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Parameterized Problems

« Parameterized problem: a instance of a parameterized
problem consists of a pair (/,K) where:

— lis the input
— K is a (set of) parameter(s)

« A parameterized problem is often denoted by (X k) or
just k-X (such as k-Vertex Cover, k-Clique, etc...)
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Fixed-Parameter Tractabillity

* A problem X s fixed-parameter tractable (FPT)
with respect to parameter Kk, if:

there is an algorithm that solves X'in time O(f(k)n°),
where n is the size of input and ¢ is a constant.
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Example: the Parameterized Vertex Cover
Problem

* A vertex cover in a graph is a set of vertices
whose deletion results in an edge-less subgraph

 k-Vertex Cover:
— Given a graph G
— Does G have a vertex cover of size k?
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Example: the Parameterized Vertex
Cover Problem

« k-Vertex Cover is solvable in O*(2%):

— Pick and edge uv

— Either u or vis in any vertex cover (in each case the vertex is
deleted)

— Search-tree is of height bounded above by k

» Better algorithm:
— pick a vertex v of maximum degree
— Either v is placed in cover, or N(v) is in cover

« Based on this simple idea and other preprocessing/
pruning methods:

— k-Vertex Cover is solvable in O(1.2745%k%*+kn) time [Chen et al.,
2010]
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Kernelization

* For a parameterized problem (X k), a kernelization
algorithm is a polynomial-time reduction procedure

that takes an arbitrary instance (/,k) of X and produces
an equivalent instance (/',k”) where |I’| < g(k) and k' < k

 When the above holds, A resulting reduced instance is
called a g(k)-kernel

« Of special interest are kernels where g(k) is a polynomial
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k-Vertex Cover Kernelization

Observe (based on [Buss-Goldsmith, 1993]): every vertex of
degree > k must be in any solution. Otherwise we have a no-
iInstance

Pre-process the graph to delete all the vertices of degree > k
and decrement k by the number of such vertices.

— Repeat until each and every vertex is of degree < k
The number of edges is now bounded above by k?
It follows that k-Vertex Cover admits a quadratic-size kernel

Admits a kernel with at most 2k vertices [Chen-Kanj-Jia, 2001]
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The Parameterized Complexity Hierarchy

The class FPT is at the bottom of the parameterized
complexity hierarchy

FPT, W[1], W[2], ... XP

The class XP

— Consists of parameterized problems that are solvable in polynomial
time when the parameter is a constant

— Example: Dominating Set
— k-Coloring, parameterized by k, is not in XP (unless P=NP)

FPT versus Kernelization

— A problem is FPT if and only if it admits a kernel [Downey-Fellows-
Stege, 1999]. However:

— FPT does not imply poly-kernel
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Feedback Vertex Set

* A feedback vertex set in a graph is a set of
vertices whose deletion results in an acyclic
subgraph

« The corresponding k-Feedback Vertex Set
problem (FVS) is another well known FPT
problem

— 0*(3.168k) [Kociumaka-Pilipczuk, 2014]
— Quadratic-size kernel [Thomasse’, 2010]
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k-Clique

* Cligue: complete (sub)graph
— Any two vertices of a clique are adjacent.

* k-Clique is W[1]-hard

* |n terms of worst-case behavior, the best known

exact algorithm runs in O(1.213") [Bourgeois et al.,
2010]
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Treewidth

« A tree decomposition of G=(V,E) is a tree T=(X,Y) such
that elements of X are subsets of V and:

— For each vertex u in V, the nodes of T that contain u form a
subtree denoted by T(u) (every vertex of V can be mapped to a
distinct subtree)

— Every pair of adjacent vertices are mapped to intersecting
subtrees of T

* The width of a tree decomposition is one less the
maximum tree-node cardinality (as subset of V)

* The treewidth of G, henceforth tw(G), is the minimum
width among all possible tree decompositions of G
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Treewidth (an example)

h
{d,e,f}
d f
{e,g} {d,e,b}
e g
{b,e,c}
e2 {a,b}
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Pathwidth

« Path decomposition:

— Same definition as tree decomposition with tree
replaced by path

* The corresponding minimum width is called the
pathwidth of the graph (denoted pw(G))

* Obviously: tw(G) < pw(G)
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Why Treewidth?

Treewidth measures how tree-like a graph is

Many known NP-hard problems are in P on graphs
of bounded treewidth

k-Treewidth is FPT

While the fixed-parameter algorithm for Treewidth is
too slow, approximation algorithms exist that are
more efficient and serve most practical purposes
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Relation between vc and tw/pw

 |If a graph G has a vertex cover C of size k then
pw(G) < k
— Let P be a path of length n-k
— Map every vertex of Cto P

— Map every vertex not in C to a unique (distinct) vertex
of P, so every vertex of P is the image of exactly k+1
vertices of G

* |t follows that tw(G) < pw(G) < vc(G)
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Relation between fvs, vc and tw

If a graph G has a feedback vertex set S of size k
then tw(G) < k+1

— Let T be a tree decomposition of G-S

— Then width(T) = 1 (G-S is a forest)

— Map every vertex of S to every node of T

It follows that tw(G) < fvs(G)+1
Also note that fvs(G) < ve(G)

Hence tw(G) < fvs(G)+1=< ve(G)
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Induced Subgraph Isomorphism (ISI)

Given: a pair (G,,G,) of graphs
Parameter: |G, |

Question: Is G, isomorphic to an induced subgraph of
G,?

— G, and G, are often called the pattern and host, respectively

WI[1]-hard in general, by reduction from k-Clique

Fixed-Parameter Tractable in H-minor free graphs [Flum-
Grohe, 2001]
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Maximum Common Induced Subgraph
(MCIS)

« Given: a pair (G4,G,) of graphs and a positive integer k
* Question: Is there a graph H that satisfies:

— His isomorphic to an induced subgraph of both G, and G,
— H has at least k vertices

e QOther definitions seek:

— Maximum number of edges
— Connected common subgraph (henceforth MCCIS)
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MCIS
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MCIS
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Complexity of MCIS

Induced Subgraph Isomorphism is a special case (let k = order of
pattern graph) :
— Thus MCIS is NP-hard

k-Clique is another special case.

MCIS remains NP-hard on most known graph classes

— Including bipartite graphs, planar graphs, and graphs of bounded
treewidth!

Solvable in polynomial-time on:
— Trees [Garey & Johnson, 1979]
— Graphs of bounded treewidth and bounded degree [Akutsu, 1993]
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Differentiating between the complexities of IS,
MCIS and MCCIS

 MCIS is hard when the second input graph is
edge-less (being equivalent to the Maximum
Independent Set problem), while ISl is trivially in
P in this case.

« MCCIS is solvable in polynomial time on trees
and forests while MCIS is NP-hard in this case.
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Exact Algorithms
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A Classical Backtracking Algorithm

(Based on [Ullman, 1976]:) For vin G, define M(v) as: set of
possible matches of vin G,

Initialize M(v) to V(G,) for each vin G;,.
MCIS(G,,G,,M, k)
— If k=0 then return YES
— Forevery vin V(G,) do
« If M(v) is empty, then delete v
— If G, is empty then return NO
- MM
— Pick v of G, with minimum |[M’(v)|
— For each win M’(v) do:

« Match vand w:
— if x is a neighbor of v, delete the non-neighbors of w from M'(x)
— if x is not a neighbor of v, delete the neighbors of w from M'(x)

« If(MCIS(G,-v,G,-w,M’ k-1)) then return YES
— return MCIS(G,-v,G,,M,k)
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Analysis

Let n and m be the number of vertices in G, and G,,
respectively.

In the worst-case, every vertex of G, is a possible
match =» m+1 choices for each vertex of G,

O((m+1)")
Of course, the actual bound is better!

How can we do better?
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Reduction to Maximum Clique

« (Based on [Levi-Calcolo, 1972]:) Given an MCIS
instance (G,, G,,k), construct a Clique instance (H,k)
as follows:

— V(H) = {(u,v): u and v are vertices of G, and G,,
respectively}

— E(H) = {(u,v),(u',v)} : uu’ and vv' exhibit the same relation}
* A clique in H gives rise to a common subgraph!

« Unfortunately, this does not help a lot!
— The running time would be in O(1.213"%)
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Reduction to Graph Isomorphism

* For each pair of subgraphs H, and H, of G, and
G,, respectively
— Run a Graph Isomorphism algorithm on H, and H,

« Running time: 2mm*0((logn)®) ysing Babai’s recent
algorithm for Graph Isomorphism.
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Parameterized Complexity of
ISI and M(C)CIS
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Parameterized Complexity of IS| and M(C)CIS

« |SI and MCIS have the same parameterized
complexity

* Infact, When ISl is FPT, MCIS and MCCIS are FPT:

— Generate all possible graphs on k vertices and run ISI's
FPT algorithm

« When MCIS is FPT, ISI and MCCIS must be FPT...

 When MCCIS is FPT, MCIS “might” be FPT:

— Add a universal (or star) vertex to each of the input graphs
Caution: this is not always possible
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Parameterized Complexity of IS| and M(C)CIS

Theorem: ISI, MCIS and MCCIS are W[1]-Complete

Membership in W[1]:

— a problem is in W[1] if it can be reduced in FPT-time to
simulating a non-deterministic single-tape Turing Machine that
halts in f(k) steps, for some f.

This is obviously true for MCIS:

— Guess in 2k steps the corresponding k vertices of G, and k
vertices of G..

WI[1]-hardness is (again) due the reduction from Clique
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Special Graph Classes
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H-Minor-Free graphs

Definition: graph H is a minor of graph G if H is obtained
from a subgraph of G by a sequence of (zero or more)
edge contractions.

H-Minor-Free Graphs: family of finite graphs that exclude
a fixed subgraph in the minor order.

ISl is FPT on H-Minor-Free graphs [Flum-Grohe, 2001].

Thus MCIS and MCCIS are FPT in this case (by
previous observation).
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Planar graphs

« MCIS is FPT in this case.

* Previous observations give an O*(c*) algorithm:
— Generate all graphs of order k and run ISI twice.

« A simple O*(c¥) algorithm:
— If both G, and G, have > 4k vertices then we have a Yes instance
— Otherwise, one of the two graphs, say G,, has < 4k vertices

— Enumerate, in O(2%), all induced subgraphs of G,. For each such
subgraph, run the (single-exponential) I1SI algorithm of [Dorn 2010

(For the search version, one would compute a 5-coloring of G, and G,)

* Above method can be used in general on graphs of bounded
chromatic number provided ISl is solvable in 2°*) (or better).
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Trees and Forests

MCCIS is solvable in poly-time on trees [Gary-Johnson, 79]

It follows that MCCIS is solvable in polynomial-time on forests:

— for any pair of trees, one from each of the two input graphs, run a
Maximum-Common-Subtree algorithm

IS| and (therefore) MCIS are NP-hard on forests [Gary-
Johnson, 79]

In general, MCIS is NP-hard on trees

All three problems are FPT on trees and forests (why?)
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Graphs of bounded treewidth

« ISl and MCIS are NP-hard on graphs of bounded
treewidth, being already NP-hard on forests.

 Theorem. MCCIS is NP-hard on graphs of treewidth-
two.

Proof:. by reduction from Sub-Forest Isomorphism:

— Given two forests F1 and F2
— Add a universal vertex to each forest to obtain G, and G,
— The resulting graphs have treewidth two

— Obviously: F, and F, have a common subgraph of order k
if and only if G, and G‘F have a common connected

subgraph of order k+
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Bipartite Graphs

The NP-hardness of ISI and MCIS follows easily
from their NP-hardness on forests

Induced Matching is W[1]-hard on Bipartite
graphs [Moser-Sikdar, 2009]

Thus ISl and MCIS are both W[1]-hard on
Bipartite graphs

How about MCCIS?
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MCCIS on Bipartite Graphs

 Theorem. MCCIS is NP-hard and W[1]-hard on
bipartite graphs.

Proof. By reduction from MCIS. Let (G,,G,,k) be an instance
of MCIS. For each graph G; = (A; U B, E;) we construct a

/

bipartite graph G,’= (A, U é,-’, E,-’S as follows
* Al =AU {u;
* B/ =BU{v}
« E'=EU{uv}U{ux:xinB}U{vy:yin A}

» Obviously, a common subgraph of size kin G, and
G, gives rise to a connected common subgraph of
size k+2 in G, and G,’, and vice versa.
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Graphs of Bounded Degree

IS| is NP-hard when the pattern is a path and the
host is a planar cubic graph [Gary-Johnson,79]

So both MCIS and MCCIS are NP-hard in this case

ISl is FPT on graphs of bounded degree [Cai et al.,
20006]

It follows that MC(C)IS is in FPT on graphs of
bounded degree.
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Graphs of bounded degeneracy

A graph is d-degenerate if the minimum degree
of any induced subgraph is < d

1-degenerate graphs are trees & forests

Thus MCIS is NP-hard on 1-degenerate graphs
while MCCIS is in P in this case.

How about the case d = 2
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Two-degenerate graphs

Theorem [AbuKhzam-Bonnet-Sikora, 2017]. I1SI is W[1]-hard
on 2-degenerate graphs.

Proof. By reduction from clique. Let (G,k) be a Clique instance
— Construct (G,, G,, K = k+k(k-1)/2) as follows:

— G, is obtained from a k-clique by subdividing each edge once

— G, is obtained from G by subdividing each edge once

— G, is an induced subgraph of G, if and only if G contains a k-clique

It follows that ISI, MCIS and MCCIS are WJ[1]-hard on d-
degenerate graphs for d = 2

Corollary. I1SI, MCIS and MCCIS are W[1]-hard on girth-six
bipartite graphs
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Interval Graphs

IS| is NP-Complete and W[1]-hard on interval graphs
[Marx-Schlotter, 2010]

Thus MCIS is also W[1]-hard in this case

Connected-ISl is solvable in polynomial-time on proper
iInterval graph and bipartite permutation graphs
[Heggernes et., 2010]

How about MCCIS on (proper) Interval Graphs?
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Other Graph Classes

« Chordal and bipartite chordal
— ISI, MCIS are NP-hard. Why?
— How about MCCIS?

« Cographs
— ISl and MCIS are NP-hard [Damaschke, 1991]
— How about MCCIS?

« |Slis solvable in poly-time on
— 2-connected outerplanar graphs [Syslo, 1982]

— Graphs of bounded degree and bounded treewidth
[Akutsu, 1993]
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Structural Parameters
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Structural Parameters

Instead of studying a problem on graphs of bounded
treewidth, we may consider using treewidth as
parameter.

This is not the same!

Other commonly used parameters are: vertex cover
and feedback vertex set

Recall that: for any graph G,
tw(G) < fvs(G)+1 < vc(G)
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MCIS parameterized by feedback vertex set

« MCIS, parameterized by feedback vertex set, is
not in XP (unless P = NP)

— Proof: simply, MCIS is NP-hard on forests

« MCCIS, parameterized by feedback vertex set,
IS not in XP (unless P = NP)

— Proof. same reason as above! Why?

« Corollary: M(C)CIS, parameterized by treewidth,
IS not in XP
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Vertex Cover of only one graph as parameter

Unless P = NP, ISl is not in XP on graphs where
the pattern (only) has a k-vertex cover

— Proof: the case k=0 is NP-hard via simple reduction
from Independent Set (when the pattern is edgeless)

So MCIS is not in XP when the parameter is the
size of a vertex cover of only one of the input
graphs
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MCS Parameterized by Vertex Cover

Given: Two graphs G, & G,
Parameter: k = bound on the vertex covers of G, & G,
Find: a graph H of maximum order that satisfies:

H is isomorphic to an induced subgraph of both G, and G,

Theorem: MCIS, parameterized by vertex
coveris FPT

We may also assume vertex covers are given (why?)
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MCS Parameterized by Vertex Cover

* Let n =min(n,,n,)

 Then we have a common subgraph of size n-k
— Just take the two complements of C, & C,

* The objective is to find a maximum common
iInduced subgraph of order > n-k
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Key Lemma

 Lemma [AbuKhzam, 2014]:

e Let

— C,, = set of elements of C, that are matched with
elements of C,.

— C,, = set of elements of C, that are matched with
elements of /, .

* Then: |[N(C,,)| £ 2k
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Lemma

e Let

— C,, = set of elements of C, that are matched with elements of
C,.

— C,, = set of elements of C, that are matched with elements of
5.

. Then: [N(C.,)| < 2k

* Proof:

— Elements of N(C,,) cannot match with any element of /,
Otherwise... (see figure)
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Lemma

* Let
— C,, = set of elements of C, that are matched with elements of
C,.
— C,, = set of elements of C, that are matched with elements of
5.
+ Then: [N(C,,)| < 2k

* Proof:
— Elements of N(C,,) cannot match with any element of /,
Otherwise... (see figure)

— If IN(C,,)| > 2k, then at least k elements of N(C,,) are
unmatched, which makes the independent set solution (of size n-
k) maximum!
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A Charge and Reduce Algorithm

Step 1. Branch on elements of C, as follows:

— Pick v from C,

* Either v is matched with an element of C,
* Or vis matched with an (unknown yet) element of /,
* Or vis unmatched
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A Charge and Reduce Algorithm

« Step2: Branch on elements of N(C,,)

— Pick a vertex v of N(C,,):
« either v matches with an element of C,
* or vis unmatched
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A Charge and Reduce Algorithm

» Step3: Branch on remaining elements of C,

— Such elements must either match to elements of /, or
to none. So they must form an independent set in G,

— For each independent subset C,, of C, do

* Delete all neighbors of C,, in G, (why?)

« Build a compatibility graph H and proceed by solving
Maximum Matching (see next slide)
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Matching Vertices via Graph Matching

After branching on all the elements of C,and C,, we are left with
independent sets in each of the two graphs

We build a bipartite graph H = (A,B) as follows:

— A and B consists of the unmatched and undeleted elements of G, and
G, respectively

— Two elements x and y of A and B (resp) are adjacent if their matching
does not violate the isomorphism criterion

Therefore: a maximum matching of H gives the maximum number of
pairs of vertices that can match under a common subgraph
Isomorphism

The algorithm ends by computing a maximum matching in H and
comparing the total number of matched vertices to n-k
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Better Branching

« Delay Assignments of elements of C, to elements of C..

— Each vertex is either
* matched (but unassigned a match) or
 belongs to C,,or
* deleted

— This would still lead to computing N(C,,)
— Then branch on elements of N(C,,) (either matched or deleted)
— Then try all possible kX matchings between C,,U N(C,,) and C,

« Total running time is in O*((24k)*)
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Can we do better?

 The main question at this stage is whether an
O*(ck) algorithm exists when k is the vertex
cover bound. Unfortunately:

 Theorem [Abukhzam-Bonnet-Sikora, 2017].
Unless the Exponential-Time Hypothesis (ETH)
fails, 1SI cannot be solved in O(20(klogk))
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MCCIS Parameterized by Vertex Cover

 Theorem [AbuKhzam-Bonnet-Sikora, 2017]: MCCIS,
parameterized by vertex cover is FPT

Proof-sketch: Let C, and C, be vertex covers of G, and G, resp.,

— Key observation: elements of the complement of each cover can be
partitioned into at most 2« “twin classes”

— Enumerate all tri-partitions of C, and C, into (i) vertices that are matched
within covers, (ii) vertices that are matched with other elements and (iii)
unmatched vertices.

— Proceed by enumerating all possible matches between each cover and the
complement of the other, then between all the twin-classes

 Also works as MCIS enumeration

Workshop on Graph Theory & its Applications IV



Hardness of Kernelization w.r.t. the Vertex
Cover Parameter

« Another important question is whether MC(C)IS,
parameterized by vertex cover, admits a
polynomial-size kernel. Unfortunately:

« Theorem [AbuKhzam-Bonnet-Sikora, 2014]:
unless NP is contained in co-NP/poly, MC(C)IS
has no polynomial-size kernel when
parameterized by the sum of the sizes of vertex
covers of the two input graphs.
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Some research directions

We showed MCIS is FPT when parameterized by size of the largest
among the vertex covers of input graphs, or just their sum (vc+vcC)

How about the parameter vc+fvs?
sum of sizes of vertex cover of one graph and feedback vertex set of the other?

It would be interesting to consider other known graph metrics as
parameters:

— cutwidth, pathwidth, rankwidth, etc ..

MCIS is solvable in polynomial time on graphs of bounded degree
and bounded treewidth

— How about bounded degeneracy and bounded treewidth?

How about bipartite graphs of bounded treewidth? Or bounded
(given) chromatic number and bounded treewidth?
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Thank You
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