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Overview 

•  Background material 
•  (Common) Induced Subgraph Isomorphism 
•  Complexity on general graphs 
•  Exact algorithms 
•  Special graph classes 
•  Structural parameters 
•  The size of vertex cover as parameter 
•  Open problems and Future Directions 
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Parameterized Problems 

•  Parameterized problem: a instance of a parameterized 
problem consists of a pair (I,K) where: 

–  I is the input 
–  K is a (set of) parameter(s) 

 

•  A parameterized problem is often denoted by (X,k) or 
just k-X (such as k-Vertex Cover, k-Clique, etc…) 



Fixed-Parameter Tractability 

•  A problem X is fixed-parameter tractable (FPT) 
with respect to parameter k, if: 
 
there is an algorithm that solves X in time O(f(k)nc), 
where n is the size of input and c is a constant. 
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Example: the Parameterized Vertex Cover 
Problem 

•  A vertex cover in a graph is a set of vertices 
whose deletion results in an edge-less subgraph 

•  k-Vertex Cover: 
–  Given a graph G 
–  Does G have a vertex cover of size k? 



Example: the Parameterized Vertex 
Cover Problem 

•  k-Vertex Cover is solvable in O*(2k): 
–  Pick and edge uv 
–  Either u or v is in any vertex cover (in each case the vertex is 

deleted) 
–  Search-tree is of height bounded above by k 

•  Better algorithm:  
–  pick a vertex v of maximum degree 
–  Either v is placed in cover, or N(v) is in cover 
 

•  Based on this simple idea and other preprocessing/
pruning methods: 
–  k-Vertex Cover is solvable in O(1.2745kk4+kn) time [Chen et al., 

2010] 
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Kernelization 

•  For a parameterized problem (X,k), a kernelization 
algorithm is a polynomial-time reduction procedure 
that takes an arbitrary instance (I,k) of X and produces 
an equivalent instance (I’,k’) where |I’| ≤ g(k) and k’≤ k 

•  When the above holds, A resulting reduced instance is 
called a g(k)-kernel 

•  Of special interest are kernels where g(k) is a polynomial 



k-Vertex Cover Kernelization 

 
•  Observe (based on [Buss-Goldsmith, 1993]): every vertex of 

degree > k must be in any solution. Otherwise we have a no-
instance 

•  Pre-process the graph to delete all the vertices of degree > k 
and decrement k by the number of such vertices.  
–  Repeat until each and every vertex is of degree ≤ k 

•  The number of edges is now bounded above by k2 

•  It follows that k-Vertex Cover admits a quadratic-size kernel 

•  Admits a kernel with at most 2k vertices [Chen-Kanj-Jia, 2001] 
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The Parameterized Complexity Hierarchy 

•  The class FPT is at the bottom of the parameterized 
complexity hierarchy 

 
 FPT, W[1], W[2], …  XP 

•  The class XP  
–  Consists of parameterized problems that are solvable in polynomial 

time when the parameter is a constant 
–  Example: Dominating Set 
–  k-Coloring, parameterized by k, is not in XP (unless P=NP) 

•  FPT versus Kernelization 
–  A problem is FPT if and only if it admits a kernel [Downey-Fellows-

Stege, 1999]. However: 
–  FPT does not imply poly-kernel 



Feedback Vertex Set 

•  A feedback vertex set in a graph is a set of 
vertices whose deletion results in an acyclic 
subgraph 

•  The corresponding k-Feedback Vertex Set 
problem (FVS) is another well known FPT 
problem 
–  O*(3.168k) [Kociumaka-Pilipczuk, 2014] 
–  Quadratic-size kernel [Thomasse’, 2010] 
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k-Clique 

•  Clique: complete (sub)graph  
–  Any two vertices of a clique are adjacent. 

•  k-Clique is W[1]-hard 

•  In terms of worst-case behavior, the best known 
exact algorithm runs in O(1.213n) [Bourgeois et al., 
2010] 



Treewidth 

•  A tree decomposition of G=(V,E) is a tree T=(X,Y) such 
that elements of X are subsets of V and: 
–  For each vertex u in V, the nodes of T that contain u form a 

subtree denoted by T(u) (every vertex of V can be mapped to a 
distinct subtree)  

–  Every pair of adjacent vertices are mapped to intersecting 
subtrees of T 

•  The width of a tree decomposition is one less the 
maximum tree-node cardinality (as subset of V) 

•  The treewidth of G, henceforth tw(G), is the minimum 
width among all possible tree decompositions of G 
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Treewidth (an example) 
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Pathwidth 

•  Path decomposition: 
–  Same definition as tree decomposition with tree 

replaced by path 

•  The corresponding minimum width is called the 
pathwidth of the graph (denoted pw(G))  

•  Obviously: tw(G) ≤ pw(G)  
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Why Treewidth? 

•  Treewidth measures how tree-like a graph is 

•  Many known NP-hard problems are in P on graphs 
of bounded treewidth 

•  k-Treewidth is FPT 

•  While the fixed-parameter algorithm for Treewidth is 
too slow, approximation algorithms exist that are 
more efficient and serve most practical purposes 
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Relation between vc and tw/pw 

•  If a graph G has a vertex cover C of size k then 
pw(G) ≤ k 
–  Let P be a path of length n-k 
–  Map every vertex of C to P 
–  Map every vertex not in C to a unique (distinct) vertex 

of P, so every vertex of P is the image of exactly k+1 
vertices of G 

 

•  It follows that tw(G) ≤ pw(G) ≤ vc(G) 
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Relation between fvs, vc and tw 

•  If a graph G has a feedback vertex set S of size k 
then tw(G) ≤ k+1 
–  Let T be a tree decomposition of G-S 
–  Then width(T) = 1 (G-S is a forest) 
–  Map every vertex of S to every node of T 

•  It follows that tw(G) ≤ fvs(G)+1 

•  Also note that fvs(G) < vc(G) 

•  Hence tw(G) ≤ fvs(G)+1≤ vc(G) 
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Induced Subgraph Isomorphism (ISI) 

•  Given: a pair (G1,G2) of graphs 
•  Parameter: |G1| 
•  Question: Is G1 isomorphic to an induced subgraph of 

G2? 
 

–  G1 and G2 are often called the pattern and host, respectively 

•  W[1]-hard in general, by reduction from k-Clique 
•  Fixed-Parameter Tractable in H-minor free graphs [Flum-

Grohe, 2001] 
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Maximum Common Induced Subgraph 
(MCIS) 

•  Given: a pair (G1,G2) of graphs and a positive integer k 
•  Question: Is there a graph H that satisfies: 

–  H is isomorphic to an induced subgraph of both G1 and G2 
–  H has at least k vertices 

•  Other definitions seek:  

–  Maximum number of edges  
–  Connected common subgraph (henceforth MCCIS) 



MCIS 
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MCIS 
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Complexity of MCIS 

•  Induced Subgraph Isomorphism is a special case (let k = order of 
pattern graph) :  
–  Thus MCIS is NP-hard 

•  k-Clique is another special case.  

•  MCIS remains NP-hard on most known graph classes 
–  Including bipartite graphs, planar graphs, and graphs of bounded 

treewidth!  
 

•  Solvable in polynomial-time on: 
–  Trees [Garey & Johnson, 1979] 
–  Graphs of bounded treewidth and bounded degree [Akutsu, 1993] 



Differentiating between the complexities of ISI, 
MCIS and MCCIS 

•  MCIS is hard when the second input graph is 
edge-less (being equivalent to the Maximum 
Independent Set problem), while ISI is trivially in 
P in this case. 

•  MCCIS is solvable in polynomial time on trees 
and forests while MCIS is NP-hard in this case. 
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Exact Algorithms 
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A Classical Backtracking Algorithm 

•  (Based on [Ullman, 1976]:) For v in G1, define M(v) as: set of 
possible matches of v in G2 

•  Initialize M(v) to V(G2) for each v in G1. 
•  MCIS(G1,G2,M,k) 

–  If k = 0 then return YES  
–  For every v in V(G1) do 

•  If M(v) is empty, then delete v 
–  If G1 is empty then return NO 
–  M’ ß M 
–  Pick v of G1 with minimum |M’(v)|  
–  For each w in M’(v) do:  

•  Match v and w:  
–  if x is a neighbor of v, delete the non-neighbors of w from M’(x) 
–  if x is not a neighbor of v, delete the neighbors of w from M’(x) 

•  If(MCIS(G1-v,G2-w,M’,k-1)) then return YES  
–  return MCIS(G1-v,G2,M,k) 



Analysis 

•  Let n and m be the number of vertices in G1 and G2, 
respectively. 

•  In the worst-case, every vertex of G2 is a possible 
match è m+1 choices for each vertex of G1 

   O((m+1)n)  

•  Of course, the actual bound is better! 

•  How can we do better? 
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Reduction to Maximum Clique 

•  (Based on [Levi-Calcolo, 1972]:) Given an MCIS 
instance (G1,G2,k), construct a Clique instance (H,k) 
as follows: 
–  V(H) = {(u,v): u and v are vertices of G1 and G2, 

respectively} 
–  E(H) = {{(u,v),(u’,v’)} : uu’ and vv’ exhibit the same relation} 

•  A clique in H gives rise to a common subgraph! 

•  Unfortunately, this does not help a lot! 
–  The running time would be in O(1.213n2)  
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Reduction to Graph Isomorphism 

•  For each pair of subgraphs H1 and H2 of G1 and 
G2, respectively 
–  Run a Graph Isomorphism algorithm on H1 and H2 

•  Running time: 2n+m+O((logn)c), using Babai’s recent 
algorithm for Graph Isomorphism. 
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Parameterized Complexity of  
ISI and M(C)CIS 
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Parameterized Complexity of ISI and M(C)CIS 

•  ISI and MCIS have the same parameterized 
complexity  

•  In fact, When ISI is FPT, MCIS and MCCIS are FPT: 
–  Generate all possible graphs on k vertices and run ISI’s 

FPT algorithm 

•  When MCIS is FPT, ISI and MCCIS must be FPT… 

•  When MCCIS is FPT, MCIS “might” be FPT: 
–  Add a universal (or star) vertex to each of the input graphs 

Caution: this is not always possible 
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Parameterized Complexity of ISI and M(C)CIS 

•  Theorem: ISI, MCIS and MCCIS are W[1]-Complete 
 
•  Membership in W[1]:  

–  a problem is in W[1] if it can be reduced in FPT-time to 
simulating a non-deterministic single-tape Turing Machine that 
halts in f(k) steps, for some f. 

•  This is obviously true for MCIS: 
–  Guess in 2k steps the corresponding k vertices of G1 and k 

vertices of G2. 

•  W[1]-hardness is (again) due the reduction from Clique 



Special Graph Classes 
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H-Minor-Free graphs 

•  Definition: graph H is a minor of graph G if H is obtained 
from a subgraph of G by a sequence of (zero or more) 
edge contractions. 

•  H-Minor-Free Graphs: family of finite graphs that exclude 
a fixed subgraph in the minor order. 

 
•  ISI is FPT on H-Minor-Free graphs [Flum-Grohe, 2001]. 

•  Thus MCIS and MCCIS are FPT in this case (by 
previous observation). 

 



Planar graphs 
•  MCIS is FPT in this case. 

•  Previous observations give an O*(ck2) algorithm: 
–  Generate all graphs of order k and run ISI twice. 

•  A simple O*(ck) algorithm: 
–  If both G1 and G2 have > 4k vertices then we have a Yes instance 
–  Otherwise, one of the two graphs, say G1, has < 4k vertices 
–  Enumerate, in O(24k), all induced subgraphs of G1. For each such 

subgraph, run the (single-exponential) ISI algorithm of [Dorn 2010 
(For the search version, one would compute a 5-coloring of G1 and G2) 

•  Above method can be used in general on graphs of bounded 
chromatic number provided ISI is solvable in 2o(k2) (or better). 
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Trees and Forests 

•  MCCIS is solvable in poly-time on trees [Gary-Johnson, 79] 

•  It follows that MCCIS is solvable in polynomial-time on forests: 
–  for any pair of trees, one from each of the two input graphs, run a 

Maximum-Common-Subtree algorithm 

•  ISI and (therefore) MCIS are NP-hard on forests [Gary-
Johnson, 79] 

•  In general, MCIS is NP-hard on trees 
 
•  All three problems are FPT on trees and forests (why?) 
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Graphs of bounded treewidth 

•  ISI and MCIS are NP-hard on graphs of bounded 
treewidth, being already NP-hard on forests. 

•  Theorem. MCCIS is NP-hard on graphs of treewidth-
two. 
 
Proof: by reduction from Sub-Forest Isomorphism: 
–  Given two forests F1 and F2 
–  Add a universal vertex to each forest to obtain G1 and G2 
–  The resulting graphs have treewidth two 
–  Obviously: F1 and F2 have a common subgraph of order k 

if and only if G1 and G2 have a common connected 
subgraph of order  k+1 
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Bipartite Graphs 

•  The NP-hardness of ISI and MCIS follows easily 
from their NP-hardness on forests 

•  Induced Matching is W[1]-hard on Bipartite 
graphs [Moser-Sikdar, 2009] 

 
•  Thus ISI and MCIS are both W[1]-hard on 

Bipartite graphs 

•  How about MCCIS? 
 



MCCIS on Bipartite Graphs 

•  Theorem. MCCIS is NP-hard and W[1]-hard on 
bipartite graphs. 
 
Proof. By reduction from MCIS. Let (G1,G2,k) be an instance 
of MCIS. For each graph Gi = (Ai U Bi, Ei) we construct a 
bipartite graph Gi’ = (Ai’ U Bi’, Ei’) as follows 

•  Ai’ = Ai U {ui}   
•  Bi’ = Bi U {vi} 
•  Ei’ = E U {uivi} U {uix : x in B} U {viy : y in A}  

 
•  Obviously, a common subgraph of size k in G1 and 

G2 gives rise to a connected common subgraph of 
size k+2 in G1’ and G2’, and vice versa. 
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Graphs of Bounded Degree 

•  ISI is NP-hard when the pattern is a path and the 
host is a planar cubic graph [Gary-Johnson,79] 

•  So both MCIS and MCCIS are NP-hard in this case 
 

•  ISI is FPT on graphs of bounded degree [Cai et al., 
2006] 

•  It follows that MC(C)IS is in FPT on graphs of 
bounded degree. 
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Graphs of bounded degeneracy 

•  A graph is d-degenerate if the minimum degree 
of any induced subgraph is ≤ d 

•  1-degenerate graphs are trees & forests 

•  Thus MCIS is NP-hard on 1-degenerate graphs 
while MCCIS is in P in this case. 

•  How about the case d ≥ 2 
 Workshop on Graph Theory & its Applications IV 



Two-degenerate graphs 

•  Theorem [AbuKhzam-Bonnet-Sikora, 2017]. ISI is W[1]-hard 
on 2-degenerate graphs. 

•  Proof. By reduction from clique. Let (G,k) be a Clique instance 
–  Construct (G1, G2, k’ = k+k(k-1)/2) as follows: 
–  G1 is obtained from a k-clique by subdividing each edge once 
–  G2 is obtained from G by subdividing each edge once 
–  G1 is an induced subgraph of G2 if and only if G contains a k-clique 

•  It follows that ISI, MCIS and MCCIS are W[1]-hard on d-
degenerate graphs for d ≥ 2 

•  Corollary. ISI, MCIS and MCCIS are W[1]-hard on girth-six 
bipartite graphs 
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Interval Graphs 

•  ISI is NP-Complete and W[1]-hard on interval graphs 
[Marx-Schlotter, 2010] 

•  Thus MCIS is also W[1]-hard in this case 
 
•  Connected-ISI is solvable in polynomial-time on proper 

interval graph and bipartite permutation graphs 
[Heggernes et., 2010] 

•  How about MCCIS on (proper) Interval Graphs? 



Other Graph Classes 

•  Chordal and bipartite chordal 
–  ISI, MCIS are NP-hard. Why? 
–  How about MCCIS? 

•  Cographs 
–  ISI and MCIS are NP-hard [Damaschke, 1991] 
–  How about MCCIS? 
 

•  ISI is solvable in poly-time on  
–  2-connected outerplanar graphs [Syslo, 1982]  
–  Graphs of bounded degree and bounded treewidth 

[Akutsu, 1993] 
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Structural Parameters 
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Structural Parameters 

•  Instead of studying a problem on graphs of bounded 
treewidth, we may consider using treewidth as 
parameter. 

•  This is not the same! 

•  Other commonly used parameters are: vertex cover 
and feedback vertex set 

 
•  Recall that: for any graph G,  

  tw(G) ≤ fvs(G)+1 ≤ vc(G) 
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MCIS parameterized by feedback vertex set 

•  MCIS, parameterized by feedback vertex set, is 
not in XP (unless P = NP) 
–  Proof: simply, MCIS is NP-hard on forests 

•  MCCIS, parameterized by feedback vertex set, 
is not in XP (unless P = NP) 
–  Proof: same reason as above! Why? 

•  Corollary: M(C)CIS, parameterized by treewidth, 
is not in XP 

 Workshop on Graph Theory & its Applications IV 
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Vertex Cover of only one graph as parameter 

•  Unless P = NP, ISI is not in XP on graphs where 
the pattern (only) has a k-vertex cover 

–  Proof: the case k=0 is NP-hard via simple reduction 
from Independent Set (when the pattern is edgeless) 

•  So MCIS is not in XP when the parameter is the 
size of a vertex cover of only one of the input 
graphs  
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MCS Parameterized by Vertex Cover 

•  Given: Two graphs G1 & G2 
•  Parameter: k = bound on the vertex covers of G1 & G2 
•  Find: a graph H of maximum order that satisfies: 

 H is isomorphic to an induced subgraph of both G1 and G2 

•  Theorem: MCIS, parameterized by vertex 
cover is FPT 
  
 We may also assume vertex covers are given (why?) 
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MCS Parameterized by Vertex Cover 

•  Let n = min(n1,n2) 

•  Then we have a common subgraph of size n-k 
–  Just take the two complements of C1 & C2 

•  The objective is to find a maximum common 
induced subgraph of order > n-k 
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Key Lemma 

•  Lemma [AbuKhzam, 2014]:  

•  Let  
–  C11 = set of elements of C1 that are matched with 

elements of C2. 
–  C12  = set of elements of C1 that are matched with 

elements of I2 .  

•  Then: |N(C12)| ≤ 2k 
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Lemma 
•  Let  

–  C11 = set of elements of C1 that are matched with elements of 
C2. 

–  C12  = set of elements of C1 that are matched with elements of 
I2 .  

•  Then: |N(C12)| ≤ 2k 

•  Proof: 
–  Elements of N(C12) cannot match with any element of I2 

Otherwise… (see figure) 
–  If |N(C12)| > 2k, then at least k elements of N(Ci2) are unmatched, 

which makes the independent set solution maximum! 
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G1 G2 

C1 C2 

C12 

C11 

N(C12) 
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G1 G2 

C1 C2 

N(C12) 

C12 
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Lemma 

•  Let  
–  C11 = set of elements of C1 that are matched with elements of 

C2. 
–  C12  = set of elements of C1 that are matched with elements of 

I2 .  
•  Then: |N(C12)| ≤ 2k 

•  Proof: 
–  Elements of N(C12) cannot match with any element of I2 

Otherwise… (see figure) 
–  If |N(C12)| > 2k, then at least k elements of N(C12) are 

unmatched, which makes the independent set solution (of size n-
k) maximum! 
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A Charge and Reduce Algorithm 

  
 Step 1. Branch on elements of C1 as follows: 

–  Pick v from C1 
•  Either v is matched with an element of C2 
•  Or v is matched with an (unknown yet) element of I2 
•  Or v is unmatched 
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A Charge and Reduce Algorithm 

•  Step2: Branch on elements of N(C12)  

–  Pick a vertex v of N(C12): 
•  either v matches with an element of C2 
•  or v is unmatched 
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A Charge and Reduce Algorithm 

•  Step3: Branch on remaining elements of C2 
–  Such elements must either match to elements of I1 or 

to none. So they must form an independent set in G2 

–  For each independent subset C22 of C2 do 
•  Delete all neighbors of C22 in G2 (why?) 
•  Build a compatibility graph H and proceed by solving 

Maximum Matching (see next slide) 
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Matching Vertices via Graph Matching 

•  After branching on all the elements of C1 and C2, we are left with 
independent sets in each of the two graphs 

•  We build a bipartite graph H = (A,B) as follows: 
–  A and B consists of the unmatched and undeleted elements of G1 and 

G2 respectively 
–  Two elements x and y of A and B (resp) are adjacent if their matching 

does not violate the isomorphism criterion 

•  Therefore: a maximum matching of H gives the maximum number of 
pairs of vertices that can match under a common subgraph 
isomorphism 

•  The algorithm ends by computing a maximum matching in H and 
comparing the total number of matched vertices to n-k 
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Better Branching 

•  Delay Assignments of elements of C1 to elements of C2. 
–  Each vertex is either  

•  matched (but unassigned a match) or  
•  belongs to C12 or  
•  deleted 

–  This would still lead to computing N(C12) 
–  Then branch on elements of N(C12) (either matched or deleted) 
–  Then try all possible kk matchings between C12 U N(C12) and C2 

•  Total running time is in O*((24k)k) 



Can we do better? 

•  The main question at this stage is whether an 
O*(ck) algorithm exists when k is the vertex 
cover bound. Unfortunately: 

•  Theorem [Abukhzam-Bonnet-Sikora, 2017]. 
Unless the Exponential-Time Hypothesis (ETH) 
fails, ISI cannot be solved in O(2o(klogk))  
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MCCIS Parameterized by Vertex Cover 

•  Theorem [AbuKhzam-Bonnet-Sikora, 2017]: MCCIS, 
parameterized by vertex cover is FPT 

     Proof-sketch:  Let C1 and C2 be vertex covers of G1 and G2 resp., 

–  Key observation: elements of the complement of each cover can be 
partitioned into at most 2k “twin classes” 

–  Enumerate all tri-partitions of C1 and C2 into (i) vertices that are matched 
within covers, (ii) vertices that are matched with other elements and (iii) 
unmatched vertices. 

–  Proceed by enumerating all possible matches between each cover and the 
complement of the other, then between all the twin-classes 

 
•  Also works as MCIS enumeration 
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Hardness of Kernelization w.r.t. the Vertex 
Cover Parameter 

•  Another important question is whether MC(C)IS, 
parameterized by vertex cover, admits a 
polynomial-size kernel. Unfortunately: 

•  Theorem [AbuKhzam-Bonnet-Sikora, 2014]: 
unless NP is contained in co-NP/poly, MC(C)IS 
has no polynomial-size kernel when 
parameterized by the sum of the sizes of vertex 
covers of the two input graphs. 
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Some research directions 

•  We showed MCIS is FPT when parameterized by size of the largest 
among the vertex covers of input graphs, or just their sum (vc+vc) 

•  How about the parameter vc+fvs?  
sum of sizes of vertex cover of one graph and feedback vertex set of the other? 

 
•  It would be interesting to consider other known graph metrics as  

parameters: 
–  cutwidth, pathwidth, rankwidth, etc .. 

•  MCIS is solvable in polynomial time on graphs of bounded degree 
and bounded treewidth 
–  How about bounded degeneracy and bounded treewidth? 

•  How about bipartite graphs of bounded treewidth? Or bounded 
(given) chromatic number and bounded treewidth? 



Workshop on Graph Theory & its Applications IV 

Thank You 


