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a b s t r a c t

Semi-Latin rectangles are generalizations of Latin squares and semi-Latin squares.
Although they are called rectangles, the number of rows and the number of columns are
not necessarily distinct. There are k treatments in each cell (row–column intersection):
these constitute a block. Each treatment of the design appears a definite number of times
in each row and also a definite number of times in each column (these parameters also
being not necessarily distinct). When k = 2, the design is said to have block size two.
Regular-graph semi-Latin rectangles have the additional property that the treatment
concurrences between any two pairs of distinct treatments differ by at most one.
Constructions for semi-Latin rectangles of this class with k = 2 which have v treatments,
v/2 rows and v columns, where v is even, are given in Bailey and Monod (2001). These
give the smallest designs when v is even. Here we give constructions for smallest designs
with k = 2 when v is odd. These are regular-graph semi-Latin rectangles where the
numbers of rows, columns and treatments are identical. Then we extend the smallest
designs in each case to obtain larger designs.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Semi-latin rectangles

The following definition slightly generalizes the one given by Bailey and Monod (2001), because it does not insist that
< p.

efinition 1. Let V denote a set of v treatments. Let ∆ be an h×p rectangular (or in special cases, square) array consisting
of k-subsets of V (blocks), where k < v. Suppose that no block contains any treatment more than once. Suppose further
that kp and kh are each divisible by v and that, for all t ∈ V , t occurs nr times per row and nc times per column, where
nr and nc may (or may not) be equal. Then ∆ is said to be an (h × p)/k semi-Latin rectangle (SLR) for v treatments.

Row–column designs such as Latin squares and semi-Latin squares can be seen to be special cases of the SLR with
nr = nc = 1: see Uto and Bailey (2020). Discussions on semi-Latin squares can be found in papers such as Preece and
Freeman (1983), Bailey (1988, 1992), Bailey and Chigbu (1997), Bailey and Royle (1997), Bedford and Whitaker (2001),
Soicher (2012), Soicher (2013) and Bailey and Soicher (2021). SLRs are useful in many experimental settings, including
plant disease experiments, consumer testing experiments and food sensory experiments: see Bailey and Monod (2001).

In the remainder of this paper we assume that k > 1, which excludes Latin squares, and that nrnc > 1, which excludes
semi-Latin squares.
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Definition 2. Let Λ be a semi-Latin rectangle. Denote by Γ (Λ) the quotient block design of Λ, which is the block design
btained by ignoring the rows and columns of Λ. If i and i′ are distinct treatments, their concurrence λii′ is the number of
locks which contain both i and i′. Let ℓ and ℓ′ be another pair of distinct treatments. If |λℓℓ′ − λii′ | ∈ {0, 1} for all such
reatment pairs then Λ is said to be a regular-graph semi-Latin rectangle (RGSLR).

Thus Λ is a RGSLR precisely when Γ (Λ) is a regular-graph design (RGD) in the sense defined by John and Mitchell
1977).

RGDs are equireplicate binary incomplete-block designs that are close to balanced incomplete-block designs (BIBDs).
IBDs are special cases of RGDs: see Kreher et al. (1996). When BIBDs exist, they are optimal over all incomplete-block
esigns of their sizes with respect to a range of criteria including the A-, D- and E-criteria: see Shah and Sinha (1989).
However, BIBDs may not exist for certain values of the parameters. In this case, a search is usually restricted to

RGDs, as these have been conjectured by John and Mitchell (1977) to contain a D-optimal (or A-optimal or E-optimal)
ncomplete-block design. This conjecture was confirmed by Cheng (1992), if the number of blocks is sufficiently large.

.2. Construction tools

Here we define some combinatorial concepts which we will use to construct RGSLRs with block size two.
If n is any positive integer, we regard Zn, the set of integers modulo n, as the set {1, . . . , n}.
The following definition is given by Bailey and Monod (2001).

efinition 3. Let {Si}mi=1 constitute a partition of Z2m into subsets of size two. This means that Si = {xi, yi} ⊆ Z2m and
|Si| = 2 for i = 1, . . . , m. Moreover, Si ∩ Sj = ∅ if i ̸= j. Suppose that

±(yi − xi) =

{
±i if i < m,

m twice if i = m.

hen {Si}mi=1 is called a starter for the cyclic group formed by Z2m under addition.

Note that −m = m modulo 2m, so the multiplicity of m in the multiset of differences is 2. Similarly, the multiplicity
of each element of the set Z2m\{m, 2m} is 1.

The foregoing definition is a modification of the standard combinatorial definition of starter for abelian groups of odd
rder: see Dinitz (1996). So we need a new name when we modify the foregoing definition to give something suitable
or cyclic groups of odd order in our application.

efinition 4. Suppose that v is odd. Let {Si}2vi=1 be a set of subsets of Zv of size two, with the property that each element
f Zv occurs in two of the sets. Let Si = {xi, yi} for i = 1, . . . , 2v, and let δ = (v − 1)/2. Then {Si}2vi=1 is called a bi-starter
or Zv if there are precisely three values of i for which yi − xi = ±δ and, for 1 ≤ j ≤ δ − 1, precisely two values of i for
which yi − xi = ±j.

Definition 5. Let V = {1, . . . , 2m} denote a set of teams available for a league tournament, which is to consist of 2m− 1
rounds, where each round is to be played on m grounds. The league schedule forms an m × (2m − 1) array whose rows
epresent the grounds and whose columns represent the rounds. The cells are constituted by the m(2m−1) distinct pairs
f teams from V such that each pair of teams plays once overall while each team plays once in each round and at most
wice on each ground. Then the league schedule is said to constitute a balanced tournament design for the 2m teams:
ee Anderson (1997, Chapter 10).

The following definition was introduced by Darby and Gilbert (1958). See also Edmondson (1998).

efinition 6. Let {Ξi}
k
i=1 be a set of k mutually orthogonal Latin squares of order n. For i = 1, . . . , k, let Xi denote the set

f symbols in Ξi, where Xi ∩ Xi′ = ∅ whenever i ̸= i′. If Ξ1, . . . , Ξk are superimposed and the superimposition is regarded
s having nk treatments, rather than k treatment factors with n levels each, then the resulting design is said to be an
n × n)/k Trojan square.

Thus Trojan squares form a sub-class of semi-Latin squares.

.3. Looking back and forward

Bailey and Monod (2001) gave constructions for efficient SLRs for 2m treatments with block size two, where there
re m rows and 2m columns, for values of m between 2 and 10 inclusive. For those values of m, except for m = 2, their
onstructions, obtained using starters and balanced tournament designs, produce RGSLRs.
SLRs whose quotient block designs are BIBDs are named balanced semi-Latin rectangles (BSLRs) by Uto and Bailey (2020).

hat paper examined the combinatorial properties and necessary conditions for a BSLR to exist, and gave algorithms for
onstructing these designs when the block size is two.
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Table 1
Starters in Zv for some even values of v.

v m starter

8 4 {4, 5} {1, 7} {3, 8} {2, 6}

10 5 {1, 10} {6, 8} {2, 5} {3, 7} {4, 9}

16 8 {1, 16} {8, 10} {2, 5} {9, 13} {4, 15} {6, 12} {7, 14} {3, 11}

18 9 {3, 4} {11, 13} {2, 17} {1, 15} {5, 10} {6, 12} {7, 14} {8, 16} {9, 18}

When a BSLR exists, it is optimal over its class with respect to a range of criteria such as the A-, D- and E-criteria. As
discussed in Section 1.1, when a BSLR does not exist, we follow John and Mitchell (1977) in assuming that an optimal
design will be found among RGDs. We observe that different RGSLRs may have different values of any given optimality
criterion.

Section 3 of the present paper gives constructions for RGSLRs with block size two when the number of treatments v

is odd. These designs have the same numbers of rows, columns and treatments. They are the smallest designs for odd v.
Section 2 briefly recaps the constructions of Bailey and Monod (2001), which give the smallest RGSLRs for even v. Section 4
gives constructions for larger RGSLRs whose size is an integer multiple of that of the smallest design. For even values of v,
Section 5 does this for an odd multiple of 1/2. Finally, Section 6 shows how to obtain a larger RGSLR by extending a smaller
RGSLR by a BSLR.

2. Smallest designs for an even number of treatments

2.1. Preliminaries

Some constructions for efficient SLRs with v = 2m treatments in m rows, 2m columns and block size two where
2 ≤ m ≤ 10 are given by Bailey and Monod (2001). These designs are precisely (m × 2m)/2 SLRs for 2m treatments
and, in particular, for values of m ̸= 2, the construction produces RGSLRs. These are the smallest designs for even v with
nrnc > 1.

For situations where m ≡ 0 or 1 (mod 4), the construction is obtained using the concept of starter in the cyclic group
Z2m. The sets that make the starter constitute the cells (blocks) in the initial column of the design, and the initial block
for each row is developed cyclically to generate the remaining 2m − 1 blocks in that row.

Bailey and Monod (2001) proved that a starter for Z2m exists if and only if m ≡ 0 or 1 (mod 4), and gave a table of
tarters for small values of 2m satisfying this condition. Table 1 shows this, replacing the treatment called 0 by one called
m. These starters are needed for some of the constructions in this paper.
For those situations where m ̸≡ 2 (mod 3), a different construction uses a balanced tournament design for 2m teams.

his is obtained by swapping the positions of certain pairs of teams in a cyclic tournament schedule. Then an extra column
s added so that each team occurs twice in each row.

We summarize the two constructions in Sections 2.2 and 2.3 since our constructions for larger RGSLRs for even v

nvolve extending these constructions.

.2. Construction using a starter

Step 1: Label the treatments 1, 2, . . . , 2m and form sets that constitute a starter in the cyclic group Z2m by partitioning
the set of treatments into m subsets of size two, where the differences (modulo 2m) between the elements of the
starter sets are ±1, ±2, . . . , ±m. Denote by {xi, yi} the starter set associated with the differences ±i, where i = 1,
2, . . . , m.

Step 2: Create an m × 2m array and label its rows i = 1, 2, . . . , m and its columns j = 1, 2, . . . , 2m.
Step 3: For i = 1, 2, . . . , m, put {xi, yi}, obtained in Step 1, in the cell in position (i, 1) of the array.
Step 4: For i = 1, 2, . . . , m, develop the block in position (i, 1) cyclically, via successive addition of 1 (mod 2m), thereby

generating the block in position (i, j), for all j = 2, 3, . . . , 2m.

.3. Construction using a balanced tournament design

Step 1: Label the treatments 1, 2, . . . , w, ∞, where w = 2m − 1. Identify {1, . . . , w} with Zw .
Step 2: Create an m × 2m array and label its rows i = 1, . . . , m − 1, ∞ and the columns j = 1, . . . , w, ∞.
Step 3: For i = 1, . . . , m − 1 and j = 1, . . . , w, put Tij = {j + i, j − i}; and put T∞j = {j, ∞}. Here Tij denotes the set of

entries in the cell in row i and column j and T∞j is the set of entries in the cell in row ∞ and column j.
Step 4: For j = 1, . . . , w − 1, let i∗ be the unique element in {2j, −2j} ∩ {1, . . . ,m − 1}; then exchange Ti∗j with T∞j.
Step 5: For i = 1, . . . , m − 1, put T = {3i/2, −3i/2}; and put T = {w, ∞}.
i∞ ∞∞
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Table 2
Bi-starters in Zv for some odd values of v.

v bi-starter

5 {1, 5} {5, 2} {2, 4} {4, 3} {3, 1}

7 {1, 7} {7, 2} {2, 6} {6, 3} {3, 5} {5, 4} {4, 1}

9 {1, 9} {9, 2} {2, 8} {8, 3} {3, 7} {7, 4} {4, 6} {6, 5} {5, 1}

11 {1, 11} {11, 2} {2, 10} {10, 3} {3, 9} {9, 4} {4, 8} {8, 5} {5, 7} {7, 6} {6, 1}

3. Smallest designs for an odd number of treatments

3.1. Description of the designs

Let v be odd. Since v must divide 2h and 2p, the smallest designs have v rows and v columns. Each treatment in
these designs appears twice per row and twice per column. Hence it appears 2v times overall, and therefore the sum of
concurrences with any given treatment is 2v.

To get quotient block designs that are RGDs, the only pattern of concurrences is for each treatment to concur with two
other treatments three times each and concur twice with each of the remaining v − 3 treatments. Thus, to have a RGD,
every pair of distinct treatments needs to appear in either two or three blocks. The designs are precisely (v×v)/2 RGSLRs
for v treatments. When v = 3, this construction gives a (3 × 3)/2 BSLR for three treatments. This can be obtained more
directly by starting with any 3 × 3 Latin square and replacing each letter by one pair of distinct numbers from {1, 2, 3}.

We give constructions for these designs using bi-starters, obtained via undirected terraces for Zv .

3.2. Undirected terrace and bi-starter sets

For a given odd integer v, the sequence (1, v, 2, v − 1, 3, v − 2, . . . , (v + 1)/2) constitutes an undirected terrace for Zv:
see, for example, Bailey (1984), Durier et al. (1997), Ollis and Willmott (2015) and Anderson et al. (2017). This means
that the undirected differences between successive pairs in the sequence give every non-zero element twice. In fact, they
are ±1, ±2, . . . , ±(v − 1)/2, ±(v − 1)/2, ±(v − 3)/2, . . . , ±1. If the sequence is regarded as a circle that joins up the two
ends then the extra undirected difference is ±(v − 1)/2.

For example, the sequence (1, 5, 2, 4, 3) constitutes an undirected terrace for Z5. The successive undirected differences
are ±1, ±2, ±2, ±1, ±2. Similarly, (1, 7, 2, 6, 3, 5, 4) constitutes an undirected terrace for Z7. Its successive undirected
differences are ±1, ±2, ±3, ±3, ±2, ±1, ±3.

To obtain the subsets that constitute the bi-starter, we take the v pairs of consecutive elements of the circular sequence.
For instance, we obtain, for the bi-starter in Z5, the sets {1, 5}, {5, 2}, {2, 4}, {4, 3}, {3, 1}.

Table 2 shows these bi-starters in Zv for some odd values of v. An algorithm for the construction of the design is
presented in Section 3.3.

3.3. An algorithm for constructing the design

Step 1: Label the treatments 1, 2, . . . , v.
Step 2: Obtain v sets that constitute a bi-starter in Zv by forming a sequence of the elements of Zv that constitutes an

undirected terrace for Zv . One possibility is (1, v, 2, v − 1, 3, v − 2, . . . , (v + 1)/2). Considering the sequence as
a circle, combine successive pairs of elements to obtain sets S1, . . . , Sv which make a bi-starter.

Step 3: Create a v × v array and label its rows i = 1, 2, . . . , v and its columns j = 1, 2, . . . , v.
Step 4: For j = 1, 2, . . . , v, put Sj in the cell in position (1, j) of the array.
Step 5: For j = 1, 2, . . . , v, develop the block in position (1, j), cyclically, via successive addition of 1 modulo v, thereby

generating the v blocks in each column.

Example 1. Let v = 5. Table 2 shows that the sets {1, 5}, {5, 2}, {2, 4}, {4, 3} and {3, 1} constitute a bi-starter in Z5. Using
the algorithm, we obtain the (5 × 5)/2 RGSLR for five treatments shown in Fig. 1.

4. Designs whose size is an integer multiple of that of the smallest designs

4.1. Strategy

Our strategy for building larger designs is based on the following result.

Theorem 1. Suppose that Λ1 is an (h × p1)/k semi-Latin rectangle and Λ2 is an (h × p2)/k semi-Latin rectangle, both with
treatment set V = {1, 2, . . . , v}. Let p = p1 + p2. Then the design ∆ obtained by putting Λ1 and Λ2 side by side in an h × p
array is an (h × p)/k semi-Latin rectangle for v treatments.
84
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Fig. 1. A (5 × 5)/2 RGSLR for five treatments.

Fig. 2. A (3 × 12)/2 RGSLR for six treatments.

Proof. Each cell of ∆ contains k distinct treatments. Let i be any treatment in V . Then i occurs hk/v times in each column
f Λ1, and also hk/v times in each column of Λ2: hence it occurs hk/v times in each column of ∆. Moreover, i occurs
1k/v times in each row of Λ1 and p2k/v times in each row of Λ2: hence it occurs pk/v times in each row of ∆. Therefore
is a semi-Latin rectangle. □

The main idea in this section shows how to double the size of the designs in Sections 2–3, using the strategy in
heorem 1.
Suppose that Λ1 is one of those designs. Let P1 be the set (not multi-set) of pairs of distinct treatments with the higher

oncurrence. It is always possible to find a permutation α of the set V of treatments which, when applied to all pairs in
1, gives a set P2 of pairs which is disjoint from P1. Thus the blocks in P1 ∪ P2 form a RGD. Applying α to the whole of Λ1
ives a second SLR Λ2 of the same size. Placing Λ1 and Λ2 side by side gives a RGSLR which is twice the size of Λ1.
Later, we extend this method to larger sizes.

.2. Doubling the size of the smallest designs for an even number of treatments

These designs are precisely (m × 4m)/2 RGSLRs for 2m treatments. To obtain these, we extend the constructions in
ection 2 by permuting the treatments in the smallest design, where the permutation is chosen so that P1 ∪ P2 forms a
olygon. The original design and the permuted design are placed side by side.
Here is the algorithm.

Step 1: Construct an (m × 2m)/2 SLR Λ1 as in Section 2.
Step 2: Denote by P1 the parallel class formed by the m pairs with concurrence two. If we are using the algorithm in

Section 2.2, P1 consists of the distinct pairs in row m. If we are using the algorithm in Section 2.3, P1 consists of
the pairs in column ∞. Choose a permutation α of the treatments and apply it to each set in P1 to obtain another
parallel class P2. Do this in such a way that P2 contains no pair in common with P1 and P1 ∪ P2 gives the edges
of a connected design, that is, a single polygon on 2m vertices.

Step 3: Apply α to every treatment in the first design Λ1, to obtain a second (m × 2m)/2 SLR Λ2.
Step 4: Create an (m × 4m)/2 SLR by placing Λ1 in columns 1 to 2m and Λ2 in columns 2m + 1 to 4m.

xample 2. Let v = 6. Then m = 3. Step 1 of the algorithm gives the (3 × 6)/2 SLR Λ1 on the left-hand side of Fig. 2.
n this, P1 = {{1, 4}, {2, 3}, {5, ∞}}. Choosing the permutation

α =

(
1 2 3 4 5 ∞

4 5 1 2 ∞ 3

)
,

ives P2 = {{4, 2}, {5, 1}, {∞, 3}}, so that the six pairs in P1 ∪ P2 do indeed form a single hexagon. Applying α to Λ1 gives
he (3 × 6)/2 SLR Λ2 on the right-hand side of Fig. 2.

.3. Doubling the size of the smallest designs for an odd number of treatments

These designs are precisely (v × 2v)/2 RGSLRs for v treatments, where v is odd. For v = 3, we simply place two
3 × 3)/2 BSLRs for three treatments side by side. For larger odd values of v, we extend the construction in Section 3
85
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Fig. 3. A (7 × 14)/2 RGSLR for seven treatments.

by permuting the treatments in the smallest design, where the permutation involves multiplying every treatment in the
smallest design by an element of Zv \ {1, v − 1, v} that is coprime to v. This gives a second constituent design, which is
laced beside the original design.
Here is the algorithm.

Step 1: Construct an (v × v)/2 SLR Λ1 as in Section 3.
Step 2: Choose an element of Zv \ {1, v − 1, v} that is coprime to v. Multiply every treatment in Λ1 by this to obtain a

second (v × v)/2 SLR Λ2.
Step 3: Create a (v × 2v)/2 SLR by placing Λ1 in columns 1 to v and Λ2 in columns v + 1 to 2v.

xample 3. Let v = 7. Step 1 of the algorithm gives the (7 × 7)/2 SLR Λ1 on the left-hand side of Fig. 3. Multiplying
very treatment by 2 (which is coprime to 7) gives the (7× 7)/2 SLR Λ2 on the right-hand side of Fig. 3. Together, these
ive a (7 × 14)/2 RGSLR for 7 treatments.

.4. Comments

The pair of double vertical lines shown in Figs. 2 and 3 simply shows the method of construction. This should not be
ncluded in the design that is given to the experimenter. In particular, randomization ignores these lines. For example,
o randomize the design in Fig. 2, first re-order the three rows by applying a random permutation of three objects. Then
e-order the twelve columns by applying a random permutation of twelve objects. Finally, within each of the 36 blocks
ndependently, randomize the order of the two treatments.

In the doubling construction, it is also possible to place the array Λ2 below the array Λ1. This gives a (2m × 2m)/2
GSLR for 2m treatments, or a (2v × v)/2 RGSLR for v treatments when v is odd. Transposition also gives a (4m × m)/2
GSLR for 2m treatments.
These remarks also apply to the subsequent constructions in this paper.

.5. Even larger designs

The methods in Sections 4.2 and 4.3 easily extend to larger designs.
For v = 2m, create Λ1 and P1 as before. For 2ms columns, where s is an integer with s > 1, choose sets of pairs P2,

. . , Ps such that each set contains each treatment once and the ms pairs in P1, . . . , Ps (accounting for multiplicity) form a
egular-graph block design. For u = 2, . . . , s, choose a permutation αu of the treatments such that αu(P1) = Pu; then apply
u to Λ1 to obtain the SLR Λu. Finally, place Λ1, . . . , Λs side by side.

xample 4. Suppose that we want a (3 × 18)/2 RGSLR for six treatments. If we take P1 = {{1, 4}, {2, 3}, {5, ∞}} and
P2 = {{4, 2}, {5, 1}, {∞, 3}}, as in Example 2, then we may choose P3 = {{1, 3}, {2, 5}, {4, ∞}}, so that the pairs in
P1 ∪ P2 ∪ P3 consist of all edges between the disjoint triples {1, 2, ∞} and {3, 4, 5}. A result of Cheng and Bailey (1991)
shows that the quotient block design of the resulting RGSLR is A-optimal.

If v is odd, the treatment pairs which have the higher concurrence in Λ1 form a single polygon with v vertices. Call
this set of pairs Q1. For vs columns, where s > 1, choose polygons Q2, . . . , Qs, each containing all treatments, such that the
vs pairs in Q1, . . . , Qs (accounting for multiplicity) form a regular-graph block design. Then proceed with permutations as
in the even case.
86
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h

Fig. 4. A (4 × 12)/2 RGSLR for eight treatments.

5. Designs of intermediate size for a number of treatments divisible by four

5.1. Overview

Suppose that v = 2m. So long as m ̸∈ {1, 2, 6}, there is a pair of mutually orthogonal Latin squares of order m, and
ence an (m × m)/2 Trojan square. In this, the set V of treatments is partitioned into two subsets V1 and V2, both of

size m. Let x and y be two treatments. If x and y are both in V1, or both in V2, then their concurrence in the Trojan square
is zero; otherwise, it is one.

Our strategy in this section is to adjoin a Trojan square to one of the designs Λ constructed in Section 2, 4.2 or 4.5.
In order for this to produce a RGSLR, if {x, y} is any pair of treatments with the higher concurrence in Λ, then either
{x, y} ⊂ V1 or {x, y} ⊂ V2. In the design Λ1 in Section 4.2, the pairs with the higher concurrence are precisely those in
the parallel class P1. Therefore, we require half of these pairs to be contained in V1, and half to be contained in V2. For
this to be possible, each of V1 and V2 must be composed of m/2 disjoint pairs from P1, and so m must be even.

5.2. Designs with three times as many columns as rows

Suppose that v = 2m, where m is even, m ̸= 2 and m ̸= 6. Here is our algorithm for constructing an (m × 3m)/2
RGSLR.

Step 1: Construct an (m × 2m)/2 SLR Λ1 as in Section 2.
Step 2: Denote by P1 the parallel class formed by the m pairs with concurrence two, as in Section 4.2.
Step 3: Make a pair of mutually orthogonal Latin squares of order m, where the treatment set V1 of one consists of those

treatments in any m/2 pairs in P1 while the remaining treatments form the treatment set V2 of the other Latin
square. Superpose these Latin squares to make an (m × m)/2 Trojan square Λ2.

Step 4: Create an (m × 3m)/2 SLR by placing Λ1 in columns 1 to 2m and Λ2 in columns 2m + 1 to 3m.

Example 5. Let v = 8, so that m = 4. Then Step 1 of the algorithm gives the (4× 8)/2 SLR on the left-hand side of Fig. 4.
In this, P1 = {{1, 5}, {2, 6}, {3, 7}, {4, 8}}, so we may put V1 = {1, 3, 5, 7} and V2 = {2, 4, 6, 8} and obtain the Trojan
square on the right of Fig. 4.

5.3. Larger designs

Trojan squares can also be adjoined to (m× 2um)/2 SLRs with u > 1. However, the best choice for the parallel classes
P1, P2, . . . , Pu given in Section 4.5 is not compatible with the need to split each parallel class equally between V1 and V2.
Therefore, the intermediate (m × 2um)/2 SLRs are not the designs given in Section 4.5.

Example 6. Let v = 8. The (4 × 8)/2 SLR Λ1 on the left-hand side of Fig. 4 has P1 = {{1, 5}, {2, 6}, {3, 7}, {4, 8}}. To
construct a (4× 16)/2 RGSLR as in Section 4.2, we could choose P2 = {{1, 2}, {6, 8}, {4, 3}, {7, 5}}, so that P1 ∪ P2 forms a
single octagon. On the other hand, to construct a (4 × 20)/2 RGSLR with V1 = {1, 3, 5, 7} and V2 = {2, 4, 6, 8}, the only
possibilities for P2 are

{{1, 3}, {5, 7}, {2, 4}, {6, 8}}, {{1, 3}, {5, 7}, {2, 8}, {4, 6}},
{{1, 7}, {3, 5}, {2, 4}, {6, 8}} and {{1, 7}, {3, 5}, {2, 8}, {4, 6}}.

If we put P2 = {{1, 3}, {5, 7}, {2, 4}, {6, 8}} then we may choose

α =

(
1 2 3 4 5 6 7 8
1 2 5 6 3 4 7 8

)
.

Then one choice of the Trojan square gives the RGSLR in Fig. 5, shown with the treatments in each block one below the
other.
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Fig. 5. A (4 × 20)/2 RGSLR for eight treatments.

Fig. 6. A (3 × 21)/2 RGSLR for six treatments.

6. Extending a RGSLR by adding a BSLR

The following theorem shows that another way to obtain a larger RGSLR from a smaller one is to adjoin a BSLR with
the same set of treatments and the same number of rows. In practice, this is most likely to be useful for a small number
of treatments.

Theorem 2. Let Λ1, Λ2, ∆, h, p1, p2, p, k, V and v be as in Theorem 1. If Λ1 is a regular-graph semi-Latin rectangle and Λ2
s a balanced semi-Latin rectangle then ∆ is a regular-graph semi-Latin rectangle.

roof. Let {x, x′
} and {y, y′

} be two pairs of distinct treatments. Suppose that their concurrences in Λ1 are λ1 and λ2
espectively. Then |λ1 − λ2| ≤ 1, because Λ1 is a RGSLR.

Since Λ2 is a BSLR, there is a constant λ such that all concurrences in Λ2 are λ. Hence the concurrence of {x, x′
} in ∆

s λ1 + λ, while that of {y, y′
} in ∆ is λ2 + λ. Then |(λ1 + λ) − (λ2 + λ)| = |λ1 − λ2| ≤ 1.

This is true for all distinct pairs of treatments. Hence ∆ is a RGSLR. □

For the case that k = 2, Uto and Bailey (2020) give BSLRs. Theorem 2 shows that these can be adjoined to RGSLRs of
uitable size constructed in Sections 2–5 to obtain larger RGSLRs. This method also applies if Λ1 is a semi-Latin square
hose quotient block design is a regular-graph design.

xample 7. Figure 4 of Uto and Bailey (2020) shows a (3 × 15)/2 BSLR for six treatments. This can be adjoined to the
3 × 12)/2 RGSLR in Fig. 2 to obtain a (3 × 27)/2 RGSLR. Alternatively, it can be adjoined to the (3 × 6)/2 RGSLR on the
eft-hand side of Fig. 2 to obtain a (3 × 21)/2 RGSLR. This is shown in Fig. 6, with the treatments in each block shown
ne below the other.
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