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e Université du Littoral Côte d’Opale, CNRS, Univ. Lille, UMR 8187 – LOG – Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France   
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A B S T R A C T   

Remote sensing product uncertainties for phytoplankton chlorophyll-a (chla) concentration in oligotrophic and 
mesotrophic lakes and reservoirs were characterised across 13 existing algorithms using an in situ dataset of 
water constituent concentrations, inherent optical properties (IOPs) and remote-sensing reflectance spectra 
(Rrs(λ) ) collected from 53 lakes and reservoirs (346 observations; chla concentration < 10 mg m-3, dataset 
median 2.5 mg m-3). Substantial shortcomings in retrieval accuracy were evident with median absolute per-
centage differences (MAPD) > 37% and mean absolute differences (MAD) > 1.82 mg m-3. Using the Hyper-
spectral Imager for the Coastal Ocean (HICO) band configuration improved the accuracies by 10–20% compared 
to the Ocean and Land Colour Instrument (OLCI) configuration. Retrieval uncertainties were attributed to optical 
and biogeochemical properties using machine learning models through SHapley Additive exPlanations (SHAP). 
The chla retrieval uncertainty of most semi-analytical algorithms was primarily determined by phytoplankton 
absorption and composition. Machine learning chla algorithms showed relatively high sensitivity to light ab-
sorption by coloured dissolved organic matter (CDOM) and non-algal pigment particulates (NAP). In contrast, the 
uncertainties of red/near-infrared algorithms, which aim for lower uncertainty in the presence of CDOM and 
NAP, were primarily explained through the total absorption by phytoplankton at 673 nm (aϕ(673)) and variables 
related to backscatter. Based on these uncertainty characterisations we discuss the suitability of the evaluated 
algorithm formulations, and we make recommendations for chla estimation improvements in oligo- and meso-
trophic lakes and reservoirs.   

1. Introduction 

Optical remote sensors are used to observe the major optically active 
water constituent (OAC) concentrations in lakes and reservoirs. The 
phytoplankton pigment chlorophyll-a (chla) is used as a proxy of 
phytoplankton biomass (Gitelson et al., 1993; Mittenzwey et al., 1992) 
and net primary production (Carlson, 1977; Huot et al., 2007; Poikane 
et al., 2010) and thereby to assess the ecological integrity of aquatic 
ecosystems. In order to map chla consistently in time and space, algo-
rithms are needed to relate the observed signal at the sensor to the 
concentration of this pigment. Several studies have shown that multiple 
algorithms in switching and blending (Liu et al., 2021; Neil et al., 2019; 

Schaeffer et al., 2022; Spyrakos et al., 2018) or ensemble schemes 
(Werther et al., 2021) outperform individual algorithms across the 
optical-biogeochemical diversity of natural waters. There is, therefore, a 
common need to express algorithmic uncertainty associated with each 
technique, to inform appropriate algorithm selection and to further their 
development. This requires the assessment of a range of approaches 
against a representative data set. 

Remote-sensing reflectance, Rrs(λ), is determined by inherent optical 
properties (IOPs) of water and OACs (Gordon et al., 1988; Maritorena 
et al., 2002; Mobley, 1999). The estimation of chla from Rrs(λ) can be 
analytically approached by exploiting this relationship (through for-
ward and inverse modelling), or chla can be empirically associated with 
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the variability of the Rrs(λ) signal in one or more wavebands (Schalles, 
2006). With increasing phytoplankton abundance in ocean waters, the 
main observed effect is a shift of the reflectance maximum from blue to 
green wavebands caused by a combination of increased absorption and 
particulate backscattering processes (Morel and Prieur, 1977). These 
empirical observations were translated into the widely used ocean 
colour (OC) algorithms (O’Reilly et al., 1998; O’Reilly and Werdell, 
2019), of which several variations exist for specific sensor configura-
tions and regional effects. Another empirical approach relates chla 
concentration to sun-induced fluorescence of chla associated with 
photosystem II in the region around 685 nm (Gower, 1980; Gupana 
et al., 2021; Neville and Gower, 1977). The height of the fluorescence 
peak above a baseline between 650 and 730 nm is then assumed to 
correlate linearly with chla concentration (Gower et al., 2004). Several 
other empirical and semi-empirical algorithms relate chla concentration 
to variability in the red/near-infrared (NIR) area of the reflectance 
spectrum, which is caused by expression of chla absorption in a narrow 
region around 675 nm. This expression can be offset against NIR 
reflectance near 700 nm, which has weak combined absorption by 
phytoplankton and water (Dall’Olmo et al., 2003; Gilerson et al., 2007, 
2010; Gitelson, 1992; Moses et al., 2009). A further group of empirical 
algorithms were specifically designed for chla estimation in waters with 
high algal biomass and the identification of algae blooms, based on peak 
height methods like the fluorescence line height, exploiting variability 
in the spectral shape of the reflectance peak variation near 700 nm 
(Binding et al., 2013; Matthews et al., 2012). Besides band arithmetic 
approaches, machine learning (ML) algorithms are increasingly trained 
for use in inland waters. ML algorithms are based on non-linear 
regression models and fit within the empirical algorithm category, as 
they are developed with training datasets generated from field and/or 
simulated observations (Bricaud et al., 2007; Hieronymi et al., 2017; 
Pahlevan et al., 2020). 

Contrary to purely empirical algorithm formulations, analytical and 
semi-analytical chla algorithms start from physics-based inversion of 
IOPs from Rrs(λ), such as the absorption by phytoplankton (aϕ(λ)), 
which can be subsequently scaled to chla concentration (Lee et al., 
2002). Most contemporary semi-analytical algorithms (SAA) invert sub- 
surface remote-sensing reflectance 

(
rrs(λ, sr− 1)

)
obtained through con-

version of above-water Rrs(λ). SAA show many variations in the inver-
sion for aϕ(λ). They vary in their (empirical) definition of the aϕ(λ)
spectral shape, the method to calculate the magnitude of aϕ(λ) and the 
defined relationship between rrs(λ) and aϕ(λ) (Werdell et al., 2018). 

If retrieval errors were constant across a wide chla concentration 
range, larger relative errors would occur in the low concentration part of 
the considered range. Several studies have shown that the issue with low 
chla concentration estimates is also more pressing in absolute terms, 
with widely applied empirical algorithms and SAA revealing large un-
certainties in oligo- and mesotrophic systems. For example, Mouw et al. 
(2013) evaluated seven SAAs in Lake Superior (North America), an 
oligotrophic system with OAC absorption dominated by CDOM. The 
evaluated SAA algorithms were unable to effectively retrieve chla con-
centration due to inaccurate aϕ(λ) estimation (r2 < 0.2). On a large in situ 
dataset (>2900 observations), Neil et al. (2019) evaluated 47 chla al-
gorithms, which revealed that the largest retrieval uncertainties for the 
dataset were associated with oligo- and mesotrophic conditions. More 
accurate chla estimation was achieved for Swiss perialpine lakes. 
Odermatt et al. (2010, 2008) demonstrated that for low chla concen-
trations (chla < 5 mg m-3), lake-parameterised empirical and SAA al-
gorithms can provide precise estimates (correlation coefficients between 
0.58 and 0.94). Comparable outcomes for Italian perialpine lakes were 
achieved by (Bresciani et al., 2018; Giardino et al., 2001; Pepe et al., 
2001). 

The results of previous studies show that chla retrieval accuracy in 
oligo- and mesotrophic waters is inconsistent across regions. To improve 
the chla retrieval across different regions, it is thus necessary to char-

acterise the fundamental causes of chla retrieval uncertainty. Uncer-
tainty of chla estimates (hereafter retrieval uncertainty) can originate 
from three sources (Merchant et al., 2017). First, observation uncer-
tainty caused by random and systematic errors associated with the 
physical process of making measurements using optical sensors (IOCCG, 
2019). Second, uncertainty introduced in the calculation of Rrs(λ) from 
the top-of-atmosphere signal measured by a satellite sensor through an 
atmospheric correction (AC) algorithm (Moses et al., 2017). And third, 
algorithmic uncertainty stemming from the empirical and/or physical 
assumptions made and translated into a procedure to retrieve chla 
concentration (Brewin et al., 2015; Salama and Stein, 2009). 

To aid the study of algorithmic uncertainties over oligo- and meso-
trophic systems, we focus on the retrieval of chla concentration from in 
situ measured Rrs(λ). It is known that significant observation un-
certainties are intrinsic to in situ Rrs(λ) (Mélin et al., 2016; Mélin and 
Franz, 2014; Zibordi and Voss, 2014) and chla quantification methods 
(Claustre et al., 2004; Hooker et al., 2005; McKee et al., 2014; Sørensen 
et al., 2007). It is, however, common practice to validate chla retrieval 
algorithms against in situ reference measurements whose observation 
uncertainty is considered low in comparison to satellite-derived esti-
mates (Sørensen et al., 2007). Yet, these uncertainties are rarely speci-
fied in large inland and coastal water in situ datasets, and clarification of 
their origin is not an established practice for algorithm development and 
validation (McKinna et al., 2021). 

Observation and algorithmic uncertainty sources are commonly 
unknown, thus additional information that can be attributed to the 
retrieval uncertainty is necessary. The accuracy of chla algorithms can 
be assessed through calculation of the residual value, which is the dif-
ference between an algorithm estimate and a measured in situ reference 
value. The frequency of the obtained residual values forms a residual 
value distribution (RVD). To improve our understanding of the under-
lying sources of algorithmic uncertainty, an algorithm’s RVD must first 
be attributed to measurement conditions or the presence of specific 
substances which may hinder the intended function of the algorithm. 
The measurement conditions and substances can be represented by a set 
of explanatory variables that were co-measured with Rrs(λ) and chla 
concentration. Example explanatory variables are IOPs, OACs other than 
chla or spectral band ratios. 

To enable characterisations of retrieval uncertainty, we build ML 
regression models (herein uncertainty models) through a set of explan-
atory variables. The constructed uncertainty models quantify the 
retrieval uncertainty from a chla algorithm expressed through the RVD. 
Subsequently, we investigate the impact of the explanatory variables on 
an uncertainty model to characterise algorithmic uncertainty through 
specific observation conditions. For this purpose, we use the SHapley 
Additive exPlanations (SHAP) procedure (Lundberg and Lee, 2017; 
Lundberg et al., 2020, 2018). Through SHAP we aim to identify uncer-
tainty drivers of 13 chla algorithms tested against a dataset of 53 
waterbodies. 

In summary, the research objectives of this study are to: 1) determine 
sensitivities between empirical and semi-analytical algorithms when 
applied to the varying spectral resolutions of the Hyperspectral Imager 
for the Coastal Ocean (HICO) and Ocean and Land Colour Instrument 
(OLCI), 2) characterise the retrieval uncertainties of the tested algo-
rithms and ultimately, 3) reveal if any of the evaluated algorithms are 
sufficiently suitable for application to specific observation conditions 
under the presence of CDOM and NAP absorption across oligo- and 
mesotrophic lakes and reservoirs. 

2. Data 

A dataset comprised of oligo- and mesotrophic lakes and reservoirs 
was compiled from three data sources: (i) U.S. Wisconsin Department of 
Natural Resources (DNR), (ii) the global LIMNADES database (Lake Bio- 
optical Measurements and Matchup Data for Remote Sensing (https://l 
imnades.stir.ac.uk/)) and (iii) and an internal dataset from the 
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University of Stirling (UoStirling) (Table 1). 
Only samples including information on Rrs(λ), chla concentration, 

total suspended matter (TSM) dry weight, absorption by CDOM at 443 
nm (aCDOM(443) ) and water transparency (ZSD) were selected, with chla 
concentration ≤ 10 mg m-3 and TSM dry weight ≤ 4 g m-3. We limit this 
study to oligo- and mesotrophic lakes and reservoirs whose chla con-
centration does not exceed 10 mg m-3 because up to this threshold chla 
estimation uncertainties were found to vary and increase most sub-
stantially (Gilerson et al., 2010; Mouw et al., 2013; Neil et al., 2019; Shi 
et al., 2013; Smith et al., 2018). Across the U.S. state of Wisconsin in situ 
measurements were made at 18 lakes between spring 2014 and autumn 
2016 (n = 46). The dataset was used in recently conducted algorithm 
development and inter-comparison studies (Pahlevan et al., 2021b, 
2021a, 2020). Collection methods are detailed in Appendix A. The 
datasets and methods used to measure the water constituent parameters 
and IOPs in LIMNADES are described in Spyrakos et al. (2018) and 
publications associated with individually contributed datasets (see ref-
erences in Table 1). IOP measurements were not available for all ob-
servations in this study and often only at 443 and 673 nm. Rrs(λ) was 
measured just above the water surface at varying spectral resolutions, 
and provided at a common 1 nm resolution, interpolated from the 
contributed Rrs(λ) rather than individual radiometric components. 
Further in situ samples were collected in seven lakes in the United 

Kingdom, Sweden and Switzerland between 2013 and 2016 (Table 1). A 
detailed description of the measurements is provided in Appendix B. 
Rrs(λ) from the Wisconsin DNR and UoStirling datasets were interpo-
lated to 1 nm spectral resolution to match the LIMNADES measure-
ments. All three datasets were spectrally convolved to the band 
configurations of the hyperspectral HICO and multispectral OLCI sen-
sors. Each chla algorithm tested in this study was used with the OLCI 
band configuration. HICO was included to test algorithms designed for 
hyperspectral configurations for the influence of the additionally 
available bands on both retrieval performance and associated uncer-
tainty. The resulting dataset consisted of 346 observations from lakes 
and reservoirs located in the boreal and tundra zones of North America, 
Canada, and Europe. In addition, moderate-altitude and perialpine lakes 
(Italy and Switzerland) and clear water reservoirs of Spain and South 
Africa were included (Fig. 1). 

3. Methods 

The analysis of algorithm retrieval uncertainty consists of three parts 
(Fig. 2). First, explanatory variables are selected to construct an uncer-
tainty model. Second, chla concentration is estimated for the collated 
dataset and the RVD is derived per algorithm. The uncertainty model is 
then fit to the RVD of the algorithms to quantify the retrieval uncer-
tainty. Finally, the uncertainty model outcome is forwarded to SHAP to 
explain the variable impact on the model and to identify drivers of the 
quantified retrieval uncertainty. 

3.1. Explanatory variables and uncertainty model definition 

The initial set of explanatory variables consisted of the following 
measurements and indices: aCDOM(443), aNAP(443), aϕ(443) and 
aϕ (673), Rrs(400)

Rrs(673) , TSM and ISM (the inorganic fraction of suspended 
matter), chla

TSM and ZSD. This set of explanatory variables was based on 89 
out of 346 dataset records for which all the variables were available. 
These components of the dataset characterise the relative magnitude of 
IOPs in a sample, and partially its biogeochemical composition, as well 
as how biological components could be acclimated to ambient light 
conditions. Furthermore, they relate to water column clarity and 
phytoplankton variability. 

ML in aquatic remote sensing is conventionally used to build a pre-
dictive model to estimate some quantity from Rrs(λ) such as phyto-
plankton biomass (Pahlevan et al., 2020; Werther et al., 2021). Here we 
used a non-linear RandomForest (RF) ML approach to model expected 
complex RVDs. Given the explanatory variables as inputs we fit a unique 
RF to the RVD of each chla algorithm. We then investigated the RVD 
quantification by the RF and how the explanatory variables, used as the 
input, impacted the RF model. Therefore, RFs in this study were used as 
regression models that relate the explanatory variables to the retrieval 
uncertainty of each chla algorithm. 

A RF model is based on decision trees (DT), which split a variable 
space consisting of c variables c1, c2,⋯, cn into j distinct, unique regions 
R1,R2,⋯,Rj (Breiman, 2001). DTs are constructed from a sample drawn 
with replacement (also known as bagging) (Breiman, 1996). A RF ex-
poses several hyper-parameters, most notably the number and 
maximum depth of the constructed trees, which were tuned as they 
guide the model construction procedure (Bergstra et al., 2012). The aim 
was to fit a chla algorithm RVD as accurately as possible through a RF. 
Since the RFs are not used for prediction, the fitting was optimised 
through v-fold cross validation (where v was optimised for each RF 
model) and a search over a large pre-defined grid of the hyper- 
parameters. Appendix C features a comparison of ML approaches for 
the uncertainty modelling task. 

To reduce multicollinearity between explanatory variables (e.g., 
aϕ(443) and aϕ(673)), the initial set of explanatory variables was filtered 
using the variance inflation factor (VIF). This procedure regressed each 

Table 1 
Datasets and their waterbodies included in this study.  

Dataset 
name 

Inland water system 
name (n = 53) 

Number of 
observations (n 
= 346) 

Prior data use 

U.S. 
Wisconsin 
DNR 

Big Saint Germain 
Lake, Big Sand Lake, 
Butternut Lake, Fence 
Lake, Geneva Lake, 
Green Lake, Lac 
Courte Oreilles, Lac 
Vieux Desert, Lake 
Chippewa, Lake 
Mendota, Lake 
Wissota, Metonga 
Lake, Pelican Lake, 
Rainbow Flowage, 
Rock Lake, Round 
Lake, Shawano Lake, 
Trout Lake 

46 (Pahlevan et al., 
2021b, 2021a, 2020) 
and see Appendix A 
Description of 
Wisconsin DNR in situ 
data 

LIMNADES Branched Oak Lake, 
Crescent Lake, Cuerda 
del Pozo, Diamond 
Pond, East Twin Lake, 
Lake Erie, Ewill Lake, 
Fivemile Pond, Forest 
Lake, Fresmond, Lake 
Garda, Ginger Cove, 
Goose Pond, Granite 
Lake, Great Salt Lake, 
Groton Pond, Iznajar 
Reservoir, Loskop 
Reservoir, Lake 
Maggiore, Lake 
Mantova, Lake 
Okoboji, Lake 
Ontario, Lake 
Paeijaenne, Lake 
Peipsi, Lake 
Pyhäjärvi, Lake 
Trasimeno, Lake 
Vesijärvi, Lake 
Winnipeg 

276 (Binding et al., 2013, 
2011, 2010, 2008; 
Bresciani et al., 2011; 
Giardino et al., 2015, 
2014a, 2014b, 2005; 
Gitelson et al., 2009; 
Guanter et al., 2010; 
Gurlin et al., 2011; 
Kallio et al., 2015; 
Kutser et al., 2013; 
Manzo et al., 2015; 
Matthews, 2014; 
Matthews and 
Bernard, 2013; Ruiz- 
Verdú et al., 2008, 
2005; Schalles, 2006) 

University 
of Stirling 

Lake Biel, Coniston 
Water, Derwent 
Water, Lake Geneva, 
Loch Lomond, Loch 
Ness, Lake Vänern 

24 (Aulló-Maestro, 2019)  
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Fig. 1. Locations of the measurement sites of this study. n is the number of observations taken in the indicated area. See Table 1 for details about the dataset.  

Fig. 2. Uncertainty analysis scheme to characterise the retrieval uncertainties of the tested chla algorithms.  
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Table 2 
Chlorophyll-a algorithms used in this study.  

Algorithm 
number 

Algorithm 
abbreviation 

Equation k l m n o Reference(s) 

I OC3 -opt Chla OC3 = 10(k+lX+mX2+nX3+oX4)

X = log10

(
max[Rrs(443),Rrs(490)]

Rrs(560)

)
0.088171 − 0.65440 8.56389 17.80220 5.89746 (O’Reilly et al., 1998; 

O’Reilly and Werdell, 
2019) 

II OC4 -opt Chla OC4 = 10(k+lX+mX2+nX3+oX4)

X = log10

(
max[Rrs(443),Rrs(490),Rrs(510) ]

Rrs(560)

)
0.136257 − 1.084227 9.14503 4.79545 − 46.36124 

III OC6 -opt Chla OC6 = 10(k+lX+mX2+nX3+oX4)

X = log10

(
max[Rrs(412),Rrs(443),Rrs(490),Rrs(510) ]

mean[Rrs(560)/Rrs(665)]

)
0.48767 − 1.84059 − 0.27403 7.55868 − 3.59798 

IV G11 -opt Chla G11 = kX2 + lX + m

X =
Rrs(708)
Rrs(665)

12.0259 − 4.9116 1.2115   (Gurlin et al., 2011) 

V FLH 
FLH = Rrs(681) −

(
Rrs(708)+ (Rrs(665) − Rrs(708))×

(
(708 − 681)
(708 − 665)

))
(Gower et al., 1999) 

VI MPH Chla MPH 0 = 5.24 × 109MPH4
0 − 1.95 × 108MPH3

0 + 2.46 × 106MPH2
0 + 4.02 × 103MPH0 + 1.97

Chla MPH 1 = 22.44 × exp(35.79 MPH1)

(Matthews et al., 2012; 
Matthews and Odermatt, 
2015) 

VII MDN HICO 
Chlae MDN = μi(Rrs) : i = argmax σ(Rrs)

(Pahlevan et al., 2021b, 
2020) VIII MDN OLCI 

IX QAAv6 (443) 
aϕ(λ) = a(λ) − adg(λ) − aw(λ)

(Lee et al., 2002) 
QAAv6 (673) 

X GSM HICO 

aϕ(λ) = chla × k

aCDOM(λ) = aCDOM(λ0)exp( − l(λ − λ0) )

bbp(λ) = bbp(λ0)

(
λ
λ0

)m 

0.029 (443 
nm) and 0.018 
(673 nm) 

0.017 1.0337   (Garver and Siegel, 
1997; Maritorena et al., 
2002) 

XI GSM OLCI      

XII 3SAA Chla_3SAA = qi/(q2 + q3 + q4),

where i = 2, 3 and 4 represent pico-, nano- and microplankton absorption, respectively      
(Jamet et al., 2012; Jorge 
et al., 2021; Loisel et al., 
2018; Loisel and 
Stramski, 2000) 

XIII Gons05 
Chla Gons05 =

[(
Rrs(708)
Rrs(665)

)

× (0.7 + bb) − 0.4 − bk
b

]/

l

bb =
0.6 × aw(778) × Rrs(778)
0.082 − 0.6 × Rrs(778)

0.016 1.063    (Gons et al., 2008, 2005, 
2002)  
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variable against all others, with the VIF calculated as: 

VIF =
1

1 − r2, (1)  

where r2 is the coefficient of determination. A VIF value > 10 for an 
explanatory variable indicates high multicollinearity, in which case the 
variable that resulted in the strongest decrease of VIF was excluded 
(Miles, 2014). The number of variables excluded/kept depends on the 
considered dataset and the explanatory variables which ultimately 
determine the degree of multicollinearity. In practice other variables 
such as the spectral slopes of IOPs or other spectral ratios than Rrs(400)

Rrs(673) can 
be used as explanatory variables. Variables should provide new 
knowledge about the observation conditions not already covered and 
must be sufficiently de-correlated to pass the VIF selection. 

3.2. Chlorophyll-a retrieval 

A complete list of the chla algorithms evaluated in this study is 
provided in Table 2. We optimised the coefficients of the algorithms 
where possible (denoted as -opt) with the present dataset (denoted as k, 
l, m, n, o in Table 2). Several red/NIR approaches exist that use the 665 
and 708 nm bands (e.g., Gilerson et al., 2010; Mishra and Mishra, 2012; 
Moses et al., 2009). For this study we selected the Gons05, G11 and MPH 
algorithms as they are commonly used over inland waters. Where pre-
vious studies already suggest merging of approaches (Schaeffer et al., 
2022; Smith et al., 2018), we have only included their component al-
gorithms to enable attribution of uncertainty to algorithm-specific 
causes. 

The aϕ(443) and aϕ(673) estimates of the Quasi-Analytical Algo-
rithm Version 6 (QAAv6), Garver-Siegel-Maritorena (GSM) and the 3- 
Step Semi-Analytical Algorithm (3SAA) algorithms were scaled to chla 
concentration using the relationship by Bricaud et al. (1998): 

chla =

(
aϕ(λ)

v

)1
w

, (2)  

where v and w were estimated from the dataset of this study through 
non-linear least squares fitting. SAA performance highly depends on 
known parameter values. The slope of CDOM absorption S (0.017 m-1) 
was estimated from our dataset using the method described in Stedmon 
et al. (2000). The mass-specific chla absorption coefficients a*

ϕ(443) and 
a*

ϕ(673) were estimated from observations where aϕ(λ) was available (n 

Table 3 
aϕ(λ) to chla concentration scaling coefficients used in Eq. (2) for the QAAv6, 
GSM and 3SAA algorithms derived from the dataset of this study.  

Algorithm number Algorithm configuration v w 

IX QAAv6 (443)  0.0150  2.1117 
IX QAAv6 (673)  0.0033  2.8459 
X GSM HICO (443)  0.0015  3.4482 
XII 3SAA (443)  0.0027  3.0552  

Fig. 3. SHapley Additive exPlanations (SHAP) procedure. (A) Conceptual difference between standard black box ML model estimates and SHAP white box expla-
nations. (B) Retrieval uncertainty is quantified through uncertainty models. The model is then provided to the SHAP explainer to calculate SHAP values. SHAP values 
provide the impact an explanatory variable had on an uncertainty model, enable to draw variable distributions and to investigate explanatory variable relationships. 
These drivers of uncertainty are used to characterise retrieval uncertainties. 
Adapted from Lundberg et al. (2020) 
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= 89), as 0.029 m2g-1 and 0.018 m2g-1, respectively. Table 3 lists the 
scaling coefficients used in Eq. (2) for the SAA algorithms. 

In contrast to the empirical algorithms, as well as to the Gons05 al-
gorithm, the QAAv6, GSM and 3SAA algorithms were not primarily 
developed to assess chla concentration but IOPs such as aϕ(λ). These 
three algorithms have been thoroughly assessed over a large range of 
predominantly ocean and coastal water datasets. The latest IOP (not 
chla) retrieval exercise of the QAAv6, GSM and 3SAA algorithms was 

performed over 1020 observations and showed MAPD values of 28%, 
40% and 31%, respectively (Jorge et al., 2021). Since chla concentration 
retrieval via SAA depends on aϕ(λ), for these three algorithms we also 
display the SAA aϕ(λ) estimates versus the respective in situ reference 
aϕ(λ) values. For the uncertainty analysis we use the GSM and 3SAA 
standard chla outputs as described in the original publications. 

The Mixture Density Networks (MDNs) and Maximum Peak Height 
(MPH) algorithms were only applied to a subset of the dataset. Part of 

Fig. 4. Parameter distributions of the dataset. (A) chla, (B) TSM, (C) aCDOM(443) and (D) ZSD. Denoted are the median (x̂), mean (μ) and standard deviation (σ) of the 
respective parameter. 

Fig. 5. Ternary diagrams of absorption 
(
aϕ(λ), aNAP(λ) and aCDOM(λ)

)
for OLCI bands. Measurements where ap(λ) < 0.01 were excluded.  
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the dataset used in the training of the MDNs overlaps with the Wisconsin 
DNR and LIMNADES datasets of this study. We thus removed over-
lapping observations from this study as the evaluation would otherwise 
not be independent. After removal, 246/346 (71%) observations 
remained for application of the MDNs. MPH requires Rrs(885), however 
for most observations in the dataset the wavelength range is restricted to 
800 nm, hence limiting the evaluation of the MPH to 91 out of 346 

observations. 

3.3. Uncertainty characterisation 

To overcome the drawbacks of standard variable importance mea-
sures (Altmann et al., 2010; Grömping, 2009; Strobl et al., 2008) we use 
the SHAP procedure (Lundberg and Lee, 2016; Lundberg et al., 2020, 

Fig. 6. Rrs(λ) of the dataset. (A) Hyperspectral HICO resolution. (B) Multispectral OLCI resolution. Solid orange lines depict mean +- standard deviation and black 
vertical lines the band positions of the sensors. 

Fig. 7. Relationships of chla concentration to other dataset parameters. Chla versus (A) aϕ(443), (B) aϕ(673), (C) TSM, (D) ZSD.  
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2017). Technical details about SHAP and standard variable importance 
measures are provided in Appendix D. 

We quantify the RVD of a chla algorithm with an uncertainty model 
f(c*), whose input is an explanatory variable vector c = c* (Fig. 3). In 
Shapley game theory, S ⊆ n = {1, ..., n} is an ordered subset that consists 
of |S| variables (the coalition). Herein, a contribution function v(S) maps 
subsets of variables to their real number, which is defined as the mar-
ginal contribution of an ordered subset of variables to the model’s es-
timate. A Shapley value ϕc(v) is the contribution that an explanatory 
variable c provides to the model: 

ϕc(v) = ϕc =
∑

S⊆n\{c}

|S|!(n − |S| − 1 )!
n!

(v(S ∪ c) − v(S) ), c = 1,⋯, n. (3) 

In Eq. (3), the ordered subsets (coalitions) of variables are formed 
one at a time. The marginal contribution of each variable to the 

uncertainty model towards the estimation of the output value is calcu-
lated through (v(S ∪ c) − v(S)). Then, for each variable, the average of 
this contribution over all orderings of all possible ordered subsets is 
computed. This yields the weighted mean over the uniquely ordered 
subsets. The sign of ϕc provides information about an explanatory var-
iable’s effect on the output. A positive value indicates that a variable c 
increases the model’s estimated output value for an input observation. 
Conversely, a negative value indicates a decrease of the output value 
(see white box in Fig. 3A). The values of a variable may thus be related to 
both low and high residual values. The magnitude of ϕc indicates the 
impact a variable has on a model. Variable candidates can be identified 
by ranking the variables in order of impact on the model. 

3.4. Performance metrics 

Chla algorithm performance was expressed in terms of standard 

Fig. 8. Chla concentration estimates of the OC -opt (I – III), G11 -opt (IV), FLH (V) and MPH (VI) chla algorithms. Black solid lines represent regression lines with 
95% confidence intervals. 
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Fig. 9. Chla concentration estimates of the MDN (VII - VIII), QAAv6 (IX), GSM (X - XI), 3SAA (XII) and Gons05 (XIII) algorithms. (A, B) MDN HICO and OLCI. (C) 
QAAv6 (443). Scaling of aϕ(443) to chla concentration via Eq. (2) with dataset coefficients (see Table 3 for the coefficients). (D) QAAv6 (673). Scaling of aϕ(673) to 
chla concentration with dataset coefficients. (E) GSM HICO, (F) GSM OLCI, (G) 3SAA and (H) Gons05 standard chla concentration estimates. 
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metrics such as bias, mean absolute difference (MAD), median absolute 
percentage difference (MAPD) and root mean square difference (RMSD) 
between the algorithm estimates (E) and the in situ chla observations (O) 
(Morley et al., 2018; Pahlevan et al., 2020; Seegers et al., 2018). We also 
report the slope of the regression to infer whether an algorithm sys-
tematically over- or underestimated chla or aϕ(λ) over the entire range 
of values. The MAD, MdAD (median absolute difference, no percentage) 
and RMSD metrics were used to measure the RVD fit accuracy of the RFs. 
All metrics were first calculated in logarithmic space and then trans-
formed back to linear scale for display following recommended practice 

by Seegers et al. (2018). Linear scale enables to directly compare the 
chla performance metrics to the derived RVDs of the algorithms and fit 
accuracy of a RF uncertainty model. 

4. Results 

4.1. Optical and biogeochemical properties of the dataset 

In situ data distributions show tailed distributions of chla (limited to 
10 mg m-3) with a median of 2.5 mg m-3 and standard deviation (std. 

Table 4 
Performance metrics of the chla algorithms applied to the full dataset (n = 346). A retrieval failure means that no chla concentration was returned for an observation.  

Algorithm number Algorithm configuration Retrieval failures Slope Bias RMSD MAD MAPD 

I OC3 -opt 0  0.37 1  1.89  1.97  39.45% 
II OC4 -opt 0  0.36 1  1.90  1.96  38.52% 
III OC6 -opt 0  0.36 1  1.90  1.97  39.56% 
IV G11 -opt 0  0.31 1.25  1.97  1.95  36.88% 
V FLH 0  0.13 1.32  2.27  2.45  48.62% 
VI MPH 0  0.06 0.76  2.19  2.56  52.45% 
VII MDN HICO 0  0.71 1.61  2.23  2.27  53.29% 
VIII MDN OLCI 0  0.73 1.87  2.50  2.73  63.41% 
IX QAAv6 (aϕ(443) to chla) 41  0.33 1.28  1.97  1.98  40.28% 

QAAv6 (aϕ(673) to chla) 16  0.20 1.33  2.11  2.20  48.42% 
X GSM HICO 0  0.55 1.36  2.55  2.74  53.96% 
XI GSM OLCI 0  0.59 1.77  2.75  3.09  62.16% 
XII 3SAA 0  0.41 2.71  2.95  3.55  73.54% 
XIII Gons05 10  0.81 1.27  2.62  2.76  71.30%  

Fig. 10. aϕ(443) and aϕ(673) estimates (green and yellow, respectively) of (A) QAAv6 (IX), (B) 3SAA (XII), (C, D) GSM HICO and OLCI algorithms (X - XI).  
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dev) of 2.57 mg m-3 (Fig. 4A). TSM concentrations (Fig. 4B) covered a 
broad range (limited to 4 g m-3) with a median of 1.87 g m-3 (0.96 g m-3 

std. dev). aCDOM(443) was distributed around a median of 0.41 m-1 (0.71 
m-1 std. dev) (Fig. 4C), while ZSD had a median of 3.9 m (2.65 m std. dev) 
(Fig. 4D). Absorption contributions of aϕ(λ), aNAP(λ) and aCDOM(λ)
attribute the highest fraction of absorption to aCDOM(λ) and aNAP(λ) from 
400 through 560 nm (Fig. 5). aϕ(λ) only contributed about 20% to the 
total non-water absorption budget but was still the major absorption 
fraction in red OLCI bands. Rrs(λ) of the band configurations of HICO 
and OLCI are displayed in Fig. 6, with a mean reflectance magnitude 
<0.01 sr− 1 (Fig. 6A, B). Reflectance peaks in the red area of the spectrum 
were minor at 685 nm (fluorescence domain) and at longer wavebands 
(absorption and scattering domain). The relationships of aϕ(443) and 
aϕ(673) to chla concentration for this dataset were weak - moderate 
(Fig. 7A, B). Low TSM concentrations were weakly associated with low 
chla concentrations (Fig. 7C), whereas higher TSM concentrations did 
not exhibit a linear relationship to increasing chla concentration. Simi-
larly, chla concentration was not correlated to ZSD below <4–5 m. A 
clearer trend emerged between records with low chla concentration and 
increased transparency at ZSD > 6 m (Fig. 7D). 

4.2. Chlorophyll-a algorithm performance 

Chla concentration was estimated from all records in the dataset 
using the algorithms listed in Table 2 (Figs. 8, 9). Performance metrics 
for each chla algorithm are detailed in Table 4. In addition, aϕ(443) and 
aϕ(673) values produced by the QAAv6, GSM and 3SAA algorithms are 
compared against aϕ(λ) in situ reference observations (Fig. 10). 

The GSM HICO and 3SAA algorithms produced a chla standard es-
timate via their non-linear optimisation routine. For these algorithms we 
also provide the results of scaling estimated aϕ(443) to chla concen-
tration. This enables a direct comparison to the aϕ(443) estimates of the 
QAAv6 algorithm. 

Chla retrieval through the OC3 -opt, OC4 -opt and OC6 -opt band 
ratios was only partially accurate across the considered range (MAD 
1.97 mg m-3, MAPD > 38%). The OC algorithms overestimated chla up 
until 5 mg m-3 and consistently underestimated it thereafter. G11 -opt 
slightly outperformed the OC algorithms (MAD 1.95 mg m-3 and MAPD 
of 36.88%) through more accurate retrieval > 5 mg m-3, but like the OC 
algorithms also overestimated chla in the range below 5 mg m-3. Similar 
to G11 -opt, Gons05 chla estimates started to become more accurate 
towards higher chla concentrations (>5 mg m-3). The FLH algorithm was 
unable to detect a fluorescence signal for most observations in the 
dataset which resulted in a poor relationship to chla. Like the FLH, the 
MPH algorithm lacked sensitivity over the chla range considered here 
and was unable to reproduce chla concentrations > 3 mg m-3. The MDN 
HICO configuration outperformed its MDN OLCI counterpart by 10–20% 
(depending on the considered metric). Until 5 mg m-3 of chla, both MDN 
HICO and OLCI over- or underestimated chla concentration and then 
consistently overestimated it for chla higher than 5 mg m-3 by 1 – 3 mg 
m-3. 

The QAAv6 algorithm yielded aϕ(443) and aϕ(673) (hereafter 
QAAv6 (443) and QAAv6 (673)) which included 41 and 16 negative 

aϕ(443) and aϕ(673) values, respectively. The negative values could not 
be used in the power law function of Eq. (2) and were therefore excluded 
from the algorithm performance metrics but kept in the aϕ(λ) compar-
ison (Fig. 10). For the 305 remaining observations, QAAv6 (443) esti-
mated chla similarly to the OC -opt and G11 -opt algorithms. Like the 
MDNs, the GSM HICO configuration outperformed the OLCI configura-
tion by approximately 10%, but the algorithm was biased towards 
overestimation of chla concentration. The retrieval differences of the 
multispectral 3SAA algorithm were higher than the ones of the hyper-
spectral GSM HICO configuration (MAD 3.55 mg m-3 and 2.74 mg m-3, 
respectively). For the QAAv6, GSM and 3SAA algorithms large retrieval 
differences (MAPD > 53%) were found in the comparison of algorithm 
estimated aϕ(λ) versus in situ aϕ(λ) (Fig. 10). 

4.3. Uncertainty quantification 

Uncertainty budgets were derived for all algorithms with some ex-
ceptions. OC3 -opt was excluded because of nearly identical perfor-
mance and a similar RVD as OC4 -opt (not shown). FLH and MPH 
algorithm estimates had very low retrieval sensitivity over the tested 
chla concentration range and were therefore omitted. For the remaining 
algorithm set, the configuration with the lowest retrieval difference in 
terms of MAD and MAPD was selected. The MDN HICO compared 
favourably to its OLCI version, and QAAv6 (443) was more precise than 
QAAv6 (673). The Gons05 algorithm was not optimised and was thus 
included in its original form. For the GSM algorithms, we used the 
default GSM HICO chla estimates as they were more accurate than the 
OLCI configuration. For 3SAA, we used the chla concentrations resulting 
from addition of the three phytoplankton size classes. 

The VIFs calculated for ISM and TSM (11.75 and 7.64), aϕ(443)
(6.74) and aϕ(673)(5.43) were higher than any of the other explanatory 
variables (not shown). The exclusion of ISM and aϕ(443) reduced the 
overall VIFs of the variables the most. Thus, seven explanatory variables 
remained that were used as the input for the uncertainty models. Results 
of the RF retrieval uncertainty quantification are depicted in Table 5. 
The RVDs of GSM HICO, 3SAA and Gons05 contain high residual values 
(see Fig. 11F, G, H). Retrieval quantification accuracies of the uncer-
tainty models are thus to be viewed with respect to the RVD of each 
algorithm. For example, the MdAD of 1.56 mg m-3 for the GSM HICO 
uncertainty model can be considered accurate given the large residual 
value range (maximum 55.61 mg m-3 overestimate). Further, the 
Gons05 algorithm overestimated 11 observations by > 9 mg m-3, 
resulting in the least accurate uncertainty model with a MdAD of 2.17 
mg m-3 (see Fig. 11H). The RVDs of the OC4 -opt, OC6 -opt, G11 -opt, 
MDN HICO and OLCI and QAAv6 (443) algorithms ranged from − 8 mg 
m-3 to 6 mg m-3. Since the range of their RVDs is smaller than from the 
GSM HICO, 3SAA and Gons05 algorithms, the uncertainty models were 
able to quantify them with higher precision (e.g., OC4 MdAD of 0.50 mg 
m-3, MAD of 0.79 mg m-3 and RMSE of 1.08 mg m-3). 

4.4. Uncertainty characterisation 

SHAP values were calculated to assess the explanatory power of each 
explanatory variable within each RF uncertainty model (Fig. 12). The 
SHAP value magnitudes vary between chla algorithms because the 
associated RVDs of the chla algorithms are unique. An explanatory 
variable had impact on an uncertainty model if it was used in the esti-
mation of an algorithm’s RVD. Consequently, the variable impact is 
expressed by the corresponding SHAP values as either smaller or greater 
than 0. We examined each explanatory variable to identify drivers of 
uncertainty of the tested algorithms. Except for MDN HICO and Gons05, 
the chla/TSM ratio was an impactful driver in all algorithms (Fig. 13). 
Likewise, aϕ(673) was a highly impactful model variable for most 
models except for OC4 -opt, MDN HICO and Gons05. TSM was relevant 
for the OC4 -opt, OC6 -opt, G11 -opt, QAAv6 (443), GSM HICO, 3SAA 

Table 5 
RF uncertainty quantification accuracies of the RVD from each chla retrieval 
algorithm included in the uncertainty analysis.  

Chla algorithms MdAD [mg m-3] MAD [mg m-3] RMSE [mg m-3] 

OC4 -opt  0.50  0.79  1.08 
OC6 -opt  0.58  0.84  1.13 
G11 -opt  0.68  1.05  1.51 
MDN HICO  0.64  0.96  1.26 
QAAv6 (443)  0.62  0.96  1.39 
GSM HICO  1.56  3.08  6.02 
3SAA  0.92  1.56  2.42 
Gons05  2.17  3.47  4.84  
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and Gons05 uncertainty models. Especially for the OC4 -opt, G11 -opt 
and QAAv6 (443) algorithms, the only variables with a marked influ-
ence were the chla/TSM ratio, TSM and aϕ(673). In contrast, in the MDN 
uncertainty model aNAP(443) had significant impact. aNAP(443) had a 
marginal effect on the OC6 -opt uncertainty model and was not effective 
in the OC4 -opt and G11 -opt models. In contrast to the other variables of 
the OC6 -opt uncertainty model, high values of aNAP(443) aCDOM(443)
decreased the model output variables. The other explanatory variables 
did not have a demonstrable effect on the OC6 -opt. aCDOM(443) values 
also contributed to explain retrieval uncertainty of the MDN, with low 
absorption values having the largest impact on the model. Otherwise, 
aCDOM(443) was only an impactful predictor for the QAAv6 (443), 3SAA, 
and Gons05 uncertainty models. ZSD values were the least impactful 
considering the variable impact order across all models. Yet, for the 

uncertainty models of GSM HICO and Gons05, ZSD was a relevant 
variable. 

For GSM HICO low ZSD values increased the model output, whereas 
medium to high values decreased it. The Rrs(400)

Rrs(673) ratio was unimpactful 
for most models, except for GSM HICO, 3SAA and Gons05. For GSM 
HICO, low values of the Rrs(400)

Rrs(673) ratio, i.e., where Rrs(673) > Rrs(400),
reduced the magnitude output, whereas high values, i.e., where 
Rrs(400) > Rrs(673) increased the model output. For the 3SAA model, 
the ratio Rrs(400)

Rrs(673) was highly impactful together with other variables 
related to phytoplankton absorption variability and composition, such 
as aϕ(673) and the chla/TSM ratio. The impact of aCDOM(443),
aNAP(443) and ZSD on the respective 3SAA uncertainty model was low, 
which relates to the 3SAA algorithm formulation. The combined 

Fig. 11. Residual value distributions (RVDs) of the chla algorithms for the observations included in the uncertainty analysis (n = 89). For GSM HICO, 3SAA and 
Gons05 the RVDs were limited to 10 mg m-3 to facilitate a visual comparison of the distributions. The complete RVD of these three algorithms is displayed as an inset 
(F, G, H) and used in the uncertainty models. 
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absorption of CDOM and NAP 
(
adg(λ)

)
was estimated in the first step of 

the algorithm and after removal of non-water absorption (anw(λ) ) the 
algorithm retrieved aϕ(λ). Hence, most of the influence of aCDOM(443)
and aNAP(443) was incorporated by the algorithm formulation and the 
retrieval uncertainty of the algorithm was expectedly not related to 
these IOPs. aCDOM(443) and aNAP(443) were also irrelevant for the GSM 
HICO uncertainty model. The two SAA algorithms 3SAA and GSM HICO 
accounted for aCDOM(443) and aNAP(443) in their inversion procedure, 
but their retrieval uncertainty was driven by other factors such as 
phytoplankton absorption in red and variability (see Fig. 13). For 
Gons05, ZSD and TSM had the strongest model impact. The values of ZSD 
and TSM impacted the model in contrary directions: whereas high ZSD 
values (i.e., higher water transparency) increased the model’s output 
values, high TSM values (i.e., lower water transparency) decreased 
them. Contrary to the other models, especially G11 -opt, aϕ(673) and 
chla/TSM were the least impactful variables. 

5. Discussion 

While it is widely known that atmospheric disturbance on the water- 
leaving radiance and its correction contribute a large part to product 
uncertainty (Pahlevan et al., 2021a; Warren et al., 2019), it is equally 
important to understand algorithmic uncertainty arising from the 
translation of above-surface reflectance to the concentration of target 
substances. The approach presented in this study achieves this analysis 
using a highly heterogeneous collection of in situ observations and could 
be extended to inspect end-to-end product uncertainty (including AC 
effects) by starting from satellite observations. 

The RF uncertainty models quantified the total uncertainty budget of 
a chla algorithm and did not distinguish between observational and 
algorithmic sources of uncertainty. Although most data used in this 
study have been previously published, an unknown degree of observa-
tional uncertainty is likely part of the in situ reference measurements. 
This may also include biases between datasets due to use of similar but 
not identical methodology. The observed systematic and large chla 
retrieval uncertainties by the algorithms imply that the primary cause of 
retrieval uncertainty were the algorithmic formulations. The informa-
tion represented by the explanatory variables was accurately used by the 
RF models to quantify chla algorithm uncertainties (see Table 5), 

thereby demonstrating that retrieval uncertainties can be modelled 
through other in situ observations of the same dataset. We use the results 
of our uncertainty characterisation to discuss the algorithmic formula-
tions tested in this study and highlight new findings about their retrieval 
uncertainty. 

5.1. Blue/green algorithms 

The reflectance shape and magnitude in the blue-green part of the 
spectrum in the evaluated dataset was largely influenced by CDOM and 
NAP. This contrasts the core assumption of the OC algorithms, namely 
that Rrs(λ) co-varies with phytoplankton as the dominant optical 
component. Under- and overestimation of chla was large (residual 
values ranging from − 5 mg m-3 to +4 mg m-3). aCDOM(443) and 
aNAP(443) values were not used by the RF uncertainty models to esti-
mate the RVDs of the OC4 and OC6 algorithms. In fact, the chla/TSM 
ratio and TSM were the most impactful variables. Thus, under domi-
nating CDOM and NAP absorption, phytoplankton sources that influ-
ence the reflectance magnitude and shape variability, including varying 
phytoplankton cell size or the concentration of accessory photosynthetic 
and photoprotective pigments, could not be sensed by the OC 
algorithms. 

5.2. Red/NIR algorithms 

We observe that the G11 algorithm produced the most accurate chla 
values out of all the tested algorithms. G11 underestimated chla for 
concentrations higher than 4–5 mg m-3 but the estimates were relatively 
accurate when compared to the other algorithms within this concen-
tration range. Conversely, for concentrations lower than 5 mg m-3 the 
G11 algorithm systematically overestimated chla values. This lack of 
sensitivity for concentrations lower than 5 mg m-3 has also been 
observed in other studies (Pahlevan et al., 2021b, 2020). The red/NIR 
area of the spectrum is the least affected by CDOM and NAP absorption. 
The RVD of the G11 algorithm was primarily modelled through the 
aϕ(673), TSM and chla/TSM ratio variables. The SHAP summary of the 
individual variables emphasised that high values of aϕ(673) were used 
to model the residual values of the G11 algorithm. We find that the red/ 
NIR band-ratio of G11 does not suffice when the 665 and 708 nm bands 
hold low information about chla concentration. The Gons05 algorithm 

Fig. 12. Average SHAP values of the explanatory variables for each chla algorithm. The average SHAP value was calculated as the average of all the absolute SHAP 
values for each observation associated with an explanatory variable. 

M. Werther et al.                                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 190 (2022) 279–300

293

was overall less accurate than G11, which was also found by Neil et al. 
(2019). The performance of the algorithm in this low – moderate chla 
concentration range confirms findings described in an earlier applica-
tion of the algorithm to some of the Laurentian Great Lakes (Gons et al., 
2008), where the retrieval differences were large for mesotrophic wa-
ters. The Gons05 retrieval uncertainty was most effectively modelled 
through ZSD and TSM. aϕ(673) and chla/TSM only impacted the Gons05 
uncertainty model marginally, however these two variables were sub-
stantial for the G11 uncertainty model. Both G11 and Gons05 are based 
on the 665 and 708 nm band ratio, thus reversed variable importance 
may seem surprising. For Gons05, ZSD values were effective to estimate 
low residual values. In contrast, low-medium TSM values increased the 
uncertainty model output magnitude to model higher residual values 
(see Fig. 13). ZSD and TSM are proxies of backscattering, which in turn is 
correlated to the calculation of the bb term using 778 nm in the Gons05 
algorithm. 778 nm is however not part of the G11 algorithm, thus 
explaining the difference in uncertainty model variable impact. Our 
analysis of variable contributions revealed that inaccurate backscatter 
approximation is a cause for the encountered Gons05 retrieval uncer-
tainty. Optimisation of the backscatter term in the Gons05 algorithm 

might lead to performance improvements over the considered concen-
tration range. An alternative pathway is to investigate whether the 
backscatter coefficient in the red/NIR range is too sensitive to low signal 
versus noise at 778 nm in oligo- and mesotrophic water bodies. 

5.3. Machine learning algorithms 

The MDN HICO and OLCI algorithms were previously trained with a 
semi-global dataset of inland and coastal systems. The dataset consisted 
of primarily eutrophic waters (chla dataset mean 21.7 mg m-3, median 
8.9 mg m-3 and a std. dev of 47.5 mg m-3). Seemingly, oligo- and 
mesotrophic waters with low chla concentrations and variable levels of 
CDOM and NAP absorption were under-represented during training. 
Although the algorithm had a positive bias (>1.61), the slope of the 
regression from the MDN HICO model was moderate (0.71), which 
implies that chla estimation was fairly consistent across the considered 
concentration range. This finding is further supported by the algorithm’s 
RVD (Fig. 11), in which most chla values were over- or underestimated 
by 1 – 3 mg m-3. Through the uncertainty quantification (MdAD 0.64 mg 
m-3, MAD 0.96 mg m-3) and modelling of the MDN HICO RVD, we 

Fig. 13. Individual SHAP value impact on the RF uncertainty models. The individual SHAP values associated with each observation of each explanatory variable and 
algorithm are shown. The impact of an explanatory variable on the RF uncertainty model is plotted in descending order of impact. The colour represents the 
explanatory variable value (yellow high, blue low). The model impact of a variable can be both positive and negative (see Fig. 3A for more conceptual details). For 
display purposes, the variable Rrs(400)

Rrs(673) is denoted as 400/673. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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discovered that aNAP(443) and aCDOM(443) characterise the retrieval 
uncertainties. An addition of observations characterised by the condi-
tions of this study to the training measurement pool of the MDN could 
lead to direct retrieval improvements. Changes of the MDN training 
dataset would however not demonstrate whether the mixture density 
network is superior to other ML approaches for these waters, as we did 
not test other ML algorithms. New ML algorithms should put a larger 
emphasis on oligo- and mesotrophic datasets to facilitate a broader 
evaluation of diverse ML approaches to retrieve chla concentration in 
these conditions. 

5.4. Semi-analytical algorithms 

The retrieval uncertainty for the QAAv6, GSM and 3SAA algorithms 
was characterised by the variables aϕ(673) and the two ratios chla/TSM 
and Rrs(400)

Rrs(673). Our analysis emphasises that phytoplankton absorption and 
composition variability could not be sufficiently accounted for in the 
retrieval procedures of the three SAA algorithms tested in the lakes. 
aϕ(λ) or combined phytoplankton size class absorption must be precisely 
estimated in the first place to accurately retrieve chla concentration 
through SAA. aϕ(λ) at 443 and 673 nm only has a weak - moderate 
relationship to chla concentration in this dataset (Fig. 7). For algorithms 
that rely on aϕ(λ) to estimate chla, such as SAA (but also empirical 
fluorescence or IOP neural network algorithms), these weak relation-
ships directly affect their accuracy. Consequently, empirical algorithms 
are more suited than SAA in scenarios where the uncertainty introduced 
by aCDOM(λ) and aNAP(λ) is smaller than by the aϕ(λ)/chla ratio. For SAA 
prior information about aϕ(λ) variability is required. Without calibra-
tion, these models default to mass-specific phytoplankton absorption 
(a*

ϕ(λ)) values which are likely not appropriate for oligo- and mesotro-
phic lake conditions. In open ocean and coastal waters, a*

ϕ(λ) exhibits a 
natural variability of a factor of 4 for any given chla value in addition to 
pigment packaging effects (Bricaud et al., 2004). This pattern stresses 
that the retrieval of chla concentration through aϕ(λ) may be signifi-
cantly altered in the studied inland water conditions where a*

ϕ(λ) vari-
ability is likely even higher. Thus, if uncalibrated, inappropriate a*

ϕ(λ)
values are used by the inverse SAA algorithms. 

6. Conclusions 

For oligo- and mesotrophic lakes and reservoirs, chla uncertainties 
were repeatedly shown to be highest when compared to higher biomass 
waters (Liu et al., 2021; Neil et al., 2019; Werther et al., 2021). The 
uncertainties persisted for the dataset of this study, as none of the tested 
algorithms accurately retrieved chla concentration over the considered 
range (0 – 10 mg m-3). The reasons for the retrieval uncertainty are 
algorithm-specific and concluded on in the following. 

The OC algorithms retrieved chla imprecisely, because the magni-
tude and shape of the used blue and green bands was mostly driven by 
CDOM and NAP absorption rather than by phytoplankton pigments. The 
results of the uncertainty analysis suggest that the OC algorithms are 
insensitive to phytoplankton absorption and composition variability in 
oligo- and mesotrophic lakes and reservoirs under the occurrence of 
CDOM and NAP absorption. The OC algorithms can therefore only be 
reliably used in scenarios where it is known that CDOM and NAP are not 
dominating the IOP absorption budget. In contrast, red-band algorithms 
such as G11 and Gons05 were partially able to retrieve chla accurately 
because the signal in their employed bands was not significantly influ-
enced by CDOM and NAP absorption. The uncertainty modelling how-
ever revealed other causes for their retrieval inaccuracy, most of them 
related to low signal to noise ratios in these waters. As the uncertainty 
analysis demonstrated, for G11 the signal of aϕ(λ) in the red bands 665 
and 708 nm was too low to be accurately relatable to chla concentration. 
For the Gons05 algorithm the explanatory variables were highly related 

to backscatter which could not be precisely retrieved from the red/NIR 
bands. Moreover, chla retrieval by red-band peak height algorithms such 
as FLH and MPH was the least successful of all algorithms because the 
required sun-induced fluorescence signal was mostly not available or 
detectable. 

The results of the uncertainty modelling for the tested MDN OLCI and 
HICO ML algorithms revealed that their consistent overestimation of 
chla concentration was related to CDOM and NAP absorption. The 
causes however were not comparable to the OC algorithms. Instead, 
measurements of chla and Rrs(λ) from oligo- and mesotrophic lakes 
under high CDOM and NAP absorption were underrepresented during 
MDN model training, as the MDNs were built with a global dataset in 
which inland waters with low chla concentrations under varying CDOM 
and NAP absorption were under sampled (Filazzola et al., 2020; Pah-
levan et al., 2020). 

The SAA algorithms QAAv6, GSM and 3SAA consistently showed 
higher retrieval uncertainties than empirical algorithms. Our analysis 
revealed that SAA algorithms are at a disadvantage when the relation-
ship of aϕ(λ) to chla concentration is only weak or moderate, as it was 
the case for this dataset at 443 and 673 nm. Moreover, SAA make 
explicit assumptions about aϕ(λ) intensity and variability, which are 
likely too static when considering the phytoplankton variability and 
dynamic across multiple oligo- and mesotrophic lakes and reservoirs. It 
is thus likely that only with known or switching a*

ϕ(λ) parametrisations 
SAA will produce accurate chla concentrations in the studied conditions. 

Possible causes of retrieval inaccuracy over oligo- and mesotrophic 
waters are still poorly handled by existing algorithms. Significant im-
provements for the retrieval of chla concentration in oligo- and meso-
trophic lakes and reservoirs can therefore only be expected through a 
reduction of the impact of the identified and algorithm-specific uncer-
tainty drivers. In addition, upscaled hyperspectral resolution could lead 
to direct benefits for chla estimation (Dierssen et al., 2021). For MDN 
and GSM, the HICO configuration outperformed OLCI by 10–20% sug-
gesting that higher information content improves the retrieval accuracy. 
ML algorithms specifically can harness the increased information con-
tent of hyperspectral data, but as this study shows, require a represen-
tative dataset. In situ datasets are now starting to be of sufficient size to 
inform new algorithm development for optically complex inland water 
bodies with low chla concentrations. As most current chla retrieval al-
gorithms lack confidence intervals, new developments should indicate if 
their use over the target conditions is appropriate. 
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Appendix A. Description of Wisconsin DNR in situ data 

Radiometric measurements 

Radiometric measurements were made with a pair of inter-calibrated Ocean Optics USB series UV-NIR spectrometers (Ocean Insight, Orlando, FL, 
USA), which measured sub-surface upwelling radiance, Lu(λ) and total downwelling irradiance above the surface, Ed(λ) at the same time (Gitelson 
et al., 2008). Rrs(λ) was derived through: 

Rrs(λ) =
Lu(λ)
Ed(λ)

×
Eref(λ)
Lref(λ)

× Rref(λ) ×
1

100
×

t
n2

w
× F0(λ) ×

1
π, (A.1)  

where Eref (λ) and Lref (λ) are the total downwelling irradiance and upwelling radiance from a reflectance target, Rref (λ) is the respective spectral 
reflectance provided by the manufacturer, t is the water-to-air transmittance (t = 0.98), nw is the refractive index of water (n = 1.33 at 20 ◦C), F0(λ) is 
the spectral immersion factor (Ohde and Siegel, 2003), and π is introduced to transform the intermediately calculated water-leaving radiance 
reflectance ρw(λ) into Rrs(λ). 

The spectrometers used for the radiometric measurements were customised with a 25-μm slit, a 600-line grating, which was blazed at 500 nm to 
optimise the instrument response for the bandwidth from 350 nm to 850 nm, and a standard ILX-511B detector, which resulted in a 1.39 nm spectral 
resolution. One of the spectrometers was connected to a 25◦ field-of-view optical fibre which was taped to a 4-m long, handheld Unger Opti-Loc 
extension pole. The pole was pointed away from the boat and the tip of the fibre was kept just beneath the water surface to measure Lu(λ) at nadir 
on the sun-lit side of the boat. The second spectrometer was connected to an optical fibre fitted with a cosine collector to create a 180◦ field-of-view, 
taped to a 2-m pole. This pole was attached to a location on the boat free from adjacent influences to measure Ed(λ) at zenith concurrently with the 
upwelling radiance without interference from surface structures. The spectrometers were inter-calibrated at the start of each set of measurements 
through six calibration scans of a white SpectralonTM reflectance target (Labsphere, Inc., North Sutton, NH, USA), which was calibrated annually at the 
manufacturer. The calibration scans were followed by six to twelve scans of optically deep water which were processed to %-reflectance with the 
CDAP-2 software package (CALMIT, University of Nebraska-Lincoln, USA) and the median spectrum was considered representative for the station. 
System noise was removed with a smoothing spline function. 

Field measurements and laboratory analysis 

Water transparency measurements (ZSD) were collected using a standard 20-cm diameter Secchi disk. Surface water samples were collected with a 
Kemmerer Bottle at a depth of 0.5 m below the surface and stored cold in the dark. Upon completion of the filtering of the water samples shortly after their 
collection, the membranes for the laboratory analysis of chla were frozen and transferred to the Wisconsin State Laboratory of Hygiene (WSLH) where 
they were analysed, while the CDOM absorption, particulate absorption (ap(λ)), and TSM samples were analysed in-house. The absorption measure-
ments were taken as laboratory triplicates and the final parameter values correspond to the median of the measurements. aCDOM(λ) samples were filtered 
through acid washed MF-Millipore GSWP mixed cellulose ester membranes while chla samples were filtered through DAWP membranes with a 0.65 µm 
pore size. For TSM and particulate absorption samples Whatman™ GF/F binder-free glass microfiber filters were used. Chla was extracted from the 
concentrated algal samples (U.S. EPA 445.0) in a solution of aqueous 90% acetone aided by bath type sonication. Therefore, the sample racks with tubes 
were suspended in an ultrasonic bath, covered to exclude light, sonicated for 25 min, and stored at a temperature of<4 ◦C to complete the extraction 
overnight. The samples were centrifuged for 30 min at 500 XG to clarify the extracts on the next day and the chla concentrations were measured flu-
orometrically (Welschmeyer, 1994) with a PerkinElmer LS-55 Fluorescence Spectrometer (PerkinElmer, Inc., Waltham, MA). The fluorescence spec-
trophotometer was calibrated with pure chla standards of a known concentration. TSM and the organic fraction of TSM (OSM) were measured 
gravimetrically from the dried and combusted residue on pre-combusted and pre-weighed filter pads (APHA 2540D and APHA 2540E). 

Laboratory triplicates of aCDOM(λ) were transferred to a 0.1 m cuvette and optical densities of the filtrates were measured for a wavelength range 
from 350 nm to 800 nm and a bandwidth of 2 nm with the UV WinLab software package and a PerkinElmer LAMBDA 35 UV/Vis spectrophotometer. 
The signal from a de-ionized (DI) water blank was subtracted automatically and aCDOM(λ) was calculated as: 

aCDOM(λ) =
ln(10)

l
[ODs(λ) − ODnull ], (A.2)  

where ODS(λ) is the optical density of the sample, ODnull(λ) is the average optical density of the sample from 700 to 720 nm (if ODS(440) < 0.05) or 780 
to 800 nm (if ODS(440) ≥ 0.05) for the null point correction, and l is the pathlength of the cuvette in m. The results represent the averaged laboratory 
triplicates. The particulate and NAP absorption coefficients were measured through the quantitative filter technique (Mitchell et al., 2000). Laboratory 
triplicates were transferred to an optical glass slide mounted against the transmittance port of a Labsphere RSA-PE-20 accessory and the optical 
densities of the particles retained on the filters were measured over the 400 to 800 nm wavelength range and a bandwidth of 2 nm with the same 
spectrophotometer. The signal from a previously measured blank filter was subtracted and ap(λ) was calculated as: 
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ap(λ) =
ln(10)

Vf

A

[
0.3907 ×

[
ODfp(λ) − ODnull

]
+ 0.3201 ×

[
ODfp(λ) − ODnull

]2
]
, (A.3) 

where ODfp(λ) is the optical density of the sample and ODfp(λ) is the average optical density of the sample from 780 to 800 nm required for the null 
point correction of the measurements. V and A are the volume of water filtered in m3 and the area of the filter in m2 used to calculate the pathlength in 
m. The quadratic function for the pathlength amplification correction (Cleveland and Weidemann, 1993) included in the equation was derived for a 
small set of samples collected in 2015 with the same instrument. The effects of the absorption by pigments were removed through reaction with a 
sodium hypochlorite solution (Ferrari and Tassan, 1999) and aNAP(λ) was measured similarly to ap(λ) after a 20-minute reaction time for the rinsed 
samples. The subtraction of aNAP(λ) from ap(λ) resulted in aϕ(λ), where the results represent the averaged laboratory triplicates. 

Appendix B. Description of University of Stirling (UoStirling) in situ data 

Radiometric measurements were made with a ship-mounted set of three hyperspectral sensors (HyperSAS, Seabird Scientific Inc.) installed just 
above the water surface. The first sensor pointed at the water surface and collected upwelling radiance Lu(λ), which comprises both water-leaving 
radiance Lw(λ) and the reflected sky irradiance ρsLs(λ). The sky irradiance Ls(λ) was measured with a second sensor, while a third sensor measured 
downwelling irradiance Ed(λ). Rrs(λ) was then derived through Simis and Olsson, (2013): 

Rrs(λ) = Lw(λ, 0+)/Ed(λ),

Lw(λ, 0+) = Lt(λ) − ρsLs(λ).
(B.1) 

The radiometric measurements were taken under the consideration of the two largest challenges to reduce measurement errors: maintenance of 
optimal viewing geometry and an accurate value determination of ρs under changing illumination conditions (Aas, 2010). Measurements were kept in 
this dataset if they were taken under cloud free conditions and on calm waters to ensure a correct alignment of the ship at a viewing azimuth angle (φv) 
> 90◦ (ideally at 135◦) (Hooker and Morel, 2003). 

Water constituents were measured with the same method and protocols as described in Appendix A for the U.S. Wisconsin DNR in situ data. Chla 
concentration was derived via spectrophotometric determination (ISO 12060:1992). ap(λ) was measured at Plymouth Marine Laboratory (PML, 
England). Before 2014 ap(λ) was derived through the method by Tassan and Ferrari (1995) and after 2013 via (Röttgers and Gehnke, 2012; Stramski 
et al., 2015). CDOM absorption for these samples was calculated through Stedmon et al. (2000). Water transparency (ZSD) was measured through a 
standard Secchi Disk lowered into the water from nadir until invisible to the viewer’s eye. 

Appendix C. Uncertainty models 

In this paper, we restricted the modelling of the RVDs to non-linear RF models. Here we compare the RF to a linear model, the so-called Least 
Absolute Shrinkage and Selection Operator (LASSO). LASSO shrinks parameter coefficients to zero for variables that did not contribute significantly to 
an uncertainty model (Tibshirani, 1996). LASSO is an extension to the standard linear regression model: 

yi = β0 +
∑n

j = 1
βicij, (C.1)  

where yi is the target variable (here a residual value), cij an explanatory variable and beta (βi) the learned coefficient (or weight) of the i-th observation 
for the j-th of all explanatory variables n. β0 is the intercept. The coefficients β0, β1,⋯, βn are estimated through minimising the residual sum of squares: 

β̂ = argmin
β

∑m

i = 1

(

yi − β0 −
∑n

j = 1
βjcij

)2

. (C.2) 

To estimate the beta-terms for LASSO, a penalty term α
∑n

j=1

⃒
⃒βj

⃒
⃒, also called L1-norm or L1 penalty, is added:  

β̂LASSO = argmin
β

∑m

i = 1

(

yi − β0 −
∑n

j = 1
βjcij

)2

+ α
∑n

j = 1

⃒
⃒βj

⃒
⃒. (C.3) 

The L1 penalty has the effect of forcing some of the coefficient estimates to be exactly zero when α is sufficiently large. The larger the penalisation, 
the fewer explanatory variables are present in the model because their coefficients are zero. The L1 penalty performs variable selection, as relevant 
variables to the model receive non-zero coefficients. In LASSO, α is a model hyper-parameter which we optimised with the same procedure as for the 
RFs. LASSO is restricted to model the residual values linearly and would thus require explicit formulations of non-linearities and interaction terms. 
Since we did not have knowledge about these, we opted for use of RFs. In linear models, such as LASSO, the β terms are sensitive to value magnitude 
and range, which differ between variables (e.g., TSM in g m-3 and aCDOM(443) in m-1). The variables therefore need to be normalised for LASSO to fall in 
the range between 0 and 1: 

cnorm =
c − min(c)

max(c) − min(c)
. (C.4)  

Conversely, RF models are independent of unit scales and do not require prior normalisation. Table 6 shows that differences between RF and LASSO 
started to become significant with increasing chla retrieval uncertainty. A likely reason for this performance difference was the ability of the RF to 
estimate outliers of the RVDs better through its underlying non-linear model. An exhaustive dataset with many explanatory variables is highly labour 
and cost intensive. Hence, we required an uncertainty model that can be constructed with a limited set of explanatory variables (here n = 89). Unlike 
popular neural networks, LASSO and RFs do not require high amounts of measurements. Other methods, such as support vector regression machines 
(Boser et al., 1992) or more advanced gradient boosting decision trees (Chen and Guestrin, 2016) may provide similar performance such as the RFs 
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used in this study and can be considered as model alternatives. 
Appendix D. SHAP and standard variable importance 

ML libraries such as Scikit-learn (Pedregosa et al., 2011) provide measures to estimate variable impact on a model (thereby defining its impor-
tance). To enable the explanation of the quantified uncertainty by the RFs, the measure to infer variable impact must be consistently defined and 
available for each individual observation. During the construction process of a RF, each node in a sub-decision tree represents a split using some 
selection of the input variables. For RFs specifically, the aim is to gain information about the variable impact on the RF that resulted in a reduction of 
variance (or a decrease in error). However, the impact of a variable cannot be consistently derived for ML models such as RFs using standard variable 
importance measures (Altmann et al., 2010; Grömping, 2009; Strobl et al., 2008). In practice, the implementations of the variance reduction criterion 
vary between the libraries (Zhou and Hooker, 2021). As an example, the popular eXtreme Gradient Boosting (XGBoost) library (Chen and Guestrin, 
2016) has five metrics (total gain, gain, total cover, cover, weight) to measure variable importance. The use of these metrics results in different 
variable rankings when applied to the same dataset. Besides inconsistency drawbacks, standard importance measures share a limitation: the 
contribution of a variable to the model for a single observation is not discernible from the overall variable impact. For these reasons standard 
importance measures are insufficient to model the RVD of a chla algorithm. We therefore used SHAP that ensures a consistent measure of variable 
impact (Lundberg et al., 2017) and enables to obtain the impact of a variable for an individual observation (Du et al., 2020; Lundberg et al., 2020). A 
recent review on the practices of variable importance measures can be found in Belle and Papantonis (2021). 
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