systems that can be better suited 
for real-world settings. If such scientific progress keeps growing rapidly, perhaps we are 
not too far away from AI-based autonomous systems that can listen, process, and under-
stand audio and act in more human-like ways in increasingly complex environments. In 
Table 5, we compare different DRL toolkits in terms of implemented algorithms, which 
aim to help researchers to select suitable tools to study DRL techniques.

7 � Conclusions

In this work, we have focused on presenting a comprehensive review of deep reinforcement 
learning (DRL) techniques for audio based applications. We reviewed DRL research works 
in six different audio-related areas including automatic speech recognition (ASR), speech 
emotion recognition (SER), spoken dialogue systems (SDSs), audio enhancement, audio-
driven robotic control, and music generation. In all of these areas, the use of DRL tech-
niques is becoming increasingly popular, and ongoing research on this topic has explored 
many DRL algorithms with encouraging results for audio-related applications. Apart from 
providing a detailed review, we have also highlighted (i) various challenges that hinder 
DRL research in audio applications and (ii) various avenues for exciting future research. 
We hope that this paper will help researchers and practitioners interested in exploring and 
solving problems in the audio and related areas using DRL techniques.
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