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Abstract 41 

Soil water content (SWC) is a key variable in many land surface processes, such as runoff 42 

generation, thus knowledge about its spatiotemporal dynamics at the catchment scale can 43 

be useful for constraining and evaluating hydrological models. Cosmic ray neutron sensor 44 

(CRNS) technology provides hectare scale SWC data, and with recent advances in mobile 45 

CRNS such information value can be extended to the catchment scale, although challenges 46 

in calibration remain, especially in wet environments. This study presents a new 47 

methodology suited for humid environments to explore spatio-temporal variability in near-48 

surface soil water storage (SNS) dynamics at the catchment scale and its value in semi-49 

distributed rainfall-runoff modelling calibration. For a humid mixed-agricultural catchment 50 

(~10km2) in Scotland, we combined ~4-years of SWC data from a static CRNS at a 51 

landscape-representative location with “snapshots” at four key soil-land use (SLU) units to 52 

produce SWC timeseries for each one of those units. The SLU units involved a mixture of 53 
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freely draining mineral and poorly draining organic-rich soils, supporting crop and livestock 54 

farming and moorland, respectively. We also explored the suitability of the standard CRNS 55 

calibration approach in the SLU units and found that the organic-rich soils required an 56 

adapted parameter calibration for SWC. The moorland SLU unit had the greatest difference 57 

in SWC dynamics from the other agricultural SLU units. To explore the additional information 58 

generated by the combined CRNS approach, we calibrated a semi-distributed rainfall-runoff 59 

model (HBV-light) by using SNS dynamics in individual SLU units in addition to streamflow. 60 

Compared to a lumped approach, the semi-distributed SWC information and model structure 61 

helped produce better constrained stream flows and further improved the representation of 62 

catchment internal storage dynamics. Ultimately, the value of the SWC time series for 63 

different SLU units in rainfall-runoff modelling will depend on model structure and the degree 64 

to which SNS dynamics vary within the landscape. This study showed the potential of 65 

expanding the information value of permanently installed CRNS sensors using portable 66 

CRNS surveys while addressing the various challenges related to organic-rich soils and 67 

wetter environments, although testing in different environments would be required to 68 

evaluate the wider applicability. 69 

Key words: 70 

Cosmic ray neutron sensor; soil moisture; spatial variability; portable CRNS; organic-rich 71 

soils; managed landscapes; semi-distributed rainfall-runoff modelling 72 

1. Introduction 73 

Near-surface soil water storage has a key role in regulating evapotranspiration, infiltration, 74 

water retention, drainage and hence catchment runoff generation (Brocca et al., 2010; Lilly 75 

et al., 2012; Ochsner et al., 2019; Rinderer & Seibert, 2012; Tetzlaff et al., 2007). Due to its 76 

importance in many land surface processes, it is a key variable in hydrology, meteorology 77 

and agriculture (Vanderlinden et al., 2012; Vereecken et al., 2014; Western et al., 2004), and 78 
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crucial for improving land surface modelling e.g. to aid model validation and reduce the bias 79 

in prediction of water and energy fluxes (Marsh et al., 2020; McJannet et al., 2017). As such, 80 

near-surface soil water storage (SNS), or soil water content (SWC, see Appendix I for all 81 

abbreviations) in the upper portions of the soil, is estimated  by an increasing number of 82 

satellite and other observational approaches (Mccabe et al., 2017).  83 

Cosmic ray neutron sensor (CRNS) technology can now provide field average  (up to ~7 ha, 84 

Schrön et al., 2017)  estimates of SWC dynamics at an intermediate scale, addressing 85 

difficulties of point scale heterogeneity and the relatively coarse spatial resolution of satellite-86 

derived products (Fersch et al., 2018; Montzka et al., 2017; Sigouin et al., 2016). National-87 

level networks are increasingly being installed to explore variations between sites, e.g. in 88 

USA (Zreda et al., 2012), Australia (Hawdon et al., 2014), India (Montzka et al., 2017) and 89 

the UK (Cooper et al., 2020) . CRNS data have been used for a wide range of applications, 90 

including estimation of hydraulic properties (Brunetti et al., 2019; Foolad et al., 2017; Rivera 91 

Villarreyes et al., 2014), validating satellite SWC estimates (Duygu & Akyürek, 2019; Kędzior 92 

& Zawadzki, 2016; Montzka et al., 2017) and improving land surface (Baatz et al., 2017; 93 

Iwema et al., 2017) and catchment-scale environmental modelling (Dimitrova-Petrova et al., 94 

2020a).  95 

While CRNS probes are customarily employed at a static location providing time series of 96 

near-surface soil water contents (SWC) (Bogena et al., 2018; Coopersmith et al., 2014; 97 

Nguyen et al., 2017; Schreiner-McGraw et al., 2016), mobile CRNS technology, which 98 

includes both rover and portable CRNS applications, has the potential to expand their 99 

information value. Despite its relatively large spatial coverage, static CRNS probes are 100 

unlikely to capture fully the spatial heterogeneity in near-surface SWC of catchment (>1km2) 101 

or larger scales, where higher level decision making on water resource management is 102 

generally made. In recent studies, this has been partially addressed by employing rover 103 

CRNS technology, i.e. a CRNS sensor mounted on a vehicle, providing “snapshot” maps of 104 
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spatially variable SWC across fields or within catchments. For the small catchment scale 105 

(~10 km2), spatial variability of SWC can be more easily assessed using a portable, i.e. 106 

suitcase or backpack version of the CRNS technology (Franz, 2018). Rover CRNS 107 

applications include improvement and validation of remote sensing soil moisture products at 108 

the regional scale (Chrisman & Zreda, 2013; Dong et al., 2014; McJannet et al., 2017), 109 

monitoring and soil mapping of irrigated agriculture (Finkenbiner et al., 2019; Franz et al., 110 

2015; Gibson & Franz, 2018) and SWC characterisation in landscapes with spatially varying 111 

land uses (Vather et al., 2019). However, while the rover CRNS approach in these studies 112 

provided relatively large spatial coverage and high resolution, it lacked high temporal 113 

resolution. Alternatively, dense networks of static CRNS have been installed temporarily to 114 

investigate SWC spatiotemporal heterogeneity (Fersch et al., 2020), yet such dense 115 

monitoring systems are expensive to establish and maintain in the long term.  116 

Therefore, an experimental framework which combines static CRNS and portable CRNS 117 

approaches has the potential to generate valuable SWC information at both relevant spatial- 118 

and temporal resolutions (Fersch, 2020; Franz et al., 2015; McJannet et al., 2017). Such an 119 

approach could be supported by the fact that at many locations under the same climatic 120 

forcing, soil moisture among sites tend to display similar dynamics at daily timescales, 121 

although with differences in magnitude. These similarities have been observed at many sites  122 

despite marked differences in land use (Choi et al., 2007; Zucco et al., 2014), hillslope 123 

position (Penna et al., 2013) or between measurements obtained at different spatial scale 124 

but at an overlapping location (Zhou et al., 2007) and soil properties (Gwak & Kim, 2017; Shi 125 

et al., 2015).  However, studies that have combined static and mobile (in this case rover) 126 

CRNS approaches are limited and have mainly been tested in dry climates over large (>100 127 

km2) areas (Franz et al., (2015) and McJannet et al., (2017)) with only a few examples in 128 

temperate sites (Jakobi et al., 2020; Schrön et al., 2018) and none in humid climates.  129 
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One challenge is the CRNS sensor calibration requirements for spatially different conditions 130 

(e.g. in soil properties or land cover). While the typical calibration of CRNS sensors works 131 

well for many sites and soil types (Bogena et al., 2013; Desilets et al., 2010), an additional 132 

evaluation of the signal correction or the sensor calibration method might be needed to 133 

address certain site-specific conditions (Heidbuchel et al., 2016; Iwema et al., 2015; Rivera 134 

Villarreyes et al., 2011). This may be in environments where high organic matter content 135 

(e.g. soil organic carbon or plant biomass) dynamically influences the signal (Bogena et al., 136 

2013; Jakobi et al., 2018).  137 

Indeed, in humid environments, where peaty (organic-rich) soils are often present, obtaining 138 

accurate SWC estimates remains a challenge (Boorman et al., 2018), due to the distinct 139 

water retention characteristics of these soils (Boelter, 1968). Therefore, to successfully apply 140 

combined CRNS approaches in wetter regions, testing whether an additional or flexible site-141 

specific calibration of the neutron to soil water content (N-SWC) relationship might be a 142 

necessary pre-requisite for creating spatially variable timeseries of SNS.  143 

In northern, humid, mixed-agricultural catchments, near-surface SWC is a key control on 144 

runoff generation and runoff threshold response (Brauer et al., 2013; Geris et al., 2015; 145 

Seibert et al., 2011). In the UK, soil saturation and flood events are frequent so that accurate 146 

and spatially representative SWC data obtained from CRNS data could particularly help 147 

improve flood predictions (Bell et al., 2009; Hannaford, 2015; Hundecha et al., 2020). Such 148 

landscapes typically involve a patchwork of relatively small fields with variations in soil and 149 

land use/management and some proportion of wet, poorly draining moorlands on organic-150 

rich soils (House et al., 2010). Moorlands commonly cover the headwaters of UK catchments 151 

and are known to generate large proportions of the runoff that contributes to flooding events 152 

(O’Connell et al., 2004). Thus the combination of a representative static CRNS data  153 

(Dimitrova-Petrova et al., 2020a) complemented with portable surveys within distinct soil-154 

land use (SLU) units including more moorlands, could provide an integrated approach to 155 
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obtain spatially relevant SNS data in typical UK and managed landscapes. The usefulness of 156 

such spatially variable SNS information in hydrological modelling should be explored in each 157 

context to understand if it carries an additional value as compared to SNS data from a static 158 

CRNS location. In addition to hydrological modelling (Percy et al., 2020), there are many 159 

other applications which would benefit from having such spatially variable (i.e. across fields 160 

or between sub-catchments), high temporal resolution timeseries data, such as improving 161 

the efficiency of irrigation schemes (Guo et al., 2020) or evaluating the impact of land 162 

management on soil loss (Hallett et al., 2016; Vaezi et al., 2017). 163 

The main aim of this study was therefore to use a combination of static CRNS data and 164 

portable CRNS surveys complemented with field-based SWC measurements to explore the 165 

spatio-temporal variability in near-surface soil water storage SNS dynamics at the catchment 166 

scale in a semi-distributed rainfall-runoff modelling framework. We applied this to a humid 167 

mixed-agricultural catchment with a range of soil-land use units including mineral and 168 

organic soils typical for the UK. More specifically, the objectives were to (i) explore the 169 

relationship between neutron intensities sensed within a landscape-representative footprint 170 

using static CRNS and those within individual/contrasting soil-land use (SLU) units using 171 

portable CRNS; (ii) based on those relationships, develop a methodology to create synthetic 172 

timeseries of daily near-surface SWC for individual SLU units addressing the challenges 173 

related to wet organic-rich soils and (iii) derive timeseries of SNS for the individual SLU units 174 

and demonstrate their value in semi-distributed catchment scale rainfall-runoff model 175 

calibration.  176 

 177 

2. Methods 178 
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2.1. Site description and instrumentation 179 

The study was conducted in the Elsick catchment (~10 km2), NE Scotland, UK (Figure 1). 180 

Mean annual precipitation is ~800 mm and potential evapotranspiration ~350 mm (Met 181 

Office, 2019a, 2019b). The underlying geology is metamorphic bedrock, overlain by glacial 182 

drift, covered by relatively thin (0-1m) soils (British Geological Survey, 2019; Soil Survey of 183 

Scotland Staff, 1981). The stream network drains a gently sloping landscape (90 to 165 184 

m.a.s.l.) mainly covered by a patchwork of pastoral and arable farms. In this predominantly 185 

agricultural landscape, soil properties and land use are linked, forming characteristic soil-186 

land use (SLU) units. In Elsick there are four SLU units that cover ~94% of the catchment 187 

and which are characterised by their soil drainage type (Soil Survey of Scotland Staff, 1981) 188 

and dominant land use (Table 1., Figure 1). These SLU units are: (i) Crop-Imperfectly 189 

drained (CropI), (ii) Crop-Poorly drained (CropP), (iii) Pastures-Freely drained (PastureF) 190 

and (iv) Moorland-Poorly drained (MoorlandP). Historically, the poorly and imperfectly 191 

drained SLU units associated with agriculture have been artificially drained to enhance crop 192 

growth (Blann et al., 2009; Lilly et al., 2012).  The less managed, poorly drained MoorlandP 193 

sites are located in the catchment’s NE headwaters and characterised by an organic-rich 194 

surface layer (>40 cm thick). The absence of agriculture and artificial drainage makes 195 

surface ponding most frequent in this unit. A minor proportion of the catchment (~6%) has 196 

forest plantations on various mineral soils and very minor urban cover (Figure 1). 197 

A static Cosmic neutron ray sensor CRNSstatic (CRNS −1000/B, Hydroinnova, New Mexico, 198 

USA) was used to obtain continuous estimates of near-surface average SWC (SWCstatic). 199 

The CRNSstatic station (Fig. 1C) was installed in November 2015 at the intersection of three 200 

fields (latitude 57o02′25.58′’N and longitude 2o11′18.84′’W, elevation = 95 m.a.s.l.), which are 201 

representative of two of the key SLU in the catchment (Table 1): CropP (Figure 1 E) and 202 

PastureF (Fig. 1 D). The CRNSstatic sensor was calibrated over five field sampling campaigns 203 

covering a range of wetness conditions (for full details on the sensor calibration refer to 204 
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Dimitrova-Petrova et al., 2020a). The CRNSstatic continuously records neutron intensity (Nraw), 205 

temperature (T), relative humidity (RH) and atmospheric pressure (Patm) and, since April 206 

2017, has been complemented by an automatic weather station (Environmental 207 

Measurements Ltd.), which measures net radiation (Kipp and Zonen NR Lite2 Net 208 

Radiometer), wind speed and direction (WSD1, Environmental Measurements Ltd.) (every 209 

30 minutes), used alongside RH, T and Patm for potential evapotranspiration estimates using 210 

the Penman-Monteith method. Precipitation was measured at the CRNSstatic location using a 211 

tipping bucket rain gauge (EML, ARG100 gauge). Stream discharge at the Elsick catchment 212 

outlet (QOUT, in mm day-1) was calculated as the sum of observations at the MAIN and TRIB 213 

sub-catchments (Figure 1 A). Gauging across the range of observed levels was used to 214 

obtain continuous stream discharge from the stream level data (TD Diver, Van Essen 215 

Instruments). Daily precipitation data prior to monitoring (January 2011 – January 2015), 216 

were obtained from distance-weighted interpolation using 14 neighbouring gauges from a 217 

national monitoring network (Met Office, 2019a) within a 35 km radius of the catchment. This 218 

was also used to fill occasional data gaps in precipitation, while site-corrected meteorological 219 

data from Dyce Aberdeen Airport (<25km to the north) were used to fill gaps in PET 220 

estimates (Met Office, 2019b). 221 

 222 

2.2. Portable CRNS data collection and cross-calibration of the CRNS 223 

sensors 224 

We combined data from the CRNSstatic and a portable version (CRNSportable) to assess the 225 

SWC in the four key SLU units situated outside (Figure 1 A) or within (Figure 1 B) the 226 

CRNSstatic footprint. The CRNSportable is similar to the backpack format described by Franz 227 

(2018). It is relatively lightweight and makes spatial surveying time and cost effective, which 228 

is well-suited for the heterogeneous landscapes with relatively small fields (Franz, 2018).  229 

These portable CRNS sensors, in contrast to the rovers, are less powerful than the static 230 
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sensors (~60% in this case), so that a cross-calibration between the two devices is required.  231 

Here, the CRNSportable sensor was cross-calibrated with the CRNSstatic sensor by deploying 232 

the CRNSportable for ~8 hours next to the CRNSstatic (Figure 1 C) on five occasions spanning a 233 

range of soil moisture conditions. The neutron counts of each sensor were integrated to 1-234 

hour values (Nraw in cph). Following standard procedures, three correction factors were 235 

applied (Equation 1 and Equation 2) to account for the influence of atmospheric pressure 236 

(fp), incoming solar radiation (fi) and relative humidity (fh) (Evans et al., 2016; Zreda et al., 237 

2012) using the data of Patm (in mbar), RH, (in %) and T, (oC)  recorded by each of the CRNS 238 

sensors and using a common solar intensity factor, fi (from the Jungfraujoch monitoring 239 

station, Switzerland, provided by Hydroinnova via  http://nearfld.com). The signal of the 240 

CRNSstatic was additionally corrected for the influence of aboveground biomass using a daily 241 

fveg factor (following Baatz et al., (2015)) to produce daily time series of Npihvstatic.  242 

                          (Eq. 1) 243 

                                            (Eq. 2) 244 

To account for the poorer potency of CRNSportable, the ratio (mean ± stdev) of 245 

Npihportable/Npihvstatic was calculated for different integration times, where we found the ratio 246 

to be stable from >4 hours. This ratio at a 4-hour integration time was then used to upscale 247 

Npihportable measured at other locations (i.e. within the individual SLU units) to Nsportable 248 

(Equation 3) to enable comparable calculations: 249 

        (Eq. 3) 250 

Next, the CRNSportable sensor was deployed for 8 hrs at each SLU unit (Figure 1) on 3-5 251 

different days, covering a range of wetness conditions. We found that a linear relationship 252 

described the correlation between Npihvstatic and Ns_portable for each SLU unit, as found in 253 

other studies in soil moisture spatial heterogeneity (e.g. Lv et al., 2016, Zucco et al., 2014).  254 

http://nearfld.com/


12 
 
 

The strength of these relationships (as R2
 for linear regression) was tested at integration 255 

times from 1 to 8 hours. As R2>0.5 for the four SLU units was reached again at a 4-hour 256 

integration time, we used the regression at 4-hour integration time to derive continuous 257 

timeseries of NsSLU for each SLU unit for the period 13 November 2015 - 31 December 2019 258 

(Equation 4).  259 

       (Eq. 4) 260 

Note that no vegetation correction was applied at the individual SLU units as long-term 261 

aboveground estimates were lacking for the CropI and MoorlandP units. To test the potential 262 

implications of this, we explored the differences between the relationships (Equation 4) using 263 

either vegetation corrected and non-corrected CRNSportable data for the CropP and PastureF 264 

using t-tests. As no significant differences were found, we used time series of Npihvstatic and 265 

Nsportable to derive the synthetic time series for each SLU unit. 266 

2.3. Synthetic soil water content timeseries for each SLU unit (SWCSLU) 267 

 To obtain synthetic timeseries of SWC from NsSLU data for each SLU units (i.e. objective 268 

(ii)), we complemented the CRNSportable surveys with independent field measurements of 269 

SWC on the same days. These were spatially distributed point SWC (θ probe) 270 

measurements and topsoil core samples (0-5 cm). For point measurements, we used a ML2 271 

soil moisture sensor (Delta T Devices Ltd) θ probe, integrating over 0-6 cm with an 272 

approximate control volume of 30 cm3. We focussed on the topsoil only as it exhibits most 273 

dynamic SWC behaviour and has been shown to strongly influence runoff generation in 274 

many agricultural sites in the UK (Gruszowski et al., 2003; Meyles et al., 2003; Withers et al., 275 

2007).  On average 140 SWC measurements in each SLU unit, on each sampling day, were 276 

made along four, 0-70 m transects radiating from the CRNSportable location, at 90o to each 277 

other. Occasionally, technical difficulties or frozen ground limited the number of 278 

measurements possible. Usually, a minimum of two replicates were taken every 2 meters 279 
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from 0 to 25 m distance, every 5 meters from 25 to 40 m and every 10m from 40 to 70m. 280 

The measurements taken with the θ probe on each sampling day (θSLU) were weighted 281 

following Schrön et al., (2017) to obtain the average soil moisture estimate for each SLU on 282 

each day.  283 

The 0-5cm depth soil cores were used to determine mean dry bulk density (ρdry, in [g cm-3]), 284 

soil organic matter (SOM, in [cm3 cm-3]) and lattice water (LW, i.e. the water contained in soil 285 

minerals, in [cm3 cm-3]) for each SLU unit. The ρdry was determined by oven-drying each 286 

sample (24h/105oC) and correcting for  stones (Hall et al., 1977), and SOM and LW 287 

estimated by loss-on-ignition (firstly 24h/450oC for SOM and then 6h/1000oC, for LW) 288 

(Davies, 1974).   289 

The ρdry, SOM and LW for the CropP and PastureF units within the static footprint were 290 

characterised from the 0-5 cm samples from five campaigns also used to calibrate the static 291 

CRNS (Dimitrova-Petrova et al., 2020a) (n=48 for CropP and n=26 for PastureF, 292 

respectively). The ρdry, SOM and LW of the SLU units outside the footprint, i.e. CropI and 293 

MoorlandP, were characterised from a single soil sampling campaign (n=9 for the CropI and 294 

n=6 for the MoorlandP, respectively). While the sampling size for these estimates is 295 

relatively small, this is justified by the relatively low spatial variability revealed from the ~140 296 

topsoil point SWC measurements on each sampling day in each SLU unit, and again by 297 

relatively low vertical variability for the agricultural fields as revealed by (Dimitrova-Petrova et 298 

al., 2020a). 299 

To determine the wetness conditions under which CRNSportable sampling took place in 300 

contrasting SLU units, we explored different proxies for catchment wetness alongside topsoil 301 

point-scale SWC (θSLU and soil cores). These proxies included stream discharge at the 302 

catchment outlet (QOUT, in [mm day-1]), the 7-day antecedent precipitation index  (API7, in 303 

[mm]) using daily precipitation data with a constant decay coefficient of 0.9 (Hooke, 1979), 304 

and the landscape-average soil water content estimated by the CRNSstatic (SWCstatic in [m3 m-305 
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3]). The latter also allowed for a more direct evaluation of the relative differences between 306 

SLU units and the CRNSstatic footprint. There were differences in soil properties between the 307 

static and portable sites, particularly in soil organic content, which was substantially greater 308 

at the MoorlandP unit. The procedure to account for those differences included a 309 

transformation of the CRNSstatic time series into synthetic time series of SWC for individual 310 

SLU units (SWCSLU) and testing the need for additional calibration of the shape parameters 311 

(ai) alongside N0 in Equation 5, which represents the function used to transform neutron 312 

counts to SWC data.  313 

   (Eq. 5) 314 

for which SWCSLU is in [m3 m-3], NsSLU is in [cph], N0 is the theoretical site-specific value of 315 

count rate over dry soil in [cph] (Desilets et al., 2010), and ai are shape coefficients. The ρdry 316 

[g cm-3], LW [m3 m-3] and SOM [m3 m-3] are the estimated dry bulk density, lattice water and 317 

soil organic matter, respectively, as described above. The SWCSLU time series were 318 

additionally constrained. Total porosity was used as an upper limit, which meant that for 319 

SWC values above it, we assumed that the soils were saturated and any additional reduction 320 

in neutron counts was related to surface water ponding. Total porosity was estimated to be 321 

0.6 for the managed SLU units and 0.8 for the MoorlandP. Lower SWC limit for the mineral 322 

SLU units was set to the minimum measured value at each unit (0.10 m3 m-3 in the CropP 323 

and 0.13 m3 m-3 in the PastureF, see Dimitrova‐Petrova et al., 2020b; 0.07 m3 m-3 at the 324 

CropI), while for the MoorlandP the lower SWC limit was set to 0.55 m3 m-3, based on field 325 

knowledge on soil water retention and previous research on peaty podzols in Scotland 326 

(Tetzlaff et al., 2014).  327 

In most CRNS applications, typically only N0 in Equation 5 is optimised, while all soil  328 

properties are determined from field observations (e.g. Evans et al., 2016; McJannet et al., 329 
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2017). The shape coefficients of the equation are normally fixed at reference values of 330 

a0=0.0808 [cm3 g-1], a1=0.372 [-] and a2=0.115[cm3 g-1]), derived by (Desilets et al., 2010) via 331 

neutron flux simulations for generic silica soils. However, some  have identified the need for 332 

additionally calibrating the ai parameters to reproduce site-specific SWC dynamics or match 333 

local conditions (e.g. Iwema et al., 2015; Rasche et al., 2021; Rivera Villarreyes et al., 2011). 334 

Here, we tested if such new calibration is needed to better fit field observations and hence 335 

allow consideration of site differences between SLU units, particularly in soil hydraulic 336 

properties and wetness dynamics, which is especially relevant for the peaty soils at 337 

MoorlandP.  338 

For each SLU, we therefore tested two sensor calibration approaches based on the SWC 339 

data from the SLU to derive SWCSLU from NsSLU, while using the site specific ρbulk, LW, SOM 340 

and SWC (θSLU) data for Equation 5. More specifically, the first approach involved the typical 341 

standard N0 calibration (Bogena et al., 2013), with fixed shape (ai) parameters and 342 

optimization of only the N0 parameter in Equation 5 (Table 2). In the second approach, 343 

referred here as new calibration, we simultaneously calibrated the N0 and ai shape 344 

parameters. For this we used the Latin Hyper Cube approach (McKay, 1992) (Table 2). We 345 

performed 100 000 runs from which we obtained a single best parameter set, minimising the 346 

root mean square error (RMSE) and which fitted the field data best (i.e. daily averages of 347 

NsSLU and field θSLU measurements on sampling days). The optimised parameters for each 348 

calibration were then used to solve Equation 5, producing two synthetic SWC timeseries per 349 

SLU unit, SWCtyp and SWCnew, respectively.  350 

To evaluate the new additional calibration of the shape parameters, we considered the 351 

potential improvement in fit to the data and the uncertainty around extremely wet or dry SWC 352 

estimates associated with the SWC constraints. We also calculated for each SLU unit the 353 

root mean square difference (RMSD) between the synthetic SWC timeseries produced with 354 

the typical and the new calibration, respectively (Equation 6).  355 
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   (Eq. 6) 356 

In this equation, the SWCtyp,t is mean soil water content estimate at time t, derived from 357 

NsSLU using a SLU-specific N0 and fixed ai parameters (Table 2). Correspondingly, SWCnew,t 358 

is the soil water content derived from Equation 5, using the best parameter set of N0 and ai 359 

from the Latin Hyper Cube simulations. A poor fit to the field data, a high proportion of 360 

unrealistic estimates using the standard approach, plus a relatively small RMSD all indicated 361 

the need for the additional calibration of the shape parameters to obtain SWC data. After the 362 

evaluation, only one time series SWCSLU (i.e. either the typical or new sensor calibration 363 

approach) per SLU unit was chosen for further calculations. 364 

 365 

2.4.  Spatially variable CRNS-derived near-surface storage (SNS_SLU) 366 

estimates for rainfall-runoff model calibration 367 

The SWC data were then used to derive time series of near-surface water storage  for the 368 

individual SLU units (SNS_SLU) and combine them with stream discharge in multi-criteria 369 

model calibration of  a semi-distributed rainfall-runoff model for the catchment (objective iii). 370 

For that we used a semi-distributed version of the HBV-light model (Lindström et al., 1997; 371 

Seibert & Vis, 2012), which is a conceptual rainfall-runoff model that simulates discharge 372 

Qsim using a minimal input time series of precipitation (P), air temperature (T) and potential 373 

evapotranspiration (PET). The hydrological model comprises four main components: a snow 374 

(snow accumulation and melt), a soil (groundwater recharge and AET), a response 375 

(computes run-off as function of storage) and a routing (triangular weighting function for 376 

routing run-off to catchment outlet) routine (Seibert & Vis, 2012).  377 

The model was set up for Elsick at daily time steps using P, T and PET input from 1 January 378 

2011 to 31 December 2019, allowing for a relatively long warm-up period to eliminate the 379 
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effects of initial conditions, especially on storage. QOUT was available from 12 January 2015 380 

to the end of the study period. While the effect of snow is accounted for, the parameters of 381 

the snow routine were fixed and not calibrated (see Supplementary Table 1), as snow 382 

contribution to precipitation in the catchment is minor. To simulate the presence of four SLU 383 

units in the catchment we opted for a model structure with four distributed soil zone 384 

reservoirs (SM) and the upper (SUZ) stores, while the lower model store (SLZ) was lumped. 385 

Each of the four SM and SUZ were given a weight corresponding to the proportion of the 386 

catchment covered by a specific SLU (Table 1), rescaled from a total of 94% catchment area 387 

to add up to 100%. While the SM represents the soil zone dynamics, the SUZ and SLZ 388 

roughly represent the shallow and deeper run-off generating stores, respectively. For Elsick, 389 

we conceptualised the HBV-light dynamic storage Sdyn (t) i.e. the storage activated in the 390 

runoff generation response as the sum of SM and SUZ at a given moment in time in each of 391 

the four semi-distributed stores. The rationale being that SM is responsible for the 392 

partitioning of precipitation input to deeper storage and ET, but does not produce runoff, 393 

while SUZ is the upper box that above a certain threshold (UZL parameter) generates Qsim. 394 

This combined storage is considered equivalent to the role of the near-surface soil water 395 

storage (SNS), which the CRNS senses. On the other hand, the SNS_static or SNS_SLU represent 396 

the total water storage for a predetermined physical depth as opposed to Sdyn, which, as in 397 

most conceptual rainfall-runoff models, is not bound to a specific depth. Therefore, a direct 398 

comparison of SNS estimates (SNS_static or SNS_SLU) with modelled storage dynamics Sdyn is not 399 

straightforward, here we opted for comparing the total soil column storage 0–400mm 400 

(SNS_SLU) to Sdyn, similar to Dimitrova-Petrova et al. (2020a).  401 

To prepare storage data for the model calibration, we converted time series of SWCstatic  and 402 

SWCSLU to SNS_SLU using an exponential filter (as in Dimitrova-Petrova et al., (2020a)) for the 403 

period 14 Nov 2015 – 31 December 2019. Next, the semi-distributed HBV-light rainfall-runoff 404 

model for the catchment was calibrated using the four SNS_SLU as well as catchment QOUT. 405 
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The model calibration period was 13 November 2015 to 31 December 2019 (~4 years). Days 406 

on which SNS_SLU data were missing were not included in the model calibration. We used a 407 

Monte Carlo approach (100,000 independently generated parameter sets) for model 408 

calibration. Initial parameter ranges were set based on literature values (Seibert & Vis, 2012; 409 

Tetzlaff et al., 2015) and exploratory model runs (Supplementary Table 1). To account for 410 

model uncertainty, each model run was ranked according to the multiple-criteria (Pareto) 411 

ranking of model performance (following Rosolem et al., 2012). For each model run, this 412 

involved ranking of five criteria, which were the KGE  goodness-of-fit (Kling-Gupta efficiency, 413 

Gupta et al., (2009)) of the QOUT to simulated discharge (KGE_Qsim) and of the time series of 414 

SNS_SLU to the corresponding simulated dynamic storage dynamics (KGE_Sdyn_SLU).  415 

Consequently, we calculated the minimal Euclidian distance within the KGE space across 416 

the five criteria to select the best 50 parameter sets. As part of this, the five KGE criteria 417 

received different weights. A weight of 50% was assigned to the KGE of discharge 418 

(i.e._Qsim), and 50% to the internal storage dynamics KGE_Sdyn_SLU, with weight proportional 419 

to their rescaled coverage of the SLU unit in the catchment.  Equation 7 summarises the 420 

final multiple objective criteria (KGEmultiple) used here:  421 

KGEmultiple=422 

423 

 424 

(Eq. 7) 425 

We also evaluated similarities and any differences in optimisations of identifiable 426 

parameters.  427 

3. Results 428 
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3.1. Hydrometeorological and wetness conditions during study period 429 

Continuous monitoring at Elsick spanned 1505 days (~ 4 years), covering a range of 430 

hydrometeorological conditions (Figure 2). The SWCCRNS ranged between 0.14 at its driest 431 

and 0.6 at saturation (median was 0.37 m3 m-3). Observations at the CRNSstatic started during 432 

an exceptionally wet winter in 2015-16, characterised by large precipitation events and 433 

floods (Figure 2 A). This was followed by a period of more seasonal wetting-drying cycles 434 

(March 2016 – June 2017). August 2017 – April 2018 was relatively wet and included a large 435 

rain on snow event in March 2018, which caused local flooding. The CRNSportable surveys 436 

started during the summer of 2018, which was characterised by a prolonged streamflow 437 

recession and continuous soil drying, to capture the driest conditions observed at the 438 

catchment (Figures 2 C and C.1.). In the managed SLU units, average field SWC values, as 439 

measured with the theta probe (θSLU at depths 0-6 cm), were close to or slightly greater than 440 

SWCstatic, while θMoorlandP was consistently much wetter. After subsequent rewetting, more 441 

surveys were conducted in all the SLU units during December 2018 – April 2019 and 442 

December 2019 to capture wetter soil conditions, respectively (Figures 2 C, C.2 and C.3). 443 

During these wetter soil conditions, average θSLU was greater at the CropP, PastureF and 444 

especially MoorlandP units as compared to SWCstatic. During those periods, the field SWC at 445 

CropI (θCropI and soil cores) showed similar values to the SWCstatic and the MoorlandP was 446 

consistently wetter, according to field measurements (θMoorland and soil cores). The θSLU 447 

spatial heterogeneity on each sampling day (indicated by standard deviations in Figure 2) 448 

was generally small but relatively large during dry and intermediate periods. During wet 449 

periods it was generally smaller and similar in all the SLU units, except for CropI, for which 450 

was similar across all wetness conditions.  451 

Field sampling of SWC in each SLU unit covered a similarly wide range of wetness 452 

conditions, as illustrated by comparing field SWC to three proxies of catchment wetness 453 

(Figure 3). Daily SWCstatic displayed a strong linear relationship to the field SWC data in each 454 
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SLU unit (Figure 3 A). The managed SLU units within the static footprint (i.e. CropP and 455 

PastureF) were very well characterised, as sampling encompassed the 2nd to the 93rd 456 

percentiles of SWCstatic. The CropI and MoorlandP units outside the CRNSstatic footprint, were 457 

sampled under most wetness conditions, across the 3rd and 60th percentiles. Overall, the 458 

range of SWC measured in each managed SLU unit were similar to those in SWCstatic, while 459 

the MoorlandP was distinctly wetter. Field SWC data generally increased with API7 and QOUT 460 

(Figure 3 B and C, respectively). For variations with QOUT, threshold behaviour was evident, 461 

which is in line with findings on storage – discharge relationships in the catchment, reported 462 

in Dimitrova-Petrova et al., (2020a).  463 

 464 

3.2. Relationships between static and portable CRNS neutron data across SLU 465 

units 466 

The cross-calibration of CRNS probes was carried out over five sampling days (Figure 2 C, 467 

C.1. and C.2.). Neutron intensities corrected for atmospheric influences from the two 468 

sensors, Npih_static and Npih_portable, respectively, related linearly (R2=0.99), as shown in 469 

Figure 4 A. The mean ratio of 0.654 between them (Figure 4 B) was used to scale the 470 

neutron intensities of the CRNSportable (Equation 3). The sampling covered very dry to 471 

intermediate conditions, corresponding to very high (up to 99th percentile of Npih_static) and 472 

moderate neutron intensities (down to 40th percentile of Npih_static), respectively (Figure 4 A). 473 

The daily average SWCstatic on those days ranged between 0.17 to 0.37 m3 m-3 (2nd to 50th 474 

percentile of SWCstatic) and the average θstatic (hand-held probe) ranged between 0.16 and 475 

0.49 m3 m-3. Thus the θ probe measurements seemed to overestimate soil moisture as 476 

compared to the CRNS SWCstatic during wet conditions, as it gives measurements at 477 

relatively shallower depths compared to the CRNS.  478 
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The scaled CRNSportable neutron intensity data (NsSLU) of each individual SLU unit showed a 479 

linear relationship (R2 >0.5) to the CRNSstatic neutron count data (Npihvstatic), at a 4-hr 480 

integration time (Figure 5). The R2 of that relationship ranged from 0.52 for CropP, and 0.79 481 

to 0.98 for the remainder of the units. Consistent with the CRNS approach, the greatest 482 

neutron intensities corresponded with the driest sampling conditions (Figure 5, in red), while 483 

the least corresponded to wet or frozen soil conditions.  There were subtle differences in the 484 

relationship of the SLU units within the CRNSstatic footprint (Figure 5 A, B). At the CropP unit 485 

(Figure 5 A), the NsSLU data were more variable but close to Npihv_static. Such minimal 486 

differences relate logically to the fact that CropP unit occupies ~75% of the CRNSstatic 487 

footprint. For the PastureP unit (Figure 5 B), representing ~25% of CRNSstatic, there were 488 

even fewer notable differences between NsSLU and Npih_static. The CropI, situated outside 489 

the footprint of CRNSstatic, appeared to have generally greater neutron counts as compared 490 

to CRNSstatic, which was most pronounced during drier sampling conditions (Figure 5 C).  At 491 

the wet MoorlandP unit neutron intensities were much lesser than Npih_static and also than 492 

any of the managed SLU units (Figure 5 D). The Ns_SLU from the MoorlandP unit also 493 

seemed to experience relatively less variability in neutron counts, as evidenced by the 494 

smallest slope of the linear relationships in Figure 5. 495 

 496 

3.3. Synthetic SWC timeseries for different Soil Land Use units 497 

Soil property field data showed that the ρbulk of the mineral soils (~1 g cm-3) was much 498 

greater than for the organic-rich soil (0.28 g cm-3), while SOM was six times less (Table 4).  499 

Moreover, the soil properties of all the mineral soil SLU units correspond with those in the 500 

CRNSstatic footprint. N0 values for all SLU units used for the typical sensor calibration were 501 

greater, but all were within +15% of the N0 for the static; differences being largest for the 502 

MoorlandP unit (Table 4).   503 
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Comparison between the typical and new calibration (Figure 6, in red and green, 504 

respectively) revealed that through the typical calibration, field data fitted reasonably well for 505 

the managed SLU units within the CRNSstatic, CropP and PastureF (Figure 6 A and B, 506 

respectively). The new calibration was associated with no improvement in data fit and large 507 

RMSE, 0.033 and 0.035 m3 m-3, for the CropP and PastureF, respectively. Both typical and 508 

new sensor calibration produced a good fit to the data for the CropI unit, although the 509 

improvement in terms of reproducing the range of SWC using the new calibration was 510 

minimal (Figure 6 C, Table 4). In the case of the MoorlandP, only the new calibration 511 

produced realistic SWC dynamics (Figure 6 D, in green) with a good fit to the data, 512 

associated with the smallest RMSE (0.006 m3 m-3) (Table 4).  513 

To produce the synthetic SWC timeseries, the typical calibration was kept for the managed 514 

SLU units, in- and outside the CRNSstatic footprint, and the additional parameter calibration 515 

was used solely for the MoorlandP unit.  The timeseries of NsSLU for each unit showed very a 516 

similar range and overall dynamics to the CRNSstatic in the case of the managed SLUs 517 

(Figure 7 A). For the MoorlandP unit, neutron intensities were much lesser and showed less 518 

variability. This related to it being consistently wet, with fewer changes in SWC, compared to 519 

the managed units (Figure 7 B). Indeed, relative differences in terms of neutron intensity 520 

translated in similar patterns in terms of estimates for SWCSLU (Figure 7 B), effective sensing 521 

depth (zeff) (Figure 7 C) and SNS (Figure 7 D). In terms of estimated SWCSLU, the managed 522 

SLU units displayed a more dynamic behaviour, as compared to SWCstatic. During dry 523 

conditions estimated SWCSLU values were close to the SWCstatic and much greater during 524 

intermediate and wet conditions (Figure 7 B). During the study period zeff of the CRNSstatic 525 

ranged between 7 and 18 cm (mean 11 cm), with zeff for the mineral SLU units again 526 

showing very similar mean and ranges.  The zeff in the MoorlandP varied very little, being 527 

7±1 cm, which relates to the reduced sensing depth of CRNS sensors when soils are wetter.  528 

 529 
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3.4. Comparison between near-surface soil water storage estimates (SNS) from 530 

individual SLU units and at the catchment-scale (for rainfall-runoff 531 

modelling input) 532 

The two SLUs with crops showed very similar dynamics in SNS, while the PastureF was 533 

overall wetter than these other two mineral soils, especially during winter (Figure 7 D; Table 534 

5). The MoorlandP generally followed the wetting and drying cycles but was much wetter 535 

than all of the mineral soil units and often saturated, consistent with field observations. 536 

Compared to the SNS_static, the SNS_SLU of the mineral SLU units showed greater variability 537 

(apart from the MoorlandP), and while all of the units were wetter on average, CropP and 538 

CropI were drier during dry periods (Table 5).  539 

The outcomes of the multi-criteria calibration of the HBV-light semi-distributed for the Elsick 540 

catchment are shown in Figure 8 and their goodness of fit to observed data in Table 3. 541 

Overall, the model simulated discharge well across wetness conditions, except for the period 542 

April – October 2019, where Qsim was overestimated (Figure 8 A). The overall performance 543 

of the model calibrated using multiple criteria relates to the final parameter ranges 544 

(Supplementary Table 1). The 50 best parameter sets according to the multiple calibration 545 

criteria yielded median KGEmultiple of 0.51 and KGEmultiple ranged between 0.49 and 0.52. 546 

Across the five criteria KGE_Qsim ranged between 0.63 and 0.74 (median 0.70) (Table 3). 547 

For these best 50 runs, the Sdyn was fairly well constrained for all of the SLU units and 548 

corresponded well with the observed storage dynamics (Figure 8 B, C, D, E). However, for 549 

Sdyn_CropP, calibrated on SNS_CropP data, the model overestimates the SNS during the dry period 550 

and then recovery, from April 2018 onwards (Figure 8 D).  The uncertainty bands of the 551 

different Sdyn may additionally be related to the weight assigned to each KGE_Sdyn (Equation 552 

7) i.e. narrower uncertainty band is related to a higher proportion of the weight assigned to a 553 

SLU unit. For example, Sdyn_CropI calibrated using SNS_CropI, which covers 37% of the 554 

catchment (Figure 8 C) shows much less uncertainty as compared to Sdyn_PastureF, calibrated 555 
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on the SNS_PastureF, which only covers 18%. For the 50 best runs across the five criteria, the 556 

median KGE_Sdyn for the three mineral soils SLU units were similar, ranging between 0.33 557 

and 0.40 and the median KGE_Sdyn_MoorlandP, calibrated on the organic-rich soil data was 558 

0.31. For comparison, median KGE_Sdyn when individual calibration criteria were used (data 559 

not shown) varied between 0.43-0.50 for the mineral units and it was 0.38 for the MoorlandP.  560 

Overall, final parameter ranges of the four Sdyn were comparable, with a few exceptions. 561 

Within the soil routine, the LP parameter which controls evaporation from the soil box was on 562 

average higher in the Sdyn_MoorlandP, which related logically to the MoorlandP having more 563 

available storage for evapotranspiration (Supplementary Table 1). Within the response 564 

function, the K0MoorlandP and K1MoorlandP parameters, that are related to the outflow rate, were 565 

relatively different for the Sdyn_MoorlandP as compared to the Sdyn of mineral soil SLUs. The 566 

median K0MoorlandP  related to the recession rate of quick flow was larger for the Sdyn MoorlandP as 567 

compared to Sdyn for the mineral soils, possibly relating to relatively less available soil 568 

storage for runoff modulation (Supplementary Table 1). The median K1MoorlandP was relatively 569 

lower, as compared to the mineral units, directly relating to the fact that the MoorlandP SLU 570 

unit presents naturally poorer drainage in the upper layers.  571 

 572 

4. Discussion 573 

4.1. Using CRNS technology to explore relationships between soil 574 

moisture dynamics of different soil-land use types   575 

We explored the relationships between neutron intensities sensed within the static CRNS 576 

footprint and those within key soil-land use units (objective (i)) using a combination of static 577 

and portable CRNS sensors. The methodology we developed strived for an efficient 578 

approach to characterise spatio-temporal SWC dynamics across different SLU units from 579 

timeseries of static CRNS sensors. The need for a simple yet reliable way to relate soil 580 
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moisture datasets collected at different scales or with different spatial coverage is a key 581 

issue in hydrology and environmental modelling (Brocca et al., 2012; Pachepsky & Hill, 582 

2017; Peters-Lidard et al., 2001; Peters-Lidard et al., 2017). Here we showed the potential of 583 

combining static and portable CRNS sensors to characterise distinct SLU units within a small 584 

(~10 km2) catchment. We made use of landscape representative neutron count and SWC 585 

timeseries from a static CRNS (Dimitrova-Petrova et al., 2020a) and related these to neutron 586 

measurements at key soil-land use units within the catchment, using a portable CRNS. This 587 

was combined with SLU-specific SWC and soil hydraulic properties information collected in 588 

the topsoil (0-6 cm).  589 

Given that a representative location can be identified, many (data-intense) studies have 590 

found that under the same climate, point-scale time series of SWC at neighbouring sites can 591 

correlate well, despite contrasting soil, land use or topography (Lv et al., 2016; Mittelbach & 592 

Seneviratne, 2012; Zucco et al., 2014).  Therefore, due to this commonly observed soil 593 

moisture temporal stability (Vachaud et al., 1985), it could be possible to use simple (linear) 594 

relationships to relate SWC dynamics at different locations and depths (Rosenbaum et al., 595 

2012; Zhao et al., 2020), rescale SWC data, or use datasets from nearby locations for 596 

modelling purposes (Peterson et al., 2016; Seibert et al., 2011; Verrot & Destouni, 2016). 597 

This is on the condition that the spatial patterns and relationships between sites are known. 598 

There are also limitations with regards to the empirically derived linear relationships as these 599 

are unlikely to account for all localised short-term changes in SWC at individual SLU units. 600 

Nevertheless, applying these concepts to larger (field) scale patterns showed that such 601 

spatio-temporal information on near-surface soil water content can be obtained using CRNS 602 

technology. Ideally, this would be supported by a dense network of static CRNS sensors (as 603 

e.g. in Heistermann et al. 2021), although for most applications this would be unrealistic in 604 

terms of available resources. Our approach could therefore be proposed as a trade-off 605 

between the number of sensors and the requirements for continuous SWC estimates for key 606 
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soil-land use units within the catchment. Considering that new cheaper detectors are 607 

becoming available on the market (e.g. Stevanato et al., 2019), we believe that our approach 608 

can be applied at locations where static CRNS are permanently installed and could extend to 609 

nearby ungauged catchments. 610 

We demonstrated that the combined CRNS approach is well-suited to patchwork, mixed-611 

agricultural landscapes which are characterised by spatially distributed farm fields with 612 

varying soil and land use properties (Hallett et al., 2016). In such context, installing and 613 

maintaining point-scale sensors is challenging due to soil management (e.g. harvesting, 614 

ploughing) as well as financial and access constraints (Vather et al., 2019; Dimitrova-615 

Petrova et al., 2020a). The limited road network and generally wet soils make the use of a 616 

rover CRNS, impracticable. Such challenges can be tackled, as in the present study, by 617 

identifying key SLU units and complementing the static with a portable or “backpack” CRNS 618 

to assess spatial variability of near-surface soil water storage.  619 

This initial assessment of the applicability of the combined CRNS approach was helpful both 620 

to address issues specific to the environment (wet climate and organic-rich soils, see section 621 

4.2.), but also to identify future improvements.  In this study, conversions from neutron count 622 

data to the synthetic SWCSLU timeseries at the SLU units were supported by comprehensive 623 

ground truthing with a theta probe as well as soil sampling covering the CRNS footprints.  624 

We found that the SWC spatial heterogeneity revealed by the theta probe SWC data within 625 

each SLU unit on each sampling day was relatively small. Nevertheless, soil agricultural 626 

management may introduce variations of soil hydraulic properties and hence soil moisture 627 

along the soil profile which may not be deducible from the SWC measured at the topsoil 628 

(Hupet & Vanclooster, 2002a; Wallace & Chappell, 2020). At the study site, this was only 629 

moderately evidenced. Soil sampling within the footprint revealed little variation in SWC with 630 

depth up to 30 cm during five calibration campaigns comprising a range of 631 

hydroclimatological conditions.  A 30 min record of profile point-scale SWC measurements 632 
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next to the CRNSstatic (Dimitrova-Petrova et al., 2020a) also revealed that. For most of the 633 

time, especially in wet periods, the topsoil showed similar SWC dynamics and magnitude to 634 

lower depths (20 and 30 cm), although it was drier in intermediate and dry periods. In 635 

addition to the fact that the impact on neutron signal strongly decreases with depth (Schrön 636 

et al.2017), we therefore limited our measurements in the other units to the top 5 cm of the 637 

soil. Nevertheless, especially during drier conditions (Figure 7 C) and at drier sites (Franz et 638 

al., 2012), the effective sensing depth of the CRNS technology can extend to 30 cm, which 639 

should be considered in similar future studies. Additionally, the combination of theta probe 640 

measurements with SWC information soil samples may not always lead to better 641 

characterised relationships between SLU units (see Figure 3 A, where larger spead in SWC 642 

data yields to lower R2 for two of the SLU units). Indeed, to better characterise the managed 643 

SLU units using fewer points but with measurements of soil moisture deeper within the soil 644 

profiles would help to improve the portable CRNS signal SWC estimates and reduce 645 

uncertainty Baroni et al., (2018), while still sufficiently accounting for spatial heterogeneity.  646 

Overall, more sampling would be recommended. Although the appropriateness of the linear 647 

transformation was demonstrated by McJannet et al., (2017) in semi-arid Australian 648 

landscape, sampling at intermediate wetness would then also allow to further evaluate and 649 

refine the linear relationship between static and portable CRNS neutron counts in Elsick (as 650 

shown in Figure 5).  Most importantly, additional SWC information during intermediate 651 

wetness conditions would help to better define the curve of the N-SWC relationship (as 652 

shown in Figure 6). If these relationships could be characterised with more certainty, the 653 

approach could then be applied in future sampling campaigns without more reliance on the 654 

labour-intensive point scale measurements for sensor calibration.  655 

Nevertheless, despite these uncertainties, using the combined CRNS approach we were 656 

able to characterise SWC dynamics at all key SLU units in the Elsick catchment, including 657 

the distinctly wetter MoorlandP SLU unit, which is generally more challenging to monitor 658 
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(Bartalis et al., 2007; Tetzlaff et al., 2014). Differences between cropped sites (CropP and 659 

CropI) were found to be very small, likely due to the similar soil management they are 660 

subjected to (i.e. ploughing and presence of artificial soil drainage) (Boland-Brien et al., 661 

2014; Hupet & Vanclooster, 2002). The PastureF was found to be the wettest managed SLU 662 

unit, with frequent surface ponding. Even though these soils are naturally freely draining, 663 

cattle grazing is thought to have caused compaction and thus greater water retention at the 664 

soil near-surface (Meyles e al., 2001; Wallace & Chappell, 2020). Similar conclusions were 665 

drawn at the study site using soil water isotope sampling and transit time modelling 666 

approaches (Dimitrova-Petrova et al., 2020b).  667 

 668 

4.2. CRNS applications in humid environments 669 

When creating synthetic time series of daily SWC for each SLU unit, our combined CRNS 670 

approach needed to account for site specific challenges i.e. the wet climate and presence of 671 

often saturated organic-rich soils (objective (ii)). The CRNS measurements have greater 672 

statistical uncertainty at lower neutron count rate, decreasing with longer integration time. 673 

This is specifically an issue in humid (Evans et al., 2016) and low-lying (Hawdon et al., 2014) 674 

catchments such as Elsick. To account for the uncertainty related to lower count rate, we 675 

deployed the portable CRNS at a single location representative for a SLU unit for 8 hours. 676 

This appeared as the only feasible option in this landscape, as opposed to using a rover 677 

CRNS. The generally more dynamic near-surface water storage estimates at the individual 678 

units (SNS_SLU), as compared to the SNS_static are likely to be related to the inherently higher 679 

uncertainty in the wetter range of the N-SWC relationship and could also have been the 680 

result of SWCSLU overestimations during wet periods. On the other hand, the static CRNS 681 

was positioned at a location to provide integrated dynamics across several SLU units, 682 

therefore reflecting a more damped signal. This is reflected in the slope of the linear 683 

relationship between neutron counts of static and portable CRNS (Figure 5).  684 
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The presence of often saturated organic-rich (peaty) soils at Elsick, and  many similar UK 685 

catchments (Lilly et al., 2015), posed additional challenges to the CRNS application. We 686 

identified that the moorland soils had distinct hydraulic properties, i.e.  lesser bulk density, 687 

greater soil organic matter content and greater porosity (Bruneau & Johnson, 2014; Meyles 688 

et al., 2001; Tetzlaff et al., 2014), compared to the mineral soils. For sites with greater 689 

organic matter content, it has been shown that applying CRNS technology can indeed be 690 

challenging (Bogena et al. , 2013; Fersch et al., 2018; Heidbuchel et al., 2016) and 691 

accounting for the effect of high organic matter on the CRNS signal often requires additional 692 

sampling effort (Jakobi et al., 2018; Vather et al., 2020). In organic-rich, near-saturated soils, 693 

using the reference (typical) Neutron Count-SWC (N-SWC) equation can lead to 694 

unrealistically dynamic SWC estimates. However, we showed that adequate characterisation 695 

could be easily achieved by additionally calibrating the shape (ai) parameters determining 696 

the shape of the N -SWC relationship. We proposed the use of a simple and relatively easy 697 

to implement Latin Hypercube approach. This is consistent with findings for other CRNS 698 

applications which demonstrated the need of the additional ai parameter calibration 699 

(Heidbuchel et al., 2016; Iwema et al., 2015; Rivera Villarreyes et al., 2011), although the 700 

needs for this should be evaluated locally (Iwema et al., 2015). While we sought the need to 701 

additionally calibrate the ai parameter given the distinct soil hydraulic characteristics of the 702 

organic-rich soils, we do recognise that perhaps a more comprehensive soil sample dataset 703 

could reduce the uncertainty in the N-SWC for this SLU unit more. 704 

While it might require the new sensor calibration, CRNS still has an advantage over point-705 

scale measuring techniques in providing more spatially representative SWC estimates, 706 

overcoming spatial heterogeneity issues (Brunetti et al., 2019). Moreover, unlike other 707 

approaches (e.g. time domain reflectometry or TDR), the measurements are unaffected by 708 

temperature (Rivera Villarreyes et al., 2011) and due to the sensor design, lesser likely to be 709 

affected by saturation (overland flow, ponding).  710 
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Robust characterisation of SWC dynamics in humid landscapes has implications for flood 711 

and agricultural management. In particular, organic-rich peaty soils, which usually occupy 712 

the headwaters of many northern catchments (House et al., 2010), are both key to better 713 

understanding their distinct hydrological functioning (Boorman et al., 1995) and challenging 714 

to characterise with conventional techniques. In this study, the inclusion of the overall wetter 715 

MoorlandP SWC in the SNS_portable estimates was logically related to the generally wetter areal 716 

average of SLU SNS_portable, as compared to those observed with the static CRNS estimates 717 

alone. Additionally, the presence of moorlands on peaty soils in agricultural land bears 718 

multiple potential management benefits for farmers and policy makers including improved 719 

water quality and  reducing the risk of erosion and flash flooding (Brown, 2020; Mcbride et 720 

al., 2017; RSPB, 2020). Thus, improved knowledge of their near-surface storage dynamics 721 

would be useful for management strategies, including flood warning applications. 722 

 723 

4.3. How and when can spatially distributed information on near-surface 724 

soil water storage (SNS) help to calibrate rainfall-runoff models? 725 

We derived time series of near-surface soil water storage CRNS (SNS) estimates for 726 

individual SLU units and demonstrated their added value for semi-distributed rainfall-runoff 727 

model calibration. Continuous time series of near-surface soil water storage CRNS (SNS) 728 

estimates at a landscape-representative location provide valuable information for improving 729 

subsurface parameterization in regional land surface models (Baatz et al., 2017) or rainfall-730 

runoff model calibration (Dimitrova-Petrova et al., 2020a). This value can be enhanced if 731 

combined with “snapshots” of near-surface wetness variability from portable CRNS surveys, 732 

as demonstrated by Franz et al., (2015) and McJannet et al., (2017) from large scale 733 

experiments in dry climates. Our combined approach was applied at the small catchment 734 

scale to obtain continuous timeseries for different SLU units. It allowed identification of sites 735 

with wetter or more variable SWC dynamics, which can be missed if solely a landscape 736 
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average SWC value is used to characterise catchment S-Q relationships (Mittelbach & 737 

Seneviratne, 2012). The differences in near-surface soil water storage (SNS) between 738 

mineral and organic-rich SLU units were captured by the combined CRNS approach and 739 

adequately constrained using an additional calibration of the N-SWC relationship.  740 

While Dimitrova-Petrova et al., (2020a) previously demonstrated the value of the static 741 

CRNS SNS data in lumped rainfall-runoff model for Elsick, here we have expanded this to 742 

semi-distributed applications. Although not directly comparable (i.e. the calibration period in 743 

the present study was one year longer), the KGE median and ranges for discharge were 744 

similar using either the lumped or the semi-distributed HBV-light model set-up. However, in 745 

the semi-distributed approach here, the simulated discharge was better constrained as 746 

compared to using solely discharge or discharge and SNS_static and the internal catchment 747 

storage dynamics are arguably better represented. The SNS_static in the lumped model set-up 748 

did yield higher goodness of fit measures, but this could be simply related to the higher 749 

parameter uncertainty in the semi-distributed model due to having 36 parameters versus 15 750 

in the lumped model set-up.  751 

Ultimately, we have shown that CRNS technology provides a useful tool for semi-distributed, 752 

as well as lumped, rainfall-runoff modelling; and that the set-up will depend on whether the 753 

application requires a semi-distributed approach or not.  Here, the semi-distributed HBV-light 754 

rainfall-runoff model served as a learning tool to investigate the role of near- surface storage 755 

and its spatiotemporal variation in the catchment-scale S-Q relationship. While the 756 

importance of SNS was evidenced by the improved model internal dynamics through the 757 

combined calibration (Dimitrova Petrova et al., 2020a), the additional effort associated with 758 

the combined static and portable CRNS approach for rainfall-runoff modelling yielded a 759 

relatively small gain in terms of simulated discharge. In this predominantly agricultural 760 

landscape, where land use managements (e.g. ploughing, artificial drainage) homogenises 761 

the soils at the near surface, data from the static CRNS installed at a landscape-762 
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representative location appeared to sufficiently inform catchment-scale SNS dynamics (as 763 

demonstrated in Dimitrova- Petrova et al., (2020a)).  764 

Further testing of the method in environments with contrasting climates and where spatial 765 

heterogeneity in SNS is more apparent will help evaluate whether deploying solely a static 766 

CRNS at a representative location in a catchment is sufficient or the combined approach 767 

could help to better characterise near-surface storage spatial heterogeneities. Another 768 

recommendation would be to test the use of CRNS in rainfall-runoff modelling in catchments 769 

with more pronounced seasonality. Such applications could help evaluate the trade-offs 770 

between the variable sensing depth of CRNS (Baroni et al., 2018; Peterson et al., 2016) and 771 

the usefulness of near-surface storage data to characterise catchment storage dynamics 772 

and potentially improve flood forecasting (Massari et al., 2014; Massari et al., 2018). 773 

Although not yet applied to hydrological modelling, similar but more data intense CRNS 774 

studies in drier agricultural landscapes (Gibson & Franz, 2018; McJannet et al., 2017) have 775 

successfully assessed spatiotemporal dynamics of near-surface storage. While distributed 776 

soil management poses additional challenges in mixed-agricultural environments, a 777 

combined CRNS approach complemented with a few continuous point-profile measurements 778 

could help elucidate the wider applicability of the approach and increase its information value 779 

along the SWC profile (Scheiffele et al., 2020). In addition, more complex models more 780 

sensitive to storage might benefit even more from the spatially variable SNS information 781 

produced using the combined static and portable CRNS data approach.  782 

 783 

5. Conclusions 784 

We combined static and portable CRNS sensors to assess the spatial variability of near-785 

surface soil water storage dynamics in a small (10km2) humid mixed-agricultural catchment. 786 

For that, we developed and tested a method suited to this environment, which extends the 787 

information content of static CRNS to key soil-land use units. We demonstrated that the 788 
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approach worked well to characterise SWC dynamics at all key SLU units in the Elsick study 789 

catchment, although recommend careful consideration of additional SWC calibration data 790 

that accounts for spatial variability in depth as well as within the CRNS footprint. Within our 791 

approach we also addressed landscape-specific CRNS related challenges. Firstly, much 792 

longer integration time of neutron counts (~4 hours), compared to temperate and semi-arid 793 

sites, were needed to account for high neutron uncertainty. Secondly, this study identified 794 

the need for additional parameter calibration of the SWC CRNS function for characterising 795 

SLU units with contrasting soil hydraulic properties. Here this involved the Moorland on 796 

organic-rich poorly drained soils, typical for this and many other humid landscapes. We then 797 

tested the value of the new spatially variable SWC catchment data for the catchment for a 798 

semi-distributed rainfall-runoff model calibration, in comparison to simulations using just the 799 

static CRNS data in a previous study. Based on minimal differences in model efficiency and 800 

simulated runoff we conclude that (i) data from static CRNS at a landscape-representative 801 

location might suffice to inform rainfall-runoff modelling at the small (1-10 km2) catchment 802 

scale (ii) depending on the research needs and objectives a (semi-)distributed model 803 

structure might be useful in heterogeneous environments, but not strictly necessary. This 804 

preliminary study shows the potential of combining CRNS technologies to assess 805 

spatiotemporal variability of near-surface water storage in humid agricultural landscapes. It 806 

also encourages further investigations in environments with contrasting climate or 807 

pronounced seasonality to improve its accuracy and applicability. Depending on model 808 

structure and the degree to which near-surface storage dynamics vary within the landscape, 809 

such datasets can improve storage-discharge relationships, flood and agricultural 810 

management applications in humid landscapes. 811 

 812 
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 1255 

Table 1. Distribution of soil-land use (SLU) classes in the Elsick catchment. In bold the classes 1256 

represented by the CRNSportable sampling (covering 94% of the catchment).  1257 

 

Soil land use (SLU) class 

 

 

 

% 

CRNSstatic 

 

% 

Elsick 

Crop – Imperfectly drained (CropI) 

Rotational crops on imperfectly drained podzols  

 

- 

 

35% 

 Crop – Poorly drained (CropP) 

Rotational crops on poorly drained gleys  

 

75% 

 

32% 

 Pasture – Freely drained (PastureF) 

Pasture on freely drained podzols  

 

25% 

 

17% 

Moorland- Poorly drained (MoorlandP) 

Moorland and woodland on poorly drained peats and peaty podzols 

with organic-rich surface layer 

 

 

- 

 

 

10% 

Others (Forest plantations on mineral soils) - 4% 

Suburban and quarries - <2% 

Open Water - <1% 

 1258 

1259 
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 1260 

 1261 

Table 2. Initial parameter ranges of the two CRNS calibration approaches tested for deriving synthetic 1262 

SWCSLU timeseries from the combined CRNS dataset. 1263 

Calibration N0 a0  a1 a2 Initial 

parameter 

range N0 

Initial parameter 

range ai 

Typical 

(SWCtyp) 

calibrated fixed fixed fixed  -  Fixed 

a0=0.0808 [cm3 g-1] 

a1=0.372 [-] 

a2=0.115 [cm3 g-1] 

New 

(SWCnew) 

calibrated calibrated calibrated calibrated N0_static = 

3450 

cph±10% 

a0= [0 1] [cm3 g-1] 

a1=[0 1] [-] 

a2=[0 1] [cm3 g-1] 

 1264 

1265 
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 1266 

 1267 

1268 



56 
 
 

 1269 

Table 3. Overview statistics (median, minimum and maximum) of the goodness of fit of the 1270 

50 best model runs. Both the multiple criteria KGEmultiple as well as the individual KGE 1271 

measures are presented. 1272 

Goodness of fit Median [Min Max]  Calib.target 

KGEmultiple 0.51 [0.49-0.52] Multiple criteria (Eq. 7) 

KGE_Qsim 0.70 [0.63-0.74] QOUT 

KGE_Sdyn_PastureF 0.40 [0.25-0.49] SNS_PastureF 

KGE_Sdyn_CropI 0.36 [0.24-0.43] SNS_CropI 

KGE_Sdyn_CropP 0.33 [0.25-0.42] SNS_CropP 

KGE_Sdyn_MoorlandP 0.31 [0.22 - 0.37] SNS_MoorlandP 

 1273 

1274 
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Table 4. Overview of soil characteristics (bulk density ρdry, soil organic matter SOM and 1275 

lattice water LW) and calibrated parameters using the typical or the new sensor calibration 1276 

for each SLU unit. For the typical one, ai parameters are fixed (a0=0.0808, a1=0.372 and 1277 

a2=0.115, Desilets et al., 2010). For the new calibration all four parameters are calibrated. 1278 

RMSE (fit to field data) is also reported. 1279 

Soil Land 

Use  

Unit 

ρdry 

[g cm-3] 

SOM + 

LW  

[m3 m-3] 

Typical 

calibration  

New (N0 + ai) calibration  

   N0 [cph] N0 

[cph] 

a0 a1 a2 RMSE  

[m3 m-3] 

Static 

CRNS  

1.09 0.07 3450 (1) -  -  -  -  -  

CropP 1.13 0.07 3510 3610 0.326 0.278 0.944 0.033 

PastureF 0.98 0.07 3720 3214 0.521 0.194 0.83 0.035 

CropI 1.1 0.07 3680 3490 0.076 0.432 0.202 0.014 

MoorlandP 0.28 0.41 3910  4332 0.938 0.117 0.0974 0.006 

 1280 

1281 
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 1282 

Table 5. Overview statistics of near-surface soil water storage (SNS) estimates from the static CRNS 1283 

and individual SLU units (considered SNS timeseries for rainfall-runoff modelling in bold). 1284 

SNS 

(mm) 

Static 

SNS_static 

CropP PastureF CropI MoorlandP 

Typ. New Typ. New Typ. New Typ. New 

Min 66 44 41 70 69 48 40 220 222 

Mean 150 164 186 204 197 164 170 281 271 

Median 151 165 202 215 205 165 173 292 272 

Max 219 240 240 240 240 240 240 320 305 

SD 27 47 51 37 36 40 43 35 15 

NA 5 37 188 6 28 5 30 5 5 

 1285 

1286 
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 1287 

 1288 

Figure 1. The Elsick catchment and instrumentation, showing (a) the soil-land use (SLU) units 1289 

distribution and overview of the permanent and temporary monitoring infrastructure i.e. location of the 1290 

gauging stations, CRNSstatic and CRNSportable sensor sampling; (b) zoom of the CRNSstatic location 1291 

(yellow star) and footprint, covering two SLU units and soil sampling locations for sensor calibration. 1292 

The white stars and circumference indicate the locations where portable CRNS was deployed and 1293 

distributed topsoil (0-6 cm) SWC measurements were taken within its footprint; (c) the static (i.e.  1294 

permanently installed) CRNS-weather station and portable CRNS; (d) to (g) show sampling locations 1295 

of individual SLU units: (d) PastureF; (e) CropP; (f) CropI and (g) MoorlandP.  1296 
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Figure 2. Timeseries of P, QOUT, PET and SWCstatic for the period 14 November 2015 to 31 December 1301 

2019. Panel C highlights in blue the three specific periods during which CRNSportable sampling took 1302 

place. Daily depth-distance weighted averages of field SWC sampled using theta probe (diamond) or 1303 

soil samples (circles) at each SLU unit are also shown, standard deviation (SD, as error bars) also 1304 

shown. CRNSstatic calibration includes soil samples taken at the PastureF and CropP SLU units.  1305 

Panels C1 to C3 zoom in those periods. Sampling days on which soils were frozen are indicated with 1306 

X in panel C and C2. 1307 

1308 
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 1309 

 1310 

Figure 3. Overview of the relationships of topsoil SWC (either theta probe θSLU or soil cores 1311 

information) the four SLU units to proxies of catchment wetness dynamics (a) SWCstatic; (b) API7 and 1312 

(c) QOUT. Daily averages of SWCstatic (grey circles) are also plotted against API7 and QOUT (Figure 3 B 1313 

and C, respectively) for context. Boxplots on the right-hand side illustrate the range of the field SWC 1314 

data.  1315 

1316 
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 1317 

 1318 

Figure 4. CRNS sensors cross-calibration A) Scatterplot showing correlation between the scaled 1319 

corrected counts of portable CRNS (Npihportable) versus static CRNS (Npihstatic) within the footprint of 1320 

the permanently installed sensor. B) Boxplots showing the spread of the ratio Portable/Static CRNS 1321 

for 4hrs integration times and the mean of the ratios (0.654, in red) (median shown as the thick black 1322 

line of the boxplot). 1323 

1324 



65 
 
 

 1325 

 1326 

 1327 

Figure 5. Relationship between static and portable CRNS data derived from neutron counts corrected 1328 

for atmospheric influences, in the case of the portable (NsSLU) and additionally corrected for the effect 1329 

of vegetation in the case of the static (Npihv).for integration times of 4h, all scaled to 1h (cph). Each 1330 

subplot corresponds to an individual soil-land use unit. In brackets the weighted volumetric SWC (θdw 1331 

in m3 m-3) measured in the field using the θ probe. The colours of the dots indicate whether the field 1332 

soil moisture was considered dry (red), intermediate (green) or wet (dark blue) or if the topsoil was 1333 
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frozen (light blue). Error bars correspond to the coefficient of variance (CV). Black line represents the 1334 

trendline of the linear regression (y=ax+b). Grey line represents a 1:1 relationship. 1335 

  1336 

 1337 

Figure 6. The Npihvstatic-SWC relationship for the static CRNS (black) and the Ns_SLU-SWC synthetic 1338 

timeseries, using typical (in red) and new (in green) sensor calibration together with the field data 1339 

tested.  1340 
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 1342 

 1343 

 1344 

Figure 7. Portable SWC and related variables: overview A) Daily average Npihv for CRNSstatic and 1345 

Ns_SLU for each individual SLU units. B) SWC for the CRNSstatic and synthetic estimates SWCSLU of 1346 
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individual SLU units; C) Effective depth (zeff) of CRNS and estimates for individual SLU units; d) 1347 

Estimated SNS (in mm) for with  CRNSstatic and SNS_SLU for individual units.. 1348 

 1349 

 1350 

 1351 

 1352 

 1353 

 1354 

 1355 
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Figure 8. Semi-distributed rainfall-runoff modelling outcomes. Panel A show the time series of 1360 

incoming precipitation P and the time series of observed QOUT, median (in red) and uncertainty bands 1361 

(in grey) of Qsim of the best 50 runs using a multiple-criteria calibration approach i.e. combining  1362 

SNS_SLU and QOUT as model calibration targets. Panel B to E show the simulated dynamic storage Sdyn 1363 

and corresponding the SNS_SLU data used for its calibration. The median (in red) and uncertainty bands 1364 

(in grey) of the best 50 runs in also displayed. Pareto ranking of (KGEmultiple, Eq. 7) used as a 1365 

goodness of fit measure. 1366 

 1367 



73 
 
 

Appendix I   Definitions of storage and related terms. 1368 

Abbreviation Units Definition Reference 

CRNS [-] Cosmic ray neutron sensor Hydroinnova, New Mexico 

CRNSstatic [-] A static cosmic ray neutron sensor installed in a permanent location This study 

CRNSportable [-] A portable cosmic ray neutron sensor which can be moved to different locations. Applications include rover 

(mounted on a vehicle), backpack (carried on a field operator’s back). The current study uses the suitcase 

or cross-calibrator version of Hydroinnova. 

(Dong et al., 2014; Franz, 2018; 

Hydroinnova, 2020) 

Nraw [cph] Cosmic ray neutron intensity as measured by the CRNS, in neutron counts per hour [cph], This study 

Npih(v) [cph] Cosmic ray neutron intensity measured as neutron counts per hour [cph], inversely correlated to all 

hydrogen present in the upper decimetres of the subsurface and the first few hectometres of the 

atmosphere above the ground surface. The N signal is corrected for effects of atmospheric pressure (p), 

incoming neutron flux (i), air humidity (h) and in some cases the effect of aboveground vegetation (v) 

(Baatz et al., 2015; Zreda et al., 

2012; Zreda et al., 2008) 

Npihvstatic [cph] Npihv, as defined above, derived from data obtained with the static CRNS (Baatz et al., 2015; Zreda et al., 

2012; Zreda et al., 2008) 

Npihportable [cph] Npih, as defined above, derived from data obtained with the portable CRNS (Baatz et al., 2015; Zreda et al., 

2012; Zreda et al., 2008) 

Ns_portable [cp4h] Npihportable (up)scaled by a known ratio, so that portable matches the magnitude/potency of the static CRNS 

data. Used to define the relationship between portable and static CRNS data via linear regression 

This study 
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Ns_SLU (t) [cph] Synthetically derived time series of neutron intensity derived for an individual soil-land use unit within the 

catchment, from time series of Npihstatic, based on the linear relationship between Ns_portable[cp4h] and 

Npihstatic. 

This study 

zeff (t) [cm] Estimated effective sensing depth of the CRNS at time t, a function of SWC, bulk density and soil organic 

matter (SOM) 

(add ref from methods) 

SWCstatic [m3 m-3] Field average (~ 14 ha) soil water content based on calibrated static Cosmic Ray Neutron Sensor data; 

integrated over a time-variable sensing depth zeff (between 0.07 and 0.2 m) 

(Schrön et al., 2017; Zreda et al., 

2008) 

SWCtyp [m3 m-3] Synthetically derived time series of field average soil water content using a typical sensor calibration (N0 

parameter) for an individual soil-land use unit within the catchment; integrated over a time-variable sensing 

depth zeff 

This study 

SWCnew [m3 m-3] Synthetically derived time series of field average soil water content using a new sensor calibration (N0 and ai 

parameters) for an individual soil-land use unit within the catchment; integrated over a time-variable sensing 

depth zeff 

This study 

SWCSLU [m3 m-3] Synthetically derived time series of field average soil water content for individual soil-land use unit within the 

catchment; integrated over a time-variable sensing depth zeff. The SWC values are derived using either 

typical or new sensor calibration of the neutron intensity 

This study 

θSLU [m3 m-3] The arithmetic average of the theta θ probe measurements on each sampling day, used to characterise the 

CRNS signal and to account for point scale spatial variability of SWC within the footprint on that day 

(Delta T Devices Ltd.) 
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SNS [mm] Near-surface storage for a defined depth (z=0.4 m) This study, (Dimitrova-Petrova et 

al., 2020a) 

SNS_static [mm] Near-surface storage for a defined depth (z=0.4 m) determined as the sum of SWCstatic and SWCstatic
sub This study 

SNS_SLU [mm] Near-surface storage for a defined depth (z=0.4 m) determined as the sum of SWCSLU and SWCSLU
sub This study 

Sdyn_SLU [mm] Dynamic Storage(catchment scale), considered to control the majority of streamflow response. In the 

selected model structure set-up, it is the sum of the storage in the SM (soil moisture) and the SUZ (upper 

groundwater zone) boxes in the semi-distributed set-up of the HBV-light model. The indices correspond to 

the SLU units, data from which (SNS_SLU) was used to calibrate each of the four dynamic storage boxes. 

This study 

SM [mm] HBV model: Soil moisture box with its largest value equal to FC (field capacity). Partitioning of rainfall in soil 

water content and groundwater recharge. Does not produce runoff 

(Seibert, 2005) 

SUZ [mm] HBV model: Upper groundwater box, recharged by the SM box. Faster runoff (Q0) of the SUZ box depends 

on the UZL (upper zone limit) parameter which acts as a threshold above which runoff is produced. Slower 

runoff Q1 from this box depends on K1 recession constant. 

(Seibert, 2005) 

SLZ [mm] Lower groundwater box (PERC in mm day-1 defines the max percolation rate from the upper to the lower 

groundwater box)  

(Seibert, 2005) 

 1369 

1370 



76 
 
 

 1371 

 1372 

Supplementary Table 1. Initial and final parameter ranges for the multi-criteria model calibration using synthetically derived CRNS SNS_SLU of four SLU units 1373 

together with observed discharge of the best 50 runs. Parameters Pcorr=1, TT=0, CFMAX=1, CET=1, CFR=0.05, CWH=1 were fixed. 1374 

Initial parameter range  Initial parameter range  

 Soil Routine 

Lower 

limit 

Upper 

limit 

Final parameter 

range 

Median [Min Max] 

Response 

function Lower limit Upper limit 

Final parameter range 

Median [Min Max] 

BETAPastureF 1 6 2.5 [1.1-5.5] K0PastureF 0.1 0.8 0.36 [0.13-0.8] 

BETACropI 1 6 3.5 [1.3-5.9] K0CropI 0.1 0.8 0.42 [0.11-0.78] 

BETACropP 1 6 3.2 [1.1-5.9] K0CropP 0.1 0.8 0.41 [0.14-0.77] 

BETAMoorlandP 1 4 2.5 [1-3.6] K0MoorlandP 0.1 0.8 0.55 [0.15-0.8] 

FCPastureF 10 500 318 [50-446] K1PastureF 0.05 0.8 0.63 [0.22-0.79] 

FCCropI 10 500 235 [126-477] K1CropI 0.05 0.8 0.59 [0.07-0.8] 

FCCropP 10 500 246 [182-327] K1CropP 0.05 0.8 0.67 [0.08-0.79] 

FCMoorlandP 200 500 318 [210-460] K1MoorlandP 0.1 0.8 0.54 [0.18-0.8] 

LPPastureF 0.3 1 0.5 [0.3-1] K2 0.001 0.1 0.054 [0.007-0.098] 

LPCropI 0.3 1 0.5 [0.3-0.9] MAXBAS 1 2.5 1.4 [1-2.3] 

LPCropP 0.3 1 0.4 [0.3-1] PERCPastureF 0 4 1.2 [0.2-3.6] 

LPMoorlandP 0.7 1 0.8 [0.4-1] PERCCropI 0 4 0.5 [0-3.5] 

 PERCCropP 0 4 1.1 [0-3.7] 

   PERCMoorlandP 0 4 1.3 [0.1-3.5] 

   UZLPastureF 0 70 22 [2-67] 

   UZLCropI 0 70 40 [0-70] 

   UZLCropP 0 70 34 [7-65] 

   UZLMoorlandP 4 70 43 [7-69] 
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