

Common Induced Subgraph Isomorphism

Structural Parameterizations and Exact
Algorithms

Faisal N. Abu-Khzam

Department of Computer Science and Mathematics
Lebanese American University

Beirut, Lebanon

Workshop on Graph Theory & its Applications IV

Overview

•  Background material
•  (Common) Induced Subgraph Isomorphism
•  Complexity on general graphs
•  Exact algorithms
•  Special graph classes
•  Structural parameters
•  The size of vertex cover as parameter
•  Open problems and Future Directions

Workshop on Graph Theory & its Applications IV

Parameterized Problems

•  Parameterized problem: a instance of a parameterized
problem consists of a pair (I,K) where:

–  I is the input
–  K is a (set of) parameter(s)

•  A parameterized problem is often denoted by (X,k) or
just k-X (such as k-Vertex Cover, k-Clique, etc…)

Fixed-Parameter Tractability

•  A problem X is fixed-parameter tractable (FPT)
with respect to parameter k, if:

there is an algorithm that solves X in time O(f(k)nc),
where n is the size of input and c is a constant.

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Example: the Parameterized Vertex Cover
Problem

•  A vertex cover in a graph is a set of vertices
whose deletion results in an edge-less subgraph

•  k-Vertex Cover:
–  Given a graph G
–  Does G have a vertex cover of size k?

Example: the Parameterized Vertex
Cover Problem

•  k-Vertex Cover is solvable in O*(2k):
–  Pick and edge uv
–  Either u or v is in any vertex cover (in each case the vertex is

deleted)
–  Search-tree is of height bounded above by k

•  Better algorithm:
–  pick a vertex v of maximum degree
–  Either v is placed in cover, or N(v) is in cover

•  Based on this simple idea and other preprocessing/
pruning methods:
–  k-Vertex Cover is solvable in O(1.2745kk4+kn) time [Chen et al.,

2010]

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Kernelization

•  For a parameterized problem (X,k), a kernelization
algorithm is a polynomial-time reduction procedure
that takes an arbitrary instance (I,k) of X and produces
an equivalent instance (I’,k’) where |I’| ≤ g(k) and k’≤ k

•  When the above holds, A resulting reduced instance is
called a g(k)-kernel

•  Of special interest are kernels where g(k) is a polynomial

k-Vertex Cover Kernelization

•  Observe (based on [Buss-Goldsmith, 1993]): every vertex of

degree > k must be in any solution. Otherwise we have a no-
instance

•  Pre-process the graph to delete all the vertices of degree > k
and decrement k by the number of such vertices.
–  Repeat until each and every vertex is of degree ≤ k

•  The number of edges is now bounded above by k2

•  It follows that k-Vertex Cover admits a quadratic-size kernel

•  Admits a kernel with at most 2k vertices [Chen-Kanj-Jia, 2001]

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

The Parameterized Complexity Hierarchy

•  The class FPT is at the bottom of the parameterized
complexity hierarchy

 FPT, W[1], W[2], … XP

•  The class XP
–  Consists of parameterized problems that are solvable in polynomial

time when the parameter is a constant
–  Example: Dominating Set
–  k-Coloring, parameterized by k, is not in XP (unless P=NP)

•  FPT versus Kernelization
–  A problem is FPT if and only if it admits a kernel [Downey-Fellows-

Stege, 1999]. However:
–  FPT does not imply poly-kernel

Feedback Vertex Set

•  A feedback vertex set in a graph is a set of
vertices whose deletion results in an acyclic
subgraph

•  The corresponding k-Feedback Vertex Set
problem (FVS) is another well known FPT
problem
–  O*(3.168k) [Kociumaka-Pilipczuk, 2014]
–  Quadratic-size kernel [Thomasse’, 2010]

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

k-Clique

•  Clique: complete (sub)graph
–  Any two vertices of a clique are adjacent.

•  k-Clique is W[1]-hard

•  In terms of worst-case behavior, the best known
exact algorithm runs in O(1.213n) [Bourgeois et al.,
2010]

Treewidth

•  A tree decomposition of G=(V,E) is a tree T=(X,Y) such
that elements of X are subsets of V and:
–  For each vertex u in V, the nodes of T that contain u form a

subtree denoted by T(u) (every vertex of V can be mapped to a
distinct subtree)

–  Every pair of adjacent vertices are mapped to intersecting
subtrees of T

•  The width of a tree decomposition is one less the
maximum tree-node cardinality (as subset of V)

•  The treewidth of G, henceforth tw(G), is the minimum
width among all possible tree decompositions of G

Workshop on Graph Theory & its Applications IV

Treewidth (an example)

Workshop on Graph Theory & its Applications IV

a

e2

{d,e,f}

b

c

e

h

g

f d

{e,g} {d,e,b}

{d,h} {b,e,c}

{a,b}

Pathwidth

•  Path decomposition:
–  Same definition as tree decomposition with tree

replaced by path

•  The corresponding minimum width is called the
pathwidth of the graph (denoted pw(G))

•  Obviously: tw(G) ≤ pw(G)

Workshop on Graph Theory & its Applications IV

Why Treewidth?

•  Treewidth measures how tree-like a graph is

•  Many known NP-hard problems are in P on graphs
of bounded treewidth

•  k-Treewidth is FPT

•  While the fixed-parameter algorithm for Treewidth is
too slow, approximation algorithms exist that are
more efficient and serve most practical purposes

Workshop on Graph Theory & its Applications IV

Relation between vc and tw/pw

•  If a graph G has a vertex cover C of size k then
pw(G) ≤ k
–  Let P be a path of length n-k
–  Map every vertex of C to P
–  Map every vertex not in C to a unique (distinct) vertex

of P, so every vertex of P is the image of exactly k+1
vertices of G

•  It follows that tw(G) ≤ pw(G) ≤ vc(G)

Workshop on Graph Theory & its Applications IV

Relation between fvs, vc and tw

•  If a graph G has a feedback vertex set S of size k
then tw(G) ≤ k+1
–  Let T be a tree decomposition of G-S
–  Then width(T) = 1 (G-S is a forest)
–  Map every vertex of S to every node of T

•  It follows that tw(G) ≤ fvs(G)+1

•  Also note that fvs(G) < vc(G)

•  Hence tw(G) ≤ fvs(G)+1≤ vc(G)
Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Induced Subgraph Isomorphism (ISI)

•  Given: a pair (G1,G2) of graphs
•  Parameter: |G1|
•  Question: Is G1 isomorphic to an induced subgraph of

G2?

–  G1 and G2 are often called the pattern and host, respectively

•  W[1]-hard in general, by reduction from k-Clique
•  Fixed-Parameter Tractable in H-minor free graphs [Flum-

Grohe, 2001]

Workshop on Graph Theory & its Applications IV

Maximum Common Induced Subgraph
(MCIS)

•  Given: a pair (G1,G2) of graphs and a positive integer k
•  Question: Is there a graph H that satisfies:

–  H is isomorphic to an induced subgraph of both G1 and G2
–  H has at least k vertices

•  Other definitions seek:

–  Maximum number of edges
–  Connected common subgraph (henceforth MCCIS)

MCIS

Workshop on Graph Theory & its Applications IV

MCIS

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Complexity of MCIS

•  Induced Subgraph Isomorphism is a special case (let k = order of
pattern graph) :
–  Thus MCIS is NP-hard

•  k-Clique is another special case.

•  MCIS remains NP-hard on most known graph classes
–  Including bipartite graphs, planar graphs, and graphs of bounded

treewidth!

•  Solvable in polynomial-time on:
–  Trees [Garey & Johnson, 1979]
–  Graphs of bounded treewidth and bounded degree [Akutsu, 1993]

Differentiating between the complexities of ISI,
MCIS and MCCIS

•  MCIS is hard when the second input graph is
edge-less (being equivalent to the Maximum
Independent Set problem), while ISI is trivially in
P in this case.

•  MCCIS is solvable in polynomial time on trees
and forests while MCIS is NP-hard in this case.

Workshop on Graph Theory & its Applications IV

Exact Algorithms

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

A Classical Backtracking Algorithm

•  (Based on [Ullman, 1976]:) For v in G1, define M(v) as: set of
possible matches of v in G2

•  Initialize M(v) to V(G2) for each v in G1.
•  MCIS(G1,G2,M,k)

–  If k = 0 then return YES
–  For every v in V(G1) do

•  If M(v) is empty, then delete v
–  If G1 is empty then return NO
–  M’ ß M
–  Pick v of G1 with minimum |M’(v)|
–  For each w in M’(v) do:

•  Match v and w:
–  if x is a neighbor of v, delete the non-neighbors of w from M’(x)
–  if x is not a neighbor of v, delete the neighbors of w from M’(x)

•  If(MCIS(G1-v,G2-w,M’,k-1)) then return YES
–  return MCIS(G1-v,G2,M,k)

Analysis

•  Let n and m be the number of vertices in G1 and G2,
respectively.

•  In the worst-case, every vertex of G2 is a possible
match è m+1 choices for each vertex of G1

 O((m+1)n)

•  Of course, the actual bound is better!

•  How can we do better?

Workshop on Graph Theory & its Applications IV

Reduction to Maximum Clique

•  (Based on [Levi-Calcolo, 1972]:) Given an MCIS
instance (G1,G2,k), construct a Clique instance (H,k)
as follows:
–  V(H) = {(u,v): u and v are vertices of G1 and G2,

respectively}
–  E(H) = {{(u,v),(u’,v’)} : uu’ and vv’ exhibit the same relation}

•  A clique in H gives rise to a common subgraph!

•  Unfortunately, this does not help a lot!
–  The running time would be in O(1.213n2)

Workshop on Graph Theory & its Applications IV

Reduction to Graph Isomorphism

•  For each pair of subgraphs H1 and H2 of G1 and
G2, respectively
–  Run a Graph Isomorphism algorithm on H1 and H2

•  Running time: 2n+m+O((logn)c), using Babai’s recent
algorithm for Graph Isomorphism.

Workshop on Graph Theory & its Applications IV

Parameterized Complexity of
ISI and M(C)CIS

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Parameterized Complexity of ISI and M(C)CIS

•  ISI and MCIS have the same parameterized
complexity

•  In fact, When ISI is FPT, MCIS and MCCIS are FPT:
–  Generate all possible graphs on k vertices and run ISI’s

FPT algorithm

•  When MCIS is FPT, ISI and MCCIS must be FPT…

•  When MCCIS is FPT, MCIS “might” be FPT:
–  Add a universal (or star) vertex to each of the input graphs

Caution: this is not always possible

Workshop on Graph Theory & its Applications IV

Parameterized Complexity of ISI and M(C)CIS

•  Theorem: ISI, MCIS and MCCIS are W[1]-Complete

•  Membership in W[1]:

–  a problem is in W[1] if it can be reduced in FPT-time to
simulating a non-deterministic single-tape Turing Machine that
halts in f(k) steps, for some f.

•  This is obviously true for MCIS:
–  Guess in 2k steps the corresponding k vertices of G1 and k

vertices of G2.

•  W[1]-hardness is (again) due the reduction from Clique

Special Graph Classes

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

H-Minor-Free graphs

•  Definition: graph H is a minor of graph G if H is obtained
from a subgraph of G by a sequence of (zero or more)
edge contractions.

•  H-Minor-Free Graphs: family of finite graphs that exclude
a fixed subgraph in the minor order.

•  ISI is FPT on H-Minor-Free graphs [Flum-Grohe, 2001].

•  Thus MCIS and MCCIS are FPT in this case (by
previous observation).

Planar graphs
•  MCIS is FPT in this case.

•  Previous observations give an O*(ck2) algorithm:
–  Generate all graphs of order k and run ISI twice.

•  A simple O*(ck) algorithm:
–  If both G1 and G2 have > 4k vertices then we have a Yes instance
–  Otherwise, one of the two graphs, say G1, has < 4k vertices
–  Enumerate, in O(24k), all induced subgraphs of G1. For each such

subgraph, run the (single-exponential) ISI algorithm of [Dorn 2010
(For the search version, one would compute a 5-coloring of G1 and G2)

•  Above method can be used in general on graphs of bounded
chromatic number provided ISI is solvable in 2o(k2) (or better).

Workshop on Graph Theory & its Applications IV

Trees and Forests

•  MCCIS is solvable in poly-time on trees [Gary-Johnson, 79]

•  It follows that MCCIS is solvable in polynomial-time on forests:
–  for any pair of trees, one from each of the two input graphs, run a

Maximum-Common-Subtree algorithm

•  ISI and (therefore) MCIS are NP-hard on forests [Gary-
Johnson, 79]

•  In general, MCIS is NP-hard on trees

•  All three problems are FPT on trees and forests (why?)

Workshop on Graph Theory & its Applications IV

Graphs of bounded treewidth

•  ISI and MCIS are NP-hard on graphs of bounded
treewidth, being already NP-hard on forests.

•  Theorem. MCCIS is NP-hard on graphs of treewidth-
two.

Proof: by reduction from Sub-Forest Isomorphism:
–  Given two forests F1 and F2
–  Add a universal vertex to each forest to obtain G1 and G2
–  The resulting graphs have treewidth two
–  Obviously: F1 and F2 have a common subgraph of order k

if and only if G1 and G2 have a common connected
subgraph of order k+1

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Bipartite Graphs

•  The NP-hardness of ISI and MCIS follows easily
from their NP-hardness on forests

•  Induced Matching is W[1]-hard on Bipartite
graphs [Moser-Sikdar, 2009]

•  Thus ISI and MCIS are both W[1]-hard on

Bipartite graphs

•  How about MCCIS?

MCCIS on Bipartite Graphs

•  Theorem. MCCIS is NP-hard and W[1]-hard on
bipartite graphs.

Proof. By reduction from MCIS. Let (G1,G2,k) be an instance
of MCIS. For each graph Gi = (Ai U Bi, Ei) we construct a
bipartite graph Gi’ = (Ai’ U Bi’, Ei’) as follows

•  Ai’ = Ai U {ui}
•  Bi’ = Bi U {vi}
•  Ei’ = E U {uivi} U {uix : x in B} U {viy : y in A}

•  Obviously, a common subgraph of size k in G1 and

G2 gives rise to a connected common subgraph of
size k+2 in G1’ and G2’, and vice versa.

Workshop on Graph Theory & its Applications IV

Graphs of Bounded Degree

•  ISI is NP-hard when the pattern is a path and the
host is a planar cubic graph [Gary-Johnson,79]

•  So both MCIS and MCCIS are NP-hard in this case

•  ISI is FPT on graphs of bounded degree [Cai et al.,
2006]

•  It follows that MC(C)IS is in FPT on graphs of
bounded degree.

Workshop on Graph Theory & its Applications IV

Graphs of bounded degeneracy

•  A graph is d-degenerate if the minimum degree
of any induced subgraph is ≤ d

•  1-degenerate graphs are trees & forests

•  Thus MCIS is NP-hard on 1-degenerate graphs
while MCCIS is in P in this case.

•  How about the case d ≥ 2
 Workshop on Graph Theory & its Applications IV

Two-degenerate graphs

•  Theorem [AbuKhzam-Bonnet-Sikora, 2017]. ISI is W[1]-hard
on 2-degenerate graphs.

•  Proof. By reduction from clique. Let (G,k) be a Clique instance
–  Construct (G1, G2, k’ = k+k(k-1)/2) as follows:
–  G1 is obtained from a k-clique by subdividing each edge once
–  G2 is obtained from G by subdividing each edge once
–  G1 is an induced subgraph of G2 if and only if G contains a k-clique

•  It follows that ISI, MCIS and MCCIS are W[1]-hard on d-
degenerate graphs for d ≥ 2

•  Corollary. ISI, MCIS and MCCIS are W[1]-hard on girth-six
bipartite graphs

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Interval Graphs

•  ISI is NP-Complete and W[1]-hard on interval graphs
[Marx-Schlotter, 2010]

•  Thus MCIS is also W[1]-hard in this case

•  Connected-ISI is solvable in polynomial-time on proper

interval graph and bipartite permutation graphs
[Heggernes et., 2010]

•  How about MCCIS on (proper) Interval Graphs?

Other Graph Classes

•  Chordal and bipartite chordal
–  ISI, MCIS are NP-hard. Why?
–  How about MCCIS?

•  Cographs
–  ISI and MCIS are NP-hard [Damaschke, 1991]
–  How about MCCIS?

•  ISI is solvable in poly-time on
–  2-connected outerplanar graphs [Syslo, 1982]
–  Graphs of bounded degree and bounded treewidth

[Akutsu, 1993]

Workshop on Graph Theory & its Applications IV

Structural Parameters

Workshop on Graph Theory & its Applications IV

Structural Parameters

•  Instead of studying a problem on graphs of bounded
treewidth, we may consider using treewidth as
parameter.

•  This is not the same!

•  Other commonly used parameters are: vertex cover
and feedback vertex set

•  Recall that: for any graph G,

 tw(G) ≤ fvs(G)+1 ≤ vc(G)
Workshop on Graph Theory & its Applications IV

MCIS parameterized by feedback vertex set

•  MCIS, parameterized by feedback vertex set, is
not in XP (unless P = NP)
–  Proof: simply, MCIS is NP-hard on forests

•  MCCIS, parameterized by feedback vertex set,
is not in XP (unless P = NP)
–  Proof: same reason as above! Why?

•  Corollary: M(C)CIS, parameterized by treewidth,
is not in XP

 Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Vertex Cover of only one graph as parameter

•  Unless P = NP, ISI is not in XP on graphs where
the pattern (only) has a k-vertex cover

–  Proof: the case k=0 is NP-hard via simple reduction
from Independent Set (when the pattern is edgeless)

•  So MCIS is not in XP when the parameter is the
size of a vertex cover of only one of the input
graphs

Workshop on Graph Theory & its Applications IV

MCS Parameterized by Vertex Cover

•  Given: Two graphs G1 & G2
•  Parameter: k = bound on the vertex covers of G1 & G2
•  Find: a graph H of maximum order that satisfies:

 H is isomorphic to an induced subgraph of both G1 and G2

•  Theorem: MCIS, parameterized by vertex
cover is FPT

 We may also assume vertex covers are given (why?)

Workshop on Graph Theory & its Applications IV

MCS Parameterized by Vertex Cover

•  Let n = min(n1,n2)

•  Then we have a common subgraph of size n-k
–  Just take the two complements of C1 & C2

•  The objective is to find a maximum common
induced subgraph of order > n-k

Workshop on Graph Theory & its Applications IV

Key Lemma

•  Lemma [AbuKhzam, 2014]:

•  Let
–  C11 = set of elements of C1 that are matched with

elements of C2.
–  C12 = set of elements of C1 that are matched with

elements of I2 .

•  Then: |N(C12)| ≤ 2k

Workshop on Graph Theory & its Applications IV

Lemma
•  Let

–  C11 = set of elements of C1 that are matched with elements of
C2.

–  C12 = set of elements of C1 that are matched with elements of
I2 .

•  Then: |N(C12)| ≤ 2k

•  Proof:
–  Elements of N(C12) cannot match with any element of I2

Otherwise… (see figure)
–  If |N(C12)| > 2k, then at least k elements of N(Ci2) are unmatched,

which makes the independent set solution maximum!

Workshop on Graph Theory & its Applications IV

G1 G2

C1 C2

C12

C11

N(C12)

Workshop on Graph Theory & its Applications IV

G1 G2

C1 C2

N(C12)

C12

C11

Workshop on Graph Theory & its Applications IV

Lemma

•  Let
–  C11 = set of elements of C1 that are matched with elements of

C2.
–  C12 = set of elements of C1 that are matched with elements of

I2 .
•  Then: |N(C12)| ≤ 2k

•  Proof:
–  Elements of N(C12) cannot match with any element of I2

Otherwise… (see figure)
–  If |N(C12)| > 2k, then at least k elements of N(C12) are

unmatched, which makes the independent set solution (of size n-
k) maximum!

Workshop on Graph Theory & its Applications IV

A Charge and Reduce Algorithm

 Step 1. Branch on elements of C1 as follows:

–  Pick v from C1
•  Either v is matched with an element of C2
•  Or v is matched with an (unknown yet) element of I2
•  Or v is unmatched

Workshop on Graph Theory & its Applications IV

A Charge and Reduce Algorithm

•  Step2: Branch on elements of N(C12)

–  Pick a vertex v of N(C12):
•  either v matches with an element of C2
•  or v is unmatched

Workshop on Graph Theory & its Applications IV

A Charge and Reduce Algorithm

•  Step3: Branch on remaining elements of C2
–  Such elements must either match to elements of I1 or

to none. So they must form an independent set in G2

–  For each independent subset C22 of C2 do
•  Delete all neighbors of C22 in G2 (why?)
•  Build a compatibility graph H and proceed by solving

Maximum Matching (see next slide)

Workshop on Graph Theory & its Applications IV

Matching Vertices via Graph Matching

•  After branching on all the elements of C1 and C2, we are left with
independent sets in each of the two graphs

•  We build a bipartite graph H = (A,B) as follows:
–  A and B consists of the unmatched and undeleted elements of G1 and

G2 respectively
–  Two elements x and y of A and B (resp) are adjacent if their matching

does not violate the isomorphism criterion

•  Therefore: a maximum matching of H gives the maximum number of
pairs of vertices that can match under a common subgraph
isomorphism

•  The algorithm ends by computing a maximum matching in H and
comparing the total number of matched vertices to n-k

Workshop on Graph Theory & its Applications IV

Better Branching

•  Delay Assignments of elements of C1 to elements of C2.
–  Each vertex is either

•  matched (but unassigned a match) or
•  belongs to C12 or
•  deleted

–  This would still lead to computing N(C12)
–  Then branch on elements of N(C12) (either matched or deleted)
–  Then try all possible kk matchings between C12 U N(C12) and C2

•  Total running time is in O*((24k)k)

Can we do better?

•  The main question at this stage is whether an
O*(ck) algorithm exists when k is the vertex
cover bound. Unfortunately:

•  Theorem [Abukhzam-Bonnet-Sikora, 2017].
Unless the Exponential-Time Hypothesis (ETH)
fails, ISI cannot be solved in O(2o(klogk))

Workshop on Graph Theory & its Applications IV

MCCIS Parameterized by Vertex Cover

•  Theorem [AbuKhzam-Bonnet-Sikora, 2017]: MCCIS,
parameterized by vertex cover is FPT

 Proof-sketch: Let C1 and C2 be vertex covers of G1 and G2 resp.,

–  Key observation: elements of the complement of each cover can be
partitioned into at most 2k “twin classes”

–  Enumerate all tri-partitions of C1 and C2 into (i) vertices that are matched
within covers, (ii) vertices that are matched with other elements and (iii)
unmatched vertices.

–  Proceed by enumerating all possible matches between each cover and the
complement of the other, then between all the twin-classes

•  Also works as MCIS enumeration

Workshop on Graph Theory & its Applications IV

Hardness of Kernelization w.r.t. the Vertex
Cover Parameter

•  Another important question is whether MC(C)IS,
parameterized by vertex cover, admits a
polynomial-size kernel. Unfortunately:

•  Theorem [AbuKhzam-Bonnet-Sikora, 2014]:
unless NP is contained in co-NP/poly, MC(C)IS
has no polynomial-size kernel when
parameterized by the sum of the sizes of vertex
covers of the two input graphs.

Workshop on Graph Theory & its Applications IV

Workshop on Graph Theory & its Applications IV

Some research directions

•  We showed MCIS is FPT when parameterized by size of the largest
among the vertex covers of input graphs, or just their sum (vc+vc)

•  How about the parameter vc+fvs?
sum of sizes of vertex cover of one graph and feedback vertex set of the other?

•  It would be interesting to consider other known graph metrics as

parameters:
–  cutwidth, pathwidth, rankwidth, etc ..

•  MCIS is solvable in polynomial time on graphs of bounded degree
and bounded treewidth
–  How about bounded degeneracy and bounded treewidth?

•  How about bipartite graphs of bounded treewidth? Or bounded
(given) chromatic number and bounded treewidth?

Workshop on Graph Theory & its Applications IV

Thank You

