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ABSTRACT

The "race to the surface" describes the competition between bacteria and eukaryotic

cells for colonisation of an implant device. This thesis aimed to address gaps in modelling

the oral microenvironment surrounding a dental implant material, specifically focusing on

three key elements: identification of a suitable hydrogel scaffold, development of a method

for calculating biofilm viability on the surface of implant materials, and exploration of a

computational model of surface adhesion.

For strain values up to 30%, the mechanical stiffness of porcine oral mucosa under

compression was determined, with porcine as a model tissue. Acellular alginate and alginate-

collagen scaffolds were then characterised to determine the concentrations that were most

similar to the stiffness of the porcine mucosa. Further investigations included scanning elec-

tron microscopy, rheology, and Fourier-transform infrared spectroscopy to fully characterise

the surface topography, gelling behaviour, and chemical bonds within the polymers, respec-

tively. Blended collagen-alginate hydrogels of 2.5 mg/mL collagen with 10 mg/mL alginate

and 2.5 mg/mL collagen with 5 mg/mL alginate were found to closely match the mechanical

stiffness of the native tissue, as well as demonstrating desirable gelling behaviour through

the formation of collagen fibrils and low concentrations of cross-linking agent required.

These hydrogels were then shown to support human dermal fibroblast growth upon

encapsulation within the scaffold, with high cell viability. Matrix stiffness was found to influ-

ence fibroblast morphology, with a higher stiffness resulting in rounded fibroblast morphology
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and a lower stiffness resulting in a spindle shape. The presence of a stratified epithelium was

not confirmed and therefore further optimisation of this model is required.

Alongside the refinement of this 3D model, a novel analysis tool was developed for

quantifying confocal micrographs of live/dead stained biofilms. The protocol was validated

on different bacterial species, and the tool demonstrated a reliable measurement of biofilm

growth and cell viability. Advantages of this tool include the low computational time to

analyse images, ease of use, and transparency of the image processing methods employed.

Finally, a computational model of initial bacterial adhesion to a surface was developed,

based on a cellular automaton. The parameters that affected this initial stage of biofilm

formation were investigated. The balance between the rate of migration to the surface,

division rate, and death rate of a bacterial species had a significant input on the cells adhering

to the surface. If the balance of these parameters can be controlled in vitro and in vivo, then

this could inform the development of strategies for preventing surface colonisation.

Ultimately, the work presented in this thesis will support the development of an-

timicrobial strategies and novel implant devices to prevent the occurrence of dental implant

infection by providing improved methods of analysing the effect of such strategies in vitro.
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Chapter One

Introduction

1.1 The race to the surface

Gristina [1] first introduced the concept of the "race to the surface" in 1987. This publication

described the two main barriers to long-term use of implanted biomaterials in the human

body to be: (a) the possibility of infection and (b) unsuccessful tissue integration [1]. The

contest between host tissue cells and foreign bacteria for an implant surface is vitally im-

portant. If the battle is won by the host cells, then the surface becomes occupied and the

body’s natural defences can eliminate any bacteria still present [1]. However, if the bacteria

are able to colonise the implant surface without intervention, then the subsequent infection

can result in significant tissue damage and has the potential to lead to systemic illness [2].

In 2012, decades after Gristina first described the "race to the surface" [1], Busscher et

al. [3] reviewed the current status on the use of biomaterials for implants and devices. The

authors determined that, despite much research into the promotion of tissue integration and

prevention of infection, bacteria still often "win" the race [3]. Medical and dental implants

are highly susceptible to infection and if left untreated, these infections can be chronic, lead

to the development or propagation of resistant bacterial strains, have debilitating effects on
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patients, and ultimately be very costly to eliminate [3]. For researchers to continue develop-

ing novel biomaterials and antimicrobial therapies to tackle implant-related infections, it is

essential that in vitro models are relevant to the environment they represent. In particular,

the oral cavity presents unique challenges to the use of laboratory-based models. These

include the presence of several hundred species of bacteria, soft and hard tissues and many

external factors that have an impact on the environment, such as diet, oral hygiene and

mechanical forces (for example shear flow from saliva) [4].

This introductory section will describe the challenges surrounding the use of implants

in the field of dentistry, detail the biology and structure of the oral mucosa and its role in

preventing infection, and evaluate the current oral tissue and biofilm models published in

the literature. It will also discuss the formation of biofilms and their role in peri-implant

disease. Furthermore, the use and benefits of computational (in silico) modelling of bacterial

colonisation of surfaces will be introduced.

1.2 Dental implants

The ultimate goal in the use of dental implants is to restore a patient’s oral environment to

normal function, both in terms of performance and aesthetics [5–7]. Endosseous implants

are embedded in the maxilla (upper jaw) or mandible (lower jaw) by placing them within a

drilled space in the jawbone and attaching a permanent crown (Figure 1.1) [8]. Over recent

decades, removable dentures and fixed bridges have become less acceptable among patients

and there is a trend towards the use of endosseous implants [5, 9–11]. Whilst there are no

current estimates of the number of endosseous implants placed in the UK annually, according

to the latest UK Adult Dental Health Survey published in 2011, half a million adults have

at least one dental implant [12]. This number has likely to have continued to increase over
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the past decade, with similar trends reported globally [13–15].

Figure 1.1: Illustration of a dental implant indicating the three key elements: the crown, used to simulate

the natural tooth; the screw, which is embedded into the jawbone to anchor the implant and mimics the

natural root of the tooth; and the abutment, which connects the screw to the crown and perforates through

the soft tissue.

Commercially pure titanium (grade II or grade IV) or titanium alloy (Ti-6Al-4V) are

the most common constituents of dental implants [7–9, 16]. The primary reason for the

widespread use of titanium for dental applications is that it is widely accepted to be biocom-

patible with the jawbone and surrounding soft tissues, and furthermore is corrosion-resistant

due to the formation of an oxide layer (TiO2) over its surface [17]. In addition, titanium

offers mechanical strength and resilience in line with that of human bone, when compared

with alternative materials [18]. However, the introduction of new surgical techniques and

narrower implants has resulted in the suggestion that commercially pure titanium does not

have enough mechanical strength to support loading in all jaw sites [19].
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1.2.1 Failure of dental implants

For dental implants, stated failure rates due to infection vary. Whilst most clinical studies

report overall five-year success rates of 90-95%, there are limited long-term clinical studies

on the lifetime of dental implants and it is challenging to determine an overall failure rate

from the highly varied clinical data in the literature [20, 21]. Studies suggest that between

10 and 22% of patients will develop peri-implantitis within 10 years of implant placement

[22, 23]. For younger recipients, and with an ageing population, dental implants may need

to be replaced multiple times during a patient’s lifetime [6, 7].

Implants can fail for several reasons. Primarily, these are: a lack of osseointegration

during early healing, infection of the peri-implant tissues, and breakage [24]. Integration is

a key element contributing to the success or failure of an implant, as the device needs to

be united with the surrounding bone and soft tissues. There are many factors that affect

peri-implant tissue healing including surgical technique and the host immune response, as

well as design features and fit of implant [5, 7].

Osseointegration is defined as "a direct structural and functional connection between

ordered, living bone, and the surface of the load-bearing implant" [25, 26]. It has been

extensively studied in the human body and is well-characterised with predictable processes.

It has been the focus of much dental implant research due to its essential role in ensuring

an increased lifespan of the implant. Osseointegration of a dental implant into the jaw bone

occurs through the following three stages:

• Proteins and ligands from the blood are adsorbed onto, and released from, the implant

surface. This recruits osteogenic cells to the implant/tissue interface [27].

• In the second stage, the osteogenic cells at the implant surface differentiate and form

de novo bone by secreting a matrix directly on the implant surface [27].
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• The final stage, bone remodelling, is a much slower process. The bone surrounding the

implant is remodelled through several cycles to achieve a more ordered structure and

improved mechanical properties [27].

Despite its consideration as a biocompatible material, titanium implants can induce a

"foreign body" response that can lead to implant rejection [28]. This foreign body response

can be dependent on the surface properties of the implant or the presence of microbial

agents. In this situation, after the initial interaction of blood with the implant surface, an

immune response is triggered and consequently fibrous granulation tissue forms at the bone-

implant interface [28]. Due to the lack of contact of the implant with the native bone, this

is considered to be poor integration (Figure 1.2).

Figure 1.2: Image reproduced from Civantos et al. [28]. Histological images of rabbit tibia bone tissue

harvested 8 weeks post screw implantation surgery. The titanium screw can be observed as black opaque,

while bone is observed as red tissue. (A) Implant integrated with direct contact between host bone and

implant surface. (B) Non-integrated implant with lack of direct bone-implant contact, with fibrous tissue in

white present at the bone-implant interface.

In addition to osseointegration, the soft tissues present in the oral cavity also need

5



Introduction

to integrate with the implant material. In recent years, soft-tissue healing has become

a focus of scientific and clinical research due to its role in establishing a barrier between

the oral environment and the bone-implant interface [29]. For example, greater width of the

keratinised mucosa adjacent to a dental implant has been shown to be important in successful

outcomes, whereby a width of less than 2 mm resulted in greater plaque accumulation and

bleeding as well as soft-tissue recession over a five-year period [30]. A full discussion of the

biology of the oral mucosa and its role in wound healing is carried out in Section 1.3.

In addition to preventing serious infection within the jawbone, the attachment be-

tween the peri-implant soft tissue and the material surface can significantly affect the aes-

thetics of the device [31]. It should be a priority for those developing implant materials to

consider how the surface preparations, design and mechanics can influence the cells in the

surrounding soft tissues as well as the bone.

Oral inflammatory diseases such as periodontitis and peri-implantitis are driven by

the accumulation of plaque biofilms in the oral cavity [32]. Plaque biofilms can form on solid

surfaces such as dental implants and cannot easily be washed away [32] (see Section 1.4.1).

The human mouth contains a diverse range of microbial organisms that make up the oral

microbiome [33]. However, pathogenic species are also present and if plaque is allowed to

accumulate, the numbers of pathogens may increase, shifting the equilibrium from healthy

to diseased (see Section 1.4.1). If untreated, this shift can result in the development of the

destructive disease peri-implantitis. A 2013 systematic review by Atieh et al. [34] identified

a prevalence of peri-implantitis in 18.8% of implants (based upon 6,283 implants in 1,497

patients).

The effects of peri-implantitis include bone loss and inflammation of the surrounding

soft tissue and it can ultimately result in loss of the implant [35, 36]. The definition of

peri-implantitis used in the scientific literature varies, making it difficult to compare studies
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and gain an understanding of the key pathogens that drive the disease [22, 37]. Sanz et

al. [38] define peri-implantitis as greater than 1 mm of bone loss after the first year of

implant placement. Patients with a history of periodontal disease have a high prevalence of

peri-implantitis, which has likely led to the association between the two diseases. However,

differences have been identified between the progression rates of periodontal and peri-implant

diseases [36]. It has been shown that the inflammation is more pronounced in peri-implantitis

and the inflammatory process is more aggressive than in periodontitis [39].

In addition to the variation in aetiology, differences between the microbiota at the

site of infection for peri-implantitis and periodontitis have been identified. While bacteria

associated with periodontitis were found to be the dominant species in peri-implant infection

(including Treponema, Prevotella, Campylobacter and Eubacterium), the levels of Treponema,

Campylobacter and Eubacterium were significantly higher in both peri-implant health and

disease than in periodontitis [40]. The same study identified high levels of Streptococcus

mutans (S. mutans) in peri-implant, but not periodontal, communities. This is an interesting

finding because S. mutans is strongly associated with dental caries. Furthermore, peri-

implant associated communities have been shown to lack diversity, suggesting that peri-

implantitis is a simpler infection than periodontitis [40]. However, the same study found

that the species at the site of infection were not the same in all individuals, suggesting that

the disease is microbially heterogeneous [40].

One of the key differences between peri-implantitis and periodontitis is the ease at

which it can be diagnosed. Implants rarely present a source of pain or sensitivity due to

the lack of nerves present (unlike the root of a natural tooth) [41]. The early warning

signs of infection, including pain and sensitivity, are often missing in the progression of

peri-implantitis and therefore early diagnosis is challenging.

Treatment of peri-implantitis is also considerably more challenging and invasive than
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for periodontitis. The latter is easily managed with simple surgical and antibiotic therapies,

as well as hygiene approaches such as regular cleaning. However, bacteria present on implant

surfaces are much more challenging to remove due to the roughness of the material [42,

43]. Treatments for peri-implantitis typically incorporate mechanical debridement alongside

antimicrobial agents. Studies that have investigated the effectiveness of this therapy have

reported a reduction in the total bacterial counts and levels of periodontal pathogens in the

first 3 months following treatment [44]. However, those with longer follow-up periods have

observed a gradual return to baseline levels of the microbiota [44]. Furthermore, once an

implant is considered failed, treatment is limited to removal surgery.

1.2.2 Evaluating implant materials

Novel coatings, surface modifications and materials are being developed to tackle the chal-

lenges of poor integration and implant infection. However, the choice of devices available

in the clinic remains limited to titanium and ceramic-based materials. This may be due to

the difficulties in taking a novel medical device from research laboratory to clinic – these

include the large cost associated with this process and a lack of experience in, or facilities

for, animal and clinical trials.

A considerable challenge to the evaluation of dental implants in vitro is the complex

environment in the oral cavity. Many different tissue types and bacterial strains are present

[33, 45], making experimental models difficult to develop. Novel materials for dental im-

plants and antimicrobial approaches are continuously being developed, but these are difficult

to translate into clinical practice. It is critical that we can test implants and biomaterials in

physiologically relevant environments. Therefore, the development of a model that mimics

the implant surface and surrounding bacteria and eukaryotic cells would be extremely valu-

able to the biomaterials field and support the progression of new implants towards clinical

8



Introduction

use. Prior to discussing the current models available to study these interactions, an under-

standing of the biology of the oral mucosa is essential. The following section will describe

the structure and function of the oral mucosa.

1.3 The oral mucosa

A mucous membrane consists of one or more layers of epithelial cells overlying a layer of loose

connective tissue [46] and the function of most mucous membranes is to stop pathogens and

dirt from entering the body [46]. The oral cavity is lined by a mucous membrane known as

the oral mucosa, which has a function akin to that of skin: to act as a physical barrier to

the outside environment [47]. The oral mucosa therefore has some similarities with skin in

its structure. As with all mucous membranes, there are two layers to the oral mucosa, an

epithelium and an underlying connective tissue termed the lamina propria (Figure 1.3). The

surface layer of both skin and oral mucosa is made up of a stratified squamous epithelium

[47]. These are flattened (squamous) cells arranged in layers (stratified). This structure

provides a flexible covering to the underlying tissues and prevents infection from pathogens.

There are three classifications of oral mucosa: masticatory, lining, and specialised [47,

48]. The three tissue types display regional differences, particularly in the keratinization of

the epithelium. The masticatory or gingival mucosa covers the gingivae and hard palate

(roof of the mouth) and is an important tissue in relation to implant integration. The

epithelium in the masticatory mucosa is keratinized (containing the protein keratin) and

is bound tightly to the underlying bone by the lamina propria [48]. Firm attachment to

the underlying connective tissue and bone is essential as the masticatory mucosa undergoes

mechanical stresses during mastication. The lining and specialised mucosa are found on the

floor of the mouth, the bottom surface of the tongue, and the soft palate [49]. These are non-
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Figure 1.3: Histological staining of human masticatory mucosa demonstrating the different regions of the

tissue including the stratified keratin layer and epithelium, where keratinocytes are present, and the laminar

propria populated by fibroblasts. Figure adapted from Nanci [48].

keratinized, making them more elastic and flexible for speech [49]. Another key difference

between the masticatory and other mucosae is the turnover time for cell division. Turnover

is much faster in the lining mucosa (14 days) than the masticatory mucosa (24 days) [47].

1.3.1 Wound healing

The oral mucosa is of particular interest to those working with dental implants. This is

because rapid attachment of the oral mucosa to the dental implant after placement is es-

sential to prevent bacteria migrating into the jawbone and causing serious infection. The

peri-implant mucosa plays a key role in the longevity and survival of a dental implant by

creating a "seal". The peri-implant mucosa responds to plaque in a similar manner to healthy

gingival mucosa that surrounds teeth [50]. When the integrity of this seal is disturbed by the

inflammatory process, the underlying bone can be exposed to the oral bacterial environment

and this can ultimately lead to peri-implantitis [50].

In general, healing in the mucosa occurs much faster than in skin and is significantly
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less likely to scar [51, 52], although the exact reason for this is still under investigation.

However, it has been suggested that the inflammatory reaction to wounding is resolved

much faster in the oral mucosa than in the skin, with reduced numbers of macrophages,

neutrophils, and T-cells detected [52, 53]. In addition, there are differences in gene and

cytokine expression, including the production of vascular endothelial growth factor (VEGF),

between the epithelial cells of oral mucosa and skin. The expression pattern in skin is more

intense and much longer in duration than in oral mucosa [53].

Both skin and oral mucosa go through the same stages of wound healing: haemostasis,

inflammation, proliferation, and remodelling [54, 55]. Haemostasis describes the process

of clot formation and platelet aggregation. These platelets release growth factors which

initiate the wound healing cascade through the activation of neutrophils, endothelial cells,

and macrophages [54]. The clot provides an early extracellular matrix (ECM) to allow for

cell migration to the wound site. Inflammation starts with the activation of neutrophil

migration, and they phagocytose any bacteria present in the wound site. In the secondary

inflammatory phase, monocytes are attracted to the wound and undergo a phenotypic change

to become macrophages. These macrophages are fabricators of growth factors responsible

for the production of ECM and the proliferation of smooth muscle and endothelial cells [54].

During the proliferation stage, keratinocytes at the wound edge proliferate and migrate –

this occurs within a few hours of wounding to prevent infection. Several growth factors are

responsible for keratinocyte proliferation and migration including keratinocyte growth factor

(KGF), epithelial growth factor (EGF), and basic fibroblast growth factor (bFGF) [55].

Fibroblasts present in the laminar propria play several crucial roles in the healing

process. They release the growth factors that promote keratinocyte proliferation and form

the granulation tissue, the new connective tissue containing microvasculature formed as part

of the healing process. They also reorganise the early ECM, and remodel the resulting

scar [54, 55]. The final stage of wound healing, remodelling, occurs over a longer period

11



Introduction

of time as the disorganised collagen is remodelled into a more ordered structure. Various

hypotheses exist to explain the minimal scarring that occurs in the oral cavity: firstly, that

the presence of bacteria stimulates rapid wound healing, secondly, the moist environment

and growth factors present in the saliva encourage better healing, and finally, a non-fibrotic

fibroblast phenotype that is distinct from skin fibroblasts is present [52, 56, 57]. This distinct

phenotype has been described as "replicatively younger", giving them an increased ability to

repopulate a wound space [58].

There have been a number of studies that focus on the wound healing process around

dental implants [29, 50, 59–61]. The scarless wound healing in oral mucosa exhibits less

extensive inflammation with smaller numbers of neutrophils and macrophages than are found

in the healing process of a typical wound [62]. The process of forming a biological "seal"

around a dental implant can be described in several stages:

• After the initial inflammation at the site of the implant placement, fibroblasts within

the adjacent epithelium adsorb onto the implant surface [62, 63].

• These fibroblasts secrete proteins that direct the keratinocytes in the epithelium to

orientate parallel to the implant surface [62].

• Finally, after approximately 4 weeks of healing, the collagen fibres are reorganised to

become more ordered and the wound is considered healed [63]

1.3.2 Immune function

Aside from being a physical barrier to microbiota and playing a key role in preventing migra-

tion of bacteria to the dental implant, the oral mucosa has an important role in responding to

pathogens. Recent evidence has shown that epithelial cells coordinate the local immune re-

sponse to pathogenic species [64, 65]. The major receptors involved in pathogen recognition
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are Toll-like receptors (TLRs) that can detect bacterial products such as lipopolysaccharides

(LPS) and bacterial DNA [65, 66]. Activating these TLRs that are present in epithelial

cells, results in a signalling pathway that leads to the recruitment of immune cells from the

underlying tissues. There are several signalling pathways that can lead to an immune re-

sponse when challenged by pathogenic bacteria [66]. As part of their response to pathogens,

oral epithelial cells can synthesise a number of cytokines, adhesion molecules, growth fac-

tors, chemokines, and matrix metalloproteases (MMPs) [66]. Investigating the relationship

between epithelial cells and pathogens in the presence of implant materials is important

to discern the impact they have on the oral mucosa response to infection. Models that

can incorporate multiple elements of the complex environment are useful to gain a better

understanding of these integral processes that prevent peri-implant infection.

In summary, it is crucial to understand the structure and biology of the oral mucosa

when developing in vitro models, as it plays an essential role in the healing around dental

implants. A fast response to implant placement is important, as the keratinocytes proliferate

and migrate to the implant surface to prevent microbial organisms reaching the underlying

bone, thus reducing the risk of peri-implantitis and implant failure. Experimental models

of the oral mucosa are extremely useful for better understanding cell response to implant

surfaces and enabling the design of improved materials for soft tissue integration. However,

as the mouth is a highly complex environment, the role of bacterial biofilms in implant failure

is important to consider when designing and evaluating new implant materials and designs.

The next section will discuss the biology of biofilms and their role in the oral cavity.

13



Introduction

1.4 Biofilms

A biofilm is a population of bacterial cells adhered to a surface (and to each other), encap-

sulated within a secreted extracellular polymeric substance (EPS). They can be comprised

of a single-species or multiple bacterial species. The key advantage to bacteria existing in

a biofilm is that they act as an organised community, sharing resources for growth and sur-

vival. The formation of biofilms in some settings has advantages. For example, biofilms have

been used for wastewater treatment [67], for protection of the marine ecosystem [68], and

prevention of corrosion in industrial settings [69].

However, the formation of biofilms is detrimental in several industries, including food

and healthcare, and can cause biofouling; the deterioration of materials such as iron, steel

and concrete which results in large costs for the oil, gas and marine industries [69]. In the

food industry, pathogenic biofilms can form in processing facilities, which can cause food

spoilage and potentially lead to poor human health outcomes [70]. In a healthcare setting,

biofilm formation on medical devices and implants including pacemakers, vascular grafts,

catheters, prosthetic joints, sutures, and contact lenses poses a critical problem of infection

in patients [71].

1.4.1 Oral biofilms

Oral biofilms are also known as plaque, and they accumulate on the teeth and on foreign

surfaces such as dental implants. They can either form above the gingivae (supragingival

plaque) or below the oral epithelium, between the tooth and the gingival crevice (subgingival

plaque). Oral biofilm composition varies greatly between individuals and can be influenced

by several factors including diet and oral hygiene.
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Over 700 different bacteria species have been identified in the oral cavity [33]. The

species vary significantly between different environments within the mouth. For example,

the microbiota of the tongue differs from that present on the tooth or from the species in the

periodontal pocket. Microbial community differences also occur between individuals, even

in health. The complex equilibrium between resident species in the oral cavity is responsible

for the maintenance of a healthy state (in symbiosis) or a state associated with disease (in

dysbiosis) [33]. Typically, oral diseases such as periodontitis and peri-implantitis occur when

there is an increase in pathogenic species, shifting from a symbiotic state to a dysbiotic state.

1.4.2 Biofilm attachment and development

The initial step in the formation of an oral biofilm is the adhesion of primary colonisers to a

surface, including Streptococcus and Actinomyces species. This stage is considered reversible,

as microbes may detach from the surface or remain adhered. Bacteria attach to the tooth

surface via a thin film containing salivary proteins [72]. Following this initial attachment

stage, the bacteria multiply and secrete ECM [73]. This is termed the growth phase, whereby

bacteria grow and recruit other bacteria through auto-aggregation (attraction between the

same species) and co-aggregation (attraction between different species). Initially, the forma-

tion of the ECM is dominated by extracellular DNA (eDNA). As the biofilm continues to

mature, polysaccharides and structural proteins become the more dominant component of

the ECM. Through the maturation stage, microcolonies begin to form, which can facilitate

cell-cell communication [73]. In the final stage, termed the dispersal stage, some of the ma-

ture biofilm will break off into the environment and these planktonic cells are able to start a

new cycle of biofilm formation. This process of biofilm formation is depicted in Figure 1.4.

The primary environment within which bacteria in the oral cavity exist is in biofilms.

Therefore, it is essential to incorporate these complex communities into models of oral disease
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Figure 1.4: Graphical representation of biofilm formation showing the four key stages. (1) Attachment of

bacteria to surface (this is reversible). (2) Formation of monolayer and secretion of extracellular matrix. (3)

Biofilm growth and formation of microcolonies. (4) Maturation results in detachment of parts of the biofilm

to form planktonic culture. Figure adapted from Vasudevan [73].

and the local implant environment. The next section will discuss in vitro models of the oral

mucosa and how they have been utilised to understand the relationship between this vital

tissue and the microflora present in the mouth.

1.5 A review of co-culture models to study the oral

microenvironment

This section is adapted from a review paper by Mountcastle et al. published in the Journal

of Oral Microbiology (2020) [4].
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Co-cultures allow for the study of cell-cell interactions between different eukaryotic

species or with bacteria. Such an approach has enabled researchers to closely mimic com-

plex tissue structures. This review is focused on co-culture systems modelling the oral cavity,

which have been used to evaluate this unique cellular environment and understand disease

progression. Over time, these systems have developed significantly from simple 2D eukary-

otic cultures and planktonic bacteria, to more complex 3D tissue engineered structures and

biofilms. Careful selection and design of the co-culture, along with critical parameters such

as seeding density and choice of analysis method, have resulted in several advances. This

review provides a comparison of existing co-culture systems for the oral environment, with

emphasis on progression of 3D models and the opportunity to harness techniques from other

fields to improve current methods.

The oral cavity is a complex environment that contains many microbial species that

thrive in the warm, moist conditions [74] (Figure 1.5A). Furthermore, different regions of

the oral cavity are made up of several cell types and tissues, both soft (mucosa, connective

tissue, smooth muscle) and hard (enamel, dentine, bone) [49, 75] (Figure 1.5B). Changes in

the soft tissues can indicate disease, for example periodontitis and oral cancer, and reveal

systemic conditions such as diabetes or vitamin deficiency [49]. Equally, the mineralised

structures within the mouth may bear signs of disease, including dental caries, that might

result in significant hard tissue loss or damage [76]. The composition of microbial species in

the mouth can either cause or intensify many of these diseases [33], thus demonstrating the

importance of balance within this complex multi-cellular environment.

The microorganisms present in the oral cavity attach to surfaces in communities called

biofilms; highly regulated and organised interspecies habitats that provide defence against

competitors and adapt to changes in the wider environment (see Section 1.4.1) [33]. These

communities are essential for many metabolic, physiological, and immunological functions.

They support food digestion, regulation of the host immune system, maintenance of mucosa
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Figure 1.5: (A) Common bacterial species present in pathogenic oral biofilms and their communication

between species (adapted from Parashar et al. [77]). (B) Cells and tissue types present in the oral mucosa,

demonstrating complexity of 3D structure.

barrier function, detoxification of environmental chemicals, and prevent invasion of disease-

promoting species [33]. However, a shift in the species present in the oral microbiome can

unsettle the local environment, switching from a healthy to disease state [78]. Saliva also

plays a key role in the oral cavity in maintaining homeostasis and defending from disease,

as well as containing proteins, minerals, and antimicrobial enzymes that control biofilm

formation and activity [79, 80]. Evidently, understanding the processes and interactions

that occur in the oral cavity, in both healthy and disease states, as well as the shift between

the two, is vital to furthering our knowledge of disease progression and the discovery of new

treatments.

For both human and bacterial cells, utilising single species for in vitro modelling of

the oral cavity does not fully represent the in vivo conditions (Figure 1.5). This presents a

key question for researchers in this field regarding how best to study the oral cavity, both
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for understanding disease pathogenesis and evaluating novel therapeutics. Challenges in

studying this complex environment are not just limited to the presence of many cell types

and bacterial species, but also the substantial variations in microbiota between individuals

[81]. Mimicking these various degrees of complexity remains difficult and therefore in vivo

studies remain the gold standard for observing processes in oral pathogenesis. However,

clinical in vivo studies and animal models bring their own obstacles: they are expensive,

labour intensive and can generate ethical concerns. In addition, human and animal oral

microbiota may not be the same and therefore can be difficult to compare. As such, the use

of co-culture models to mimic in vivo conditions has been recognised as a valuable approach

to further our understanding of the relationship between eukaryotic and bacterial cells and

is especially applicable to the oral cavity.

Co-culture techniques allow a variety of cell types to be cultivated together, enabling

examination of cell-cell interactions [82]. These systems may refer to the culture of two or

more eukaryotic cell types together, or eukaryotic and prokaryotic cells. The effectiveness of

co-cultures is heavily determined by the choice of experimental set up. Cell-cell interactions

in co-cultures are strongly influenced by the extracellular environment, which in turn is

influenced by the employed protocol [83]. There are numerous factors that need to be

optimised to ensure these systems are representative of the native oral cavity, such as the

number of cell populations. Having more than two species can result in unstable systems

due to multiple reaction pathways, which may be difficult to monitor, analyse and interpret

[83].

Studying the relationship between the oral microbiome and eukaryotic cells is essential

to understanding disease progression and evaluating the effect of new treatments. Many

studies have published co-culture methodologies, but these techniques have not been directly

compared, making it challenging to identify and optimise the most appropriate system for a

research question. Hence, this review discusses the use of co-culture in vitro models to study
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the oral environment, the progression of these models in complexity, and the disadvantages

and benefits of using a range of published methods (Table 1.1). In addition, the lessons

and approaches that can be adapted from other fields that regularly utilise co-cultures is

considered with the aim of providing future insights for development.

1.5.1 2D cell culture

The simplest oral environment co-culture systems apply planktonic bacteria to a monolayer

of confluent eukaryotic cells [84–87] (Figure 1.6A, Table 1.1). Compared with more complex

approaches, these basic models have an advantage in that cellular response to bacteria can

be attributed to specific interactions allowing for direct comparison between species, both

bacterial and cellular. For example, the inflammatory response of epithelial cells to different

bacterial species may be compared [85] or different eukaryotic cell lines may be challenged

with the same oral pathogenic species, such as Porphyromonas gingivalis (P. gingivalis), a key

contributor to the pathogenesis of periodontitis [88]. However, it is known that interactions

between different bacteria can affect disease progression [89, 90] and therefore applying

single species cannot elucidate more complex physiological interactions.

A number of innovative studies utilised 2D co-culture systems to study the adhesion

to and invasion of epithelial cells by key oral pathogens. Aggregatibacter actinomycetem-

comitans (A. actinomycetemcomitans, formerly Actinobacillus actinomycetemcomitans) is a

bacterium associated with aggressive periodontitis. Mintz and Fives-Taylor [91, 92] applied

A. actinomycetemcomitans to an oral cancer cell line under different conditions and high-

lighted that adhesion is affected by both host (saliva, serum) and culture (pH) conditions.

Using a similar approach, Yilmaz et al. [93] cultured primary gingival epithelial cells and

introduced P. gingivalis and its fimbriae-deficient mutant, demonstrating that P. gingivalis

fimbriae promote adhesion to gingival epithelial cells through interaction with β1 integrins.
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In a later study, Yilmaz et al. [94] showed that P. gingivalis is capable of targeting specific

epithelial cell pathways during invasion and can adapt to an intracellular environment. They

suggested that disease may ensue from a disruption of the balance between the bacteria and

host cells by factors that may trigger virulence or lead to host-immune-mediated tissue dam-

age [94]. Studies like these are essential to determine key proteins and interactions involved

in oral pathogenesis, which could potentially provide targets for future treatments.

Figure 1.6: Common co-culture systems reported in the literature. (A) monospecies 2D cell culture with

planktonic bacteria applied; (B) multispecies 2D cell culture with planktonic bacteria applied; (C) mul-

tispecies 3D cell culture, typically a collagen-based or decellularised matrix containing fibroblasts, with

planktonic bacteria applied; and (D) monospecies 2D cell culture with biofilm applied, typically suspended

from a well-insert.

In addition to looking at a specific bacterium, 2D co-culture systems can be effectively

used to compare the response of host cells when challenged with different oral pathogens

(Table 1.1). Han et al. [95] individually applied six key Gram-negative anaerobic bacteria

associated with periodontal diseases to human gingival epithelial cells to compare their abil-

ity to adhere and invade, as well as measuring levels of interleukin-8 (a proinflammatory

cytokine) secretion from the human cells. Their findings demonstrated that whilst all bac-
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teria species were able to adhere to oral epithelial cells, only Fusobacterium nucleatum (F.

nucleatum) was highly invasive, to levels comparable with P. gingivalis [95]. Not only can

comparisons be made between different bacteria species using multiple 2D co-cultures, but

the ability of different strains to adhere and invade oral epithelial cells can be investigated.

The Prevotella intermedia (P. intermedia) group are made up of three strains (P. intermedia,

Prevotella nigrescens, and Prevotella pallens) and are connected with oral disease pathogen-

esis. Gursoy et al. [96] showed that P. intermedia and P. nigrescens type strains can adhere

to and invade epithelial cells, the capability of P. intermedia being highest. Another key

publication in which strains were compared, was the work of Dabija-Wolter et al. [97] in

which the authors examined the invasion of human gingival fibroblasts by three different F.

nucleatum strains using a 2D co-culture system. In order to evaluate the amount of bacteria

present inside the fibroblasts after infection, live bacteria were fluorescently stained prior to

being introduced into the co-culture, and this allowed for visualisation using confocal laser

scanning microscopy and quantification using flow cytometry. The studies described use a

range of assays and analytical techniques to determine key interactions between host cells

and pathogenic bacteria, showing the importance of simple 2D co-culture systems, as well

as the influence of strain, cell type and culture conditions.

To elevate 2D co-cultures and gain further insight into in vivo interactions, multiple

eukaryotic species can be cultured together (Figure 1.6B, Table 1.1). In two studies by

Bodet et al. [98, 99], epithelial cells were cultured alongside macrophages to gain a better

understanding of the interplay between these two cell types in the presence of P. gingivalis.

Careful optimisation of the ratio between cell types is essential and consideration should be

given to the analytical techniques applied. In these studies, Bodet et al. [98, 99] were unable

to identify which cells had a greater role in IL-6 and IL-8 secretion. This highlights that more

complex assays, such as flow cytometry, may be required to target each cell type. Recently, a

three-cell co-culture was described whereby dendritic cells, gingival epithelial keratinocytes
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and T-cells were cultured in a three-cell transwell co-culture plate, essentially allowing for

three mono-layers to be cultured in the same well and therefore allowing interactions to be

determined when challenged with P. gingivalis [100]. Different single- and co-cultures were

prepared to compare the production of MMPs in response to the pathogen. Interestingly,

the cellular reaction changed when T-cells were present with a reduction in MMP9 and a

reduced immune response, which indicated that multiple cell types could influence MMP

expression, providing further evidence of the complex cell-cell signalling occurring in vivo.

Not only can 2D co-cultures elucidate information on interactions between oral eu-

karyotic cells, they can also be used to evaluate microbial communication. Several authors

have employed 2D co-cultures to study the effect of multiple oral bacterial species on the inva-

sion of gingival epithelial cells by respiratory pathogens [84] and P. gingivalis [86]. Findings

suggested that commensal oral species could modulate invasion. Providing careful consider-

ation is given to the controls used, a 2D co-culture system with multiple bacterial species

can determine very useful information on the pathogenesis of oral disease. From the in vitro

study described [84], the authors suggest that increased presence of oral bacteria in the

throat could prevent invasion of respiratory pathogens. However, it is important to recog-

nise that these co-culture models are not physiologically representative, due to a lack of host

immune system and the use of monolayer cell cultures. Therefore, extrapolating the results

of such studies to in vivo conditions should be done with care.

Interactions of anaerobic species with human cells raise challenges in culturing these

bacteria with oxygen-requiring epithelial cells. One of the limitations in the literature de-

scribed is the culture of P. gingivalis in aerobic conditions. Bodet et al. [98, 99] and Saito

et al. [86] did not report viability of P. gingivalis under the growth conditions applied when

co-cultured with their respective oral mucosa model. The growth of P. gingivalis under

oxygenated environments has been shown to affect its physiology and result in changes in

expression of different proteins, including virulence factors [101]. Gursoy et al. [96] also
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Table 1.1: Summary of several co-culture methodologies utilised within the literature.

Method Summary of protocol References

2D monospecies co-

culture with plank-

tonic bacteria

(1) Seed eukaryotic cells into well-plate.

(2) Culture until confluent monolayer formed, with media

changes every 1-2 days.

(3) Prepare overnight culture of chosen bacteria.

(4) Centrifuge overnight culture and re-suspend bacteria in

eukaryotic cell culture media to achieve desired concentra-

tion.

(5) Add media containing bacterial suspension to monolayer

and perform assays at desired time points.

[84–86, 88, 102,

103]

2D multispecies co-

culture with plank-

tonic bacteria

(1) Seed appropriate ratio of eukaryotic cells into well-plate.

(2) Culture until confluent, with media changes every 1-2

days.

(3) Prepare overnight culture of chosen bacteria.

(4) Centrifuge overnight culture and re-suspend bacteria in

eukaryotic cell culture media to achieve desired concentra-

tion.

(5) Add media containing bacterial suspension to monolayer

and perform assays at desired time points.

[98, 99]

2D co-culture with

biofilm

(1) Seed eukaryotic cells into well-plate.

(2) Culture until confluent, with media changes every 1-2

days.

(3) Prepare overnight culture of chosen bacteria.

(4) To form biofilm, seed overnight planktonic culture onto

coverslips placed in the bottom of a well-plate. Change

media every 1-2 days.

(5) At chosen time point, once biofilm has formed, remove

broth and attach coverslip to base of transwell insert.

(6) Place insert into cell-culture plate and perform assays

at desired time points.

[104–109]
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3D tissue-engineered

co-culture with

planktonic bacteria

(1) Mix fibroblasts with collagen gel and pipette into tran-

swell inserts. Set gel in incubator at 37°C for 4 hr. Culture

for 4-7 days until gel has contracted.

(2) Seed epithelial cells onto surface of gel. Seed monolayer

of epithelial cells into separate well-plate to monitor conflu-

ence. Culture cells until confluent monolayer formed (2-3

days).

(3) Raise model to air-liquid interface and culture for 7-10

days to allow stratified epithelium to form.

(4) Prepare overnight culture of chosen bacteria.

(5) Re-suspend bacteria in eukaryotic cell culture media to

achieve desired concentration. Add media containing bacte-

rial suspension to 3D cell-culture. Perform assays at desired

time points.

[104, 110–113]

highlighted the tolerance of P. intermedia strains to oxygen exposure as a limitation of their

co-culture study. The test conditions applied were aerobic, and the type strain had been

handled in laboratory conditions for longer than the clinical isolates. Consequently, increased

tolerance to oxygen exposure of the type strain may have explained their findings of increased

adhesion. It is vital to assess and report the effect of the aerobic growth conditions used on

anaerobic species for the duration of the experiment.

Simple 2D co-cultures prove useful for testing responses to a dental material, for

example implants or resins. Human gingival fibroblasts can be cultured directly onto the

surfaces of these materials, with planktonic oral species added subsequently to investigate

their effect. Using this method, oral bacteria have been shown to modulate toxicity of dental

resins on human gingival fibroblasts (HGFs) [102]. It is also possible to adapt these 2D co-

cultures to enable high throughput studies to be performed in 96-well plates. For example
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a study by Giulio et al. [103] reported the effect of dental resin monomers on HGFs in

the presence of Streptococcus mitis (S. mitis) and demonstrated there was no reduction in

bacterial adhesion to the eukaryotic cells. Simple 2D cultures also allow for the interaction

between cells and dental resin materials (e.g. HEMA) to be studied in the presence of oral

microbes, an important interaction to understand in the context of the oral environment

[114].

A key factor to consider when using a co-culture system containing eukaryotic cells is

their origin. A range of cell types have been used in the studies described, including primary

human gingival epithelial cells [85, 93–95] and fibroblasts [102, 103], immortalised human

gingival cell lines [87], oral carcinoma cell lines [84, 86, 91, 92, 95], and skin keratinocyte

cell lines [96, 98, 99]. Some studies did not take the source of their human cells into

account when discussing their findings. However, oral keratinocytes and fibroblasts show

distinct characteristics to those derived from the skin [53, 57]. In addition, whilst cell

lines are a convenient choice for these in vitro systems as they are highly proliferative and

easier to culture, they often have phenotypic, morphological and genetic differences to their

primary tissue origin. Primary cells on the other hand, maintain many of the markers and

functions seen in vivo and are therefore useful for elucidating responses from human cells

when challenged with oral pathogenic bacteria.

The publications described have demonstrated that a simple 2D co-culture model

ensures that subsequent assays and analyses are easier to perform and less complex analytical

techniques can be used. They also allow for specific interactions to be identified, which is

important when investigating disease progression and potentially identifying new therapies

for oral pathogenesis. However, there are challenges associated with using simpler models.

In particular, neglecting the effects of the host immune system and not representing the 3D

structure of in vivo tissues often means these models lack certain signals that are present in

the body (Table 1.2).
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Table 1.2: Advantages and disadvantages of co-culture methodologies.

Method Advantages Disadvantages

2D monospecies co-

culture with plank-

tonic bacteria

(1) Can use simple assays to investi-

gate

(2) Can attribute direct cellular re-

sponses from interactions with bacte-

ria

(3) Reproducible with reduced batch-

to-batch variation

(4) Supports homogenous growth

(5) All cells have equal access to nu-

trients.

(1) Not representative of in vivo tissue

structure

(2) Does not account for immune cells

(3) Does not account for many cues

found in vivo, including mechanical

signalling

(4) Cannot monitor interaction be-

tween cell types, in particular the im-

mune system

(5) Does not represent the complex

bacterial biofilms present in the oral

cavity.

2D multispecies co-

culture with plank-

tonic bacteria

(1) Can monitor the interaction be-

tween cell types

(2) Reproducible with reduced batch-

to-batch variation

(3) Supports homogenous cell growth

(4) All cells have equal access to nu-

trients.

(1) May require optimisation due to

different nutrient requirements

(2) Not representative of in vivo tissue

structure

(3) Traditional assays cannot deter-

mine between cell species

(4) Does not account for many cues

found in vivo, including mechanical

signalling

(5) Does not represent the complex

bacterial biofilms present in the oral

cavity.
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2D co-culture with

biofilm

(1) Can monitor the interaction be-

tween cell types

(2) Reproducible with reduced batch-

to-batch variation

(3) Supports homogenous cell growth

(4) All cells have equal access to nu-

trients

(5) More clinically relevant, as

biofilms show increased antibiotic re-

sistance compared to planktonic cul-

tures.

(1) Bacteria can overrun eukaryotic

cells if co-culture system is not care-

fully designed.

3D tissue-engineered

co-culture with

planktonic bacteria

(1) More representative of in vivo en-

vironment

(2) Can study cell-cell signalling

(3) Two mucosa models already estab-

lished in literature: collagen-based hy-

drogel and decellularised matrix.

(1) Can be challenging to achieve cell

numbers required for multiple models

(2) Require specifically enriched me-

dia

(3) Significant optimisation may be

required

(4) More resource-intensive than other

co-culture systems

(5) More difficult to produce repli-

cates

(6) Models may not be fully represen-

tative of native tissue structure

(7) Does not represent the complex

bacterial biofilms present in the oral

cavity.
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1.5.2 3D cell culture

As we have gained an understanding of the importance of cues from the surrounding envi-

ronment, such as mechanical and biological signalling between cell types [115–117], there has

been a move to mimic the structure of the tissue in which the eukaryotic cells are located

(Figure 1.6C). Candida albicans (C. albicans) is a commensal yeast that can shift to become

pathogenic in immunosuppressed individuals and is therefore an important oral pathogen.

A number of 3D in vitro culture systems have been developed to mimic the oral mucosa in

order to study the interaction between epithelial cells and C. albicans [110, 111]. The 3D

models commonly utilised in these investigations comprise a fibroblast-containing collagen

gel with oral keratinocytes cultured on the surface at the air-liquid interface. An alternative

to the collagen model is the use of decellularised matrix as a 3D scaffold. Interestingly,

Yadev et al. [118] demonstrated that a 3D tissue engineered oral mucosa model of human

keratinocytes and a fibroblast-containing matrix displayed more similar immunohistological

and proliferation characteristics to normal mucosa when compared with a 2D oral cell line.

In this study, full-thickness oral mucosa models were prepared from decellularised human

matrix and compared with collagen-based 3D mucosa models purchased from SkinEthic

Laboratories (Nice, France) and MatTek Corporation (Ashland, MA).

Surprisingly, there are relatively few 3D oral mucosa co-culture studies that have

been applied to model bacteria relevant to oral disease. Of those that have, Pinnock et al.

[112] reported significant differences in the response of oral mucosa models to P. gingivalis,

compared with monolayer cultures of epithelial cells. This study described their use of a

collagen-fibroblast gel with surface epithelial cells cultured at the air-liquid interface, with

the application of P. gingivalis in planktonic culture. Subsequently, it was shown that

utilising 3D co-culture systems was important in order to fully discern cellular responses to

infection and confirmed that the interaction between cell types played an important role.
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Another key study that supported the significance of 3D co-cultures in the field of oral

pathogenesis investigated the bacterial species F. nucleatum, which is known to form a bridge

between early and late colonisers in the formation of dental plaque (a common oral biofilm)

[119]. Gursoy et al. [104] used a collagen-based 3D mucosa model and applied planktonic

cultures of F. nucleatum to determine the bacteria’s ability to attach to and invade epithelial

cells. Like Pinnock et al. [112], they also highlighted the difference in response between the

3D co-culture and a simple monolayer of epithelial cells. Given the strong evidence of an

interplay between epithelial cells and fibroblasts in response to infection, there is a clear

need for future studies to consider the application of 3D mucosa models to studies of oral

disease pathogenesis [104, 112]. Furthermore, it is worth highlighting that both Pinnock

et al. [112] and Gursoy et al. [104] reported that the viability of the anaerobic species

they utilised (P. gingivalis and F. nucleatum respectively) was not reduced under aerobic

growth conditions for the duration of their infection co-culture model. It is essential to

examine the oxygen tolerance for anaerobic species when applying them to oxygen-requiring

epithelium models to ensure physiology is not affected. One of the challenges with developing

3D cultures is that primary cells have relatively short lifespans, as they lose their in vivo

phenotype after a few passages, and therefore may not offer sufficient cell numbers to use in

multiple 3D co-cultures [113]. Furthermore, enriched media specific to each cell type are often

required; without this, primary cells can display an altered phenotype and metabolic function

[120]. To combat these drawbacks, immortalised cell lines of human gingival keratinocytes

(HGKs) and HGFs have been established. Promisingly, Bao et al. [113] have demonstrated

that immortalised HGKs still formed a stratified epithelial layer and both HGKs and HGFs

displayed cell-specific markers similar to those found in human gingival tissues. The need for

reproducibility makes the use of cell lines desirable, although it must be noted that there is

a pay-off between reproducibility and physiological relevance, with Yadev et al. highlighting

that the commercially available epithelial cell line TR146 does not form a fully differentiated

epithelium [118].
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As with 2D co-culture systems, the origin of the human eukaryotic cells in a 3D

mucosa model is an important aspect to consider when analysing the cellular response to

bacteria. A range of cell sources were utilised in the co-culture studies described. These

included primary cells from gingival biopsies [112, 118], immortalised gingival keratinocyte

and fibroblast cell lines [104, 113], oral carcinoma cell lines [111, 118], human skin epithelial

cell lines [104, 110], and 3T3 cells (a mouse embryonic fibroblast cell line) [110]. Not only

do these cells exhibit different phenotypes and morphologies, but moreover, the choice of

fibroblast origin can influence the characteristics of the keratinocytes in a 3D model. Merne

and Syrjänen [121] highlighted the importance of standardising the matrix, both in terms

of extracellular matrix components and in the source of fibroblasts used. Where possible,

human eukaryotic cells should be utilised since they are the most physiologically relevant

with regards to the in vivo tissue of interest.

An additional factor that needs to be taken into account regarding the application

of oral pathogens in 2D and 3D co-cultures is the strain of bacteria utilised. Many of the

studies cited throughout this review do not detail the origin of the bacteria used. However,

it has been previously shown that there is a difference in keratinocyte response between

clinical and type strains of A. actinomycetemcomitans [122]. Therefore, it is important to

appreciate that strains of the same bacterial species may have varying characteristics. It is

advisable, where possible, to use clinical strains as well as type strains to conduct co-culture

studies in order to compare them with their standards.

The choice to use a 3D culture needs to be a carefully considered decision, as there

is currently no universal system available and therefore significant optimisation may be

required [123]. Moreover, 2D cell culture approaches can still provide useful information

to enhance our understanding of in vivo processes. As well as being easier to reproduce

and less resource-intensive, 2D cell cultures support homogenous growth and equal access

to nutrients for all cells present, whilst cells embedded in a 3D system may not have access
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to sufficient nutrients [123]. Despite the challenges that come with 3D systems, the studies

cited demonstrate that 3D co-cultures are highly valuable, as monolayer culture systems do

not fully represent the high complexity of the oral cavity (Table 1.2). A review of 3D oral

mucosa models by Moharamzadeh et al. [124] described the different approaches that have

been taken and the advantages and limitations of each, as well as the range of applications for

these systems. As protocols and analysis methods continue to improve, these 3D techniques

will become more accessible within the oral field.

It should be noted that the tissue models described thus far have not considered

the influence of the mechanical properties of the 3D environment. It has emerged in the

last decade that scaffold stiffness can significantly influence and control cell function and

behaviour [115, 116, 125]. Therefore, when designing scaffolds for tissue engineering applica-

tions, it is necessary to match the mechanical properties of the native tissue. There are a few

studies that have attempted to characterise the native oral mucosa’s mechanical behaviour

[126–130]. However, despite these various mechanical properties of the native tissue reported

in the literature, the in vitro models of the oral mucosa previously described have not referred

to these in the development of their model. Research areas with similar methodologies for

3D tissue models have begun explore this area, most notably the skin (see Section 1.5.4).

This is a potential opportunity to enhance and develop the current models that exist and

will be explored further in this research.

1.5.3 Biofilms

The studies described thus far have utilised bacteria in the form of planktonic cultures,

applied within nutrient media to the 2D and 3D cell cultures. Often only one or two

bacterial species are considered in these studies, compared to the 700 species that have

been detected in the oral cavity [131]. Bacteria in the mouth mostly exist in the form
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of polymicrobial biofilms (see Section 1.4.1), which are particularly relevant when looking

at plaque-related pathogenesis [33]. Furthermore, species growing in biofilms have been

shown to have higher resistance to antibiotics when compared with planktonic bacteria [132].

This highlights that applying biofilm models in co-culture studies is particularly relevant to

mimicking the oral cavity, both for studying disease progression and evaluating antimicrobial

approaches. Millhouse et al. [105] showed there is interplay between a complex biofilm and

oral epithelial cells, determined through changes in pro-inflammatory mediators. Other

studies have similarly revealed pro-inflammatory responses of epithelial cells after challenge

with biofilms [106, 107]. These investigations demonstrated that specific interactions occur

between bacteria in a biofilm, as well as with the host cells, yet these interactions are not

present in a planktonic culture. Therefore, it may be concluded that the application of

biofilms in co-culture studies with oral eukaryotic cells are essential to unearth the complexity

of these microenvironments.

Biofilm models are useful to evaluate anti-inflammatory and antimicrobial properties

of treatments and compounds. Traditionally, the efficacy of novel antimicrobial compounds

are assessed on pathogens in planktonic and biofilm states and subsequently these compounds

are applied to oral eukaryotic cells to identify any cytotoxic (or beneficial) effects. This

approach is very common in P. gingivalis research, as this pathogen is known to induce a

response in several oral cell types including epithelial cells, osteoblasts, and fibroblasts [133].

Hence, many studies have an interest in the oral cellular response to novel antimicrobial

compounds, as well as the effect on P. gingivalis itself [134–136]. However, an area this

approach does not address is the interaction between the pathogen and oral eukaryotic cells

in the presence of the antimicrobial under investigation. P. intermedia is another potential

periodontal pathogen associated with the shift from health to disease in a biofilm and has

been shown to increase the immune response at the site of infection [137]. Fteita et al.

[87] demonstrated that the chemically synthesised quorum-sensing (QS) molecule butyl-
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dihydroxy-2, 3-pentanedione, an analogue of autoinducer-2 which is commonly produced

by many Gram-positive and Gram-negative species, was able to reduce cytokine expression

of a human gingival keratinocyte cell line and simultaneously inhibit biofilm growth of P.

intermedia. Without observing the entire system in one in vitro study, this synergistic effect

may have been missed. To further support the importance of evaluating biofilms and oral

cells in co-culture, a study by Ramage et al. [138] applied both single- and multi-species

biofilms to an oral epithelial cell line (OKF6/TERT2) and the results implied the immune

function changes with varying biofilm composition. They reported the dependence of the

immune response on the type of bacterial challenge, further highlighting the complexity of

the oral cavity and the need to investigate several different interactions to understand disease

pathogenesis and identify novel therapeutic targets.

A challenge with using biofilms in a co-culture is the highly different growth rates

between the bacteria and eukaryotic cells [139]. High numbers of bacteria in cell culture

can cause rapid nutrient depletion and changes in pH, subsequently hindering the growth of

eukaryotic cells [140]. Biofilms contain larger numbers of bacteria compared with planktonic

cultures, where the concentration of bacteria can be easily adjusted through dilutions. Hence

it can be useful to adopt a methodology whereby the biofilm does not come directly into

contact with the eukaryotic cells, or where flow is present to reduce the bacteria numbers

in the co-culture system (Figure 1.6D). Different approaches have been taken to achieve

this. Guggenheim et al. [108] and Thurnheer et al. [109] grew a multispecies biofilm on a

hydroxyapatite (HA) disc and placed this upside-down on a ring support that was layered

onto a gingival epithelial cell monolayer culture. In contrast, Millhouse et al. [105] and

Ramage et al. [138] attached the coverslip on which the biofilm was grown to the base of

a transwell culture insert, which was placed within the well-plate. Hence, the biofilm was

suspended approximately 0.5 cm above the monolayer culture and did not directly come into

contact with the oral epithelial cells in the bottom of the well (Table 1.2). An alternative
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approach to introducing bacteria is to use a flow chamber. These have been used in some

studies to evaluate biofilm formation on implant surfaces [141, 142]. To grow biofilms in flow

chambers the hydrodynamic conditions must be carefully controlled, ideally akin to saliva

flow in the mouth [143]. A review of different biofilm flow methodologies has been described

elsewhere [143, 144]. Relevant to this review, a recent study utilised a flow chamber to

compare adhesion of bacteria versus HGFs on titanium surfaces and determined that the

smoothest surface best supported fibroblast adhesion and reduced biofilm formation [142].

These findings highlight that dynamic culture systems remain a promising avenue for further

exploration. This is of particular relevance to those studying in the oral cavity since it enables

the system to mimic saliva flow, thus creating an environment more closely aligned to in vivo

conditions.

Due to the complexity of analysing both 3D tissue models and biofilms, very few

studies have attempted to combine the two in a single system. The most simple reported

method, published by Gursoy et al. [104], applied biofilms of F. nucleatum grown on cov-

erslips directly onto epithelial cells grown on fibroblast-containing collagen matrices. By

comparing the application of planktonic species with biofilms, they were able to determine

differences between the ways bacteria behaved in these different states, with biofilm bacte-

ria causing significantly greater epithelial cell death than when applied in planktonic form.

This study also demonstrated that cells from biofilms of F. nucleatum were able to invade

the collagen matrix of the mucosal model, highlighting the benefits of choosing a complex

system to model the in vivo environment. However, the biofilm was directly in contact with

the mucosal model and hence this may have increased the magnitude of the effects observed.

A more complex approach to modelling the interaction between oral biofilms and oral tissues

is to utilise a perfusion bioreactor system [145, 146]. Bao et al. [146] were the first to use

one of these systems to study periodontal infections and later also used it to characterise

the global proteome regulations present in the host-biofilm model [146]. One of the benefits
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of using a perfusion bioreactor is that immune cells such as monocytes can be incorporated

to generate an environment that is potentially more physiologically relevant. However, the

cost of a bioreactor system can be a significant barrier to using this technique. Overall,

the research described provides clear evidence that understanding the interactions occurring

within an oral biofilm will enhance our understanding of the pathogenesis of oral disease,

and novel approaches for introducing biofilms to host cells are key to achieving this.

1.5.4 Perspectives from other fields

Gut microbiology

The human intestines exhibit a multifaceted microbiota, with an abundance of host-microbe,

microbe-microbe and environmental interactions [147]. This complexity creates many similar

challenges to researchers working in the oral field. Links between the gut microbiome and

obesity, diabetes, liver disease, cancer, and neurodegenerative diseases [148, 149] have now

been established, which has driven considerable growth in this research area. Similar ap-

proaches to the co-culture models described herein have been utilised in this field, including

monolayer/planktonic cultures [150–153] and 3D/planktonic cultures [154, 155]. Reported

methods to generate an in vitro environment that better represents the in vivo surround-

ings of the digestive tract include bioreactors [152], 3D organoid cultures [156, 157], and

organ-on-a-chip systems [158], all of which are described in detail by a review published in

2017 [151]. As with certain anaerobic bacteria in the oral field, interactions of anaerobic gut

species with the intestinal mucosa are less-frequently studied due to challenges in culturing

anaerobes with the oxygen-requiring epithelium. Anonye et al. [159] reported for the first

time the use of a dual environment vertical diffusion chamber (VDC) to study the effect

of Clostridioides difficile (C. difficile) on a 3D gut epithelium model. The use of a VDC

allowed for monitoring this interaction over a longer time frame and the study reported that
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C. difficile adhered more effectively to epithelial cells grown on the surface of the 3D model

than on single epithelial monolayers. A VDC could similarly be employed in the field of oral

microbiology to better study the effect of anaerobic pathogens such as P. gingivalis and F.

nucleatum, key species identified in the progression of periodontitis.

Skin microflora

The skin is inhabited by a multitude of microorganisms, with many factors including genetics,

environmental characteristics, and host demographics having an influence on the composition

of the microflora and consequently on the shift from health to disease [160]. There are

a number of 3D skin models established, including some that are available to purchase,

which have a fully differentiated epithelium [161]. These models have typically been used

in toxicity studies and drug testing applications [162], however due to the similarities in

structure between skin and oral mucosa, lessons can be taken from some of the advanced

approaches to 3D dermal models. For example, El Ghalbzouri et al. [163] demonstrated

that collagen secretion by human fibroblasts provided a long-term functional human dermal

matrix, and that this could be cultured for nearly three times as long as traditionally used

rat-tail collagen matrices. This methodology could be beneficial in the oral field, as the short

timespan that primary gingival fibroblasts can be cultured is a limiting factor for longer-term

studies of periodontal disease. A similar technique frequently applied in the dermal field is

to seed keratinocytes onto decellularised matrix. Anderson et al. [164] were interested

in the formation of a biofilm phenotype of MRSA, to mimic a natural infection. They

used decellularised porcine vaginal mucosa to generate a stratified, squamous epithelium,

an advantage of which is that it is inexpensive and easily reproducible. The same study

compared planktonic application of Staphylococcus aureus (S. aureus) with the formation of

a biofilm directly on the skin model and demonstrated the importance of closely mimicking

natural biofilm infections. In summary, 3D skin models are becoming increasingly useful
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in the study of the human dermal microbiota. Some of the novel advances made in this

area, in particular the production of 3D extracellular matrix from human fibroblasts, could

be translated to the oral mucosa to improve the reproducibility and accessibility of current

techniques.

1.5.5 Summary

Significant progress has been made towards the development of physiologically relevant mod-

els of the oral environment, from simple 2D co-cultures to more complex 3D tissue constructs

and from the application of planktonic bacteria to multispecies biofilms. These advances have

led to a greater increase in our understanding of the interactions taking place in the oral

cavity, and thus deepening our knowledge of how periodontal diseases progress. However,

current in vitro models have limitations, either due to their simplicity or complexity. Whilst

able to identify specific interactions between cell types, simple 2D cultures cannot be used

to determine the more complex cell-cell interactions that occur in the oral cavity, for exam-

ple between bacterial species and with the host immune system. On the other hand, due

to the analytical complexity or equipment costs, very few studies have successfully intro-

duced biofilms to a 3D organotypic mucosa model. Selecting a co-culture system with an

appropriate degree of physiological relevance to answer the research question is essential.

As a growing number of studies utilise more complex models, many analytical techniques

and 3D mucosa models are being optimised. Utilising knowledge from multiple disciplines,

including biology, engineering and mathematics, is likely to become important in furthering

the field due to the multifaceted nature of co-culture systems. Additionally, in silico models

of interactions in the oral cavity may become of increasing significance for simulating more

complex environments, though in vitro and in vivo data will still be required to make com-

putational approaches reliable. Adapting and applying techniques from other fields facing
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similar challenges can enhance the methodologies currently available in the study of the oral

cavity. Systems that combine these approaches will ensure advancement in the field. As

such, this will enhance our understanding of disease progression and enable the evaluation

of the effects of new antimicrobial compounds and novel therapies.

1.6 In silico modelling of cell adhesion to surfaces

As outlined thus far, there are several challenges with in vitro models of biological environ-

ments. Typically, the more complex the laboratory model, the harder it is to analyse and

achieve reproducible results [4]. Other key elements that cannot be easily considered with

in vitro representations include environmental factors, host factors, and other biotic signals

[165]. These become particularly noticeable in the case of the oral cavity, where several soft

and hard tissues are present and interact with many hundreds of bacterial species in the

form of biofilms, often along with other non-biological materials such as implants.

Computational models are a promising solution to meet these challenges. They allow

for examination of biological behaviour on different scales, test hypotheses and predict be-

haviour, and can sometimes lead to new experimental approaches [166]. Furthermore, a key

advantage of using a mathematical model is that it can characterise complex data in terms

of few parameters.

This thesis seeks to improve methods for examining the "race to the surface" [1]

between bacteria and tissue cells in the oral cavity. There are many ways in which in silica

approaches can be used to explore this concept, including models of wound healing [167] or

the interaction between an implant material and the surrounding tissue [168]. However, for

the purposes of supporting the aims of this research, a model that can help to understand

the behaviour of bacteria in the presence of different surfaces is a promising tool.
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1.6.1 Computational biofilm models

Biofilm models are an excellent means to aid in our understanding of the basic principles de-

termining biofilm formation. Computational biofilm models can consider different elements

of biofilm formation, for example the fast processes affecting solutes within the biofilm (re-

action and transport by diffusion or convection) and the slower processes affecting bacterial

mass (growth and division, transport within the biofilm, detachment or erosion at the biofilm

surface, and attachment to the surface) [169]. Three key approaches have been taken to mod-

elling microbial biofilm formation – population-based modelling (also known as continuum

modelling), individual-based modelling, and cellular automata [169–171]. There are also

hybrid models that adopt combinations of these approaches.

Biofilm models have traditionally represented biomass as a continuum, based on

population-averaged behaviour [172]. These models treat the biofilm as a continuum with

certain properties, for example as a viscous fluid or gel and model the dynamics of biofilm

growth by using differential equations [173, 174]. For this reason, an advantage of continuum

models is that they produce quantitative results that can be compared with data measured

in real systems. However, locally constrained environments within the biofilm may cause

individual or localised behaviours to vary significantly from population-averaged behaviour

[172, 175]. In multi-species biofilms, these local variations in environment can cause localised

dominance or co-localisation of specific species [173]. These types of local observations are

not adequately described or predicted by population-averaged models.

The need to account for and understand the cell-level and micro-scale differences

within a biofilm and also to establish how individual processes, interactions, and variability

affect the macroscopic structure of biofilms, has led to the development of individual-based

models. In an individual-based biofilm model, each bacterium or "agent" is modelled explic-

itly, with the higher-level population behaviour emerging from their lower-level interactions
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[169]. In these models, biofilm growth is assumed to be a stochastic process [174]. These mod-

els can represent the structural heterogeneity of biofilms, however, there are some challenges

to modelling biofilms using an individual-based approach. These include incorporating the

production and effects of the extracellular polymeric substance (EPS) and modelling move-

ment of bacteria to, from and within the biofilm [172]. Furthermore, they introduce elements

of randomness due to their stochastic nature and so several runs of the model (in the same

state) are required before any conclusions can be drawn [174] and this is computationally

expensive.

The final approach to computational biofilm modelling is cellular automata. These

are discrete models that condense the physical process of biofilm formation into a series of

simple rules, which are consequently fairly easy to compute. For this research, a cellular

automata approach was chosen for several reasons:

• The rules of a cellular automaton can be constructed around the parameters of interest,

which has an advantage when it is being used to support the development of in vitro

systems.

• It is simple for a non-mathematician to understand the rules that the model is based

around, and so can be utilised by those working in the dental field.

• A cellular automaton is mechanistic, and so it is simple to run several simulations in

parallel to investigate the effect of the parameters used in the model.

1.6.2 Cellular automata

Cellular automata were originally developed for the Game of Life, created by John Horton

Conway. They have been used for a variety of applications across many fields including
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biology, physics, ecology, geography, and sociology [176, 177]. Specific uses include modelling

bacterial growth and urban planning. The reason for their widespread use is their ability to

create complex behaviour from simple rules [178].

A cellular automaton is a collection of cells on a grid that evolves through discrete

time steps according to a set of rules. Usually this grid is formed of squares in a 2D system,

or cubes in a 3D system. The size of the grid determines the space constraints of the model.

A cellular automaton operates in an algorithmic manner as follows: (1) an initial "state" is

set for all grid points, (2) the simulation cycles through each pre-established rule/event with

an assigned probability, and (3) the "state" of each grid point is updated according to result

of the rule/event.

Modelling biofilm growth has been previously performed using a cellular automata

approach [179–184]. In these models, each space or cell on the grid has a state associated

with it, for example a live or dead bacterium, or a bacterium of a certain species. The state

of a cell at the next iteration of the model is determined by earlier states and the rules of

the system.

As previously mentioned, cellular automata have advantages in their simplicity. The

rules can be constructed around the area of interest, which for this thesis is the early coloni-

sation of dental implant materials. Furthermore, a discrete approach is useful for capturing

local variations in the biofilm structure. For example, the impact of surface modifications on

initial cell adhesion can be observed in a cellular automaton by adjusting the rules regarding

the state of a grid space. This could be an interesting avenue to explore when modelling

bacterial adhesion to different surfaces. However, one drawback of these types of models is

that the rules are arbitrarily formulated, which can lead to aesthetically driven outputs [174,

185]. Validation is an essential part of computational modelling, and this thesis presents a

great opportunity to utilise the results of in vitro experiments to enhance the computational
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model. This validation and fitting process should ensure the parameters and rules used in

the cellular automaton described in this thesis are grounded in in vitro observations.

In summary, modelling biofilm growth using a computational approach has many

advantages, and it can support the development of in vitro systems by providing an under-

standing of the fundamental processes of biofilm formation. Cellular automata have many

advantages; a key one for this research is their simplicity to enable researchers from non-

mathematical disciplines to apply them to their work. In silico models are also "cheap",

in that many thousands of scenarios can be simulated that could not all be examined in a

laboratory environment and these simulations can guide in vitro experiments. Furthermore,

a cellular automaton is an excellent way to model the initial stages of biofilm formation,

which is relevant to the concept of the "race to the surface". Surface adhesion is the first

stage in biofilm formation and preventing or inhibiting it is key to tackling infection.

1.7 Conclusion

Throughout this introductory chapter, several themes have been explored that all play a

role in the "race to the surface", the competition between bacteria and eukaryotic cells for

colonisation of an implant device. This concept bears great relevance to the oral cavity,

whereby several tissue types and many hundreds of species of bacteria can interact with a

dental implant. In discussing models of the oral microenvironment, several gaps have been

identified:

• There is a lack of mechanical considerations in 3D hydrogel models of the oral mucosa.

• Often, there is a simplification of oral tissue models to contain only 2D cells and plank-

tonic bacteria. Furthermore, almost no studies have applied biofilms to 3D oral mucosa
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models due to the challenge in the subsequent analysis of these complex systems.

• No studies that have evaluated implant materials have applied both biofilm and 3D

cultures in one in vitro system to identify how the material interacts with both these

key elements of the implant environment.

1.8 Research Aim and Objectives

The aim of this thesis is to address the identified gaps in modelling of the oral microenvi-

ronment through the development of a 3D hydrogel tissue model with improved mechanical

properties. The interactions of this model with implant materials and biofilms will be ex-

plored. Within this work, an interdisciplinary approach is essential, combining elements of

materials science, cell culture, microbiology and mathematical modelling. To achieve this

aim, this thesis has the following objectives:

1. Tackle the lack of mechanical data on native oral mucosa and compare 3D hydrogel

models with this data to select an appropriate gel system. Characterise the chosen

hydrogel system in terms of gelling properties, chemical composition and its ability to

support cell growth and proliferation.

2. Develop a method to analyse confocal micrographs of live/dead stained biofilms, for

the purpose of analysing biofilm growth on dental implant surfaces.

3. Devise a computational model based on cellular automata for evaluating cell adhesion

to implant surfaces.

4. Use the computational model combined with experimental data to understand the

fundamental parameters that affect cell adhesion to implant surfaces. Comment on

how we can use this knowledge to inform our approach to implant design.
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5. Develop an in vitro system that includes an implant material, biofilm, and 3D oral

mucosa model that can be used to examine the "race to the surface".
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Chapter Two

Physical and mechanical

characterisation of porcine oral

mucosa and a hydrogel scaffold

This chapter addresses the first objective described for this research: "Tackle the lack of

mechanical data on native oral mucosa and compare 3D hydrogel models with this data

to select an appropriate gel system, characterise the chosen hydrogel system in terms of

gelling properties and chemical composition". The physical and mechanical properties of

porcine gingival mucosa were determined to provide target properties for the development

of the tissue model. For the native tissue, the mechanical properties measured included

stress relaxation and elastic (storage) modulus. Specimen thickness was quantified and

histological staining was conducted to determine tissue characteristics. The choice of alginate

and collagen as scaffold materials for the in vitro tissue model was explored. The mechanical

and physical characteristics of acellular hydrogel models were compared with the properties

of the native tissue to identify a concentration range for biological studies (Chapter 3).
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2.1 Introduction

The mechanical properties of hydrogel scaffolds for 3D cultures are known to play a key

role in cell behaviour [186–188]. In particular, the mechanical properties of the extracellular

matrix (ECM) have been shown to impact a range of cell behaviours including growth,

differentiation, adhesion, and signal transduction [187]. As these differences in cell behaviour

have been identified in recent years, more studies have tried to mimic the mechanical forces

cells experience in vivo within 3D cell cultures to improve in vitro models of different tissues

[189, 190].

The oral mucosa experiences a range of external forces in the mouth, especially during

mastication. These include elastic deformation (tension and compression) and shear forces

from saliva flow [191]. Mucosal thickness, location and type have all been identified as

factors that affect the biomechanical properties of the tissue [126]. Given the importance of

mechanical forces on cellular response and the presence of several external forces on the oral

mucosa, the mechanical properties of the scaffold should be considered when developing an

in vitro 3D tissue model of the oral mucosa. Therefore, the primary aim of this work was

to characterise the mechanical properties of porcine oral mucosa under compression and use

these properties to develop a scaffold that closely aligns mechanically to the native tissue.

Scaffold models of 3D tissues are defined as cells grown in the presence of a support,

which is often hydrogel-based [188]. Hydrogels are 3D cross-linked networks of water-soluble

polymers [192]. These materials can be made up of natural or synthetic polymers, or a

combination of both. Natural polymers that have been used as hydrogel scaffolds for 3D cell

culture include collagen, elastin, fibrin, silk, alginate and chitosan [193]. The key advantage

to using these natural polymers is that they typically display good biocompatibility and are

bioactive. Furthermore, natural hydrogels can promote natural cellular functions and seldom

elicit an inflammatory response [188, 193]. Factors to consider when selecting a hydrogel

47



Physical and mechanical characterisation of porcine oral mucosa and a hydrogel scaffold

for an application include its cost and availability, its rate of degradation, the method of

cross-linking, and mechanical properties such as elasticity and stiffness [194].

Collagen type I (Figure 2.1) is the most commonly used natural polymer in 3D oral

mucosa models, as it is the primary component of gingival ECM. Collagen-based models of

the oral mucosa have been previously developed and published [195–197]. They have been

used to study cellular response to various challenges, including host-pathogen interactions

[197]. Studies using collagen as the scaffold material have demonstrated that a stratified

epithelium can be achieved with a variety of epithelial cell types and growth conditions

[195–197]. A key advantage of collagen-based hydrogels is that collagen molecules can self

aggregate at 37°C, making gel formation simple. Furthermore, collagen contains native

binding motifs which allow for cell attachment. These motifs are integrin-binding sites and

include the glycine-phenylalanine-hydroxyproline-glycine-glutamic acid-arginine (GFOGER)

sequence and the arginine-glycine-aspartic acid (RGD) sequence [198]. To take advantage of

these benefits, collagen was chosen as the basis for the oral mucosa model developed in the

present work.

Despite their many advantages, however, collagen hydrogels are considered to have

poor mechanical properties due to the high water content (typically over 90%) [188, 200]. For

example, collagen I is susceptible to physical contraction when fibroblasts adhere and exert

forces on the polymer [201]. There are ways to enhance its mechanical properties; this can

be done by increasing the density of the collagen, chemically modifying the polymer chain,

or blending collagen with a secondary polymer that has improved mechanical properties. In

order to keep the method simple and easily reproducible, the latter option was chosen for

this work.

Alginate is a linear polysaccharide and the polymer chain carries a net negative charge.

This negative charge allows for solutions of alginate to be covalently cross-linked (Figure
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Figure 2.1: Figure showing the chemical structure of collagen and the structure of collagen fibrils. (a) Primary

amino acid sequence, (b) Secondary left handed helix and tertiary right handed triple-helix structure, and

(c) staggered quarternary structure. Collagen self-aggregates to form a hydrogel at 37 °C, and this occurs

due to its underlying structure. A collagen polymer chain contains repeating proline-hydroxyproline-glycine

sequences, as shown in (a). These sequences allow the polymer to form a continuous fibrillar structure

through hydrogen bonding and electrostatic interactions with amino acids on neighbouring protein strands

[198]. Figure adapted from Friess [199].

2.2) [202, 203]. Gelation occurs rapidly and can be initiated under physiological conditions,

which ensures cell viability is not impacted by the process [203, 204]. The mechanical

properties of alginate hydrogels can be easily tuned by varying either the polymer or cross-

linker concentration [203]. However, a lack of cell adhesion motifs on the polysaccharide

chain means alginate has to either be chemically modified or blended with cell-adhesive

materials to ensure cells can adhere to the scaffold [203]. Due to the ease of tuning the

mechanical properties, alginate was chosen to blend with collagen for the oral mucosa model
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in the present work. Collagen and alginate blended hydrogels have previously been used to

reproduce connective [205], renal [206], ocular [207], and brain tissues [203]. However, they

have not yet been used in combination for in vitro oral tissue models.

Figure 2.2: Figure showing the chemical structure of alginate, demonstrating the covalent cross-linking of

polymer chains in the presence of calcium ions. Reproduced from Bahram et al. [208] and Sun et al. [209]

There are several advantages to using a collagen and alginate blended hydrogel for an

in vitro oral mucosa model. Firstly, it is relatively inexpensive to produce, which will enable

it to be accessible to more researchers. Secondly, it is mechanically tuneable through the

alginate component, and therefore the mechanical properties can be aligned with the native

tissue. Finally, this hydrogel is simple to prepare given no chemical modifications of either

the alginate or collagen are required. In this chapter, the mechanical and physical properties

of blended alginate-collagen hydrogels were explored and compared with the properties of

porcine oral mucosa to determine whether this approach was advantageous for the develop-

ment of representative in vitro tissue models of the oral mucosa. Porcine oral mucosa was

chosen as a model tissue as it resembles that of human oral mucosa more closely than any

other animal in terms of structure and composition [210].

2.2 Materials and Methods

All chemicals were from Sigma Aldrich (Dorset, UK) unless otherwise specified.
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2.2.1 Characterisation of native tissue

Preparation of porcine mucosa specimens

Fresh porcine tissue from 3-month old female pigs was delivered within 24-hours of slaughter

(Medical Meat Supplies, Rochdale, UK). The tissue was washed with a saline solution (15%

w/v saline) prior to transportation, in order to preserve the tissue and reduce risk of degra-

dation from bacterial contamination. Discs of oral mucosa, 6 mm diameter, were obtained

from the gingival mucosa region of porcine maxilla (upper jaw) and mandible (lower jaw)

from four animals (n = 4) using a biopsy punch and scalpel. Discs were taken as close to

the teeth as possible to standardise the samples. Additionally, the region from which each

sample was collected was recorded (Figure 2.3A). Any remaining connective tissue on the

sample was removed using surgical scissors to achieve a flat disc (Figure 2.3B). Sections of

porcine mucosa directly adjacent to the disc were also taken for histological staining. A total

of 81 samples were collected (See Appendix 1). Mucosa specimens were collected the same

day as delivery of the tissue and placed in PBS prior to further testing.

Figure 2.3: (A) Schematic demonstrating the location of collected porcine specimens. (B) Representative

image of a single specimen prior to mechanical testing.
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Histological staining of porcine mucosa

Porcine mucosa sections were trimmed to a maximum size of 4 mm x 2.5 mm x 2.5 mm and

placed into a histology cassette. Formalin fixation and paraffin-embedding was performed on

the mucosa tissue according to a standard protocol [211, 212] whereby the cassettes containing

the tissue sections were placed into 10% formalin for 48 hours at room temperature. To

paraffin-embed the tissue, samples were first placed in increasing concentrations of ethanol

at room temperature (70% x2, 80%, 95%, and 100% x3) for 1 hour at each concentration to

dehydrate the tissue. They were subsequently placed in xylene for a minimum of 1.5 hours

at room temperature. Finally, the samples were placed in paraffin wax at 60°C for 1 hour,

and this step was repeated three times.

After paraffin embedding, 10 µm sections were cut from samples using a Leica ro-

tary microtome (RM2035, Leica Biosystems, Milton Keynes, UK) and mounted onto glass

slides.Haematoxylin and Eosin (H & E) staining was performed on the fixed and sectioned

porcine oral mucosa samples according to a standard protocol [213]. Samples were de-waxed

in xylene for 5 minutes with agitation, then re-hydrated by placing in decreasing concen-

trations of ethanol (100% x2, 95%, 70%, and 50%) for 1 minute under agitation at each

concentration. Samples were then washed well under running water for a minimum of 2 min-

utes. Slides were immersed in Gill’s III Haematoxylin for 5 minutes. Samples were rinsed

in tap water, differentiated with 0.3% acetic acid for 30 seconds, and treated with 0.3%

hydrochloric acid in 70% ethanol for 30 seconds. Following this, samples were washed in

tap water, treated with Scott’s tap water substitute for 2 minutes and washed again. Eosin

stain was applied for 1-2 minutes before the final washing step was performed. Sections were

dehydrated by treating in 100% ethanol for 1 minute and then with xylene for 1 minute (x2).

Finally, the sections were mounted under a glass coverslip using Distyrene Plasticizer Xylene

(DPX). Fixed and stained sections were imaged using a light microscope (Zeiss Primotech,
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Zeiss, Germany).

Mucosal thickness measurements

The diameter and thickness of each porcine oral mucosa disc was measured using a digital

Vernier caliper. The measurement was taken three times, rotating the sample each time,

and an average was calculated. These measurements were also used in the calculation of the

elastic and relaxation moduli (Section 2.2.1).

Mechanical characterisation of porcine tissue

Mechanical tests were designed to mimic in vivo forces. Stress relaxation tests were per-

formed on porcine oral mucosa specimens. Each specimen was loaded until compression

equivalent to 10, 20, or 30% strain was reached, using an ElectroForce 5500 test instrument

equipped with a 250 g load cell (TA Instruments, New Castle, USA) (Figure 2.4). This strain

value was maintained for a total of 360 seconds. The accompanying instrument software

(WinTest 7.1) recorded the load (N) and displacement (mm) values for the duration of the

experiment. From these values, the storage modulus (E’), a measure of a materials elasticity,

was calculated at 300 seconds after peak stress was measured. This property is known as

the relaxation modulus and provides information about the stress relaxation behaviour of a

material. The peak strain value of 30% was selected based on literature that reported the

mechanical forces experienced by the oral mucosa in vivo [127]. Table 2.1 details the porcine

mucosa samples used to analyse the relaxation modulus of the tissue.
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Figure 2.4: Schematic of mechanical tester (ElectroForce 5500) with loaded sample, demonstrating the load

cell and compression platen.

A second mechanical property determined was the elastic modulus of the specimen af-

ter 9 loading cycles on the ElectroForce 5500, which provides information about a material’s

stiffness. Specimens were compressed from 0-30% strain at a rate of 0.1 mm/s. Following

this, the compressive strain was removed at the same rate and this loading-unloading cycle

was repeated a total of 9 times consecutively (Figure 2.5). The elastic modulus was deter-

mined by calculating the gradient of the stress-strain curve in the linear region of the 9th

loading cycle. Repeated loading cycles were required due to the viscoelastic nature of the

tissue. The reason for determining the elastic modulus at the 9th cycle was because it was

the point at which the material had stress relaxed and reached a steady-state, and therefore

ensured comparability between samples and with the hydrogel model. Table 2.2 details the

porcine mucosa samples used to analyse the elastic modulus of the tissue.
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Table 2.1: Sample information for porcine mucosa specimens used to calculate relaxation modulus.

Jaw Location Number of Samples

Mandible Lingual 23

Total 23

Table 2.2: Sample information for porcine mucosa specimens used to calculate elastic modulus.

Jaw Location Number of Samples

Mandible Lingual 9

Mandible Buccal 17

Maxilla Buccal 17

Maxilla Palatal 11

Total 54

Figure 2.5: Representative loading-unloading profile applied to each sample for a total of 9 cycles using an

ElectroForce 5500 mechanical tester. The displacement and load measurements recorded by the instrument

during the final loading cycle were used to calculate the elastic modulus of the sample. For all samples, the

displacement measurement was calculated to achieve a loading profile of 0% to 30% strain.
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2.2.2 Preparation of acellular hydrogels

All acellular hydrogels were prepared in 24 mm diameter transwell inserts in 6-well plates

(Corning Costar Transwell plates, polycarbonate membrane, 0.4 µm pore size).

Alginate only hydrogels

Alginate solutions of 20 mg/mL, 30 mg/mL and 40 mg/mL were prepared by adding sodium

alginate to 100 mL 2-(N-morpholino)ethanesulfonic acid (MES) buffer (0.1 M, pH 6.5).

The alginate was left to dissolve at 25°C overnight on a magnetic stirrer (100 rpm). The

stock solutions were autoclaved and stored at 4°C for up to four weeks. Calcium chloride

(CaCl2) solutions of 75, 100, and 150 mM concentration were prepared by adding CaCl2

to reverse osmosis (RO) water, autoclaved, and stored at 25°C. To make the hydrogels, for

each stock solution the alginate was diluted to a 1:1 ratio with Iscove’s Modified Dulbecco’s

Medium (IMDM) to achieve final concentrations of 10, 15, and 20 mg/mL. To characterise

the acellular model, hydrogels were also made using 30 and 40 mg/mL stock solutions with

no dilution. 2 mL of each alginate solution was added to the inside of a transwell insert. A

piece of sterile filter paper was soaked in 1 mL of CaCl2 and placed on top of each insert.

3 mL of CaCl2 was also added to the outside of each insert. The plates were incubated at

37°C for 20 minutes and then washed both inside and out with sterile RO water to remove

any remaining CaCl2 solution and prevent further cross-linking.

Collagen only hydrogels

Rat tail collagen type I was purchased at two concentrations, 3 mg/mL and 11 mg/mL

(Corning, Flintshire, UK) and stored at 4°C prior to use. All solutions were kept on ice until

ready for gelation. The 11 mg/mL solution was diluted to 5 mg/mL with IMDM. Following
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this, 2 mL of each collagen solution (3 mg/mL and 5 mg/mL) was added to the inside of a

transwell insert and incubated at 37°C for a minimum of 4 hours.

Blended hydrogels

Alginate stock solutions of 20, 30 and 40 mg/mL were mixed in a 1:1 ratio with IMDM,

while kept on ice, to produce solutions of 10, 15, and 20 mg/mL. Collagen stock solutions

were kept on ice and diluted down to concentrations of 3 mg/mL and 5 mg/mL using IMDM.

Alginate and collagen stock solutions were gently mixed in a chilled Falcon tube at a 1:1 ratio

(Figure 2.6). Following this, 2 mL of the composite solution was pipetted into a transwell

insert and the plate was incubated at 37°C for a minimum of 4 hours to allow the collagen

to self aggregate and form fibrils.

Figure 2.6: Schematic illustration showing the protocol for formation of acellular composite gels.

After collagen gelation, a piece of sterile filter paper was soaked in 1 mL of CaCl2 and

placed on top of each insert. 3 mL of CaCl2 was also added to the outside of each insert.

The plates were incubated at 37°C for 20 minutes in order for the alginate to form a gel.

Finally, the samples were washed both inside and outside the transwell insert with sterile
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RO water to remove any remaining CaCl2 solution.

2.2.3 Mechanical characterisation of acellular hydrogels

For mechanical characterisation, only alginate and blended alginate-collagen hydrogels could

be analysed under compression due to the low mechanical strength of the collagen samples.

Alginate and blended hydrogel samples were kept in RO water at room temperature prior

to testing to ensure they did not dehydrate. All hydrogels were tested the same day as they

were prepared.

Elastic and relaxation moduli

Hydrogel discs from alginate and blended samples were removed from the transwell plate

using a 6 mm biopsy punch and stored in a clean 6-well plate in 2 mL of RO water. Samples

underwent compression using an ElectroForce 5500 test instrument equipped with a 250 g

load cell (TA Instruments, New Castle, USA). Tests were carried out as described previously.

Briefly, to determine the relaxation modulus, samples were placed under a compressive load

equivalent to 30% strain for 360 seconds. The storage modulus, also called the elastic

modulus (E’), a measure of a materials elasticity, was calculated at 300 seconds after peak

stress was measured, and this is known as the relaxation modulus.

To determine the hydrogel stiffness, the elastic modulus (E’) of each hydrogel specimen

was calculated after 9 loading cycles on the ElectroForce 5500. Specimens were compressed

from 0-30% strain at a rate of 0.1 mm/s. Following this, the compressive strain was removed

at the same rate. This loading-unloading cycle was repeated a total of 9 times consecutively

(Figure 2.5). The elastic modulus was determined by calculating the gradient of the stress-

strain curve in the linear region of the 9th loading cycle. The gradient was calculated by
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performing linear regression on the stress-strain curve and reducing the length of the curve

on a point-by-point basis, until the linear regression achieved an R2 value of 0.98.

Rheology

For collagen gels, rheology was performed to determine the frequency-dependent elastic shear

modulus (G’). Rheology was chosen due to the collagen concentrations tested being very

weak, and therefore unable to maintain gelation under compression. Mechanical analysis

was performed using a HR-1 Discovery Hybrid rheometer (TA Instruments, New Castle,

USA). A 300 µL sample of each collagen solution was dispensed on the preheated (37°C)

rheometer plate prior to gelation. The test geometry (20 mm diameter 2.004° cone plate)

was lowered to a gap height of 1000 µm. The collagen was allowed to gel for 45 minutes

before data was collected. Frequency sweeps from 0.01 to 1 Hz were conducted on each

collagen gel (1 mg/ml, 2 mg/ml and 3 mg/ml concentration).

To demonstrate that rapid gelation could be achieved at physiological conditions

for alginate hydrogels, a time sweep of storage (G’) and loss (G”) moduli of 10 mg/mL

alginate solution was performed using a Kinexus rheometer with rSpace software version

1.75 (Malvern Instruments, Malvern, UK). For this, 2 mL of 10 mg/mL alginate was placed

onto the preheated (37°C) plate geometry (20 mm diameter serrated parallel plate). The

test geometry was lowered to a working gap of 1000 µm and the time sweep started. After

2 minutes, 8 mL of 100 mM CaCl2 was added in a bath surrounding the plates (Figure 2.7)

and the time sweep was continued for a further 8 minutes to monitor the gelation process.

The time sweep was performed at 0.5% strain and a frequency of 1 Hz. Rheology was also

used to determine the effect of cross-linker and polymer concentration on the mechanical

properties of alginate hydrogels. Following gelation, a frequency sweep from 0.01 to 10 Hz

was performed. A range of alginate concentrations (10 mg/mL, 15 mg/mL and 20 mg/mL)
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and CaCl2 concentrations (75 mM, 100 mM, and 150 mM) were investigated.

Figure 2.7: Image demonstrating rheometer set up used to perform alginate time and frequency sweeps.

Serrated parallel plates (20 mm diameter) were utilised with a gap height of 1 mm and a weighing boat was

used to create a bath for adding the CaCl2 cross-linking solution.

Rheology was also used to examine the gelling process of the blended alginate-collagen

system. For this, 2 mL of stock solution, at a concentration of 1.5 mg/mL collagen and

10 mg/mL alginate, was placed onto a preheated (37°C) plate (20 mm diameter serrated

parallel plate). The test geometry was lowered to a working gap of 1000 µm and a time

sweep was run for 3000 seconds at 0.5% strain with a frequency of 1 Hz. After 2400 seconds

(40 minutes), 8 mL of 150 mM CaCl2 was added to the outside of the plates, as described

previously (Figure 2.7).

Finally, the effect of adding CaCl2 on the gelation of two different collagen brands was

characterised using rheometry. For this, the Corning collagen used previously was compared

with 3 mg/mL rat tail collagen type I from Gibco (Thermo Fisher Scientific). As before,

2 mL of each collagen brand was placed onto a preheated (37°C) plate (20 mm diameter

serrated parallel plate). The test geometry was lowered to a working gap of 1000 µm and a
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time sweep was run for 3000 seconds at 0.5% strain with a frequency of 1 Hz. After 2400

seconds (40 minutes), 8 mL of 250 mM CaCl2 was added to the outside of the plates, as

described previously (Figure 2.7).

2.2.4 Physical characterisation of acellular hydrogels

Scanning Electron Microscopy

SEM provides high-resolution (1-20 nm) information on the surface structure of hydrogels,

including details such as fibril thickness and porosity. Acellular collagen, alginate, and

blended hydrogels were prepared according to the method described previously in Section

2.2.2. The hydrogels were frozen at -80°C for 48 hours before being placed under vacuum

for 3 days. Samples were gold sputter coated (Emitech K55OX) prior to imaging using

scanning electron microscopy (SEM). SEM was performed on a Zeiss EVO MA10 (Carl Zeiss

Ltd, Cambridge, UK).

Fourier-Transform Infrared Spectroscopy

Fourier-Transform Infrared Spectroscopy (FTIR) is an analytical technique used to identify

organic and polymeric materials. It works by measuring the absorption of different wave-

lengths of infrared radiation. FTIR was used to analyse the chemical composition of the

alginate and collagen hydrogels. Acellular collagen, alginate, and blended hydrogels were

prepared according to the method described previously in Section 2.2.2. The hydrogels were

frozen at -80°C for 48 hours before being placed under vacuum for 3 days. Samples were then

ground into a fine powder using a pestle and mortar. Traditional FTIR wavelengths (4,000

– 500 wavenumber) were scanned using a mercury cadmium telluride (MCR) detector. Data

was collected on a Nicolet 6700 (Thermo Fisher).
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2.2.5 Statistical analysis

All statistical analyses were conducted in GraphPad Prism (v. 5.03). A Mann-Whitney

t-test was used to determine statistical significance for porcine mucosa thickness for upper

and lower jaw, and storage and relaxation moduli for the upper and lower jaw. A Kruskal-

Wallis test (one-way ANOVA) was used to determine statistical significance for porcine

mucosa thickness by tissue region, storage and relaxation moduli of porcine mucosa by

tissue region, and to compare storage moduli for alginate concentrations. A post-analysis

Dunn’s multiple comparison test was used to compare pairs. For all analyses, p<0.05 was

considered statistically significant.

2.3 Results and Discussion

First, the physical features and mechanical properties of porcine oral mucosa were determined

as a basis for determining the characteristics of the native tissue. Secondly, the mechanical

properties of acellular hydrogels were compared with the properties of porcine mucosa to

identify which concentrations align most closely with native tissue. Finally, the acellular

hydrogels were physically characterised to determine the gelling behaviour and confirm the

chemical structure of the polymers.

2.3.1 Histological staining of porcine oral mucosa

H & E is a widely used histological stain that can demonstrate general tissue architecture.

Cell nuclei appear as blue-black, cell cytoplasm as varying shades of pink, and collagen

fibres appear light pink [213]. Figure 2.8 highlights some key features of porcine gingival

oral mucosa. The stratified epithelium, comprised of the keratin layer and granular layer,
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is evidenced through the presence of elongated keratinocytes at the surface, with the nuclei

no longer present at the topmost layer. There are also disordered collagen fibres displayed

in the connective tissue, otherwise known as the lamina propria, compared with the more

ordered, layered fibres at the surface. Histologically, porcine oral mucosa has been found

to display many similarities to human oral mucosa [214] and therefore is a good basis for

studying the structure of the epithelium. For example, porcine oral mucosa is the most

similar to human in certain characteristics such as keratinisation, thickness and rete ridges

(the epithelial extensions that project into the underlying connective tissue), as well as both

tissue types having a glycogen-rich content in the upper epithelium and a similar vascular

network [215]. Due to these common features, porcine tissue is a good tissue to compare with

the hydrogel models, both in terms of mechanical properties and physical characteristics.

Figure 2.8: Representative image of H & E stained porcine oral mucosa imaged on a Zeiss light microscope,

20x magnification. Image is of gingival oral mucosa from the buccal region of the mandible, taken from

adjacent tissue to that sectioned for mechanical testing. One tissue sample from each location (Appendix

1) was sectioned and stained, and three images of each sample were taken. The key features of the native

tissue are labelled and marked.
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2.3.2 Porcine mucosa thickness

Mucosa thickness can vary over a wide range, from 0.30 mm on the attached buccal mucosa

of the mandible (lower jaw) to 6.7 mm in the maxillary tuberosity region (adjacent to the

molars in the upper jaw) [126]. Therefore, thickness measurements of the samples used for

mechanical testing were compared. For sections taken from the maxilla and mandible, a

significant difference (p = 0.0004) was identified (Figure 2.9). The mean thickness of the

porcine oral mucosa sections for tissue from the mandible and maxilla was found to be 1.43

± 0.295 mm and 1.70 ± 0.398 mm respectively.

Figure 2.9: Thickness of porcine gingival mucosa for upper and lower jaw. Graph shows mean, 25th and

75th percentile (box), and maximum and minimum values (whiskers), n = 48 for mandible and n = 32 for

maxilla. Statistical significance represents a p value of 0.0004.
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Thickness measurements were also compared between gingival tissue locations on

each jaw. A significant difference was identified in the thickness of mucosa in the three

regions (p = 0.0015) (Figure 2.10). The mean thickness of porcine oral mucosa for lingual,

palatal, and buccal tissue was found to be 1.413 ± 0.360 mm, 1.901 ± 0.407 mm, and 1.521

mm ± 0.280 mm respectively. Using a post-comparison test, no significant difference was

identified between the tissue sections taken from the lingual and buccal regions. Significant

differences were identified between the palatal and buccal tissues (p < 0.05) and the palatal

and lingual tissues (p < 0.001). It should be noted that a higher number of samples from

the maxilla came from the palatal region, and hence this may have explained the reason for

the difference identified in sample thickness between the maxilla and mandible (Figure 2.9).

For all samples, the tissue thickness was found within the expected range for porcine oral

mucosa [126]. Specifically, Goktas et al. [127] reported the mean tissue thickness of porcine

attached lingual mucosa and attached buccal mucosa to be 1.31 ± 0.26 mm and 1.60 ± 0.20

mm respectively. This is in line with the reported mean tissue thickness for the lingual and

palatal regions in this study (1.41 mm and 1.52 mm respectively).

2.3.3 Porcine mucosa storage modulus

The same study by Goktas et al. [127] demonstrated differences in the relaxation modulus

based on the region of the oral cavity the specimen was taken from. Similar studies have

suggested that the mechanical properties of the tissue vary depending on the location of

the oral mucosa within the mouth [126, 128, 129]. In order to see whether location had

an influence on the mechanical properties of the tissue in this study, the elastic modulus of

porcine gingival mucosa was compared by location. The elastic modulus is a measurement

of a materials ability to resist deformation when a stress is applied, and is also known as a

material’s stiffness. The mean storage moduli for mandibular and maxillary tissues under
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Figure 2.10: Thickness of porcine gingival mucosa for various locations taken from both mandible and maxilla.

Graph shows mean, 25th and 75th percentile (box), and maximum and minimum values (whiskers), n = 28

for lingual, n = 12 for palatal, and n = 40 for buccal.

30% maximum strain were determined to be 24.42 ± 18.08 Pa and 19.46 Pa ± 10.00 Pa

respectively (Figure 2.11). For lingual, palatal and buccal tissues, the storage moduli were

found to be 13.29 ± 6.18 Pa, 22.47 ± 11.84 Pa, and 23.58 ± 16.06 Pa respectively (Figure

2.12).

No significant differences were determined between the elastic modulus (E’) of porcine

oral mucosa when separated by region. This finding was likely due to the methods used to

standardise the oral mucosa sections in the present work. For this study, all mucosa sections

were taken from the region directly adjacent to the tooth (the attached gingiva), as this is

the part of the oral mucosa that forms a seal around a dental implant, and hence is relevant

for the model being developed. However, Goktas et al. [127] took tissue from a range of

locations moving further away from the tooth (Figure 2.13). They identified no significant

66



Physical and mechanical characterisation of porcine oral mucosa and a hydrogel scaffold

M
an

dib
le

M
ax

ill
a

1

10

100

1000

ns

Porcine jaw

S
to

ra
g

e 
M

o
d

u
lu

s 
(E

')
 (

P
a)

Figure 2.11: Storage modulus (E’) at 30% strain of porcine gingival mucosa for upper and lower jaw. Graph

shows mean, 25th and 75th percentile (box), and maximum and minimum values (whiskers), n = 25 for

mandible and n = 28 for maxilla.

differences between the behaviour of the lingual attached gingiva and the buccal attached

gingiva in response to compression of 10% strain. This was thought to be because there are

anatomic similarities between the lingual and buccal aspects of the attached gingiva [127].

Therefore, the differences in mechanical properties they identified are explained by the range

of samples they tested, compared with only the attached gingiva utilised in the present study.

Very few studies have investigated the biomechanical properties of native oral mu-

cosa, making it challenging to identify comparable values in the literature. Applied stress

and strain values, tissue location and storage conditions are all known to influence the ma-

terial’s elastic modulus. For example, Goktas et al. [127] dissected the mucosal tissue from
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Figure 2.12: Storage modulus (E’) at 30% strain of porcine gingival mucosa for various locations. Graph

shows mean, 25th and 75th percentile (box), and maximum and minimum values (whiskers), n = 8 for

lingual, n = 11 for palatal, and n = 34 for buccal.

Figure 2.13: Figure reproduced from Goktas et al. [127]. Images show the porcine oral soft tissues extracted

from the buccal (A) and lingual (B) aspects of porcine lower jaws for the published study.

epithelium to bone, including the periosteum. However, in the present study, connective

tissue was removed in order to focus on the specific properties of the epithelium. This may

explain why the mean storage modulus identified for gingival epithelium ranging from 13.29
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Pa to 24.42 Pa in the present work (Figures 2.11 and 2.12) was significantly lower than the

reported storage modulus of 0.86 MPa for the buccal attached gingiva by Goktas et al. [127].

This suggested that the supporting connective tissue played a vital role in resisting the com-

pressive forces generated in the oral cavity. In the present work, the mechanical properties of

the epithelium alone were used to select the composition of the hydrogel scaffold. However

for future development of the model, it could be important to consider the connective tissue.

For example if the 3D mucosa model was being used to investigate the effect of compressive

forces on the encapsulated cells, the difference in mechanical properties due to the presence

of the connective tissue in vivo would be an interesting factor to assess.

2.3.4 Porcine mucosa relaxation modulus

The relaxation modulus provides information on a material’s stress relaxation behaviour.

Porcine tissue is known to display a non-linear viscoelastic tissue response, whereby the

stress within the tissue decays with time until an equilibrium value is reached [127, 216].

Furthermore, the applied compressive strain is known to impact on the reported mechanical

properties of a material. Therefore, to investigate both the relaxation behaviour of the tissue,

and the effect of peak strain on the mechanical properties, the relaxation modulus (ER) was

determined for porcine oral mucosa at peak strain values of 10, 20, and 30%.

The mean relaxation modulus for porcine mucosa at 10, 20 and 30% strain was found

to be 7.75 ± 4.98 Pa, 19.95 ± 14.95 Pa, and 59.99 ± 87.39 Pa respectively (Figure 2.14),

with a significant difference identified using a 1-way ANOVA (p = 0.0124). Using a post-

comparison test, a significant difference was specifically identified between the relaxation

moduli measured at 10% peak strain and 30% peak strain (p <0.01).

Figure 2.14 supported the understanding that the peak strain affects the mechanical
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Figure 2.14: Relaxation modulus (ER) at 10, 20, and 30% strain of porcine gingival mucosa. Graph shows

mean, 25th and 75th percentile (box), and maximum and minimum values (whiskers), n = 5 for 10% strain,

n = 10 for 20% strain, and n = 11 for 30% strain. Statistical significance shown from a post-comparison

test where ** indicates a p value of <0.01.

properties of a material. Specifically, as expected, an increase in the peak strain applied to

the sample resulted in an increase in the stiffness of the porcine mucosa after the tissue had

relaxed to equilibrium.

2.3.5 The effect of alginate concentration on the mechanical prop-

erties of hydrogels

The elastic modulus of alginate hydrogels depends on the number density of physical cross-

links between polymer chains, as well as the length and stiffness of the chains [217]. Therefore,
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the modulus of the gel can be tuned by varying the concentration of alginate and calcium

ions. To investigate the effect of alginate concentration on the mechanical properties of the

hydrogel model, firstly alginate-only hydrogels were examined. The storage modulus (E’)

was calculated for alginate concentrations of 10 to 40 mg/mL at 30% peak strain (Figure

2.15). The storage modulus for alginate hydrogels increased with increasing concentration

up to 30 mg/mL. The mean values for storage modulus for each concentration of alginate

were found to be 191 ± 113 Pa for 10 mg/mL, 289 ± 89.9 Pa for 15 mg/mL, 660 ± 159 Pa for

20 mg/mL, 814 ± 250 Pa for 30 mg/mL, and 569 ± 401 Pa for 40 mg/mL. This supported

the understanding that the mechanical properties of the composite hydrogel model could be

tuned by adjusting the concentration of the alginate component, which was important for

the development of the oral tissue model being generated in the present work. It is useful

to understand how alginate concentration can be tuned to achieve the desired mechanical

properties that emulate the native tissue, as this element of the composite system will provide

the mechanical strength of the mucosa model.

Several studies have looked at the mechanical properties of alginate hydrogels [202,

217–220]. There are many factors that affect the measured elastic modulus of alginate, in-

cluding alginate source, polymer concentration, cross-linker type, cross-linker concentration,

gelation time, and compressive load applied. This makes it challenging to directly compare

results with other published works. In the present study, alginate storage modulus was cal-

culated to range between 101 Pa to 814 Pa for concentrations between 10 and 40 mg/mL,

cross-linked with 150 mM CaCl2 for 20 minutes, tested under compression at a strain of

30%. In comparison, other literature has reported storage moduli ranging from 17.1 kPa for

15 mg/mL alginate cross-linked with 50 mM CaCl2 solution [218], to 160 kPa for 20 mg/mL

alginate cross-linked with 72 mM calcium carbonate [220]. These are an order of magnitude

higher than the values reported in the current study, however, since information on gelation

time and compressive strain applied are not available, it is likely that these parameters are
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Figure 2.15: Storage modulus (E’) at 30% strain for different concentrations of alginate hydrogel (n = 4).

Graph shows mean, 25th and 75th percentile (box), and maximum and minimum values (whiskers).

the reason for the differences.

One noticeable feature presented in Figure 2.15 is the decrease in mean storage mod-

ulus for 40 mg/mL samples, compared with 30 mg/mL samples. Alginate hydrogels formed

with slower rates of gelation tend to exhibit greater structural homogeneity and therefore a

higher elastic modulus than those gelled rapidly [202]. Furthermore, previous works have

shown that the rate of gelation decreases with increasing polymer concentration since the

alginate is more viscous and this hinders the polymer chains rearrangement to form effective

cross-links [202]. This study determined a gelation time of less than 20 minutes for alginate

gels at a concentration of 15 mg/mL, but over 100 minutes for alginate gels at a concentra-

tion of 30 mg/mL [202] and therefore explains the observation that at 40 mg/mL, the mean
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elastic modulus was found to be lower than that of the 30 mg/mL hydrogels. In the method

used for the present work, gelation is rapid due to using CaCl2 as a cross-linker and the fact

that CaCl2 is highly soluble. Furthermore, gelation occurred for only 20 minutes before the

CaCl2 solution was removed and the samples washed. The reason for choosing rapid gelation

is to ensure that this process does not affect cell viability once cells are encapsulated in the

gel. From this data, it is suggested that using lower alginate concentrations in the model

will ensure that lower gelation times are required to form effective cross-links.

2.3.6 Mechanical properties of blended alginate-collage hydrogels

Next, the mechanical properties of blended alginate-collagen hydrogels were investigated. As

the collagen-only gels were too weak to be tested under compression, it was expected that

the collagen concentration would not influence the mechanical properties of the composite

gel as significantly as the alginate concentration. Furthermore, due to its poor mechanical

properties, the addition of collagen to the hydrogel was expected to reduce the measured

stiffness of the gel for two reasons. Firstly, the presence of the collagen reduced the concen-

tration of alginate and secondly, the collagen may have reduced the number of cross-links

that can be formed within the gel.

As expected, the addition of collagen significantly reduced the storage modulus of the

hydrogels compared with alginate alone (Figure 2.16). Mean storage moduli were determined

to be 16.18 Pa for 1.5 mg/mL collagen and 5 mg/mL alginate, 13.40 Pa for 1.5 mg/mL

collagen and 7.5 mg/mL alginate, 27.76 Pa for 1.5 mg/mL collagen and 10 mg/mL alginate,

15.28 Pa for 2.5 mg/mL collagen and 5 mg/mL alginate, 13.83 for 2.5 mg/mL collagen

and 7.5 mg/mL alginate, and 27.16 Pa for 2.5 mg/mL collagen and 10 mg/mL alginate. A

significant difference was identified using a 1-way ANOVA (p = 0.0317). However, using a

post-comparison test, no significant differences were identified between pairs of conditions.

73



Physical and mechanical characterisation of porcine oral mucosa and a hydrogel scaffold

Figure 2.16: Storage modulus (E’) at 30% strain for different concentrations of composite hydrogel (n = 4

for all conditions except 2.5 mg/mL collagen and 10 mg/mL alginate where n = 3). Graph shows mean,

25th and 75th percentile (box), and maximum and minimum values (whiskers).

Figure 2.16 shows that there is little difference between the mean storage moduli of

blended hydrogels with alginate concentrations of 5 and 7.5 mg/mL. However, the blended

hydrogels containing 10 mg/mL alginate were shown to have a higher storage modulus by

approximately 10 Pa. It was noted that some concentrations had a larger range than others,

most notably the blended hydrogel 2.5 mg/mL collagen with 7.5 mg/mL alginate. This

could be due to the effects of the high water content of the hydrogels, as the presence of

water on the surface of the gel can cause surface tension to influence the forces measured by

the instrument, especially at the low loads applied in this study (less than 250 g).
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As with alginate-only scaffolds, comparing the results from this study with litera-

ture values is challenging due to the effect of several different parameters on the measured

compressive modulus. Determining a value for the stiffness of a hydrogel scaffold should be

defined in terms of the type of deformation (e.g. compression, tension, or shear forces) and

technique used [200]. In addition, collagen and alginate are non-linear viscoelastic materials,

and therefore differences in time-span or strain used can influence the measured compressive

modulus [200]. Since no studies have been published that look specifically at the elastic

modulus of alginate-collagen blended hydrogels under compression, it is not possible to com-

pare the current measurements with already published values. However, these measurements

will be essential in determining an appropriate collagen-alginate concentration that aligns

with the elastic modulus of porcine mucosa.

2.3.7 Comparison of hydrogel and porcine storage modulus

The relaxation moduli and elastic moduli of alginate and composite gel systems were com-

pared with the average for porcine tissue at 30% peak strain. Figure 2.17 shows the elastic

modulus of six composite gel systems and four alginate concentrations with the elastic mod-

ulus of porcine oral mucosa. A statistically significant difference was determined using a

1-way ANOVA (p = < 0.0001). The mean stiffness of porcine mucosa for all samples tested

was determined to be 21.80 Pa. This aligns well with the stiffness values calculated for the

blended scaffolds, which ranged from 13.40 Pa to 27.76 Pa. However, pure alginate hydrogels

were deemed to be too stiff for the purpose of mimicking the native tissue properties, as the

stiffness values measured ranged from 191.4 Pa to 814.5 Pa, an order of magnitude higher

than porcine gingival mucosa.

Based on the data in Figure 2.17, blended alginate-collagen hydrogels were an ideal

choice for mimicking the native tissue mechanical properties. Within the concentration
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Figure 2.17: Comparison of storage modulus (E’) at 30% strain for porcine and hydrogel (n = 53 for porcine

mucosa, n = 4 for all hydrogel conditions except 2.5 mg/mL collagen and 10 mg/mL alginate where n = 3).

Graph shows mean, 25th and 75th percentile (box), and maximum and minimum values (whiskers).

ranges studied, it appeared there was very little difference between the mean values for

porcine mucosa and blended hydrogels with an alginate concentration of less than 7.5 mg/mL.

Therefore, the chosen blended concentrations taken forward for biological characterisation

were 2.5 mg/mL collagen and 5 mg/mL alginate, and 2.5 mg/mL collagen and 10 mg/mL

alginate.
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2.3.8 Rheology

Rheology is commonly employed to investigate the mechanical characteristics of alginate

and collagen-based hydrogel scaffolds [203, 217, 221, 222]. In particular, rheology is a

useful technique for understanding the alginate gelation process. To do this, a 20 minute

time sweep of 10 mg/mL alginate-only stock solution was performed on a rheometer with

serrated parallel plate geometry (Figure 2.18). CaCl2 (100 mM) was added to the outside of

the plate geometry after 120 seconds (2 minutes) and an immediate increase in both shear

storage (G’) and shear loss (G”) moduli was observed, providing evidence of a rapid gelation

process. Rapid gelation is useful as it minimises the length of time the cells will be in the

presence of the cross-linking solution, which should maintain cell viability. Calcium ions are

considered to be important in cell culture because they are involved in a wide range of cell

functions. A high calcium concentration is believed to instigate cell apoptosis and therefore

minimising the concentration and duration of the presence of calcium ions was preferred

[223].

As evidenced in Figure 2.18, after approximately 480 seconds (8 minutes), the rate of

increase of storage and loss moduli decreased, suggesting there was minimal further gelation

occurring. Therefore, a gelation time of 20 minutes used in the production of the composite

hydrogel mucosa model was felt to be sufficient to ensure a homogenous gel was formed.

Rheology was further used to examine the effect of the concentration of alginate

stock solution and cross-linking solution on the mechanical properties under shear oscillation

(Figure 2.19). The results aligned well with a published study by Zhou et al. (2019) [222],

which determined the complex shear modulus (G*) of a 20 mg/mL alginate hydrogel to range

from 400 Pa to 1000 Pa [222]. Changing the concentration of cross-linking solution appeared

to have minimal impact on the complex shear modulus of alginate hydrogels, although it was

notable that the 150 mM CaCl2 solution did result in higher complex moduli than the 75
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Figure 2.18: Time sweep of storage (G’) and loss (G”) moduli of 10 mg/mL alginate gel with 8 mL of 100

mM CaCl2 added after 2 minutes. Performed on a Kinexus rheometer at 0.5% strain, at a frequency of 1

Hz, using serrated parallel plate geometry with a 1 mm working gap.

mM solution. However, the concentration of the alginate appeared to have greater impact on

the mechanical properties of the hydrogel than the concentration of CaCl2, with increasing

concentration of alginate resulting in an increase in shear modulus (Figure 2.19). The results

provided further evidence that the concentration of alginate could be used effectively to

control mechanical behaviour of the hydrogel scaffold.

Within the blended hydrogel tissue model, the presence of collagen was designed to

provide motifs for cell adhesion and ensure that cells receive biological cues to support their

growth and proliferation. Formation of collagen fibrils was desired for this, and therefore

during preparation of the tissue model, the collagen was allowed to gel for a minimum of 4

hours prior to cross-linking the alginate with CaCl2, although collagen gelation is known to

typically occur within 1 hour.

78



Physical and mechanical characterisation of porcine oral mucosa and a hydrogel scaffold

Figure 2.19: Frequency sweep of complex shear modulus (G*) of alginate hydrogels at a range of concentra-

tions (10, 15 and 20 mg/mL), cross-linked with difference concentrations of CaCl2 (75, 100, and 150 mM).

Graphs show data points plus non-linear regression line (n = 1).

As the collagen hydrogels were too weak to examine under compressive load, rheology

was utilised to assess the effect of collagen concentration on its mechanical properties (Figure

2.20). An increase in collagen concentration resulted in a small increase in shear modulus

at frequencies over 0.1 rad s−1. However, as demonstrated in the compressive testing of

composite hydrogels, the difference in mechanical properties for collagen was very small

compared to the alginate component, and therefore the mechanical properties were primarily

controlled by alginate concentration.

Once the mechanical behaviour of both alginate and collagen had been analysed sepa-

rately, the blended alginate-collagen system was examined. In Figure 2.21A, a slow increase

in the shear storage and loss moduli for collagen over the first 40 minutes was observed,

as the collagen self-aggregated and formed fibrils. However, the addition of CaCl2 at 40

minutes significantly reduced the storage and loss moduli for the collagen hydrogel, disrupt-

ing gel formation and demonstrating very weak gellation and poor mechanical strength. In

contrast, at 40 minutes, the addition of CaCl2 caused rapid gelation of the alginate (Fig-

ure 2.21A). When both materials were blended and the same gelation method applied, the
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Figure 2.20: Frequency sweep on collagen hydrogels of 1, 2, and 3 mg/mL concentration performed after 1

hour of heating at 37°C on a Kinexus rheometer at 0.5% strain with a 1 mm working gap (n=1). Graph

shows data points and non-linear regression line.

gelation mechanisms of both collagen and alginate were observed (Figure 2.21B). A gradual,

slow increase in stiffness as the collagen self-aggregated was observed, between 0 and 2500

seconds, followed by a sharp increase in stiffness once the CaCl2 was added at 2500 seconds.

However, it was notable that the stiffness of the collagen in the blended hydrogel over the

first 40 minutes of gelation was much lower than for collagen alone, suggesting that the

presence of alginate inhibits collagen self-aggregation.

The gelation behaviour demonstrated in Figure 2.21 was supported with similar find-

ings by Moxon et al. [203]. However, in this published study, the increase in storage modulus

for collagen alone was reported to increase from 1 Pa to 476 Pa over the 40 minute time

period. This was a much greater increase than the results of the present study, which saw
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Figure 2.21: 1 hour time sweep of shear storage (G’) and loss (G”) moduli for (A) pure collagen and alginate

hydrogels at concentrations of 1.5 mL for collagen and 10 mg/mL alginate (n = 1), and (B) a blended alginate-

collagen hydrogel at a concentration of 1.5 mg/mL collagen and 10 mg/mL alginate (n = 1). Calcium chloride

solution (150 mM) was added after 40 minutes (2500 seconds) to cross-link the alginate component.

an increase in storage modulus from 4 Pa to 30 Pa. It was noted that a difference between

the collagen used in the present study, and that used by Moxon et al. [203] was the brand

from which the rat tail collagen type I was purchased. To investigate if this had an impact

on the mechanical properties of the hydrogel, two different collagen sources were compared

(Figure 2.22).

In Figure 2.22, both brands showed a similarly low increase in storage and loss moduli

over the first 40 minutes of the time-sweep, with Gibco displaying higher stiffness than

Corning overall. Similarly, both the Corning and Gibco collagen displayed a rapid and

significant drop in G’ and G” when the CaCl2 solution was added. Most notably, at this point,

the stiffness of the Gibco collagen remained stable, while the Corning collagen displayed

scattered data points. This suggested that Corning collagen was affected by the addition of
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Figure 2.22: A 1 hour time sweep of shear storage (G’) and loss (G’) moduli for two different brands of rat

tail collagen type I (n = 1). Corning collagen was purchased at a concentration of 3.57 mg/mL and Gibco

collagen was purchased at a concentration of 3 mg/mL. Calcium chloride solution (150 mM) was added after

40 minutes.

the CaCl2 solution, and this may have impacted the formation of collagen fibrils. Further

investigation was deemed necessary to ensure that the Corning collagen still formed fibrils

and provided cell-attachment motifs for cell-binding.

2.3.9 Scanning Electron Microscopy

SEM utilises a focused beam of high-energy electrons to generate a signal at the surface of

specimens, and provides high-resolution (50 to 100 nm) information on the microstructures

and surface composition of a sample. This technique was used to visualise acellular hydrogels
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in order to identify the presence of collagen fibrils in the blended alginate-collagen gels.

Figure 2.23: SEM micrographs of control and blended hydrogels. (A) 3 mg/mL collagen. (B) 5 mg/mL

alginate. (C) 10 mg/mL alginate. (D) 1.5 mg/mL collagen + 5 mg/mL alginate. (E) 1.5 mg/mL collagen

+ 7.5 mg/mL alginate. (F) 1.5 mg/mL collagen + 10 mg/mL alginate. Arrows point to (x) fin-like, porous

structures of alginate hydrogels and (y) collagen fibrils.
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Figure 2.24: SEM micrographs of blended hydrogels. (A) 1.5 mg/mL collagen + 5 mg/mL alginate. (B)

1.5 mg/mL collagen + 7.5 mg/mL alginate. (C) 1.5 mg/mL collagen + 10 mg/mL alginate. (D,E) Figure

reproduced from Baniasadi and Minary-Jolanden (2015) [221]. Arrows indicate suggested presence of collagen

fibrils.

Figure 2.23 shows the surface structure of alginate and collagen hydrogels. A key

feature of the alginate hydrogels were the fin-like, porous structures and for collagen, fibrils

were evident in the images. Figure 2.23 showed representative samples of the blended

alginate-collagen hydrogels. From the images, the change in the surface structure of the

alginate was evident. The ordered fin-like structure became more disordered with larger

pores due to the presence of the collagen. However, it should be noted that a critical step in

hydrogel characterisation by SEM is the required sample preparation using drying or freezing

of the material. [224]. This made it difficult to measure features such as pore size, as the

hydrogels were not in their swelled state.

Collagen fibrils were identified at all three composite concentrations imaged (Figure

2.24). These resembled SEM images of composite alginate-collagen hydrogels published by

Baniasadi and Minary-Jolanden [221] (Figure 2.24 D and E), and suggested that collagen
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fibrils were able to form in the presence of alginate at all concentrations. This finding,

combined with the rheological data previously presented, suggested that collagen fibrils were

able to form in the blended hydrogel system, which is vital for ensuring encapsulated cells

are able to adhere.

2.3.10 Fourier-Transform Infrared Spectroscopy

FTIR is a technique used to measure the absorption or emission of electromagnetic waves in

the infrared region from a sample. Radiation in this region is absorbed by interatomic bonds

in compounds at varying frequencies and intensities. FTIR collects absorption information

from samples and this data can be correlated with atomic bonds within the compound [225].

This technique is considered one of the most powerful for chemical analysis due to its speed,

sensitivity, and versatility [225]. Figure 2.25 shows the absorbance spectra for a range of

concentrations of alginate and collagen hydrogels (Table 2.3). Increasing the concentration

of the gel caused an increase in absorbance, as expected. The alginate peaks were found

to be more intense than for collagen, likely due to the higher alginate concentrations used.

Identified peaks are marked on the spectra, the most important of which are discussed further

below.

The peak at 3312 cm−1 (Figure 2.25A) represents the stretching of the O-H bonds

present throughout alginate polymer chains, as evidenced by the presence of a smooth, broad

peak in the region of 3000-3600 cm−1. The appearance of a peak at this wavenumber may

also be due to the presence of some remaining water molecules after the freeze-drying process.

A similar peak at 3305 cm−1 was identified in the collagen-only spectra (Figure 2.25B), this

is also due to the presence of O-H bond stretching. The peaks identified at 2976 cm−1

and 2934 cm−1 (Figure 2.25A and B respectively), correspond to -CH2 stretching. As the

concentration of the alginate gels analysed were higher than that of the collagen gels, the
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Table 2.3: Control hydrogel concentrations examined by FTIR

Alginate (mg/mL) Collagen (mg/mL)

5 0

7.5 0

10 0

20 0

30 0

40 0

0 2.5

0 3

0 5

Table 2.4: Blended hydrogel concentrations examined by FTIR

Alginate (mg/mL) Collagen (mg/mL)

5 1.5

7.5 1.5

10 1.5

5 2.5

7.5 2.5

10 2.5
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Figure 2.25: FTIR spectra of (A) alginate and (B) collagen hydrogels at a range of concentrations. Hydrogels

were freeze-dried prior to analysis.

absorbance was higher for the alginate spectra (Figure 2.25A).

For alginate (Figure 2.25A), peaks at 1604 cm−1 and 1414 cm−1 are attributed to

asymmetric and symmetric stretching vibrations, respectively, of carboxylate salt groups

(COONa) [226, 227]. Additionally, several vibrations in the range 1100–1000 cm−1 are

assigned to the glycoside bonds in the polysaccharide (C-O-C stretching) [226].

For the collagen spectrum (Figure 2.25B), absorption bands at 1654 and 1556 rep-

resent amides I and II respectively [228]. The amide I band results from the stretching

vibration of the peptide carbonyl group (–C=O) [229]). Both the collagen and alginate

spectra align with those previously reported in the literature, with bands showing up in

expected regions [226–229].

Spectra were also collected for blended collagen-alginate hydrogels at different con-

centrations (Figure 2.26, Table 2.4). The peaks identified in these two studies align strongly

with the alginate control spectrum, due to the concentration of alginate being much higher

than that of collagen in the composite system and therefore dominating the spectra. This
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Figure 2.26: FTIR spectra of blended alginate-collagen hydrogels at a range of concentrations. A) Collagen

concentration of 1.5 mg/mL and B) collagen concentration of 2.5 mg/mL. Hydrogels were freeze-dried prior

to analysis.

makes it challenging to confirm the presence of collagen in the blended hydrogel system using

FTIR. However, previous analysis using SEM and rheology has demonstrated the presence of

collagen in the blended hydrogels. Finally, it should be noted that the peaks at 2160 cm−1

and 2028 cm−1 that show up in all spectra (Figures 2.25 and 2.26) are attributed to the

presence of carbon dioxide, which is reported to produce peaks in the region of 900–2300

cm−1 [230, 231]. This is likely appearing due to contamination of the sample upon loading

into the FTIR instrument.

2.4 Summary

In this chapter, porcine oral mucosa has been histologically examined, and the mechanical

properties of the tissue under compression have been determined. Further to this, the me-

chanical properties of alginate and collagen hydrogel systems were measured and compared

with the porcine tissue. Through these experiments, the mechanical properties of the com-
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posite hydrogel system were found to align with the mechanical properties of porcine tissue.

The chosen blended concentrations taken forward for biological characterisation were 2.5

mg/mL collagen and 5 mg/mL alginate, and 2.5 mg/mL collagen and 10 mg/mL alginate.

As well as generating mechanical data for the model, the hydrogels have been physically

characterised using rheology, scanning electron microscopy, and Fourier-transform infrared

spectroscopy in order to understand the gelling characteristics of the model. Therefore, this

chapter has demonstrated that the first objective of this research has been met, through se-

lection of an appropriate gel system and characterisation of gelling properties and chemical

composition. The latter part of this objective, determining the selected scaffold’s ability to

support cell growth and proliferation, will be examined in Chapter 3. In this next chapter,

the effect of the chosen hydrogel system on fibroblasts and epithelial cells was determined.

2.4.1 Conclusion

Blended collagen and alginate solutions are a suitable choice of hydrogel scaffold for in vitro

oral mucosa models when considering their mechanical properties under compression, which

align well with those of porcine oral mucosa. Mucosa models in the literature have not

previously considered the mechanical properties of the native tissue in their development,

which is a unique aspect to the model developed in this research.
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Thus far, the mechanical properties of porcine oral mucosa under compression have been

determined. By comparing the mechanical strength of the native tissue with those of al-

ginate and collagen hydrogel systems, concentrations of the blended hydrogel scaffold were

selected to be 2.5 mg/mL collagen and 5 mg/mL alginate, and 2.5 mg/mL collagen and

10 mg/mL alginate (concluded from Chapter 2). In this next chapter, the latter part of

the first objective will be addressed: "Characterise the chosen hydrogel system in terms of

its ability to support cell growth and proliferation." Primary fibroblasts and an epithelial

cell line were characterised in 2D. Subsequently, the effect of the chosen blended hydrogel

concentrations on the encapsulated and epithelial cells was examined using live/dead stain-

ing and cell counting assays. Finally, studies were conducted using histological staining to

determine whether a stratified epithelium could be achieved, and the results of this work are

presented here.
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3.1 Introduction

There are two commonly used approaches to generate a 3D oral mucosa model that have

been described in the literature, the first of which is the use of decellularised matrix [118].

The main goal of this approach is to remove the cells from a tissue sample and preserve

the extracellular matrix (ECM) components such as collagen, glycosaminoglycans, laminin,

and growth factors [232]. Various decellularising agents can be used, for example alkaline

compounds, acids, alcohols, detergents, and enzymes [232, 233]. A key advantage of this

method is that the tissue model contains functional vasculature and as a result, decellularised

matrix scaffolds can improve cellular functions compared with cells seeded onto hydrogels

[232, 233]. However, there are still several challenges associated with using these types

of models, including variations caused by different decellularisation methods, insufficient

preservation of vasculature and ECM composition, inhomogeneous recellularisation within

the scaffold, and diffusion limitations for thicker tissue sections [234]. A second and more

common approach is to use a polymer scaffold to create a 3D culture in vitro. For this,

fibroblasts are typically encapsulated within a substrate and oral keratinocytes are seeded

on the surface to generate a stratified epithelium. The most commonly used scaffold material

is type I collagen due to its ease of extraction and manipulation, reproducibility, and high

growth of epithelial cells on its surface [235].

A range of fibroblast types have been used in 3D oral mucosa models prepared using

a scaffold, including both primary cells and cell lines. Normal oral keratinocytes derived

from human tissue are the most commonly reported cells used in 3D oral mucosa models

[195]. Cell lines have also been used, the most frequently reported of which are 3T3s (mouse

embryo fibroblast cell line) [236–238]. Using primary fibroblasts derived from human tissue

has its disadvantages, as the cells typically have a finite lifespan and limited expansion

capacity, which can make it especially challenging to obtain the number of cells required
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for 3D culture [4]. However, primary cells have normal cell morphology and maintain many

of the important markers and functions seen in vivo, which make them ideal for studying

disease, infection, and wound healing around dental implants. In the present study, primary

dermal fibroblasts were used to develop the protocols for a blended alginate-collagen oral

mucosa model. Whilst these cells differ slightly from oral fibroblasts in terms of phenotype

[239, 240], they also display many important similarities. Since human dermal fibroblasts

were easier to obtain and considerably cheaper than oral fibroblasts, for the preliminary

development of this model, dermal fibroblasts were deemed a useful way to ensure fibroblast

attachment and proliferation was possible with the proposed scaffold.

For the keratinocytes that form the epithelium, again, there are a range of primary

cells and cell lines that have been utilised in the literature for studying the response of

the oral epithelium to various challenges [235, 241]. Some of the most commonly used

epithelial cell lines for 3D mucosa models include TR146 (oral squamous cell carcinoma

cell line) [110, 242–244], OKF6/TERT-2 (normal oral epithelial cell line, immortalised by

forced expression of telomerase) [195, 236, 245], and HaCaT (immortalised keratinocyte

cell line) [104, 235, 244, 246]. Whilst cell lines often display differences both genetically

and phenotypically from their tissue origin and show altered morphology, the advantages

of using an epithelial cell line are that they are highly proliferative and easier to culture

than their primary counterparts. For this reason, the cell line H400 (oral squamous cell

carcinoma cell line) was chosen to seed on the surface of the model and form the epithelium.

H400s have been used by many researchers within the institution and have been previously

shown to form a stratified epithelium on collagen scaffolds [247]. The stratified epithelium

is an important feature to replicate in the present in vitro model because the epithelium

has a barrier function and is essential in preventing infection. One future application of the

in vitro hydrogel model would be to utilise it in the investigation of interactions between

oral biofilms, the epithelium, and dental implant materials. Therefore, aligning the model
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with the physical features of the native tissue, including the stratified epithelium, is highly

desired.

Cell culture conditions such as growth medium, supplements, cell seeding density,

submerged versus air-lift set-up, cell type and origin, mono – or multi-species culture, 2D or

3D culture, and choice of scaffold for 3D culture, distinctly influence the properties of an in

vitro model of the oral mucosa [241]. Features of the oral mucosa that need to be replicated

in an in vitro model include a stratified epithelium and encapsulated fibroblasts within the

scaffold. These aspects are examined in this chapter, and the results of the chosen culture

conditions for the oral mucosa model developed in the present work are described.

3.2 Materials and Methods

All chemicals were from Sigma Aldrich (Dorset, UK) unless otherwise specified.

3.2.1 Cell culture

All tissue culture experiments were conducted in a Type II laminar air flow hood (Guardian

MSC T1200, Monmouth Scientific Ltd, Somerset, UK). Sterilisation of flow hoods was con-

ducted using 5% ChemGene, reverse osmosis (RO) water, and 70% industrial methylated

spirit (IMS). Additional equipment was sterilised by autoclaving at 121°C, 100kPa, for 1

hour (MLS-3781L, Sanyo, Japan) or by using a 0.22 µM filter (Millipore, US). All cells were

incubated at 37°C in an atmosphere of 5% CO2 and 95% humidity.

All cell culture media was made up 500 mL at a time, stored at 4°C and used for

up to one month. The composition of supplemented Dulbecco’s Modified Eagle’s Medium

(DMEM) and Iscove’s Modified Dulbecco’s Medium (IMDM) are outlined in Tables 3.1 and
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Table 3.1: DMEM supplemented media components for 500 mL media

Component Volume Final concentration

DMEM 395 mL 79%

FCS 50 mL 10%

Pen/Strep 5 mL 1%

Table 3.2: IMDM supplemented media components for 500 mL media

Component Volume Final concentration

IMDM 395 mL 79%

FCS 50 mL 10%

Pen/Strep 5 mL 1%

3.2 respectively.

Passaging, counting and storage of cells

The H400 cell line is an immortalised keratinocyte cell line established from a human squa-

mous cell carcinoma of the alveolar process. H400 keratinocytes were obtained from frozen

stocks at the institution and were cultured in supplemented DMEM (Table 3.1). Human

dermal fibroblasts (HDFs) were purchased from ATCC (strain number CCD-1135Sk, ATCC,

CRL-2691) and were cultured in supplemented IMDM (Table 3.2). Growth media was

changed every 2-3 days.

When cells reached approximately 80% confluence, based upon microscopic observa-

tion at 10X magnification (Zeiss Axiocam erc 5s, Carl Zeiss Microscopy Ltd, Cambridge,

UK), they were transferred into a new T75 cm2 cell culture flask (NuncTM, Thermo Fisher
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Scientific, Loughborough, UK) with lower cell numbers to enable cell proliferation to con-

tinue. For this, the cell culture medium was removed and cells washed with 10 mL of non-

supplemented media to remove any remaining serum proteins from fetal calf serum (FCS)

in the residual cell culture medium. Cells were incubated at 37°C with 4 mL 0.25% w/v

trypsin-EDTA for 10 minutes or until all cells had detached. The trypsin-EDTA was neu-

tralised using 4 mL supplemented cell culture medium containing 10% FCS. Following this,

cells were transferred to a 15 mL Falcon tube and centrifuged at 800 revolutions per minute

(rpm) for 4 minutes using a bench top centrifuge (Durafuge 100, Precision, Expotech, USA).

The supernatant was then aspirated and discarded in bleach, and the cellular pellet was re-

suspended in the desired volume of cell culture medium. Cell counts were performed on cell

suspensions prior to seeding. The cell suspension was added in a 5:1 ratio with 0.4% trypan

blue. Using trypan blue allowed for differentiation between live and dead cells under the

microscope, whereby dead cells appeared blue. This is because trypan blue enters cells with

compromised membranes and, upon entry into the cell, binds to intracellular proteins. Cell

counts were performed using an improved Neubauer haemocytometer (Sigma-Aldrich, UK)

and a light microscope at 10X magnification (Zeiss Axiocam erc 5s, Carl Zeiss Microscopy

Ltd, Cambridge, UK). At least three 1 mm2 squares were counted and their average taken.

Cell number was calculated as follows:

viable cell yield (cells/mL) = viable cell count

quadrants counted
× dilution factor

× haemocytometer factor (10, 000)

× current volume (mL)

(3.1)

e.g average cell count of 100 with no dilution = 1 million cells per mL
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Freezing cells for cryopreservation

For cryopreservation, cells were treated as for passaging. However, rather than re-suspending

the pellet in cell culture media, cells were re-suspended into cryopreservation media (70%

IMDM or DMEM, 25% FCS, and 5% dimethyl sulfoxide (DMSO) (v/v)). The pellet was

re-suspended to give a concentration of 1 million cells per mL of cryopreservation medium.

Following this, 1 mL of the cell suspension was pipetted into each cryovial and cryovials were

placed in a -80°C freezer overnight, before being transferred to a liquid nitrogen dewar at

-196°C.

Thawing cells

Cryovials were removed from liquid nitrogen using appropriate safety precautions and the

cells were quickly thawed (2-3 minutes) in a 37°C water bath. Once thawed, the cell solution

was diluted in cell culture medium and centrifuged for 5 minutes at 1000 rpm at room

temperature. The supernatant was discarded and the cellular pellet re-suspended in the

appropriate cell culture medium, and transferred to a T75 culture flask (Nunc, Thermofisher

Scientific).

3.2.2 Preparation of stock solutions

Stock solutions of alginate and collagen were prepared as described previously in Chapter

2, Section 2.2.2. Briefly, alginate stock solutions of 20, 30, and 40 mg/mL were prepared

by adding sodium alginate to 100 mL 2-(N-morpholino)ethanesulfonic acid (MES) buffer

(0.1 M, pH 6.5). Alginate was left to dissolve overnight at room temperature (25°C) on

a magnetic stirrer at 100 rpm. Solutions were autoclaved at 120°C prior to use in tissue

culture. To prepare the cross-linking solutions, calcium chloride CaCl2 was added to 100
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mL reverse osmosis (RO) water at a concentration of 150 mM. Following this, 1 mL of 4-

(2 hydroxyelthyl)-1 piperazineethanesulfonic-acid (HEPES) buffer was added to each CaCl2

solution. All CaCl2 solutions were autoclaved at 120°C prior to use in tissue culture. Alginate

stock solutions were stored at 4°C and CaCl2 solutions were stored at room temperature

(25°C).

To make the collagen stock solutions, 3.5 mg/mL and 10 mg/mL rat tail collagen I

(Corning) were diluted on ice to concentrations of 3 and 5 mg/mL respectively with IMDM

supplemented with 10% FBS. Solutions were kept at 4°C to prevent early gelation.

3.2.3 Formation of blended collagen-alginate tissue model

To make up the composite hydrogel, alginate and collagen stock solutions were mixed in

a 1:1 ratio on ice (Figure 3.1A). Human dermal fibroblasts were added to the solution at

a concentration of 4.5 x 105 cells per well. To achieve this, trypsin was added to the con-

fluent fibroblast cultures for 10 minutes to detach cells from the culture flasks. Cells were

centrifuged at 900 rpm for 4 minutes, and the supernatant was removed. The cell pellets

were re suspended in 1 mL IMDM media and cells counted using a haemocytometer. The

solutions were diluted accordingly to achieve a concentration of 2.7 x 106 cells/mL. Finally,

0.5 mL of cell solution for every gel to be produced was added to the stock alginate-collagen

solution and gently inverted to mix (Figure 3.1B). The fibroblast-containing solution was

pipetted into each well of a 6-well transwell culture plate (1 mL per well) and incubated at

37°C for 4 hours to allow the collagen to gel (Figure 3.1C).

Once the collagen had gelled to ensure collagen fibrils had formed, 2 mL of 150 mM

CaCl2 solution was added to the outside of each transwell insert (Figure 3.1D). The transwell

plate was incubated at 37°C for a further 20 minutes to allow the alginate to gel. Following
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Figure 3.1: Schematic showing method for producing blended hydrogel model containing human dermal

fibroblasts and with addition of epithelial cells to surface. (A) Alginate stock solutions of 20, 30, and 40

mg/mL and collagen solutions of 3 and 5 mg/mL were mixed in a 1:1 ratio on ice. (B) For gels with cells

encapsulated, primary human dermal fibroblasts were added at a concentration of 4.5 x 105 cells/well and

pipetted into 6-well transwell culture plates (12 mm internal diameter). (C) The gels were incubated at 37°C

for 4 hours. (D) 2 mL of 150 mM calcium chloride solution was added to the outside of insert and the gels

were incubated for a further 20 minutes. (E) The gels were cultured submersed in IMDM supplemented with

10% FBS for 4-7 days until gels had contracted. (F) A human keratinocyte cell line (H400) was added to

the surface of the gels at a concentration of 1 x 106 cells/well. (G) Gels were cultured submersed in DMEM

medium for 2-3 days to allow the keratinocytes to form a monolayer on the surface of the gel. (H) The media

inside the transwell insert was removed to create an air-liquid interface at the surface of the hydrogel. The

oral mucosa models were cultured for 10-14 days to allow the epithelium to stratify, before being removed

for analysis.

removal of the CaCl2 solution, the outside of the gels was washed with IMDM media. The

gel was cultured in IMDM supplemented with 10% FCS for 4-7 days, with media changes

every 2-3 days, until the gel had slightly contracted, indicating fibroblast adherence (Figure

3.1E).
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To form the epithelial layer, H400s were detached from the base of their culture flask

using trypsin. After 5 minutes (or until visible cell detachment), cells were centrifuged at

1000 rpm for 4 minutes, and the supernatant was removed. H400s were resuspended in

1 mL of supplemented culture medium. Using a haemocytometer, the number of cells per

mL were determined. The solution was diluted to a concentration of 2 x 107 cells/mL and

50 µL was pipetted onto the surface of each gel (Figure 3.1F). The plate was incubated for

1 hour to allow cell attachment and then 1 mL of supplemented DMEM was added above

the surface of the gel. Gels were cultured submersed in DMEM medium for 2-3 days to

allow the keratinocytes to form a monolayer on the surface (Figure 3.1G). Finally, the media

inside the transwell insert was removed to create an air-liquid interface at the surface of the

hydrogel. The oral mucosa models were cultured for 10-14 days to allow the epithelium to

stratify, changing the medium every 2-3 days (Figure 3.1H). Hydrogels were removed from

the transwell using a scalpel to cut around the edge of the membrane. Figure 3.2 shows

a blended hydrogel removed for subsequent analysis using live/dead staining and confocal

microscopy.

3.2.4 Confocal microscopy

Once the 3D blended hydrogel model had been cultured to completion, the media was

removed from the transwell. The gels were washed several times with PBS to remove any

remaining media components and stop any residual esterase activity. The gels were then

stained using a Cellstain double staining kit containing Calcein-AM and propidium iodide

(PI) solutions (Sigma-Aldrich). Calcein-AM stains only viable cells and the calcein generated

from the solution by esterase in a viable cell emits a strong green fluorescence. However, PI

cannot pass through a viable cell membrane. It reaches a cell nucleus through disordered

areas of dead cell membrane and intercalates with the DNA double helix of the cell to emit
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Figure 3.2: Image of a blended hydrogel model removed from a transwell plate before analysis using either

confocal microscopy or fixation, sectioning and histological staining.

red fluorescence. The staining kit was stored at -20°C. Prior to making up the staining

solution, the stains were removed from storage and allowed to reach room temperature.

To prepare the staining solution, 10 µL of Calcein-AM solution and 5 µL of PI solution

were added to 5 mL of phosphate-buffered saline (PBS). After removing the hydrogels from

the transwell insert using a scalpel, they were placed in a clean 6-well plate. Following this,

2 mL of the prepared staining solution was added to each well and the gels were incubated

for 30 minutes at 37°C, to allow the staining solution to penetrate the gel. The stain

was removed and the gels were placed in a 24-well black culture plate (Nunc, Thermofisher

Scientific). These plates have a thinner base so are preferable for confocal imaging. Confocal

imaging of the samples was performed using a confocal laser scanning microscope (Zeiss,

Cambridge, UK), using a 5X lens (EC Plan - Neofluar 5X/0.16 Ph1 M27). 2D images and

z-stacks were taken of each sample, with a gap of 10 µm between each slice of a z-stack.
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3.2.5 Histology

To prepare the tissue model for histological staining, the hydrogels were placed (within their

transwell) in 4% formal saline made up of 100 mL of 40% formaldehyde, 9 g of sodium

chloride, and 900 mL of RO water. Samples were left at room temperature in the formal

saline overnight to fix the samples. Following this, each sample was removed from the

transwell by cutting the transwell membrane using a scalpel. Next, the fixed hydrogels

were dehydrated using increasing concentrations of ethanol: concentrations were added for

10 minutes each as follows, 10, 20, 30, 40, 50, 60, 70, 80 and 90%. The hydrogels were

then placed in 100% ethanol three times for 10 minutes each before drying off thoroughly

and submerging in xylene for 10 minutes, twice. The hydrogels were dried off once again,

carefully put into labelled histology cassettes, then embedded in paraffin wax overnight.

Glass slides were subbed with poly-L-lysine. To do this, a drop of 0.1% (w/v) poly-

L-lysine solution was added to each glass slide and a thin layer spread across the surface.

Slides were left to dry at room temperature for 30-40 minutes, and then baked in the oven

at 56°C for 1 hour. Subbing glass slides helped the extracellular matrix adhere to the slide

better when preparing for staining.

After paraffin embedding, samples were sectioned to 10 µm thick using a Leica Ro-

tary Microtome (RM2035, Leica Biosystems, Milton Keynes, UK) and mounted onto the

subbed glass slides. Haematoxylin and Eosin (H & E) staining was performed on the fixed

and sectioned hydrogel samples according to a standard protocol. Samples were de-waxed

in xylene for 5 minutes under agitation, then re-hydrated by placing in decreasing concen-

trations of ethanol (100% x2, 95%, 70%, and 50%) for 1 minute under agitation at each

concentration. Samples were then washed well under running water for a minimum of 2

minutes. Gill’s III Haematoxylin was applied for 5 minutes, then samples were rinsed in

tap water and differentiated with 0.3% acetic acid for 30 seconds and treated with 0.3%
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hydrochloric acid in 70% ethanol for 30 seconds. Following this, samples were washed in tap

water, treated with Scott’s Tap Water Substitute for 2 minutes and washed again. Eosin

stain was applied for 1-2 minutes before the final washing step was performed. Sections

were dehydrated by treating in 100% ethanol for 1 minute and then treated with xylene for

1 minute (x2). Finally, the sections were mounted under a glass coverslip using Distyrene

Plasticizer Xylene (DPX) ready for visualisation under a light microscope. The slides were

imaged using a Zeiss Primotech light microscope using either a 5X objective (Zeiss Epiplan

442020-9902, 5X/0.13) or a 20X objective (Zeiss Epiplan 442020-9902, 20X/0.4).

3.3 Results and Discussion

3.3.1 Epithelial cell characterisation

The oral epithelial cell line H400 was selected for use in the 3D tissue model. First, the

characteristics of normal 2D H400 growth were investigated. Light microscopy was used

to assess the morphology and growth characteristics of H400 cells. Cells were cultured

according to the methods detailed in Section 3.2.1. For this experiment, H400s were seeded

at a density of 4 x 104 cells per well in a 6-well plate, in triplicate. Cells were imaged and

counted at 1, 2, 3, 6, 7 and 10 days.

Figure 3.3 shows light microscopy images of H400 cells grown over a 10-day period.

Key features of the growth characteristics of this cell line can be seen in the images, including

a regular cobblestone appearance, outward growth from cell islands, tight cell-cell junctions,

and a cuboidal shape once confluence was reached.

Light microscopy in conjunction with a trypan blue assay was used to count the

number of live H400s over 10-days, along with determining cell viability, according to the
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Figure 3.3: Light microscopy images illustrating H400 cell growth from 1 to 10 days post-seeding (10X

magnification). (A) 1-day post seeding, (B) 3-days post-seeding, (C) 6-days post-seeding, and (D) 10-days

post-seeding. This figure is representative of the typical pattern of H400 cell growth, including features such

as (a) outward growth from cell islands, (b) tight cell-cell junctions, (c) a cuboidal shape once confluence

was reached, and formation of a confluent monolayer. Cells became compressed and appeared smaller once

they achieved confluence at Day 6.

methods described in Section 3.2.1. Figure 3.4 demonstrates exponential growth of H400

cells and a viability of greater than 80% was achieved throughout the duration of the ex-
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Figure 3.4: Live cell count and viability of H400 cells using a haemocytometer showing an exponential

pattern of growth (n = 3, mean and SD shown). An exponential growth curve was applied to the live cell

count, R2 = 0.9273.

periment. It should be noted that the trypan blue method may underestimate the number

of cells in a well as not all cells are detached from the surface of the 6-well plate.

Figure 3.3 confirmed that H400 cells had an epithelial appearance, and Figure 3.4

demonstrated consistent and reliable growth under the conditions applied. The growth

characteristics and time for cells to reach confluence were used to determine the methods

and duration of future experiments in 3D culture. In the hydrogel model, fibroblasts were

cultured for 4-7 days prior to seeding epithelial cells on the surface of the scaffold. Epithelial

cells were then cultured for 10-14 days post-seeding (as described in Section 3.2.3) It should

be noted that H400 cells are a cancer-derived cell line and findings cannot necessarily be

extrapolated to predict the behaviour of primary cells. However, they do offer advantages

such as reproducibility and ease of growth.
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3.3.2 Fibroblast cell characteristics

For this model, a HDF primary cell source was chosen. Oral and dermal fibroblasts display

many similar characteristics, however oral fibroblasts were much more expensive to obtain.

As this work comprised of the preliminary development of the 3D tissue model, it was

decided that dermal fibroblasts would suffice in order to determine growth and behaviour

when encapsulated in the hydrogel model. In this section, the characteristics of normal 2D

dermal fibroblast growth are presented and discussed.

Light microscopy was used to assess the morphology and growth characteristics of

HDFs. Cells were cultured according to the methods detailed in Section 3.2.1. For this

experiment, HDFs were seeded at a density of 1 x 104 cells per well in a 6-well plate, in

triplicate. Cells were imaged and counted at 1, 2, 3, 4, 7, 8, 11 and 14 days. HDFs were

grown for a period of 14 days (compared with 10 days for H400s) due to the length of time

they were cultured within the 3D tissue model, which was a minimum of 14 days. Figure

3.5 shows light microscopy images of HDFs grown over a 14-day period.

Light microscopy in conjunction with a trypan blue assay was used to count the

number of live HDFs over 14 days, along with determining cell viability, according to the

methods described in Section 3.2.1. Figure 3.6 demonstrated exponential growth of HDFs

and a viability of greater than 80% was achieved throughout the duration of the experiment.

Key features of the growth characteristics of these cells can be seen in the images in Figure

3.5, including a flat, elongated spindle-shape and branched cytoplasm. As with the previous

results for H400s, it should be noted that the trypan blue method may underestimate the

number of cells in a well as not all cells are detached from the surface of the 6-well plate.

In summary, light microscopy and cell viability studies showed consistent and repeat-

able growth of HDFs, which is essential for producing the hydrogel models. It is important
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Figure 3.5: Light microscopy images illustrating HDF cell growth from 1 to 14 days post-seeding (10X

magnification). (A) 1-day post-seeding, (B) 4-days post-seeding, (C) 7-days post-seeding, and (D) 14-days

post-seeding. This figure is representative of the typical pattern of HDF cell growth, including features such

as (a) a flat, elongated spindle-shape and (b) branched cytoplasm.

to note that the number of HDF cells produced over 10 days (1.25 x 105) was an order of

magnitude lower than the number of epithelial cells produced over the same time period

(7 x 106). Producing the required number of HDFs to create multiple 3D tissue models is

challenging, particularly when using primary cells. However, the growth characteristics of

both cell lines were felt to be adequate to take forward to 3D culture studies.
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Figure 3.6: Live cell count and viability of HDFs using a haemocytometer showing an exponential pattern

of growth (n = 3, mean and SD shown). An exponential growth curve was applied to the live cell count, R2

= 0.9515.

3.3.3 Fibroblast growth with calcium chloride applied

The HDFs used in the 3D tissue model were subjected to the application of CaCl2 in the

protocol. In this process, the HDFs were mixed with the alginate-collagen solution, pipetted

into wells, and incubated for 4 hours at 37°C, 5% CO2 to allow the collagen to form fibrils.

Finally, 150 mM CaCl2 was added to the wells to cross-link the alginate component. To

determine whether the addition of CaCl2 at this concentration affects the growth of HDFs,

cells were cultured as detailed in Section 3.2.1, whereby HDFs were seeded at a density of

1 x 104 cells per well in a 6-well plate, in triplicate. Cells were counted and viability was

determined at 1, 2, 3, 4, 7, 8, 11 and 14 days. At Day 2, 3 mL of 150 mM CaCl2 was added

to each well for 20 minutes, before being removed and the cells washed with sterile RO water
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to remove any remaining CaCl2. A growth curve was plotted and is shown in Figure 3.7.

Figure 3.7: Live cell count of human dermal fibroblasts (HDFs) treated with 150 mM calcium chloride at

Day 2. Both control and treated conditions demonstrated an exponential pattern of growth (n = 3, mean

and SD shown). An exponential growth curve was applied to the live cell count, R2 = 0.9515 for control

and R2 = 0.9694 for treated. The figure shows that there was a small decrease in the number of viable

cells obtained when calcium chloride was applied to the HDF culture, although this was not deemed to be

significant.

Figure 3.7 demonstrates that the application of 150 mM CaCl2 did not significantly

affect the number of live cells or the growth characteristics of HDFs. After approximately 100

hours, the exponential growth of cells treated with CaCl2 slowed slightly, in comparison to

the control, resulting in a mean live cell count of 2.2 x 105 for the treated HDFs, compared

to a live cell count of 2.5 x 105 for the control. Whilst this provides evidence that the

addition of CaCl2 did not heavily impact HDF growth, viability was also calculated at each

time point to confirm that the addition of CaCl2 did not reduce the number of viable cells

108



Biology of oral mucosa model

produced. Figure 3.8 demonstrates there was little difference in the viability of the control

compared with the CaCl2 treated cells. For both conditions, viability remained above 80%

throughout the 14-day period, and at the final time point, viability was almost 100% for

both conditions. These results, in conjunction with Figure 3.7, showed that the addition of

CaCl2 for 20 minutes, as part of the formation of the alginate-collagen composite hydrogel

model, caused a slight reduction in cell number. However, this small reduction was deemed

acceptable for the 3D tissue culture experiments. Following this study, the morphology and

viability of fibroblasts embedded within an alginate-collagen blended hydrogel was examined,

and this is discussed in the next section.

Figure 3.8: Viability of HDFs treated with 150 mM calcium chloride at Day 2. Both control and treated

conditions show viability of above 80% at all time points (n = 3, mean and SD shown).
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3.3.4 Confocal imaging of fibroblasts embedded within blended

hydrogels

The blended alginate-collagen hydrogel system was produced using a similar method to that

described in Chapter 2, but with the addition of HDFs and H400s. The full method is

detailed in Section 3.2.3, but is briefly described here. Collagen and alginate stock solutions

were mixed in a 1:1 ratio. At this point, a suspension of human dermal fibroblasts were

added at a concentration of 4.5 x 105 cells per well. The solutions were gently mixed and

then 1 mL of the blended solution was pipetted into each transwell of a 6-well plate. Plates

were incubated at 37°C for 4 hours to allow the collagen to gel. Following this, 3 mL of 150

mM CaCl2 was added to the outside of the transwell plate to gel the alginate component.

The CaCl2 was removed after 20 minutes and RO water was used to wash the outside of the

transwell. Finally, IMDM media was added to both the outside and inside of the transwell

to allow the fibroblasts to adhere and proliferate inside the gel. After 4-7 days of culture,

H400s were seeded on the surface of the hydrogels at a concentration of 2 x 107 cells/mL (50

µL added to each gel). The hydrogels were incubated for 2 hours to allow for the epithelial

cells to adhere to the surface. The gels were cultured submersed in DMEM medium for

2-3 days. Finally, the media inside the transwell insert was removed to create an air-liquid

interface at the surface of the hydrogel. The oral mucosa models were cultured for 10-14

days to allow the epithelium to stratify. The models were stained using Calcein-AM and PI

(live/dead) and imaged using confocal microscopy.

Figure 3.9 shows images of primary HDFs embedded within two concentrations of

alginate and collagen blended hydrogel. No dead cells were identified within the model, as

evidenced by the lack of red cells in the images. This suggests that primary fibroblasts re-

mained viable in the blended hydrogel model at both high (10 mg/mL) and low (5 mg/mL)

alginate concentrations. A key difference noted between the two different alginate concen-
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trations in the blended system was the morphology of the fibroblasts. Figures 3.9A and B

are of fibroblasts embedded within a blended hydrogel of 2.5 mg/mL collagen and 5 mg/mL

alginate. At this lower alginate concentration, the HDFs displayed a morphology similar

to that of the cells in 2D culture, with an elongated shape. However, Figures 3.9C and D

show HDFs had a rounded morphology in a blended hydrogel of 2.5 mg/mL collagen and 10

mg/mL alginate. This suggests that the higher alginate concentration restricted the mor-

phology of the cells. Figure 3.10A is a representative image of HDFs grown in 2D culture

and stained and imaged using the same protocol as for the 3D models presented in 3.9. The

morphology of the fibroblasts in 2D was as expected, and showed a flat, elongated spindle-

shape similar to that seen in the light microscopy images of 2D culture presented in Figure

3.5.

Confocal imaging of fibroblasts embedded within alginate hydrogels has been previ-

ously reported [207, 248]. Hunt et al. [248] demonstrated that mouse NIH 3T3 fibroblasts

remained viable in alginate hydrogels for up to 150 days. Live/dead stained fibroblasts in the

study were shown to have a rounded morphology when encapsulated in 20 mg/mL alginate

cross-linked with 100 mM CaCl2, supporting the findings of the present work which found

HDFs to have a rounded morphology at the higher alginate concentration used (10 mg/mL).

Furthermore, live/dead staining of fibroblasts has also been reported in collagen-only hy-

drogels. Hamilton et al. [249] published confocal images of lung fibroblasts embedded in 2

mg/mL collagen I gels. High viability was reported as live fibroblasts were seen throughout

the scaffold and the cells had taken on a mature spindle-like morphology after 1 week of

culture, suggesting that fibroblasts adopt a typical elongated morphology when embedded

within a collagen hydrogel. This is likely due to the adhesion motifs that collagen fibrils

display, unlike unmodified alginate polymer chains which do not enable cells to adhere.

Cells in vivo interact with their surrounding microenvironment and their morphology

is affected by the different mechanical and biochemical cues they encounter. Several studies
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Figure 3.9: Representative images of live-dead stained human dermal fibroblasts (HDFs) embedded within

collagen-alginate hydrogels at concentrations of (A and B) 2.5 mg/mL collagen and 5 mg/mL alginate, and

(C and D) 2.5 mg/mL collagen and 10 mg/mL alginate. At the lower concentration of alginate, fibroblasts

show typical spindle shape. At the higher concentration of alginate, fibroblasts remain rounded.

have reported that cell shape plays an important role in regulating the growth, migration and

differentiation of cells [250, 251]. It is therefore important for in vitro models to replicate

the biomechanical cues that cells receive in the body. In a recent paper, Liu et al. [207]

encapsulated NIH 3T3 fibroblasts in collagen–alginate hybrid hydrogels. The paper reported
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two different hydrogel systems: fibroblasts were encapsulated in 3 mg/mL collagen and then

the gel was stiffened with 15 mg/mL alginate and 120 mM CaCl2 on (1) Day 0 or (2) Day

2 of the culture. They reported high viability of cells after 6 days in culture in the hybrid

hydrogels [207], supporting the finding of the present work that alginate-collagen blended

hydrogels produced high cell viability. The study also found that the spreading state of the

fibroblasts (i.e. displaying an elongated or rounded morphology) had a significant impact on

their responses to mechanical and biochemical stimuli. A key factor that may have influenced

the cell morphology of the HDFs in the present work was the storage modulus of the hydrogel

matrix. As reported in Chapter 2, the storage modulus is a measure of stiffness. For

hydrogels at a concentration of 2.5 mg/mL collagen and 5 mg/mL alginate, the mean storage

modulus was measured to be 15.28 Pa, and for 2.5 mg/mL collagen and 10 mg/mL alginate,

the storage modulus was 27.16 Pa, almost double that of the lower alginate concentration.

An important future study to continue this work would be to investigate cellular response for

HDFs encapsulated within a range of alginate concentrations for collagen-alginate blended

hydrogels, in order to determine how the matrix stiffness affects cell behaviour.

Following the evaluation of fibroblast morphology within the blended alginate-collagen

hydrogels, the presence of a layer of epithelial cells (H400s) was searched for. Figure 3.11

shows regions on the surface of the hydrogels where cells were found to heavily overlap.

This could be a region of epithelial cells, however the morphology differs from the control

image of H400s cultured in 2D (Figure 3.10B). H400s typically show a regular cobblestone

appearance, outward growth from cell islands, and tight cell-cell junctions, which were not

evidenced in the regions identified in Figure 3.10B. H400s are a cancer-derived cell line, which

could lead to the cells migrating into the hydrogel rather than remaining on the surface and

forming a stratified epithelium. In order to clearly identify the epithelial cells in the model,

cell-specific staining is required, and this would be a future study to continue this work. For

example, keratinocytes could be stained for E-cadherin or cytokeratins to differentiate them
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Figure 3.10: Representative images of live-dead stained 2D cultures of (A) human dermal fibroblasts (HDFs)

after 6 days in culture, and (B) epithelial cells (H400s) after 4 days in culture, for comparison to cells grown

in 3D culture. HDFs demonstrated typical elongated shape and H400s showed a cobblestone appearance as

expected.

from fibroblasts in the co-culture system. Further future experiments also should include

culturing H400s on the surface of cell-free blended hydrogels with subsequent live/dead

staining to investigate whether the cells are migrating into the scaffold or remaining on the

surface, and using different cell sources to identify the best cell type to form a stratified

epithelium using the alginate-collagen scaffold.

3.3.5 Histological staining of 3D hydrogel models

In order to investigate whether a stratified epithelium was formed in the blended-hydrogel

model, the gels were fixed, embedded in paraffin wax, sectioned, and stained with H & E.

Figure 3.12 shows representative images of the stained sections. The presence of fibroblasts

encapsulated within the hydrogels was identified in all samples, and were shown as dark pur-

ple circles (Figure 3.12). The stained sections further confirmed, following confocal imaging,
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Figure 3.11: Representative images of a live-dead stained human epithelial cell line (H400s) on the surface of

collagen-alginate hydrogels at a concentration of 2.5 mg/mL collagen + 5 mg/mL alginate (human dermal

fibroblasts were encapsulated within the gels). The surface of the gel is in the x-y plane. Images show regions

of overlapping cells suggesting the presence of an epithelial cell layer on the surface of the gels, although it

should be noted that cell-specific staining was not used.

that a good distribution of fibroblast cells throughout the tissue was achieved and that this

was reproducible across different experiments. This finding, combined with the high viability

of the primary dermal fibroblasts, demonstrated that alginate-collagen blended scaffolds can

successfully support the growth of primary HDFs at various concentrations.

A further observation of the H & E-stained tissue sections in Figure 3.12 was the

presence of gaps or unstained regions within the tissue where there appeared to be no scaffold

or cells. Collagen is known for not adhering to slides during preparation of sections on

slides, and this may have been compounded by the blending of two different hydrogels in the

present model. Two different approaches were taken to try and improve the adherence of the

sections to the slides: (1) by subbing the slides with poly-L-lysine and (2) by using positively

charged microscope slides. Both methods improved the adherence of the sections to the slides,

although still resulted in regions of the section appearing ’missing’ when examined under
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the microscope (as seen in Figure 3.12, despite the use of subbed slides for these images).

Additional optimisation of the fixation and sectioning method used would be beneficial to

improve the quality of the histological images. For example, other methods such as flash-

freezing and cryo-sectioning could be explored, as the dehydration process for fixation of

these models was challenging given the high water content of the hydrogel model.

Despite culturing at the air-liquid interface for 10-14 days, the presence of H400s

on the surface of the hydrogels could not be easily identified from the histological staining

(Figure 3.12). Further optimisation of the seeding density and culture conditions are also

required to achieve the formation of a stratified, mature epithelium in the current model.

Previous work completed within the department found that the thickness of oral epithelium

in in vitro models using H400s, as well as the degree of stratification, was significantly greater

in decellularised dermis scaffolds, compared with collagen gels [252, 253]. Whilst the same

study successfully produced a stratified epithelium on collagen scaffolds using H400s, they

reported that the keratinocytes did not appear to grow as efficiently (never more than 2-3

cell layers thick) on collagen than on decellularised matrix scaffolds [252, 253]. This may

explain the lack of visible epithelium on the present model given that additional optimisation

of the culture conditions was required and the presence of alginate with a lack of adhesion

motifs may have hindered the formation of the mature epithelium.

Whilst studies have shown that decellularised matrix is typically a very effective scaf-

fold for producing 3D oral mucosa models, one of the challenges with using such a scaffold

is its reproducibility. Collecting tissue samples from different sources and regions of the

oral cavity often results in variation in the thickness and behaviour of the scaffold. Using a

hydrogel-based scaffold like the one in the present study has the advantage of reproducibil-

ity, which is important when improving our fundamental understanding of the interactions

occurring between different cells and the microflora in the oral cavity, as well as when testing

new implant materials or antimicrobial approaches.
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Figure 3.12: Representative images of 5 µm thick sections of fixed blended hydrogels stained with Haema-

toxylin and Eosin (H & E). All images of hydrogels at a concentration of 2.5 mg/mL collagen and 10 mg/mL

alginate. (A) and (B) taken at 20X magnification and (C) taken at 5X magnification. Arrows show (x) the

surface of the hydrogels and (y) HDFs embedded within the gel.

Other models of tissue-engineered oral mucosa have been previously described in

the literature [104, 112, 118]. These models typically utilise either a fibroblast-containing

collagen gel with oral keratinocytes cultured on the surface at the air-liquid interface, or a

decellularised matrix to produce a 3D model of the oral mucosa. One of the challenges with
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developing 3D cultures is that primary cells have relatively short lifespans, as they lose their

in vivo phenotype after a few passages, and therefore may not offer sufficient cell numbers

to use in multiple 3D co-cultures [113]. Furthermore, enriched media specific to each cell

type are often required; without this, primary cells can display an altered phenotype and

metabolic function [120]. The need for reproducibility makes the use of cell lines desirable,

although it must be noted that there is a pay-off between reproducibility and physiological

relevance, with Yadev et al. [118] highlighting that the commercially available epithelial cell

line TR146 does not form a fully differentiated epithelium.

Focusing on the use of the H400 cell line in the present work, the data presented in

this chapter raises questions as to whether this was an appropriate choice. Several research

groups have reported the use of epithelial cell lines in the development of 3D oral mucosa

models. These include the immortalised human oral mucosa line OKF6/TERT-2 [110], the

immortalised human keratinocyte cell line HaCaT [104] and other cancer cell lines such

as TR146 cells (derived from a squamous cell carcinoma of the buccal mucosa) used in

SkinEthic Human Oral Epithelium models [111, 118]. All these studies successfully identified

the presence of a stratified epithelium in their culture, further suggesting that the use of

a cell line can successfully generate a 3D oral mucosa model with a mature epithelium,

and therefore the initial choice to use the H400 line was reasonable. The key advantage

for using such a cell line is that they are relatively easy to culture and do not require the

use of a feeder layer unlike many primary keratinocyte culture systems. However, cell lines

exhibit different phenotypes and morphologies to primary cells. The cells used in the present

study, whilst selected for the preliminary studies described in this chapter, are not clinically

relevant. Where possible, primary human cells should be utilised since they are the most

physiologically relevant with regards to the in vivo tissue of interest. Future continuation of

this work should investigate the use of different cell lines and primary cell sources to produce

a mature epithelium in the blended hydrogel model.
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The purpose of generating a 3D in vitro model that is aligned with the matrix stiffness

of the native oral mucosa is to investigate whether this matrix stiffness has an effect on the

cells’ ability to form a junction with a dental implant material. The ultimate goal of this

work is to combine a biofilm model, with a 3D oral mucosa model and implant material

to study the interaction between the epithelium, bacteria, and material surface. A further

disadvantage of using H400s in the present model is the potential for studying the production

of inflammatory cytokines in response to challenging the 3D tissue with a biofilm. The

cytokine of choice is interleukin 8 (IL-8), a marker of an immune response. However, within

the department, H400s have been found to produce high levels of IL-8 even when grown

under optimal conditions, and there is no difference in IL-8 production between control

conditions and the challenge conditions. Therefore for studies such as this to be conducted

in the future, there is a need to choose a different cytokine to study the model’s response to

biofilms, carefully accounting for negative controls, or to use a different epithelial cell line as

previously suggested.

As well as reporting on the design and development of such models, the field has

been employing these approaches to study different oral interventions and diseases. 3D

engineered human oral mucosa models have been used in vitro to investigate oral diseases

such as bacterial and fungal infection [104, 112], as a model of drug delivery and diagnostics

[254]) and to evaluate the biocompatibility of dental materials [124]. Of great relevance to

the present work is the use of such in vitro models to investigate the interactions between

bacteria and the oral epithelium. Pinnock et al. [112] reported significant differences in the

response of oral mucosa models to Porphyromonas gingivalis (P. gingivalis), compared with

monolayer cultures of epithelial cells. This study described their use of a collagen-fibroblast

gel with surface epithelial cells cultured at the air-liquid interface, with the application of

P. gingivalis in planktonic culture. Subsequently, it was shown that utilising 3D co-culture

systems was important in order to fully discern cellular responses to infection and confirmed
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that the interaction between cell types played an important role. Another key study that

supported the significance of 3D co-cultures in the field of oral pathogenesis investigated the

bacterial species Fusobacterium nucleatum (F. nucleatum), which is known to form a bridge

between early and late colonisers in the formation of dental plaque (a common oral biofilm)

[119]. Gursoy et al. [104] used a collagen-based 3D mucosa model and applied planktonic

cultures of F. nucleatum to determine the bacteria’s ability to attach to and invade epithelial

cells. Like Pinnock et al. [112], they also highlighted the difference in response between the

3D co-culture and a simple monolayer of epithelial cells. Given the strong evidence of an

interplay between epithelial cells and fibroblasts in response to infection, there is a clear need

for future studies to consider the application of 3D mucosa models to studies of oral disease

pathogenesis. It should be noted that both these studies utilised planktonic cultures in their

investigations.

Due to the complexity of analysing both 3D tissue models and biofilms, very few

studies have attempted to combine the two in a single system. The simplest reported method,

published by Gursoy et al. [104], applied biofilms of F. nucleatum grown on coverslips

directly onto epithelial cells grown on fibroblast-containing collagen matrices. By comparing

the application of planktonic species with biofilms, they were able to determine differences

between the ways bacteria behaved in these different states, with biofilm bacteria causing

significantly greater epithelial cell death than when applied in planktonic form. This study

also demonstrated that cells from biofilms of F. nucleatum were able to invade the collagen

matrix of the mucosal model, highlighting the benefits of choosing a complex 3D system to

model the interaction between biofilms and the oral epithelium. However, the biofilm was

directly in contact with the mucosal model and hence this may have increased the magnitude

of the effects observed. In vivo, plaque biofilms form on the adjacent tooth or implant surface,

rather than directly on the epithelium. Furthermore, oral biofilms experience flow forces from

saliva, which are not replicated in in vitro models cultured in traditional wells. As previously
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discussed, the future direction of the research presented in this thesis is to combine 3D tissue

engineered oral mucosa models with dental implant materials and oral biofilms, which is a

very challenging system to optimise, reproduce, and most importantly analyse. However, the

benefits of using an in vitro system that is a good representation of the in vivo environment

are clear from the studies discussed in this section.

3.4 Summary

In this chapter, the viability and morphology of the cells within the blended hydrogel tissue

models were examined. Collagen-alginate hydrogels were shown to support cell growth,

with high cell viability displayed from live-dead staining at all concentrations investigated.

Initial experiments to investigate the presence of an epithelial layer did not provide any

evidence that one had formed in the model. Further optimisation of the model is required

to produce a mature epithelium, although as previous studies have demonstrated that a

stratified epithelium can be obtained with H400s, this approach was still considered to be

appropriate in the development of the 3D in vitro system. In summary, the remainder of

research objective 1, to characterise the chosen hydrogel system in terms of its ability to

support cell growth and proliferation, was completed, with the chosen scaffold materials and

concentrations shown to support both HDF and H400 growth.

3.4.1 Conclusion

Matrix stiffness was found to influence fibroblast morphology, as HDFs encapsulated within

higher alginate concentrations displayed a rounded morphology whilst in lower alginate con-

centrations, they demonstrated a typical elongated shape. Further studies are required to

elucidate whether a stratified epithelium can be formed on collagen-alginate hydrogel scaf-
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folds and these are described in Chapter 7.

Alongside reliable and physiologically relevant 3D in vitro oral mucosa models, novel

approaches to introducing biofilms to host cells in 3D environments are key to understanding

the complex interactions in the oral cavity between the host cells and tissues, the oral

microflora, and of dental implants. The rest of this thesis will focus on the challenge of

analysing biofilm growth on implant materials in such a complex system, with the ultimate

goal of bringing the engineered mucosa, biofilm and dental materials into one in vitro model

system.
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Chapter Four

Evaluating bacterial growth on

implant surfaces

This chapter is adapted from a paper by Mountcastle and Vyas et al. published in npj Biofilms

and Microbiomes (2021) [255].

A key component of developing an in vitro system that can assess the interaction of a

3D tissue model, a dental implant material, and a biofilm, is the ability to evaluate biofilm

growth on the implant material in a complex experimental system. This chapter addresses

the second research objective of this thesis, to develop a method to analyse confocal micro-

graphs of live/dead stained biofilms, for the purpose of analysing biofilm growth on dental

implant surfaces. Methods of determining biofilm viability are discussed, and a new image

analysis tool for calculating biofilm viability from confocal images was developed. The novel

automated tool has several advantages that make it useful not just for the specific appli-

cation described, but more broadly in the development of novel antimicrobial approaches.

The tool is written in open-source software, is easy to use, transparent in function, and is

modifiable for those with expertise in image analysis. However, it should be noted that there

are limitations to using a method based on confocal micrographs. The full advantages and
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disadvantages of the developed method are discussed in this chapter.

4.1 Introduction

A complex in vitro model containing eukaryotic cells, bacteria, and a dental implant mate-

rial is challenging to investigate. Alongside traditional assays to analyse cellular response, a

method is also needed to determine bacterial and eukaryotic cell attachment to the implant

surface and to understand biofilm formation. Quantifying biofilm formation on surfaces is

challenging because traditional microbiological methods, such as totalling colony-forming

units (CFUs), often rely on manual counting. These are laborious, resource intensive tech-

niques that are susceptible to human error. Furthermore, samples are irreversibly altered

as the biofilm needs to be removed before CFUs can be, and it is difficult to recover all the

bacteria from a surface in order to undertake this approach and can introduce an additional

source of error. An alternative approach to these traditional methods is the use of confocal

laser scanning microscopy (CLSM). CLSM is a high-resolution technique that allows 3D vi-

sualisation of biofilm architecture. In combination with a live/dead stain, it can be used to

quantify biofilm viability on both transparent and opaque surfaces, such as dental implants.

Figure 4.1 provides a summary of four commonly used methods for biofilm quantifi-

cation on surfaces and the challenges and limitations associated with each. Traditionally

in microbiology, viability quantification is performed through serial dilution of a culture to

count the number of CFUs on agar plates to give an estimation of the number of live bacteria

in a culture [256]. A CFU-plating method can be used to quantify a reduction in biofilm

viability, for example, during efficacy analysis of an antimicrobial agent [257, 258]. However,

despite its common use, CFU-plating cannot quantify the dead cells present in a biofilm and

thus reduces the amount of information available for analysis. An additional problem with
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Figure 4.1: Summary of the benefits and challenges of four commonly used methods to visualise and char-

acterise biofilm viability. Scanning electron microscopy (SEM) has higher resolution than light microscopy

techniques and can provide information on biofilm spatial structure. However, it is challenging to obtain

quantitative data and the sample preparation process can destroy the sample structure. Colony-forming unit

(CFU) plating provides reliable evidence of viability and does not require expensive or specialist equipment.

However, it cannot elucidate information on total cell number and requires physical or chemical detachment

of the biofilm. Crystal violet staining does not require specialist equipment or training, however it only mea-

sures biofilm mass and not viability and is considered a semi-quantitative method. Confocal laser scanning

microscopy (CLSM) can be performed on opaque surfaces and can enable 3D visualisation of a biofilm. It

has high sensitivity, specificity and resolution and can achieve single-cell visualisation.

using this technique is that it requires detachment of the biofilm from the intended surface

using physical or chemical methods. This can affect the viability of the cells and therefore

the resulting conclusions drawn. Furthermore, CFU-plating does not provide information

about biofilm architecture. Understanding 3D structure is important because extracellular
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polymeric substance (EPS) contributes to antimicrobial resistance properties of biofilms by

impeding transport of antibiotics [259]. In the future, the models developed in this research

could be used to assess antimicrobial strategies to improve dental implant success rates, in-

cluding evaluating materials that have novel coatings or surface modifications. Disruption

of biofilm architecture to expose cells and increase the efficacy of antimicrobial drugs is a

potential approach to tackle device-related infections, and therefore is an important aspect

to analyse [260]. A second commonly utilised microbiological method to evaluate bacte-

rial colonisation is crystal violet stain along with spectrophotometry [261–264]. Whilst this

method is simple to perform, crystal violet staining only determines mass and not biofilm

viability, as it stains both live and dead cells alongside the extracellular matrix [265]. In

addition, concerns have been raised regarding its sensitivity and specificity, as it is only a

semi-quantitative method [266]. Whilst these traditional methods have applications and ad-

vantages, a move towards more direct quantitative analyses of biofilms that reduce operator

variability seems desirable.

Neither CFU-plating nor crystal violet staining allow for detailed visualisation of

biofilm architecture. In contrast, direct imaging of biofilms using microscopy techniques

provides information on structural characteristics, which can in turn determine whether an

intervention has been successful in preventing biofilm formation or disrupting an established

biofilm. To view a biofilm at the cellular level, scanning electron microscopy (SEM) is

frequently employed [267–270]. SEM utilises a focused beam of high-energy electrons to

generate a signal at the surface of specimens. It provides high-resolution (50 to 100 nm)

information on cell morphology, spatial structure, and the presence of EPS. The key disad-

vantage of SEM, however, is that the vacuum required to prevent beam scattering requires

bacterial cells to be chemically processed and dehydrated in a time-consuming process that

can destroy the biofilm structure [271]. In addition, SEM can only provide information on

biofilm structure and biofilms cannot be labelled to determine other important information
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such as viability. Quantifying SEM micrographs is also challenging, especially given that

only surface information is available due to its lack of vertical resolution. For this reason,

high sample numbers may be required to produce statistically significant data, which in turn

is very time-consuming and potentially costly.

CLSM selectively excites fluorescence signals from different planes within a sample,

acquiring images point by point with localised laser excitation at specific wavelengths. CLSM

is a useful technique as it enables 3D visualisation of biofilm structure by excluding signals

from adjacent planes. This represents an advantage of CLSM compared with SEM, as con-

focal imaging has a vertical resolution of 10 to 50 µm, whereas SEM can typically only

provide surface information, unless a focused ion beam (FIB) is available. A second benefit

of CLSM compared with SEM is the versatility offered by fluorescent stains added to a sam-

ple, allowing further information to be obtained; for example, the presence of extracellular

DNA, exopolysaccharides, and biofilm viability. CLSM with viability staining provides high

sensitivity, specificity and resolution. Of the fluorescent stain protocols available, live/dead

staining is a conventional method of evaluating biofilm formation in microbiology for a wide

variety of applications including oral, bone, and gut microbes [265, 272–276]. A live/dead

stain provides a fluorescence assay of bacterial viability, based on membrane integrity. Most

commonly, SYTO 9 acts as the green fluorescent nucleic acid stain, labelling bacteria with

intact cell membranes, and propidium iodide (PI) forms the red-fluorescent nucleic acid stain,

penetrating only bacteria with damaged membranes [277]. Examples of the application of

CLSM and fluorescent staining to biofilms include examining Pseudomonas aeruginosa (P.

aeruginosa) biofilm formation on antibiotic-loaded bone cement [275], observing the effect

of antimicrobial therapy on biofilm formation in endotracheal tubes [274], and screening

cinchona alkaloids for anti-biofilm activity against Staphylococcus aureus (S. aureus) [278].

Overall, CLSM is a useful method to analyse the effect of biofilm formation on dental implant

materials within the model developed in this thesis.
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Despite the varied and wide-ranging use of CLSM and live/dead staining to investigate

biofilm formation, there is little consensus regarding evaluation of the resulting micrographs.

Specifically, there is no consistent method applied for quantifying live/dead bacteria from

the confocal images reported in the literature. Some groups use CLSM to simply visualise

the biofilm and qualitatively interpret the images, or conduct manual segmentation using a

global threshold or delineating the cells in the images manually [268, 272, 279]. Simple seg-

mentation methods such as these are time consuming and may result in inconsistencies due

to user subjectivity. Other studies do not report in full the segmentation algorithm or vali-

date its accuracy [267, 275, 280, 281]. One useful way of validating accuracy is to perform

a sensitivity and specificity analysis that determines whether an algorithm can successfully

detect a pixel that corresponds with bacteria and a pixel that corresponds with background,

respectively [282]. While more robust segmentation protocols have been reported, these

are not always accessible or reproducible if the method lacks detail and may be particu-

larly challenging to implement for non-experts. Many studies use bespoke software such as

Imaris [280], COMSTAT [283], PHLIP [284], and most recently BiofilmQ [285]. These can

make CLSM micrograph analysis easier to navigate through a user-interface. Some are built

on open-source software (for example, COMSTAT is available as an extension to ImageJ),

while others are written in subscription-based languages, such as MATLAB [285]. Whilst

the algorithms used in some bespoke software are made available, an understanding of the

settings in each package and how these impact on the data is required. These settings should

be reported for a study to be repeatable. Furthermore, it is necessary to report any image

pre-processing as this will affect comparability across literature.

In addition to navigating the range of segmentation methods and software available,

the commonly used stain for bacterial biofilm viability, the FilmTracer LIVE/DEAD Biofilm

Viability Kit (Invitrogen, USA) [277], can generate erroneous data if images are not analysed

correctly. Depending on the contrast of the red and green channel images, bacteria which
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are dead can appear yellow in images (due to red and green being superimposed on each

other) [286, 287]. A further challenge with the FilmTracer LIVE/DEAD Bacterial and

Biofilm Viability Kits is that PI can stain extracellular DNA that is present in biofilms [288].

Therefore, qualitative observation of live/dead stained biofilms could lead to misleading

conclusions since the contrast of each channel is manually adjusted by the user. If automated

image analysis is used to analyse the red and green channels separately this would give more

objective quantitation with no possibility of the two channels being superimposed. Although

numerous studies have published new image analysis techniques for biofilms [289–293], many

microbiological studies that use image processing still do not report the exact methods used,

including the type of threshold applied. Such information is critical to determining accuracy

of the study and ensuring reproducibility. Ultimately this leads to the conclusion that the

current suite of image processing tools available for biofilm analysis is difficult to access and

cumbersome for non-specialists with no significant programming experience. This highlights

a need for an open-source image analysis tool designed specifically to assess biofilms which

balances accessibility, transparency, and accuracy.

In order to utilise an automated image analysis approach to study biofilms formed

on the surface of dental implant materials, the work in this chapter aimed to develop a

robust but easy to use automated image analysis technique to quantify biofilm formation

from confocal micrographs, which accounted for the errors identified with SYTO 9 and PI

stains. A new image analysis method is proposed that incorporates image pre-processing

and automated thresholding, using the open-access software Fiji (ImageJ, U.S. National

Institutes of Health, Bethesda, Maryland, USA). No prior studies have directly compared

confocal micrograph image analysis with counting CFUs and therefore this was undertaken in

the present work. Alongside method comparison, sensitivity and specificity of the automated

image analysis was carried out to evaluate its accuracy. Further validation of the method

was conducted on Gram-positive and Gram-negative species of different cell morphologies:
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P. aeruginosa, Lactobacillus casei (L. casei), Streptococcus sanguinis (S. sanguinis), and

a multi-species biofilm consisting of Fusobacterium nucleatum (F. nucleatum), Actinomyces

naeslundii (A. naeslundii), Streptococcus gordonii (S. gordonii) and Porphyromonas gingivalis

(P. gingivalis). This novel analysis method will prove useful by ensuring reproducibility

across studies, by offering a faster analysis approach than traditional microbiological methods

enabling higher sample numbers, and finally by reducing human error compared with CFU-

counting or manual image segmentation.

4.2 Materials and Methods

All chemicals were from Sigma Aldrich (Dorset, UK) unless otherwise specified. A full list

of bacteria species utilised in this work can be found in Appendix B

4.2.1 Artificial saliva preparation

Artificial saliva was prepared by adding the following sequentially to 1 L of reverse osmosis

(RO) water, stirring throughout [294]

• 0.25 g/L sodium chloride (NaCl)

• 0.2 g/L potassium chloride (KCl)

• 0.2 g/L calcium chloride (CaCl2)

• 2 g/L yeast extract

• 1 g/L lab lemco powder

• 2.5 g/L hog gastric mucin (Type III, partially purified)
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• 5 g/L protease peptone

The solution was stirred for 1 hour at room temperature (25°C), then autoclaved

to sterilise. After autoclaving, 1.25 mL of 40% (w/v) sterile-filtered urea was added (0.22

µm filter). The artificial saliva was wrapped in foil to exclude light and prevent protein

degradation. Artificial saliva was stored at 4°C and used no later than one week after

preparation.

4.2.2 Streptococcus sanguinis biofilm growth

Frozen stock of S. sanguinis (ATCC 10556) was streaked onto a tryptone soya agar (TSA)

plate and incubated at 37°C, 5% CO2 for 48 hours. Using the colonies grown on the agar

plate, an overnight culture of S. sanguinis was prepared in 5 mL brain-heart infusion (BHI)

broth and incubated at 37°C overnight, agitating at 100 revolutions per minute (rpm) for the

duration. A serial dilution in BHI broth containing 1% sucrose (w/v) was performed with

the overnight culture, from 109 (an optical density of approximately 0.5) to 103 cells/mL.

Individual Thermanox coverslips (Nunc, Thermo Fisher Scientific) were placed in the bottom

of each well in 24-well culture plates (Nunc, Thermo Fisher Scientific). Prior to adding the

planktonic culture, 1 mL of artificial saliva was added to each well containing a cover slip

and left for 15 minutes before being removed; this was to aid initial adhesion of the bacteria.

Subsequently, S. sanguinis monospecies biofilms were prepared by adding 1 mL of the 103

dilution to each well containing a coverslip. The plates containing the biofilms were incubated

for up to 7 days at 37°C, 5% CO2, shaking at 100 rpm, with a change in BHI broth every

24 hours, to ensure a well-established biofilm had developed.
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4.2.3 Cell counting

Any remaining BHI broth from the S. sanguinis biofilms was removed from each well and

each coverslip with biofilm was placed in 5 mL of fresh BHI broth in a universal tube. The

bacteria were removed from the coverslip by sonication in an ultrasonic cleaner (In-Ceram,

Vitasonic) for 10 minutes at 50-60 Hz, followed by agitation using a vortex mixer for 5

minutes. A serial dilution was performed using the Miles and Misra method to count the

number of CFUs [256]. This enabled an estimation of the number of live cells found in the

biofilm. To quantify the total number of cells in each biofilm, 10 µL of the lowest dilution

from the serial dilution was transferred to a improved Neubauer haemocytometer (Hawksley,

UK) and the number of bacteria were counted in each of the corner squares.

4.2.4 Fluorescent staining

For live-dead staining of all biofilms, any remaining broth was removed from each well and

coverslips were transferred to a fresh 24-well plate. A working solution of fluorescent stains

was prepared by adding 3 µL of SYTO 9 stain and 3 µL of PI stain (FilmTracer LIVE/DEAD

Biofilm Viability Kit, Invitrogen, USA) to 1 mL of filter-sterilised water in a foil-covered

container. Subsequently, 200 µL of staining solution was added onto each biofilm sample,

gently so as not to disturb the biofilm. Samples were incubated for 30 minutes at room

temperature, protected from light, before being rinsed with 200 µL filter-sterilised water.

Each coverslip was then placed face up onto a clean, dry microscope slide and a drop of

mounting medium added (ProLong Gold Antifade, ThermoFisher Scientific, Massachusetts,

USA). A 22 mm diameter glass coverslip was used to fix the sample in place [295]. Samples

were stored protected from light at room temperature (25°C).
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Figure 4.2: An overnight culture of S. sanguinis, an early coloniser in oral biofilms, was diluted down to

approximately 103 cells/mL and seeded on coverslips in a 24-well plate. At each time point (1, 2, 5 & 7

days), one plate was sacrificed and stained using a fluorescent live/dead stain, and imaged using confocal

microscopy. Subsequent image analysis was used to determine the live/dead ratio at each time point. The

biofilms on the remaining plate were re-suspended in fresh media using sonication and vortexing to remove

them from the coverslip. The total number of live cells was established using CFU-plating. Total bacteria

(live and dead) were counted using a haemocytometer. The percentage viability calculated from each of the

two methods was then compared at each time point. Figure prepared using BioRender.

4.2.5 Confocal laser scanning microscopy

Once fixed and stained, biofilms were imaged with CLSM (LSM 700, Zeiss, Germany) using

a x40 oil immersion objective (Zeiss Objective EC Plan-Neofluar 40X/1.30 Oil DIC M27,

FWD=0.21 mm). The two stains were first imaged separately to control for any cross bleed

between channels. The excitation/emission was 488 nm/<550 nm for SYTO 9 and 555

nm/>550 nm for PI. Five random locations were scanned on each biofilm sample, resulting

in 25 total images for each experimental condition. Three z-stacks were taken for each

condition to calculate the biofilm thickness and for 3D visualisation and analysis. Z-stacks
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were taken at 1 µm increments from the surface (the first plane in which bacteria were

identified).

4.2.6 Image analysis

The percentage of viable and dead bacteria in each image was determined from the CLSM

images. The percentage of viable bacterial was evaluated by calculating the number of pixels

corresponding with the total bacteria in the image (green + red), then calculating the number

of pixels corresponding with the dead (red) bacteria in the image, and finally subtracting to

find the number of pixels corresponding with live bacteria. The live bacteria were quantified

as a percentage of the total bacteria in each image. The image analysis method was carried

out using Fiji (ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA) (Fig-

ure 4.3). This was chosen due to it being open-source software and therefore freely available.

A copy of the macro code is available at https://github.com/sophie-mountcastle/Biofilm-

Viability-Checker. It should be noted that this macro calculates viability based on the

assumption that the image contains a single-species biofilm and therefore the areas of red

and green bacteria are proportional to the number of red and green bacteria respectively.

It is still possible to use this macro to analyse multi-species biofilms, although the output

should be considered as percentage of live cell area, rather than viability. The workflow

operated as follows:

1. First, the green and red channels were separated.

2. A series of erosion, reconstruction, and dilation steps were performed on each channel

using a disk structuring element of size 3.

3. An additional step was applied to the red channel to compensate for the staining of

extracellular DNA that can result in underestimation of the number of live cells [288].
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Figure 4.3: Image analysis steps used to calculate bacterial viability from a confocal image. In brief, the image

channels were separated and a series of pre-processing steps were performed to improve image brightness

and contrast. The images were segmented using Otsu’s threshold. The number of white pixels in the red

channel determined the area of dead bacteria. The binary images were combined and the total number of

white pixels determined the total bacteria area. Finally, these values were used to calculate the percentage

of viable cells. Images taken from a representative S. sanguinis 48-hour biofilm (20 µm scale bar).

The ‘Subtract Background’ command was applied to the red channel. This was based

on a ’rolling ball’ algorithm and removed smooth continuous backgrounds from images

[296].
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4. A non-linear histogram adjustment was applied to both channels using the Gamma

command to correct for uneven fluorescence intensities. This allowed faint bacteria to

become brighter, while the bright bacteria remained at the same intensity. The gamma

value was set at 1.5.

5. The resulting images were placed into a stack and segmented using Otsu’s threshold,

with the threshold value selected based on the histogram from both images [291].

6. The number of white pixels in the red channel was recorded from the segmented images

to determine the area of dead bacteria.

7. The binary images were combined, and the total number of white pixels was recorded

to determine the area of all bacteria.

8. Finally, the total area of bacteria and area of red bacteria were used to determine

the percentage of viable cells. The area of all pixels can also be utilised to determine

the percentage coverage of the image, which can be a useful alternative to measuring

biofilm mass.

4.2.7 Sensitivity and specificity analysis

A receiver operating characteristic (ROC) curve is a performance measurement for classifica-

tion problems [297]. It defines how well a model is capable of distinguishing between classes;

in the current study it defined how accurate the automated process was at determining when

a pixel was green or when a pixel was red. The true positive rate (TPR) or sensitivity was

plotted on the y-axis and ‘1 – specificity’ (false positive rate (FPR)) was plotted on the

x-axis [297]. To determine the ‘ground truth’, small sections of confocal micrographs of S.

sanguinis biofilms were selected (three sections per image, for a total of eight images) and

manually segmented in Fiji (by manually delineating all bacteria in each image) (ImageJ,
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U.S. National Institutes of Health, Bethesda, Maryland, USA). The eight images included

two images from each time point (1, 2, 5 and 7-day biofilms). The automated image analysis

script was run on the 24 image sections and the resulting segmentation was compared with

the ‘ground truth’ segmentation results using equations 4.1 to 4.3:

TPR or Sensitivity = Number of true positive pixels
Number of true positive pixels + Number of false negative pixels

(4.1)

Specificity = Number of true negative pixels
Number of true negative pixels + Number of false positive pixels (4.2)

FPR = 1 − Specificity

= Number of false positive pixels
Number of true positive pixels + Number of false positive pixels

(4.3)

All calculations were made in MATLAB (R2018a, MathWorks Inc., USA).

4.2.8 Validation of image analysis tool on single- and multi-species

biofilms

Pseudomonas aeruginosa biofilm growth

A frozen stock of P. aeruginosa (PA01-N) was streaked on BHI agar at 37°C, 5% CO2.

Overnight cultures were grown by inoculating 5 mL of BHI broth with 3 colonies of P.

aeruginosa and incubating at 37°C, continuously shaking at 100 rpm for 18 hours. The

overnight culture was diluted using BHI broth to an optical density of 0.01 (at 600 nm), of
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which, 1 mL was placed in a well of a 24-well plate containing a coverslip (13 mm diameter,

Thermo Scientific Nunc Thermanox) and this was performed in triplicate. The plate was

then incubated for 3 hours at 37°C, shaking at 80 rpm to allow cells to adhere to the

coverslip. The culture was removed from the wells and replaced with 1 mL of BHI broth,

which was incubated for 24 hours at 37°C, shaking at 80 rpm. The fluorescent staining

protocol was conducted as described previously in Section 4.2.4.

Lactobacillus casei (L. casei) biofilm growth

For the L. casei (NCTC 16341) biofilms, frozen stock of L. casei was streaked onto a De

Man, Rogosa and Sharpe (MRS) agar plate and incubated at 37°C, 5% CO2 for 48 hours.

Using the colonies grown on the agar plate, an overnight culture of L. casei was prepared in

10 mL MRS broth and incubated at 37°C overnight, agitating at 100 rpm for the duration.

A serial dilution in MRS broth was performed with the overnight culture, from 109 to 103

cells/mL. Individual Thermanox coverslips (Nunc, Thermo Fisher Scientific) were placed in

the bottom of each well in 24-well culture plates (Nunc, Thermo Fisher Scientific). 1 mL of

the 103 dilution was added to each well containing a coverslip. The plates containing the

biofilms were incubated for 7 days at 37°C, 5% CO2, shaking at 100 rpm, with a change in

MRS broth every 48 hours. The fluorescent staining protocol was conducted as described

previously in Section 4.2.4.

Multi-species F. nucleatum ssp. polymorphum biofilm growth

The multi-species biofilm consisted of the strains F. nucleatum (ATCC 10953), A. naeslundii

(DSM 17233), S. gordonii (NCTC 7865), and P. gingivalis (W83). Overnight cultures of

F. nucleatum were prepared in Schaedler anaerobic broth and grown anaerobically at 37°C.

A. naeslundii, P. gingivalis, and S. gordonii cultures were prepared in BHI broth. Bacteria
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were grown anaerobically (Whitley anaerobic workstation, Don Whitley Scientific Ltd, UK)

at 37°C, except S. gordonii, which was grown at 37°C in 5% CO2. The overnight cultures

were diluted with phosphate-buffered saline (PBS) (0.01 M) to an optical density of 0.5 for

S. gordonii and 0.2 for all other species (at 600 nm). To form the biofilms, 500 µL of A.

naeslundii and S. gordonii were pipetted into a well of a 24-well plate onto a coverslip (13

mm diameter, Thermo Scientific Nunc Thermanox), and incubated with 500 µL of artificial

saliva for 24 hours at 37°C. The planktonic culture was then replaced with 500 µL of F.

nucleatum and 500 µL of artificial saliva and cultured for a further 24 hours. Finally, the

planktonic culture was replaced with 500 µL of P. gingivalis and 1.5 mL of artificial saliva.

Biofilms were incubated at 37°C until 5 days old. The fluorescent staining protocol was

conducted as described previously.

4.2.9 Validation of protocol on all-dead biofilms

Five 2-day old biofilms of S. sanguinis (grown as detailed previously in Section 4.2.2) were

treated with the antimicrobial cetylpyridinium chloride (CPC) (0.05% w/v) to act as a

negative control for cell viability to test the image analysis protocols. 1 mL of 0.05% (w/v)

CPC was added to biofilms for 5 minutes before fluorescent staining. As well as image

analysis, a serial dilution and plating was performed to confirm the viability of the antibiotic-

treated biofilm. CPC treatment reduced the mean number of cells from 19 million CFU/mL

to 1800 CFU/mL. Hence, the images generated using the confocal could be assumed to be

99.99% dead for the purpose of validating the image analysis protocol.
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4.2.10 Biofilm formation on additively manufactured materials

In order to examine the robustness of the developed approach, and to ensure the tool has

broad applications, it was applied to biofilms grown on an additively manufactured (AM)

material. Grade 5 titanium is a titanium alloy composed of 90% titanium, 6% aluminium

and 4% vanadium (Ti-6Al-4V). Ti-6Al-4V is a common choice of material for medical and

dental implants and AM is growing as a manufacturing method, since it offers customisation

possibilities that are being taken advantage of for dental applications.

Base material manufacturing

Ti-6Al-4V 10x10x3 mm discs with an array of sloping angles (20, 30, 45, 60 and 90 °)

were fabricated with a laser powder bed fusion AM system (RenAM 500M, Renishaw PLC,

United Kingdom). Changing the sloping angle resulted in surfaces of varying roughness,

which challenged the analysis method by offering a range of 3D surfaces. A powder layer

thickness of 30 µm, laser power of 200 W, a point distance of 55 µm, exposure time of 50

µs, a hatch distance of 0.105 mm and a spot size of 70-75 µm were selected [298].

Bacterial colonisation assays

Bacterial colonisation on additively manufactured sample surfaces was studied by culturing

Staphylococcus epidermidis (S. epidermidis) (ATCC 12228) biofilms. Samples were degreased

with acetone, disinfected by autoclaving, immersed in pure ethanol for 5 minutes and dried

whilst exposed to UV light. An overnight culture of S. epidermidis grown at 37°C, 5% CO2

was diluted in sterile Mueller Hinton broth to a density of 103 CFU/mL and 1 mL was

inoculated onto a 24-well plate containing the samples. After 24 hours, all samples were

moved to a new 24-well plate, washed gently three times with 10 mM PBS and fixed with
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2.5% (v/v) glutaraldehyde in PBS for 1 hour [298].

Bacterial imaging

One sample for each sloping angle was washed gently three times with 10 mM PBS. Samples

were stained with 200 µL of SYTO 9 and PI solution (FilmTracer LIVE/DEAD Biofilm

Viability Kit, Invitrogen, USA) and incubated for 30 minutes. Imaging was carried out using

a Zeiss LSM 710 confocal microscope (Carl Zeiss GmbH, Germany) at x10 magnification

[298].

4.2.11 Statistical analysis

All statistical analyses were conducted in GraphPad Prism (v. 5.03). For the additively

manufactured material study, a Kruskal-Wallis test (one-way ANOVA) was used to determine

any significant differences between the bacterial colonisation on the different sloping angles.

For all analyses, p<0.05 was considered statistically significant.

4.3 Results and Discussion

This study focused on meeting objective 2 (Section 1.8): to develop a method to analyse con-

focal micrographs of live/dead stained biofilms, for the ultimate purpose of analysing biofilm

growth on dental implant surfaces. The method was designed to be simple and accessible to

a range of researchers that work on the development of antimicrobial strategies related to

biofilms, including microbiologists and materials scientists. Therefore, the analysis protocol

was written in the open-source software ImageJ and the method required no preliminary im-

age preparation or modification. The ImageJ macro is outlined in Figure 4.3. The algorithm
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was effective and accurate on a range of biofilms, including different bacterial morphologies,

such as cocci (S. sanguinis) and rod-shaped (L. casei) bacteria, and different biofilm ages

(from 24 hours up to 7 days), as presented in the following section. A full workflow was

provided alongside a series of validation methods in this study and furthermore includes

application of the code to translational case studies, which is an advantage compared with

other literature that include analysis of CLSM micrographs of biofilms.

4.3.1 Validation of image analysis protocol

To assess the reliability and accuracy of the automated protocol developed (Figure 4.3), a

series of analyses were performed. This included sensitivity and specificity analysis (Figure

4.4), a comparison with traditional microbiological techniques (Figure 4.5), and the appli-

cation of the protocol to a variety of bacterial species with varying morphologies (Figure

4.6).

The sensitivity and specificity of the image analysis method was determined using an

ROC analysis (Figure 4.4). An ROC curve is a plot of sensitivity (TPR) versus 1 – specificity

(FPR). The greater the algorithm’s ability to correctly identify pixels in an image, the closer

the curve sits to the upper left-hand corner of the graph [299]. An ROC curve lying on

the diagonal reflects a performance that is no better than identifying pixels by chance. The

ROC analysis in the present study demonstrated that the specificity for both red and green

channels was high, with means of 99.9% and 81.7% respectively. However, the sensitivity

of the automated image analysis method in the red channel varied, ranging from 6.1% to

100.0%.

The sensitivity and specificity analysis compared the automated results with manual

segmentation of the images. This manual segmentation represented a ‘ground truth’ state,

142



Evaluating bacterial growth on implant surfaces

Figure 4.4: ROC curve demonstrating sensitivity and specificity of the image analysis protocol. Green points

represent sensitivity and specificity of the green channel (total cells) and red points represent sensitivity and

specificity of the red channel (dead cells). The greater the algorithm’s ability to correctly identify pixels in an

image, the closer the curve sits to the upper left-hand corner of the graph. The ROC analysis demonstrated

that the specificity for both red and green channels was high. However, the sensitivity of the automated

image analysis method in the red channel varied considerably.

although it should be noted that the manual segmentation was conducted on the original

images with no pre-processing and therefore background fluorescence and extracellular ma-

trix staining had not been accounted for. The ROC study showed good sensitivity and

specificity for the green channel (total bacteria), 60.3% and 81.7% respectively, and very

good specificity of 99.9% for the red channel (dead bacteria), although the sensitivity for

the red channel had a wider range (Figure 4.4). This was likely to arise from the additional

steps implemented to remove background noise in the red channel necessary to prevent the

analysis from including red areas that were not bacteria. Reduced sensitivity in the red
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channel was needed due to the challenge of extracellular matrix staining that occurred and

therefore the potential to underestimate the percentage of live cells [286–288]. Furthermore,

the ROC curve was calculated by comparing the resulting binary images after running the

automated analysis with manually segmented sections of images (determined by manually

delineating all bacteria) that underwent no pre-processing. During manual segmentation it

was likely that low-level background fluorescence combined with the red PI stain marking

EPS, resulted in the ‘ground truth’ images used to calculate the ROC curve including pix-

els that were not bacteria. This also contributed to the lower sensitivity of the automated

analysis in the red channel.

Figure 4.5 shows the resulting quantification of S. sanguinis biofilm over time using

the automated image analysis method developed in this work and CFU-plating combined

with counting using a haemocytometer. Both methods demonstrated viability decreased

with biofilm age, however, the rate at which this occurred varied significantly between the

two methods. It should be noted that the traditional methods induced greater errors than

the image analysis tool, with a CV ranging from 17.0% to 78.1%, compared with 4.24%

to 11.5% for image analysis, and this was likely due to the manual nature of the method.

Manual analysis of CFU plating and cell counts using a haemocytometer typically resulted

in wider errors due to the subjectivity of the user defining what was considered a cell, as

well as from volume and dilution errors.

Very few prior studies have directly compared image analysis with traditional quan-

tification methods. As an example of those that have, Larimer et al. [293] compared the cell

coverage determined by image analysis with cell coverage determined by measuring the opti-

cal density of the biofilm. In the current study cell viability determined using image analysis

was compared with that determined using CFU-plating and cell counting, which helped to

build confidence in the presented approach. Figure 4.5 demonstrates that the overall trend

in live cell percentage varied between the image analysis and manual counting methods.
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Figure 4.5: Comparison of image analysis and biological methods. Figure shows mean ± standard deviation

(for image analysis, five confocal images were analysed of each of five biological replicates, N=5, and for

biological methods, three biological replicates were analysed, N=3). To obtain the percentage viability using

biological methods, live cells were counted using a serial dilution and CFU-plating. Total cell count was

obtained using a haemocytometer.

Using traditional techniques such as CFU-plating and counting cells using a haemocytome-

ter resulted in larger errors as the age of the biofilm increased, rising from a CV of 17.0%

at 24 hours to a CV of 78.1% at 7 days. It also led to a lower percentage of live cells at

later time points compared with the automated image analysis data; for example, the mean

percentage alive at 7 days calculated by image analysis was 63.9%, whereas from traditional

techniques it was determined to be only 31.6%. This could have been due to the increased

number of cells present in the larger, older biofilms, making counting the cells manually less

accurate. Figure 4.5 suggests that automated image analysis was likely to be more accurate

and therefore a better method to identify statistically significant variations between biofilm

growth conditions when researching antimicrobial approaches. Other benefits of the image
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analysis method presented are detailed in Table 4.1.

To confirm that the developed analysis could be performed on biofilms of species

with different morphologies, the ImageJ macro was applied to 24-hour P. aeruginosa and

7-day L. casei biofilms, and to further challenge it, a 5-day multi-species biofilm consisting

of F. nucleatum, A. naeslundii, S. gordonii and P. gingivalis (Figure 4.6). L. casei and P.

aeruginosa were selected for rod-shaped cell morphologies, to contrast with the cocci-shaped

S. sanguinis. The protocol was applied to a multi-species biofilm containing a range of

morphologies to ensure it could accurately determine biofilm viability and coverage in more

challenging and complex images. Figure 4.6 shows that the analysis protocol successfully

identified live and dead bacteria of different morphologies. Through qualitative observation

of the outline of stained bacteria (Figure 4.6), this was evidenced by very few bacteria being

incorrectly identified as background by the automated segmentation method.

It is important to ensure that any image analysis method can cope with a wide range

of conditions. In the development of antimicrobial techniques and novel implant surface

coatings, it is expected that conditions which include non-viable cells in biofilms will be

analysed. To ensure that the protocol dealt with such conditions, the macro was applied to

S. sanguinis biofilms treated with the antimicrobial CPC at bactericidal levels (Figure 4.7).

The macro consistently identified 0% alive (n = 6) for all biofilms treated with CPC which

confirmed it was reliable across a range of biofilm viabilities.

A limitation of studies that implement CLSM micrograph analysis is that many do

not report in full the chosen segmentation algorithm or validate its accuracy, which makes

reproducibility, reliability and comparability difficult to assess [267, 275, 280, 281, 300,

301]. It is vital that the validity of an image segmentation algorithm is demonstrated across

different species, on ‘extreme’ cases such as all-dead biofilms, and by comparing with separate

techniques. In this study a series of validation steps were carried out to demonstrate that
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Table 4.1: Summary of advantages and disadvantages of image analysis and CFU-plating combined with

counting cells in a haemocytometer to quantify biofilm formation.

Method Approach Advantages Disadvantages

Fiji Macro

(ImageJ)

(1) Correct for uneven

fluorescent intensities.

(2) Remove noise.

(3) Segment bacteria

from background using

Otsu threshold.

(4) Record number of

pixels for total bacte-

ria.

(5) Apply same pro-

cess for red channel to

determine dead bacte-

ria count.

(6) Calculate viability.

(1) Uses open-source

software.

(2) Can run macro

on multiple images at

once.

(3) Time taken to run

image analysis on 25

CLSM micrographs is

<10 minutes.

(4) Removes user er-

ror.

(1) Workflow may

need altering to ob-

serve mammalian

cells or for alternative

staining protocols.

Biological

Methods

(1) Determine number

of live cells from CFU-

plating.

(2) Determine total

cell number using

haemocytometer.

(3) Calculate viability.

(1) No specific soft-

ware required.

(2) Actual cell number

determined rather

than being inferred

from pixel number.

(1) Time consuming.

(2) Resource-

intensive.

(3) Susceptible to

human error.

(4) Challenging for

larger, increased den-

sity biofilms as further

dilution required to

analyse.
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Figure 4.6: Sample images of a variety of single-species biofilms demonstrating results of automated image

analysis. The green outline indicates the total bacteria area, and the magenta outline indicates the dead

bacteria area. (A) S. sanguinis (10 µm scale bar), (B) P. aeruginosa (5 µm scale bar), (C) multi-species

biofilm consisting of F. nucleatum, A. naeslundii, S. gordonii and P. gingivalis (10 µm scale bar), (D) L.

casei (10 µm scale bar). The images demonstrate that the workflow is successful at identifying bacteria from

background.

the protocol was effective and accurate.
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Figure 4.7: Representative micrograph of an S. sanguinis biofilm treated with 5% CPC to demonstrate the

ability of the macro to handle extreme conditions (Full image 20 µm scale bar, small image 10 µm scale

bar). The magenta line shows the result of the segmentation of the red channel. The resulting output from

the macro is 0% percentage viability.

4.3.2 Translation of image analysis method to research applica-

tions

The aim of the present research was to develop an accurate image analysis protocol that

will aid in the development of implant devices. Current reported image analysis methods

for CLSM images of biofilms do not often demonstrate their application to a range of trans-

lational research. In the present work, the protocol was applied to two key areas that can

benefit from automated CLSM micrograph analysis. First, biofilms of Staphylococcus epi-

dermidis (S. epidermidis) were grown on AM Ti-6Al-4V discs to understand the effect of

manufacturing protocols on the viability of a frequently detected pathogen in implant infec-
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tions [298, 302]. Second, to demonstrate the information that can be obtained regarding

the 3D architecture of biofilms, the automated protocol was applied to z-stacks taken from

1 day and 7-day old S. sanguinis biofilms, which are described below.

An area of research where preventing infection is paramount is implants and med-

ical devices. Infection of implants can result in costly restorative surgeries and can also

increase the failure rate of subsequent implant placement [3]. A specific example comes in

the form of AM or bespoke implantable devices. These technologies are capable of producing

personalised complex geometries while introducing features to enhance osseointegration (a

structural and functional connection with the natural bone), reduce stress shielding, and

incorporate therapeutically loaded materials [303–305]. Nevertheless, clinical cases requir-

ing such devices are commonly associated with complex interventions, typically arising from

traumatic injuries, which may significantly raise infection rates by up to 23-40% for per-

sonalised cranioplasties [306, 307]. Thus, much research is being conducted to reduce the

occurrences of biofilm-related implant infections. One strategy to limit colonisation and

proliferation of bacterial species results from careful selection of surface finish for AM mate-

rials to ensure the implant allows for osseointegration but prevents biofilm formation [298].

Villapún et al. [298] demonstrated that in situ roughness control can be achieved through

changing the orientation at which an implant is manufactured, with maximum mammalian

cell adhesion and minimum S. epidermidis growth for printing angles between 20 to 30

degrees to the normal plane .

To showcase the applicability of the current approach in the development of novel

medical devices, two properties of S. epidermidis biofilms on AM titanium implants man-

ufactured with different orientations (20 to 90 degrees from the normal plane) were in-

vestigated, namely cell viability and coverage (Figure 4.8). Orientation of AM samples

significantly modified the resulting average roughness from 8 µm up to 18 µm, for 20 and

90 degrees respectively, as shown in previous works [298]. Nevertheless, the number of live
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bacteria expressed as a percentage of total bacteria showed no significant difference (p=0.07)

between surfaces (Figure 4.8A). In contrast, when percentage coverage was analysed (as it

relates to biomass), it was demonstrated that increasing the sloping angle resulted in a signif-

icant increase in percentage coverage of the biofilm (p=0.02) (Figure 4.8B). The difference

between viability and coverage indicated that albeit an increase in biomass developed on the

surface of the samples, the percentage of living cells was not dependent on surface modifi-

cation. This could have been the result of the selected alloy lacking any antimicrobial effect

[308], coupled with the larger surface area and shear force protection offered by the peaks

and valleys present in the rougher samples, leading to more favourable growth conditions

[309, 310].

The percentage of live cells showed no significant changes with sloping angle modi-

fication; however, it was determined that an increase in sloping angle resulted in a rise in

biomass for angles higher than 30 degrees (Figure 4.8). This indicated that the growth of

S. epidermidis biofilm was constrained, however there was no potential antimicrobial effect

enacted from the metallic surface. The rise in biomass concurred with crystal violet and

confocal image results reported by Villapún et al. [298], while the lack of contact killing was

expected from a bacteriostatic alloy such as Ti-6Al-4V. Crystal violet staining can compli-

cate the analysis of biofilm formation and potentially introduce artefacts during the recovery

of the dye [311]. In contrast, confocal imaging is a more versatile method that can quantify

biofilm viability and biomass accurately. The current automated method allows for sub-

jectivity to be removed when interpreting CLSM micrographs and can generate additional

information regarding cell viability when compared with crystal violet staining methods.

Whilst viability did not change with sloping angle (which linked to surface roughness) in

this experiment, viability is a key parameter to obtain in future studies of this nature, where

surface functionalisation may induce a bactericidal response that would not be picked up

from crystal violet staining alone.
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Figure 4.8: Analysis of S. epidermidis biofilms grown on additively manufactured coupons at different sloping

angles: (A) Percentage alive and (B) Percentage coverage.

Finally, the translation of the presented method has a further application investi-

gated in this research. One of the advantages of CLSM imaging is that it can generate an

understanding of the 3D structure of a biofilm using z-stacks. Not only can this provide
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information about biofilm thickness and biomass, but the application of the image analysis

protocol can elucidate information about biofilm composition throughout. In addition, the

total number of pixels that correspond with bacteria (live or dead) can also be used to cal-

culate biomass as ‘percentage coverage’, i.e. the number of stained pixels as a percentage of

total pixels in the image. This was carried out for an S. sanguinis biofilm cultured for 1 and

7 days on a Thermanox coverslip (Figure 4.9). For the 24-hour biofilm, viability remained

consistent throughout, ranging between 82.9% and 99.18%. However, the coverage increased

in the centre of the biofilm, peaking at 69.0% at 41 µm from the coverslip, and decreased

towards the surface, ending at 19.24% at 58 µm from the coverslip. In contrast, viability

varied significantly across the 7-day biofilm. Low viability was observed in the centre, with

values lower than 50% for distances between 23 µm to 46 µm from the coverslip surface.

In contrast, high viability was detected at the coverslip interface (99%) and on the biofilm

surface (100%). The reduction in viability in the centre of the biofilm may be due to nu-

trients being limited and unable to reach those species in the centre or could be caused by

an oxygen gradient throughout the biofilm. Percentage coverage, which relates to biomass,

also decreased in the centre of the older biofilm, dropping below 45% between 10 µm and 52

µm from the coverslip, which may have been linked to the fact that viability had decreased

significantly.

For the younger biofilm, the percentage of live cells remained consistent and above

80% throughout its depth. However, in comparison the viability of the 7-day old biofilm was

reduced significantly in the centre and increased towards the surface. The reduced coverage

identified in the centre of the 7-day biofilm compared with the 24-hour biofilm could be

explained due to biofilm age. More mature biofilms that have increased EPS compared

with early-stage biofilms may prevent the live/dead stain diffusing through to the centre

and this may explain the reduced coverage at the centre of the biofilms. Gaining an insight

into the 3D structure of a biofilm, combined with information on viability, can enhance the
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Figure 4.9: Biofilm coverage and viability with increasing distance from coverslip for (A) a 24-hour biofilm of

S. sanguinis and (B) a 7-day biofilm of S. sanguinis. Z-stacks were taken at 1 µm increments from the surface

(the first plane in which bacteria were identified), and hence the distance from the surface is equivalent to

the biofilm thickness.

understanding of the effect of antimicrobial compounds and materials. CLSM is an optimal

tool for this as it has a large vertical range that can image a biofilm of up to 60 µm thickness,

and fluorescence staining can provide information on viability. Applying the automated
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method described in this study to biofilms grown on modified surfaces could provide further

information on how the modification is affecting the biofilm structure throughout. Gaining an

understanding of biofilm composition is especially important when studying implant-related

infections. This method could be applied to biofilms formed on modified implant surfaces

to quantify antimicrobial effects. The advantage of the proposed segmentation method is

that multiple images can be analysed very quickly and consistently, as well as ensuring each

image within a single z-stack is treated the same, increasing comparability across samples.

Over the past two decades, many researchers have attempted to tackle the problem of

automated analysis of biofilm micrographs, including developing commercial and free soft-

ware tools [283–285]. Two approaches can be taken to automated quantification of biofilm

images: (1) detect and count discrete objects or cells, or (2) make assumptions regarding the

manner in which the properties of the entire image relate to the biofilm characteristics. The

choice of which approach to use depends on the size of the cells, the quality and resolution

of the image, and the thickness or density of the biofilm. In this study, the latter approach

was taken, and the area of green or stain was assumed to be proportional to the number of

live and dead cells respectively. Hence, the number of pixels stained red and green were used

to quantify the number of viable (live) cells as a percentage of total cells. The reason for

selecting this method was driven by the small cell size and frequent overlapping of bacteria in

biofilm images, even in high-resolution CLSM micrographs. Furthermore, detecting discrete

cells can be challenging if each have different morphologies. Therefore, making assumptions

about the relationship between pixel count and bacteria viability ensured that the automated

approach was accurate and applicable to a range of cell morphologies. The total number of

pixels that correspond with bacteria (live or dead) can also be used to calculate biomass as

‘percentage coverage’, i.e. the number of stained pixels as a percentage of total pixels in the

image.

A number of studies that utilise CLSM to analyse biofilm formation simply visualise
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the biofilm and report qualitative results, or conduct manual segmentation of the micro-

graphs [268, 272, 279]. The challenge with these approaches makes comparison with other

literature difficult due to the subjective data. Neither of these methods take into considera-

tion any non-specific staining or extracellular matrix staining that may occur when using the

FilmTracer LIVE/DEAD Biofilm Viability Kit [288]. Furthermore, segmentation methods

that involve manually selecting the cells in an image are time consuming and may result

in inconsistent segmentation. To address these challenges, the image analysis protocol pre-

sented in this study demonstrated consistent and repeatable results. This was evidenced by

a small standard deviation with a CV between 4.24% and 11.5% in the large biofilm study

with over 100 images of 20 biofilms (Figure 4.1).

Some of the more frequently used software packages developed specifically for biofilm

analysis, such as COMSTAT and BiofilmQ, have an easy to use graphical user interface that

is popular. However, one main drawback of both of these packages is that there are no

options to apply filters and morphological operators as with those used in the current study

[283, 285], which allow for accurate detection of the bacteria in the image whilst neglecting

EPS and non-specific staining, commonly found in biofilms. In addition, these software

packages rely on the user deciding if pre-processing of the images is necessary, deciding

which operators to apply and implementing any pre-processing, which is difficult for those

with no prior knowledge of image analysis. In the present work, morphological operators

and filters were included in the automated protocol to remove background fluorescence and

account for potential staining of the extracellular matrix or extracellular DNA, particularly

in the red channel. Furthermore, ImageJ is open-source and familiar to many researchers.

Presenting the full macro created in this study enables users to adjust the gamma values,

structuring element size, and add or remove steps in the image pre-processing according to

their data.

Numerous studies have been published that develop new image analysis methods
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for biofilm micrographs, however, many present several hurdles before being suitable to

be applied by non-specialists. For example, they are often created in proprietary software

such as MATLAB [289–291] or in programming languages such as C++ [292], which make

them difficult to use for researchers with little or no programming experience. In some

studies, the chosen image segmentation technique was applied to low resolution images where

individual bacteria were not visible [293]. In the present research, high resolution (x40

magnification, numerical aperture 1.30) images were used to ensure the segmentations were

accurate. Some published studies that use open-source software have not included the code

to allow for easy replication by other scientists wishing to use their method. One of the key

strengths of this work is that a copy of the code, instructions on how to implement it and an

overview of the image analysis protocol are all provided to ensure reproducibility (see Figure

4.3). This allows users to understand the code and easily modify it to fit the data being

analysed. For example, if a different staining protocol is used, the pre-processing steps can

be removed or adjusted so as not to account for the issues identified with the FilmTracer

LIVE/DEAD Biofilm Viability Kit. A further strength of the protocol presented is that it has

low computational time, with 25 micrographs analysed in less than 10 minutes (Table 4.1).

This allows for an increased number of samples to be analysed and can ultimately improve

the robustness of studies investigating antimicrobial techniques to reduce implant-related

infection.

There are, however, several limitations to using a method based on CLSM micro-

graphs. Firstly, it is not possible to evaluate the entire biofilm at once; in this study imaging

was performed at x40 magnification to obtain high resolution images of individual bacteria

in the biofilm. Averaging data from across the biofilm sample and increasing the number of

repeats can limit the impact of this. In this work, 5 images were taken across 5 samples for

each biofilm condition (Figure 4.5). As the analysis protocol in ImageJ can process many

images quickly, increasing the number of samples to account for the limited range of the con-
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focal images was straightforward. Linked to this, a second limitation of the work presented

its application to poorer quality micrographs. For example, if a sample is not completely flat

when imaged using the CLSM, an area of the image may be over or under exposed and this

can affect the resulting analysis. It is advisable to take appropriate steps to ensure optimal

imaging of the samples. These include ensuring the fluorescent dye has sufficient signal to

avoid noise caused by increasing the contrast artificially, ensuring the sample stays horizon-

tal during sample preparation and imaging using a high numerical aperture/magnification

to obtain high resolution images. Individual bacteria should be visible in the micrographs

being analysed and it is recommended that a minimum magnification of x40 be used to

implement the described method. It should also be noted that the results of the analysis

will be more subjective if the user selects the location on the biofilm for the image to be

taken. User subjectivity can be reduced significantly by taking a high number of images

at random locations across the biofilm; a minimum of five per sample is recommended. A

final challenge where this workflow demonstrated limitations was that the macro had been

tailored specifically for bacterial biofilms and for fluorescent images that were stained with

the FilmTracer LIVE/DEAD Biofilm Viability Kit. For this reason, the additional steps

taken to reduce the error caused by PI would affect the results if a different fluorescent stain

is used by over-reporting viability. Whilst there is potential for the macro to be applied to

other confocal images, the workflow may need altering to examine larger mammalian cells or

alternative staining protocols. However, this should be possible for users with some image

analysis experience, as each step of the macro has been described within the code. Despite

the limitations of the proposed approach, it is important to reiterate that CLSM and auto-

mated micrograph analysis can prove very useful for researchers working on novel medical

and dental devices.
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4.4 Summary

In summary, this work presents an image analysis protocol for quantifying CLSM micro-

graphs of live/dead stained biofilms. The protocol was validated by comparing with other

methods and on different bacterial species, and its use as an adjunct to traditional microbi-

ology techniques was demonstrated, for example to support results from semi-quantitative

methods such as crystal violet staining. Therefore, objective 2 of this research to develop

a method to analyse confocal micrographs of live/dead stained biofilms for the purpose of

analysing biofilm growth on dental implant surfaces, is considered complete. As shown in the

present chapter, this approach is a reliable measurement of biofilm growth and cell viability

assessment, critical for the development and analysis of novel antimicrobial strategies. This

has been demonstrated on Ti-6Al-4V as an example implant material and has proven the

tool is effective for such applications.

4.4.1 Conclusion

Confocal microscopy is a useful tool to generate high resolution images of live-dead stained

biofilms, however quantifying the number of viable cells from these images is challenging.

The tool described in this chapter demonstrates that automated tools can be developed that

enable researchers to generate quantifiable data from confocal micrographs, such as percent-

age viability. Whilst developed for the purpose of analysing biofilm formation in the model

developed throughout this research project, the method can also be translated to antimicro-

bial drug and surface modification testing in many different industries and research fields.

The key advantages of this protocol are that it is written in open-source software, is easy to

use, transparent in function and is modifiable, unlike other available software. This makes

it a useful tool for those with different research backgrounds to enable quantitative analysis
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of biofilm viability to be performed. Ultimately, this work will support the development of

much needed approaches to prevent and treat costly infections.
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Chapter Five

In silico modelling of cell adhesion to

surfaces

Computational models can prove a useful tool to examine biological behaviour on different

scales and predict behaviour. As this research seeks to improve methods for examining the

"race to the surface" between bacteria and tissue cells in the oral cavity, a model that can help

to understand the behaviour of bacteria in the presence of different surfaces is a promising

tool. Objectives 3 and 4 of this research were to devise a computational model based on

cellular automata for evaluating cell adhesion to implant surfaces and use the computational

model combined with experimental data to understand the fundamental parameters that

affect cell adhesion. This chapter addresses these objectives through the development of a

cellular automaton that models the initial stages of surface adhesion of bacteria. The effect

of the input parameters on cell number were explored, and the model was fit to in vitro

experimental data to determine its ability to capture experimental observations.
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5.1 Introduction

Dental implant infection is not uncommon in patients who undergo implant surgery, with

studies suggesting that between 10 and 22% of patients develop peri-implantitis within 10

years of implant placement [22, 23]. Plaque biofilms can form on solid surfaces such as

dental implants, and cannot easily be washed away [32]. The human mouth contains a

diverse range of microbial organisms that make up the oral microbiome [33]. However,

pathogenic species are also present, and if plaque is allowed to accumulate, the numbers

of pathogens may increase, shifting the equilibrium from healthy to diseased. The two

key barriers to successful implant placement are a lack of osseointegration and the implant

becoming infected through colonisation of bacteria on the surface [24]. If untreated, this

implant infection can result in the development of the inflammatory disease peri-implantitis.

Many groups are developing novel materials and coatings for dental implants to try and

reduce bacterial surface colonisation and improve the integration of the implant with the

surrounding tissues. However, one of the many challenges with analysing these novel designs

is assessing the interactions that occur between the host tissue, the implant, and the oral

microbiome. Whilst this research thus far has sought to establish techniques for examining

different aspects of these interactions, including a 3D in vitro tissue model and a tool for

calculating biofilm viability using confocal microscopy, all in vitro methods have limitations.

In this chapter, a computational model of bacterial surface adhesion is described.

Modelling biofilm growth using a computational approach has many advantages, and it can

support the development of in vitro systems by providing an understanding of the fundamen-

tal processes of biofilm formation, which can subsequently be tested in vitro. In addition

to fundamental understanding, computational models also offer the possibility to include

elements that are more challenging to introduce in vitro, such as an immune response.
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5.1.1 Computational models of biofilm formation

Some of the early computational models of biofilms represented biomass as a continuum,

based on population-averaged behaviour [172]. These models treat the biofilm as a contin-

uum with certain properties, for example as a viscous fluid or gel, and model the dynamics of

biofilm growth by using differential equations [173, 174]. However, such models often strug-

gle to capture or predict the local environments in the biofilm influenced by the presence of

multiple species. This subsequently led to the development of "agent-based" or "individual"

biofilm models where each bacterium is modelled explicitly, with the higher-level population

behaviour emerging from their lower-level interactions [169]. In agent-based models, biofilm

growth is assumed to be a stochastic process [174]. These types of models are useful for

studying complex systems such as biofilms, in which individual heterogeneity and spatial

interactions are important. However, incorporating the production and effects of the ex-

tracellular polymeric substance (EPS) and modelling movement of bacteria to, from, and

within the biofilm is very challenging [172]. Furthermore, they introduce elements of ran-

domness due to their stochastic nature and so several runs of the model (in the same state)

are required before any conclusions can be drawn [174], and this can be computationally very

expensive.

One type of agent-based model that can overcome the computational expense of

individual-based models is a cellular automaton. Cellular automata are discrete models that

condense the physical process of biofilm formation into a series of simple rules, which are

consequently fairly easy to compute. They have been used for a variety of applications

across many fields including biology, physics, ecology, geography, and sociology [176, 177].

Specifically within biological systems, cellular automata have been used to model the immune

system, tumour growth, and angiogenesis [312]. The reason for their widespread use is their

ability to create complex behaviour from simple rules [178].
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A cellular automaton is a collection of cells on a grid that evolves through discrete

time steps according to a set of rules. In these models, each space or cell on the grid

has a state associated with it, for example a live or dead bacterium, or a bacterium of a

certain species. The state of a cell at the next iteration of the model is determined by

earlier states and the rules of the system. The computational model used in this study was

based on a cellular automaton, which has many advantages. Firstly, cellular automata are

typically more simple in design than other types of models such as those based on nonlinear

partial differential equations [174]. This creates more potential for researchers from non-

mathematical disciplines to apply the model to their data, and in the case of the present

model, offers the potential to be utilised by those working in the dental and oral biology

fields. Secondly, cellular automata are experimentally cheap to implement compared with

in vitro or in vivo experiments, allowing the user to simulate many thousands of different

scenarios that could never all be investigated in the lab. This offers the potential for the

computational model to guide and inform in vitro experimental work. Thirdly, a cellular

automaton is mechanistic, and so it is simpler to run several simulations in parallel to

investigate the effect of the parameters used in the model. Finally, the rules of a cellular

automaton can be constructed around the interpretable parameters of interest, which has an

advantage when it is being used to support the development of in vitro systems. Therefore,

a cellular automaton is an excellent way to model the initial stages of biofilm formation,

which is relevant to the concept of the "race to the surface" previously described in Chapter

1. Surface adhesion is the first stage in biofilm formation and preventing or inhibiting it is

key to tackling infection. The results of the simulations from this model have the potential

to inform our approach to dental implant design.

This model focused on the initial colonisation of the implant surface and sought to

understand the effect of certain parameters that influence bacterial adhesion. This work

lays the foundations for more detailed models in the future that incorporate the presence of
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mammalian cells, and a move towards a cellular automaton that can capture the 3D nature

of biofilm formation, looking at the medium to long-term biofilm growth, rather than simply

the initial surface colonisation captured in the present model.

5.2 Materials and Methods

5.2.1 Model formulation

The cellular automaton was built using MATLAB (Version R2017b) and is based on a study

by van Gestel and Nowak [184] that aimed to model the evolution of cell differentiation in

the context of surface colonisation, and is developed from code written by Paul Roberts

(University of Birmingham). In this thesis, the code was expanded to include the ability to

track dead cells. Furthermore, this model had not previously been used to fit to experimental

data and hence, in this work, the model was tested to determine whether or not it is suitable

for fitting to in vitro data. See Appendices C and D for a transcript of the model code with

and without dead cell counts, respectively. The model in the present work had the following

components, each of which are described in detail below.

1. The environment within which the agents exist.

2. The agents of the model, consisting of different bacteria species.

3. The rules that govern the dynamics of the system, representing the interactions of the

individual bacteria with each other and the surface.

4. The timescales upon which the rules are executed.
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The environment

The spatial environment of the cellular automaton represented the oral microenvironment

in which the dental implant exists. The model environment had two components – a surface

and a liquid compartment.

In order to represent the surface of a dental implant material, upon which a biofilm

forms, this model contained a 2D surface marked by a hexagonal grid. The size of the grid

could be adjusted within the model by attributing the number of grid spaces, G, along each

axis. For example, a grid size of G = 10 resulted in a grid of 100 spaces, with each space able

to bind 1 agent. Therefore, the width of each grid space roughly represented the diameter

of a single bacterium, approximately 10 µm for Streptococcus sanguinis (S. sanguinis), a

commensal species used in the experimental work in Chapter 4.

The liquid above the surface was where all the bacteria existed at the start of each

simulation, i.e. initially the bacteria formed a fully planktonic culture. This liquid compart-

ment did not have a dictated spacial size but was assumed to be a 3D environment directly

above the grid surface. The liquid was assigned a carrying capacity (K), which was the

maximum number of bacterial cells that could exist in the compartment before it became

saturated and could not hold any more cells. Figure 5.1 depicts the spatial environment of

the model showing the liquid compartment and grid surface.

The agents

This model represented a two-species model, containing two different types of bacteria:

‘sticky’ and ‘non-sticky’. The difference between these two agents was the rules by which

they could migrate to the grid surface from the liquid compartment. The sticky cells were

able to migrate to any point randomly chosen on the grid, representing an early coloniser in
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Figure 5.1: Depiction of computational model of bacterial adhesion to an implant surface (adapted from van

Gestel and Nowak [184]). The model contained a 2D surface marked by a hexagonal grid, and a liquid above

the surface from which cells could migrate to occupy a space on the grid. This model has been adapted to

represent a two-species system with ‘sticky cells’ and ‘non-sticky cells’. Sticky cells were able to migrate to

any point randomly chosen on the grid. However, non-sticky cells were only able to migrate to the surface

when a neighbouring grid space was occupied by a sticky cell.

biofilm formation. However, non-sticky cells were only able to migrate to the surface when a

neighbouring grid space was occupied by a sticky cell. This simulated the process of biofilm

adherence from a single species followed by later colonisation of a different species [313],

essentially modelling cooperative biofilm formation. This is relevant in instances whereby a

commensal species adheres and subsequently recruits a pathogenic species, as is the process

for the formation of biofilms that cause oral disease. Figure 5.1 demonstrates the movement

of sticky and non-sticky cells in the model.
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The rules

As described in the previous section, the first rules of the model dictated where and when

a bacteria cell could bind to the surface, depending on the species (sticky or non-sticky). A

single iteration of the model operated as follows:

1. A bacteria cell was chosen at random.

2. One of three actions was chosen at random: divide, migrate, or die.

3. The action occurred based on the assigned probability of that event (see below).

4. The model performed (or did not perform) the action, updated the cell counts and

moved on to the next iteration of the simulation.

The model uses probabilities to determine whether an action occurred or not upon

each iteration. These parameters are input ahead of each simulation and consist of division

probability (for each species), migration probability (to the surface), and death probability

(see Table 5.1). The starting cell populations ware also input – this is the number of cells

of each species, sticky or non-sticky, that start in the liquid compartment at iteration i =

0. The carrying capacity is input (as described in the previous section), as well as the size

of the grid (see Table 5.1). With regard to unbinding from the surface, the model did not

account for this as an action, and therefore sticky cells remained bound to the surface once

this action had occurred. However, if a non-sticky cell was found to be bound to a grid space

with no surrounding sticky cells, the non-sticky cell was released from the surface back into

the liquid compartment.

The outputs from the model included total cell counts for each species in each location

(surface-bound and ‘free’ cells in the liquid) In later developments of the code, the cell counts
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were also separated by whether a cell was alive or dead. Multiple simulations were run (with

a minimum of 100 simulations for each set of parameters) and an average was taken. The

number of live cells as a percentage of total cell number was calculated at each iteration of

the code, for comparison with experimental data.

Time

Time was discrete in this model. Thus, a simulation consisted of finite time-steps or iterations

(i). The state of the system at time-step i + 1 was computed by applying a series of rules to

the system at time-step i. In order to determine the length of time each iteration represents,

the model was fitted to experimental data and therefore each iteration depended on the

length of time the in vitro experiment lasted.

5.2.2 Model interrogation and parameter exploration

Firstly, the model was interrogated by counting the live cells at different parameter inputs to

compare the outputs and understand the cell count over a simulation (i = 0 to i = 400,000).

The parameters used for each of these simulations are shown in Table 5.2. This range of

parameters were chosen to best study their individual effects on the cell counts for each

cell type. For all simulations, a carrying capacity of 5,000 cells was set for the liquid: the

maximum number of cells that can be present in the liquid at any one time. If the liquid

was at capacity, no free cells were able to divide – this represented the stationary phase of

a planktonic growth curve [314]. For each simulation, a starting population of 200 cells of

each species was selected.

Once the behaviour of the model was established, the next objective was to clearly

understand the effect of four key input parameters on the number of cells of each type (sticky
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Table 5.1: Description of parameters used in the computational model. Typical values are given but a range

were explored throughout, see for example Table 5.2.

Parameter Symbol Description Typical

value

Sticky cell division

probability

R A value between 0 and 1 that marks the prob-

ability of a sticky cell dividing.

0.75

Non-sticky cell di-

vision probability

D A value between 0 and 1 that marks the prob-

ability of a non-sticky cell dividing.

0.5

Cell migration

probability

P_m A value between 0 and 1 that marks the prob-

ability of any cell migrating from the liquid to

the surface.

0.2

Cell death proba-

bility

P_d A value between 0 and 1 that marks the prob-

ability of any cell dying.

0.1

Carrying capacity K The maximum number of cells that can exist in

the liquid compartment. A cell cannot divide

if the liquid has reached the carrying capacity.

5000

Grid size G The length of one side of the grid (e.g G = 10

would produce a 10x10 grid of 100 hexagonal

grid spaces).

100

Starting popula-

tion of sticky cells

Free

sticky

cells init

The initial number of sticky cells present in

the liquid compartment at i = 0 (before the

simulation starts).

100

Starting popula-

tion of non-sticky

cells

Free

non-

sticky

cells init

The initial number of non-sticky cells present

in the liquid compartment at i = 0 (before the

simulation starts).

100
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Table 5.2: Parameters investigated to look at cell counts over the course of a simulation and the effect of

different parameters. (P_m = migration probability, P_d = death probability, R = sticky cell division

probability, D = non-sticky cell division probability.)

Simulation feature P_m P_d R D

Baseline 0.1 0.1 1.0 1.0

High migration probability 0.75 0.1 1.0 1.0

High death probability 0.1 0.75 1.0 1.0

High sticky cell division probability 0.1 0.1 1.0 0.1

High non-sticky cell division probability 0.1 0.1 0.1 1.0

Low division probability 0.1 0.1 0.1 0.1

and non-sticky) adhered to the surface and in the liquid compartment (Table 5.3). To do

this, two of the four input parameters listed in Table 5.3 were fixed at either low (0.2),

medium (0.5) or high (0.8) probabilities, and the other two input parameters were varied

between 0.2 and 0.8 in increments of 0.1. The reason that very high and very low parameters

were excluded from the input parameters was for two reasons. Firstly, it was expected that

the extreme probabilities would not be representative of the in vivo environment. Secondly,

often these extreme parameters resulted in a cell count of 0, or the maximum number of

cells (on the surface or in the liquid). When trying to understand the effect of the input

parameters on the outputs using heatmaps or data reduction techniques, a large number of

0 or maximum values in the results would skew the analysis.

Heat maps were generated for different combinations of two input parameters on the

effect of a single output. Probability parameters not being investigated were fixed at three

values: low (0.2), medium (0.5), and high (0.8). This resulted in a total of 72 heat maps that

were used to assess the effect of input parameters on each output. The other parameters were

fixed at K = 5,000 (carrying capacity), G = 100 (grid size), i=400,000, and the starting
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Table 5.3: Parameters investigated for exploration of the input probabilities on cell number.

Input parameters Outputs

Division probability of non-sticky cell (D) Number of sticky cells in the liquid

Division probability of sticky cell (R) Number of non-sticky cells in the liquid

Migration probability (P_m) Number of sticky cells on the surface

Death probability (P_d) Number of non-sticky cells on the surface

populations of both sticky and non-sticky cells both were fixed at 200. The MATLAB script

used to generate the heat maps is reproduced in Appendix E. These simulations did not

record the number of dead cells in order to reduce the computational time and the total

number of heat maps generated for analysis.

5.2.3 Model fitting

Once an initial understanding of the effect of different parameters had been achieved, the

next step was to identify the parameters that were relevant to in vitro experimental data

by fitting the model results to in vitro growth curves. In order to do this, single-species

bacterial growth curves for planktonic cultures and biofilm cultures were obtained.

Planktonic growth curves

S. sanguinis growth curves were generated in a 24-well plate (Nunc, Thermo Fisher Scien-

tific). Frozen S. sanguinis stock was streaked onto three separate tryptone soya agar (TSA)

plates (to ensure 3 biological replicates) and incubated at 37°C, 5% CO2 for 48 hours. Fol-

lowing this, three overnight cultures were set up in 5 mL brain-heart infusion (BHI) broth,

one from each agar plate, at 37°C, 5% CO2, shaking at 100 revolutions per minute (rpm).

172



In silico modelling of cell adhesion to surfaces

The three cultures were diluted down to an optical density of 0.05 at 600 nm. A liquid

culture containing 10 mL of diluted stock was prepared and incubated at 37°C, 5% CO2,

shaking at 100 rpm for the duration of the experiment. At 0, 1.5, 3, 4, 5, 6, 7, 8, and

24 hours, 200 µL of the liquid culture was placed in the top well of a 96-well plate, and a

serial dilution was performed. The dilution was plated onto BHI agar plates and the colony-

forming units (CFUs) counted after 24 hours incubation, according to the Miles and Misra

method [256]. To generate a growth curve using absorbance, 1 mL of diluted liquid culture

(n = 3) was pipetted into 3 wells of a 24-well plate, to provide 3 technical replicates. The

absorbance was measured at 600 nm every 30 minutes for 24 hours, using a Tecan Spark

microplate reader (Tecan Group Ltd, Switzerland). The plate was kept at 37°C, with orbital

shaking at 3 mm for 10 seconds prior to readings. Absorbance readings were taken at 600

nm, using 25 flashes and 100 ms settle time. Between readings, samples were shaken with

orbital shaking at 3 mm for 800 seconds.

Biofilm growth curves

Frozen stock of S. sanguinis was streaked onto a TSA plate and incubated at 37°C, 5%

CO2 for 48 hours. Using the colonies grown on the agar plate, an overnight culture of S.

sanguinis was prepared in 5 mLBHI broth and incubated at 37°C overnight, agitating at

100 rpm for the duration. A serial dilution in BHI broth containing 1% sucrose (w/v) was

performed with the overnight culture, from 109 (an optical density of approximately 0.5) to

103 cells/mL. Individual Thermanox coverslips (Nunc, Thermo Fisher Scientific) were placed

in the bottom of each well in 24-well culture plates (Nunc, Thermo Fisher Scientific). Prior

to adding the planktonic culture, 1 mL of artificial saliva was added to each well containing

a cover slip and left for 15 minutes before being removed; this was to aid initial adhesion

of the bacteria. Subsequently, S. sanguinis monospecies biofilms were prepared by adding 1

mL of the 103 dilution to each well containing a coverslip. The plates containing the biofilms
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were incubated for up to 7 days at 37°C, 5% CO2, shaking at 100 rpm, with a change in

BHI broth every 24 hours, to ensure a well established biofilm had developed.

Any remaining BHI broth from the S. sanguinis biofilms was removed from each well

and each coverslip with biofilm was placed in 5 mL of fresh BHI broth in a universal tube.

The bacteria were removed from the coverslip by sonication in an ultrasonic cleaner (In-

Ceram, Vitasonic) for 10 minutes at 50-60 Hz, followed by agitation using a vortex mixer

for 5 minutes. A serial dilution was performed using the Miles and Misra method to count

the number of CFUs [256]. This enabled an estimation of the number of live cells found in

the biofilm.

Model fitting

Model fitting was carried out in MATLAB where the fitting function fminsearch was used.

The model fitting script can be found in Appendix F. The fminsearch function searches for

the minimum of an unconstrained multi-variable function using a derivative-free method.

An additional short function that calculated the value of the function to be minimised was

added; in the present work this was the norm of the difference between the experimentally

determined number of cells at a given iteration and the number of cells calculated by the

cellular automaton at the same iteration.

Several assumptions were made to enable fitting. Firstly, one bacteria cell could bind

to one space on the model grid. As one cell of S. sanguinis was approximately 1 µm in

diameter, the model grid was therefore assumed to be 100 µm2 (0.0001 mm2) in area. As

the in vitro experimental data was calculated from coverslips of 13 mm diameter (132.73

mm2), the total cell counts from the biofilm growth curve were scaled accordingly. All model

fitting was run for 40,000 iterations (i = 40,000), and it was assumed that the total number

of iterations equated to the duration of the in vitro experiment. Once the parameters had
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been identified, 50 further simulations were run using these parameters to generate the

model result and this was compared to the experimental data. Model fitting approaches

were carried out on both the grid surface using biofilm growth curve data, and the liquid

compartment using planktonic growth curve data.

5.3 Results and Discussion

5.3.1 Model interrogation and parameter exploration

Initial simulations

Figures 5.2 and 5.3 show the results of the first simulations run using the model to understand

the cell count over the course of the total iterations, and to gain an initial understanding

of the behaviour of the model. See Table 5.2 in the Methods section for details of the

parameters chosen for this initial study. From the baseline parameters chosen (Figure 5.2A

and B), it was evident that the liquid reached full carrying capacity fairly quickly, at around

the 25,000th iteration, and remained at full capacity for the duration of the simulation. It

is worth noting that the population of free (liquid) cells was dominated by the non-sticky

cell-type at the earlier timescale, but by the end of the simulation, the liquid was dominated

by sticky-cells. The surface was dominated by sticky cells throughout, as expected, as non-

sticky cells could only migrate to the surface if a sticky cell was present in an adjacent grid

location.

A high migration probability (Figure 5.2C and D) resulted in a slightly longer time

to reach peak carrying capacity within the liquid, at around the 40,000th iteration. The

ratio of sticky to non-sticky cells present on the surface also decreased compared to the

baseline parameters. This could be due to the probability of migration being higher, hence
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the probability of a non-sticky cell migrating to a grid space next to a sticky cell was also

higher.

Cell numbers significantly decreased both in the liquid and on the surface when a high

death probability was introduced, as anticipated. The liquid still reached maximum carrying

capacity, though at a significantly later point in the simulation, at around the 100,000th

iteration. This suggested that cells were able to continue proliferating and occupying surface

space despite the high death probability. Therefore, the balance between the various event

probabilities (death, migration and division) must play a role in determining the final cell

number, as a high death probability alone did not result in a low number of cells in the liquid

and on the surface. This is further investigated in the next section.

Changing the division probabilities for each cell type produced interesting results.

Whilst the total cell numbers on the surface changed very little from the baseline parameters

when a high sticky cell division probability was introduced (Figure 5.3A and B, compared

with Figure 5.2A and B), the population was entirely made up of sticky cells. There are

mechanisms by which bacterial species in biofilms inhibit the growth other species, for exam-

ple through matrix inhibition and quorum sensing [315]. Whilst the present model does not

explicitly account for these aspects of biofilm formation, the behaviour observed from the

model outputs did reflect that of competitive biofilm formation. However, where the non-

sticky cells had a significantly higher proliferation probability, there was almost no surface

migration at all (Figure 5.3C and D).

Finally, selecting very low division probabilities for both cell types resulted in a cell

count of zero in the liquid and on the surface (Figure 5.3E and F). This scenario is unlikely

to occur in a real-world surface adhesion scenario and therefore was not considered further

in the analysis of the model.

In summary, the initial investigation into the cellular automaton demonstrated it
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Figure 5.2: Cell number plotted against iteration for each set of parameters investigated (see Table 5.2. (A),

(C) and (E) show cell count separated into individual cell species (sticky and non-sticky). (B), (D) and (E)

show total cells counts on the surface and in the liquid. Free cells are present in the liquid. Bound or surface

cells are adhered to the surface.
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Figure 5.3: Cell number plotted against iteration for each set of parameters investigated (see Table 5.2. (A),

(C) and (E) show cell count separated into individual cell species (sticky and non-sticky). (B), (D) and (E)

show total cells counts on the surface and in the liquid. Free cells are present in the liquid. Bound or surface

cells are adhered to the surface.
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captured a range of scenarios that could inform in vitro and in vivo observations of surface

adhesion of bacteria. The model was designed to represent a two-species system whereby

cooperative biofilm formation occurs, through the use of sticky and non-sticky cell types. One

limitation of these preliminary studies was that a single simulation was analysed. Cellular

automata can produce a range of results with the same input parameters due to their discrete

and rule-based nature. However, this was sufficient for early analysis to glean foundational

insight into the relationship between the model parameters and the outputs. In further

studies in this chapter, the mean output value of 100 simulations was used for analysis.

Furthermore, whilst studying the simulation results of arbitrary parameters such as those

used in this section can provide some indication of the effect of different parameters on cell

number, it was identified that a more methodological approach would allow for parameters

to be contextualised to in vitro and in vivo scenarios.

Effect of input probabilities on cell number

Once an initial understanding of the model behaviour was established, the next step was

to more thoroughly identify the impact of each of the input event probabilities (death,

migration and division) on the number of cells of each species on the surface and in the

liquid compartment. To do this, a series of heat maps was generated. These analyses aimed

to link the parameters in the cellular automaton to their clinical relevance in preventing

bacterial surface adhesion to dental implants. In total, 72 heat maps were generated. In

this section, the results of most interest are presented. See Appendices G and H for all heat

maps generated in this analysis.

Firstly, the effect of different parameters on the number of sticky cells adhered to

the surface was examined. Figure 5.4 shows the surface sticky cells as a result of a range

of division probabilities for sticky (R) and non-sticky (D) cells. The other input variables,
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death probability (P_d) and migration probability (P_d), were fixed at low (0.2), medium

(0.5), and high (0.8) values. For all three simulations, an increasing division probability of

the non-sticky cell reduced the number of sticky cells on the surface.

Figure 5.4: Number of sticky cells on the surface at i = 400,000 for a range of values of R (sticky cell

division probability) and D (non-sticky cell division probability). The migration probability (P_m) and

death probability (P_d) were fixed at (A) 0.2, (B) 0.5, and (C) 0.8.

No clear relationships were identified between the number of sticky cells adhered to the

surface and the input parameters migration probability (P_m) and non-sticky cell division

probability (D). At low division probabilities (R = 0.2 and D = 0.2), a death probability

of 0.3 or greater was high enough to prevent any sticky cells adhering to the surface at i =

400,000 (Figure 5.5A). Similarly, when R = 0.5 and D = 0.5, a death probability of 0.6 or

greater resulted in no sticky cells adhering to the grid surface (Figure 5.5B). This suggested

that at lower division probabilities, the death probability had the greatest influence over

sticky cells adhering to the surface. However, at high division probabilities (R = 0.8 and D

= 0.8), cells managed to adhere to the surface for all simulations run (Figure 5.5C). This

suggested that if cells have a high probability of dividing, initial surface adhesion can take

place. Clinically, this may suggest that if the bacteria have a high growth rate, introducing

a mechanism to kill the cells (such as antibiotics) may not always prevent bacteria cells

adhering to an implant surface. A study by Theophel et al. [316] studied the simultaneous
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cultivation and time-resolved growth analysis of Enterococcus faecium (E. faecium) in the

presence of a range of antibiotics at different concentrations. The authors found that low

concentrations of some antibiotics resulted in only partial inhibition of the growth of E.

faecium and the paper presented extended lag phases in the growth analysis. After the

extended lag phase, exposure to several antibiotics led to reversible growth inhibition, which

could be compensated for by higher cell densities until the end of the experiment. Exposing

E. faecium to fosfomycin or fusidic acid even resulted in higher maximum specific growth

rates [316]. This study supports the findings of the simulations from the model developed

in the present work, whereby the model suggests an increased growth rate could facilitate

survival of the bacteria. The mechanism by which this growth behaviour occurs is not

known. However, it should be noted that the study by Theophe et al. [316] was conducted

in planktonic cultures so cannot be directly compared to the surface adhesion modelled in

the cellular automaton.

Figure 5.5: Number of sticky cells on the surface at i = 400,000 for a range of values of P_d (death

probability) and P_m (migration probability). The sticky cell division probability (R) and non-sticky cell

division probability (D) were fixed at (A) 0.2, (B) 0.5, and (C) 0.8.

For non-sticky cells, most input parameter values gave rise to no cells adhering to the

surface (See Appendix G). For example, a high death probability (P_d), a high sticky cell

division probability (R), and a low migration probability (P_m) all resulted in a non-sticky
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surface cell count of zero. This suggested that the conditions had to be optimum in order

for a cell that is unable to adhere to a surface without the presence of an early coloniser

to adhere. For example, as demonstrated in Figure 5.6, a high division probability of both

sticky and non-sticky cells was needed to result in non-sticky cells adhering to the surface.

If we consider non-sticky cells to be an invasive pathogenic species (e.g. Porphyromonas

gingivalis), and sticky cells to be commensal oral species, the model captures cooperative

biofilm formation whereby pathogenic species cannot adhere to a surface without the presence

of an early coloniser.

Figure 5.6: Number of non-sticky cells on the surface at i = 400,000 for a range of values of R (sticky

cell division probability) and D (non-sticky cell division probability). The migration probability (P_m) and

death probability (P_d) were fixed at (A) 0.2, (B) 0.5, and (C) 0.8.

Death probability had a great influence on the number of sticky cells present in the

liquid at i = 400,000. A medium to high death probability (P_d = 0.5 or P_d = 0.8) typi-

cally resulted in zero sticky cells in the liquid compartment. The exception to this was when

high migration probability (P_m) and high division probability of the sticky cell (R) were

input. This could perhaps have been because the carrying capacity (5,000) was significantly

lower than the total number of cells that could adhere to the surface (100,000). In vitro,

biofilms have been shown to have higher antibiotic resistance than bacteria in planktonic

cultures [317]. Whilst the present computational model did not incorporate antimicrobial
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agents, heat map analyses suggested the cellular automaton appeared to support these ob-

served in vitro behaviours. Even in the presence of antibiotics, the cells are more likely to

form biofilms.

In summary, this analysis further aided the understanding of the input parameters

on final cell number. Examining the results as heat maps allowed for the parameters to

be compared to in vitro and in vivo scenarios. This knowledge could be tested through in

vitro experiments by trying to influence the parameters of death probability (for example by

using a range of concentration of antimicrobial), migration probability (for example by using

different surfaces to form biofilms on) or by controlling division probability (for example by

limiting the nutrients available). In this section, the parameter effects have been linked to

potential clinical scenarios, in order to demonstrate how models such as the present cellular

automaton can support the development of strategies to prevent infection of dental implants.

By determining the parameter with the greatest impact on surface cell numbers, this can

inform antimicrobial strategies. For example, if death probability has the greatest effect

on surface adhesion, then infection prevention strategies should focus on killing cells after

dental implant placement. However, if surface migration probability has the greatest impact

on cell adhesion, then strategies should focus on the surface properties to try and prevent

this occurring.

The data generated in this analysis is multidimensional and additional strategies could

be used to attempt to quantify the effect of different input parameters on cell number. Future

studies should investigate the possibility of using dimensionality-reduction techniques such

as principal component analysis (PCA) and t-distributed Stochastic Neighbour Embedding

(t-SNE). Both techniques aim to reduce the dimensionality of complex datasets, increasing

interpretability but at the same time minimising information loss [318, 319].

One of the the drawbacks of cellular automata, is that the rules may be arbitrarily
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formulated, which can lead to aesthetically driven outputs [174, 185]. Validation is an essen-

tial part of computational modelling, and this thesis presented a great opportunity to utilise

the results of in vitro experiments to enhance the computational model. This validation and

fitting process ensured the parameters and rules used in the cellular automaton described are

grounded in in vitro observations. Therefore, the model was fitted to biofilm and planktonic

growth curves. Up until this point, a range of starting parameters and scenarios have been

considered. For validation, the model was tailored to a single-species biofilm.

5.3.2 Model fitting

In order to determine the input parameters that represented a specific in vitro cell adhesion

to surfaces, the model was fitted to planktonic and biofilm growth curves of S. sanguinis.

Planktonic growth curves

As the cellular automaton contained a liquid compartment as well as the grid surface, plank-

tonic growth curves were generated to fit to this aspect of the model. S. sanguinis planktonic

growth curves were generated as a basis for comparison with biofilm growth. Figure 5.7 shows

the resulting curves generated. A logistic growth equation was fitted to both curves, with R2

values of 0.9907 and 0.9226 for absorbance and CFU/mL respectively. The logistic growth

curve is described by Equation 5.1 [320]

dP

dt
= rP (1 − P

K
) (5.1)

Where P is population size, t is time, r is the growth rate, and K is the carrying capacity.

This equation represents a continuous model, which can be used for the planktonic
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Figure 5.7: Planktonic growth curve of S. sanguinis. Two methods were used to produce a growth curve.

Absorbance was recorded every 30 minutes for 24 hours by measuring the optical density of the culture at

600 nm wavelength. A serial dilution was performed on the planktonic culture at 0, 1.5, 3, 4, 5, 6, 7, 8, and

24 hours and the CFUs were counted at each time point.

culture because it was assumed to be well-mixed. This does not apply for the biofilm model

because spatial considerations become more important. Furthermore, it should be noted

that an optical density of zero in theory would be equal to zero CFU/mL, however this is

not possible in practice due to the sensitivity of the equipment. Hence the logistic curve fit

demonstrated in Figure 5.7 is true above an optical density of 0.05.

Biofilm growth curves

Single-species biofilms of S. sanguinis were used to generate in vitro data to fit the model.

Figure 5.8 shows the total number of bacteria cells in each biofilm, counted using a haemo-

cytometer. Biofilm growth was rapid over the first 24 hours, then increased at a slower rate
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over the following 7 days, representing the log and stationary phases of bacterial growth.

Compared to the planktonic cultures, the stationary phase was reached later, at 24 hours

for the biofilm and between 5-8 hours for the planktonic culture (Figure 5.7). Slower growth

of biofilms has been linked to nutrient limitation for some cells within the biofilm, and also

linked to a general stress response initiated by growth within a biofilm that is not observed

with planktonic cultures [321]. The key advantage of this slower growth is that slow or no

growth is generally accompanied by an increase in resistance to antibiotics [321].

Figure 5.8: Biofilm growth curve of Streptococcus sanguinis. Biofilms were analysed at 0, 1, 2, 5 and 7

days (n = 3). Each coverslip with biofilm was placed in 5 mL of fresh BHI broth in a universal tube. The

bacteria were removed from the coverslip by sonication in an ultrasonic cleaner for 10 minutes at 50-60 Hz,

followed by agitation using a vortex mixer for 5 minutes. A serial dilution was performed using the Miles

and Misra method to count the number of colony-forming units (CFU) [256]. This enabled an estimation of

the number of live cells found in each biofilm.
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Table 5.4: Cell counts entered into model fitting script to identify parameter values for in vitro experimental

data.

Time point (days) 0 1 2 5 7

Time point (itera-

tion)

0.1 5,174 11,428 28,570 40,000

Original mean-

average CFU

N/A 25,138,889 18,333,333 44,166,667 126,666,667

Data input into

model fitting code

1 19 14 34 96

Fitting biofilm data to the cellular automaton model

For the first model fitting, the CFU count for S. sanguinis biofilms at 1, 2, 5 and 7 days

was equated to total sticky surface cells in the cellular automaton. No non-sticky cells were

included in the model fitting to reflect the single-species in vitro experimental data that

was generated. Several assumptions were made to enable fitting. Firstly, the CFU counted

from each biofilm from the in vitro experimental data was assumed to represent a single cell

from the biofilm: the CFU value was directly equated to biofilm cell count. Secondly, the

model allowed only one bacteria cell to bind to one space on the model grid. As one cell of S.

sanguinis is approximately 1 µm in diameter, the model grid was therefore assumed to be 100

µm2 (0.0001 mm2) in area. As the in vitro experimental data was calculated from coverslips

of 13 mm diameter (132.73 mm2), the total cell counts from the biofilm growth curve were

scaled accordingly. Finally, for the initial fitting attempt, the biofilm was assumed to cover

the entire coverslip (100% surface coverage), although this assumption was revised in later

fittings. Table 5.4 shows the values used to fit to the model. To use the fitting code, initial

parameter guesses needed to be entered and these were selected to be R = 0.75, P_m =

0.01, P_d = 0.01 and K = 5,000.
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Figure 5.9 shows the results of the first model fitting, based on the assumptions

described previously. The model fitting script identified the parameter values to be R =

0.7, P_m = 0.0025, P_d = 0 and K = 5,211. As can be seen from Figure 5.9, the model

appeared to increase linearly, unlike the experimental data. However, based on this figure,

it was felt to be a reasonable fit.

Figure 5.9: Comparison of experimental data (red) and cellular automaton results for sticky surface cells

(blue). Output parameters from the model fitting were R = 0.7, P_m = 0.0025, P_d = 0 and K = 5,211.

For experimental data, n = 3 (mean ± standard deviation) and for the model fitting, n = 50 (mean ±

standard deviation.)

Next, the results from running the cellular automaton using these parameters were

plotted, and can be seen in Figure 5.10. This enabled both bound and free cells to be

visualised. From this fitting attempt, it appeared that S. sanguinis divided rapidly in the

liquid compartment, but these cells did not adhere well to the surface over the course of 7

days (under these fitted parameters). The maximum capacity (K) in the liquid is reached

at about iteration i = 30,000 (just after day 5 in the experimental data). S. sanguinis
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is known to be an early coloniser for biofilms and this was therefore an unexpected model

output. Though the number of bound cells matched the experimental data well, it was

surprising that so many cells remained in the liquid compartment. A migration probability

of 0.0025 was extremely low, whilst the division probability of the sticky cells was high at 0.7,

which resulted in the large difference between the number of cells in the liquid compartment

compared to on the grid surface.

Next, the assumption used in the above model fitting, that 100% of the coverslip was

covered in biofilm, was challenged, as this was not observed in the in vitro biofilm growth.

Biofilm coverage of different amounts of the coverslip was assumed to range from 10% to

100% and new experimental data values were calculated based on this assumption (Table

5.5). Furthermore, it was observed that the death probability from the previous model

fitting was zero or close to zero for all outputs and the carrying capacity did not change

significantly from the initial guess. To focus the fitting function on the migration probability

(P_m) and division probability (R), the carrying capacity (K) and death probability (P_d)

were fixed at 0.01 and 5,000 respectively.

Table 5.6 and Figure 5.11 show the results from fitting to the experimental data

assuming different surface coverage. Initial parameter guesses of R = 0.75 and P_m =

0.01 were input to the fitting script, with fixed values of K = 5,000 and P_d = 0.01 (fixed

values meant that the fitting function would not iterate over these parameters). The results

suggested that the surface coverage that best fit the experimental data could fall between

10% and 50%. However, as with the previous fitting experiment, when the full model results

were plotted, the number of cells in the liquid compartment was far higher than the number

of sticky cells on the surface (Figure 5.12). As before, since S. sanguinis is an early coloniser,

this result suggested there could be an error in the assumptions used or the choice of model

fitting function.
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Table 5.5: Cell counts entered into model fitting script to identify parameter values for in vitro experimental

data, assuming different surface coverages.

Time point (days) Assumed

percentage

coverage

(%)

0 1 2 5 7

Time point (itera-

tion)

0.1 5,174 11,428 28,570 40,000

Original mean-

average CFU

N/A 25,138889 18,333,333 44,166,667 126,666,667

Data input into

model fitting code

100 1 19 14 34 96

Data input into

model fitting code

75 1 26 19 45 127

Data input into

model fitting code

50 1 38 28 67 191

Data input into

model fitting code

10 1 190 139 333 955

Table 5.6: Cell counts entered into model fitting script to identify parameter values for in vitro experimental

data.

Assumed surface coverage (%) R P_m

100 0.7819 0.0101

75 0.8010 0.0080

50 0.7781 0.0096

10 0.7485 0.0105
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Figure 5.10: Results of cellular automaton using parameters from model fitting: R = 0.7, P_m = 0.0025,

P_d = 0 and K = 5211 (n = 50, mean ± standard deviation). (A) Results plotted on a linear y-axis and

(B) results plotted on a log10 y-axis. Carrying capacity is not reached until iteration i = 30,000.

To continue the model fitting process further, the liquid compartment was fit to the

planktonic growth curve data, although over a shorter timescale than the biofilm growth

curve. Further assumptions were made in order to scale the experimental data to fit the

scale of the model. The volume of the liquid compartment was not specified in the model.
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Figure 5.11: Comparison of experimental data (red) and cellular automaton results for sticky surface cells

(blue). For experimental data, n = 3 (mean ± standard deviation) and for the model fitting, n = 50 (mean

± standard deviation). Assumed surface coverage used to calculate the experimental data to input into the

model fitting script: (A) 100% surface coverage, (B) 75% surface coverage, (C) 50% surface coverage and

(D) 10% surface coverage.

To fit the experimental data, it was assumed that the liquid compartment was a cube with

the length of each side equal to the length of the grid, and therefore the volume of the liquid

compartment was 1,000,000 µm3. In the in vitro experiment, the volume of planktonic

culture in each well was 1 mL, and therefore the CFU per mL (or per well) was scaled
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Figure 5.12: Results of cellular automaton using parameters determined from model fitting (n = 50, mean

± standard deviation). Assumed surface coverage used to calculate the experimental data to input into the

model fitting script: (A) 100% surface coverage, (B) 75% surface coverage, (C) 50% surface coverage and

(D) 10% surface coverage. Carrying capacity is reached between iteration i = 25,000 and iteration i =

28,000 for all surface coverage conditions.

accordingly to fit the size of the environment in the cellular automaton. For this fitting,

three parameters were investigated: sticky cell division probability (R), migration probability

(P_m) and the carrying capacity (K). The death probability was fixed at 0.01 as per the

previous model fittings. Initial parameter guesses were input as R = 0.5, P_m = 0.2 and

K = 4,000. The results of the model fitting compared to the experimental data is shown in
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Figure 5.13. The results of the full simulation are shown in Figure 5.14.

Figure 5.13: Comparison of experimental data (red) and cellular automaton results for free sticky cells in the

liquid compartment (blue). For experimental data, n = 1 with a logistical curve fit. For the model fitting,

n = 50 (mean ± standard deviation).

Comparing the experimental and simulated data showed that the growth rate of

the simulated bacteria was much slower than that of the experimental data. In vitro, the

stationary phase (or carrying capacity) was reached at iteration i = 15,000. The simulated

liquid compartment did not reach its carrying capacity until i = 27,500. However, the

parameter for division probability of sticky cells obtained from the model fitting was 0.9,

indicating that the model could not feasibly achieve a faster rate of growth as the probability

of division was close to the maximum value of 1. Figure 5.14 showed that there was a

steady increase in the total number of sticky cells adhered to the grid surface throughout
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Figure 5.14: Results of cellular automaton using parameters determined from model fitting (n = 50, mean

± standard deviation).

the simulation, even at a low migration probability of 0.2, which was the predicted value

of this parameter for the model fitting. Overall, the surface cell count reached 3,000 by

the end of the simulation and this is much higher than the sticky surface cell count that

was simulated when fitting the model to the biofilm growth curve data, which reached a

maximum of 350 when 100% surface coverage was assumed (Figure 5.11). This suggests

that the experimental liquid growth curves were better for fitting the simulated data to.

This could be for several reasons. Firstly fewer assumptions needed to be made to fit the

cellular automaton simulation to the liquid growth curve. Secondly, calculating the number

of cells within the biofilm required removal of the biofilm from the coverslip, which could

have introduced an additional error. Finally, the biofilms from the in vitro experiment were

grown over 7 days, forming mature 3D biofilms. This model is best suited to simulating the
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initial surface adhesion, and this may be a key factor in the poor fit of the simulated data

to the experimental biofilm data.

Fitting the model results to in vitro data proved challenging. Due to the complexity

of the model, it may be that a global minimum was not reached for some of the parameters

and instead the solution to the fitting function is a local minimum. Other non-derivative

fitting functions could be considered to try and improve the results of the model solutions.

It should be noted that the inability to achieve a good model fit to experimental data

is a common issue in computational modelling and often indicates that there is an element of

the in vitro or in vivo system that is not captured in the model. For this reason, there remain

some limitations to the present model. The primary limitation is that the model only forms

a 2D biofilm, with a single layer of cells able to adhere to the grid. In the body, biofilms are

complex 3D systems, with local variations in their environment. Future development of this

model should consider adding the ability for 3D biofilm formation to allow the simulation of

early to mid-stage biofilm formation. Secondly, there are only two cell species modelled in

this system. Future studies could consider expanding the capabilities of the model to multi-

species systems, and comparing cooperative biofilm formation, as presented in this chapter,

with competitive species (two sticky species competing for the surface). An additional factor

to measure in vitro in order to improve the fit could be the biofilm surface coverage, which

was explored in Figure 5.11. Calculating coverage is possible using the tool described in

Chapter 4, and this could be included as a parameter to be fitted in future work.

Parameter sets were identified that enabled the model to reproduce the quantitative

data, but when these fits were later tested it was found that the dynamics of the individual

sub-populations did not follow the expected qualitative patterns. This highlights the impor-

tance of challenging model fits, something which is too often overlooked in model parame-

terisation. Analysis of the resulting model behaviour paves the way for future improvements
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to the model and model-informed experimental design. This is the natural cyclical approach

that should always be adopted in computational modelling of biological systems: the data

informs the model which informs the experimental design which again informs the model,

and so on. This work provides the first crucial step in that process.

5.4 Summary

In this chapter, a cellular automaton model of initial surface adhesion of single and two-

species biofilms has been presented. In particular, the effect of different input parameters

on the number of cells in the liquid and on the surface was the main focus, with the aim

of using the knowledge of these effects to identify strategies for preventing surface adhesion.

In addition to exploring the scope of the model and understanding how the event probabil-

ities affect cell number, the cellular automaton was fitted to biofilm and planktonic growth

curves generated in vitro. The results presented in this chapter show that the model can

simulate a range of different cell behaviours by controlling the input parameters (event prob-

abilities). Therefore, this agent-based approach is appropriate for exploring this initial step

in biofilm formation. Research objectives 3 and 4 have been addressed, namely, to devise

a computational model based on cellular automata for evaluating cell adhesion to implant

surfaces and use the computational model combined with experimental data to understand

the fundamental parameters that affect cell adhesion.

5.4.1 Conclusion

The analysis in this chapter has highlighted that the balance between the rate of migration

to the surface, division rate, and death rate of a bacteria species has a significant input on the

number of cells adhering to the surface. If the balance of these parameters can be controlled
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in vitro and in vivo, then this could inform the development of strategies for preventing

surface colonisation and therefore dental implant infection.
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Chapter Six

Final discussion and conclusion

The "race to the surface" describes the competition between bacteria and eukaryotic cells

for colonisation of an implant device. This concept is particularly pertinent to the oral

environment, as both soft and hard tissue types and many hundreds of bacterial species

interact with a dental implant material once it is placed in the mouth. The destructive

disease peri-implantitis is caused through infection of such an implant by pathogenic bacterial

species. This can result in inflammation of the surrounding soft tissues, in some cases

leading to irreversible bone loss and often requiring secondary surgery to disinfect and replace

the device. Therefore, much research has focused on developing novel materials, surface

treatments, coatings, and antimicrobial approaches to try and prevent the occurrence of

peri-implantitis, which has been reported to affect between 10 and 22% of patients [22, 23].

However, many of these novel antimicrobial approaches have not progressed to the clinic,

and this is due, in part, to the complex environment in which these devices are placed that

is difficult to model in vitro. The preclinical animal models required to test novel devices

and antimicrobial interventions to achieve regulatory approval are expensive and require

specific expertise. Therefore, physiologically relevant in vitro models may provide additional

confidence that pursuing animal studies and regulatory approval may be successful.
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As outlined in Chapter 1, many models of the interplay between bacteria and the oral

mucosa have been published to try and replicate the complex interactions that occur in the

oral environment. These models include cells grown in 2D cultures with planktonic bacteria,

which are useful for elucidating underlying biological processes, but do not replicate the 3D

environment in vivo. The two most common approaches to 3D models of the oral mucosa

are collagen-based hydrogel scaffolds and decellularised matrix. Whilst a range of 3D oral

mucosa models and biofilm models exist, very few studies have combined the two, as it is

challenging to analyse such a system in vitro. In addition to these challenges with 2D and

3D in vitro models, the soft tissues in the oral cavity have an essential role in dispersing

the mechanical forces that occur from eating, talking and saliva flow. Several studies have

shown that the mechanical strength of an in vitro tissue scaffold can influence cell behaviour

[115, 116, 125]. However, the 3D oral mucosa models described in the literature have not yet

considered the mechanical properties of such scaffolds.

Noting both the challenge of analysing an experimental system that can assess the

interaction between the oral mucosa, oral biofilms, and a dental implant material, along

with the lack of studies that have investigated the effects of mechanical stiffness on oral

fibroblasts encapsulated within a hydrogel scaffold, the first objective of this research was to

address these gaps in modelling the oral microenvironment through the development of a 3D

hydrogel tissue model with mechanical properties similar to the native tissue. In addition to

the development of this in vitro model, a solution was proposed to analyse the interactions

that occur when placing this tissue model in the context of an implant and biofilm through

the development of an automated image analysis tool. Finally, given the challenges associated

with modelling such a complex environment, a computational approach was used to examine

the initial stages of surface adhesion during biofilm formation. To achieve these aims, an

interdisciplinary approach was vital, and this work combined elements of materials science,

cell culture, microbiology, and mathematical modelling.
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First, the mechanical properties of porcine oral mucosa under compression were de-

termined to establish a basis for the alignment of a hydrogel scaffold to these properties.

Porcine oral mucosa was used as a model for human tissue as, histologically, it displays

many similarities to human oral mucosa [214]. A blended alginate and collagen hydrogel

scaffold was selected such that alginate could provide the mechanical stiffness required and

collagen could provide the biological binding motifs to support cell growth. Exploring alter-

native hydrogel systems was not a goal of this work, but could be an interesting variable to

investigate in the future, especially given there are other hydrogel scaffolds that have been

used in oral mucosa models including elastin and fibrin [322, 323].

Following the characterisation of the native tissue, the mechanical stiffness of blended

collagen-alginate hydrogels at different concentrations was measured. Through these exper-

iments, the stiffness of the blended hydrogel system was found to align well with that of

porcine oral mucosa, specifically at 2.5 mg/mL collagen and 5 mg/mL alginate, and 2.5

mg/mL collagen and 10 mg/mL alginate. As previously discussed, mucosa models presented

in the literature have not considered the mechanical properties of the native tissue in their

development, which was a unique aspect to this approach. The presence of collagen fibrils in

the blended scaffold was identified using scanning electron microscopy, and these fibrils were

important to support the adhesion of encapsulated cells. Additionally, the gelling behaviour

of the acellular scaffold was examined using rheology, and the results demonstrated that the

alginate had fully cross-linked within 20 minutes of adding the cross-linking solution calcium

chloride (CaCl2), at a concentration of 150 mM. This is important because minimising the

time cells were in contact with calcium ions ensured that cell viability would remain high

once fibroblasts and epithelial cells were incorporated into the model. It should be noted

that the mechanical properties of the blended scaffolds were measured on acellular gels. It

is possible that the presence of cells within the hydrogel could impact on the mechanical

stiffness of the model. Therefore, an important future study would be to investigate the me-
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chanical stiffness of the full model with fibroblasts and epithelial cells present and compare

this with the results of acellular scaffolds.

Following the selection of the blended scaffold concentrations, primary human dermal

fibroblasts (HDFs) and H400s (an oral epithelial cell line) were incorporated into the model.

HDFs were selected for the initial optimisation of the system as they were cheaper to purchase

and more readily available. However, they have been shown to display differences from

primary gingival fibroblasts. Furthermore, H400s are an oral epithelial cell line and whilst

being originally derived from the relevant tissue, cell lines typically display differences to

primary cells in culture. Therefore, an important next step in the development of this model

would be to repeat the viability studies with more relevant cell types. However, for the

purposes of preliminary model development work, HDFs and H400s were deemed to be a

good choice. The protocol for producing the in vitro mucosa model involved encapsulating

HDFs in a collagen-alginate solution and pipetting the solution into transwells. The collagen

was allowed to aggregate first by incubating at 37°C for a minimum of 4 hours, followed by

adding CaCl2 to cross-link the alginate component. The encapsulated cells were cultured for

10 days, and then H400s were added to the surface. The epithelial cells were raised to an

air-liquid interface after 4 days, and finally the model was cultured for a further 10-14 days.

Typically, models of the oral mucosa utilise either a fibroblast-containing collagen gel or a

decellularised matrix [104, 112, 118]. Decellularised matrix could provide a similar stiffness to

the native tissue, but there are challenges to using this method consistently due to variations

caused by different decellularisation methods, insufficient preservation of vasculature and

extracellular matrix (ECM) composition, and inhomogeneous recellularisation within the

scaffold. Therefore, to ensure consistency and repeatability of studies, hydrogels are a useful

approach to in vitro models. However, collagen hydrogels have low stiffness, and this is a

factor that has been previously shown to significantly influence and control cell function

and behaviour [115, 116, 125]. A unique aspect of the model described in this thesis is the
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inclusion of the alginate component, which provides mechanical stiffness to the scaffold. With

the ultimate goal of introducing an implant material to the mucosa model, a scaffold with

increased stiffness compared to the commonly used collagen matrix would be advantageous.

The viability and morphology of the cells within the hydrogel model were examined

using live/dead staining and confocal microscopy. Blended collagen-alginate hydrogels were

shown to support cell growth, with high cell viability observed. Matrix stiffness was found to

influence fibroblast morphology, as fibroblasts encapsulated within scaffold with an alginate

concentration of 10 mg/mL displayed a rounded morphology, whilst at 5 mg/mL alginate,

they demonstrated a typical elongated spindle shape. This finding supports the idea that

scaffold stiffness can influence cell behaviour. The next steps for continuing this line of

investigation would be to compare gene expression of primary oral fibroblasts encapsulated

within collagen-alginate matrices of differing stiffness. Additionally, it would be interesting

to try and understand the effect of matrix stiffness on the ability of cells to form a junction

with an implant material within the in vitro system.

In the present work, preliminary experiments to investigate the presence of an ep-

ithelial layer did not provide concrete evidence that one had formed in the in vitro model,

either through confocal imaging or histological staining. Therefore, further optimisation of

the model is still required to produce a mature epithelium. Previous studies have demon-

strated that a stratified epithelium can be obtained with H400s, and therefore this approach

was considered to have been an appropriate first step in the development of the 3D in

vitro system. Cell-specific staining is an approach that may help to identify the presence of

H400s in confocal imaging, for example by selectively staining for cytokeratins, E-cadherin,

or desmoglein-3 to differentiate these cells from the HDFs under the microscope. Once a

stratified epithelium has been identified using the blended collagen-alginate system, a similar

investigation into the effect of scaffold stiffness on gene expression would form part of the

future work. The development of a new approach to generating an in vitro model of the
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oral mucosa is valuable to the field, despite the further optimisation required. The use of

decellularised matrix as a scaffold for such models, as previously described, has challenges

of repeatability due to the differences between tissue sources [234].

With the ultimate goal of bringing the engineered mucosa, biofilm and dental material

into one in vitro model system, a key challenge for this experimental approach is analysing

biofilm growth on implant materials in such a complex system. Therefore, alongside the

development of the tissue model, consideration was given to how to best address this prob-

lem and a novel image analysis tool was developed for quantifying confocal laser scanning

microscopy micrographs of live/dead stained biofilms. The advantage of using CLSM is that

it enables 3D visualisation of biofilm structure, without the need to remove the sample from

the surface and disrupt the specimen. CLSM in combination with viability staining provides

high sensitivity, specificity and resolution. However, obtaining quantitative information from

confocal micrographs is challenging. The tool developed in this project calculated percentage

viability from live/dead stained biofilm micrographs, and was shown to have low computa-

tional time, with 25 micrographs analysed in less than 10 minutes. This allowed for an

increased number of samples to be analysed and can therefore improve the robustness of

studies investigating biofilm formation on implant surfaces.

Whilst developed for the purpose of analysing biofilm formation in the model de-

scribed in this research project, this tool has broad application to the wider field, for example

for antimicrobial drug and implant surface modification testing in many different industries

and research fields. The key advantages of this protocol are that it is written in open-source

software, is easy to use, transparent in function and is modifiable. This makes it a useful

tool for those with different research backgrounds to enable quantitative analysis of biofilm

viability to be performed. It has been demonstrated that the current approach is a reliable

measurement of biofilm growth and cell viability assessment, critical for the development

and analysis of novel antimicrobial strategies. This has been demonstrated on Ti-6Al-4V as
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an example implant material and has proven the tool is effective for such applications.

Finally, acknowledging the range of challenges encountered when analysing the com-

plex oral environment in vitro, a computational approach was considered. A cellular au-

tomaton model of initial surface adhesion of single and two-species biofilms was presented,

a highly-relevant stage in the "race to the surface". In silico approaches allow for examina-

tion of biological behaviour on different scales, can predict behaviour, and may lead to new

experimental approaches. Furthermore, a key advantage of using a mathematical model is

that it can characterise complex data in terms of few parameters. The computational model

was shown to simulate a range of different cell behaviours by controlling the input param-

eters and therefore, this approach was considered appropriate for exploring the initial step

in biofilm formation. Parameter sets were identified that enabled the model to reproduce

quantitative in vitro experimental data, but when these fits were later tested it was found

that the dynamics of the individual sub-populations did not follow the expected qualitative

patterns. Analysis of the resulting model behaviour paves the way for future improvements

to the model and model-informed experimental design. Further analysis of the model high-

lighted that the balance between the rate of migration to the surface, division rate, and

death rate of a bacterial species has a significant influence on the number of cells adhering

to the surface. If the balance of these parameters can be controlled in vitro and in vivo,

then this could inform the development of strategies for preventing surface colonisation and

therefore dental implant infection.

To conclude, the work presented in this thesis supports the development of antimi-

crobial strategies and novel implant devices to prevent the occurrence of infection of dental

implants. An interdisciplinary approach was taken to progress the field towards successful

culture of a 3D tissue model, biofilm and implant material in a single well in vitro. Physi-

ologically relevant 3D in vitro models of the oral environment are important to reduce the

need for animal models, in line with a 3Rs strategy. Increasing the complexity of experi-
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mental models increases the variables that can affect cell behaviour, however these systems

need to advance in order to achieve physiologically representative models that can support

the progression of novel antimicrobial approaches and implant designs to in vivo testing and,

ultimately, to the clinic and benefit of patients.
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Chapter Seven

Future work

A range of further studies have been identified in order to develop the findings of this research;

these are outlined below.

• In Chapter 2, the mechanical properties of the blended scaffolds were measured on

acellular gels. It is possible that the presence of cells within the hydrogel could impact

on the mechanical stiffness of the model. Therefore, an important future study is to

investigate the mechanical stiffness of the model with fibroblasts and epithelial cells

present and compare this with the mechanical stiffness of the acellular scaffolds.

• In Chapter 3, the cells utilised to assess the ability of the hydrogel scaffold to support

cell growth were human dermal fibroblasts and the oral cancer cell line H400. There-

fore, an important next step in the development of this model is to repeat the viability

studies with more relevant cell types, specifically primary human gingival fibroblasts

and primary human oral keratinocytes.

• The preliminary experiments carried out in Chapter 3 to investigate the presence of an

epithelial layer did not provide concrete evidence that one had formed in the in vitro

model, either through confocal imaging or histological staining. Therefore, further
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optimisation of the model is still required to produce a mature epithelium.

• In Chapter 3, an interesting observation was that the matrix stiffness of the scaffold

influenced the morphology of encapsulated fibroblasts. The next steps are to com-

pare gene expression of primary oral fibroblasts encapsulated within collagen-alginate

matrices of differing stiffness, to further understand the relationship between matrix

stiffness and cell characteristics. Additionally, it would be interesting to try and un-

derstand the effect of matrix stiffness on the ability of cells to form a junction with an

implant material within the in vitro system.

• Through the development of a cellular automaton in Chapter 5, parameter sets were

identified that enabled the computational model to reproduce quantitative in vitro

experimental data. However, further interrogation of these parameters found that the

dynamics of the individual sub-populations did not follow the expected qualitative

patterns observed in vitro. Future improvements to the model and model-informed

experimental design are an important next step in its development, for example refining

the assumptions made in the simulations and model fitting.

• The final research objective listed in Chapter 1 was not completed, namely to develop

an in vitro system that includes an implant material, biofilm, and 3D oral mucosa

model that can be used to examine the "race to the surface". A key next step for this

research is to combine the elements described in this research into a single in vitro

model.
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Appendix One

Details of porcine mucosa specimens

Table A.1: Record of porcine oral mucosa samples taken for mechanical testing, and associated location

information.

Sample Name Animal number Jaw Location Left/Right

P1_Sample2 1 Mandible Lingual Right

P1_Sample3 1 Mandible Lingual Right

P3_Sample1 3 Mandible Lingual Left

P3_Sample2 3 Mandible Lingual Left

P3_Sample3 3 Mandible Lingual Left

P3_Sample4 3 Mandible Lingual Left

P3_Sample5 3 Mandible Lingual Left

P3_Sample6 3 Mandible Lingual Right

P3_Sample7 3 Mandible Lingual Right

P3_Sample9 3 Mandible Lingual Right

P3_Sample10 3 Mandible Lingual Left

P3_Sample11 3 Mandible Lingual Right

P3_Sample12 3 Mandible Lingual Right

P3_Sample13 3 Mandible Buccal Left

P3_Sample14 3 Mandible Buccal Left
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Table A.1 continued from previous page

P3_Sample15 3 Mandible Buccal Left

P3_Sample16 3 Mandible Buccal Left

P3_Sample17 3 Mandible Buccal Right

P3_Sample18 3 Mandible Buccal Right

P3_Sample19 3 Mandible Buccal Right

P3_Sample20 3 Mandible Buccal Right

P3_Sample21 3 Maxilla Palette Right

P3_Sample22 3 Maxilla Palette Right

P3_Sample23 3 Maxilla Palette Right

P3_Sample24 3 Maxilla Buccal Left

P3_Sample25 3 Maxilla Buccal Left

P3_Sample26 3 Maxilla Buccal Left

P3_Sample27 3 Maxilla Buccal Left

P3_Sample28 3 Maxilla Buccal Left

P3_Sample29 3 Maxilla Buccal Right

P3_Sample30 3 Maxilla Buccal Right

P3_Sample31 3 Maxilla Buccal Right

P3_Sample32 3 Maxilla Buccal Right

P4_Sample1 4 Mandible Lingual Right

P4_Sample2 4 Mandible Lingual Right

P4_Sample2 4 Mandible Lingual Right

P4_Sample3 4 Mandible Lingual Right

P4_Sample4 4 Mandible Lingual Right

P4_Sample5 4 Mandible Lingual Left

P4_Sample7 4 Mandible Lingual Left
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Details of porcine mucosa specimens

Table A.1 continued from previous page

P4_Sample8 4 Mandible Lingual Left

P4_Sample9 4 Mandible Lingual Right

P4_Sample10 4 Mandible Buccal Left

P4_Sample11 4 Mandible Buccal Left

P4_Sample12 4 Mandible Buccal Left

P4_Sample13 4 Mandible Buccal Right

P4_Sample14 4 Mandible Buccal Right

P4_Sample15 4 Mandible Buccal Right

P4_Sample16 4 Maxilla Palette Left

P4_Sample17 4 Maxilla Palette Left

P4_Sample18 4 Maxilla Palette Left

P4_Sample19 4 Maxilla Palette Right

P4_Sample20 4 Maxilla Buccal Left

P4_Sample21 4 Maxilla Buccal Left

P4_Sample22 4 Maxilla Buccal Left

P4_Sample23 4 Maxilla Buccal Right

P4_Sample24 4 Maxilla Buccal Right

P4_Sample25 4 Maxilla Buccal Right

P5_Sample1 5 Mandible Lingual Left

P5_Sample2 5 Mandible Lingual Left

P5_Sample3 5 Mandible Lingual Right

P5_Sample4 5 Mandible Lingual Right

P5_Sample5 5 Mandible Lingual Right

P5_Sample6 5 Mandible Lingual Right

P5_Sample7 5 Mandible Buccal Left
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Details of porcine mucosa specimens

Table A.1 continued from previous page

P5_Sample8 5 Mandible Buccal Left

P5_Sample9 5 Mandible Buccal Left

P5_Sample10 5 Mandible Buccal Right

P5_Sample11 5 Mandible Buccal Right

P5_Sample12 5 Mandible Buccal Right

P5_Sample13 5 Mandible Lingual Left

P5_Sample14 5 Maxilla Palette Left

P5_Sample15 5 Maxilla Palette Left

P5_Sample16 5 Maxilla Palette Left

P5_Sample17 5 Maxilla Palette Right

P5_Sample18 5 Maxilla Palette Right

P5_Sample19 5 Maxilla Buccal Left

P5_Sample20 5 Maxilla Buccal Left

P5_Sample21 5 Maxilla Buccal Left

P5_Sample22 5 Maxilla Buccal Right

P5_Sample23 5 Maxilla Buccal Right
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List of bacteria species used in this

thesis
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List of bacteria species used in this thesis

Table B.1: List of bacteria species and their origins used in this thesis

Species name Abbreviation Strain/Source

Streptococcus sanguinis S. sanguinis ATCC 10556

Pseudomonas aeruginosa P. aeruginosa PA01-N, Paul Williams,

University of Nottingham

Fusobacterium nucleatum

spp. polymorphum

F. nucleatum ATCC 10953

Streptococcus gordonii S. gordonii NCTC 7865

Actinomyces naeslundii A. naeslundii DSM 17233

Porphyromonas gingivalis P. gingivalis W83

Staphylococcus epidermidis S. epidermidis ATCC 12228
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function [Free_Sticky_Cells_Record, Free_Non_Sticky_Cells_Record, 
Sticky_Surface_Cells_Record, Non_Sticky_Surface_Cells_Record] = GestelNowakModel(T, D, R, 
P_m, P_d, K, G, Free_Sticky_Cells_init, Free_Non_Sticky_Cells_init);
%% Gestel Novak Model
% Created by Sophie Mountcastle ( )
% Adapted from code by Dr Paul Roberts ( )
 
% This function models two species of bacteria binding to a 2D surface. The
% two species start within a liquid above the surface. Based on the input
% parameters chosen, upon each iteration a cell can perform one action;
% either divide, die, or migrate to the surface. The two species are known
% as 'Sticky' and 'Non-sticky' bacteria. Sticky bacteria can migrate to any
% available space on the surface. Non-sticky bacteria can only migrate to a
% space on the surface directly neighbouring a sticky cell.
 
%% Input parameters for function
 
% T = number of time steps/iterations (e.g. 4*10^5)
% D = division rate of non-sticky cell (must be between 0 and 1)
% R = division rate of sticky cell (must be between 0 and 1)
% P_m = migration rate of cell: liquid to surface (must be between 0 and 1)
% P_d = death rate (must be between 0 and 1)
% K = carrying capacity - max number of cells there can be in the liquid (e.g. 5*10^3)
% G = grid size - length of one side of 2D surface (e.g. 100 or 10 - choose an even value 
for g)
% Free_Sticky_Cells_init = number of starting sticky cells in liquid (e.g. 10^2)
% Free_Non_Sticky_Cells_init = number of starting non-sticky cells in liquid (e.g. 10^2)
 
% Grid size
GxFull         = G + 2; % Embed the true grid in a larger grid with empty cells around 
the periphery (1 column either side).
GyFull         = G + 2; % Embed the true grid in a larger grid with empty cells around 
the periphery (1 row above and below).
Num_Sites      = G^2;
Num_Sites_Full = GxFull*GyFull;
% We must enlarge the grid with a border of ghost cells so that the CA code
% can search neighbouring cells for any cell on the true grid. The ghost
% cells will remain empty for all time.
 
 
%% Initial Conditions
 
Binding_Sites_init = zeros(GyFull,GxFull);
% All the cells are in the fluid compartment initially, such that all binding sites
% on the surface are empty.
 
% Save Interval
Save_int  = T/10; % (4*10^3) (T/10)
Num_Saves = T/Save_int;
 
% Solution Vectors and Matrices
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Free_Sticky_Cells     = Free_Sticky_Cells_init;
Free_Non_Sticky_Cells = Free_Non_Sticky_Cells_init;
Binding_Sites         = Binding_Sites_init; % Enlarged matrix
 
Free_Sticky_Cells_Record        = [Free_Sticky_Cells_init;zeros(T,1)];
Free_Non_Sticky_Cells_Record    = [Free_Non_Sticky_Cells_init;zeros(T,1)];
Sticky_Surface_Cells_Record     = [0;zeros(T,1)];
Non_Sticky_Surface_Cells_Record = [0;zeros(T,1)];
Binding_Sites_Record            = zeros(G,G,Num_Saves+1); % Matrices containing true 
sites only
 
 
% Cell Counts
% Counting Cells on the Surface
Sticky_Surface_Cells     = 0;
Non_Sticky_Surface_Cells = 0;
 
% Total Number of Cells
Tot_Num_Cells = Free_Sticky_Cells + Free_Non_Sticky_Cells...
    + Sticky_Surface_Cells + Non_Sticky_Surface_Cells;
 
%% 
%%% Cellular Automata Loop
 
for i = 2:T+1 % + 1 as i = 1 is t = i-1.
    
    if Tot_Num_Cells > 0 % Come out of the loop when no cells are left.
        
        % Pick a cell at random
        rnd_cell_choice_para = randi(Tot_Num_Cells);
        
        % Decide which of 4 actions to take (migration in either direction counts as 1 
action)
        % 1. Migrate (L --> S or S --> L), 2. Differentiate, 3. Die, 4. Divide.
        rnd_act_choice_para = randi(4,1);
        
        
        %%%%%%% Pick a free sticky cell (if there aren't any it can't pick one)
        %%%%%%%
        if rnd_cell_choice_para <= Free_Sticky_Cells
            
            %%%%% Migrate L --> S %%%%%
            if rnd_act_choice_para == 1 && rand(1) < P_m
                
                % Choose a site to bind to, not counting the border of ghost cells
                % surrounding the true sites.
                Site_Num_x = randi([2,GxFull-1],1);
                Site_Num_y = randi([2,GyFull-1],1);
                
                if Binding_Sites(Site_Num_y,Site_Num_x) == 0 % Check the site is empty
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                    Binding_Sites(Site_Num_y,Site_Num_x) = 1;   % Cell binds to surface
                    Free_Sticky_Cells = Free_Sticky_Cells - 1;  % Cell leaves fluid
                    
                end
                
            %%%%% Die %%%%%
            elseif rnd_act_choice_para == 3 && rand(1) < P_d
                
                Free_Sticky_Cells = Free_Sticky_Cells - 1;  % Cell dies
                
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && Free_Sticky_Cells + Free_Non_Sticky_Cells 
< K && rand(1) <= R
                
                Free_Sticky_Cells = Free_Sticky_Cells + 1;  % Cell divides
                
            end
            
        %%%%%%% Pick a free nonsticky cell (if there aren't any it can't pick one)
        %%%%%%%
        elseif Free_Sticky_Cells < rnd_cell_choice_para && rnd_cell_choice_para <= 
Free_Sticky_Cells + Free_Non_Sticky_Cells
            
            %%%%% Migrate L --> S %%%%%
            if rnd_act_choice_para == 1 && rand(1) < P_m
                
                % Choose a site to bind to, not counting the border of ghost cells
                % surrounding the true sites.
                Site_Num_x = randi([2,GxFull-1],1);
                Site_Num_y = randi([2,GyFull-1],1);
                
                % Check that the proposed site is empty, check the parity of the row and
                % check for the presence of sticky cells in neighbouring sites.
                if Binding_Sites(Site_Num_y,Site_Num_x) == 0 && mod(Site_Num_y,2) == 1 && 
sum([Binding_Sites(Site_Num_y-1,Site_Num_x),    Binding_Sites(Site_Num_y+1,
Site_Num_x),...
                                                                                               
Binding_Sites(Site_Num_y,Site_Num_x-1),    Binding_Sites(Site_Num_y,Site_Num_x+1),...
                                                                                               
Binding_Sites(Site_Num_y-1,Site_Num_x+1),  Binding_Sites(Site_Num_y+1,Site_Num_x+1)] == 
1) >= 1 ||... % Odd row (counting ghost rows)
                   Binding_Sites(Site_Num_y,Site_Num_x) == 0 && mod(Site_Num_y,2) == 0 && 
sum([Binding_Sites(Site_Num_y-1,Site_Num_x),    Binding_Sites(Site_Num_y+1,
Site_Num_x),...
                                                                                               
Binding_Sites(Site_Num_y,Site_Num_x-1),    Binding_Sites(Site_Num_y,Site_Num_x+1),...
                                                                                               
Binding_Sites(Site_Num_y-1,Site_Num_x-1),  Binding_Sites(Site_Num_y+1,Site_Num_x-1)] == 
1) >= 1       % Even row (counting ghost rows)
                    
                    Binding_Sites(Site_Num_y,Site_Num_x) = 2;          % Cell binds to 



13/11/21 15:42 GestelNowakModel.m 4 of 13

surface
                    Free_Non_Sticky_Cells = Free_Non_Sticky_Cells - 1; % Cell leaves 
fluid
                    
                end
                
            %%%%% Die %%%%%
            elseif rnd_act_choice_para == 3 && rand(1) < P_d
                
                Free_Non_Sticky_Cells = Free_Non_Sticky_Cells - 1;  % Cell dies
                
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && Free_Sticky_Cells + Free_Non_Sticky_Cells 
< K && rand(1) <= D
                
                Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1;  % Cell divides
                
            end
            
        %%%%%%% Pick a bound sticky cell (if there aren't any it can't pick one)
        %%%%%%%
        elseif Free_Sticky_Cells + Free_Non_Sticky_Cells < rnd_cell_choice_para && 
rnd_cell_choice_para <= Free_Sticky_Cells + Free_Non_Sticky_Cells + Sticky_Surface_Cells
            
            %%%%% Die %%%%%
            if rnd_act_choice_para == 3 && rand(1) < P_d
                
                % Pick a sticky cell
                Sticky_Cell_Indices = find(Binding_Sites==1);                                   
% Entry number in Binding Site array
                [Sticky_Cell_Indices_y,Sticky_Cell_Indices_x] = find(Binding_Sites==1);         
% x and y indices of entry
                Sticky_Cell_Index_Choice = randi(length(Sticky_Cell_Indices),1);                
% Choose a sticky cell from amongst those available (recording its index)
                Sticky_Cell_Choice_x_coord = Sticky_Cell_Indices_x
(Sticky_Cell_Index_Choice);   % Find the x coordinate/index of the chosen cell
                Sticky_Cell_Choice_y_coord = Sticky_Cell_Indices_y
(Sticky_Cell_Index_Choice);   % Find the y coordinate/index of the chosen cell
                
                % Kill it
                Binding_Sites(Sticky_Cell_Indices(Sticky_Cell_Index_Choice)) = 0;
                
                % Identify neighbouring Non-Sticky Cells which do not posses
                % other Sticky neighbours and release them into the fluid.
                
                % Note the coordinates of the sites surrounding the sticky
                % cell
                if mod(Sticky_Cell_Choice_y_coord,2) == 1     % If the sticky cell is in 
an odd row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
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1;1;1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];
                    
                elseif mod(Sticky_Cell_Choice_y_coord,2) == 0 % If the sticky cell is in 
an even row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
1;-1;-1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];
                    
                end
                
                
               % Identify which of the neighbouring sites contain
               % Non-Sticky Cells
                Non_Sticky_Cell_Presence_Vec = zeros(6,1);
                
                for j = 1:6
                    
                    Non_Sticky_Cell_Presence_Vec(j) = Binding_Sites
(Sticky_Neighbourhood_y_coord(j),Sticky_Neighbourhood_x_coord(j))==2;
                    
                end
                
                Non_Sticky_Neighbour_Cell_Indices = find
(Non_Sticky_Cell_Presence_Vec==1); % Indices of sites containing Non-Sticky Cells
                
                Non_Sticky_Neighbour_Cell_x_coord = Sticky_Neighbourhood_x_coord
(Non_Sticky_Neighbour_Cell_Indices); % x-coordinates of sites containing Non-Sticky Cells
                Non_Sticky_Neighbour_Cell_y_coord = Sticky_Neighbourhood_y_coord
(Non_Sticky_Neighbour_Cell_Indices); % y-coordinates of sites containing Non-Sticky Cells
                
                Num_Non_Sticky_Neighbour_Cells = length
(Non_Sticky_Neighbour_Cell_x_coord);
                
                for j = 1:Num_Non_Sticky_Neighbour_Cells
                    
                    % If there are no sticky neighbour cells then detach and return to 
liquid.
                    if mod(Non_Sticky_Neighbour_Cell_y_coord(j),2) == 1 && sum
([Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord
(j)),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)),...
                                                                                
Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),Non_Sticky_Neighbour_Cell_x_coord(j)
-1),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),
Non_Sticky_Neighbour_Cell_x_coord(j)+1),...
                                                                                
Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord(j)
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+1),  Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)+1)] == 1) == 0 ||... % Odd row (counting ghost rows)
                       mod(Non_Sticky_Neighbour_Cell_y_coord(j),2) == 0 && sum
([Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord
(j)),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)),...
                                                                                
Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),Non_Sticky_Neighbour_Cell_x_coord(j)
-1),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),
Non_Sticky_Neighbour_Cell_x_coord(j)+1),...
                                                                                
Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord(j)
-1),  Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)-1)] == 1) == 0       % Even row (counting ghost 
rows)
                        
                        Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),
Non_Sticky_Neighbour_Cell_x_coord(j)) = 0; % Detach Cell
                        Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1; % Return Cell 
to Fluid Compartment
                        
                    end
                    
                end
            
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && rand(1) <= R
                
                % Pick a sticky cell
                Sticky_Cell_Indices = find(Binding_Sites==1);                                   
% Entry number in Binding Site array
                [Sticky_Cell_Indices_y,Sticky_Cell_Indices_x] = find(Binding_Sites==1);         
% x and y indices of entry
                Sticky_Cell_Index_Choice = randi(length(Sticky_Cell_Indices),1);                
% Choose a sticky cell from amongst those available (recording its index)
                Sticky_Cell_Choice_x_coord = Sticky_Cell_Indices_x
(Sticky_Cell_Index_Choice);   % Find the x coordinate/index of the chosen cell
                Sticky_Cell_Choice_y_coord = Sticky_Cell_Indices_y
(Sticky_Cell_Index_Choice);   % Find the y coordinate/index of the chosen cell
                
                % Note the coordinates of the sites surrounding the sticky
                % cell
                if mod(Sticky_Cell_Choice_y_coord,2) == 1     % If the sticky cell is in 
an odd row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
1;1;1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];
                    
                elseif mod(Sticky_Cell_Choice_y_coord,2) == 0 % If the sticky cell is in 
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an even row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
1;-1;-1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];
                    
                end
                
               % Remove any coordinates from the ghost border region
               
               Rejected_x_Coord_indices_1 = find(Sticky_Neighbourhood_x_coord==1); % Find 
ghost points on the left and right edges
               Rejected_x_Coord_indices_2 = find(Sticky_Neighbourhood_x_coord==GxFull);
               
               Rejected_y_Coord_indices_1 = find(Sticky_Neighbourhood_y_coord==1); % Find 
ghost points on the top and bottom edges
               Rejected_y_Coord_indices_2 = find(Sticky_Neighbourhood_y_coord==GyFull);
               
               % Collect all rejected indices and remove repetitions
               All_Rejected_Coord_indices = unique([Rejected_x_Coord_indices_1;
Rejected_x_Coord_indices_2;Rejected_y_Coord_indices_1;Rejected_y_Coord_indices_2]);
               
               Sticky_Neighbourhood_x_coord(All_Rejected_Coord_indices) = []; % Strip the 
coordinate vectors of ghost points
               Sticky_Neighbourhood_y_coord(All_Rejected_Coord_indices) = [];
               
               Num_Valid_Neighbourhood_Coords = length(Sticky_Neighbourhood_x_coord);
                
               % Identify which of the neighbouring sites are empty
                Empty_Cell_Presence_Vec = zeros(Num_Valid_Neighbourhood_Coords,1);
                
                for j = 1:Num_Valid_Neighbourhood_Coords
                    
                    Empty_Cell_Presence_Vec(j) = Binding_Sites
(Sticky_Neighbourhood_y_coord(j),Sticky_Neighbourhood_x_coord(j))==0;
                    
                end
                
                Empty_Neighbour_Indices = find(Empty_Cell_Presence_Vec==1); % Indices of 
empty sites
                
                Num_Empty_Neighbour_Sites = length(Empty_Neighbour_Indices);
                
                % 4 Cases: 1. Neighbour sites and fluid free, 2. Only
                % neighbour sites free, 3. Only fluid free, 4. Nothing free
                % (in this last case do nothing).
                 
                if Num_Empty_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 1: Neighbour sites and fluid free.
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                    Chosen_Daughter_Site_Num = randi(Num_Empty_Neighbour_Sites+1,1); % 
Choose a site or the fluid for the daughter cell
                    
                    if Chosen_Daughter_Site_Num == Num_Empty_Neighbour_Sites + 1 % Cell 
goes to the fluid
                        
                        Free_Sticky_Cells = Free_Sticky_Cells + 1; % Sticky daughter cell 
is released into the fluid.
                        
                    else % Cell goes to a neighbouring site
                       
                    Chosen_Daughter_Site_Index = Empty_Neighbour_Indices
(Chosen_Daughter_Site_Num);          % Find the index of the site
                    Chosen_Daughter_Site_x_coord = Sticky_Neighbourhood_x_coord
(Chosen_Daughter_Site_Index); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Sticky_Neighbourhood_y_coord
(Chosen_Daughter_Site_Index);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 1; % Sticky daughter cell is released into neighbouring 
empty site.
                        
                    end
                    
                elseif Num_Empty_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells == K % Case 2: Only neighbour sites free.
                    
                    Chosen_Daughter_Site_Num = randi(Num_Empty_Neighbour_Sites,1);                           
% Choose a site for the daughter cell
                    Chosen_Daughter_Site_Index = Empty_Neighbour_Indices
(Chosen_Daughter_Site_Num);          % Find the index of the site
                    Chosen_Daughter_Site_x_coord = Sticky_Neighbourhood_x_coord
(Chosen_Daughter_Site_Index); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Sticky_Neighbourhood_y_coord
(Chosen_Daughter_Site_Index);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 1; % Sticky daughter cell is released into neighbouring 
empty site.
                    
                elseif Num_Empty_Neighbour_Sites == 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 3: Only fluid free.
                   
                    Free_Sticky_Cells = Free_Sticky_Cells + 1; % Sticky daughter cell is 
released into the fluid.
                    
                end
                
                
            end
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        %%%%%%% Pick a bound non-sticky cell (if there aren't any it can't pick one)
        %%%%%%%
        elseif Free_Sticky_Cells + Free_Non_Sticky_Cells + Sticky_Surface_Cells < 
rnd_cell_choice_para && rnd_cell_choice_para <= Free_Sticky_Cells + Free_Non_Sticky_Cells 
+ Sticky_Surface_Cells + Non_Sticky_Surface_Cells
            
            %%%%% Die %%%%%
            if rnd_act_choice_para == 3 && rand(1) < P_d
                
                % Pick a Non-Sticky Cell
                Non_Sticky_Cell_Indices = find(Binding_Sites==2);
                Non_Sticky_Cell_Index_Choice = randi(length(Non_Sticky_Cell_Indices),1);
                % Kill it
                Binding_Sites(Non_Sticky_Cell_Indices(Non_Sticky_Cell_Index_Choice)) = 0;
                
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && rand(1) <= D
                
                % Pick a non-sticky cell
                Non_Sticky_Cell_Indices = find(Binding_Sites==2);                                           
% Entry number in Binding Site array
                [Non_Sticky_Cell_Indices_y,Non_Sticky_Cell_Indices_x] = find
(Binding_Sites==2);             % x and y indices of entry
                Non_Sticky_Cell_Index_Choice = randi(length(Non_Sticky_Cell_Indices),1);                    
% Choose a non-sticky cell from amongst those available (recording its index)
                Non_Sticky_Cell_Choice_x_coord = Non_Sticky_Cell_Indices_x
(Non_Sticky_Cell_Index_Choice);   % Find the x coordinate/index of the chosen cell
                Non_Sticky_Cell_Choice_y_coord = Non_Sticky_Cell_Indices_y
(Non_Sticky_Cell_Index_Choice);   % Find the y coordinate/index of the chosen cell
                
                % Note the coordinates of the sites surrounding the non-sticky
                % cell
                if mod(Non_Sticky_Cell_Choice_y_coord,2) == 1     % If the non-sticky 
cell is in an odd row (counting ghost rows)
                    
                    Non_Sticky_Neighbourhood_x_coord = Non_Sticky_Cell_Choice_x_coord + 
[0;0;-1;1;1;1];
                    Non_Sticky_Neighbourhood_y_coord = Non_Sticky_Cell_Choice_y_coord + 
[-1;1;0;0;-1;1];
                    
                elseif mod(Non_Sticky_Cell_Choice_y_coord,2) == 0 % If the non-sticky 
cell is in an even row (counting ghost rows)
                    
                    Non_Sticky_Neighbourhood_x_coord = Non_Sticky_Cell_Choice_x_coord + 
[0;0;-1;1;-1;-1];
                    Non_Sticky_Neighbourhood_y_coord = Non_Sticky_Cell_Choice_y_coord + 
[-1;1;0;0;-1;1];
                    
                end
                
               % Remove any coordinates from the ghost border region
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               Rejected_x_Coord_indices_1 = find(Non_Sticky_Neighbourhood_x_coord==1); % 
Find ghost points on the left and right edges
               Rejected_x_Coord_indices_2 = find
(Non_Sticky_Neighbourhood_x_coord==GxFull);
               
               Rejected_y_Coord_indices_1 = find(Non_Sticky_Neighbourhood_y_coord==1); % 
Find ghost points on the top and bottom edges
               Rejected_y_Coord_indices_2 = find
(Non_Sticky_Neighbourhood_y_coord==GyFull);
               
               % Collect all rejected indices and remove repetitions
               All_Rejected_Coord_indices = unique([Rejected_x_Coord_indices_1;
Rejected_x_Coord_indices_2;Rejected_y_Coord_indices_1;Rejected_y_Coord_indices_2]);
               
               Non_Sticky_Neighbourhood_x_coord(All_Rejected_Coord_indices) = []; % Strip 
the coordinate vectors of ghost points
               Non_Sticky_Neighbourhood_y_coord(All_Rejected_Coord_indices) = [];
               
               Num_Valid_Neighbourhood_Coords = length(Non_Sticky_Neighbourhood_x_coord);
                
               % Identify which of the neighbouring sites are empty
                Empty_Cell_Presence_Vec = zeros(Num_Valid_Neighbourhood_Coords,1);
                
                for j = 1:Num_Valid_Neighbourhood_Coords
                    
                    Empty_Cell_Presence_Vec(j) = Binding_Sites
(Non_Sticky_Neighbourhood_y_coord(j),Non_Sticky_Neighbourhood_x_coord(j))==0;
                    
                end
                
                Empty_Neighbour_Indices = find(Empty_Cell_Presence_Vec==1); % Indices of 
empty sites
                
                Neighbour_Site_x_coords = Non_Sticky_Neighbourhood_x_coord
(Empty_Neighbour_Indices); % Find the coordinates of the valid empty neighbouring sites
                Neighbour_Site_y_coords = Non_Sticky_Neighbourhood_y_coord
(Empty_Neighbour_Indices);
                
                Num_Empty_Neighbour_Sites = length(Empty_Neighbour_Indices); % The number 
of valid empty neighbouring sites
            
                Sites_with_Sticky_Neighbours = zeros(1,6);
                
                for j = 1:Num_Empty_Neighbour_Sites
                    
                    % Remove those entries which don't have any sticky neighbours.
                    if mod(Neighbour_Site_y_coords(j),2) == 1 && sum([Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)),    Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)),...
                                                                      Binding_Sites
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(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)-1),    Binding_Sites
(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)+1),...
                                                                      Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)+1),  Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)+1)] == 1) > 0 ||... % Odd row 
(counting ghost rows)
                       mod(Neighbour_Site_y_coords(j),2) == 0 && sum([Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)),    Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)),...
                                                                      Binding_Sites
(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)-1),    Binding_Sites
(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)+1),...
                                                                      Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)-1),  Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)-1)] == 1) > 0       % Even row 
(counting ghost rows)
                        
                       Sites_with_Sticky_Neighbours(j) = 1;
                        
                    end
                    
                end
                
                Sites_with_Sticky_Neighbours_Indices = find
(Sites_with_Sticky_Neighbours==1);
                
                Neighbour_Site_x_coords = Neighbour_Site_x_coords
(Sites_with_Sticky_Neighbours_Indices);
                Neighbour_Site_y_coords = Neighbour_Site_y_coords
(Sites_with_Sticky_Neighbours_Indices);
                
                Num_Valid_Neighbour_Sites = length(Neighbour_Site_x_coords); % The number 
of valid empty neighbouring sites with sticky neighbours
                
                % 4 Cases: 1. Neighbour sites and fluid free, 2. Only
                % neighbour sites free, 3. Only fluid free, 4. Nothing free
                % (in this last case do nothing).
                 
                if Num_Valid_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 1: Neighbour sites and fluid free.
                
                    Chosen_Daughter_Site_Num = randi(Num_Valid_Neighbour_Sites+1,1); % 
Choose a site or the fluid for the daughter cell
                    
                    if Chosen_Daughter_Site_Num == Num_Valid_Neighbour_Sites + 1 % Cell 
goes to the fluid
                        
                        Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1; % Non-sticky 
daughter cell is released into the fluid.
                        
                    else % Cell goes to a neighbouring site
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                    Chosen_Daughter_Site_x_coord = Neighbour_Site_x_coords
(Chosen_Daughter_Site_Num); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Neighbour_Site_y_coords
(Chosen_Daughter_Site_Num);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 2; % Nonsticky daughter cell is released into 
neighbouring empty site.
                        
                    end
                    
                elseif Num_Valid_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells == K % Case 2: Only neighbour sites free.
                    
                    Chosen_Daughter_Site_Num = randi(Num_Valid_Neighbour_Sites,1);                    
% Choose a site for the daughter cell
                    Chosen_Daughter_Site_x_coord = Neighbour_Site_x_coords
(Chosen_Daughter_Site_Num); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Neighbour_Site_y_coords
(Chosen_Daughter_Site_Num);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 2; % Non-sticky daughter cell is released into 
neighbouring empty site.
                    
                elseif Num_Valid_Neighbour_Sites == 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 3: Only fluid free.
                   
                    Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1; % Non-sticky 
daughter cell is released into the fluid.
                    
                end
                
            end
                
        end
        
        % Remove cells from the fluid if their number exceeds the carrying
        % capacity. Remove cells randomly, with probability in proportion
        % to the fracion of cells that are sticky/non-sticky.
        while Free_Sticky_Cells + Free_Non_Sticky_Cells > K
            
            if rand(1) < Free_Sticky_Cells/(Free_Sticky_Cells + Free_Non_Sticky_Cells)
                
                Free_Sticky_Cells = Free_Sticky_Cells - 1;
                
            else
                
                Free_Non_Sticky_Cells = Free_Non_Sticky_Cells - 1;
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            end
            
        end
            
        % Counting Cells on the Surface
        Sticky_Surface_Cells     = length(find(Binding_Sites==1));
        Non_Sticky_Surface_Cells = length(find(Binding_Sites==2));
        
        % Total Number of Cells
        Tot_Num_Cells            = Free_Sticky_Cells + Free_Non_Sticky_Cells...
            + Sticky_Surface_Cells + Non_Sticky_Surface_Cells;
        
        % Record True Binding Sites every Save_int-th iteration
        if mod(i,Save_int) == 0
            
            Binding_Sites_Record(:,:,1+i/Save_int) = Binding_Sites(2:(GyFull-1),2:
(GxFull-1)); % 1+ as the first entry should be the initial condition.
            
        end
        
        % Update cell counts
        Free_Sticky_Cells_Record(i)        = Free_Sticky_Cells;
        Free_Non_Sticky_Cells_Record(i)    = Free_Non_Sticky_Cells;
        Sticky_Surface_Cells_Record(i)     = Sticky_Surface_Cells;
        Non_Sticky_Surface_Cells_Record(i) = Non_Sticky_Surface_Cells;
        
    end
        
end
 
 
 
 



Appendix Four
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function [Free_Sticky_Cells_Record, Dead_Free_Sticky_Cells_Record, 
Free_Non_Sticky_Cells_Record, Dead_Free_Non_Sticky_Cells_Record, 
Sticky_Surface_Cells_Record, Dead_Sticky_Surface_Cells_Record, 
Non_Sticky_Surface_Cells_Record, Dead_Non_Sticky_Surface_Cells_Record] = 
GestelNowakModel_DeadCells(T, D, q, R, p, P_m, P_d, K, G, Free_Sticky_Cells_init, 
Free_Non_Sticky_Cells_init);
%% Gestel Novak Model
% Created by Sophie Mountcastle ( )
% Adapted from code by Dr Paul Roberts ( )
 
% This function models two species of bacteria binding to a 2D surface. The
% two species start within a liquid above the surface. Based on the input
% parameters chosen, upon each iteration a cell can perform one action;
% either divide, die, or migrate to the surface. The two species are known
% as 'Sticky' and 'Non-sticky' bacteria. Sticky bacteria can migrate to any
% available space on the surface. Non-sticky bacteria can only migrate to a
% space on the surface directly neighbouring a sticky cell.
 
%This code is designed to represent the number of bacteria over a single or
%small number of epithelial cells (i.e. a 10x10 Grid is approximately 10x10 
%microns).
 
%% Input parameters for function
 
%T = 4*10^5; %number of time steps/iterations (e.g. 4*10^5)
%D = 0.5; %division rate of non-sticky cell (must be between 0 and 1)
%q = 1; %a function of D (e.g. for p = 1:T, division rate can be sin(p). Set to 1 if not 
using a function.)
%R = 0.5; %division rate of sticky cell (must be between 0 and 1)
%p = 1; %a function of R (e.g. for p = 1:T, division rate can be sin(p). Set to 1 if not 
using a function.)
%P_m = 0.75; %migration rate of cell: liquid to surface (must be between 0 and 1)
%P_d = 0.1; %death rate (must be between 0 and 1)
%K = 5000; %carrying capacity - max number of cells there can be in the liquid (e.g. 
5*10^3)
%G = 100; %grid size - length of one side of 2D surface (e.g. 100 or 10 - choose an even 
value for g)
%Free_Sticky_Cells_init = 100; %number of starting sticky cells in liquid (e.g. 10^2)
%Free_Non_Sticky_Cells_init = 100; %number of starting non-sticky cells in liquid (e.g. 
10^2)
Dead_Free_Sticky_Cells_init = 0;
Dead_Free_Non_Sticky_Cells_init = 0;
 
% Grid size
GxFull         = G + 2; % Embed the true grid in a larger grid with empty cells around 
the periphery (1 column either side).
GyFull         = G + 2; % Embed the true grid in a larger grid with empty cells around 
the periphery (1 row above and below).
Num_Sites      = G^2;
Num_Sites_Full = GxFull*GyFull;
% We must enlarge the grid with a border of ghost cells so that the CA code
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% can search neighbouring cells for any cell on the true grid. The ghost
% cells will remain empty for all time.
 
 
%% Initial Conditions
 
Binding_Sites_init = zeros(GyFull,GxFull);
% All the cells are in the fluid compartment initially, such that all binding sites
% on the surface are empty.
 
% Save Interval
Save_int  = T/10; % (4*10^3) (T/10)
Num_Saves = T/Save_int;
 
% Solution Vectors and Matrices
Free_Sticky_Cells           = Free_Sticky_Cells_init;
Dead_Free_Sticky_Cells      = Dead_Free_Sticky_Cells_init;
Free_Non_Sticky_Cells       = Free_Non_Sticky_Cells_init;
Dead_Free_Non_Sticky_Cells  = Dead_Free_Non_Sticky_Cells_init;
Binding_Sites               = Binding_Sites_init; % Enlarged matrix
 
Free_Sticky_Cells_Record             = [Free_Sticky_Cells_init;zeros(T,1)];
Dead_Free_Sticky_Cells_Record        = [Dead_Free_Sticky_Cells_init;zeros(T,1)];
Free_Non_Sticky_Cells_Record         = [Free_Non_Sticky_Cells_init;zeros(T,1)];
Dead_Free_Non_Sticky_Cells_Record    = [Dead_Free_Non_Sticky_Cells_init;zeros(T,1)];
Sticky_Surface_Cells_Record          = [0;zeros(T,1)];
Dead_Sticky_Surface_Cells_Record     = [0;zeros(T,1)];
Non_Sticky_Surface_Cells_Record      = [0;zeros(T,1)];
Dead_Non_Sticky_Surface_Cells_Record = [0;zeros(T,1)];
Binding_Sites_Record                 = zeros(G,G,Num_Saves+1); % Matrices containing true 
sites only
 
 
% Cell Counts
% Counting Cells on the Surface
Sticky_Surface_Cells          = 0;
Dead_Sticky_Surface_Cells     = 0;
Non_Sticky_Surface_Cells      = 0;
Dead_Non_Sticky_Surface_Cells = 0;
 
% Total Number of Cells
Tot_Num_Cells = Free_Sticky_Cells + Dead_Free_Sticky_Cells + Free_Non_Sticky_Cells...
    + Dead_Free_Non_Sticky_Cells + Sticky_Surface_Cells + Dead_Sticky_Surface_Cells...
    + Non_Sticky_Surface_Cells + Dead_Non_Sticky_Surface_Cells;
 
% Total Number of Live Cells
Tot_Num_Live_Cells = Free_Sticky_Cells + Free_Non_Sticky_Cells + Sticky_Surface_Cells...
    + Non_Sticky_Surface_Cells;
 
% Total Number of Dead Cells
Tot_Num_Dead_Cells = Dead_Free_Sticky_Cells + Dead_Free_Non_Sticky_Cells...
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    + Dead_Sticky_Surface_Cells + Dead_Non_Sticky_Surface_Cells;
 
%% 
%%% Cellular Automata Loop
 
for i = 2:T+1 % + 1 as i = 1 is t = i-1.
    
    if Tot_Num_Live_Cells > 0 % Come out of the loop when no live cells are left.
        
        % Pick a cell at random
        rnd_cell_choice_para = randi(Tot_Num_Live_Cells); %only live cells can perform an 
action
        
        % Decide which of 4 actions to take (migration in either direction counts as 1 
action)
        % 1. Migrate (L --> S or S --> L), 2. Differentiate, 3. Die, 4. Divide.
        rnd_act_choice_para = randi(4,1);
        
        
        %%%%%%% Pick a free sticky cell (if there aren't any it can't pick one)
        %%%%%%%
        if rnd_cell_choice_para <= Free_Sticky_Cells
            
            %%%%% Migrate L --> S %%%%%
            if rnd_act_choice_para == 1 && rand(1) < P_m
                
                % Choose a site to bind to, not counting the border of ghost cells
                % surrounding the true sites.
                Site_Num_x = randi([2,GxFull-1],1);
                Site_Num_y = randi([2,GyFull-1],1);
                
                if Binding_Sites(Site_Num_y,Site_Num_x) == 0 % Check the site is empty
                    
                    Binding_Sites(Site_Num_y,Site_Num_x) = 1;   % Cell binds to surface
                    Free_Sticky_Cells = Free_Sticky_Cells - 1;  % Cell leaves fluid
                    
                end
                
            %%%%% Die %%%%%
            elseif rnd_act_choice_para == 3 && rand(1) < P_d
                
                Free_Sticky_Cells = Free_Sticky_Cells - 1;  % Cell dies
                Dead_Free_Sticky_Cells = Dead_Free_Sticky_Cells + 1;
                
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells...
                    + Dead_Free_Sticky_Cells + Dead_Free_Non_Sticky_Cells < K && rand(1) 
<= R(p)
                
                Free_Sticky_Cells = Free_Sticky_Cells + 1;  % Cell divides
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            end
            
        %%%%%%% Pick a free nonsticky cell (if there aren't any it can't pick one)
        %%%%%%%
        elseif Free_Sticky_Cells < rnd_cell_choice_para && rnd_cell_choice_para <= 
Free_Sticky_Cells + Free_Non_Sticky_Cells
            
            %%%%% Migrate L --> S %%%%%
            if rnd_act_choice_para == 1 && rand(1) < P_m
                
                % Choose a site to bind to, not counting the border of ghost cells
                % surrounding the true sites.
                Site_Num_x = randi([2,GxFull-1],1);
                Site_Num_y = randi([2,GyFull-1],1);
                
                % Check that the proposed site is empty, check the parity of the row and
                % check for the presence of sticky cells in neighbouring sites.
                if Binding_Sites(Site_Num_y,Site_Num_x) == 0 && mod(Site_Num_y,2) == 1 && 
sum([Binding_Sites(Site_Num_y-1,Site_Num_x),    Binding_Sites(Site_Num_y+1,
Site_Num_x),...
                                                                                               
Binding_Sites(Site_Num_y,Site_Num_x-1),    Binding_Sites(Site_Num_y,Site_Num_x+1),...
                                                                                               
Binding_Sites(Site_Num_y-1,Site_Num_x+1),  Binding_Sites(Site_Num_y+1,Site_Num_x+1)] == 
1) >= 1 ||... % Odd row (counting ghost rows)
                   Binding_Sites(Site_Num_y,Site_Num_x) == 0 && mod(Site_Num_y,2) == 0 && 
sum([Binding_Sites(Site_Num_y-1,Site_Num_x),    Binding_Sites(Site_Num_y+1,
Site_Num_x),...
                                                                                               
Binding_Sites(Site_Num_y,Site_Num_x-1),    Binding_Sites(Site_Num_y,Site_Num_x+1),...
                                                                                               
Binding_Sites(Site_Num_y-1,Site_Num_x-1),  Binding_Sites(Site_Num_y+1,Site_Num_x-1)] == 
1) >= 1       % Even row (counting ghost rows)
                    
                    Binding_Sites(Site_Num_y,Site_Num_x) = 2;          % Cell binds to 
surface
                    Free_Non_Sticky_Cells = Free_Non_Sticky_Cells - 1; % Cell leaves 
fluid
                    
                end
                
            %%%%% Die %%%%%
            elseif rnd_act_choice_para == 3 && rand(1) < P_d
                
                Free_Non_Sticky_Cells = Free_Non_Sticky_Cells - 1;  % Cell dies
                Dead_Free_Non_Sticky_Cells = Dead_Free_Non_Sticky_Cells +1;
                
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells...
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                    + Dead_Free_Sticky_Cells + Dead_Free_Non_Sticky_Cells < K && rand(1) 
<= D(q)
                
                Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1;  % Cell divides
                
            end
            
        %%%%%%% Pick a bound sticky cell (if there aren't any it can't pick one)
        %%%%%%%
        elseif Free_Sticky_Cells + Free_Non_Sticky_Cells < rnd_cell_choice_para && 
rnd_cell_choice_para <= Free_Sticky_Cells + Free_Non_Sticky_Cells + Sticky_Surface_Cells
            
            %%%%% Die %%%%%
            if rnd_act_choice_para == 3 && rand(1) < P_d
                
                % Pick a sticky cell
                Sticky_Cell_Indices = find(Binding_Sites==1);                                   
% Entry number in Binding Site array
                [Sticky_Cell_Indices_y,Sticky_Cell_Indices_x] = find(Binding_Sites==1);         
% x and y indices of entry
                Sticky_Cell_Index_Choice = randi(length(Sticky_Cell_Indices),1);                
% Choose a sticky cell from amongst those available (recording its index)
                Sticky_Cell_Choice_x_coord = Sticky_Cell_Indices_x
(Sticky_Cell_Index_Choice);   % Find the x coordinate/index of the chosen cell
                Sticky_Cell_Choice_y_coord = Sticky_Cell_Indices_y
(Sticky_Cell_Index_Choice);   % Find the y coordinate/index of the chosen cell
                
                % Kill it
                Binding_Sites(Sticky_Cell_Indices(Sticky_Cell_Index_Choice)) = 3; %cell 
stays bound but dies
                
                % Identify neighbouring Non-Sticky Cells which do not posses
                % other Sticky neighbours and release them into the fluid.
                
                % Note the coordinates of the sites surrounding the sticky
                % cell
                if mod(Sticky_Cell_Choice_y_coord,2) == 1     % If the sticky cell is in 
an odd row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
1;1;1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];
                    
                elseif mod(Sticky_Cell_Choice_y_coord,2) == 0 % If the sticky cell is in 
an even row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
1;-1;-1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];



13/11/21 15:47 GestelNowakModel_DeadCells.m 6 of 14

                    
                end
                
                
               % Identify which of the neighbouring sites contain
               % Non-Sticky Cells
                Non_Sticky_Cell_Presence_Vec = zeros(6,1);
                
                for j = 1:6
                    
                    Non_Sticky_Cell_Presence_Vec(j) = Binding_Sites
(Sticky_Neighbourhood_y_coord(j),Sticky_Neighbourhood_x_coord(j))==2;
                    
                end
                
                Non_Sticky_Neighbour_Cell_Indices = find
(Non_Sticky_Cell_Presence_Vec==1); % Indices of sites containing Non-Sticky Cells
                
                Non_Sticky_Neighbour_Cell_x_coord = Sticky_Neighbourhood_x_coord
(Non_Sticky_Neighbour_Cell_Indices); % x-coordinates of sites containing Non-Sticky Cells
                Non_Sticky_Neighbour_Cell_y_coord = Sticky_Neighbourhood_y_coord
(Non_Sticky_Neighbour_Cell_Indices); % y-coordinates of sites containing Non-Sticky Cells
                
                Num_Non_Sticky_Neighbour_Cells = length
(Non_Sticky_Neighbour_Cell_x_coord);
                
                for j = 1:Num_Non_Sticky_Neighbour_Cells
                    
                    % If there are no sticky neighbour cells then detach and return to 
liquid.
                    if mod(Non_Sticky_Neighbour_Cell_y_coord(j),2) == 1 && sum
([Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord
(j)),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)),...
                                                                                
Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),Non_Sticky_Neighbour_Cell_x_coord(j)
-1),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),
Non_Sticky_Neighbour_Cell_x_coord(j)+1),...
                                                                                
Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord(j)
+1),  Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)+1)] == 1) == 0 ||... % Odd row (counting ghost rows)
                       mod(Non_Sticky_Neighbour_Cell_y_coord(j),2) == 0 && sum
([Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord
(j)),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)),...
                                                                                
Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),Non_Sticky_Neighbour_Cell_x_coord(j)
-1),    Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),
Non_Sticky_Neighbour_Cell_x_coord(j)+1),...
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Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)-1,Non_Sticky_Neighbour_Cell_x_coord(j)
-1),  Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j)+1,
Non_Sticky_Neighbour_Cell_x_coord(j)-1)] == 1) == 0       % Even row (counting ghost 
rows)
                        
                        Binding_Sites(Non_Sticky_Neighbour_Cell_y_coord(j),
Non_Sticky_Neighbour_Cell_x_coord(j)) = 0; % Detach Cell
                        Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1; % Return Cell 
to Fluid Compartment
                        
                    end
                    
                end
            
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && rand(1) <= R(p)
                
                % Pick a sticky cell
                Sticky_Cell_Indices = find(Binding_Sites==1);                                   
% Entry number in Binding Site array
                [Sticky_Cell_Indices_y,Sticky_Cell_Indices_x] = find(Binding_Sites==1);         
% x and y indices of entry
                Sticky_Cell_Index_Choice = randi(length(Sticky_Cell_Indices),1);                
% Choose a sticky cell from amongst those available (recording its index)
                Sticky_Cell_Choice_x_coord = Sticky_Cell_Indices_x
(Sticky_Cell_Index_Choice);   % Find the x coordinate/index of the chosen cell
                Sticky_Cell_Choice_y_coord = Sticky_Cell_Indices_y
(Sticky_Cell_Index_Choice);   % Find the y coordinate/index of the chosen cell
                
                % Note the coordinates of the sites surrounding the sticky
                % cell
                if mod(Sticky_Cell_Choice_y_coord,2) == 1     % If the sticky cell is in 
an odd row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
1;1;1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];
                    
                elseif mod(Sticky_Cell_Choice_y_coord,2) == 0 % If the sticky cell is in 
an even row (counting ghost rows)
                    
                    Sticky_Neighbourhood_x_coord = Sticky_Cell_Choice_x_coord + [0;0;-1;
1;-1;-1];
                    Sticky_Neighbourhood_y_coord = Sticky_Cell_Choice_y_coord + [-1;1;0;
0;-1;1];
                    
                end
                
               % Remove any coordinates from the ghost border region
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               Rejected_x_Coord_indices_1 = find(Sticky_Neighbourhood_x_coord==1); % Find 
ghost points on the left and right edges
               Rejected_x_Coord_indices_2 = find(Sticky_Neighbourhood_x_coord==GxFull);
               
               Rejected_y_Coord_indices_1 = find(Sticky_Neighbourhood_y_coord==1); % Find 
ghost points on the top and bottom edges
               Rejected_y_Coord_indices_2 = find(Sticky_Neighbourhood_y_coord==GyFull);
               
               % Collect all rejected indices and remove repetitions
               All_Rejected_Coord_indices = unique([Rejected_x_Coord_indices_1;
Rejected_x_Coord_indices_2;Rejected_y_Coord_indices_1;Rejected_y_Coord_indices_2]);
               
               Sticky_Neighbourhood_x_coord(All_Rejected_Coord_indices) = []; % Strip the 
coordinate vectors of ghost points
               Sticky_Neighbourhood_y_coord(All_Rejected_Coord_indices) = [];
               
               Num_Valid_Neighbourhood_Coords = length(Sticky_Neighbourhood_x_coord);
                
               % Identify which of the neighbouring sites are empty
                Empty_Cell_Presence_Vec = zeros(Num_Valid_Neighbourhood_Coords,1);
                
                for j = 1:Num_Valid_Neighbourhood_Coords
                    
                    Empty_Cell_Presence_Vec(j) = Binding_Sites
(Sticky_Neighbourhood_y_coord(j),Sticky_Neighbourhood_x_coord(j))==0;
                    
                end
                
                Empty_Neighbour_Indices = find(Empty_Cell_Presence_Vec==1); % Indices of 
empty sites
                
                Num_Empty_Neighbour_Sites = length(Empty_Neighbour_Indices);
                
                % 4 Cases: 1. Neighbour sites and fluid free, 2. Only
                % neighbour sites free, 3. Only fluid free, 4. Nothing free
                % (in this last case do nothing).
                 
                if Num_Empty_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 1: Neighbour sites and fluid free.
                
                    Chosen_Daughter_Site_Num = randi(Num_Empty_Neighbour_Sites+1,1); % 
Choose a site or the fluid for the daughter cell
                    
                    if Chosen_Daughter_Site_Num == Num_Empty_Neighbour_Sites + 1 % Cell 
goes to the fluid
                        
                        Free_Sticky_Cells = Free_Sticky_Cells + 1; % Sticky daughter cell 
is released into the fluid.
                        
                    else % Cell goes to a neighbouring site
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                    Chosen_Daughter_Site_Index = Empty_Neighbour_Indices
(Chosen_Daughter_Site_Num);          % Find the index of the site
                    Chosen_Daughter_Site_x_coord = Sticky_Neighbourhood_x_coord
(Chosen_Daughter_Site_Index); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Sticky_Neighbourhood_y_coord
(Chosen_Daughter_Site_Index);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 1; % Sticky daughter cell is released into neighbouring 
empty site.
                        
                    end
                    
                elseif Num_Empty_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells == K % Case 2: Only neighbour sites free.
                    
                    Chosen_Daughter_Site_Num = randi(Num_Empty_Neighbour_Sites,1);                           
% Choose a site for the daughter cell
                    Chosen_Daughter_Site_Index = Empty_Neighbour_Indices
(Chosen_Daughter_Site_Num);          % Find the index of the site
                    Chosen_Daughter_Site_x_coord = Sticky_Neighbourhood_x_coord
(Chosen_Daughter_Site_Index); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Sticky_Neighbourhood_y_coord
(Chosen_Daughter_Site_Index);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 1; % Sticky daughter cell is released into neighbouring 
empty site.
                    
                elseif Num_Empty_Neighbour_Sites == 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 3: Only fluid free.
                   
                    Free_Sticky_Cells = Free_Sticky_Cells + 1; % Sticky daughter cell is 
released into the fluid.
                    
                end
                
                
            end
            
        %%%%%%% Pick a bound non-sticky cell (if there aren't any it can't pick one)
        %%%%%%%
        elseif Free_Sticky_Cells + Free_Non_Sticky_Cells + Sticky_Surface_Cells < 
rnd_cell_choice_para && rnd_cell_choice_para <= Free_Sticky_Cells + Free_Non_Sticky_Cells 
+ Sticky_Surface_Cells + Non_Sticky_Surface_Cells
            
            %%%%% Die %%%%%
            if rnd_act_choice_para == 3 && rand(1) < P_d
                
                % Pick a Non-Sticky Cell
                Non_Sticky_Cell_Indices = find(Binding_Sites==2);
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                Non_Sticky_Cell_Index_Choice = randi(length(Non_Sticky_Cell_Indices),1);
                % Kill it
                Binding_Sites(Non_Sticky_Cell_Indices(Non_Sticky_Cell_Index_Choice)) = 4;
                
            %%%%% Divide %%%%%
            elseif rnd_act_choice_para == 4 && rand(1) <= D(q)
                
                % Pick a non-sticky cell
                Non_Sticky_Cell_Indices = find(Binding_Sites==2);                                           
% Entry number in Binding Site array
                [Non_Sticky_Cell_Indices_y,Non_Sticky_Cell_Indices_x] = find
(Binding_Sites==2);             % x and y indices of entry
                Non_Sticky_Cell_Index_Choice = randi(length(Non_Sticky_Cell_Indices),1);                    
% Choose a non-sticky cell from amongst those available (recording its index)
                Non_Sticky_Cell_Choice_x_coord = Non_Sticky_Cell_Indices_x
(Non_Sticky_Cell_Index_Choice);   % Find the x coordinate/index of the chosen cell
                Non_Sticky_Cell_Choice_y_coord = Non_Sticky_Cell_Indices_y
(Non_Sticky_Cell_Index_Choice);   % Find the y coordinate/index of the chosen cell
                
                % Note the coordinates of the sites surrounding the non-sticky
                % cell
                if mod(Non_Sticky_Cell_Choice_y_coord,2) == 1     % If the non-sticky 
cell is in an odd row (counting ghost rows)
                    
                    Non_Sticky_Neighbourhood_x_coord = Non_Sticky_Cell_Choice_x_coord + 
[0;0;-1;1;1;1];
                    Non_Sticky_Neighbourhood_y_coord = Non_Sticky_Cell_Choice_y_coord + 
[-1;1;0;0;-1;1];
                    
                elseif mod(Non_Sticky_Cell_Choice_y_coord,2) == 0 % If the non-sticky 
cell is in an even row (counting ghost rows)
                    
                    Non_Sticky_Neighbourhood_x_coord = Non_Sticky_Cell_Choice_x_coord + 
[0;0;-1;1;-1;-1];
                    Non_Sticky_Neighbourhood_y_coord = Non_Sticky_Cell_Choice_y_coord + 
[-1;1;0;0;-1;1];
                    
                end
                
               % Remove any coordinates from the ghost border region
               
               Rejected_x_Coord_indices_1 = find(Non_Sticky_Neighbourhood_x_coord==1); % 
Find ghost points on the left and right edges
               Rejected_x_Coord_indices_2 = find
(Non_Sticky_Neighbourhood_x_coord==GxFull);
               
               Rejected_y_Coord_indices_1 = find(Non_Sticky_Neighbourhood_y_coord==1); % 
Find ghost points on the top and bottom edges
               Rejected_y_Coord_indices_2 = find
(Non_Sticky_Neighbourhood_y_coord==GyFull);
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               % Collect all rejected indices and remove repetitions
               All_Rejected_Coord_indices = unique([Rejected_x_Coord_indices_1;
Rejected_x_Coord_indices_2;Rejected_y_Coord_indices_1;Rejected_y_Coord_indices_2]);
               
               Non_Sticky_Neighbourhood_x_coord(All_Rejected_Coord_indices) = []; % Strip 
the coordinate vectors of ghost points
               Non_Sticky_Neighbourhood_y_coord(All_Rejected_Coord_indices) = [];
               
               Num_Valid_Neighbourhood_Coords = length(Non_Sticky_Neighbourhood_x_coord);
                
               % Identify which of the neighbouring sites are empty
                Empty_Cell_Presence_Vec = zeros(Num_Valid_Neighbourhood_Coords,1);
                
                for j = 1:Num_Valid_Neighbourhood_Coords
                    
                    Empty_Cell_Presence_Vec(j) = Binding_Sites
(Non_Sticky_Neighbourhood_y_coord(j),Non_Sticky_Neighbourhood_x_coord(j))==0;
                    
                end
                
                Empty_Neighbour_Indices = find(Empty_Cell_Presence_Vec==1); % Indices of 
empty sites
                
                Neighbour_Site_x_coords = Non_Sticky_Neighbourhood_x_coord
(Empty_Neighbour_Indices); % Find the coordinates of the valid empty neighbouring sites
                Neighbour_Site_y_coords = Non_Sticky_Neighbourhood_y_coord
(Empty_Neighbour_Indices);
                
                Num_Empty_Neighbour_Sites = length(Empty_Neighbour_Indices); % The number 
of valid empty neighbouring sites
            
                Sites_with_Sticky_Neighbours = zeros(1,6);
                
                for j = 1:Num_Empty_Neighbour_Sites
                    
                    % Remove those entries which don't have any sticky neighbours.
                    if mod(Neighbour_Site_y_coords(j),2) == 1 && sum([Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)),    Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)),...
                                                                      Binding_Sites
(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)-1),    Binding_Sites
(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)+1),...
                                                                      Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)+1),  Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)+1)] == 1) > 0 ||... % Odd row 
(counting ghost rows)
                       mod(Neighbour_Site_y_coords(j),2) == 0 && sum([Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)),    Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)),...
                                                                      Binding_Sites
(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)-1),    Binding_Sites
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(Neighbour_Site_y_coords(j),Neighbour_Site_x_coords(j)+1),...
                                                                      Binding_Sites
(Neighbour_Site_y_coords(j)-1,Neighbour_Site_x_coords(j)-1),  Binding_Sites
(Neighbour_Site_y_coords(j)+1,Neighbour_Site_x_coords(j)-1)] == 1) > 0       % Even row 
(counting ghost rows)
                        
                       Sites_with_Sticky_Neighbours(j) = 1;
                        
                    end
                    
                end
                
                Sites_with_Sticky_Neighbours_Indices = find
(Sites_with_Sticky_Neighbours==1);
                
                Neighbour_Site_x_coords = Neighbour_Site_x_coords
(Sites_with_Sticky_Neighbours_Indices);
                Neighbour_Site_y_coords = Neighbour_Site_y_coords
(Sites_with_Sticky_Neighbours_Indices);
                
                Num_Valid_Neighbour_Sites = length(Neighbour_Site_x_coords); % The number 
of valid empty neighbouring sites with sticky neighbours
                
                % 4 Cases: 1. Neighbour sites and fluid free, 2. Only
                % neighbour sites free, 3. Only fluid free, 4. Nothing free
                % (in this last case do nothing).
                 
                if Num_Valid_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 1: Neighbour sites and fluid free.
                
                    Chosen_Daughter_Site_Num = randi(Num_Valid_Neighbour_Sites+1,1); % 
Choose a site or the fluid for the daughter cell
                    
                    if Chosen_Daughter_Site_Num == Num_Valid_Neighbour_Sites + 1 % Cell 
goes to the fluid
                        
                        Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1; % Non-sticky 
daughter cell is released into the fluid.
                        
                    else % Cell goes to a neighbouring site
                       
                    Chosen_Daughter_Site_x_coord = Neighbour_Site_x_coords
(Chosen_Daughter_Site_Num); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Neighbour_Site_y_coords
(Chosen_Daughter_Site_Num);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 2; % Nonsticky daughter cell is released into 
neighbouring empty site.
                        
                    end
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                elseif Num_Valid_Neighbour_Sites > 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells == K % Case 2: Only neighbour sites free.
                    
                    Chosen_Daughter_Site_Num = randi(Num_Valid_Neighbour_Sites,1);                    
% Choose a site for the daughter cell
                    Chosen_Daughter_Site_x_coord = Neighbour_Site_x_coords
(Chosen_Daughter_Site_Num); % Find the coordinates of the site
                    Chosen_Daughter_Site_y_coord = Neighbour_Site_y_coords
(Chosen_Daughter_Site_Num);
                    
                    Binding_Sites(Chosen_Daughter_Site_y_coord,
Chosen_Daughter_Site_x_coord) = 2; % Non-sticky daughter cell is released into 
neighbouring empty site.
                    
                elseif Num_Valid_Neighbour_Sites == 0 && Free_Sticky_Cells + 
Free_Non_Sticky_Cells < K % Case 3: Only fluid free.
                   
                    Free_Non_Sticky_Cells = Free_Non_Sticky_Cells + 1; % Non-sticky 
daughter cell is released into the fluid.
                    
                end
                
            end
                
        end
        
        % Remove cells from the fluid if their number exceeds the carrying
        % capacity. Remove cells randomly, with probability in proportion
        % to the fracion of cells that are sticky/non-sticky.
        while Free_Sticky_Cells + Dead_Free_Sticky_Cells + Free_Non_Sticky_Cells...
                + Dead_Free_Non_Sticky_Cells > K
            
            if rand(1) < Free_Sticky_Cells/(Free_Sticky_Cells + Dead_Free_Sticky_Cells...
                    + Free_Non_Sticky_Cells + Dead_Free_Non_Sticky_Cells)
                
                Free_Sticky_Cells = Free_Sticky_Cells - 1;
                   
            else
                
                Free_Non_Sticky_Cells = Free_Non_Sticky_Cells - 1;
                
            end
            
        end
            
        % Counting Cells on the Surface
        Sticky_Surface_Cells          = length(find(Binding_Sites==1));
        Non_Sticky_Surface_Cells      = length(find(Binding_Sites==2));
        Dead_Sticky_Surface_Cells     = length(find(Binding_Sites==3));
        Dead_Non_Sticky_Surface_Cells = length(find(Binding_Sites==4));
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        % Total Number of Cells
        Tot_Num_Cells = Free_Sticky_Cells + Dead_Free_Sticky_Cells...
            + Free_Non_Sticky_Cells + Dead_Free_Non_Sticky_Cells...
            + Sticky_Surface_Cells + Dead_Sticky_Surface_Cells...
            + Non_Sticky_Surface_Cells + Dead_Non_Sticky_Surface_Cells;
        
        %Total Number of Live Cells
        Tot_Num_Live_Cells = Free_Sticky_Cells + Free_Non_Sticky_Cells...
            + Sticky_Surface_Cells + Non_Sticky_Surface_Cells;
        
        %Total Number of Dead Cells
        Tot_Num_Dead_Cells = Dead_Free_Sticky_Cells + Dead_Free_Non_Sticky_Cells...
            + Dead_Sticky_Surface_Cells + Dead_Non_Sticky_Surface_Cells;
        
        % Record True Binding Sites every Save_int-th iteration
        if mod(i,Save_int) == 0
            
            Binding_Sites_Record(:,:,1+i/Save_int) = Binding_Sites(2:(GyFull-1),2:
(GxFull-1)); % 1+ as the first entry should be the initial condition.
            
        end
        
        % Update cell counts
        Free_Sticky_Cells_Record(i)             = Free_Sticky_Cells;
        Dead_Free_Sticky_Cells_Record(i)        = Dead_Free_Sticky_Cells;
        Free_Non_Sticky_Cells_Record(i)         = Free_Non_Sticky_Cells;
        Dead_Free_Non_Sticky_Cells_Record(i)    = Dead_Free_Non_Sticky_Cells;
        Sticky_Surface_Cells_Record(i)          = Sticky_Surface_Cells;
        Dead_Sticky_Surface_Cells_Record(i)     = Dead_Sticky_Surface_Cells;
        Non_Sticky_Surface_Cells_Record(i)      = Non_Sticky_Surface_Cells;
        Dead_Non_Sticky_Surface_Cells_Record(i) = Dead_Non_Sticky_Surface_Cells;
              
    end
        
end
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disp("Computing input parameters...")
input_value = [];
 for x = 0.2:0.1:0.8
    for y = 0.2:0.1:0.8
         for z = 0.2:0.1:0.8
              for n = 0.2:0.1:0.8
                  input_value = [input_value; [x, y, z, n]];
              end
         end
    end
 end
 
disp("Input parameters computed.")
 
parfor iter = 1:length(input_value)
     D = input_value(iter,1);
     R = input_value(iter,2);
     P_m = input_value(iter,3);
     P_d = input_value(iter,4);
     
     T = 40000;
     K = 5000;
     G = 100;
     Free_Sticky_Cells_init = 100;
     Free_Non_Sticky_Cells_init = 100;
     
     [Free_Sticky_Cells_Record, Free_Non_Sticky_Cells_Record, 
Sticky_Surface_Cells_Record, Non_Sticky_Surface_Cells_Record]...
         = GestelNowakModel(T, D, R, P_m, P_d, K, G, Free_Sticky_Cells_init, 
Free_Non_Sticky_Cells_init);
     
     filename = ("./results/iteration_" + iter + ".txt");
     
     input_variables = [D, R, P_m, P_d];
     results = [Free_Sticky_Cells_Record, Free_Non_Sticky_Cells_Record, 
Sticky_Surface_Cells_Record, Non_Sticky_Surface_Cells_Record];
     data = [input_variables; results];
     
     writematrix(data, filename);
     
 
end
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%Import input and output data and plot heatmaps
 
%% Load data
 
file_dir = './results/';
files_to_process=dir([file_dir filesep '*.txt']);
counter = 0;
 
for x = 1:length(files_to_process)
    
    file_path = [file_dir files_to_process(x).name];
    data_file = readmatrix(file_path);
    
    if size(data_file, 2) == 4
        counter = counter + 1;
        results_struct(counter).input_params = data_file(1,:);
        results_struct(counter).output = data_file(10000,:);
        
    end
    
end
 
%% create arrays % 
input_array = [];
output_array = [];
 
for x = 1:size(results_struct, 2)
    
    if max(isnan([results_struct(x).input_params])) || max(isnan([results_struct(x).
output]))
        
        %skip files with NaN values
        
    %elseif max(ismember([results_struct(x).output], 0)) || max(ismember([results_struct
(x).output], 1))
        
        %remove zero value input parameter results
        
    else
        
        input_array = [input_array; [results_struct(x).input_params]];
        output_array = [output_array; [results_struct(x).output]];
        
    end
end
 
%% Collate data for heatmaps
% Note - Non varied parameters fixed at 0.2 to compare other parameters
 
% Sticky surface cells
% Division probability non-sticky (D) vs division probability sticky (R) (note -P_m and
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% P_d set to 0.2)
 
D_R_results = [];
 
counter = 0;
 
for i = 1:length(input_array);
    if input_array(i,3) == 0.2 && input_array(i,4) == 0.2;
        counter = counter + 1;
        D_R_results(counter,1) = input_array(i,1);
        D_R_results(counter,2) = input_array(i,2);
        D_R_results(counter,3) = output_array(i,3);
    else 
        continue
    end
end
 
%convert to table
T_D_R_results = array2table(D_R_results, 'VariableNames', {'D', 'R', 
'StickySurfaceCells'});
 
%plot heatmap of table
figure;
h = heatmap(T_D_R_results, 'D', 'R', 'ColorVariable', 'StickySurfaceCells');
h.YDisplayData = flipud(h.YDisplayData);
 
 
 
% Sticky surface cells
% Migration probability (P_m) vs Death probability (P_d) (note - D and R set to 0.2)
 
Pm_Pd_results = [];
 
counter = 0;
 
for i = 1:length(input_array);
    if input_array(i,1) == 0.2 && input_array(i,2) == 0.2;
        counter = counter + 1;
        Pm_Pd_results(counter,1) = input_array(i,3);
        Pm_Pd_results(counter,2) = input_array(i,4);
        Pm_Pd_results(counter,3) = output_array(i,3);
    else 
        continue
    end
end
 
%convert to table
T_Pm_Pd_results = array2table(Pm_Pd_results, 'VariableNames', {'P_m', 'P_d', 
'StickySurfaceCells'});
 
%plot heatmap of table
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figure;
h = heatmap(T_Pm_Pd_results, 'P_m', 'P_d', 'ColorVariable', 'StickySurfaceCells');
h.YDisplayData = flipud(h.YDisplayData);
 
 
 
 
% Sticky surface cells
% Non-sticky division probability (D) vs Migration probability (P_m) (note - P_d and R 
set to 0.2)
 
D_Pm_results = [];
 
counter = 0;
 
for i = 1:length(input_array);
    if input_array(i,2) == 0.2 && input_array(i,4) == 0.2;
        counter = counter + 1;
        D_Pm_results(counter,1) = input_array(i,1);
        D_Pm_results(counter,2) = input_array(i,3);
        D_Pm_results(counter,3) = output_array(i,3);
    else 
        continue
    end
end
 
%convert to table
T_D_Pm_results = array2table(D_Pm_results, 'VariableNames', {'D', 'P_m', 
'StickySurfaceCells'});
 
%plot heatmap of table
figure;
h = heatmap(T_D_Pm_results, 'D', 'P_m', 'ColorVariable', 'StickySurfaceCells');
h.YDisplayData = flipud(h.YDisplayData);
 
 
 
 
% Sticky surface cells
% Division probability of sticky cells (R) vs Migration probability (P_m) (note -P_d and 
D set to 0.2)
 
R_Pm_results = [];
 
counter = 0;
 
for i = 1:length(input_array);
    if input_array(i,1) == 0.2 && input_array(i,4) == 0.2;
        counter = counter + 1;
        R_Pm_results(counter,1) = input_array(i,2);
        R_Pm_results(counter,2) = input_array(i,3);



13/11/21 16:19 multivariate_visualisation_heatmaps.m 4 of 4

        R_Pm_results(counter,3) = output_array(i,3);
    else 
        continue
    end
end
 
%convert to table
T_R_Pm_results = array2table(R_Pm_results, 'VariableNames', {'R', 'P_m', 
'StickySurfaceCells'});
 
%plot heatmap of table
figure;
h = heatmap(T_R_Pm_results, 'R', 'P_m', 'ColorVariable', 'StickySurfaceCells');
h.YDisplayData = flipud(h.YDisplayData);
 
 
 
%%
 
% Full heatmap analysis
% P_m vs P_d (R and D fixed)
 
Results = [];
 
counter = 0;
 
for i = 1:length(input_array);
    if input_array(i,1) == 0.8 && input_array(i,4) == 0.8;
        counter = counter + 1;
        Results(counter,1) = input_array(i,2);
        Results(counter,2) = input_array(i,3);
        Results(counter,3) = output_array(i,2);
    else 
        continue
    end
end
 
%convert to table
Results = array2table(Results, 'VariableNames', {'R', 'P_m', 'FreeNonStickyCells'});
 
%plot heatmap of table
figure;
h = heatmap(Results, 'R', 'P_m', 'ColorVariable', 'FreeNonStickyCells');
h.YDisplayData = flipud(h.YDisplayData);
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function model_fitting
 
%specifiy data
time = [0 5714 11428 28570 40000]; %in 40000 divided by no. days in experimental data
cellCount = [1 384 731 1727 2329];
%w = [0.5 0.2 0.1 0.2]
 
%initial parameter guesses
%param_guess=[0.75 0.01 0.01 5000]; %[R - sticky, P_m, P_d, K]
param_guess=[0.5 0.2]; %[R - sticky, P_m]
 
%perform optimisation using fminsearch on the function defined
%below with initial parameter guesses
options = optimset('MaxFunEvals',10000);
fminsearch(@(par) fitfn(par,time,cellCount),param_guess)
%fminsearch(@(par) fitfn(par,time,pop,w),param_guess)
 
%%%%%%%%%%%%%%%%
 
%define objective function to minimise
function obj=fitfn(params,time,cellCount);
%function obj=odefitfn(params,time,pop,w)
  
T = 40001; %number of time steps/iterations (e.g. 4*10^5)
D = 0; %division rate of non-sticky cell (must be between 0 and 1)
R = params(1); %division rate of sticky cell (must be between 0 and 1)
P_m = params(2); %migration rate of cell: liquid to surface (must be between 0 and 1)
P_d = 0.05; %params(3); %death rate (must be between 0 and 1)
K = 5000; %params(4); %carrying capacity - max number of cells there can be in the liquid 
(e.g. 5*10^3)
G = 100; %grid size - length of one side of 2D surface (e.g. 100 or 10 - choose an even 
value for g)
Free_Sticky_Cells_init = cellCount(1); %number of starting sticky cells in liquid (e.g. 
10^2)
Free_Non_Sticky_Cells_init = 0; %number of starting non-sticky cells in liquid (e.g. 
10^2)
%p=1;
%q=1;
  
    %obtain the solution to the ODEs defined below
    %sol=ode15s(@(t,x,y,z) GestelNowakModel(t, D, R, 1, P_m, P_d, 5000, 100, 200, 0), [0 
6.083], P_m, P_d);
    [w,x,y,z]=GestelNowakModel(T,D,abs(R),abs(P_m),abs(P_d),abs(K),G,
Free_Sticky_Cells_init,Free_Non_Sticky_Cells_init);
 
    total=w+x+y+z;
    %log10_total=log10(total);
    %model_output=log10_total(time+1);
    model_output = total(time+1);
    obj=norm(y-cellCount); %sticky surface cells
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Details of heat maps generated to investigate computational model parameters
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Details of heat maps generated to investigate computational model parameters
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Details of heat maps generated to investigate computational model parameters
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Appendix Eight

Heat maps
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Heat maps

Figure H.1: Output - sticky surface cells.
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Heat maps

Figure H.2: Output - sticky surface cells.
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Heat maps

Figure H.3: Output - sticky surface cells.
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Heat maps

Figure H.4: Output - non-sticky surface cells.
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Heat maps

Figure H.5: Output - non-sticky surface cells.
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Heat maps

Figure H.6: Output - non-sticky surface cells.
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Heat maps

Figure H.7: Output - free sticky cells.
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Heat maps

Figure H.8: Output - free sticky cells.
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Heat maps

Figure H.9: Output - free sticky cells.
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Heat maps

Figure H.10: Output - free non-sticky cells.
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Heat maps

Figure H.11: Output - free non-sticky cells.
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Heat maps

Figure H.12: Output - free non-sticky cells.
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Appendix Nine

Conference Abstracts

• Quantifying Biofilm Formation on Biomaterials Surfaces

– Sophie E Mountcastle, Nina Vyas, Richard M Shelton, Rachel L Sammons, Sophie

C Cox, Sara Jabbari, A Damien Walmsley, Sarah A Kuehne

– World Congress of Biomaterials 2020, Virtual

– Poster presentation

• Development of a cellular automaton to study the effect of different param-

eters on bacterial surface adhesion

– Sophie E Mountcastle, Sara Jabbari, Sophie C Cox, Richard M Shelton, Rachel

L Sammons, and Sarah A Kuehne

– GW4 Multidisciplinary Approaches to AMR Virtual Symposium 2020, Virtual

– Poster presentation and oral flash talk

• Development of a Mechancically Relevant Oral Mucosa Model

– Sophie E Mountcastle, Sophie C Cox, Sara Jabbari, Richard M Shelton, Rachel

L Sammons, and Sarah A Kuehne

– BSODR Virtual Prize Competition 2020, Virtual
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Conference Abstracts

– Poster presentation and oral flash talk

• Mimicking the mechanical properties of the oral mucosa: towards the de-

velopment of a biologically and physically matched oral tissue model

– Sophie E Mountcastle, Richard M Shelton, Rachel L Sammons, Sophie C Cox,

Sara Jabbari, Sarah A Kuehne

– 8th International Conference on Mechanics of Biomaterials and Tissues 2019,

Hawaii, USA

– Oral presentation

• Race to the surface: Modelling bacterial and human cell growth on dental

implant surfaces

– Sophie E Mountcastle, Richard M Shelton, Rachel L Sammons, Sophie C Cox,

Sara Jabbari, and Sarah A Kuehne

– University of Birmingham Research Poster Conference 2019, Birmingham, UK

– Poster presentation

• A New Method to Quantify Biofilm Formation on Biomaterials Surfaces

– Sophie E Mountcastle, Nina Vyas, Richard M Shelton, Rachel L Sammons, Sophie

C Cox, Sara Jabbari, A Damien Walmsley, Sarah A Kuehne

– TCES-UKSB Joint Conference 2019, Nottingham, UK

– Poster presentation

• Development of an Oral Mucosa Model to Evaluate Implant Integration

– Sophie E Mountcastle, Victoria E Seville, Richard M Shelton, Rachel L Sammons,

Sophie C Cox, Sara Jabbari, and Sarah A Kuehne
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Conference Abstracts

– OMIG PGR Prize Symposium 2019, Newcastle, UK

– Oral presentation

• Towards the development of a mechanically and biologically relevant oral

mucosa model to evaluate tissue integration approaches for dental implants

– Sophie Mountcastle, Richard M Shelton, Rachel L Sammons, Sophie C Cox, Sara
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ABSTRACT
Co-cultures allow for the study of cell–cell interactions between different eukaryotic species 
or with bacteria. Such an approach has enabled researchers to more closely mimic complex 
tissue structures. This review is focused on co-culture systems modelling the oral cavity, 
which have been used to evaluate this unique cellular environment and understand disease 
progression. Over time, these systems have developed significantly from simple 2D eukaryotic 
cultures and planktonic bacteria to more complex 3D tissue engineered structures and 
biofilms. Careful selection and design of the co-culture along with critical parameters, such 
as seeding density and choice of analysis method, have resulted in several advances. This 
review provides a comparison of existing co-culture systems for the oral environment, with 
emphasis on progression of 3D models and the opportunity to harness techniques from other 
fields to improve current methods. While filling a gap in navigating this literature, this review 
ultimately supports the development of this vital technique in the field of oral biology.
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Introduction

The oral cavity is a complex environment that con-
tains many microbial species that thrive in the warm, 
moist conditions [1] (Figure 1a). Furthermore, differ-
ent regions of the oral cavity are made up of several 
cell types and tissues, both soft (mucosa, connective 
tissue, smooth muscle) and hard (enamel, dentine, 
bone) [2,3] (Figure 1b). Changes in the soft tissues 
can indicate disease, for example periodontitis (severe 
gum disease) and oral cancer, and reveal systemic 
conditions such as diabetes or vitamin deficiency 
[3]. Equally, the mineralised structures within the 
mouth may bear signs of disease, including dental 
caries, that might result in significant hard tissue 
loss or damage [4]. The composition of microbial 
species in the mouth can either cause or intensify 
many of these diseases [5], thus demonstrating the 
importance of balance within this complex multi- 
cellular environment.

The microorganisms present in the oral cavity 
attach to surfaces in communities called biofilms; 
highly regulated and organised interspecies habitats 
that provide defence against competitors and adapt to 
changes in the wider environment [5]. These com-
munities are essential for many metabolic, physiolo-
gical, and immunological functions. They support 
food digestion, regulation of the host immune 

system, maintenance of mucosa barrier function, 
detoxification of environmental chemicals, and pre-
vent invasion of disease-promoting species [5]. 
However, a shift in the species present in the oral 
microbiome can unsettle the local environment, 
switching from a healthy to disease state [6]. Saliva 
also plays a key role in the oral cavity in maintaining 
homeostasis and defending from disease, as well as 
containing proteins, minerals, and antimicrobial 
enzymes that control biofilm formation and activity 
[7,8]. Evidently, understanding the processes and 
interactions that occur in the oral cavity, in both 
healthy and disease states as well as the shift between 
the two, is vital to furthering our knowledge of dis-
ease progression and the discovery of new treatments.

For both human and bacterial cells, utilising single 
species for in vitro modelling of the oral cavity does 
not fully represent the in vivo conditions (Figure 1). 
This presents a key question for researchers in this 
field regarding how best to study the oral cavity, both 
for understanding disease pathogenesis and evaluat-
ing novel therapeutics. Challenges in studying this 
complex environment are not just limited to the pre-
sence of many cell types and bacterial species, but 
also the substantial variations in microbiota between 
individuals [9]. Mimicking these various degrees of 
complexity remains difficult and therefore in vivo 
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studies remain the gold standard for observing pro-
cesses in oral pathogenesis. However, clinical in vivo 
studies and animal models bring their own obstacles; 
they are expensive, labour intensive, and can generate 
ethical concerns. In addition, human and animal oral 
microbiota may not be the same and therefore can be 
difficult to compare. As such, the use of co-culture 
models to mimic in vivo conditions has been recog-
nised as a valuable approach to further our under-
standing of the relationship between eukaryotic and 
bacterial cells and is especially applicable to the oral 
cavity.

Co-culture techniques allow a variety of cell types 
to be cultivated together, enabling examination of 
cell–cell interactions [10]. These systems may refer 
to the culture of two or more eukaryotic cell types 
together, or eukaryotic and prokaryotic cells. The 
effectiveness of co-cultures is heavily determined by 
the choice of experimental setup. Cell–cell interac-
tions in co-cultures are strongly influenced by the 
extracellular environment, which in turn is influ-
enced by the employed protocol [11]. There are 
numerous factors that need to be optimised to ensure 
these systems are representative of the native oral 
cavity, such as the number of cell populations. 
Having more than two species can result in unstable 
systems due to multiple reaction pathways, which 
may be difficult to monitor, analyse, and inter-
pret [11].

Studying the relationship between the oral micro-
biome and eukaryotic cells is essential to understand-
ing disease progression and evaluating the effect of 
new treatments. Many studies have published co- 
culture methodologies, but to the authors’ knowledge, 

these techniques have not been directly compared, 
making it challenging to identify and optimise the 
most appropriate system for a research question. 
Hence, this review discusses the use of co-culture 
in vitro models to study the oral environment, the 
progression of these models in complexity, and the 
disadvantages and benefits of using a range of pub-
lished methods (Table 1). In addition, the lessons and 
approaches that can be adapted from other fields that 
regularly utilise co-cultures are considered with the 
aim of providing future insights for development. 
Searches were performed across Science Direct, 
ProQuest, and the Directory of Open Access 
Journals [12–14] for papers that reported co-culture 
studies containing both eukaryotic and bacterial cell 
species.

2D cell culture

The simplest oral environment co-culture systems 
apply planktonic bacteria to a monolayer of confluent 
eukaryotic cells [15–18] (Figure 2a). Compared with 
more complex approaches, these basic models have 
an advantage in that cellular response to bacteria can 
be attributed to specific interactions allowing for 
direct comparison between species, both bacterial 
and cellular. For example, the inflammatory response 
of epithelial cells to different bacterial species may be 
compared [16] or different eukaryotic cell lines may 
be challenged with the same oral pathogenic species, 
such as Porphyromonas gingivalis (P. gingivalis), a key 
contributor to the pathogenesis of periodontitis [19]. 
However, it is known that interactions between 

Figure 1. (a) Common bacterial species present in pathogenic oral biofilms and their communication between species (adapted 
from Parashar et al. [92]). (b) Cells and tissue types present in the oral mucosa, demonstrating complexity of 3D structure.
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Table 1. Summary of co-culture methodologies, common protocols employed, and the advantages and disadvantages of each 
model system.

Method Summary of protocol Advantages Disadvantages References

2D monospecies 
co-culture 
with 
planktonic 
bacteria

● Seed eukaryotic cells into well plate.
● Culture until confluent monolayer 

formed, with media changes every 
1–2 days.

● Prepare bacteria overnight culture.
● Centrifuge overnight and re-suspend 

bacteria in eukaryotic cell culture media 
to achieve desired concentration.

● Add media containing bacterial suspen-
sion to monolayers and perform assays 
at desired time points.

● Can use simple assays to 
investigate

● Can attribute direct cellu-
lar responses from inter-
actions with bacteria

● Reproducible with reduced 
batch-to-batch variation

● Supports homogenous 
growth

● All cells have equal access 
to nutrients

● Not representative of 
in vivo tissue structure

● Does not account for 
immune cells

● Does not account for 
many cues found 
in vivo, including 
mechanical signalling

● Cannot monitor 
interaction between 
cell types, in particu-
lar, the immune 
system

● Does not represent 
the complex bacterial 
biofilms present in the 
oral cavity

[15–17,19,33,34]

2D multispecies 
co-culture 
with 
planktonic 
bacteria

● Seed appropriate ratio of eukaryotic cells 
into well plate.

● Culture until confluent, with media 
changes every 1–2 days.

● Prepare bacteria overnight culture.
● Centrifuge overnight and re-suspend 

bacteria in eukaryotic cell culture media 
to achieve desired concentration.

● Add media containing bacterial suspen-
sion to cell culture and perform assays at 
desired time points.

● Can monitor the interac-
tion between cell types

● Reproducible with reduced 
batch-to-batch variation

● Supports homogenous 
growth

● All cells have equal access 
to nutrients

● May require optimi-
sation due to different 
nutrient requirements

● Not representative of 
in vivo tissue structure

● Traditional assays 
cannot always deter-
mine between cell 
species

● Does not account for 
many cues found 
in vivo, including 
mechanical signalling

● Does not represent 
the complex bacterial 
biofilms present in the 
oral cavity

[29,30]

2D co-culture 
with biofilm

● Seed appropriate ratio of eukaryotic cells 
into well plate.

● Culture until confluent, with media 
changes every 1–2 days.

● Prepare bacteria overnight culture.
● To form biofilm, seed overnight culture 

onto coverslips placed in the bottom of 
a well plate. Change media every 
1–2 days.

● At chosen time point, once biofilm has 
formed, remove media and attach cov-
erslip to base of transwell insert.

● Place insert into cell-culture plate.
● Perform assays at desired time points.

● Can monitor the interac-
tion between cell types

● Reproducible with reduced 
batch-to-batch variation

● Supports homogenous 
growth

● All cells have equal access 
to nutrients

● More clinically relevant, as 
biofilms show increased 
antibiotic resistance to 
planktonic cultures.

● Bacteria can overrun 
eukaryotic cells if co- 
culture system is not 
carefully designed

[46,55–57,66,67]

3D tissue 
engineered 
co-culture 
with 
planktonic 
bacteria

● For collagen-based system, mix fibro-
blasts with collagen gel and pipette into 
transwell inserts. Set gel in incubator at 
37°C for 1 hr.

● Seed epithelial cells onto surface of gel. 
Seed monolayer of epithelial cells into 
separate well plate to monitor conflu-
ence. Culture cells until confluent 
monolayer formed.

● Raise cells to air-liquid interface and 
culture for 7–10 days to allow stratified 
epithelium to form.

● Prepare bacteria overnight culture.
● Centrifuge overnight and re-suspend 

bacteria in eukaryotic cell culture media 
to achieve desired concentration.

● Add media containing bacterial suspen-
sion to 3D cell culture and perform 
assays at desired time points.

● More representative of 
in vivo environment

● Can study cell-cell 
signalling

● Two mucosa models well 
established in literature – 
collagen-based and decel-
lularised matrix

● Can be challenging to 
achieve cell numbers 
required for multiple 
models

● Require specifically 
enriched media

● Significant optimisa-
tion may be needed

● More resource- 
intensive

● More difficult to pro-
duce replicates

● Models may not be 
fully representative of 
native tissue structure

● Does not represent 
the complex bacterial 
biofilms present in the 
oral cavity

[41–44,46,47]
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different bacteria can affect disease progression 
[20,21] and therefore applying single species cannot 
elucidate more complex physiological interactions.

A number of innovative studies utilised 2D co-culture 
systems to study the adhesion and invasion of epithelial 
cells by key oral pathogens. Aggregatibacter actinomyce-
temcomitans (a. actinomycetemcomitans, formerly 
Actinobacillus actinomycetemcomitans) is a bacterium 
associated with aggressive periodontitis. Mintz and Fives- 
Taylor [22,23] applied a. actinomycetemcomitans to an 
oral cancer cell line under different conditions and high-
lighted that adhesion is affected by both host (saliva, 
serum) and culture (pH) conditions. Using a similar 
approach, Yilmaz et al. [24] cultured primary gingival 
epithelial cells and introduced P. gingivalis and its fim-
briae-deficient mutant, demonstrating that P. gingivalis 
fimbriae promote adhesion to gingival epithelial cells 
through interaction with β1 integrins. In a later study, 
Yilmaz et al. [25] showed that P. gingivalis is capable of 
targeting specific epithelial cell pathways during invasion 
and can adapt to an intracellular environment. They 
suggested that disease may ensue from a disruption of 
the balance between the bacteria and host cells by factors 
that may trigger virulence or lead to host-immune- 
mediated tissue damage [25]. Studies like these are essen-
tial to determine key proteins and interactions involved 
in oral pathogenesis, which could potentially provide 
targets for future treatments.

In addition to looking at a specific bacterium, 2D 
co-culture systems can be effectively used to compare 
the response of host cells when challenged with dif-
ferent oral pathogens. Han et al. [26] individually 
applied six key Gram-negative anaerobic bacteria 
associated with periodontal diseases to human gingi-
val epithelial cells to compare their ability to adhere 
and invade, as well as measuring levels of interleukin- 
8 (a proinflammatory cytokine) secretion from the 

human cells. Their findings demonstrated that whilst 
all bacteria species were able to adhere to oral epithe-
lial cells, only Fusobacterium nucleatum 
(F. nucleatum) was highly invasive, to levels compar-
able with P. gingivalis [26]. Not only can comparisons 
be made between different bacteria species using 
multiple 2D co-cultures, but the ability of different 
strains to adhere and invade oral epithelial cells can 
be investigated. The Prevotella intermedia 
(P. intermedia) group are made up of three strains 
(P. intermedia, Prevotella nigrescens, and Prevotella 
pallens) and are connected with oral disease patho-
genesis. Gursoy et al. [27] showed that P. intermedia 
and P. nigrescens type strains can adhere to and 
invade epithelial cells, the capability of P. intermedia 
being highest. Another key publication in which 
strains were compared, was the work of Dabija- 
Wolter et al. [28] who examined the invasion of 
human gingival fibroblasts by three different 
F. nucleatum strains using a 2D co-culture system. 
In order to evaluate the amount of bacteria present 
inside the fibroblasts after infection, live bacteria were 
fluorescently stained prior to being introduced into 
the co-culture, and this allowed for visualisation 
using confocal laser scanning microscopy and quan-
tification using flow cytometry. The studies described 
use a range of assays and analytical techniques to 
determine key interactions between host cells and 
pathogenic bacteria, showing the importance of sim-
ple 2D co-culture systems, as well as the influence of 
strain, cell type, and culture conditions.

To elevate 2D co-cultures and gain further insight 
into in vivo interactions, multiple eukaryotic species 
can be cultured together (Figure 2B). In two studies 
by Bodet et al. [29,30], epithelial cells were cultured 
alongside macrophages to gain a better understand-
ing of the interplay between these two cell types in 

Figure 2. Common co-culture systems reported in the literature (a) monospecies 2D cell culture with planktonic bacteria 
applied; (b) multispecies 2D cell culture with planktonic bacteria applied; (c) multispecies 3D cell culture, typically a collagen- 
based or decellularised matrix containing fibroblasts, with planktonic bacteria applied; and (d) monospecies 2D cell culture with 
biofilm applied, typically suspended from a well insert.
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the presence of P. gingivalis. Careful optimisation of 
the ratio between cell types is essential and considera-
tion should be given to the analytical techniques 
applied. In these studies, Bodet et al. [29,30] were 
unable to identify which cells had a greater role in 
IL-6 and IL-8 secretion. This highlights that more 
complex assays, such as flow cytometry, may be 
required to target each cell type. Recently, a three- 
cell co-culture was described whereby dendritic cells, 
gingival epithelial keratinocytes, and T-cells were cul-
tured in a three-cell transwell co-culture plate, essen-
tially allowing for three mono-layers to be cultured in 
the same well and therefore allowing interactions to 
be determined when challenged with P. gingivalis 
[31]. Different single- and co-cultures were prepared 
to compare the production of matrix metallopro-
teases (MMPs) in response to the pathogen. 
Interestingly, the cellular reaction changed when 
T-cells were present with a reduction in MMP9 and 
a reduced immune response, which indicated that 
multiple cell types could influence MMP expression, 
thus providing further evidence of the complex cell- 
cell signalling occurring in vivo.

Not only can 2D co-cultures elucidate information 
on interactions between oral eukaryotic cells, they can 
also be used to evaluate microbial communication. 
Several authors have employed 2D co-cultures to 
study the effect of multiple oral bacterial species on 
the invasion of gingival epithelial cells by respiratory 
pathogens [15] and P. gingivalis [17]. Findings sug-
gested that commensal oral species could modulate 
invasion. Providing careful consideration is given to 
the controls used, a 2D co-culture system with multi-
ple bacterial species can determine very useful infor-
mation on the pathogenesis of oral disease. From the 
in vitro study described [15], the authors suggest that 
increased presence of oral bacteria in the throat could 
prevent invasion of respiratory pathogens. However, it 
is important to recognise that these co-culture models 
are not physiologically representative, due to a lack of 
host immune system and the use of monolayer cell 
cultures. Therefore, extrapolating the results of such 
studies to in vivo conditions should be done with care.

Interactions of anaerobic species with human 
cells raise challenges in culturing these bacteria 
with oxygen-requiring epithelial cells. One of the 
limitations in the literature described is the culture 
of P. gingivalis in aerobic conditions. Bodet et al. 
[29,30] and Saito et al. [17] did not report viability 
of P. gingivalis under the growth conditions applied 
when co-cultured with their respective oral mucosa 
model. The growth of P. gingivalis under oxygenated 
environments has been shown to affect its physiol-
ogy and result in changes in expression of different 
proteins, including virulence factors [32]. Gursoy et al. 
[27] also highlighted the tolerance of P. intermedia 
strains to oxygen exposure as a limitation of their co- 

culture study. The test conditions applied were aero-
bic, and the type strain had been handled in laboratory 
conditions for longer than the clinical isolates. 
Consequently, increased tolerance to oxygen exposure 
of the type strain may have explained their findings of 
increased adhesion. It is vital to assess and report the 
effect of the aerobic growth conditions used on anae-
robic species for the duration of the experiment.

Simple 2D co-cultures prove useful for testing 
responses to a dental material, for example, implants 
or resins. Human gingival fibroblasts can be cultured 
directly onto the surfaces of these materials, with 
planktonic oral species added subsequently to inves-
tigate their effect. Using this method, oral bacteria 
have been shown to modulate toxicity of dental resins 
on human gingival fibroblasts (HGFs) [33]. It is also 
possible to adapt these 2D co-cultures to enable high 
throughput studies to be performed in 96-well plates. 
For example, a study by Giulio et al. [34] reported the 
effect of dental resin monomers on HGFs in the 
presence of Streptococcus mitis (S. mitis) and demon-
strated there was no reduction in bacterial adhesion 
to the eukaryotic cells. Simple 2D cultures also allow 
for the interaction between cells and dental resin 
materials (e.g. HEMA) to be studied in the presence 
of oral microbes, an important interaction to under-
stand in the context of the oral environment [35].

A key factor to consider when using a co-culture 
system containing eukaryotic cells is their origin. 
A range of cell types have been used in the studies 
described, including primary human gingival epithe-
lial cells [16,24–26] and fibroblasts [33,34], immorta-
lised human gingival cell lines [18], oral carcinoma 
cell lines [15,17,22,23,26], and skin keratinocyte cell 
lines [27,29,30]. Some studies did not take the source 
of their human cells into account when discussing 
their findings. However, oral keratinocytes and fibro-
blasts show distinct characteristics to those derived 
from the skin [36,37]. In addition, whilst cell lines are 
a convenient choice for these in vitro systems as they 
are highly proliferative and easier to culture, they 
often have phenotypic, morphological, and genetic 
differences to their primary tissue origin. Primary 
cells, on the other hand, maintain many of the mar-
kers and functions seen in vivo and are therefore 
useful for elucidating responses from human cells 
when challenged with oral pathogenic bacteria.

The publications described have demonstrated that 
a simple 2D co-culture model ensures that subse-
quent assays and analyses are easier to perform and 
less complex analytical techniques can be used. They 
also allow for specific interactions to be identified, 
which is important when investigating disease pro-
gression and potentially identifying new therapies for 
oral pathogenesis. However, there are challenges 
associated with using simpler models. In particular, 
neglecting the effects of the host immune system and 
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not representing the 3D structure of in vivo tissues 
mean these models lack certain signals that are pre-
sent in the body (Table 1).

3D cell culture

As we have gained an understanding of the impor-
tance of cues from the surrounding environment, such 
as mechanical and biological signalling between cell 
types [38–40], there has been a move to mimic the 
structure of the tissue in which the eukaryotic cells are 
located (Figure 2C). Candida albicans (C. albicans) is 
a commensal yeast that can shift to become pathogenic 
in immunosuppressed individuals and is therefore an 
important oral pathogen. A number of 3D in vitro 
culture systems have been developed to mimic the 
oral mucosa in order to study the interaction between 
epithelial cells and C. albicans [41,42]. The 3D models 
commonly utilised in these investigations comprise 
a fibroblast-containing collagen gel with oral keratino-
cytes cultured on the surface at the air-liquid interface. 
An alternative to the collagen model is the use of 
decellularised matrix as a 3D scaffold. Interestingly, 
Yadev et al. [43] demonstrated that a 3D tissue engi-
neered oral mucosa model of human keratinocytes and 
a fibroblast-containing matrix displayed more similar 
immunohistological and proliferation characteristics to 
normal mucosa when compared with a 2D oral cell 
line. In this study, full-thickness oral mucosa models 
were prepared from decellularised human matrix and 
compared with collagen-based 3D mucosa models 
purchased from SkinEthic Laboratories (Nice, 
France) and MatTek Corporation (Ashland, MA).

Surprisingly, there are relatively few 3D oral 
mucosa co-culture studies that have been applied 
to model bacteria relevant to oral disease. Of those 
that have, Pinnock et al. [44] reported significant 
differences in the response of oral mucosa models 
to P. gingivalis, compared with monolayer cultures 
of epithelial cells. This study described their use of 
a collagen-fibroblast gel with surface epithelial cells 
cultured at the air-liquid interface, with the applica-
tion of P. gingivalis in planktonic culture. 
Subsequently, it was shown that utilising 3D co- 
culture systems was important in order to fully dis-
cern cellular responses to infection and confirmed 
that the interaction between cell types played an 
important role. Another key study that supported 
the significance of 3D co-cultures in the field of 
oral pathogenesis investigated the bacterial species 
F. nucleatum, which is known to form a bridge 
between early and late colonisers in the formation 
of dental plaque (a common oral biofilm) [45]. 
Gursoy et al. [46] used a collagen-based 3D mucosa 
model and applied planktonic cultures of 
F. nucleatum to determine the bacteria’s ability to 
attach to and invade epithelial cells. Like Pinnock 

et al. [44], they also highlighted the difference in 
response between the 3D co-culture and a simple 
monolayer of epithelial cells. Given the strong evi-
dence of an interplay between epithelial cells and 
fibroblasts in response to infection, there is a clear 
need for future studies to consider the application of 
3D mucosa models to studies of oral disease patho-
genesis [44,46]. Furthermore, it is worth highlighting 
that both Pinnock et al. [44] and Gursoy et al. [46] 
reported that the viability of the anaerobic species 
they utilised (P. gingivalis and F. nucleatum respec-
tively) was not reduced under aerobic growth con-
ditions for the duration of their infection co-culture 
model. It is essential to examine the oxygen toler-
ance for anaerobic species when applying them to 
oxygen-requiring epithelium models to ensure phy-
siology is not affected. One of the challenges with 
developing 3D cultures is that primary cells have 
relatively short lifespans, as they lose their in vivo 
phenotype after a few passages, and therefore may 
not offer sufficient cell numbers to use in multiple 
3D co-cultures [47]. Furthermore, enriched media 
specific to each cell type are often required; without 
this, primary cells can display an altered phenotype 
and metabolic function [48]. To combat these draw-
backs, immortalised cell lines of human gingival 
keratinocytes (HGKs) and human gingival fibro-
blasts (HGFs) have been established. Promisingly, 
Bao et al. [47] have demonstrated that immortalised 
HGKs still formed a stratified epithelial layer and 
both HGKs and HGFs displayed cell-specific mar-
kers similar to those found in human gingival tis-
sues. The need for reproducibility makes the use of 
cell lines desirable, although it must be noted that 
there is a pay-off between reproducibility and phy-
siological relevance, with Yadev at al. highlighting 
that the commercially available epithelial cell line 
TR146 does not form a fully differentiated epithe-
lium [43].

As with 2D co-culture systems, the origin of the 
human eukaryotic cells in a 3D mucosa model is an 
important aspect to consider when analysing the cel-
lular response to bacteria. A range of cell sources 
were utilised in the co-culture studies described. 
These included primary cells from gingival biopsies 
[43,44], immortalised gingival keratinocyte and fibro-
blast cell lines [46,47], oral carcinoma cell lines 
[42,43], human skin epithelial cell lines [41,46] and 
3T3 cells (mouse embryonic fibroblast cell line) [41]. 
Not only do these cells exhibit different phenotypes 
and morphologies but moreover, the choice of fibro-
blast origin can influence the characteristics of the 
keratinocytes in a 3D model. Merne & Syrjänen [49] 
highlighted the importance of standardising the 
matrix, both in terms of extracellular matrix compo-
nents and in the source of fibroblasts used. Where 
possible, human eukaryotic cells should be utilised 
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since they are the most physiologically relevant with 
regards to the in vivo tissue of interest.

An additional factor that needs to be taken into 
account regarding the application of oral pathogens 
in 2D and 3D co-cultures is the strain of bacteria 
utilised. Many of the studies cited throughout this 
review do not detail the origin of the bacteria used. 
However, it has been previously shown that there is 
a difference in keratinocyte response between clinical 
and type strains of a. actinomycetemcomitans [50]. 
Therefore, it is important to appreciate that strains 
of the same bacterial species may have varying char-
acteristics. It is advisable, where possible, to use clin-
ical strains as well as type strains to conduct co- 
culture studies in order to compare them with their 
standards.

The choice to use a 3D culture needs to be 
a carefully considered decision, as there is currently 
no universal system available and therefore signifi-
cant optimisation may be required [51]. Moreover, 
2D cell culture approaches can still provide useful 
information to enhance our understanding of 
in vivo processes. As well as being easier to reproduce 
and less resource-intensive, 2D cell cultures support 
homogenous growth and equal access to nutrients for 
all cells present, whilst cells embedded in a 3D system 
may not have access to sufficient nutrients [51]. 
Despite the challenges that come with 3D systems, 
the studies cited demonstrate that 3D co-cultures are 
highly valuable, as monolayer culture systems do not 
fully represent the high complexity of the oral cavity 
(Table 1). A review of 3D oral mucosa models by 
Moharamzadeh et al. [52] described the different 
approaches that have been taken and the advantages 
and limitations of each, as well as the range of appli-
cations for these systems. As protocols and analysis 
methods continue to improve, these 3D techniques 
will become more accessible within the oral field.

Biofilms

The studies described thus far have utilised bacteria 
in the form of planktonic cultures, applied within 
nutrient media to the 2D and 3D cell cultures. 
Often only one or two bacterial species are consid-
ered in these studies, compared to the 700 species 
that have been detected in the oral cavity [53]. 
Bacteria in the mouth mostly exist in the form of 
polymicrobial biofilms, which are particularly rele-
vant when looking at plaque-related pathogenesis 
[5]. Furthermore, species growing in biofilms have 
been shown to have higher resistance to antibiotics 
when compared with planktonic bacteria [54]. This 
highlights that applying biofilm models in co- 
culture studies is particularly relevant to mimicking 
the oral cavity, both for studying disease progres-
sion and evaluating antimicrobial approaches. 

Millhouse et al. [55] showed there is interplay 
between a complex biofilm and oral epithelial 
cells, determined through changes in pro- 
inflammatory mediators. Other studies have simi-
larly revealed pro-inflammatory responses of 
epithelial cells after challenge with biofilms 
[56,57]. These investigations demonstrated that 
specific interactions occur between bacteria in 
a biofilm, as well as with the host cells, yet these 
interactions are not present in a planktonic culture. 
Therefore, it may be concluded that the application 
of biofilms in co-culture studies with oral eukaryo-
tic cells is essential to unearth the complexity of 
these microenvironments.

Biofilm models are useful to evaluate anti- 
inflammatory and antimicrobial techniques, treat-
ments, and compounds. Traditionally, the efficacy of 
novel antimicrobial compounds is assessed on patho-
gens in planktonic and biofilm states and subse-
quently these compounds are applied to oral 
eukaryotic cells to identify any cytotoxic (or benefi-
cial) effects. This approach is very common in 
P. gingivalis research, as this pathogen is known to 
induce a response in several oral cell types including 
epithelial cells, osteoblasts, and fibroblasts [58]. 
Hence, many studies have an interest in the oral 
cellular response to novel antimicrobial compounds, 
as well as the effect on P. gingivalis itself [59–61]. 
However, an area this approach does not address is 
the interaction between the pathogen and oral eukar-
yotic cells in the presence of the antimicrobial under 
investigation.

P. intermedia is another potential periodontal 
pathogen associated with the shift from health to 
disease in a biofilm and has been shown to increase 
the immune response at the site of infection [62]. 
Fteita et al. [18] demonstrated that the chemically 
synthesised quorum-sensing (QS) molecule butyl- 
dihydroxy-2, 3-pentanedione, an analogue of autoin-
ducer-2 which is commonly produced by many 
gram-positive and gram-negative species, was able 
to reduce cytokine expression of a human gingival 
keratinocyte cell line and simultaneously inhibit bio-
film growth of P. intermedia. Without observing the 
entire system in one in vitro study, this synergistic 
effect may have been missed. To further support the 
importance of evaluating biofilms and oral cells in co- 
culture, a study by Ramage et al. [63] applied both 
single- and multi-species biofilms to an oral epithelial 
cell line (OKF6/TERT2) and the results implied 
immune-function changes when varying biofilm 
composition. They reported the dependence of the 
immune response on the type of bacterial challenge, 
further highlighting the complexity of the oral cavity 
and the need to investigate several different interac-
tions to understand disease pathogenesis and identify 
novel therapeutic targets.
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A challenge with using biofilms in a co-culture is 
the highly different growth rates between the bacteria 
and eukaryotic cells [64]. High numbers of bacteria in 
cell culture can cause rapid nutrient depletion and 
changes in pH, subsequently hindering the growth of 
eukaryotic cells [65]. Biofilms contain larger numbers 
of bacteria compared with planktonic cultures, where 
the concentration of bacteria can be easily adjusted 
through dilutions. Hence, it can be useful to adopt 
a methodology whereby the biofilm does not come 
directly into contact with the eukaryotic cells, or 
where flow is present to reduce the bacteria numbers 
in the co-culture system (Figure 2D). Different 
approaches have been taken to achieve this. 
Guggenheim et al. [66] and Thurnheer et al. [67] 
grew a multispecies biofilm on a hydroxyapatite 
(HA) disc and placed this upside-down on a ring 
support that was layered onto a gingival epithelial 
cell monolayer culture. In contrast, Millhouse et al. 
[55] and Ramage et al. [63] attached the coverslip on 
which the biofilm was grown to the base of 
a transwell culture insert, which was placed within 
the well plate. Hence, the biofilm was suspended 
approximately 0.5 cm above the monolayer culture 
and did not directly come into contact with the oral 
epithelial cells in the bottom of the well (Table 1). An 
alternative approach to introducing bacteria is to use 
a flow chamber. These have been used in some stu-
dies to evaluate biofilm formation on implant sur-
faces [68,69]. To grow biofilms in flow chambers the 
hydrodynamic conditions must be carefully con-
trolled, ideally akin to saliva flow in the mouth [70]. 
A review of different biofilm flow methodologies has 
been described elsewhere [70,71]. Relevant to this 
review, a recent study utilised a flow chamber to 
compare adhesion of bacteria versus human gingival 
fibroblasts on titanium surfaces and determined that 
the smoothest surface best supported fibroblast adhe-
sion and reduced biofilm formation [69]. These find-
ings highlight that dynamic culture systems remain 
a promising avenue for further exploration. This is of 
particular relevance to those studying the oral cavity 
since it enables the system to mimic saliva flow, thus 
creating an environment more closely aligned to 
in vivo conditions.

Due to the complexity of analysing both 3D tissue 
models and biofilms, very few studies have attempted 
to combine the two in a single system. The most 
simple reported method, published by Gursoy et al. 
[46], applied biofilms of F. nucleatum grown on cover-
slips directly onto epithelial cells grown on fibroblast- 
containing collagen matrices. By comparing the appli-
cation of planktonic species with biofilms, they were 
able to determine differences between the ways bac-
teria behaved in these different states, with biofilm 
bacteria causing significantly greater epithelial cell 
death than when applied in planktonic form. This 

study also demonstrated that cells from biofilms of 
F. nucleatum were able to invade the collagen matrix 
of the mucosal model, highlighting the benefits of 
choosing a complex system to model the in vivo envir-
onment. However, the biofilm was directly in contact 
with the mucosal model and hence this may have 
increased the magnitude of the effects observed. 
A more complex approach to modelling the interac-
tion between oral biofilms and oral tissues is to utilise 
a perfusion bioreactor system [72,73]. Bao et al. were 
the first to use one of these systems to study period-
ontal infections and later also used it to characterise 
the global proteome regulations present in the host- 
biofilm model. One of the benefits of using a perfusion 
bioreactor is that immune cells such as monocytes can 
be incorporated to generate an environment that is 
potentially more physiologically relevant. However, 
the cost of a bioreactor system can be a significant 
barrier to using this technique. Overall, the research 
described provides clear evidence that understanding 
the interactions occurring within an oral biofilm will 
enhance our understanding of the pathogenesis of oral 
disease, and novel approaches to introducing biofilms 
to host cells are key to achieving this.

Perspectives from other fields

Gut microbiology

The human intestines exhibit a multifaceted micro-
biota, with an abundance of host-microbe, microbe- 
microbe, and environmental interactions [74]. This 
complexity creates many similar challenges to 
researchers working in the oral field. Links between 
the gut microbiome and obesity, diabetes, liver disease, 
cancer, and neurodegenerative diseases [75,76] have 
now been established, which has driven considerable 
growth in this research area. Similar approaches to the 
co-culture models described herein have been utilised 
in this field, including monolayer/planktonic cultures 
[77–80] and 3D/planktonic cultures [81,82]. Reported 
methods to generate an in vitro environment that 
better represents the in vivo surroundings of the diges-
tive tract include bioreactors [79], 3D organoid cul-
tures [83,84], and organ-on-a-chip systems [85], all of 
which are described in detail by a review published in 
2017 [78]. As with certain anaerobic bacteria in the 
oral field, interactions of anaerobic gut species with the 
intestinal mucosa are less-frequently studied due to 
challenges in culturing anaerobes with the oxygen- 
requiring epithelium. Anonye et al. [86] reported for 
the first time the use of a dual environment vertical 
diffusion chamber (VDC) to study the effect of 
Clostridioides difficile (C. difficile) on a 3D gut epithe-
lium model. The use of a VDC allowed for monitoring 
this interaction over a longer time frame and the study 
reported that C. difficile adhered more effectively to 
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epithelial cells grown on the surface of the 3D model 
than on single epithelial monolayers. VDC could simi-
larly be employed in the field of oral microbiology to 
better study the effect of anaerobic pathogens such as 
P. gingivalis and F. nucleatum, key species identified in 
the progression of periodontitis.

Skin microflora

The skin is inhabited by a multitude of microorganisms, 
with many factors including genetics, environmental 
characteristics, and host demographics having an influ-
ence on the composition of the microflora and conse-
quently on the shift from health to disease [87]. There are 
a number of 3D skin models established, including some 
that are available to purchase, which have a fully differ-
entiated epithelium [88]. These models have typically 
been used in toxicity studies and drug testing applications 
[89]; however, due to the similarities in structure between 
skin and oral mucosa, lessons can be taken from some of 
the advanced approaches to 3D dermal models. For exam-
ple, El Ghalbzouri et al. [90] demonstrated that collagen 
secretion by human fibroblasts provided a long-term 
functional human dermal matrix, and that this could be 
cultured for nearly three times as long as traditionally used 
rat-tail collagen matrices. This methodology could be 
beneficial in the oral field, as the short timespan that 
primary gingival fibroblasts can be cultured is a limiting 
factor for longer-term studies of periodontal disease. 
A similar technique frequently applied in the dermal 
field is to seed keratinocytes onto decellularised matrix. 
Anderson et al. [91] were interested in the formation of 
a biofilm phenotype of MRSA, to mimic a natural infec-
tion. They used decellularised porcine vaginal mucosa to 
generate a stratified, squamous epithelium, an advantage 
of which is that it is inexpensive and easily reproducible. 
The same study compared planktonic application of 
Staphylococcus aureus (S. aureus) with the formation of 
a biofilm directly on the skin model and demonstrated the 
importance of closely mimicking natural biofilm infec-
tions. In summary, 3D skin models are becoming increas-
ingly useful in the study of the human dermal microbiota. 
Some of the novel advances made in this area, in parti-
cular the production of 3D extracellular matrix from 
human fibroblasts, could be translated to the oral mucosa 
to improve the reproducibility and accessibility of current 
techniques.

Conclusions

Significant progress has been made towards the 
development of physiologically relevant models of 
the oral environment, from simple 2D co-cultures 
to more complex 3D tissue constructs and from the 
application of planktonic bacteria to multispecies 
biofilms. These advances have led to a greater 
increase in our understanding of the interactions 

taking place in the oral cavity, and thus deepening 
our knowledge of how periodontal diseases progress. 
However, current in vitro models have limitations, 
either due to their simplicity or complexity. Whilst 
able to identify specific interactions between cell 
types, simple 2D cultures cannot be used to deter-
mine the more complex cell–cell interactions that 
occur in the oral cavity, for example, between bac-
terial species and with the host immune system. On 
the other hand, due to the analytical complexity or 
equipment costs, very few studies have successfully 
introduced biofilms to a 3D organotypic mucosa 
model. Selecting a co-culture system with an appro-
priate degree of physiological relevance to answer 
the research question is essential. As a growing num-
ber of studies utilise more complex models, many 
analytical techniques and 3D mucosa models are 
being optimised. Utilising knowledge from multiple 
disciplines, including biology, engineering, and 
mathematics, is likely to become important in 
furthering the field due to the multifaceted nature 
of co-culture systems. Additionally, in silico models 
of interactions in the oral cavity may become of 
increasing significance for simulating more complex 
environments, though in vitro and in vivo data will 
still be required to make computational approaches 
reliable. Adapting and applying techniques from 
other fields facing similar challenges can enhance 
the methodologies currently available in the study 
of the oral cavity. Systems that combine these 
approaches will ensure advancement in the field. As 
such, this will enhance our understanding of disease 
progression and enable the evaluation of the effects 
of new antimicrobial compounds and novel 
therapies.
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ARTICLE OPEN

Biofilm viability checker: An open-source tool for automated
biofilm viability analysis from confocal microscopy images
Sophie E. Mountcastle 1,2,6, Nina Vyas 2,6, Victor M. Villapun3, Sophie C. Cox3, Sara Jabbari 4, Rachel L. Sammons2,
Richard M. Shelton2, A. Damien Walmsley2 and Sarah A. Kuehne 2,5✉

Quantifying biofilm formation on surfaces is challenging because traditional microbiological methods, such as total colony-forming
units (CFUs), often rely on manual counting. These are laborious, resource intensive techniques, more susceptible to human error.
Confocal laser scanning microscopy (CLSM) is a high-resolution technique that allows 3D visualisation of biofilm architecture. In
combination with a live/dead stain, it can be used to quantify biofilm viability on both transparent and opaque surfaces. However,
there is little consensus on the appropriate methodology to apply in confocal micrograph processing. In this study, we report the
development of an image analysis approach to repeatably quantify biofilm viability and surface coverage. We also demonstrate its
use for a range of bacterial species and translational applications. This protocol has been created with ease of use and accessibility
in mind, to enable researchers who do not specialise in computational techniques to be confident in applying these methods to
analyse biofilm micrographs. Furthermore, the simplicity of the method enables the user to adapt it for their bespoke needs.
Validation experiments demonstrate the automated analysis is robust and accurate across a range of bacterial species and an
improvement on traditional microbiological analysis. Furthermore, application to translational case studies show the automated
method is a reliable measurement of biomass and cell viability. This approach will ensure image analysis is an accessible option for
those in the microbiology and biomaterials field, improve current detection approaches and ultimately support the development of
novel strategies for preventing biofilm formation by ensuring comparability across studies.

npj Biofilms and Microbiomes            (2021) 7:44 ; https://doi.org/10.1038/s41522-021-00214-7

INTRODUCTION
Biofilms are defined as ‘aggregates of microorganisms in which
cells are embedded in a self-produced matrix of extracellular
substances that are adherent to a surface'1. Compared with
planktonic bacteria, those present in biofilms can survive harsher
environments and demonstrate increased resistance to antimicro-
bials2. Biofilms account for up to 80% of implant-related infections
as, unintentionally, medical implants provide excellent surfaces for
formation of these 3D bacterial communities3. Device-related
infections are particularly difficult to eradicate and often result in
the need for restorative surgeries4. Furthermore, there is also an
increased concern regarding the presence and spread of
antimicrobial-resistant strains in biofilms5. It is therefore vital to
consider these complex structures when evaluating antimicrobial
activity in the development of functional biomaterials and new
antibacterial approaches to tackle device-related infections.
To investigate the effect of novel antimicrobials and surface

functionalisation, quantification of biofilm development and
viability following such treatment is essential. Traditionally in
microbiology, analysis of biofilms is performed through serial
dilution of a culture to count the number of colony-forming units
(CFUs), or alternatively using crystal violet stain along with
spectrophotometry6–10. Whilst these traditional methods have
their applications and advantages, a move towards more direct
quantitative analyses of biofilms that reduce operator variability is
recommended. Furthermore, neither CFU-plating nor crystal violet
staining allow for detailed visualisation of biofilm architecture.
Understanding 3D structure is important because extracellular

polymeric substances (EPS) can contribute to antimicrobial
resistance properties of biofilms by impeding transport of some
antibiotics11,12. Disruption of biofilm architecture to expose cells
and increase the efficacy of antimicrobial drugs is a potential
approach to tackle device-related infections, and therefore is an
important aspect to consider13.
In contrast, direct imaging of biofilms using microscopy

techniques provides information on their structural characteristics,
which can in turn determine whether an intervention has been
successful in disrupting biofilm formation. Confocal laser scanning
microscopy (CLSM) selectively excites fluorescence signals from
different planes within a sample, acquiring images point by point
with localised laser excitation at specific wavelengths. CLSM is a
useful technique as it enables 3D visualisation of biofilm structure
by excluding signals from adjacent planes. A second benefit of
CLSM is the versatility offered by fluorescent stains added to a
sample, allowing further information to be obtained; for example,
the presence of extracellular DNA, exopolysaccharides and biofilm
viability. CLSM with viability staining provides high sensitivity,
specificity and resolution14. Of the fluorescent stain protocols
available, live/dead staining is a conventional method of evaluat-
ing biofilm formation in microbiology for a wide variety of
applications including oral, bone and gut microbes15–20. A live/
dead stain provides a fluorescence assay of bacterial viability,
based on membrane integrity. Most commonly, SYTO® 9 acts as
the green fluorescent nucleic acid stain, labelling bacteria with
intact cell membranes, and propidium iodide forms the red-
fluorescent nucleic acid stain, penetrating only bacteria with
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damaged membranes21. Examples of the application of CLSM and
fluorescent staining to biofilms include examining Pseudomonas
aeruginosa (P. aeruginosa) biofilm formation on antibiotic-loaded
bone cement19, observing the effect of antimicrobial therapy on
biofilm formation in endotracheal tubes18 and screening cinchona
alkaloids for anti-biofilm activity against Staphylococcus aureus (S.
aureus)22.
Despite the varied and wide-ranging use of CLSM and live/dead

staining to investigate biofilm formation, there is little consensus
regarding evaluation of the resulting micrographs. Specifically,
there is no consistent method applied for quantifying live/dead
bacteria from the confocal images reported in the literature. Some
groups use CLSM to simply visualise the biofilm and qualitatively
interpret the results, or conduct manual segmentation by using a
global threshold or delineating the cells in the images manu-
ally16,23,24. Simple segmentation methods such as these are time
consuming and may result in inconsistencies due to user
subjectivity. Other studies elect not to report in full their chosen
segmentation algorithm or validate its accuracy19,25–27. One useful
way of validating accuracy is to perform a sensitivity and
specificity analysis that determines whether an algorithm can
successfully detect a pixel that corresponds with bacteria and a
pixel that corresponds with background, respectively28. While
more robust segmentation protocols have been reported, they are
not always accessible or reproducible if the method lacks detail
and they may be particularly challenging to implement for non-
experts. Many studies use bespoke software such as Imaris25,
COMSTAT29, PHLIP30 and most recently BiofilmQ31. These can
make CLSM micrograph analysis easier to navigate through a user-
interface. BiofilmQ can measure features from biofilm images to
extract information such as fluorescence intensity, biofilm density
and surface area. However, it is not specifically developed for cell
viability measurements of biofilms, and currently there is no
option for morphological operations, which were used in the
macro developed in the current study. Whilst the algorithms used
in some bespoke software are made available, an understanding
of the settings in each package and how these impact on the data
is required. These settings should be reported for a study to be
repeated. Furthermore, it is necessary to report any image pre-
processing as this will affect comparability across literature.
In addition to navigating the range of segmentation methods

and software available, the commonly used stain for bacterial
biofilm viability, the FilmTracer™ LIVE/DEAD® Biofilm Viability Kit
(Invitrogen, USA)21, can give erroneous results if images are not
analysed correctly. Depending on the contrast of the red and
green channel images, bacteria which are dead can appear yellow
in images (due to red and green being superimposed on each
other)32,33. A further challenge with the FilmTracer™ LIVE/DEAD®
Bacterial and Biofilm Viability Kits is that propidium iodide can
stain extracellular DNA that is present in biofilms34. Therefore,
qualitative observation of live/dead stained biofilms could lead to
misleading conclusions since the contrast of each channel is
manually adjusted by the user. If automated image analysis is used
to analyse the red and green channels separately this would give
more objective quantitation with no possibility of the two
channels being superimposed. Although numerous studies have
published new image analysis techniques for biofilms35–39, many
microbiological studies that use image processing still do not
report the exact methods used, including the type of threshold
applied. Such information is critical to determining accuracy of the
study and ensuring reproducibility. Ultimately this leads to the
conclusion that the current suite of image processing tools
available for biofilm analysis is difficult to access and cumbersome
for non-specialists with no significant programming experience.
This highlights a gap for an open-source image analysis tool
designed specifically to assess biofilms which balances accessi-
bility, transparency and accuracy.

This work aims to develop a robust but easy to use automated
image analysis technique to quantify biofilm formation from
confocal micrographs, which accounts for the errors identified
with SYTO® 9 and propidium iodide stains. A new image analysis
method is proposed that incorporates image pre-processing and
automated thresholding, using the open-access software Fiji
(ImageJ, US National Institutes of Health, Bethesda, Maryland,
USA). To the authors’ knowledge, no prior studies have directly
compared the results of confocal micrograph image analysis with
those of counting CFUs and therefore this was undertaken in the
present work. Alongside method comparison, sensitivity and
specificity of the automated image analysis was carried out to
evaluate its accuracy. Further validation of the method was
conducted on Gram-positive and Gram-negative species of
different cell morphologies: P. aeruginosa, Lactobacillus casei, and
a multi-species biofilm consisting of Fusobacterium nucleatum,
Actinomyces naeslundii, Streptococcus gordonii and Porphyromonas
gingivalis. A unique aspect of this work is the use of translationally
relevant case studies to trial the automated image segmentation
protocol, the results of which will also be presented. This analysis
method will prove useful by ensuring reproducibility across
studies, by offering a faster analysis approach than traditional
microbiological methods enabling higher sample numbers, and
finally by reducing human error compared with CFU-counting or
manual image segmentation. Ultimately, this work will support the
development of much needed approaches to prevent and treat
costly infections.

RESULTS
Validation of image analysis protocol
To assess the reliability and accuracy of the automated protocol
developed (Fig. 1), a series of analyses were performed. This
included sensitivity and specificity analysis28, a comparison with
traditional microbiological techniques and the application of the
protocol to a variety of bacterial species with varying morphol-
ogies (Fig. 2).
The sensitivity and specificity of the image analysis method was

determined using receiver-operating characteristic (ROC) analysis
(Fig. 2a). A ROC curve is a plot of sensitivity (true positive rate)
versus 1 – specificity (false positive rate). The greater the
algorithm’s ability to correctly identify pixels in an image, the
closer the curve sits to the upper left-hand corner of the graph40.
A ROC curve lying on the diagonal reflects a performance that is
no better than identifying pixels by chance. The ROC analysis in
the present study demonstrated that the specificity for both red
and green channels was high, with means of 99.9 and 81.7%,
respectively. However, the sensitivity of the automated image
analysis method in the red channel varied, ranging from 6.1 to
100.0%.
Figure 2b shows the resulting quantification of Streptococcus

sanguinis (S. sanguinis) biofilm over time using the automated
image analysis method developed in this work and CFU-plating
combined with counting using a haemocytometer. Both methods
demonstrated viability decreased with biofilm age, however, the
rate at which this occurred varied significantly between the two
methods. It should be noted that the traditional methods induced
greater errors, with a coefficient of variation (CV) ranging from
17.0 to 78.1%, compared with 4.24 to 11.5% for image analysis,
and this was likely due to the manual nature of the method.
Manual analysis of CFU plating and cell counts using a
haemocytometer typically result in wider errors due to the
subjectivity of the user defining what is considered a cell, and
from volume and dilution errors.
To confirm that the developed analysis could be performed on

biofilms of species with different morphologies, the ImageJ
macro was applied to 24-h P. aeruginosa and 7-day L. casei
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biofilms, and to further challenge it, a 5-day multi-species biofilm
consisting of F. nucleatum ssp polymorphum, A. naeslundii, S.
gordonii and P. gingivalis (Fig. 2c–f). L. casei and P. aeruginosa
were selected due to their rod-shaped cell morphologies, to
contrast with the cocci-shaped S. sanguinis. The protocol was
applied to a multi-species biofilm containing a range of
morphologies to ensure it could accurately determine biofilm

viability and coverage in more challenging and complex images.
Figure 2c–f show that the analysis protocol successfully identified
live and dead bacteria of different morphologies. Through
qualitative observation of the outline of stained bacteria (Fig.
2c–f), this was evidenced by very few bacteria being incorrectly
identified as background by the automated segmentation
method.

Fig. 1 Image analysis steps used in ImageJ to calculate bacterial viability from a confocal image of biofilm with LIVE/DEAD stain. Images
taken from a representative S. sanguinis biofilm cultured for 48 h (20 µm scale bar). See Supplementary Information to implement the
automated analysis.

S.E. Mountcastle et al.

3

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2021)    44 



It is important to ensure that any image analysis method can
cope with a wide range of conditions. In the development of
antimicrobial techniques and novel implant surface coatings, it is
expected that conditions which include no viable cells in biofilms
will be analysed. To ensure that the protocol handles such
conditions, the macro was applied to S. sanguinis biofilms treated
with the antimicrobial cetylpyridinium chloride (CPC) at bacter-
icidal levels (Fig. 2g). The macro consistently produced results of
0% alive (n= 6) for all biofilms treated with CPC. This confirmed it
was reliable across a range of biofilm viabilities.

Translation of image analysis method to research applications
The aim of the present research was to develop an accurate image
analysis protocol that will aid in the development of novel
antimicrobial therapies and implant devices. To investigate the
potential of this protocol, it was applied in three key experiments.

First, to demonstrate it could provide useful data to examine the
effectiveness of antimicrobial compounds, a simple mouthwash
study was performed. In this experiment, a commercial
mouthwash was applied to biofilms of two species: P. aeruginosa,
a pathogen which is known to have increased antibiotic
resistance41, and the commensal oral bacteria, S. sanguinis42.
Secondly, biofilms of Staphylococcus epidermidis (S. epidermidis)
were grown on additively manufactured (AM) Ti-6Al-4V coupons
to understand the effect of manufacturing protocols on the
viability of a frequently detected pathogen in implant infec-
tions43,44. Finally, to demonstrate the information that can be
obtained regarding the 3D architecture of biofilms, the automated
protocol was applied to z-stacks taken from 1-day- and 7-day-old
S. sanguinis biofilms, the results of which are described below.
Applying mouthwash to biofilms of two different species

showcased that mouthwash had a limited effect on the biofilms of
P. aeruginosa when compared with water-treated samples (p= 0.93)

Fig. 2 Results of validation of automatic image analysis protocol. a ROC curve demonstrating sensitivity and specificity of the image
analysis protocol. Green points represent sensitivity and specificity of the green channel (total cells) and red points represent sensitivity and
specificity of the red channel (dead cells). b Comparison of image analysis and biological methods. Figure shows mean ± standard deviation
(for image analysis, five confocal images were analysed of each of five biological replicates, N= 5 and for biological methods, three biological
replicates were analysed, N= 3). To obtain the percentage viability using biological methods, live cells were counted using a serial dilution and
CFU-plating. Total cell count was obtained using a haemocytometer. c–f Sample images of a variety of single-species biofilms demonstrating
result of automated image analysis. The green outline indicates the total bacteria area and the magenta outline indicates the dead bacteria
area. c S. sanguinis (10 µm scale bar), d P. aeruginosa (5 µm scale bar), e multi-species biofilm consisting of F. nucleatum, A. naeslundii, S. gordonii
and P. gingivalis (10 µm scale bar), f L. casei (10 µm scale bar). g Representative micrograph of an S. sanguinis biofilm treated with 5% CPC to
demonstrate the ability of the macro to handle extreme conditions (Full image 20 µm scale bar, small image 10 µm scale bar). The magenta
line shows the result of the segmentation of the red channel. The resulting output from the macro is 0% viability.
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(Fig. 3a). Whilst there was no significant difference identified
between the mouthwash-treated and water-treated biofilms of S.
sanguinis, the p value was much lower (p= 0.08) (Fig. 3b). It is
expected that a larger study would support the effectiveness of the
mouthwash treatment at reducing the percentage of live bacteria in
S. sanguinis biofilms, as evidenced by other literature45,46. This was
not the objective of the present study, rather the aim was to
demonstrate the application of the automated image analysis. The
findings of this experiment agreed with other work that has
highlighted the resistance of P. aeruginosa to a range of broad-
spectrum antibiotics found in commercial mouthwashes47,48.
A second area of research that is highly important in the field of

antimicrobial resistance is the development of novel materials,
coatings, and surface treatments for medical and dental implants.
To showcase the applicability of the current approach in the
development of novel medical devices, two properties of S.
epidermidis biofilms on AM titanium implants manufactured with
different orientations (20° to 90° from the normal plane, see
Supplementary Fig. 2) were investigated, namely cell viability and
coverage (Fig. 3c, d). Orientation of AM samples significantly
modified the resulting average roughness from 8 µm up to 18 µm,
for 20° and 90° respectively, as shown in previous works44.
Nevertheless, the number of live bacteria expressed as a

percentage of total bacteria showed no significant difference
(p= 0.07) between surfaces (Fig. 3c). In contrast, when percentage
coverage was analysed (as it relates to biomass), it demonstrated
that increasing the sloping angle resulted in a significant increase
in percentage coverage of the biofilm (p= 0.02) (Fig. 3d). The
difference between viability and coverage indicated that albeit an
increase in biomass developed on the surface of the samples, the
percentage of living cells is not dependent on surface modifica-
tion. This could be the result of the selected alloy lacking any
antimicrobial effect49, coupled with the larger surface area and
shear force protection offered by the peaks and valleys present in
the rougher samples, leading to more favourable growth
conditions50,51.
The analysis protocol can be used to investigate biofilm

composition from coverslip to biofilm surface by applying it to
each image of a confocal z-stack. In addition, the total number of
pixels that correspond with bacteria (live or dead) can also be
used to calculate biomass as ‘percentage coverage’, i.e. the
number of stained pixels as a percentage of total pixels in the
image. This was carried out for an S. sanguinis biofilm cultured for
1 and 7 days on a Thermanox coverslip (Fig. 3e, f, respectively). For
the 24-h biofilm, viability remained consistent throughout,
ranging between 82.9 and 99.18%. However, the coverage

Fig. 3 Translation of image analysis method to research applications. a, b Simple mouthwash study comparing biofilms of a P. aeruginosa
and B S. sanguinis treated with mouthwash or water (n= 3 for all conditions). c, d Analysis of S. epidermidis biofilms grown on additively
manufactured coupons at different sloping angles: c Percentage alive and d Percentage coverage. e, f Biofilm coverage and viability with
increasing distance from coverslip for e a 24-h biofilm of S. sanguinis and f 7-day biofilm of S. sanguinis. Z-stacks were taken at 1 µm increments
from the surface (the first plane in which bacteria were identified), and hence the distance from the surface is equivalent to the biofilm
thickness.
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increased in the centre of the biofilm, peaking at 69.0% at 41 µm
from the coverslip, and decreased towards the surface, ending at
19.24% at 58 µm from the coverslip. In contrast, viability varied
significantly across the 7-day biofilm. Low viability was observed
in the centre, with values lower than 50% for distances between
23 to 46 µm from the coverslip surface. In contrast, high viability
was detected at the coverslip interface (99%) and on the biofilm
surface (100%). The reduction in viability in the centre of the
biofilm may be due to nutrients being limited and unable to reach
those species in the centre or could be caused by an oxygen
gradient throughout the biofilm. Percentage coverage, which
relates to biomass, also decreased in the centre of the older
biofilm, dropping below 45% between 10 and 52 µm from the
coverslip, which may have been linked to the fact that viability
had decreased significantly.

DISCUSSION
The aim of this study was to develop a method to analyse confocal
micrographs of live/dead stained biofilms. The method was
designed to be simple and accessible to a range of researchers
that work on the development of antimicrobial strategies related
to biofilms, including microbiologists and materials scientists.
Therefore, the analysis protocol was written in the open-source
software ImageJ and the method requires no preliminary image
preparation or modification. The ImageJ macro, alongside a fully
detailed description of how to execute the algorithm to enable
researchers to implement this protocol, is available in Fig. 1 and
the Supplementary Information. The algorithm was effective and
accurate on a range of biofilms, including different bacterial
morphologies, such as cocci (S. sanguinis) and rod-shaped (L. casei)
bacteria, and different biofilm ages (from 24 h up to 7 days). A full
workflow is provided alongside a series of validation methods in
this study, and furthermore includes application of the code to
translational case studies, which is an advantage compared with
other literature that include analysis of CLSM micrographs of
biofilms.
Over the past two decades, many researchers have attempted

to tackle the problem of automated analysis of biofilm micro-
graphs, including developing commercial and free software
tools29–31. Depending on the size of the cells, the quality and
resolution of the image, and thickness or density of the biofilm,
two approaches to automated quantification can be taken: (1) by
detecting and counting discrete objects or cells or (2) by making
assumptions regarding the manner in which the properties of the
entire image relate to the biofilm characteristics. In this study, the
latter approach was taken, and the number of pixels stained red
and green were used to quantify the number of viable (live) cells
as a percentage of total cells. The reason for selecting this method
was driven by the small cell size and common overlapping of
bacteria in biofilm images, even in high-resolution CLSM
micrographs. Furthermore, detecting discrete cells can be
challenging if they have different morphologies. Therefore,
making assumptions about the relationship between pixel count
and bacteria viability ensured that the automated approach was
accurate and applicable to a range of cell morphologies. The total
number of pixels that correspond with bacteria (live or dead) can
also be used to calculate biomass as ‘percentage coverage’, i.e. the
number of stained pixels as a percentage of total pixels in
the image.
A number of studies that utilise CLSM to analyse biofilm

formation simply visualise the biofilm and report qualitative
results, or conduct manual segmentation of the micro-
graphs16,23,24. The challenge with these approaches makes
comparison with other literature difficult due to the subjective
data. Neither of these methods take into consideration any non-
specific staining or extracellular matrix staining that may occur
when using the FilmTracer™ LIVE/DEAD® Biofilm Viability Kit34.

Furthermore, segmentation methods that involve manually
selecting the cells in an image are time consuming and may
result in inconsistent segmentation. To address these challenges,
the image analysis protocol presented in this study demonstrated
consistent and repeatable results. This was evidenced by a small
standard deviation with a CV between 4.24 and 11.5% in the large
biofilm study with over 100 images of 20 biofilms (Fig. 2b).
A further limitation of studies that implement CLSM micrograph

analysis is that many elect not to report in full the chosen
segmentation algorithm or validate its accuracy, negatively
influencing reproducibility and comparison19,25–27,52,53. It is vital
that the validity of an image segmentation algorithm is
demonstrated across different species, on ‘extreme’ cases such
as all-dead biofilms, and by comparing with separate techniques.
In this study we carried out a series of validation steps to
demonstrate that the protocol was effective and accurate. This
included performing a sensitivity and specificity analysis to
compare the automated results with manual segmentation of
the images. This manual segmentation represented a ‘ground
truth’ state, although it should be noted that the manual
segmentation was conducted on the original images with no
pre-processing and therefore background fluorescence and
extracellular matrix staining had not been accounted for. The
ROC study showed good sensitivity and specificity for the green
channel (total bacteria), 60.3 and 81.7%, respectively, and very
good specificity of 99.9% for the red channel (dead bacteria),
although the sensitivity for the red channel had a wider range (Fig.
2a). This was likely to arise from the additional steps implemented
to remove background noise in the red channel necessary to
prevent the analysis from including red areas that were not
bacteria. Reduced sensitivity in the red channel was needed due
to the challenge of extracellular matrix staining that occurred and
therefore the potential to underestimate the percentage of live
cells32–34. Furthermore, the ROC curve was calculated by compar-
ing the resulting binary images after running the automated
analysis with manually segmented sections of images (determined
by manually delineating all bacteria) that underwent no pre-
processing. During manual segmentation it is likely that low-level
background fluorescence combined with the red propidium
iodide stain marking EPS, results in the ‘ground truth’ images
used to calculate the ROC curve including pixels that are not
bacteria. This also contributes to the lower sensitivity of the
automated analysis in the red channel.
Very few prior studies have directly compared image analysis

with traditional quantification methods. As an example of those
that have, Larimer et al. (2016) compared the cell coverage
determined by image analysis with cell coverage determined by
measuring the optical density of the biofilm39. In the current study
we compared cell viability determined using image analysis with
that determined using CFU-plating and cell counting, which
helped to build confidence in the presented approach. Figure 2b
demonstrates that the overall trend in live cell percentage varied
between the image analysis and manual counting methods. Using
traditional techniques such as CFU-plating and counting cells
using a haemocytometer resulted in larger errors as the age of the
biofilm increased, rising from a CV of 17.0% at 24 h to a CV of
78.1% at 7 days. It also lead to a lower percentage of live cells at
later time points compared with the automated image analysis
data; for example, the mean percentage alive at 7 days calculated
by image analysis was 63.9%, whereas from traditional techniques
it was determined to be only 31.6%. This could have been due to
the increased number of cells present in the larger, older biofilms,
making counting the cells manually less accurate. Figure 2b
suggests that automated image analysis was likely to be more
accurate and therefore a better method to identify statistically
significant variations between biofilm growth conditions when
researching antimicrobial approaches. Other benefits to the image
analysis method presented are detailed in Table 1.
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Some of the more frequently used software packages devel-
oped specifically for biofilm analysis, such as COMSTAT and
BiofilmQ, have an easy to use graphical user interface that make
them popular for use. However, one main drawback of both of
these packages is that they do not have options to apply filters
and morphological operators as with those used in the current
study29,31, which allow for accurate detection of the bacteria in the
image whilst neglecting EPS and non-specific staining, commonly
found in biofilms. In addition, these software packages rely on the
user deciding if pre-processing of the images is necessary,
deciding which operators to apply and implementing any pre-
processing, which is difficult for those with no prior knowledge of
image analysis. In the present work, morphological operators and
filters were included in the automated protocol to remove
background fluorescence and account for potential staining of
the extracellular matrix or e-DNA, particularly in the red channel.
Furthermore, ImageJ is open-source and familiar to many
researchers. Presenting the full macro created in this study (see
Supplementary Information) enables users to adjust the gamma
values, structuring element size and add or remove steps in the
image pre-processing according to their data.
Numerous studies have been published that develop new

image analysis methods for biofilm micrographs, however, many
present several hurdles before they can be applied by non-
specialists. For example, they are often created in proprietary
software such as MATLAB35–37 or in programming languages such
as C++ 38, which make them difficult to use for researchers with
little or no programming experience. In some studies, the chosen
image segmentation technique was applied to low resolution
images where individual bacteria were not visible39. In the present
research, high resolution (x40 magnification, numerical aperture
1.30) images were used to ensure the segmentations were
accurate. Some published studies that use open-source software
have not included the code to allow for easy replication by other
scientists wishing to use their method. One of the key strengths of
this work is that a copy of the code, instructions on how to
implement it and an overview of the image analysis protocol are
all provided to ensure reproducibility (see Fig. 1 and Supplemen-
tary Information)14. This allows for users to understand the code
and easily modify it to fit the data being analysed. For example, if
a different staining protocol is used, the pre-processing steps can
be removed or adjusted so as not to account for the issues
identified with the FilmTracer™ LIVE/DEAD® Biofilm Viability Kit. A
further strength of the protocol presented is that it has low
computational time, with 25 micrographs analysed in less than
10min (Table 1). This allows for an increased number of samples
to be analysed and can ultimately improve the robustness of

studies investigating antimicrobial techniques to reduce implant-
related infection.
There are, however, several limitations to using a method based

on CLSM micrographs. Firstly, it is not possible to evaluate the
entire biofilm at once; in this study imaging was performed at x40
magnification to obtain high resolution images of individual
bacteria in the biofilm. Averaging data from across the biofilm
sample and increasing the number of repeats can limit the impact
of this. In this work, five images were taken across five samples for
each biofilm condition in Fig. 2b. As the analysis protocol in
ImageJ can process many images quickly, increasing the number
of samples to account for the limited range of the confocal images
was straightforward. Linked to this, a second limitation of the work
presented its application to poorer quality micrographs. For
example, if a sample is not completely flat when imaged using the
CLSM, an area of the image may be over or under exposed and
this can affect the resulting analysis. It is advisable to take
appropriate steps to ensure optimal imaging of the samples.
These include ensuring the fluorescent dye has sufficient signal to
avoid noise caused by increasing the contrast artificially, ensuring
the sample stays horizontal during sample preparation and
imaging using a high numerical aperture/magnification to obtain
high resolution images. Individual bacteria should be visible in the
micrographs being analysed and it is recommended that a
minimum magnification of x40 be used to implement the
described method. It should also be noted that the results of
the analysis will be more subjective if the user selects the location
on the biofilm for the image to be taken. User subjectivity can be
reduced significantly by taking a high number of images at
random locations across the biofilm; a minimum of five per
sample is recommended. A final challenge where this workflow
demonstrated limitations was that the macro had been tailored
specifically for bacterial biofilms and for fluorescent images that
were stained with the FilmTracer™ LIVE/DEAD® Biofilm Viability Kit.
For this reason, the additional steps taken to reduce the error
caused by SYTO® 9 would affect the results if a different
fluorescent stain is used by over-reporting viability. Whilst there
is potential for the macro to be applied to other confocal images,
the workflow may need altering to examine larger mammalian
cells or alternative staining protocols. However, this should be
possible for users with some image analysis experience, as each
step of the macro has been described within the code.
Despite the limitations of the proposed approach, it is

important to reiterate that CLSM and automated micrograph
analysis can prove very useful for researchers working on
antimicrobial strategies. The study of antimicrobial strategies to
tackle device-related infections is a vital area of research due to

Table 1. Summary of advantages and disadvantages of image analysis and CFU-plating combined with counting cell in a haemocytometer to
quantify biofilm formation.

Method Approach Advantages Disadvantages

Fiji macro
(ImageJ)

▪ Correct for uneven fluorescence
intensities

▪ Remove noise
▪ Segment bacteria from background
using Otsu threshold

▪ Record number of pixels for total
bacteria

▪ Apply same process for red channel
only to determine dead
bacteria count.

✓ Open-source software
✓ Can run macro on multiple

images at once
✓ Time taken to run image analysis

on 25 CLSM micrographs is
<10min.

✗ Requires some data manipulation after running
the automated segmentation to calculate biofilm
viability from pixel count.

✗ Workflow may need altering to observe larger
mammalian cells or for alternative staining
protocols.

Biological
methods

▪ Determine number of live cells from
CFU-plating.

▪ Determine total cell number using
haemocytometer.

✓ No specific software required
✓ Actual cell number determined

rather than inferred from pixel
number.

✗ Time-consuming
✗ Resource-intensive
✗ Susceptible to human error
✗ Challenging for larger, increased density biofilms
as further dilution required to analyse.
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the global challenge of antimicrobial resistance54,55. Comprehen-
sive efforts are needed to minimise the pace of resistance by
studying novel antimicrobial agents and much research is being
conducted to develop novel antimicrobial techniques56. Current
reported image analysis methods for CSLM images of biofilms do
not often demonstrate their application to a range of translational
research. In the present work, the protocol was applied to three
key areas that can benefit from automated CLSM micrograph
analysis. The effect of antimicrobial compounds being developed
on biofilms is highly important, given the increased resistance
shown by bacteria in these complex 3D environments, as well as
the knowledge that most bacteria exist in biofilm communities57.
This is particularly crucial in the oral field, where broad-spectrum
antibiotics are used in consumer products, such as toothpaste and
mouthwash (e.g. chlorhexidine and CPC) and in the clinic to treat
infection (e.g. amoxicillin and metronidazole)58–61. Applying the
image analysis protocol to a small study on commercial
mouthwash demonstrated that P. aeruginosa was resistant to
the mouthwash. Studies that have previously reported the effect
of broad-spectrum antimicrobials on oral pathogens typically
identify the minimum inhibitory concentration (MIC) using a CFU-
plating technique, measure optical density or report zones of
inhibition47,60. However, these methods rely on individual inter-
pretation so may be subjective, provide limited information on cell
viability and typically result in high standard deviations for small
sample numbers. Utilising the proposed analysis protocol in
research to investigate new antimicrobial compounds would be
effective at identifying potential novel therapeutics. It has benefits
over traditional techniques as it produced low error from small
sample numbers; in the present study the mean CV was 26.2%
from n= 3. Furthermore, automated segmentation would ensure
reproducibility and comparability across the literature.
A second area of research where preventing infection is

paramount in implants and medical devices. Infection of implants
can result in costly restorative surgeries and can also increase the
failure rate of subsequent implant placement62. A specific example
comes in the form of AM or bespoke implantable devices. These
technologies are capable of producing personalised complex
geometries while introducing features to enhance osseointegra-
tion (a structural and functional connection with the natural
bone), reduce stress shielding and incorporate therapeutically
loaded materials63–65. Nevertheless, clinical cases requiring such
devices are commonly associated with complex interventions,
typically arising from traumatic injuries, which may significantly
raise infection rates by up to 23–40% for personalised cranioplas-
ties66,67. Thus, much research is being conducted to reduce the
occurrences of biofilm-related implant infections. One strategy to
limit colonisation and proliferation of bacterial species results from
careful selection of surface finish for AM materials to ensure the
implant allows for osseointegration but prevents biofilm forma-
tion44. Villapún et al. (2020) demonstrated that in situ roughness
control can be achieved through changing the orientation at
which an implant is manufactured, with maximum mammalian
cell adhesion and minimum S. epidermidis growth for printing
angles between 20° to 30° to the normal plane44. To further assess
the applicability of the CSLM image analysis protocol, Ti-6Al-4V
coupons were AM and S. epidermidis biofilms were grown on the
coupons44. The resulting biofilms were stained, imaged and two
properties investigated through the image analysis protocol,
namely viability (percentage alive) and biomass (percentage
coverage), Fig. 3c, d, respectively. The percentage of live cells
showed no significant changes with sloping angle modification;
however, it was determined that an increase in sloping angle
resulted in a rise in biomass for angles higher than 30°. This
indicated that the growth of S. epidermidis biofilm was con-
strained, however there was no potential antimicrobial effect
enacted from the metallic surface. The rise in biomass concurred
with crystal violet and confocal image results reported by Villapún

et al. (2020), while the lack of contact killing was expected from a
bacteriostatic alloy such as Ti-6Al-4V44. Crystal violet staining can
complicate the analysis of biofilm formation and potentially
introduce artefacts during the recovery of the dye68. In contrast,
confocal imaging is a more versatile method that can quantify
biofilm viability and biomass accurately. The current automated
method allows for subjectivity to be removed when interpreting
CLSM micrographs and can generate additional information
regarding cell viability when compared with crystal violet staining
methods. Whilst viability did not change with surface roughness in
this experiment, viability is a key parameter to obtain in future
studies of this nature, where surface functionalisation may induce
a bactericidal response that would not be picked up from crystal
violet staining alone.
Finally, the translation of the presented method has a further

application investigated in this research. One of the advantages of
CLSM imaging is that it can generate an understanding of the 3D
structure of a biofilm using z-stacks. Not only can this provide
information about biofilm thickness and biomass, but the
application of the image analysis protocol can elucidate informa-
tion about biofilm composition throughout. Figure 3e, f show the
viability and percentage coverage of an image stack taken of 1-
day-old and 7-day-old S. sanguinis biofilms. For the younger
biofilm, the percentage of live cells remained consistent and
above 80% throughout its depth. However, in comparison the
viability of the 7-day-old biofilm was reduced significantly in the
centre and increased towards the surface. This could have been
due to limited nutrients reaching the centre of the biofilm,
combined with an oxygen gradient that increased towards the
surface, thus resulting in cell death. The reduced coverage
identified in the centre of the 7-day biofilm compared with the
24-h biofilm could be explained due to biofilm age. More mature
biofilms that have increased EPS compared to early-stage biofilms
may prevent the live/dead stain diffusing through to the centre,
and this may explain the reduced coverage at the centre of the
biofilms. Gaining an insight into the 3D structure of a biofilm,
combined with information on viability, can enhance the under-
standing of the effect of antimicrobial compounds and materials.
CLSM is an optimal tool for this as it has a large vertical range that
can image a biofilm of up to 60 µm thickness, and fluorescence
staining can provide information on viability. Applying the
automated method described in this study to biofilms grown on
modified surfaces could provide further information on how the
modification is affecting the biofilm structure throughout. Gaining
an understanding of biofilm composition is especially important
when studying implant-related infections. This method could be
applied to biofilms formed on modified implant surfaces to
quantify antimicrobial effects. The advantage of the proposed
segmentation method is that multiple images can be analysed
very quickly and consistently, as well as ensuring each image
within a single z-stack is treated the same, increasing compar-
ability across samples.
In summary, this paper presents an image analysis protocol for

quantifying CLSM micrographs of live/dead stained biofilms. The
protocol was validated by comparing with other methods and on
different species, and its use as an adjunct to traditional
microbiology techniques was demonstrated, for example to
support results from semi-quantitative methods such as crystal
violet staining. Importantly, the method can be translated to
antimicrobial drug and surface modification testing in many
different industries and research fields. The key advantages of this
protocol are that it is written in open-source software, is easy to
use, transparent in function and is modifiable unlike other
available software. This makes it a useful tool for those with
different research backgrounds to enable quantitative analysis of
biofilm viability to be performed. It has been demonstrated that
the current approach is a reliable measurement of biofilm growth
and cell viability assessment, critical for the development and
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analysis of novel antimicrobial strategies. Ultimately, this work will
support the development of much needed approaches to prevent
and treat costly infections.

METHODS
All chemicals are Sigma Aldrich (Dorset, UK) unless otherwise specified.

Artificial saliva preparation
Artificial saliva was prepared by adding the following sequentially to 1 L of
reverse osmosis (RO) water, stirring throughout:69

▪ 0.25 g/L sodium chloride (NaCl)
▪ 0.2 g/L potassium chloride (KCl)
▪ 0.2 g/L calcium chloride (CaCl2)
▪ 2 g/L yeast extract
▪ 1 g/L lab lemco powder
▪ 2.5 g/L hog gastric mucin (Type III, partially purified)
▪ 5 g/L protease peptone

The solution was stirred for 1 h at room temperature (25 °C), then
autoclaved to sterilise. After autoclaving, 1.25mL of 40% (w/v) sterile-
filtered urea was added (0.22 µm filter). The artificial saliva was wrapped in
foil to exclude light and prevent protein degradation. Artificial saliva was
stored at 4 °C and used no later than 1 week after preparation.

S. sanguinis biofilm growth
Frozen stock of S. sanguinis (ATCC 10556) was streaked onto a tryptone
soya agar (TSA) plate and incubated at 37 °C, 5% CO2 for 48 h. Using the
colonies grown on the agar plate, an overnight culture of S. sanguinis was
prepared in 5mL brain heart infusion (BHI) broth and incubated at 37 °C
overnight, agitating at 100 rpm for the duration. A serial dilution in BHI
broth containing 1% sucrose (w/v) was performed with the overnight
culture, from 109 (an optical density of ~0.5) to 103 cells/mL. Individual
Thermanox coverslips (Nunc, Thermo Fisher Scientific) were placed in the
bottom of each well in 24-well culture plates (Nunc, Thermo Fisher
Scientific). Prior to adding the planktonic culture, 1 mL of artificial saliva
was added to each well containing a cover slip and left for 15min before
being removed; this was to aid initial adhesion of the bacteria.
Subsequently, S. sanguinis monospecies biofilms were prepared by adding
1mL of the 103 dilution to each well containing a coverslip. The plates
containing the biofilms were incubated for up to 7 days at 37 °C, 5% CO2,
shaking at 100 rpm, with a change in BHI broth every 24 h, to ensure a
well-established biofilm had developed. At 0, 1, 3, 5 and 7 days, analysis of
biofilm growth was performed.

Cell counting
Any remaining BHI broth from the S. sanguinis biofilms was removed from
each well and each coverslip with biofilm was placed in 5mL of fresh BHI
broth in a universal tube. The bacteria were removed from the coverslip by
sonication in an ultrasonic cleaner (In-Ceram, Vitasonic) for 10min at
50–60 Hz, followed by agitation using a vortex mixer for 5 min. A serial
dilution was performed using the Miles and Misra method to count the
number of CFUs10. This enabled an estimation of the number of live cells
found in the biofilm. To quantify the total number of cells in each biofilm,
10 µL of the lowest dilution from the serial dilution was transferred to a
haemocytometer and the number of bacteria were counted in each of the
corner squares.

Fluorescent staining
For live/dead staining of S. sanguinis biofilms, any remaining broth was
removed from each well and five coverslips were transferred to a fresh 24-
well plate. A working solution of fluorescent stains was prepared by adding
3 μL of SYTO® 9 stain and 3 μL of propidium iodide stain (FilmTracer™ LIVE/
DEAD® Biofilm Viability Kit, Invitrogen, USA) to 1mL of filter-sterilised water
in a foil-covered container. About 200 μL of staining solution was added
onto each biofilm sample, gently so as not to disturb the biofilm. Samples
were incubated for 30min at room temperature, protected from light,
before being rinsed with 200 µL filter-sterilised water. Each coverslip was
then placed face up onto a clean, dry microscope slide and a drop of
mounting medium added (ProLong Gold Antifade, ThermoFisher Scientific,
Massachusetts, USA). A 22mm diameter glass coverslip was used to fix the

sample in place70. Samples were stored protected from light at room
temperature (25 °C).

Confocal laser scanning microscopy (CLSM)
Samples were imaged with CLSM (LSM 700, Zeiss, Germany) using a x40 oil
immersion objective (Zeiss Objective EC Plan-Neofluar 40X/1.30 Oil DIC
M27, FWD= 0.21mm). The two stains were first imaged separately to
control for any cross bleed between channels. The excitation/emission was
488 nm/<550 nm for SYTO® 9 and 555 nm/>550 nm for propidium iodide.
Five random locations were scanned on each biofilm sample, resulting in
25 total images for each experimental condition. Three z-stacks were taken
for each condition to calculate the biofilm thickness and for 3D
visualisation and analysis. Z-stacks were taken at 1 µm increments from
the surface (the first plane in which bacteria were identified).

Image analysis
The percentage of viable and dead bacteria in each image was determined
from the CLSM images. The percentage of viable bacterial was evaluated
by calculating the number of pixels corresponding with the total bacteria
in the image (green+ red), then calculating the number of pixels
corresponding with the dead (red) bacteria in the image, and finally
subtracting to find the number of pixels corresponding with live bacteria.
The live bacteria were quantified as a percentage of the total bacteria in
each image. The image analysis method was carried out using Fiji (ImageJ,
US National Institutes of Health, Bethesda, Maryland, USA) (Fig. 1). This was
chosen due to it being open-source software, and therefore freely
available. It should be noted that this macro calculates viability based on
the assumption that the image contains a single-species biofilm, and
therefore the area of red and green bacteria are proportional to the
number of red and green bacteria, respectively. It is still possible to use this
macro to analyse multi-species biofilms, although the output should be
considered as percentage of live cell area, rather than viability.

Workflow.

1. First, the green and red channels were separated.
2. A series of erosion, reconstruction and dilation steps were

performed on each channel using a disk structuring element of
size 3.

3. An additional step was applied to the red channel to compensate
for the staining of extracellular DNA that can result in under-
estimation of the number of live cells34. The ‘Subtract Background’
command was applied to the red channel. This is based on a ‘rolling
ball' algorithm and removes smooth continuous backgrounds from
images71.

4. A non-linear histogram adjustment was applied to both channels
using the Gamma command to correct for uneven fluorescence
intensities. This allowed faint bacteria to become brighter, while the
bright bacteria remained at the same intensity. The gamma value
was set at 1.5.

5. The resulting images were pulled into a stack and segmented using
Otsu’s threshold, with the threshold value selected based on the
histogram from both images37.

6. The number of white pixels in the red channel was recorded from
the segmented images to determine the area of dead bacteria.

7. The binary images were combined, and the total number of white
pixels was recorded to determine the area of all bacteria.

8. Finally, the total area of bacteria and area of red bacteria were used
to determine the percentage of viable cells. The area of all pixels can
also be utilised to determine the percentage coverage of the image,
which can be a useful alternative to measuring biofilm mass.

Sensitivity and specificity analysis
A ROC curve is a performance measurement for classification problems72. It
defines how well a model is capable of distinguishing between classes; in
the current study it defined how accurate the automated process was at
determining when a pixel was green or when a pixel was red. The true
positive rate (TPR) or sensitivity was plotted on the y-axis and the false
positive rate (FPR) or ‘1 – specificity’ was plotted on the x-axis72. To
determine the ‘ground truth’, small sections of confocal micrographs of S.
sanguinis biofilms were selected (three sections per image, for a total of
eight images) and manually segmented in Fiji (by manually delineating all
bacteria in each image) (ImageJ, US National Institutes of Health, Bethesda,
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Maryland, USA). The eight images included two images from each
timepoint (1, 2, 5 and 7-day biofilms). The automated image analysis
script was run on the 24 image sections and the resulting segmentation
was compared with the ‘ground truth’ segmentation results using Eqs. 1–3:

TPR or Sensitivity ¼ Number of true positive pixels
Number of true positive pixelsþ Number of false negative pixels

(1)

Specificity ¼ Number of true negative pixels
Number of true negative pixelsþ Number of false positive pixels

(2)

FPR ¼ 1� Specificity ¼ Number of false positive pixels
Number of true positive pixelsþ Number of false positive pixels

(3)

All calculations were made in MATLAB (R2018a, MathWorks Inc., USA).

Validation of image analysis protocol on single-species
biofilms
P. aeruginosa biofilm growth. A frozen stock of PA01-N was used to grow
P. aeruginosa colonies on BHI agar at 37 °C, 5% CO2. Overnight cultures
were grown by inoculating 5mL of BHI broth with three colonies of PA01
and incubating at 37 °C, continuously shaking at 100 rpm for 18 h. The
overnight culture was diluted using BHI broth to an optical density of 0.01
(at 600 nm), of which, 1 mL was placed in a well of a 24-well plate
containing a coverslip (13mm diameter, Thermo Scientific™ Nunc™
Thermanox™) and was performed in triplicate. The plate was then
incubated for 3 h at 37 °C, shaking at 80 rpm to allow cells to adhere to
the coverslip. The culture was removed from the wells and replaced with
1mL of BHI broth, which was incubated for 24 h at 37 °C, shaking at
80 rpm. The fluorescent staining protocol was conducted as
described above.

Multi-species F. nucleatum ssp. polymorphum biofilm growth. The multi-
species biofilm consisted of the strains F. nucleatum (ATCC 10953), A.
naeslundii (DSM 17233), S. gordonii (NCTC 7865) and P. gingivalis (W83).
Overnight cultures of F. nucleatum were prepared in Schaedler Anaerobic
broth and grown anaerobically at 37 °C. A. naeslundii, P. gingivalis and S.
gordonii cultures were prepared in BHI broth. Bacteria were grown
anaerobically at 37 °C, except S. gordonii, which was grown at 37 °C in 5%
CO2. The overnight cultures were diluted with PBS (0.01 M) to an optical
density of 0.5 for S. gordonii and 0.2 for all other species (at 600 nm). To
form the biofilms, 500 µL of A. naeslundii and S. gordonii were pipetted into
a well of a 24-well plate onto a coverslip (13mm diameter, Thermo
Scientific™ Nunc™ Thermanox™), and incubated with 500 µL of artificial
saliva for 24 h at 37 °C. The planktonic culture was then replaced with
500 µL of F. nucleatum and 500 µL of artificial saliva and cultured for a
further 24 h. Finally, the planktonic culture was replaced with 500 µL of P.
gingivalis and 1.5 mL of artificial saliva. Biofilms were incubated at 37 °C
until 5 days old.

L. casei biofilm growth. For the L. casei (NCTC 16341) biofilms, frozen
stock of L. casei was streaked onto a De Man, Rogosa and Sharpe (MRS)
agar plate and incubated at 37 °C, 5% CO2 for 48 h. Using the colonies
grown on the agar plate, an overnight culture of L. casei was prepared in
10mL MRS broth and incubated at 37 °C overnight, agitating at 100 rpm
for the duration. A serial dilution in MRS broth was performed with the
overnight culture, from 109 to 103 cells/mL. Individual Thermanox
coverslips (Nunc, Thermo Fisher Scientific) were placed in the bottom of
each well in 24-well culture plates (Nunc, Thermo Fisher Scientific). One
microlitre of the 103 dilution was added to each well containing a
coverslip. The plates containing the biofilms were incubated for 7 days at
37 °C, 5% CO2, shaking at 100 rpm, with a change in MRS broth every 48 h.
The fluorescent staining protocol was conducted as described above.

Validation of protocol on all-dead biofilms
Five 2-day-old biofilms of S. sanguinis (grown as detailed above) were
treated with the antimicrobial CPC (0.05% w/v) to act as a negative control
for cell viability to test the image analysis protocols. One microlitre of
0.05% (w/v) CPC was added to biofilms for 5 min before fluorescent
staining. As well as image analysis, a serial dilution and plating was
performed to conform the viability of the antibiotic-treated biofilm. CPC
treatment reduced the mean number of cells from 19 million CFU/mL to

1800 CFU/mL. Hence, the images generated under the confocal could be
assumed to be 99.99% dead for the purpose of validating the image
analysis protocol.

Mouthwash study
P. aeruginosa (strain PA01-N) and S. sanguinis (ATCC 10556) were cultured
overnight in Tryptone Soya broth and BHI broth, respectively. Each culture
was diluted to ~103 cells/mL. Individual Thermanox coverslips (Nunc,
Thermo Fisher Scientific) were placed in the bottom of each well in 24-well
culture plates (Nunc, Thermo Fisher Scientific). Prior to adding the
planktonic culture, 1 mL of artificial saliva was added to each well
containing a cover slip and left for 15min before being removed. To grow
the monospecies biofilms, 2 mL of diluted culture was added to each well
and the plate was incubated at 37 °C, shaking at 40 rpm for 48 h. After
incubation, the broth was removed, and the coverslips (with biofilms
adhered) were placed in a clean 24-well plate. One microlitre of filter-
sterilised Listerine® was used to rinse the biofilms by immersing them for
1min. For the control group, the biofilms were rinsed with 1mL sterile
water for the same duration. The biofilms were then stained and imaged as
described above.

Biofilm formation on AM materials
Base material manufacturing. Ti-6Al-4V 10 x 10 x 3 mm coupons with an
array of sloping angles (20, 30, 45, 60 and 90°) were fabricated with a laser
powder bed fusion additive manufacture system (RenAM 500M, Renishaw
PLC, UK). A powder layer thickness of 30 μm, laser power of 200W, a point
distance of 55 μm, exposure time of 50 μs, a hatch distance of 0.105mm
and a spot size of 70–75 μm were selected44.

Bacterial colonisation assays. Bacterial colonisation on AM sample
surfaces was studied by culturing S. epidermidis (ATCC 12228) biofilms.
Samples were degreased with acetone, disinfected by autoclaving,
immersed in pure ethanol for 5 min and dried under UV light. An
overnight culture of S. epidermidis was diluted in sterile Mueller Hinton
broth to a density of ~103 CFU/mL and 1mL was inoculated onto a 24-well
plate containing the samples. After 24 h, all samples were moved to a new
24-well plate, washed gently three times with 10mM phosphate buffered
saline (PBS) and fixed with 2.5% (v/v) glutaraldehyde in PBS for 1 h44.

Bacterial imaging. One sample for each sloping angle was washed gently
three times with 10mM PBS. Samples were stained with 200 μL of SYTO® 9
and propidium iodide solution (FilmTracer™ LIVE/DEAD® Biofilm Viability
Kit, Invitrogen, USA) and incubated for 30min. Imaging was carried out
using a Zeiss LSM 710 confocal microscope (Carl Zeiss GmbH, Germany) at
x10 magnification44.

Statistical analysis
All statistical analyses were conducted in GraphPad Prism (v. 5.03). For the
mouthwash study, a paired t-test was conducted to compare the two
conditions: mouthwash-treated and water-treated. For the AM material
study, a Kruskal–Wallis test (one-way ANOVA) was used to determine any
significant differences between the sloping angles. For all analyses, p < 0.05
was considered statistically significant.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets used and/or analysed during the current study are available from the
corresponding author on reasonable request.

CODE AVAILABILITY
The macro is available from: https://github.com/sophie-mountcastle/Biofilm-Viability-
Checker/.
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human osteochondral tissue:
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bone interface
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Abstract

Background: Despite it being known that subchondral bone affects the viscoelasticity of cartilage, there has been
little research into the mechanical properties of osteochondral tissue as a whole system. This study aims to unearth
new knowledge concerning the dynamic behaviour of human subchondral bone and how energy is transferred
through the cartilage-bone interface.

Methods: Dynamic mechanical analysis was used to determine the frequency-dependent (1–90 Hz) viscoelastic
properties of the osteochondral unit (cartilage-bone system) as well as isolated cartilage and bone specimens
extracted from human femoral heads obtained from patients undergoing total hip replacement surgery, with a
mean age of 78 years (N = 5, n = 22). Bone mineral density (BMD) was also determined for samples using micro-
computed tomography as a marker of tissue health.

Results: Cartilage storage and loss moduli along with bone storage modulus were found to increase logarithmically
(p < 0.05) with frequency. The mean cartilage storage modulus was 34.4 ± 3.35MPa and loss modulus was 6.17 ± 0.48
MPa (mean ± standard deviation). In contrast, bone loss modulus decreased logarithmically between 1 and 90 Hz (p <
0.05). The storage stiffness of the cartilage-bone-core was found to be frequency-dependent with a mean value of
1016 ± 54.0 N.mm− 1, while the loss stiffness was determined to be frequency-independent at 78.84 ± 2.48 N.mm− 1.
Notably, a statistically significant (p < 0.05) linear correlation was found between the total energy dissipated from the
isolated cartilage specimens, and the BMD of the isolated bone specimens at all frequencies except at 90 Hz (p = 0.09).

Conclusions: The viscoelastic properties of the cartilage-bone core were significantly different to the tissues in isolation
(p < 0.05). Results from this study demonstrate that the functionality of these tissues arises because they operate as a
unit. This is evidenced through the link between cartilage energy dissipated and bone BMD. The results may provide
insights into the functionality of the osteochondral unit, which may offer further understanding of disease progression,
such as osteoarthritis (OA). Furthermore, the results emphasise the importance of studying human tissue, as bovine
models do not always display the same trends.

Keywords: Articular cartilage, Dynamic mechanical analysis, Osteoarthritis, Subchondral bone, Viscoelasticity
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Background
The cartilage-bone interface in articulating joints is key to
moderating the transmission of tensile, compressive, and
shear forces from the articular cartilage to the subchon-
dral bone [1]. The complex organisation of collagen fibres
within cartilage, in part, enables it to store and dissipate
energy [2], and articular cartilage is considered to be a
frequency-dependent viscoelastic structure [3–6]. Studies
that have analysed this interface have primarily focused on
its structure and composition, characterising the calcified
cartilage and underlying tidemark where collagen type I
and II integrate [7–10]. More recently, biological signal-
ling between articular cartilage and subchondral bone
have been identified through vascular microchannels that
traverse the subchondral bone and calcified cartilage,
allowing diffusion of small molecules [11].
The viscoelastic properties of isolated articular cartilage

have been well-characterised. Edelsten et al. demonstrated
that cartilage behaves non-linearly under high-speed load-
ing [12]. More recently, Lawless et al. [13] focused on ob-
servations of isolated cartilage under load at frequencies
across a physiological range (1–92Hz [3]) and determined
that the storage and loss moduli were frequency-
dependent. Despite providing valuable results on the be-
haviour of articular cartilage under dynamic loading, both
these studies looked at cartilage in isolation and therefore
were not able to offer insight on the behaviour of the
cartilage-bone system as a whole.
In the last decade, it has been shown that severe impacts

to articulating joints are known to result in damage to the
bone rather than the cartilage [14]. High-impact loading
has been suggested as a major risk factor of osteoarthritis
(OA), and subchondral bone has been identified as having
a role in the progression of the disease [15–17]. While it is
known that both subchondral bone and loading frequency
have a significant effect on cartilage viscoelasticity
[13, 18], there is currently a gap in our understanding
of subchondral bone’s response to loading, independ-
ent of cartilage. Recent work by Fell et al. endea-
voured to rectify this by conducting an analysis of the
mechanical properties of bovine cartilage and bone
[19]. Interestingly, a linear correlation between bone
mineral density (BMD) and cartilage viscoelasticity
was identified, suggesting there is an important rela-
tionship between the two tissues at the interface.
However, to date, there are no studies of this nature
conducted in human tissue.
The mechanical properties of osteochondral tissues are

evidently very complex. In addition to the studies previ-
ously described that have measured cartilage viscoelasti-
city directly, mathematical models have been developed to
elucidate further information on how articular cartilage
functions in vivo. For example, local temperature changes
in cartilage under load have been assessed through the

development of a model to determine temperature in-
crease from cartilage intrinsic viscoelasticity [20]. Model-
ling cartilage allows for properties that are difficult to
measure directly in vivo to be examined. However, there
are disputes regarding some mathematical models of
cartilage. For instance, as proposed by Huyghe et al. [21],
triphasic theory may not respect the laws of thermody-
namics. Given the complexity of both tissues, studying
and modelling cartilage or bone in isolation does not pro-
vide a complete picture of either tissue’s capacity to store
and dissipate energy [19]. Whilst there are studies that
have identified the mechanical properties of animal cartil-
age, both on and off bone [13, 18], the role of the
cartilage-bone interface in the dissipation of energy has
not previously been investigated in human tissue, nor has
it been incorporated into mathematical models of articular
cartilage.
The aim of this study is to characterise the viscoelastic

properties of human osteochondral tissues and assess
the dissipation of energy by these tissues. More specific-
ally, an approach that characterises viscoelastic behav-
iour of the osteochondral core and isolated tissues in a
physiological frequency range has advantages in being
able to assess the significance of the interactions
between the two tissues. Therefore, energy dissipation
has been analysed for osteochondral tissues. By using
dynamic mechanical analysis (DMA), the viscoelastic
properties of the human cartilage-bone unit were dir-
ectly compared to the subchondral bone and articular
cartilage. Furthermore, the bone mineral density (BMD)
of the subchondral bone was determined, by micro-
computed tomography (μ-CT), to identify any relation-
ships with its mechanical properties, or the viscoelastic
properties of cartilage.

Methods
Specimen preparation
Femoral heads (N = 5) (Table 1) were obtained from pa-
tients undergoing total hip replacement surgery follow-
ing fracture of the neck of femur. Patients had no
reported history of joint pain or OA disease prior to
fracture of the femoral neck. Furthermore, chondropathy
assessment of femoral head cartilage integrity revealed

Table 1 Specimen information

Specimen Name L/R Hip Age Gender Weight

RHH214 R 76 M OW

RHH217 R 72 F NW

RHH220 L 85 M NW

RHH238 L 85 F OW

RHH239 R 71 M NW

R Right, L Left, M Male, F Female, OW Overweight, NW Normal Weight
Weights categorised from patient BMI: 18.5 to 24.9 = NW, 25 to 29.9 = OW
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the absence of any cartilage lesions or erosions that
might have indicated signs of OA damage. Thus, the car-
tilage was deemed to be healthy. Ethical approval was
provided by the United Kingdom National Research Eth-
ics Service (East of Scotland Research Ethics Service, 11/
ES/1044) and consent for the use of their tissue for re-
search was given by the patients. Upon arrival, speci-
mens were stored at -80 °C, which has been previously
shown not to affect the viscoelastic properties of the
specimens [22]. While each specimen was frozen, a total
of 22 cartilage-bone blocks approximately 14 × 14 mm in
area (n = 22) were obtained using a surgical saw (Fig. 1a).
The depth of the block varied depending on the speci-
men. Prior to testing, the specimens were macroscopic-
ally examined, and only intact specimens were thawed in
Ringer’s solution at 4 °C overnight [13].

Micro-computed tomography (μ-CT)
Specimens were scanned as 14 × 14mm blocks to pre-
vent swarf created during sample sectioning from affect-
ing the subsequent analysis of μ-CT data. Specimens
were secured in a low X-ray attenuation tube and indi-
vidually scanned using a Skyscan 1172 scanner (Bruker
Micro-CT, Belgium). A 180° scan was performed with
80 kV maximum X-ray energy and 8W beam power,
using an aluminium and copper filter, with a pixel size
of 12.03 μm. The data was reconstructed using NRecon
V1.6.10.2 (Bruker Micro-CT, Belgium) using a beam
hardening correction of 30%, a ring artefact correction
of 4.0, and a smoothing value of 2.0. Bone mineral dens-
ity (BMD) was calibrated from the attenuation coeffi-
cient using CT-analyser software V1.15.4.0 (CTAn)
(Bruker Micro-CT, Belgium). Two phantom rods made

Fig. 1 Flow diagram illustrating femoral head specimen preparation and coring: a Preparation of specimen using a surgical saw, b Example of
cartilage-bone block prior to μ-CT analysis demonstrating where core was taken, c Coring of specimen, and d Example of cartilage-bone core
prior to dynamic mechanical analysis
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up of epoxy resin with embedded fine calcium hydroxyl-
apatite (CaHA) powder at concentrations of 0.25 and
0.75 g.cm− 3 were scanned and reconstructed using the
same parameters as used for the human specimens.
BMD values of a cylindrical volume of interest the same
size as the sample used for subsequent mechanical ana-
lysis (8 mm diameter) for each reconstructed dataset
were calculated according to a standard method [23].

Specimen coring
Following thawing, sectioning of the specimen, and μ-
CT scanning, a core 8 mm in diameter was taken from
each specimen using a pillar drill with a diamond-coated
drill bit (Fig. 1c). After harvesting this cartilage-bone
core, the specimen was hydrated in Ringer’s solution for
30 min, as per previous studies [4, 5]. Samples were
reviewed for macroscopic damage after coring and only
samples with intact surfaces were tested, as surface
cracks alter the mechanical properties of cartilage. The
effect of the curvature evident in the cartilage-bone
block (Fig. 1b) was considered to be negligible once a
core was taken (Fig. 1d) and therefore not taken into
account in subsequent analyses in this study.

Dynamic mechanical analysis (DMA)
Dynamic Mechanical Analysis (DMA) subjects a speci-
men to a sinusoidal load and measures its out-of-phase
displacement response [24]. This enables the calculation
of a structure, or a material’s, viscoelastic properties
[25]. The viscoelastic properties of all specimens were
determined using a Bose ElectroForce 3200 with WinT-
est 4.1 software (Bose ElectroForce Group, New Castle,
Delaware, USA, now TA Instruments). This method has
been previously used to determine the viscoelastic prop-
erties of bovine and human cartilage [4, 19, 26], and bo-
vine cartilage on bone [6, 13, 18, 19, 27].
By using a cylindrical compression platen (20 mm

diameter) under unconfined conditions, a sinusoidally
compressive load ranging between 37.7–85.5 N was
applied to all specimens, following a preload of 4 N. This
induced a stress range between 0.75–1.7MPa, as 1.7
MPa is estimated cartilage stress during walking [27]. All
specimens were tested in air at room temperature; as
results in literature suggest that dehydration should not
occur over the short duration of each frequency-sweep
[4]. The sinusoidal force was applied using a frequency-
sweep of: 1, 8, 10, 12, 30, 50, 70, and 90 Hz. The speci-
mens were subjected to two preload conditions: 25 Hz
for 1500 cycles and 50 Hz for 3000 cycles, as cartilage
requires application of a series of loading cycles to reach
a steady state [6, 28]. After DMA was performed on the
osteochondral core, full-thickness cartilage was then re-
moved from the subchondral bone using a scalpel and
hydrated in Ringer’s solution for 30 min. Following

inspection to ensure there was no damage to the sample,
the same DMA procedure as described above was subse-
quently performed on the isolated subchondral bone and
isolated cartilage specimens.
For each frequency sweep conducted, the WinTest

DMA software performed a Fourier analysis of the load
and displacement sinusoidal waves. From this, the mag-
nitudes of the load (F*), displacement (d*), phase angle
(δ), and frequency (f) were determined, further described
elsewhere [25]. The complex stiffness (k*) was then
calculated (Eq. 1).

k� ¼ F�

d� ð1Þ

By using the complex stiffness (k*) and phase angle
(δ), the storage stiffness (k’) and loss stiffness (k”) were
calculated (Eqs. 2 and 3) [25, 29].

k
0 ¼ k� cosδð Þ ð2Þ

k
0 0 ¼ k� sinδð Þ ð3Þ

Using a shape factor, S, calculated from the diam-
eter (d) and height (h) of the specimen (Eq. 4), the
storage (E’) and loss (E”) moduli can be determined
(Eqs. 5 and 6) [4].

S ¼ πd2

4h
ð4Þ

E
0 ¼ k� cosδ

S
ð5Þ

E
0 0 ¼ k� sinδ

S
ð6Þ

E’ and E” were calculated for isolated cartilage and
subchondral bone specimens. As the cartilage-bone
cores were complex multi-structures, k’ and k” were
calculated for those specimens. This enabled evaluation of
the properties of the overall system with those of the indi-
vidual tissues. All results are presented against the re-
quested frequency used for DMA for ease of comparison,
however actual frequencies measured varied by ±1Hz.

Thickness testing
Following DMA, and after removing the cartilage from
the bone using a surgical scalpel, the cartilage specimens
were hydrated in Ringer’s solution for 30 min, consistent
with a previous study [3]. Following hydration, cartilage
thickness was determined using an established needle
technique accurate to 1 μm resolution [4, 30]. An
analogue Vernier calliper was used to calculate the
thickness of bone specimens by taking three measure-
ments from each specimen and calculating the mean

Mountcastle et al. BMC Musculoskeletal Disorders          (2019) 20:575 Page 4 of 13



thickness (resolution of 0.1 mm). Mean average thick-
nesses of each specimen type can be found in Table 2.

Energy dissipation calculation
Energy dissipation was calculated using Matlab R2018a
(Matlab R2018a, MathWorks, Inc., Natick, Massachu-
setts, USA). Time, force, and displacement data was col-
lected during DMA. Plotting displacement vs force at a
given frequency for each specimen produced a hysteresis
loop (Fig. 2a). For each complete loop, the area between
the arcs was assumed to be the total energy dissipated
for that DMA cycle. This was calculated by finding a
polynomial approximation of each arc, which was then
solved for the range zero to the maximal displacement
of that cycle. The area below each polynomial arc was
approximated by the trapezoid rule [31] (Fig. 2b); the
difference between the two arcs equated to the energy
dissipated for that cycle. Finally, the values across all cy-
cles were averaged, resulting in the total energy dissipa-
tion per cycle for each specimen at a given frequency.

Statistical analysis
Statistical analyses were performed using GraphPad Prism
5.03 (GraphPad Software Inc., San Diego, California,
USA). 95% confidence intervals were calculated (N = 5,
n = 23); the number of independent patients from which
specimens were collected was 5, and between 4 and 5
specimens were measured from each patient. Logarithmic
regression curves were fitted to material viscoelastic (E’
and E”) and structure stiffness (k’ and k”) data, where a
significant trend was identified (p < 0.05) (Eq. 7).
Wilcoxon Rank-Sum tests were used to assess whether
the cartilage and bone specimens had significantly differ-
ent material properties (p < 0.05). Kruskal-Wallis one-way
analysis of variance (ANOVA) tests determined whether
structural stiffness variations between the cartilage, bone,
and osteochondral cores were significantly different (p <
0.05). Tukey’s multiple comparison tests were used to
determine the structural stiffness variations that were
significantly different between specimen types.

E
0 ¼ A loge fð Þ þ B for 1≤ f ≤90 Hz ð7Þ

Results
Of the 23 specimens tested, the results of two were
rejected since the cartilage thickness (2.6 and 2.7 mm)

lay far outside the normal physiological range of 1–2
mm [32] and may be representative of degenerated car-
tilage [33]. Peirce’s criterion was used to eliminate the
two values [34].

Viscoelastic properties of isolated cartilage and bone
specimens
Storage modulus (E’)
For isolated tissue specimens, E’ was found to be
frequency-dependent and differed significantly (p < 0.001)
between cartilage and bone specimens (Fig. 3a). The mean
value of E’ was 34.4 ± 3.35MPa for cartilage, while for
bone it was considerably higher, 170 ± 4.76MPa. A loga-
rithmic relationship for E’ was observed with respect to
frequency for both specimens (Eq. 7), with storage modu-
lus increasing with frequency (Fig. 3a).

Loss modulus (E”)
Loss modulus was also found to be frequency-dependent
and differed significantly (p < 0.001) between cartilage
and bone specimens (Fig. 3b). A logarithmic relationship
for both specimens was observed with respect to fre-
quency (Eq. 7). For cartilage, the mean E” was 6.17 ±
0.48MPa and for bone, E” was 9.02 ± 1.07MPa. The loss
modulus for cartilage increased with increasing fre-
quency, while for bone it decreased with increasing
frequency (Fig. 3b).

Viscoelastic properties of cartilage-bone cores
Storage stiffness (k’)
Cartilage-bone cores, cartilage, and bone specimens were
found to be frequency-dependent with respect to k’ (Eq. 7,
Fig. 4a). Consistently, k’ was observed to increase with fre-
quency for all specimens, with the mean cartilage-bone
specimen result as 1016 ± 54.0N.mm− 1, cartilage 1217 ±
117N.mm− 1, and bone 1455 ± 40.7 N.mm− 1. For k’, differ-
ences between all three specimen types (cartilage-bone
core, cartilage, and bone), were found to be statistically
significant (p < 0.001).

Loss stiffness (k”)
Loss stiffness was frequency-dependent for cartilage and
bone specimens (Eq. 7) with a mean value of 218 ± 16.1
N.mm− 1 for cartilage and 79.8 ± 9.77 N.mm− 1 for bone.
However, loss stiffness was found to be frequency-
independent for the cartilage-bone-system (Fig. 4b). A
significant difference (p < 0.001) was observed between

Table 2 Specimen thicknesses. Data displayed to 3 significant figures

Specimen type n number Mean average thickness (mm) Standard deviation (mm)

Cartilage-bone core 18 7.43 ± 2.17

Cartilage 20 1.48 ± 0.43

Bone 18 5.94 ± 2.09
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k” values for the cartilage-bone core and cartilage speci-
mens, as well as between isolated cartilage and bone
specimens. However, there was no significant difference
(p > 0.05) found for k” between the cartilage-bone-
system and isolated bone specimens.

Total energy dissipated
Energy dissipated was found to be frequency-dependent
for all three specimen types (Eq. 8) with a mean value of
0.143 ± 0.101 J for bone specimens, 0.339 ± 0.111 J for
cartilage specimens, and 0.2184 ± 0.094 J for cartilage-

bone cores (Fig. 5). A significant difference (p < 0.05)
was found between the total energy dissipated for all
three groups.

energy dissipated ¼ A fð Þ þ B for 1≤ f ≤90 Hz ð8Þ

Histomorphological analysis
The mean BMD (ρ) for all bone specimens tested was +
0.286 ± 0.081 g.cm− 3. Regression analysis of BMD and

Fig. 2 Cartilage hysteresis. Force is given as increase in force during loading cycle. a Example of hysteresis loop generated for a single specimen
at 30 Hz. b Approximation of the area between the upper and lower arcs of each cycle calculated using the trapezoidal rule. The difference
between the two areas was determined as the total energy dissipated during that cycle of DMA

Fig. 3 Storage (a) and loss (b) moduli for isolated cartilage and bone specimens plotted against frequency from 1 to 90 Hz (mean ± 95%
confidence intervals, (N = 5) with natural logarithmic regression trendlines). In total, 19 cartilage and 18 bone specimens from five femoral heads
were tested. Results are displayed on a linear scale
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Fig. 4 Storage (a) and loss (b) stiffness for the cartilage-bone-system, isolated cartilage, and isolated bone specimens plotted against frequency
from 1 to 90 Hz (mean ± 95% confidence intervals, (N = 5) with natural logarithmic regression trendlines). In total, 19 cartilage-bone cores, 19
cartilage, and 18 bone specimens from five femoral heads were tested. Results are displayed on a linear scale

Fig. 5 Total energy dissipated for cartilage-bone cores, cartilage, and bone specimens plotted against frequency from 1 to 90 Hz (mean ± 95%
confidence intervals, (N = 5) with linear regression trendlines). In total, 19 cartilage-bone cores, 19 cartilage, and 18 bone specimens from five
femoral heads were tested. Results are displayed on a linear scale

Mountcastle et al. BMC Musculoskeletal Disorders          (2019) 20:575 Page 7 of 13



cartilage thickness values did not reveal any significant rela-
tionship (p= 0.62) (Fig. 6a). Linear regression analysis (Eq. 9)
was performed on BMD (ρ) and mean total energy dissipated
from cartilage specimens (Fig. 6b, Table 3). The relationship
between these properties was found to be statistically signifi-
cant (p < 0.05) at all frequencies except at 90Hz (p= 0.09).

Energy dissipated ¼ A ρð Þ þ B ð9Þ

No significant relationships existed between BMD and
the storage or loss moduli of the cartilage, or the storage
and loss moduli of the bone. Furthermore, there were no
significant relationships found between total energy dis-
sipated and the thickness of the isolated cartilage, iso-
lated bone, or the osteochondral specimens respectively.

Discussion
This study established the viscoelastic behaviour of iso-
lated cartilage and bone specimens in compression, and
compared it with the osteochondral core, an analogy not
previously conducted with human tissue. Cartilage-bone
cores, isolated cartilage, and subchondral bone specimens
were determined to be viscoelastic across all frequencies
tested. Significant differences in behaviour of the core
compared with the isolated specimens for k’ and k” were
identified. Most notably, cartilage-bone specimens dis-
played a frequency-independent trend for k’ unlike iso-
lated specimens, which were frequency-dependent.
Previous research has focused on cartilage or cartilage-
bone specimens alone [4, 6, 13, 18] and has not looked at
the independent properties of human subchondral bone.
DMA testing of human subchondral bone was conducted
in the present work and the results highlight a significant
difference in the viscoelastic properties of bone in
comparison to cartilage; E” was shown to increase with in-
creasing frequency for cartilage yet decrease with increas-
ing frequency for bone. This data emphasises the complex
mechanical properties of osteochondral tissues and in par-
ticular demonstrates the significance of the cartilage-bone
interface.
A previous study by Temple et al. characterised the

viscoelastic properties of human articular cartilage and
revealed that this tissue behaves in a frequency-
dependent manner, fitting a logarithmic function, thus
supporting the findings of this study [4]. They reported
storage and loss moduli for articular cartilage from hu-
man femoral heads to be 31.9–43.3MPa and 5.3–8.5
MPa respectively. This is in line with reported mean
storage and loss moduli in the present analysis of 34.4 ±
3.35MPa and 6.17 ± 0.48MPa respectively. In addition,

Fig. 6 a Isolated cartilage thickness plotted against BMD (linear regression (solid line), (N = 5)). In total, 16 specimens from five femoral heads
were tested. b Linear regression analysis of BMD and total energy dissipated from cartilage at 1 Hz (linear regression trendline, (N = 5)). In total, 13
specimens from five femoral heads were tested. Results displayed on a linear scale

Table 3 R2 and p-values from linear regression analysis of BMD
(n = 13) and total energy dissipated from isolated cartilage
specimens (n = 13) for each frequency. Data displayed to 2
significant figures

Frequency (Hz) p-value R2

1 0.035 0.34

8 0.017 0.39

10 0.021 0.37

12 0.017 0.39

30 0.021 0.37

50 0.032 0.33

70 0.046 0.29

90 0.093 0.22
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Jeffrey & Aspden [35] calculated a ‘dynamic’ modulus
for human articular cartilage from femoral heads by ap-
plying an impact load. The resulting dynamic modulus
of human articular cartilage at stresses of 10MPa and
23MPa was reported to be 64 ± 13MPa and 85.1 ± 4.9
MPa respectively. This is higher than the values reported
for cartilage storage modulus in this study, although it is
important to note that the induced stresses applied by
Jeffrey & Aspden [35] were much higher, and higher
stress is known to increase the storage modulus [13].
The present study has demonstrated that both storage
and loss modulus for cartilage increase with increasing
frequency. Notably, more energy is stored by both cartil-
age and bone tissues than is dissipated, with the effect
most apparent at higher frequencies. It was determined
that E” was an order of magnitude lower than E’ for
bone across all frequencies tested. Similarly, E” for cartil-
age was lower than E’ between 1 and 90 Hz, as con-
firmed by other authors [4]. A small subset of the
population is known to have high heel-strike rise times
during gait, which induce forces at high frequencies (as
high as 92 Hz) on the lower limbs [3]. Initially hypothe-
sised by Radin et al. [36], high-frequency loading on the
lower limbs has been identified as a marker of early
onset osteoarthritis (OA), a degenerative disease that re-
sults in cartilage loss [37]. This study demonstrated in-
creased energy storage for both cartilage and bone at
higher frequencies, with energy dissipation determined to
be an order of magnitude lower than energy storage. This
behaviour could be a contributing factor to disease pro-
gression due to damaging stress concentrations. This is
significant, as subchondral bone tissue in particular is
likely to incur damage due to its increased ability to store
energy yet decreased ability to dissipate it. However, as
bone has a higher regenerative capacity than cartilage
[38], this may be a mechanism for preventing cartilage
damage, as the bone is more readily able to heal.
Bovine articular cartilage is considered a good model

for human articular cartilage, as it displays similar trends
in viscoelastic properties [4]. A recent study by Fell et al.
[19] determined the viscoelastic properties of bovine
cartilage and subchondral bone. They reported mean
storage and loss moduli of bovine cartilage to be 45MPa
and 5.5MPa respectively, whilst isolated bovine sub-
chondral bone was found to have a mean storage modu-
lus of 110MPa and a mean loss modulus of 5MPa. The
storage modulus for bovine cartilage was therefore 1.3
times higher than isolated human cartilage in this study,
which had a mean of 34.4MPa. However, the bovine
storage moduli for bone and loss moduli for cartilage re-
ported by Fell et al. [19] were found to be lower than
the respective results for the isolated human specimens
in this study, though in the same order of magnitude. A
possible reason for this is that the bovine tissues were

obtained from the knee joint, whereas the human speci-
mens were from the hip. Therefore, anatomical region is
important when investigating and comparing the mech-
anical properties of osteochondral tissues.
Similar trends to the results in the present study were

displayed by Fell et al. [19] for cartilage and bone storage
and loss moduli (1–90 Hz). Of note, the loss modulus
trends found in bovine tissue were also evident in
human tissue (Fig. 3b). Whilst the trends were similar
for bovine and human osteochondral tissue, Fell et al.
evidenced a ‘crossover’ of the cartilage and bone loss
modulus values [19]. At 1 Hz, bone had a higher loss
modulus than cartilage, but at frequencies above 8 Hz
this was reversed with cartilage samples exhibiting a
higher loss modulus than bone. The authors suggested
this might be a mechanism to prevent cartilage damage,
as cartilage will dissipate more energy than bone under
high-frequency loading. However, this trend was not
noted in human osteochondral tissue, where bone had a
higher loss modulus than cartilage at all frequencies
tested (Fig. 3b). This data raises the hypothesis that car-
tilage damage in OA patients could be due to an inabil-
ity of cartilage to dissipate energy into the bone under
high-frequency loading, but further experimental work
would be required to evidence this. A comparison of the
trends seen here with Fell et al. demonstrates the im-
portance of studying human osteochondral tissue since
it is clear that animal models do not always display the
same trends [4]. The present study is the first to report
viscoelastic properties of human articular cartilage, sub-
chondral bone, and the osteochondral core using Dy-
namic Mechanical Analysis.
As well as investigating isolated tissues, this research

aimed to better understand the osteochondral core as a
whole system. Storage stiffness for the cartilage-bone sys-
tem was logarithmically frequency dependent and lower
than cartilage and bone for all frequencies tested (Fig. 4).
Loss stiffness for the cartilage-bone system was independ-
ent of frequency and lower than isolated specimens across
the range of frequencies tested. These results are in line
with previous work, which looked solely at bovine
cartilage-bone cores and found loss stiffness to be
frequency-independent [13, 18]. The difference in behav-
iour of cartilage isolated from and attached to subchondral
bone is emphasised here and has demonstrated that cartil-
age should not be considered in isolation when determin-
ing properties representative of in vivo behaviour. The
data obtained in our study supports the development and
testing of whole tissue-replacement systems as opposed to
cartilage replacement materials in isolation.
Prior studies of bovine cartilage both on- and off-bone

found the loss modulus of on-bone cartilage to be
frequency-independent, whereas cartilage off-bone has a
frequency-dependent modulus [13, 18]. Lawless et al.
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[13] found that there was no dependency of the storage
stiffness on the presence or absence of the underlying
subchondral bone, and therefore proposed that on-bone
cartilage may be more predisposed to failure than off-
bone cartilage due to the storage/loss ratio being higher
for cartilage on-bone. The findings of the present study
report the same frequency-independence for cartilage
on-bone loss modulus, with isolated cartilage displaying
a frequency-dependent trend. Thus, findings reported in
prior studies support the current results, although it
should be noted that the aim of the present study was
focused on the viscoelasticity of subchondral bone and
the role of the cartilage-bone interface, rather than the
cartilage itself. Hence, a more detailed discussion on the
viscoelastic properties of cartilage both on- and off-bone
is provided elsewhere [13].
In order to explain the difference in behaviour

between isolated cartilage and the cartilage-bone-system
system, Edelsten et al. [12] suggested that cartilage at-
tached to subchondral bone is more constrained in its
deformation, and this may lead to it appearing stiffer
and more elastic than when in isolation. Experimentally,
this result has been verified as k” becomes frequency-
independent under load [12, 13]. However, the trends in
E’ and E” in isolated bone identified in this study (Fig. 3)
may infer an additional explanation. Bone was found to
be positively frequency-dependent for storage and nega-
tively frequency-dependent for loss moduli. Therefore,
the constraining effects of the bone could not be the sole
reason for the frequency independence of k” for the
cartilage-bone-system. A decrease in loss stiffness
indicates a decrease in the energy dissipated, suggesting
that bone does not dissipate as much energy to the sur-
rounding tissue at higher frequencies. This may prevent
the load energy being returned to the cartilage, which
could be a further mechanism to prevent cartilage dam-
age. While observing equine osteochondral cores under
high-impact, Malekipour et al. identified that bone can
absorb a much higher amount of impact energy than
cartilage [39]. Furthermore, it is often bone that breaks
during high-impact loading, as the main mechanism by
which it absorbs energy is through trabeculae fracture
[39]. Although this may be desirable, as bone has a
greater propensity to heal than cartilage, this may put
the joint at risk of long-term damage. Clearly, the inter-
face between the two tissues plays an essential role in
transferring the load energy through the cartilage and
into the bone.
A significant difference was identified between loss

stiffness values for the cartilage-bone system and cartil-
age specimens. In contrast, when comparing the
cartilage-bone system and bone specimens this was not
observed, signifying that the loss stiffness of the osteo-
chondral core is more closely aligned to the loss stiffness

of bone than of isolated cartilage. This suggests a key
property to consider is the energy transfer, including dis-
sipation of energy, through the osteochondral junction.
In order to characterise this in the present study, the
total energy dissipated from the cartilage at each fre-
quency during DMA was calculated. The benefit of this
approach is the entire system is considered as a whole
by determining absolute values rather than material
properties. The results demonstrated that cartilage dissi-
pated higher total energy than bone and the cartilage-
bone system across all frequencies tested (Fig. 5). While
expected, as one of the key roles of articular cartilage is
to dissipate energy into the underlying bone, to the best
of the authors knowledge this is the first report of such
a relationship from human tissue analysis.
It has been hypothesised that high heel-strike rise

times during gait causes a predisposition to the onset of
OA [6, 36]. This high-impact loading, combined with a
reduced ability to dissipate energy at high frequencies, is
likely to cause damage to the bone, leading to subchon-
dral bone remodelling and therefore a higher BMD.
Prior to work by Fell et al. [19], no previous studies had
attempted to link bone histomorphology with viscoelas-
tic properties of osteochondral tissues. The study on
bovine osteochondral cores identified a significant rela-
tionship between subchondral bone BMD and cartilage
loss stiffness [19]. Correlations between cartilage thick-
ness with BMD and subchondral bone plate thickness
were also unearthed. This suggests that cartilage health
is interrelated with the histomorphological properties of
the subchondral bone. The results of the present study
demonstrated a statistically significant (p < 0.05) link at
all frequencies except at 90 Hz (p = 0.09) between the
total energy dissipated by isolated cartilage specimens
and BMD (Fig. 6b). This supports the findings by Fell
et al. and validates the hypothesis that the dissipation of
energy through to the subchondral bone provides mech-
anical signals, which can alter the structure of the tissue,
for example a remodelling of the trabeculae [40]. It should
be noted that although the goodness of fit is low between
the BMD and total energy dissipated from the cartilage,
they are comparable to R and R2 values presented in other
BMD studies [19, 41, 42].
There are a small number of limitations within the

present study. One of the key challenges with human
tissue is that specimens can have wide variation due to
factors such as age, weight, and gender, which are
known to have an effect on the health of these tissues.
In addition, the patients who donated their tissue for
this study are of an advanced age and therefore may not
be representative of younger adults. Furthermore, it has
been previously reported that bovine cartilage stiffens
with age [43]. Whilst the tissues in the present study are
obtained from older adults, the joints showed no sign of
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OA joint damage upon chondropathy assessment and
are representative of cartilage that has maintained health
throughout its lifespan. The high variation between
specimens, combined with reduced specimen numbers
due to tissue availability, is likely to be the reason that a
significant link between BMD and cartilage viscoelasti-
city was not established in the present study, despite
being demonstrated in bovine tissue [19]. It should also
be noted that the cartilage surface in the sample blocks
exhibited a slight curvature (Fig. 1b). To minimise the
impact of this on mechanical test data, cores were taken
from flatter regions of the block, and hence it was not
accounted for. There are advantages and disadvantages
to using stiffness measurements, as reported in this
study. The calculation of storage and loss moduli is
dependent on thickness, and therefore any limitations
associated with thickness measurements are included in
moduli, but are not included in stiffness [44], however,
direct comparison of stiffness can only be made for the
same shape and size of specimens. As moduli and stiff-
ness are fundamentally different measurements, it limits
the comparability across literature, although their trends
with frequency of loading can be compared because the
modulus is simply the stiffness divided by a constant (i.e.
a shape factor) [13]. The primary reason for choosing to
report stiffness in this study is that the osteochondral
cores were a structure consisting of both soft and hard
tissues. A separate limitation during DMA testing of bio-
logical tissues is damping if these are tested in a fluid
medium. To avoid potential damping due to fluid in this
study, the samples were not submerged in fluid and,
therefore, the dissipation of energy reported was solely
due to the cartilage tissue. Damping has been previously
shown to have little effect between samples tested in air
and in Ringer’s solution [13].
The complexity of the frequency-dependent viscoelas-

tic properties of cartilage and bone described in this
study demonstrate that there is a sophisticated inter-
action between these two tissues in regard to storage
and dissipation of energy. High-frequency loading results
in an increased storage of energy in the subchondral
bone, a likely mechanism to prevent cartilage damage,
which is a factor that should be further investigated in
relation to the progression of OA. The results obtained
in this study provide details of native tissue behaviour
in vitro at physiologically relevant frequency ranges, the
first reported values in human osteochondral tissue
under dynamic loading.

Conclusions
This study demonstrates that subchondral bone is visco-
elastic over a physiological frequency range (1–90 Hz).
Storage and loss moduli for cartilage and storage modu-
lus for bone increase with increasing frequency, while

the loss modulus of bone decreases. Loss stiffness for
the cartilage-bone-system is frequency-independent yet
for isolated specimens it was shown to be frequency-
dependent. Finally, a statistically significant link has been
identified between cartilage energy dissipated and bone
histomorphology. From these results, the importance of
characterising the properties of articular cartilage both
isolated from, and attached to, subchondral bone is
clearly highlighted. Overall, this work demonstrates the
significance of the bone-cartilage interface, in particular
for energy storage and dissipation.
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