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Interpretable deep learning 
for the remote characterisation 
of ambulation in multiple sclerosis 
using smartphones
Andrew P. Creagh1*, Florian Lipsmeier2, Michael Lindemann2,5 & Maarten De Vos1,3,4,5

The emergence of digital technologies such as smartphones in healthcare applications have 
demonstrated the possibility of developing rich, continuous, and objective measures of multiple 
sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional 
Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory 
characteristics from the raw smartphone-based inertial sensor data than standard feature-based 
methodologies. To overcome the typical limitations associated with remotely generated health 
data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model 
from similar large open-source datasets was proposed. Our TL framework leveraged the ambulatory 
information learned on human activity recognition (HAR) tasks collected from wearable smartphone 
sensor data. It was demonstrated that fine-tuning TL DCNN HAR models towards MS disease 
recognition tasks outperformed previous Support Vector Machine (SVM) feature-based methods, as 
well as DCNN models trained end-to-end, by upwards of 8–15%. A lack of transparency of “black-box” 
deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning 
for clinical applications. Ensuing work therefore aimed to visualise DCNN decisions attributed by 
relevance heatmaps using Layer-Wise Relevance Propagation (LRP). Through the LRP framework, the 
patterns captured from smartphone-based inertial sensor data that were reflective of those who are 
healthy versus people with MS (PwMS) could begin to be established and understood. Interpretations 
suggested that cadence-based measures, gait speed, and ambulation-related signal perturbations 
were distinct characteristics that distinguished MS disability from healthy participants. Robust and 
interpretable outcomes, generated from high-frequency out-of-clinic assessments, could greatly 
augment the current in-clinic assessment picture for PwMS, to inform better disease management 
techniques, and enable the development of better therapeutic interventions.

Digital health technology assessments may enable a deeper characterisation of the symptoms of neurodegenera-
tive diseases from at-home environments1. A wealth of recent work is focusing on how digital outcomes can be 
captured from sensor data collected with consumer devices to represent impairment in neurodegenerative and 
autoimmune diseases such as multiple sclerosis (MS)2,3, Parkinson’s disease (PD)4,5, and rheumatoid arthritis 
(RA)6, both remotely and longitudinally. MS is a heterogeneous and highly mutable disease, where people with 
MS (PwMS) can experience symptomatic episodes (a relapse) which fluctuate periodically and impairment tends 
to increase over time7. Objective and frequent monitoring of the manifestations of PwMS disability is therefore 
of considerable importance; digital sensor-based assessments may be more accurate than conventional clinical 
outcomes recorded at infrequent visits in detecting subtle progressive sub-clinical changes or long-term disability 
in PwMS8. Furthermore, earlier identification of changes in PwMS impairment are important to identify and 
provide better therapeutic strategies9.

Alterations during ambulation (gait) due to MS are a amongst the most common indication of MS 
impairment10–15. PwMS can display postural instability11, gait variability12–14 and fatigue15 during various stages 
of disease progression.
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The gold-standard assessment of disability in MS is the Expanded Disability Status Scale (EDSS)16, as well as 
specific functional domain assessments such as the Timed 25-Foot Walk (T25FW), which is part of the Multiple 
Sclerosis Functional Composite score17,18, and the Two-Minute Walk Test (2MWT) which also assesses physical 
gait function and fatigue in PwMS19.

Body worn inertial sensor-based measurements have been proposed as objective methods to characterise 
gait function in PwMS13,14,20. This study builds upon our previous investigations3, where we have shown how 
inertial sensors contained within consumer-based smartphones and smartwatches can be used to characterise gait 
impairments in PwMS from a remotely administered Two-Minute Walk Test (2MWT)19. We have demonstrated 
how inertial sensor-based features can be extracted from these consumer devices to develop machine learning 
(ML) models that can distinguish MS disability from healthy participants.

These approaches, however, are constrained transformations and approximations of ambulatory function 
which are based on prior assumptions. Hand-crafted gait features are often established signal-processing metrics 
re-purposed as surrogates to represent aspects of PwMS gait; for instance, extracting the variance in a sensor 
signal in an attempt to capture gait variability in PwMS. As such, there may be greater power in allowing an 
algorithm to learn its own features, termed representation learning21. Deep learning is an overarching term given 
to representation learning, where multiple levels of representation are obtained through the combination of a 
number of stacked (hence deep) non-linear model layers. Deep learning models typically describe convolutional 
neural networks (CNN), deep neural networks (DNN), and combined fully-connected deep convolutional neural 
networks (DCNN) architectures21. Other architectures include recurrent neural networks (RNN), such as Long 
Short Term Memory (LSTM) networks, which are especially adept at modelling sequential time-series data21. 
While CNNs are omnipresent in image recognition-based tasks, these models are often extremely successful 
at many time-series related tasks22,23. For example, CNNs have been shown to act as feature extractors capable 
of learning temporal and spatio-temporal information directly from the raw time-series signals22. The features 
extracted by convolutional layers can then be arranged to create a final output through fully connected (dense) 
layers. It should be noted that although there is no fundamental difference between the nomenclature ‘CNN’ 
and ‘DCNN’, in this manuscript we explicitly refer to the entire model as a DCNN in order to facilitate the 
distinguishment between the role of the feature extraction CNN layers and classification fully connected layers.

Recently, deep networks are also being applied towards inertial sensor data for a range of various activity 
related tasks. For instance, by far the most popular—and most accurate—techniques which have been applied 
to Human Activity Recognition (HAR) based sensor activities incorporate deep networks23–25. Many studies are 
beginning to explore disease classification and symptom monitoring with wearable-generated inertial sensor 
data using deep networks. Representations learned using DCNNs from wearable and smartphone inertial sensors 
have been shown to predict gait impairment in Parkinson’s disease5,26, to predict falls risk in both the elderly27 
and in PwMS28, as well as DCNNs for subject identification tasks29,30.

Deep transfer learning for remote disease classification.  The work presented in this study com-
pares the performance of CNN extracted features and DCNN models against hand-crafted features previously 
introduced in3 to directly classify healthy controls (HC) and subgroups of PwMS. Despite the possibility of sig-
nificant performance improvements compared to hand-crafted feature-based methods, deep networks require 
much more training data to make successful, robust and generaliseable decisions21. Transfer learning (TL) is 
a machine learning technique which aims to overcome these challenges by transferring information learned 
between related source and target domains21,31.

While the data may be in different domains, or the distributions may differ from the target and source tasks, 
transfer learning assumes that the knowledge that is learned in another task and dataset will be useful and related 
to the new target task.

Transfer learning has been successfully implemented in many computer vision tasks32 and for time series clas-
sification tasks31, such as EEG sleep-staging33,34, and importantly, towards accelerometery based falls prediction27 
and within physical activity recognition35,36.

We therefore aim to utilise transfer learning to supplement our model’s ability to discriminate between healthy 
and diseased subjects in the FLOODLIGHT proof-of-concept (FL) dataset (see Table 1)3,37. Deep transfer learn-
ing was performed by first identifying relevant large (open-) source datasets from which information can be 
exploited. The similarity between some HAR datasets and FL, the applicability of the HAR domain task (which 
includes walking bouts), as well as the trove of established HAR deep network architectures, suggests that HAR 
may be a suitable candidate to transfer domain knowledge. We identified two publicly available datasets, UCI 
HAR38 and WISDM39, which use comparable smartphone and smartwatch devices, and device affixing locations 
similar to that of FL. Figure 1 schematically illustrates the transfer learning approach undertaken, where the 
information learned from a HAR classification task ( TS ) and dataset ( DS ) are transferred towards a disease rec-
ognition task ( TT ) within the FL dataset ( TT ). Demographic details of the UCI HAR and WISDM HAR datasets 
explored in this study can be found in the accompanying supplementary material.

Visually interpreting smartphone‑based remote sensor models through attribution.  Deep 
networks can be highly non-linear and complex, leading to an inherent difficulty in interpreting the decisions 
that lead to a prediction40,41. As such, there is a considerable interest in explaining and understanding these 
“black-box” algorithms42; model transparency is particularly considered a hindrance to the widespread uptake 
and acceptance of deep networks in medical contexts, versus less powerful, but interpretable linear models43. A 
number of techniques have been developed in recent years to help explain deep neural networks40,42,44–46. Layer-
wise relevance propagation (LRP) is a backward propagation technique which has gained considerable notoriety 
as a method to explain and interpret deep networks beyond many existing techniques47,48. Layer-wise relevance 
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propagation has demonstrated clinical utility in interpreting relevant parts of the brain responsible for the pre-
dictions of Alzheimer’s disease (AD)49 and MS using MRI images50. Attribution through LRP has also been suc-
cessfully applied to clinical time series data such as EEG trial classification for brain-computer interfacing51 and, 
crucially, at identifying gait patterns unique to individual subjects52,53. The latter study, by Horst et al., reliably 
demonstrated how LRP could characterise temporal gait patterns, and explained the nuances of particular gait 
characteristics that distinguished between individual participants in detail53. An extension of this rationale is 
that there may be gait patterns that are characteristic of a disease, or diseased sub-population. As such, using the 
LRP framework, we will attempt to attribute, explain, and interpret the patterns of sensor signal (and therefore 
the features) that are relevant for distinguishing MS-related gait impairment from healthy ambulation identified 
using the DCNN models this study (as outlined in Fig. 1).

Results
A DCNN model was first trained independently on UCI HAR and WISDM datasets. The information learned 
from these HAR tasks were then transferred and fine-tuned on the FL dataset for disease recognition (clas-
sification) tasks. DCNN models trained exclusively on FL were compared to those fine-tuned from HAR and 
bench-marked against established feature-based approaches. Finally, DCNN model predictions were decomposed 
using layer-wise relevance propagation (LRP) in order to interpret the signal characteristics that influenced a 

Figure 1.   Schematic of proposed smartphone-based remote disease classification approach. First, open-source 
datasets ( DS ) were utilised to learn a HAR classification task ( TS ) with a Deep Convolutional Neural Network 
(DCNN). Learned activity information was then subsequently transferred using the transfer learning (TL) 
framework, where a portion of the DCNN model is retrained on the FL datatset ( DT ), and parameters are fine-
tuned towards the application of a disease recognition task ( TT ). DCNN model decisions can then be visually 
interpreted using attribution techniques, such as layer-wise relevance propagation (LRP), which aim to map the 
patterns of an input signal that are responsible for the activations within a network, and hence uncover pertinent 
MS disease-related ambulatory characteristics.

Table 1.   Population Demographics of the FLOODLIGHT PoC dataset1 . Clinical scores taken as the average 
per subject over the entire study, where the mean ± standard deviation across population are reported; RRMS, 
Relapsing-remitting MS; PPMS, Primary-progressive MS; SPMS, Secondary-progressive MS; EDSS, Expanded 
Disability Status Scale; T25FW, the Timed 25-Foot Walk; EDSS (amb.) refers to the ambulation sub-score as 
part of the EDSS; [s], indicates measurement in seconds; 1 For more information on the study population we 
refer the reader to3 and37; a PwMS with average EDSS < 3.5 ; b PwMS with average EDSS ≥ 3.5.

HC PwMSmilda PwMSmodb

(n=24) (n=52) (n=21)

Age 35.6 ± 8.9 39.3 ± 8.3 40.5 ± 6.9

Sex (M/F) 18/6 16/36 7/14

RRMS/PPMS/SPMS 52/0/0 14/3/4

EDSS 1.7 ± 0.8 4.2 ± 0.7

EDSS (amb.) 0.1 ± 0.3 1.9 ± 1.5

T25FW [s] 5.0 ± 0.9 5.3 ± 0.9 7.9 ± 2.2
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prediction for various individual HC and PwMSmod 2MWT segment examples. Table 1 depicts the population 
demographics for the FLOODLIGHT PoC dataset.

Classification evaluation.  Evaluation of activity recognition.  It was observed that UCI HAR-based activ-
ities (k ∈ {walking , stairs, sitting , standing , laying}) were well differentiated (Acc: 0.905 ± 0.018, κ : 0.880 ± 0.023, 
MF1 : 0.893 ± 0.025). Much of the confusion between classes occurred between similar “static” activities (such as sit-
ting and standing). Distinguishing WISDM-based HAR activities (k ∈ {walking , stairs, sitting , standing , jogging}) 
was less accurate in comparison (Acc: 0.621 ± 0.037, κ : 0.525 ± 0.0047, MF1 : 0.622 ± 0.038), although much of 
the relative added confusion in WISDM occurred between similar “dynamic” activities (such as jogging and 
walking). Despite this, the prediction of static vs. dynamic activities were distinctly separate for both UCI HAR 
and WISDM.

Evaluation of MS disease recognition.  Three separate classification models were constructed for binary tasks 
(HC vs. PwMSmild, PwMSmild vs. PwMSmod and HC vs. PwMSmod) to allow for direct comparison of the 
hand-crafted feature-based classification outcomes assessed in3, as well as a unified multi-class model incor-
porating all three classes simultaneously. The implementation of the baseline SVM model and hand-crafted 
features have previously been described in3. Hand-crafted features included various statistical moments of the 
acceleration epochs and frequency content, as well as energy- and entropy-based properties of the time-fre-
quency signal components though wavelet and empirical mode decomposition. For further information we refer 
the reader to3. Table 2 depicts the classification outcomes for all tasks. Bench-marking against a feature based 
Support Vector Machines (SVM) classifier3, DCNN (end-to-end) model performance was similar in all tasks. 
PwMSmod could largely be distinguished from HC and PwMSmild. HAR DCNN models evaluated directly on 
FL (“direct”) did not distinguish between subject groups. Transfer learning improved disease classification accu-
racy for all tasks examined relative to feature-based and end-to-end models by upwards of 8%–15%, and by 33% 
in multi-class tasks, where TL DCNN based on DS , UCI HAR and WISDM performed similarly for all target 
classification tasks TT (Table 2). Further results expanding on this work can be found in the accompanying sup-
plementary material, including the parameters of DCNN models achieving maximal classification performance 
within Table 2.

Table 2.   Comparison of HC vs. PwMS subgroup classification results between various models for each task 
subset, T  . Results are presented as: (1) the posterior overall subject-wise outcome for one cross-validation 
(CV) run as well as (2) the 2MWT test-wise median and interquartile range (IQR) across that CV in brackets. 
The best performing model for each T  are highlighted in bold. Acc: Accuracy; κ , Cohen’s Kappa statistic; 
MF1 , Macro-F1 score. 1 “features + SVM” refers to classification performed using features and a SVM with the 
pipeline described in3; 2 “end-to-end”, refers to a model trained and validated end-to-end exclusively on DT 
data; 3 “ → ” denotes the source HAR dataset DS used and transferred to FL DS and TS . See Fig. 6 for a more 
detailed description of the TL approach used in this study.

f (·)

Acc. κ MF1

HC vs. PwMSmild

Features + SVM1 0.671 (0.576, 0.544–0.696) 0.212 (0.153, 0.088–0.393) 0.605 (0.575, 0.527–0.694)

DCNN (end-to-end)2 0.658 (0.601, 0.517–0.641) 0.226 (0.082, 0.037–0.194) 0.613 (0.541, 0.494–0.588)

DCNN (UCI HAR→FL)3 0.776 (0.741, 0.688–0.767) 0.510 (0.435, 0.346–0.481) 0.754 (0.716, 0.662–0.737)

DCNN (WISDM→FL)3 0.763 (0.733, 0.698–0.761) 0.486 (0.479, 0.343–0.490) 0.741 (0.727, 0.667–0.743)

PwMSmild vs. PwMSmod

Features + SVM1 0.849 (0.783, 0.706–0.858) 0.627 (0.566, 0.412–0.708) 0.813 (0.778, 0.692–0.853)

DCNN (end-to-end)2 0.822 (0.682, 0.617–0.763) 0.583 (0.356, 0.166–0.444) 0.791 (0.675, 0.562–0.721)

DCNN (UCI HAR→ FL)3 0.904 (0.849, 0.839–0.873) 0.776 (0.675, 0.650–0.707) 0.888 (0.837, 0.823–0.852)

DCNN (WISDM→FL)3 0.918 (0.869, 0.833–0.935) 0.810 (0.690, 0.630–0.844) 0.905 (0.845, 0.812–0.922)

HC vs. PwMSmod

Features + SVM 1 0.800 (0.773, 0.737–0.881) 0.595 (0.546, 0.474–0.763) 0.796 (0.772, 0.737–0.881)

DCNN (end-to-end)2 0.822 (0.734, 0.663–0.831) 0.641 (0.462, 0.292–0.657) 0.820 (0.730, 0.618–0.828)

DCNN (UCI HAR→FL)3 0.889 (0.873, 0.730–0.929) 0.777 (0.743, 0.446–0.847) 0.889 (0.870, 0.723–0.924)

DCNN (WISDM→FL)3 0.911 (0.886, 0.766–0.911) 0.821 (0.772, 0.520–0.820) 0.911 (0.886, 0.760–0.910)

HC vs. PwMSmild vs. PwMSmod

Features + SVM1 0.629 (0.551, 0.510–0.577) 0.368 (0.093, 0.020–0.103) 0.580 (0.510, 0.495–0.540)

DCNN (end-to-end)2 0.608 (0.503, 0.488–0.516) 0.274 (0.106, 0.081–0.130) 0.523 (0.446, 0.402–0.483)

DCNN (UCI HAR→FL)3 0.814 (0.703, 0.700–0.744) 0.673 (0.331, 0.325–0.423) 0.796 (0.672, 0.664–0.720)

DCNN (WISDM→FL)13 0.763 (0.690, 0.677–0.737) 0.571 (0.303, 0.274–0.407) 0.725 (0.671, 0.644–0.699)
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Interpreting MS remote sensor data.  The results described in this section aim to interpret smartphone 
sensor data recorded from FL through attribution techniques. Trained models were decoded using LRP, where 
we propose that this framework allows us to understand (at least to some extent) the classification decision 
in individual out-of-sample 2MWT epochs. Holistic interpretation of the disease-classification outcomes with 
respect to the inertial sensor data can be greatly augmented from the integration of: (1) visualising the raw data, 
(2) its time-frequency representation using the (discretised) continuous wavelet transform (CWT) and (3) LRP 
attribution techniques. The CWT is a method used to measure the similarity between a signal and an analys-
ing function (in this case the Morlet wavelet) which can provide a precise time-frequency representation of a 
signal3,54. For more information we refer the reader to the analysis performed in3.

Relevance propagation through LRP decomposed the output f (x) of a learned function f, given an input x , 
attributing relevance values Ri to individual input samples xi . In this case, xi were represented by discrete sensor 
samples within an testing epoch and therefore Ri was directly embedded in the time domain. The contribution 
of LRP could also be quantified across the input channels (in this case the sensor axis).

Figures 2, 3 and 4 compared the example patterns and characteristics captured from depicting the raw sensor 
signal, augmented with LRP-CWT analysis for representative examples of correctly classified HC, PwMSmild and 
PwMSmod subjects respectively. Figure 2 first illustrated the performance of a correctly classified HC subject’s 
2MWT segment, supplemented by the raw sensor data, its CWT representation and the final disease model’s 
probabilistic output p(x) . In this example, gait signal was apparent from the raw sensor data and supported by 
strong gait domain energy, Es , within the CWT representation. This collection of epochs were predicted as pre-
dominantly “walking” by a HAR model and corresponded to a confident HC classification with high probability. 
Focusing on an overlapped epoch example from 10.3–12.8 [s], gait was clearly visible in the time-frequency 
domain (i.e. large CWT coefficients around 1.5 Hz) and reflected clear steps, as depicted by the magnitude of 
acceleration. LRP attributed high relevance scores Ri to these steps in the vertical ay and orientation invariant 
signal ||a|| (i.e. represented by channel 2 and 4).

Figure 3 depicted an example 2MWT from a representative correctly classified PwMSmild subject. Similarly 
to the HC example, gait signal was visible in this example, (i.e. CWT Es , HAR f (x) and clear steps in ||a|| ) (Note: 

Figure 2.   HC epoch: Panel plot illustrating example performance of a typical HC subject (true negative) which 
can be visually interpreted using LRP decomposition and CWT frequency analysis. (HC, T25FW: 4.8 ± 0.35) 
The top row represents a 3-axis accelerometer trace captured from a smartphone over 15.4 seconds, which 
corresponds to 12 epochs of length 128 samples (or 2.56 [s]) with a 50% overlap. The magnitude (‖a‖ ) of the 
3-axis signal is highlighted in bold. The second row depicts the top view of the CWT scalogram of ‖a‖ , which 
is the absolute value of the CWT as a function of time and frequency. The final row depicts the output disease 
classification probabilities ( TT ). The shaded grey area represents an example epoch (n=128 samples, or 2.56 [s]) 
within the acceleration trace, which is examined in the larger subplot through the decomposition of DCNN 
input relevance values ( Ri ) using Layer-Wise Relevance Propagation (LRP). Red and hot colours identify input 
segments denoting positive relevance ( Ri > 0 ) indicating f (x) > 0 (i.e. MS). Blue and cold hues are negative 
relevance values ( Ri < 0 ) indicating f (x) < 0 (i.e. HC), while black represents ( Ri ≈ 0 ) inputs which have 
little or no influence to the DCNNs decision. LRP values are overlaid upon the accelerometer signal, where the 
bottom panel represents the LRP activations per input (i.e. ax , ay , az , ‖a‖).
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Figure 3.   PwMSmild epoch: Panel plot illustrating example performance from a section of correctly classified 
PwMSmild subject’s 2MWT (true positive) which can be visually interpreted using LRP decomposition and 
CWT frequency analysis. (PwMSmild, EDSS 3.25 ± 0.35; T25FW: 5.5 ± 0.53 [s]) For further information 
regarding the interpretation of this example, we refer the reader to Fig. 2.

Figure 4.   PwMSmod epoch: Panel plot illustrating example performance from a section of a correctly classified 
PwMSmod subject’s 2MWT (true positive) which can be visually interpreted using LRP decomposition and 
CWT frequency analysis. (PwMSmod, EDSS: 3.8 ± 2.9; T25FW: 6.9 ± 0.5 [s]) For further information regarding 
the interpretation of this example, we refer the reader to Fig. 2.
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HAR posterior probabilities also indicated “walking”). Relevance propagation for an example epoch during 
11.5–14 [s] indicated that step occurrences attributed to the “mild” DCNN posterior output. Time-frequency 
gait signal visualisation through CWT analysis also revealed harmonics occurring at higher frequencies than 
the gait domain (>3.5 Hz).

Figure 4, in contrast, represented a panel plot illustrating example performance of a typical correctly classi-
fied PwMSmod subject’s 2MWT segment. In this example, a concentration of higher frequency Es disturbances 
temporally coincided with each step event. These gait-related perturbations were examined in the zoomed sub 
figure for an example epoch during 3.9–6.4 [s], as highlighted by the shaded shaded grey area during the longer 
gait example. Relevance decomposition of this epoch attributed all LRP-based relevance Ri to each step and 
associated high-frequency disturbance (i.e. events influencing f (x) > 0 output as PwMSmod).

Finally, average gait epochs for HC, PwMSmild and PwMSmod groups were created using Dynamic Time 
Warping Barycenter Averaging55. Visualisation of each representative epoch using the LRP-CWT framework 
was depicted in Fig. 5. The DCNN posterior probabilities for each representative epoch were strongly predictive 
of the true class (HC, Pr. 0.89; PwMSmild, Pr. 0.91; and PwMSmod, Pr. 0.90).

Discussion
Learning a representation of MS ambulatory function.  Deep networks may learn a better represen-
tation of gait function collected from smartphone-based inertial sensors, than those of traditionally hand-crafted 
features. This study leveraged DCNNs to extract unconstrained features on raw smartphone accelerometery data 
captured from remotely performed 2MWTs by HC and PwMS subjects. Rather than relying on hand-crafted 
features, which are constrained transformations and approximations of the original signal, DCNNs offer a data-
driven approach to characterise ambulatory related features directly from the raw sensor data. Remote health 
data is often sparse and infrequently sampled3; low study participant numbers and heterogeneous data can make 
it difficult to build reliable and robust models. To help overcome this we have demonstrated how we can learn 
common gait-related characteristics from open-source datasets first, then fine-tune these representations to 
learn disease-specific ambulatory traits using transfer learning.

In this work, higher-level DCNN features learned on open-source HAR datasets were transferred to the FL 
domain. A DCNN model was first trained as a HAR classification task on two independent open-source HAR 
datasets. In accordance with other studies56, excellent discrimination of HAR activities was achieved using deep 
networks in the UCI HAR database. Prediction of WISDM-based HAR activities were less accurate in compari-
son, although much of the relative added confusion in WISDM occurred between similar “movement” activities 
(such as jogging and walking). Importantly, applying a HAR-trained model directly to FL did not identify HC 
and PwMS subgroups.

The results presented in this study demonstrated that DCNN models can be applied to raw smartphone-
based inertial sensor data to successfully distinguish sub-groups of PwMS from HC subjects. The performance 
of DCNN models applied directly to FL (end-to-end) was similar to that of the feature-based approaches.

However, models that were trained end-to-end using only FL data were highly susceptible to over-fitting 
and struggled to generalise compared to models which had been fine-tuned from a trained HAR network. This 
paradigm was particularly evident in the poor end-to-end model performance for the more difficult multi-class 
TT task. As a result, transfer learning improved model robustness and generalisability towards the recognition 
of subgroups of PwMS from HCs, compared to DCNN models trained end-to-end on FL, as well as the feature 
based methods (by between 8–15% in binary tasks and up to 33% in the multi-class task). Larger performance 
gains in the latter were particularly evident as improved recognition of PwMSmild from HC.

The improved DCNN model performance through TL could be attributed to a number of rationale. For 
instance, there is added benefit of training on a larger and more diverse set of data, as well as the regularisation 

Figure 5.   Visualisation of the average gait signal through the LRP-CWT analysis framework. Representative 
average epochs (n=128 samples, 2.56 [s]) were first created using Dynamic Time Warping Barycenter Averaging 
(DBA) independently for sets of correctly classified epochs from HC, PwMSmild, and PwMSmod subject 
groups. (Pr; represents the DCNN posterior probability for that class).
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properties TL induces (freezing layers mitigates against over-fitting). More interestingly, both UCI HAR (n = 30) 
and WISDM (n = 51) specifically comprised of young healthy individuals. In FL there were only n =24 healthy 
participants (only 16 of which contributed more than 10 unique running belt 2MWT tests). As such, initially 
training on more healthy examples in particular may have allowed the DCNN to initialise a more accurate rep-
resentation of “healthy” walking from inertial sensor data. It is noteworthy that models transferred based on DS 
UCI HAR versus WISDM performed similarly for all target classification tasks TT . Transferring from WISDM 
tended to perform marginally better at distinguishing PwMSmod however, whereas PwMSmild were slightly 
better identified from HC when transferring from UCI HAR. Perhaps the activity patterns within each dataset 
also uniquely aided each task. For example, WISDM explicitly learned a unique “jogging” class, which could allow 
the better representation learning of faster versus slower gait. Moderately disabled PwMS in particular are known 
to have relatively slower cadence19. Other characteristics must also be considered, such as affixing of the phone 
to the waist in UCI HAR (similar to the FL running belt) versus the pocket in WISDM. Regardless, more work 
is certainly needed to uncover the performance gain and understand explicit reasons for the improvement of TL 
models applied to remote sensor data. Particularly, further studies will be needed to fully define the attributes of 
a source domain DS and task TS which are relevant for the target domain DT and tasks TT , or to determine the 
optimal DS (or combination thereof) among multiple DS candidates.

The DCNN architecture investigated in this study was relatively simple compared to other frameworks5,23,30,57, 
future work will also aim to investigate the use recurrent layers (such as in LSTMs), which have proven beneficial 
to characterise the temporal nature of gait recorded within the sensor signal23,30.

Interpreting smartphone‑based remote sensor models.  Recently, breakthroughs in visualising 
neural networks have paved the way for explanations in deep and complex models, for example heatmaps of 
“relevant” parts of an input can be built by decomposing the internal neural networks using layer-wise rel-
evance propagation42,44. Visual interpretation of the factors which influence a model’s prediction may enable a 
deeper understanding of how healthy and disease-influenced characteristics are captured from remote smart-
phone-based inertial sensor data. This work aims to establish a framework to further understand the patterns 
of healthy and MS disease through multiple viewpoints: visualising the raw inertial sensor signal, its analogous 
time-frequency CWT representation, as well as augmenting this picture using layer-wise relevance propagation. 
Attribution through LRP has already been successfully applied to visualise gait patterns that are predictive of 
an individual which were acquired from lab-based ground reaction force plates and infrared camera-based full-
body joint angles53.

The patterns of healthy gait were first visually inspected in an example HC 2MWT (Fig. 2) through the LRP-
CWT framework. Comparing these healthy gait templates to PwMS examples offered a visual interpretation 
between the differences in the signal characteristics each classifier recognised as important for a prediction. For 
instance, it was found that walking in healthy predicted gait in FL was typically characterised by distinct steps, 
consistent cadence, and strong gait power ( Es ) in the 1.5–3 Hz range. Attribution using LRP highlighted step 
inflections, especially in the vertical ay and magnitude of acceleration signals ||a|| , as important predictors for HC 
ambulation. Misclassified PwMSmild and PwMSmod examples as HC depicted in this work (see supplementary 
material) also tended to visually resemble that of the HC (Fig. 2), for instance LRP tended to attribute relevance 
to the ay and ||a|| channels during clear step inflections, much like to that of the actual HC example.

The morphology of the sensor data in PwMSmod examples were visually different to correctly classified HC 
and PwMSmild. In the case of the PwMSmod gait epochs (Fig. 4) and the false positives (see supplementary 
material), these examples exhibited distinct higher frequency “pertubations” in the presence of gait, where further 
LRP decomposition attributed those disturbances as temporally important for the prediction of PwMSmod in 
each case. Interestingly, these higher frequency Es disturbances temporally coincided with each step event from 
the raw sensor signal. Misclassified examples of HC and PwMSmild as PwMSmod tended to reflect similar 
properties to the correctly classified example from Fig. 4, such as as lower Es gait domain energy (see3), evidence 
of higher frequency perturbations and a visually less well defined step morphology within the raw sensor signal. 
As corroboration to the factors influencing these misclassifications, LRP clearly attributed positive relevance (i.e. 
PwMSmod predictions) to time points of the signal corresponding to higher frequency signal-based activity.

Generating representative correctly classified gait epochs using DTW Barycenter Averaging painted a macro-
picture of the average gait patterns for HC, PwMSmild and PwMSmod groups. Visualising these representative 
epochs using the LRP-CWT framework (Fig. 5), displayed confirmatory patterns observed in previous indepen-
dently classified 2MWT examples (Figs. 2–4). Importantly, the raw accelerometer signals collected from healthy 
controls and the DBA-generated average cycles were highly comparable to established characteristics that are 
representative of healthy walking58,59. For example, a DBA representative HC epoch was visually observed to 
have clear step patterns with discernible initial and final feet contact points, and stronger Es in the gait domain 
(0.5–3 Hz). In comparison, milder and moderate MS-predicted average epochs tended to have reduced (gait) 
signal-to-noise Es and the presence of higher-frequency perturbations, as described previously.

The uncovering of the inertial sensor characteristics that distinguished MS-related disease from healthy 
ambulation, through LRP attribution, enables for clinical interpretations. For example, higher relevance val-
ues coinciding with distinct step inflections and higher power ( Es ) in the upper-end of the gait domain could 
represent cadence-based factors associated with faster walking, which are established characteristics that may 
differentiate healthy versus PwMS ambulation10,19,60. Moderately disabled PwMS in particular are known to have 
relatively slower cadence19. The attribution of gait disturbances suggesting MS-related impairment, could be asso-
ciated with other accepted indicators, such as gait variability, which have shown to stratify PwMS from HC12–14.

More interestingly, hand-crafted features that captured similar characteristics to those visually observed 
through the CWT-LRP framework appeared before as top features within our previous study3. Features such as 
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wavelet entropy and energy, capturing predictability and energy in the faster gait domain (1.5–3.3 Hz), or (gait) 
signal-to-noise related measures separated the same healthy and PwMS participants.

The similarity between hand-crafted features, visual examples, and LRP-explained DCNN features clinically 
corroborated an interpretation of the factors which may be sensitive to MS-related gait impairment. The hand-
crafted features introduced previously in3 focused on using established signal-based metrics as surrogates to 
represent aspects of PwMS gait function. As such, these surrogate features were not engineered to specifically 
capture complex biomechanical processes in PwMS gait. Data-driven measures may therefore have been more 
comprehensive, sensitive, or specific to capture the same representation of MS-indicative characteristics, than 
the approximations from constrained, hand-crafted features.

Limitations and concluding remarks.  There are a number of limitations which should be discussed with 
respect to this study. Firstly, while deep networks exhibit unrivalled potential in many healthcare applications, 
such as in this setting to characterise ambulatory and physical activity patterns from wearable accelerometery, 
the ramifications of applying these models to healthcare data should also be considered. Often observational 
clinical studies are small and initially collecting vast amounts of data on a larger number of participants can be 
both unfeasible and costly. Although the TL-framework introduced in this work helps overcome some of the dif-
ficulties encountered when attempting to build deep networks in the presence of heterogeneity and low subject 
numbers, the fine-tuning and evaluation of DCNN performance could still be predisposed by the limitations of 
the data. For instance, the relatively small number of participants (n<100) with multiple repeated measurements, 
the differences in the number of unique tests contributed per subject, or even demographic biases, such as the 
male-to-female ratio mismatches between HC and PwMS, the inclusion of various different MS phenotypes, or 
that the mild versus moderate sub-groups were bluntly created based on clinician-subjective EDSS scores, are all 
factors that should all be considered when evaluating model performance. Learning more accurate global models 
were therefore biased by the diversity, representation, and size of the data available. In reality, the NCT02952911 
FLOODLIGHT PoC study was only intended as a small proof-of-concept investigation to assess the feasibility 
to remotely monitor PwMS subjects, yet has provided many meaningful insights which can be implemented in 
future studies. Follow-up trials with larger, more diverse cohorts are already being undertaken, such as FLOOD-
LIGHT OPEN, a crowd sourced dataset where the general public can contribute their own data61.

Despite the clinical utility LRP could hold in visualising and interpreting neural network decisions, heat-
map interpretations were only qualitatively evaluated based on visual assessment, albeit motivated by a clini-
cal hypothesis. For instance, LRP relevance values coinciding with distinct step inflections and higher power 
( Es ) in the upper-end of the gait domain could represent cadence-based factors associated with faster walking, 
which are established characteristics that may differentiate healthy versus PwMS ambulation19,60. Other objective 
methods to evaluate heatmap representations have been proposed which involve perturbing the model’s inputs62. 
Verifying that LRP has attributed meaningful relevance is inherently difficult however due to the remote nature 
of the 2MWTs performed by participants in this study. Further studies should aim to evaluate HC and PwMS 
gait function in more controlled settings, such as under visual observation or using in-clinic gait measurement 
systems, which will allow the underlying attributions of LRP to be further evaluated.

More comprehensive analysis should also aim to compare various other attribution techniques, especially 
similar attribution methods, to evaluate smartphone-based remote sensor models. This future work could be 
used to further verify the predictive patterns uncovered with one method (e.g. the confirmatory hypothesis of 
another attribution method also picking up on the same pattern as LRP highlighted).

As initial steps, this study focused on establishing clear and concise interpretations of smartphone-based 
inertial sensor models to characterise patterns of gait and disease-influenced ambulation by first focusing on 
only the positive contributions towards class predictions (i.e. LRP α1β0-rules). With this baseline, further work 
(and especially in more controlled settings) should aim to apply LRP for more complex tasks to develop more 
full-bodied explanations, such as visualising contributions which contradict the prediction of a class (e.g. using 
LRP α2β1-rules).

In conclusion, the work presented here aimed to explore the ability of deep networks to detect impairment 
in PwMS from remote smartphone inertial sensor data. Transfer learning may present a useful technique to 
circumvent common problems associated with remotely generated health data, such as low subject numbers 
and heterogeneous data. TL DCNN models appeared to learn a better representation of gait function compared 
to feature based approaches characterising HCs and subgroups of PwMS. Further work is needed however to 
to understand the underlying feature structure, along with the most applicable source datasets and methods 
to extract the most appropriate information available. Incorporating expert clinical knowledge through better 
visual interpretation techniques could greatly develop clinicians’ fundamental understanding of how disease-
related ambulatory activity can be captured by wearable inertial sensor data. This work proposed the use of 
LRP heatmaps to interpret a deep network’s decisions by attributing relevance scores to the inertial sensor data 
and augmenting this assessment with time-frequency visual representations. This improved domain knowledge 
could be used to reverse engineer features, develop more robust models or to help refine more sensitive and 
specific measurements. This study, with on-going future work, therefore further demonstrates the clinical utility 
of objective, interpretable, out-of-clinic assessments for monitoring PwMS.

Methods
Data.  The FLOODLIGHT (FL) proof-of-concept (PoC) study (NCT02952911) was a trial to assess the fea-
sibility of remote patient monitoring using smartphone (and smartwatch) devices in PwMS and HC37. A total 
of 97 participants (24 HC subjects; 52 mildly disabled, PwMSmild, EDSS [0–3]; 21 moderately disabled PwMS-
mod, EDSS [3.5–5.5]) contributed data which was recorded from a 2MWT performed out-of-clinic3.
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Subjects were requested to perform a 2MWT daily over a 24-week period, and were clinically assessed base-
line, week 12 and week 24. For further information on the FL dataset and population demographics we direct 
the reader to37 and specifically to our previous work3, from which this study expands upon.

Deep transfer learning for time series classification.  Model construction.  In this time series clas-
sification problem, raw smartphone sensor data recorded during remote 2MWTs were partitioned into epoch 
sequences and DCNNs were used to classify each given sensor epoch, Xn , as having been performed by a HC, 
PwMSmild or PwMSmod participant; where Xn =

(

ax , ay , az , �a�
)⊤ , a are acceleration vectors for the x-, y- 

and z-axis coordinates, containing samples a = (x1, x2, . . . , xT ) and ‖a‖ refers to original orientation invariant 
signal magnitude.

Three separate classification models were constructed for binary tasks (HC vs. PwMSmild, PwMSmild vs. 
PwMSmod and HC vs. PwMSmod) to allow for direct comparison of the hand-crafted feature-based classification 
outcomes in3, as well as a unified multi-class model incorporating all three classes simultaneously. The popula-
tion subset explored for this study are the same as reported previously in3. The accompanying supplementary 
material further details the DCNN model architecture, parameterisation, and evaluation.

A model architecture was first trained on source domain DS and task TS , in this instance a HAR classification 
task on the UCI HAR or WISDM dataset (see supplementary material for more information on these datasets). 
The parameters and learned weights of source model fS(·) were then used to initialise and train a new model 
on domain DT and task TT by transferring the source model layers and re-training (fine-tuning) the network 
towards this new target task TT (i.e. in this case the subject group classification between HC, PwMSmild and 
PwMSmod). Figure 6 schematically details the TL approach. Baseline “end-to-end” refers to a DCNN trained 
and validated exclusively on FL data. “Direct” transfer refers classification that is performed with full HAR 
trained model and weights; after, only the last fully connected dense layer has been replaced by disease targets 
and retrained on FL data (all other layers are frozen). “Fixed” transfer refer to a HAR trained architecture, where 
the convolutional blocks and weights are frozen and act as a “fixed feature extractor”, however DNN weights 
thereafter are fine-tuned.

Pre‑processing.  Several pre-processing steps were first performed to format the raw signals for input into the 
respective deep networks. To maintain consistency and for comparability using TL approaches, all signals were 
processed according to the same structure as3. For additional consistency with3, only subject’s 2MWTs identi-
fied using the running belt were considered for subsequent analysis in this study. All inertial sensor signals were 
sampled at 50 Hz; in the case of the WISDM dataset, signals were resampled to 50 Hz using a shape-preserving 
piecewise cubic interpolation. Signals were filtered with 4th order Butterworth filter with a cut-off frequency at 
17 Hz3, and as per previous work, the smartphone coordinate axes were aligned with the global reference frame 
using the technique described in29. All signals were detrended and amplitude normalised with zero mean and 
unit variance29. Sensor signals per each test were then up-sampled using fixed-width sliding windows of 2.56 sec 

Figure 6.   Schematic of deep transfer learning approach. DS refers to input data from a source domain, in this 
case a HAR dataset, to learn a task TS , which is represented by the label space YS (the HAR activity classes). DT 
refers to the target domain, in this case the FLOODLIGHT data, where YT are the disease classification outputs 
of HC, PwMSmild or PwMSmod for target task TT . During transfer learning, a model’s parameters and learned 
weights, f (·) of DS , are then used to initialise and train a model on target domain DT and task TT . Transfer 
learning is then performed by transferring the source model’s layers (where these weights and parameters 
are “frozen”) to subsequently re-train a new model (i.e. fine-tune) using DT data for the new target task, TT . 
Downstream layers in the network are fine-tuned towards this new target task decision YS.
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and 50% overlap (128 samples/epoch), in accordance with parameters in similar studies29,30,38. The total number 
of observations/epochs for each constructed datasets are depicted in Table 3.

Model evaluation. 
To determine the generalisability of our models, stratified 5-fold, subject-wise, cross-validation (CV) was 
employed with the same seeding as in3. This consisted of randomly partitioning the dataset into k=5 folds which 
was stratified with equal class proportions where possible. One set was denoted the training set (in-sample), 
which was further split for into smaller set for validation, using roughly 10% of the training data proportionally. 
The remaining 20% of the dataset was then denoted testing set (out-of-sample) on which predictions were made.

To help alleviate model biases occurring from the varying number of repeated tests contributed per subject 
over the duration of the FL study, m number of 2MWTs per subject were randomly selected with replacement 
to create balanced datasets. Parameterisation of the number of tests per subject was determined using a baseline 
DCNN prior to building all subsequent models within FL. The classification performance over varying data 
set sizes was examined by sampling m = {1, 5, 10, 25, 50} daily tests sampled (with replacement) per subject. It 
was observed that there was minimal additional classification performance after m = 10 2MWTs sampled per 
subject across each binary task. Class distributions in the training and validation sets were then balanced using 
the re-sampling approach in3. Imbalances in the HAR training and validation data were also countered using 
this approach. The total number of observations/epochs for each constructed datasets are depicted in Table 3.

HAR model performance was reported based on the classification of individual epochs into the correct activ-
ity class for UCI HAR and WISDM. FL and TL performance was based on the majority prediction of all epochs 
over a 2MWT, test-wise, where final subject-wise classification results were computed though majority voting 
each aggregated individual 2MWT prediction per subject (see3).

Multi-class classification metrics were reported as the 2MWT test-wise median and interquartile range over 
one CV, as well as the final subject-wise outcome for that CV (in the case of FL), using overall metrics such as 
the macro accuracy, macro F1-score (MF1) and Cohen’s kappa (k) statistic63,64.

Layer‑wise relevance propagation.  Layer Wise Relevance Propagation (LRP) back-propagates through 
a network to decompose the final output decision, f (x)47,48. Briefly, a trained model’s activations, weights and 
biases are first obtained in a forward pass through the network. Secondly, during a backwards pass through the 
model, LRP attributes relevance to the individual input nodes, layer by layer. For example Rk denotes the rel-
evance for neuron k in layer (l+1) , and Rj←k defines the share of Rk that is redistributed to neuron j in layer (l) . The 
fundamental concept underpinning LRP is that the conservation of relevance per layer such that: 

∑

j Rj←k = Rk 
and Rj = 

∑

k Rj←k . The conservation of total relevance per layer can can also be denoted as:

Propagation rules are implemented to withhold this conservation property. Considering a DNN model, 
ak = φ

(

∑

j ajwjk + bk

)

 , which consists of aj , the activations from the previous layer, and wjk , bk , the weight and 
bias parameters of the neuron. The function φ is a positive and monotonically increasing activation function. In 
case of a component-wise operating non-linear activation, e.g. a ReLU (∀j = k : xk = max(0, xj)) then 
∀j = k : Rj = Rk , since the top layer relevance values Rk only need to be attributed towards one single respective 
input j for each output neuron k. The αβ-rule for LRP has been shown to work well at decomposing a model’s 
decisions:

where each term of the sum corresponds to a relevance propagation Rj←k , where ()+ and ()− denote the positive 
and negative parts respectively, and where the parameters α and β are chosen subject to the constraints α − β = 1 
and β ≥ 0 .  The α1β0-rule ( α=1, β=0) emphasises the weights of positive contributions relative to inhibitory 
contributions predicting f (x) and has been shown to create crisp and interpretable heatmaps in image recogni-
tion tasks48 and for explaining the presence of Alzheimer’s disease (AD) detection based on MRI imaging49. For 

(1)
∑

j

R
(l,l+1)
j←k = R

(l+1)
k

(2)Rj =
∑

k

(

α
ajw

+

jk
∑

j ajw
+

jk

− β
ajw

−

jk
∑

j ajw
−

jk

)

Rk ,

Table 3.   Overview of source DS and target domain DT datasets. Datasets were constructed from the original 
sensor signal using 2.56 [s] epoch sliding windows with a 50% overlap. 1 See supplementary material for more 
information on the UCI HAR and WISDM datasets. a HC, n=24; PwMSmild, n=52; PwMSmod, n=21; see 
demographics Table 1 for more details. b Randomly sampling m = 10 tests per subject.

(n)

DS DT

UCI HAR1 WISDM1 FL

Subjects 30 51 97a

Tests 61 252 970b

Samples 10013 54781 82450
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this first interpretation of LRP gait heatmaps we used α1β0 to focus on the morphology and characteristics of a 
sensor signal influencing f (x) > 0 with respect to that prediction. To benefit interpretation of LRP examples, 
we have standardised the heatmap colors, where hot hues represented to presence of factors which influenced 
f (x) > 0 , to predict MS disease, whereas cold hues (inversely) contradicted the prediction of MS (i.e. f (x) < 0 , 
or HC). A signed small stabilising term can be added to the denominator (termed ǫ-rule):

The ǫ-rule has been shown to filter noisy heatmaps by absorbing some relevance when the contributions to the 
activation of neuron k are weak or contradictory47,65. For larger values of ǫ only the most prominent explana-
tion factors are retained, yielding a more sparse and less noisy explanation. In accordance with47, αβ-rules were 
applied to convolutional layers and the ǫ-rule ( ǫ = 0.01 ) to dense layers.

In this study, individual LRP heatmaps were produced for epochs in the out-of-sample testing set using the 
iNNvestigate toolbox66. For more information on the theoretical and practical implementation of LRP, we direct 
the reader to47,66,67. Both Keras and PyTorch implementations of the LRP algorithm have been developed and 
can be found at http://​heatm​apping.​org/.

Constructing representative gait signal epochs.  In order to determine the population-wise gait char-
acteristics pertinent of healthy versus mild and moderate MS disease, an average representative epoch was gen-
erated for each subject-group using Dynamic Time Warping Barycenter Averaging (DBA)55. First, Dynamic 
Time Warping (DTW) is a method to measure the similarity (distance) between two sequences in cases where 
the order of elements in the sequences must be considered68. DTW can be used to align the signals such that 
the similarity between their points is minimised, hence generating a “warped” optimal alignment between 
sequences. For instance, gait cycle templates have previously been generated for PwMS using DTW69. DTW 
Barycenter Averaging is a global averaging method for an arbitrary set of DTW sequences, which can be used to 
create a macro-average sequence, in this case, a representative gait epoch. An average gait cycle epoch for each 
subject-group was constructed by applying DBA to a random selection of correctly classified epochs (n = 2000) 
with a high posterior probability of that class (Pr.>0.85), with no more than (k< 40 ) epochs (i.e. < 50 %) con-
tributed from a single 2MWT. A previously trained DCNN model was then applied to each representative epoch 
and relevance scores were attributed using LRP. An implementation of DBA can be found at https://​github.​com/​
fpeti​tjean/​DBA/.

Data availibility
Qualified researchers may request access to individual patient level data through the clinical study data request 
platform (https://​vivli.​org/). Further details on Roche’s criteria for eligible studies are available here (https://​vivli.​
org/​membe​rs/​ourme​mbers/). For further details on Roche’s Global Policy on the Sharing of Clinical Information 
and how to request access to related clinical study documents, see here (https://​www.​roche.​com/​resea​rch_​and_​
devel​opment/​who_​we_​are_​how_​we_​work/​clini​cal_​trials/​our_​commi​tment_​to_​data_​shari​ng.​htm).

Code availability
Deep networks were built using Python v3.7.4. through a Keras framework v2.2.4 with a Tensorflow v1.14 back-
end. Layer-wise Relevance Propagation (LRP) heatmaps were build using the iNNvestigate toolbox: https://​
github.​com/​alber​max/​innve​stiga​te, that has been developed as part of the http://​heatm​apping.​org/ project. 
Visualisations were created using MATLAB v2019b. The Dynamic Time Warping Barycenter Averaging (DBA) 
methodology for creating average gait epochs was implemented using the code described at https://​github.​com/​
fpeti​tjean/​DBA/. Experimental code can be found at: https://​github.​com/​apcre​agh/​MS-​GAIT_​Inter​preta​bleDL.
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