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Abstract

This paper presents a trust-based evolutionary game model for managing Internet-of-Things (IoT) feder-
ations. The model adopts trust-based payoff to either reward or penalize things based on the behaviors
they expose. The model also resorts to monitoring these behaviors to ensure that the share of untrustworthy
things in a federation does not hinder the good functioning of trustworthy things in this federation. The trust
scores are obtained using direct experience with things and feedback from other things and are integrated
into game strategies. These strategies capture the dynamic nature of federations since the population of
trustworthy versus untrustworthy things changes over time with the aim of retaining the trustworthy ones.
To demonstrate the technical doability of the game strategies along with rewarding/penalizing things, a set
of experiments were carried out and results were benchmarked as per the existing literature. The results
show a better mitigation of attacks such as bad-mouthing and ballot-stuffing on trustworthy things.
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6.4 billion connected things were in use in 2016,
up 3% from 2015, and will reach more than 30.9 bil-
lion devices worldwide by 20252. Are all these things
trustworthy? And, can all these things be trusted?
Things in the loT world are not always collabora-
tive, cooperative, and predictable [6]. Their silent
and transparent “invasion” into our daily lives could
become a nightmare, should confidentiality, integrity,
and availability be not taken seriously. In fact, things
could be dangerous to people’s health, safety, and lib-
erty as stated in [22].

1. Introduction

It is largely accepted that the chip industry has
heavily impacted the Information and Communica-
tion Technology (ICT) landscape. Today’s chips are
tiny, powerful, reliable, and affordable allowing to
concretize Marker Weiser’s vision about the 215¢ cen-
tury computer when he states that “... The most
profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until
they are indistinguishable from it” [31]. In line with
this vision, the Internet-of-Things (loT) is also cap-
italizing on the chip industry advances by enacting
the development of cutting-edge systems like skin-
marks (printed skin electronics for interaction) and 1

Along with the trust concern and to ensure bet-
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smart eyeglasses (chewing, light exposure, and daily
activity monitoring) [3].
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ter use of things, we suggested in a previous work
gathering things into federations [14]. Federations’
benefits include fostering things’ collective over indi-
vidual behaviors and enforcing cross-thing collabora-
tion despite their silo nature [19, 20]. To sustain our
research efforts into federations, this paper addresses
the following trust-related concerns: how to enforce
trust among things in federations, how to ensure the
“longevity” of federations by detecting and reward-
ing trustworthy behaviors of things, how to mitigate
malicious attacks such as bad-mouthing and ballot-
stuffing on things while collecting recommendations
about things, and how to avoid “chaos” in federations
by isolating untrustworthy things? To address these
3 concerns, we resort to the Evolutionary Game The-
ory (EGT, [18]) constituting a novel way for running
federations as games where each thing (i.e., player)
will have a strategy that expresses its trust behavior
in compliance with the federation’s regulations like
how to join, when to leave, and how to be rewarded.
From a practicability perspective, things’ trust be-
haviors are associated with payoffs that federations
use to reward them when they complete the assigned
operations as expected. Otherwise, the payoffs are
limited and even revised with the option of ejecting
things from the federations. Because things are ex-
pected to frequently sign-up in and sign-off from fed-
erations, as they see fit (using payoffs), this could
put the federations at the risk of instability leading
to chaos. This risk is mitigated by tracking the trust
behavior of each thing in terms of what it did and
what it is doing. This helps monitor federation evo-
lution, which is a key characteristic of the EGT.

Our contributions in this work are, but not limited
to, as follows:

e Devise an architecture associated with trust-
based management of IoT federations.

e Propose a trust-based evolutionary game
model (IoT-EG) for managing IoT federations.

e Adopt payoffs to reward and penalize things
based on the trustworthy and untrustworthy be-
haviors they expose.

e Demonstrate the effectiveness of the trust-based
evolutionary game model with respect to other

related works against malicious attacks such as
bad-mouthing and ballot-stuffing.

The rest of this paper is organized as follows. Sec-
tion 2 motivates the adoption of thing federation.
Section 3 presents some fundamental concepts re-
lated to the current work. Section 4 discusses ex-
isting works. Section 5 proposes an architecture as-
sociated with trust-based management of IoT feder-
ations. Section 6 details the proposed trust-based
evolutionary game model that underpins the man-
agement of IoT federations. Experiments and major
results related to the proposed game model are ana-
lyzed in Section 7. Finally, future research directions
and concluding remarks are discussed in Sections 8
and 9, respectively.

2. Motivations

Thing federation constitutes a good way for foster-
ing collaboration between things despite their nature
of being confined into silos [14, 20]. For this pur-
pose, many aspects are to be examined like how do
things sign-up in federations, how are things moni-
tored when residing in federations, and how do things
sign-off and sometimes get expelled from federations.
Unfortunately, there are not, to the best of our knowl-
edge, studies addressing these questions. While man-
aging federations could happen from different per-
spectives like growth, performance, and competitive-
ness, this paper focuses on trust. Indeed, a federation
would like to attract, reward, and retain trustworthy
things since, they could make it competitive and re-
liable. Contrarily, the same federation would like to
avoid, penalize, and expel untrustworthy things since
for instance, they could drain its resources.

Federation management is dynamic since for in-
stance, trustworthy things can join and then, mis-
behave for different reasons to the extent that they
become untrustworthy. And, untrustworthy things
could adopt a different behavior making them trust-
worthy in the long-run. To mitigate the impact of
things’ behaviors on federations’ stability, we asso-
ciate federations with regulations that things should
abide to. An example of regulations would be the use



of payoffs based on things’ trust behaviors. High pay-
offs reflect things’ acceptable behaviors to federations
allowing them to reside longer.

During their stay in a federation, things adjust
their trust behaviors according to the situations that
they run into and with whom they end-up interact-
ing. For instance, they could deal with trustwor-
thy peers allowing them to complete their works on
time. Contrarily, they could be delayed when dealing
with untrustworthy peers. Changes in trust behav-
iors could impact a federation’s stability over time
with a high-turnover of things, i.e., continuous sign in
and sign off. This will be addressed as part of the
pay-off strategy that needs to be devised.

3. Background

An overview of the concepts of loT, federation, and
EGT is provided hereafter. For additional details,
readers are invited to consult the references included
in this overview.

3.1. Internet of things

The extensive literature on loT (e.g., [1], [4], [9],
[16], [23], and [28]) does not help suggest a common
definition. For instance, in [4], Barnaghi and Sheth
present a set of requirements and challenges linked
to loT. Requirements include quality, latency, trust,
availability, reliability, and continuity that should im-
pact efficient access and use of loT data and services.
And, challenges result from today’s loT ecosystems
that feature billions of dynamic things that make ex-
isting search, discovery, and access techniques and so-
lutions inappropriate for loT data and services. In [1],
Abdmeziem et al. discuss loT characteristics and en-
abling technologies. The former include distribution,
interoperability, scalability, resource scarcity, and se-
curity. And, the latter include sensing, communica-
tion, and actuating that are mapped onto a 3-layer
loT architecture referred to as perception, network,
and application, respectively.

3.2. Federation of things

Despite the abundant literature on the concept of
federation, there is not much, to the best of our

knowledge, when it comes to federation of things.
In [11], Heil et al. define loT as a context-aware fed-
eration of devices. The objective of setting-up this
federation is to support users access, connect, and
locate arbitrary devices according to their function-
alities. Heil et al.’s approach integrates real-world
devices into service federations so, that, devices’ ca-
pabilities are made available for external use. In [17],
Mathlouthi and Ben Saoud discuss cloud federation
in the context of enabling a flexible composition of
System of Systems (SoS). A SoS is about the co-
operation of several constituents that are complex,
heterogeneous, autonomous, and independently gov-
erned, but capable at the same time of working in
a cooperative way to achieve common goals. To al-
low the exposure of thing federation as a service, Ce-
lesti et al. discuss loT-as-a-Service (loTaaS) in con-
junction with the development that cloud comput-
ing is going through and that is leading to loT cloud
and cloud federation [5]. Celesti et al. recommend
a 3-layer cloud federation reference-architecture that
would meet automation and scalability, interoper-
able resource provisioning, and interoperable secu-
rity requirements. In [30], Torroglosa-Garcia and
Skarmeta-Gomez discuss the interoperability of iden-
tity federation systems. These federations unify and
simplify user and service management using trust re-
lationships. However, the large number of federa-
tions, each focussing on different areas, necessitates
their interoperability to ensure a consistent access
across all these federations, and, hence, the same dig-
ital identity is used. Finally, in [14], Maamar et al.
present Thing-Federation-as-a-Service (TFaaS) as a
novel way to address the silo constraint impeding the
collaboration of things. A federation is a group of
things that are put together in order to handle a par-
ticular real-life situation like tunnel closure due to
car accident. Maamar et al. specialized federation
into planned and ad-hoc. The former is put in place
ahead of time and, hence, has its thing members al-
ready known with respect to a situation’s needs and
requirements. And, the latter is put in place on-the-
fly when none of the planned federations can handle
a situation and, hence, needs to have its thing mem-
bers identified, selected, and finally assigned. To il-
lustrate the tunnel closure, Maamar et al. suggested



a federation of back-up cameras that is automati-
cally activated so, that, live images from the inside of
the tunnel are broadcasted to the rescue teams while
meeting their non-functional requirements (e.g., up-
load speed and resolution quality). To handle the
closure, 2 cases were identified:

e 1°¢ time closure: an ad-hoc camera federation
is set-up (by some engineers) after selecting the
necessary cameras with respect to the rescue
teams’ non-functional requirements. Once the
tunnel closure is over, the ad-hoc camera feder-
ation becomes a planned camera federation.

e Recurrent tunnel-closure: a planned camera fed-
eration, among those that were initiated in the
past, is selected with respect to the rescue teams’
non-functional requirements. If the selection is
unsuccessful, then the case is treated as 1°¢ time
tunnel-closure.

The cameras in a federation whether planned or ad-
hoc are expected to deliver the best possible quality
of service to rescue teams. A camera that is for in-
stance, hacked would follow an untrustworthy strat-
egy by broadcasting low-quality images that could
delay the work of the rescue teams and hence, would
be penalized. Contrarily, other cameras would follow
a trustworthy strategy and hence, would be rewarded
by receiving more bandwidth. By adopting differ-
ent strategies, a game is put in place requiring that
trustworthy versus untrustworthy cameras should be
identified to ensure the stability and longevity of the
federations to which they belong. Our proposed game
model in Section 6 achieves this identification.

From a competitiveness perspective, a federation
could make things sign-off if their performances
(e.g., unreliable data and recurrent failure) do not
meet the federation’s expectations. A thing could
also leave a federation, should the business in the
federation become less rewarding (e.g., data-sharing
rate among the members drops below a threshold).

3.3. Evolutionary game theory

Classical game theory is a framework used to cap-
ture the interactions between agents that would like

to increase their own payoffs. The agents adopt
strategies that expose their behaviors to the environ-
ment in which they reside. The strategies that al-
low agents to maximize their payoffs without gaining
more by unilaterally changing their decisions consti-
tute a situation of Nash Equilibrium [21].

Contrarily, EGT emerged as an extension of the
classical game theory to capture biological concepts
such as generation and evolution. Agents are mem-
bers of a certain generation and may survive or not
the evolution that a generation would go through.
An interesting EGT concept is Evolutionary Stable
Strategy (ESS) [27]. It characterizes a strategy which
cannot be invaded by any other competing strategy if
adopted by a large population of competitors. ESS is
considered as a refinement to the Nash Equilibrium.

To model evolution, EGT adopts the concept of
replicator dynamics [29], which indicates, that for
each strategy k, the evolving proportion (aka share)
of a population’s members that follow this strategy.
More formally, let P be a population, Ag(¢) be the
number of players that adopt strategy k in the set of
strategies K, and z(t) = [x1(t),...,zk(t),..., 2K (1)]
be P’s state at time ¢. Let xx(t) = Ap(t)/A(t) de-
note P share of players that adopt k£ at time ¢, and
At) = Zszl Ak (t) denote the total number of play-
ers in P. Let also ug be the payoff of a player
playing strategy k along with another playing a dif-
ferent strategy [. The dynamics of P’s share xy(t)
is defined by z}.(t), time derivative of zx(t), and is
defined by z},(t) = @4 (t)(Xe, u(t)z(t) — alt)),
where a(t) = 251:1 ug (t)xg (t)z(t) is the average
payoff of P. Thérefore, the players of a strategy
increase/decrease their population’s shares if their
payoffs are higher/lower than the population’s aver-
age payoff.

We apply the EGT’s main concepts to loT feder-
ations management model where population corre-
sponds to federation of things, players correspond to
things, and strategy is specialized into either trust-
worthy 7' or untrustworthy U. Furthermore, we re-
sort to the concept of dynamics to monitor the be-
haviors of things in a federation and ensure that the
shares of untrustworthy things (i.e., proportion of
things that do not comply with a federation’s reg-



ulations) are low. Details about the game model are
in Section 6.5.

4. Related work

Several trust models and their derivatives like rep-
utation and credibility are reported in the literature.
The focus is on those models of type peer-to-peer in
the context of loT by discussing non-game-based and
then, game-based.

Among prominent non-game trust and reputation
models we discuss here EigenTrust, Peer-Trust, and
IoT-Trust. EigenTrust [12] is a reputation model
for peer-to-peer systems that aggregates trust rec-
ommendations (indirect trust) weighted by the cred-
ibility of recommenders to calculate the trust of a
peer. EigenTrust computes a global trust value based
on the principal eigenvector of normalized local trust
values. The trust is used to reduce the number of
downloads of malicious files in a network. Eigen-
Trust assumes the existence of trusted peers that can
provide good recommendations to address collusion
attacks.

PeerTrust [32] is a dynamic peer-to-peer trust
model used to quantify and assess the trustworthiness
of peers in e-commerce communities. This trustwor-
thiness reflects the degree of trust that other peers in
the community have on a given peer based on past ex-
periences. PeerTrust consists of two parts. The first
part is a weighted average of the amount of satisfac-
tion that a peer receives for each transaction while the
second part adjusts this average by either increasing
or decreasing the trust value based on community-
specific characteristics and situations. The weight
takes into account the credibility of feedback source
to counter dishonest feedback, and transaction con-
text to capture the transaction-dependent character-
istics.

IoT-Trust [7] is an adaptive and scalable trust
management for the composition of applications
in service-oriented architecture-based loT systems.
Feedbacks are gathered based on distributed collab-
orative filtering and direct and indirect trusts are
combined using an adaptive filtering technique. In
ToT-Trust, the objectives are to mitigate the effect of

malicious nodes on interaction quality and to mini-
mize the number of collusion attacks. IoT-Trust con-
siders a simple case in which the direct user satis-
faction experience f is a binary value (1/0 for sat-
isfied /unsatisfied). Then, f is considered as an out-
come of a Bernoulli trial that is used as a weight for
positive observations.

Compared to the afore-mentioned non-game trust
models, our future evolutionary game model will pro-
vide an analytical study on the conditions that were
satisfied using incentives and the role of these incen-
tives in increasing the share of trustworthy things in
a federation. Furthermore, our model will promote
node stability that is built on top of the proposed
trust model to detect peers’ unstable trust behaviors.

Recently, a trust binary-game model that captures
the interaction between requestors and providers in
an loT environment is presented in [15]. The model
includes nodes’ behaviors, possible strategies, and
payoffs, and is associated with guidelines for de-
signing trust management algorithms. However, the
model does not take into account the evolution of un-
trustworthy and trustworthy things’ shares. Contrar-
ily, our evolutionary game model allows federations
to monitor the trust behaviors of things, which leads
to a more effective detection of untrustworthy things.

Our trust-based loT federations management
framework puts focus on things’ short and long-term
trust behaviors and assigns incentives to strategies
that things adopt throughout their course of ac-
tions. This management also relies on an evolu-
tionary game based trust model that provides a for-
mal setting for proving dominant strategies. It takes
into account the dynamism of loT environment, en-
sures the stability of things’ behaviors, and miti-
gates the effects of malicious attacks such as bad-
mouthing and ballot-stuffing. These features alto-
gether are barely touched upon, if not overlooked
in most existing trust management models as pin-
pointed by Sharma et al. [26]. Table 1 compares our
trust model to existing ones using five factors detailed
below. This comparison’s objective is to shed light on
the capabilities of our model by integrating different
aspects like with whom a thing interacts, how trust
evolves over time, and who recommends a thing.



e Direct trust relies on a thing’s one-to-one inter-
actions with peers to define its trustworthiness
level.

e Indirect trust proceeds differently to direct trust
by relying on peers’ recommendations about a
thing.

e Trust evolution tracks changes of a thing’s trust-
worthiness level over time, which is normal due
to the dynamic nature of federations.

e Stability analysis is in line with trust evolution
but focuses on the impact of trust changes on a
federation’s stability over time.

e Provability provides a formal basis for finding
the conditions to satisfy prior to reaching equi-
librium states.

5. IoT federations management architecture

Fig. 1 is the architecture associated with our Trust-
based Management of loT Federations (TMIF). It is
built-upon three layers, thing, federation, and behav-
ior, hosting different modules and repositories.

The thing layer is concerned with defining things’
profiles, tracking their ongoing operations, and form-
ing their histories. In this layer, the profile mod-
ule gathers all the necessary details about the op-
erational aspects of a thing such as functionality it
offers (e.g., sensing, actuating, and communicating)
and quality of performing this functionality. These
details are obtained from things’ providers as well as
thing monitoring. The history of a thing is stored in
a log that the history module updates based on de-
tails it receives from the access module in the federa-
tion layer. History could refer to things’ sign-in/out
activities in/from federations along with trust-based
observations that define things’ behaviors. A thing
could join a federation at start-up time or re-join oth-
ers after being expelled, should the federation decide
that the thing exposes an unstable behavior due to
continued swing from poor to good performance dur-
ing a period of time. To avoid behavior state explo-
sion, we assume in this work that a thing can join one

federation at a time. The thing layer is important for
the federation layer since things’ profiles and histo-
ries are deemed required during sign in. Moreover,
the thing layer may serve as a basis for a federation
to constitute a list of “friends” that could provide
recommendations about unknown things considering
to join.

The federation layer is concerned with assembling
and dismantling federations along with ensuring the
stability of some. In this layer, the access module
allows things to sign-in/out in/from federations ac-
cording to these federations’ regulations that are de-
fined by the federation’s administrator. In addition
to the access module, the trust assessment module
collects non-functional details about things, referred
to as Quality-of-Thing (QoT) parameters in [24], and
recommendations about things so, that, it defines
a thing’s trust score. QoT parameters reflect how
well things did when they took part in federations
while recommendations are submitted by things that
already interacted with the recommended things.
Still in the trust assessment module, it periodically
feeds the upper layer’s behavior analysis module with
things’ trust scores. The access module receives en-
try requests to federations from things located in the
lower layer. It decides on either accepting or reject-
ing each request based on parameters related to a
federation such as capacity, which depends on the
current number of residing things, stability, which re-
flects the state of a federation based on the trust be-
haviors’ trends of the majority of its residing things,
and history of a thing, which is collected from the
lower layer’s history module. For this purpose, the
access module coordinates with both the lower layer’s
history module and the upper layer’s stability analy-
sis module to allow /deny things to join/from joininga
federation.

Finally, the behavior layer is concerned with as-
sessing things’ trust behaviors and analyzing the
stability of federations. On the one hand, this
layer’s behavior analysis module decides on the pay-
offs that things deserve after continuously collecting
trust scores of things from the federation layer’s trust



Table 1: Comparison between our IoT-EG and some existing trust models
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assessment module. On the other hand, this layer’s
stability analysis module communicates with the fed-
eration layer’s access module to either allow or forbid
federations from accepting new things, should this
module reveal that things expose stable/unstable be-
haviors. Assessing behavior stability is based on an-
alyzing long-term things’ behaviors.

6. IoT Trust-based evolutionary game model

Our loT Evolutionary Game model (IoT-EG), un-
derpinning the functioning of thing federations, mixes
short- and long-term trust behavior assessment of
things. In this section, the modules involved in this
assessment are presented.

6.1. Trust assessment

In Fig. 1, the trust assessment module establishes
a thing’s trust score that has a limited time-span
and depends on the quality of collaboration that the
thing would have had with peers. Formally, the trust
score Tr] of thing ¢ with respect to thing j com-
bines the trust value, the direct-trust value (direct
interaction between ¢ and j), and the indirect-trust
value (recommendations obtained from the friends
of i about j). Equation 1 defines Tr](t) at time ¢
where Tr/(t — 1) is the trust score of thing i with
respect to thing j at time ¢ — 1, QoTij (t) is thing 4’s
weighted average of QoT parameter values after in-
teracting with thing j at time t, R{ (t) is the indirect
trust as a recommendation value from the friends of
thing ¢ about thing j at time ¢, and A1, A2 and A3 are
fine-tuning parameters set by the federation’s owner
(values in [0,1] such that their sum is 1) that thing ¢
sets to define the weights of direct and indirect trust.

Tri(t) = A Tri(t—1) + Ae QoT/ (1) + A5 RI(t) (1)

To lighten the notation, the time symbol in defin-
ing direct and indirect trust is omitted. Equation 2

defines Q0T where QoTij(k) denotes the value of
the k' QoT parameter (among n parameters) for
thing ¢ and W, is the weight of this parameter (value
in [0, 1]).

n
QoT? = 3" Wi QoT? (k) (2)

k=1

Equation 3 defines the indirect trust where Cri

is the credibility of the k" friend of thing ¢ (value
in [0,1]) and RJ(k) is the rating of thing j by
the k' friend among m friends of thing i. Credi-
bility reflects to what extent a thing is accurate in
its recommendation and is updated by the trust as-
sessment module. It can increase or decrease after
assessing how far the recommendation is from the di-
rect trust as per Equation 4. This change in value
aims at mitigating the effect of inflated/deflated rec-
ommendations when assessing trust scores of things.
In this equation, e is a reward/penalty that in-
creases/decreases the credibility depending on the
quality of the recommendation.

ZL:1 Cr?c Ri(k)
kazl Cry,

R = (3)

i Cri.+e if |[R] — QoT!| < ¢;
C’f’k =
Cri —e€, Otherwise

(4)

6.2. Behavior analysis

The behavior analysis module performs short and
long-term trust behavior assessment of things in a
federation. For short-term trust behavior analysis
and after assessing the trust of thing ¢ based on its in-
teractions with thing j, the behavior analysis module
decides about the strategy that thing 7 has followed:
if Tr] is higher than a federation’s trust thresh-
old £p, that the federation’s administrator sets, then
thing ¢ is trustworthy in the interaction it had with
thing j. As a result, the behavior analysis module
announces that thing ¢ has adopted a trustworthy
strategy T, otherwise, an untrustworthy strategy U.
Establishing a strategy adoption is of paramount im-
portance to determine a thing’s payoff as it will be
explained later.

The behavior analysis module also defines the long-
term trust behavior of a thing by collecting its trust



scores. First, it computes the cumulative trust score
of thing 7 in a federation F' based on its pairwise trust
scores using Equation 5.

Tr,(t) = e L0 ®)

As per Equation 6, a trust behavior B; of thing i
is a time series that represents the sequence of trust
scores of this thing at different time instances (1 to n).

(6)

As per Equation 7, the behavior of thing i is as-
sessed based on the moving average of its behavior,
which denotes the arithmetic mean of the last n col-
lected trust scores.

Bi = (Trz(l),Trl(Z), e ,Trl(n))

it Tri(k)

n

MAL = (7)

The behavior analysis module would deem the be-
havior of thing i satisfactory at time ¢, should M A}
be greater than the maximum between the moving
average of all things in a federation M A! and the fed-
eration’s trust threshold £g.. Should a thing’s behav-
ior be not satisfactory, the thing would be expelled
from the federation. The main intent of long-term
behavior analysis is to “force” a thing to adopt a be-
havior that is similar to those in the federation and
at the same time fulfilling the minimum trust score
requirement.

6.3. Stability analysis

In Fig. 1, the stability module determines to what
extent thing ¢+ maintains a consistent behavior com-
pared to other things in a federation F. Equation 8
defines this stability when the standard deviation of
its behavior stdev(B;) is less than a threshold g7.

St(i) = stdev(B;) = \/Zz_l(TTi(k) —Tri(k))

If the number of things in a federation having un-
stable behaviors is higher than a stability threshold
that is set by a federation’s administrator, the feder-
ation is deemed unstable and should be dismantled.

(8)

In conjunction with federation instability, if a thing
has an unstable behavior at a certain time instant, it
is expelled from the federation.

6.4. Threat Model

In the threat model, things are expected to be mali-
cious by engaging in self-interest operations like over-
using resources and delaying the release of services.

While attacks on resources such as Distributed De-
nial of Service (DDoS) disrupt and/or overwhelm net-
work operations, they can be handled by intrusion
detection techniques and do not fall into the scope
of this paper. Contrarily, we address trust-related
attacks that can disrupt services that a federation
makes available to things. Those things that initiate
such attacks are identified by assessing their trustwor-
thiness, i.e, calculating the trust score periodically
which should help penalize the untrustworthy ones.
This is taken care by the trust assessment module
(Section 6.1) and payoff strategy (Section 6.5). The
main objective is to address attacks like those dis-
cussed below:

e Bad-mouthing refers to a recommender (or a
group of recommenders) that rates a thing lower
than what it deserves for the sake of tarnishing
its reputation. Penalizing such a recommender,
by reducing its credibility, would warn the rec-
ommender against repeating such a behavior and
eventually its future recommendations would not
be considered, should its credibility become be-
low a threshold &

e Ballot-stuffing refers to a recommender (or a
group of recommenders) that inflates a thing’s
rating for the sake of boosting its reputation and
making it more competitive, for example. Penal-
izing such a recommender by decreasing its cred-
ibility would also mitigate the effect of this at-
tack.

6.5. Trust-based EGT model

Federations provide incentives to things so they
trustfully collaborate. We endow each federation
with an EGT model (lIoT-EG) in which incentives de-
pend on how trustworthy a thing is. Such incen-
tives are part of the payoff of each thing and can



increase or decrease depending on the strategy that
the thing adopts.

6.5.1. Game strategies

When interacting with thing &, thing ¢ can adopt
either a trustworthy strategy T or an untrustworthy
strategy U.

The behavior analysis module determines the be-
havior of a thing in a pairwise interaction. Then, the
module provides each thing the reward that it de-
serves based on a payoff matrix. Table 2 outlines a
thing’s payoff matrix for the proposed evolutionary
game where 3 is a charging incentive parameter for a
thing that is following strategy T, ~y is the interaction
benefit, and o is interaction cost. It is assumed that
B, v, and o are strictly positive.

The specification of loT-EG trust assessment is re-
ported in Algorithm 1. It elaborates the process of
computing a thing’s trustworthiness in a federation.
It is worth to note that the term 'node’ will be used
interchangeably with ’thing’ in the pseudo-code of
the algorithm. This algorithm aims to assess the
node’s trustworthiness during the federation periodi-
cally upon an interaction. Therefore, to compute the
trust score T'r (e.g., Tr](t) for node; toward node;)
(algorithm result), the input parameters will includes
list of federated things, £p., Payoff matrix, QoT, R,
Cr, A\, and Proy.

Considering a scenario where a set of things are fed-
erated to play a game, a thing’s trustworthiness will
be assessed after each interaction using Equation 1
and following steps 1 and 2 in the algorithm:

e Step 1 implements game interactions: each thing
interacts with every single thing in the federation
that has a trust score Tr above the federation’s
trust threshold &g, (lines 4-8). It is worth not-
ing that Tr of all things has been boosted in
the first iteration since no previous T'r record is
computed. The interaction between 2 nodes is
evaluated based on a thing’s processing time to
tasks assigned to each other. Each node passes
its assigned tasks to its peers (things) to pro-
cess them and logs the time it took to process
these tasks. The output of this step (i.e., listp
(line 13)) will feed into the next step.
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e Step 2 implements trust-score computation: it
collects the recommendations from trustwor-
thy nodes, only, (i.e., things) in the federation,
i.e., those that have a trust score above the fed-
eration trust threshold ¢{p. (lines 16-22). Fi-
nally, the trustworthiness will be computed us-
ing Equation 1 after filtering the recommenda-
tion and the output from Step 1 by the weights
(i.e., A) as per lines 25-30. The trust score at
line 31 will be the final output of the algorithm.

The payoff is a good means for a federation F' to en-
courage things to be trustworthy. Should that payoff
be lower than a minimum value set by the federation’s
administrator Pr, then the thing would be excluded
from the federation.

6.5.2. Game analysis

We discuss hereafter the constraints that should
be satisfied to guarantee that a trustworthy strategy
prevails over time.

o A strategy T is ESS in 2 cases. The first case is
when 2842y —20 > —f—vy+o0,ie, B> 0—7.
Any federation, looking to ensure that the strat-
egy T is followed by the majority of its things’
members, should be able to provide incentives
that should cover the interaction cost based on
the following stability constraint: § > o — 7.
The second case is when 8+ v — o0 = 0 and
B+y—0>—F—2y+20,ie.,28+3y—30 > 0.
This means that v > ¢ and that the interac-
tion benefit should be higher than the interac-
tion cost.

A strategy U risk dominates strategy T iff 25 +
2y=20+p+v—0 < —f—y+0o—[—2v+20, ie.,
58+467—60 < 0, which means that 3 < 2(c—~).
If a federation provides a charging incentive that
is lower than g(a —), the the things may follow
strategy U.

The asymptotically unstable symmetric Nash
Equilibrium exists iff 35 + 3v - 30 # 28 +
3y - 30, i.e, B # 0. The population rate x*
playing risk-dominant strategy U in this case is
—28—3v4+30

M *
BpE e 0 16T = B

—2B—37+30



Algorithm 1: IoT-EG trust assessment algorithm

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32

Input: List of federated things [node;, nodej, .. ,nodey];
Result: Computes trust score 17! (t) for node; toward node;

Parameters : federationThreshold (§g.); Payof f; QoT; R; Cr; A\; ThingsList (listr);

ProcessingTime (Pro;); ThingTask node,,

Step 1: Game interactions by

listy = sort(listy, by proximity asc);
for each node,, € listr do

node,, = getTasks(node,) ;

if listpena — QoT >= ¢p. then

node,, 1

d interact
noaey, i
n41

noden,
node,, log (Proy) ;
else
‘ listp = pop(node,+1) ;
end

end
return listr ;
End
Step 2: trustworthiness computation by
listp = sort(listy, by QoT pesc);
for each node,, € listr do
if node,, — Tr < {g. then
| listy = pop(Fy) ;
else
get R from the trusted node;
listy = list[node,,, ), R] ;
end

end
Tri(t) =X\ Trl(t —1) 4+ Ay QoT? () + s RI(t) ;
if |R] — QoT/| < 0.1 then

‘ Cri, = min(Cry, +0.1,1)

else
‘ Cri = maz(Cr, — 0.1,0)
end
return T (t);
End

listpena  (in nodey,; out Proy) ;

listy = list[node;,. ] +— getFederatedThingsjout (node,,, QoT)];

> log Pro: against processed node

> remove untrusted node

> remove untrusted node

> new list with R

> compute trust

11



Table 2: EGT payoff matrix

T

P
U _5_’Y+Uaﬂ+7_

6.5.3. Example

Let us consider the case where ¢ = 20 and v = 15.
Table 3 is the payoff matrix.

In this case, if 8 > 0 —7, i.e., 8 > 5, the strategy T’
is ESS. The strategy U risk dominates the strategy
Tif g < g(a —7), i.e., B < 6. So, to lower the risk
of having things adopting the strategy U, a feder-
ation should provide a charging incentive higher or
equal to 6 in this particular setting. Although in-
creasing 3 would encourage things to follow the strat-
egy T, things may follow the risk dominant strat-
egy U due to problems of strategies selection speed
and also depending on the initial distribution, i.e., the
initial rate of players playing T wversus U, as shown
in [10, 13, 25]. More precisely, the risk-dominant U
has a larger basin of attraction with a rate equal to
=26415 i this special setting.

To mitigate the impact of playing the risk-
dominant strategy U by the majority of players,
whatever is the initial distribution or the strate-
gies selection speed, a federation should kick-out any
thing that has a payoff that is lower than a threshold.

7. Experiments and results

In this section, we discuss the development of the
TMIF along with the experiments that were con-
ducted to verify the doability of the loT-EG model.
MATLAB (2020a) running on a Dynabook laptop
with Intel Core i5-8250U processor and 8 GB of RAM
was used.

7.1. Simulation setting

The federation and network elements used during
the simulation are presented in Table 4 in terms of
network topology, nodes’ capabilities, and node in-
teractions/federation.

T 26+ 2v — 20,28 + 2y — 20

g
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U
B+y—o,-B-v+o
—B—=2v+4+20,——27v+20

== Data flow

Mliode-3 Mode-7
Miode-3
Mlode-5
IS — Mlode-10
Mlode-6 Wiode-8
Mlode-1
Mlode-2
Wlode-4

Figure 2: Network graph

e Network topology was modeled as an indirect

graph where nodes formed a mesh network as
per Fig. 2 (the first 10 nodes in action). The
simulation involved 100 nodes joining a federa-
tion at the same time. The links between nodes
are weighted based on the propagation delay
among nodes. Neighbouring nodes have the low-
est propagation delay.

Nodes’ capabilities correspond to
CPU frequency-based  processing powers
that during federation will vary from one node
to another, 0.3GHz to 1.3GHz [8].

Node interactions/federation: upon joining a
federation, the nodes interact with each other
based on the tasks assigned by the federation
(5x10° tasks as specified in Table 4). Each node
passes its assigned tasks to its peers to process
them and logs the taken time (i.e., processing
time) against its processing capability. Regard-
ing the transmission rate between nodes, it is



Table 3: Example of an EGT payoff matrix

T U
rP= T 26 —10,26 —10 8—5—-8+5
U —B+586-5 —pB+10,—8+10
Table 4: Simulation setting
Parameter Value
Operating system Win 10
Simulation environment Matlab 2010a
Number of nodes 100
Node CPU [0.3 — 1.3]GHz
Network topology mesh
Tasks in each federation 5x10°
Packet size [0.1 — 80]KB
Federation credibility threshold (¢¢,) 0.65
Federation trust threshold (£p.) 0.65

Trust parameters Aj 23
Game Payoff 3, v, and o

high (~ 100 Mbps [2]). The logged processing
time will be compared to the expected processing
time (based on the node’s CPU) to determine the
trust satisfaction. The bigger the difference, the
less trusted the node is, and wice-versa. There-
fore, after each interaction a node’s trust score
is reevaluated (using Equation 1) to identify in-
teracted nodes trustworthiness. It is worth not-
ing that the federation reward (i.e., payoff) af-
fects the nodes’ behaviors and subsequently their
trustworthiness.

7.2. Results and discussion

We first evaluate the performance of the loT-EG
against PeerTrust and IoT-Trust trust assessment al-
gorithms. Fig. 3 demonstrates the performance based
on the normalized trust score that is evaluated af-
ter each interaction based on the average processing
time to all received tasks; considering different pack-
ets size (Table 4). However, the number of packets
and their sizes are fixed throughout the experiments
to ensure consistency across all algorithms.
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Figure 3: loT-EG average trust score against PeerTrust and
ToT-Trust in terms of high and low payoff

During the experiments, we set the things with dif-
ferent capabilities varying their CPU and processing
powers. In Fig. 3 the vertical axis represents the
normalized trust score of things while the horizon-



tal axis is the number of iterations in which federa-
tions are formed and all algorithms are tested with
high and low payoff. The results have generally the
same trend. However, it is clear that loT-EG out-
performs the benchmark algorithms. More precisely,
loT-EG penalized more with low payoff compared to
other algorithms in identifying untrustworthy nodes.
PeerTrust performs better than IoT-Trust in both
low and high payoff but still performs less than loT-
EG.
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Figure 4: Trend of trustworthy requests and malicious request
according to the payoff

Fig. 4 shows the results of malicious and trustwor-
thy events based on federation payoff. A malicious
event is defined as when a thing takes longer than it
should be (considering node’s CPU and packets size

from Table 4) to process assigned tasks.

In this figure, the number of tasks is set to 1K
and we had 2 kinds of iterations; the first with high
payoff (Fig. 4a) while the second with low payoff
(Fig. 4b). The collaboration requests in both figures
are grouped according to task outcomes, i.e., whether
they are trustworthy (tasks are processed according
to node capacity) or malicious (tasks are not pro-
cessed according to node capacity/delayed) requests.
It is clear that with low payoff, the number of mali-
cious events increase as there are not enough incen-
tives for nodes to follow a trustworthy strategy.

Moreover, we have conducted more experiments to
monitor the rate of strategies T' and U followers over
the federation time. Fig. 8 shows the results of the
percentages of T and U followers during the game
play. It is clear that the payoff, according to low
and high incentives, is impacting the percentages of
either followers (i.e., T and U) at each timestamp.
Hence, the better the payoff, the more T followers
and the more successful interactions are within the
federation.
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Figure 5: Percentage of node following strategies 1" and U
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Figure 8: Average payoff in federations

The different types of collaboration re-
quests (i.e., untrustworthy and trustworthy requests)
will gradually affect the federation coherence and the
decision of whether a collaboration request can be
accepted or rejected between 2 things. Fig. 6 shows
the percentage of bad-mouthing and ballot-stuffing
nodes according to federation payoff. We ran this
experiment twice: first with an initial percentage of
untrustworthy nodes in the federation that is high
(i.e., more than half of the nodes in the federation
are trustworthy) but in which the incentive is low
while in the second run the initial percentage of
untrustworthy nodes in the federation is low (i.e., less
than half of the nodes in the federation are trust-
worthy) but the incentive is high. From observing
the results, it is clear that the incentive will affect
the nodes’ decisions regarding which strategy to
follow. Therefore, with high incentives, the nodes
tend to follow a trustworthy strategy while with
low incentives, nodes tend to follow untrustworthy
strategy. Fig. 7 expresses this observation for nodes’
behaviours in the federation with low and high
and payoff. The stability threshold is set to 0.12.
Hence, below this threshold the federation is deemed
to be unstable and most nodes are likely in it are
untrustworthy. The plot shows that loT-EG strives
to keep higher stability (i.e., low standard deviation
of trust scores) for high and low rewards compared
to PeerTrust and IoT-Trust. Moreover, Fig. 8 shows
the average payoff for the nodes in a federation. It



is clear that loT-EG outperformed PeerTrust and
TIoT-Trust in both cases (high and low rewards) by
having higher average payoff.

8. Future research directions

Our future research directions are multiple cover-
ing federation management, trust gamification, strat-
egy selection, to cite just some. Let us start with
the first direction where competition among feder-
ations to attract and retain things could be based
on other factors than incentives. Compatibility and
complementarity could allow things to team up when
playing complex games. How to find the right peers
and ultimately ask for better incentives is a question
worth pursuing.

Regarding the second direction that is trust gami-
fication, we would like to enrich the trust-based evo-
lutionary game model with complex and dynamic
strategies besides (un)trustworthiness. Indeed, more
strategies would be made available to things from
which they would select depending on the situations
that they will encounter. How to identify and ana-
lyze which strategy is being adopted is a question that
would fall into trust-gamification. Another question
is to make strategies dynamic so they are adopted
on-the-fly.

Finally, and in line with the second direction, a
research question would concern a probabilistic and
not deterministic selection of strategies. This should
allow things to weigh in different factors like risk and
uncertainty prior to committing to a particular strat-
egy that could either strengthen or undermine their
capabilities.

9. Conclusion

This paper presented a trust-based evolutionary
game model for managing loT federations. A fed-
eration acted as a platform for hosting things in-
stead of remaining independent offering mechanisms
for signing up and signing off, for example. Com-
pared to existing trust models, the role of trust is
fostered into the games that things play when they
join federations based on factors like trustworthiness.

16

These games capture the dynamic nature of federa-
tions that would like to attract, reward, and retain
trustworthy things and penalize and expel untrust-
worthy ones. This exercise of retaining and expelling
along with things’ signing in and signing off has an
impact on the stability of federations that wish to re-
main active for a longer period of time. The stability
in the proposed model can be achieved by analyzing
the trust behaviors of things and retaining only those
exhibiting stable behaviors.

To demonstrate the technical doability of our trust-
based evolutionary game model for managing loT fed-
erations, a set of experiments were conducted by sim-
ulating federations according to a specific network
topology, things’ capabilities, and interactions be-
tween things and federations. Results show that high
incentives encourage things to follow trustworthy
strategies and minimize bad-mouthing and ballot-
stuffing attacks on their operations. The model
robustness against these attacks has been checked
and benchmarked to two similar trust models, IoT-
Trust [7] and PeerTrust [32].
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