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Abstract
Purpose  Mechanical properties of 1D nanostructures are of great importance in nanoelectromechanical systems (NEMS) 
applications. The free vibration analysis is a non-destructive technique for evaluating Young's modulus of nanorods and 
for detecting defects in nanorods. Therefore, this paper aims to study the longitudinal free vibration of a stepped nanorod 
embedded in several elastic media.
Methods  The analysis is based on Eringen’s nonlocal theory of elasticity. The governing equation is obtained using Hamilton’s 
principle and then transformed into the nonlocal analysis. The dynamic stiffness matrix (DSM) method is used to assemble 
the rod segments equations. The case of a two-segment nanorod embedded in two elastic media is then deeply investigated.
Results  The effect of changing the elastic media stiffness, the segments stiffness ratio, boundary conditions and the nonlocal 
parameter are examined. The nano-rod spectrum and dispersion relations are also investigated.
Conclusion  The results show that increasing the elastic media stiffness and the segment stiffness ratio increases the natural 
frequencies. Furthermore, increasing the nonlocal parameter reduces natural frequencies slightly at lower modes and sig-
nificantly at higher modes.

Keywords  Nanorod · Stepped rod · Exact solution · Elastic Media · Continuum mechanics · Dynamic stiffness matrix

Abbreviations
a	� Internal characteristic length
Aj	� Cross-sectional area of jth segment
Aj1	� Aj

A1

C1j
,C2j

	� Constants
Cijkl	� Elastic modulus tensor
�	� Overall DSM
�j	� DSM of jth segment without attachments

e0	� Calibration parameter
�kl	� Strain tensor
Ej	� Young’s modulus of jth segment
Ej1	� Ej

E1

�j	� Forces vector
J	� Segments number
J + 1	� Nodes number
Kj	� Elastic media stiffness of jthsegment
K̄1	� Dimensionless elastic media stiffness of 1st 

segment
Kj1	� Kj

K1

=
K̄j

K̄1

Ks1
, KsJ+1

	� Linear spring stiffness at left and right end
K̄s1 , K̄sJ+1	� Dimensionless stiffness at left and right end
l	� External characteristic length
lj	� Lj

L
 dimensionless length of jth segment

L	� Total length of the rod
Lj	� Length of jthsegment
mj	� �jAj mass per unit length of jth segment
Nj	� Axial force per unit length of jthsegment
�	� Attachments matrix
t	� Time
uj(x, t)	� Axial displacement of jthsegment
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�j	� Displacement vector of jth segment
x	� Axial coordinate
X	� Reference point
X′	� Any point in the body
Γj	� Kinetic energy of jthsegment
�xx	� Strain in x direction
�	� Nonlocal parameter
�j	� xj

Lj
 dimensionless axial coordinate

Πj	� Potential energy of jth segment
�j	� mass density of jth segment
�j1	� �j

�1

�ij	� Stress tensor
�c
ij
	� Classical stress tensor

�xx	� Stress in x direction
�	� Kernel function
�	� Circular frequency

Ω1(n)
	� Dimensionless natural frequency

√
�1�

2L2

E1A1

∇2	� Second-order spatial gradient

Introduction

Recently, researchers have shown an increased interest in 
nanostructures due to their extraordinary properties. High 
strength, good thermal and electrical properties are some 
of the properties of nanostructures [1]. Nanostructures have 
many technological applications, such as, micro and nano 
electromechanical systems (MEMs and NEMs). In order to 
develop an accurate design of nanostructures, it is important 
to understand their behavior.

Nanorods, nanobeams and nanowires are examples of 
1D nanostructures. One of the popular nanostructures is 
carbon nanotubes (CNTs) were discovered by Iijima [2]. 
The vibrations of 1D nanostructures have recently received 
considerable attention due to their application in several 
nanotechnological instruments such as atomic force micros-
copy, nanomechanical cantilever sensors, etc. The natural 
frequency of 1D nanowires can be determined experimen-
tally by driving these nanorods to their resonant frequency 
modes using mechanical or electrical methods. Then, by 
using vibration analysis, the nanowires Young’s modulus 
can be evaluated. One of the advantages of this method is 
that it is nondestructive .

The vast research in nanostructures may be classified 
into two main categories [1]: the experimental methods and 
the analytical modeling. The experimental methods are a 
possible way to investigate nanostructures [3], although the 
experimental methods are quite challenging because control-
ling every parameter in nanoscale is a complex task.

The analytical modeling category can be divided into two 
sub-groups: quantum mechanics and continuum mechanics. 

Quantum mechanics modelling may be grouped into the 
following categories: ab-initio method, density functional 
theory, Monte Carlo simulation, molecular mechanics and 
molecular dynamics. Molecular dynamics (MD) is one of 
the most popular quantum mechanics methods. Molecular 
dynamics is a simulation in the atomistic level [4]. There-
fore, MD is time consuming, computationally expensive and 
not suitable for the analysis of nanostructures that consist of 
a large number of atoms and molecules [5].

Continuum mechanics, that is popular to engineers on its 
classical formulation, is used in nanostructures analysis [6]. 
In the classical continuum mechanics theory, the stresses at 
a point X depend on the strain at that point X only. The clas-
sical continuum theory requires some modifications at the 
nano scale because the size effect of the nanostructures has 
a great influence on its behavior [7].

In general, conventional continuum mechanics is a size 
effect-free theory. Therefore, much research is done to include 
the size effect into the classical continuum mechanics. This 
lead to many theories such as nonlocal elasticity theory, mod-
ified coupled stress theory, surface energy methods, multi-
scale models, and hybrid methods. In the current work, the 
analysis is based on nonlocal continuum elasticity theory [8]. 
In the nonlocal elasticity theory, the stress at a point X is a 
function of strain at that point X and all nearby points X′ in the 
continuum [9]. Eringen theory is simple in deriving the equa-
tions and analysis of nanostructures. It is also worth noting 
that this theory can be divided into integral-based and differ-
ential-based models. A large number of studies investigated 
the static analysis [10], buckling [11]and vibration [12–14] of 
nanostructure using nonlocal continuum mechanics.

The longitudinal vibration of nanorod are studied 
using different analysis methods and parameters by many 
researchers. Aydogdu [15] studied the axial vibration of 
nanorod for clamped–clamped (C–C) and clamped–free 
(C–F) boundary conditions. Huang [16] examined the 
nonlocal long-range influence on the axial vibration 
of nanorod. Aydogdu [17] examined the effect of vari-
ous parameters like C–C and C–F boundary conditions 
and the stiffness of the elastic medium. Adhikari et al. 
[18] investigated the free and forced axial vibration for 
nanorod using the dynamic finite element analysis. Demir 
and Civalek [19] examined the size effect on a continu-
ous and discrete non-local models. They studied both the 
torsional and axial vibration analysis of microtubules. 
Güven [20] studied the longitudinal vibration of nano-rod 
using nonlocal strain gradient elasticity theory. The lat-
eral deformation and shear strain effects are included by 
using the Love rod model and Bishop’s correction. Adhi-
kari et al. [21] used the dynamic finite element method 
to investigate a nanorod embedded in an elastic medium. 
They used conventional and dynamic finite elements 
methods for obtaining the dynamic response for the rod. 



1401Journal of Vibration Engineering & Technologies (2022) 10:1399–1412	

1 3

Gul et al. [22] used doublet mechanics to investigate C–C 
and C–F carbon nanotube embedded in an elastic media. 
Numanoğlu et al. [23] presented the effect of nonlocal 
parameter, boundary conditions, attachments and length 
on the axial vibration behavior of nanorod using Erin-
gen’s nonlocal theory. Loghmani et al. [24] analysed the 
free axial vibration of several cracked, stepped nanorod 
with attached mass at the tip of the rod. Ebrahimi et al. 
[25] investigated static stability and vibration analysis of 
a functionally graded nanobeams. The analysis is based 
on nonlocal theory of elasticity and modified couple 
stress theory to capture the size effects accurately. Civ-
alek et al. [26] analyzed the lateral and axial vibration of 
embedded nanobeams based on Eringen’s theory using 
finite element method. Yayli [27] used Eringen’s theory to 
investigate the axial vibration of Rayleigh nanorod which 
is attached to axial elastic springs at both ends.

In an exact solution of multi-span rod or beams, the 
boundary conditions and the intermediate conditions of 
each segment are derived [28, 29]. Then these equations 
are assembled. There are several methods to assemble the 
segments equations but the most common methods are 
numerical assembly technique (NAT) [30, 31], transfer 
matrix method (TMM) [32, 33] and DSM [34–36]. In the 
current manuscript, DSM method is adopted.

In the majority of studies, vibrations are described as a 
linear combination of a structure’s modes. Another way to 
describe vibrational phenomena is to think of vibrations 
as moving waves along structures. Media with various 
material characteristics and cross-section areas usually 
have different impedances. Many researchers have inves-
tigated impedance mismatch in solid structures [37–40]. 
Both descriptions frequently provide complementary 
views for vibrational analysis and this was considered in 
the first verification example.

From the previous literature and to the best of author’s 
knowledge, there is no single study which dealt with 
vibration of a stepped nonlocal rod embedded in several 
elastic media using DSM method. Therefore, the primary 
purpose of the current work is to fill this gap by solving 
such problem. The rest of the paper is organized as fol-
lows: in Sect. 2, a brief overview on the nonlocal Erin-
gen’s theory is explained. Then the equation of motion is 
derived in the local formulation using Hamilton’s method. 
Also, the local formulation for equation of motion is 
transformed to the nonlocal formulation using nonlocal 
Eringen’s theory. In Sect. 3, the DSM method is used for 
the analysis. The case of two-segment nanorod embedded 
in two elastic media is introduced and the verification 
results are presented and validated with the published 
results in Sect. 4. In addition, the results for a C–C and 
C–F boundary conditions are introduced and discussed. 
Finally, the conclusion of the study is given in Sect. 5.

The Nonlocal Mathematical Model

A Brief Overview on the Nonlocal Elasticity Theory

The constitutive equations of linear, homogeneous, iso-
tropic and nonlocal elastic solid with zero body forces are 
given by Eringen [41]. The stress tensor is defined by the 
integro-partial differential equation as:

where �ij and �c
ij
 are the stress tensor and classical stress ten-

sor, respectively. X is a reference point,X′ is any point in the 
body and � (|X� − X|, �) denotes the nonlocal kernel func-
tion. The kernel function � depends on the distance between 
the points X and X′ and the nonlocal parameter � =

e0a

�
 . The 

parameters a and � are the internal and external characteris-
tic lengths, respectively. The parameter e0 is used to calibrate 
the results of the nonlocal model to the atomic model. How-
ever, the identification of the small scaling parameter e0 has 
not been fully understood. Several researchers reported sev-
eral values for this parameter and these values are found to 
have a large scatter [9].

The integro-partial differential Eq. (1) is simplified to 
partial differential equation as:

where Cijkl is elastic modulus tensor, �kl is strain tensor and 
∇2 denotes the second order spatial gradient. The nonlocal 
constitutive relation for 1D structures can be written as:

Equation of Motion in the Classical Form

A schematic representation for stepped nanorod embedded 
in several elastic media is shown in Fig. 1. The total length 
of the rod is L, that has J segments and J + 1 nodes. The 
rod is constrained from the left and right sides by linear 
springs with stiffness Ks1, KsJ+1 respectively. The axial 
coordinate is xj and the axial displacement is uj . 
Ej, �j, Lj, Aj and Kj are the Young’s modulus, density, 
length, area and the surrounded elastic media stiffness of 
jth segment respectively. The stress concentration at each 
step is neglected during the present work.

The equation of motion of jth segment can be obtained 
using Hamilton’s principle, which can be written as:

(1)�ij(X) = ∫
Ω

�(|X� − X|, �)�c
ij
(X�) dΩ(X�),

(2)
(
1 − �2�2∇2

)
�ij(x) = �c

ij
(x) = Cijkl�kl(x),

(3)�xx −
(
e0a

)2 d2�xx

dx2
= E�xx.
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where � is the variational symbol, Πj is the potential or strain 
energy and Γj is the kinetic energy of jth segment.

The axial displacement and strain fields of jth segment 
are given by:

The kinetic and potential energies of jth segment embedded 
in elastic medium can be expressed as:

where mj is the mass per unit length of jth segment. Substi-
tuting Eqs. (6,  7) in Hamilton’s Eq. (4) gives:

Thus, the equation of motion of jth segment is obtained as:

The axial force per unit length (Nj) of jth segment is 
expressed as:

By differentiating Eq. (10) with respect to xj and substituting 
into Eq. (9), one can get:

(4)ℍj = �

[
∫

t2

t1

(
Πj − Γj

)
dt

]
= 0,

(5)uj = uj(x, t), �j =
�uj

�x
.

(6)Γj =
1

2 ∫
Lj

0

mj

(
�uj

�t

)2

dxj,

(7)Πj =
1

2 ∫
Lj

0

[
EjAj

(
�uj

�x

)2

+ Kju
2
j

]
dxj,

(8)
∫

Lj

0 ∫
t2

t1

[
EjAj

(
�uj

�xj

)
�

(
�uj

�xj

)

+ Kjuj�
(
uj
)
− mj

(
�uj

�t

)
�

(
�uj

�t

) ]
dxjdt = 0.

(9)Kjuj + mj

𝜕2uj

𝜕t2
= EjAj

𝜕2uj

𝜕x2
j

for every 0 < xj < Lj.

(10)Nj = EjAj

�uj

�xj
.

 Equation of Motion in the Nonlocal Form

The nonlocal constitutive equation of jth segment can be 
obtained from Eqs. (3, 10) as follows

Equations (11,  12) can be used to obtain the nonlocal equa-
tion of motion and the axial forces of jth segment

The partial differential equation in Eq. (13) can be solved 
using the separation of variables method as:

where T(t) = ei�t,� is the circular frequency and  i2 = −1.
Substituting Eq. (15) into Eqs. (13) and (14) and transform-

ing them into dimensionless form as:

(11)
�Nj

�xj
= Kjuj + mj

�2uj

�t2
.

(12)Nj −
(
e0a

)2 �2Nj

�x2
= EjAj

�uj

�xj
.

(13)

Kjuj + mj

�2uj

�t2
−
(
e0a

)2
Kj

�2uj

�x2
j

−
(
e0a

)2
mj

�4uj

�x2
j
�t2

= EjAj

�2uj

�x2
j

,

(14)Nj =

[
EjAj +

(
e0a

)2(
mj

�2

�t2
+ Kj

)]
�uj

�xj
.

(15)uj
(
xj, t

)
= ûj

(
xj
)
T(t),

(16)
EjAj −

(
e0a

)2(
mj �

2 − Kj

)

L2
j

U��
j
+ (mj�

2 − Kj)Uj = 0,

(17)Nj

(
�j
)
=

EjAj −
(
e0a

)2(
mj�

2 − Kj

)
Lj

U�
j
,

Fig. 1   Stepped nanorod embed-
ded in several elastic media
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where 𝜉j =
xj

Lj
, ûj

(
xj
)
= Uj

(
𝜉j
)
 and dûj

dxj
=

1

Lj

dUj

d𝜉j
 .

Equations (16) and (17) can be simplified by considering 
Ej1 =

Ej

E1

, �j1 =
�j

�1
, lj =

Lj

L
, Kj1 =

Kj

K1

, and Aj1 =
Aj

A1

 as:

where �j is the dimensionless wavenumber as shown below

and

where Ω1 =

√
�1L

2�2

E1

 and K̄1 =
K1L

2

E1A1

 are the dimensionless 

frequency and stiffness of the 1st segment respectively and 
� =

e0a

L
 is the dimensionless nonlocal parameter.

The solution of Eq. (18) is presented in terms of C1j and 
C2j

 as:

The axial force may be expressed as:

Wave Characteristics (Spectrum and Dispersion 
Relations)

In this section, the wave propagation concepts is used to deter-
mine the wave parameters, namely the wavenumber (�j) and 
the two different wave speeds (phase speed (Cph) and group 
speed (Cgr) ). From Eq. (20) the wave frequency is a function 
of the wavenumber �j , the nonlocal parameter � , the mate-
rial property (�j1,Ej1) , rod geometry (Aj1, lj) , first elastic 
medium stiffness K̄1 , and elastic media stiffness ratio (Kj1) . If 
the wavenumber is real, the wave is said to be propagating. If 
the wavenumber is completely imaginary, the wave dampens 
out and is hence known to as evanescent mode. If wavenum-
ber is complex, the wave will attenuate as it propagates. From 

(18)U��
j
+ �2

j
Uj = 0,

(19)Nj

(
L

E1A1

)
= �jU

�
j
,

(20)𝛼j =

√√√√√√√
𝜌j1�

2
j

Ej1

Ω2
1
−

Kj1l
2
j

Ej1Aj1

K̄1

1 − 𝜇2(
𝜌j1

Ej1

Ω2
1
−

Kj1

Ej1Aj1

K̄1 )

,

(21)𝛾j =
Ej1Aj1

lj

(
1 − 𝜇2

(
𝜌j1

Ej1

Ω2
1
−

Kj1

Ej1Aj1

K̄1

))
,

(22)Uj

(
�j
)
= C1j cos

(
�j�j

)
+ C2j sin(�j�j).

(23)Nj

(
L

E1A1

)
= �j�j(−C1j sin

(
�j�j

)
+ C2j cos(�j�j)).

Eq. (20), the propagating mode in this case is dispersive (i.e., 
the wave shape changes with propagation). In case of � = 0 
and K̄1 = 0 the wavenumber becomes linearly proportional to 
wave frequency, which results in nondispersive propagating 
mode (i.e., the wave retains its shape as it propagates). In our 
case, the waves will not start propagating except after certain 
frequency called cut-off frequency (Ωc) . The wavenumber 
before this frequency will be imaginary. For the present case 
the cut off frequency is obtained by setting �j = 0 as shown in 
Eq. (24). Moreover, the waves stop propagating after certain 
frequency called escape frequency (Ωes) . The escape frequency 
is obtained by setting �j tending to ∞ as shown in Eq. (25).

Then, the phase and group speeds should be determined. 
The phase speed is the speed of the individual particles that 
propagate in the structure. The transmission of any physical 
quantity in a waveguide is not connected with phase speed. 
It is related to the wavenumber through the relation

During the propagation of waves, group of particles are 
travelled in bundles. The speed of each bundle is called the 
group speed. This is the velocity of energy transport, and it 
must be constrained. It is mathematically expressed as

The DSM Method Formulation

DSM of jth Segment

The boundary conditions for dimensionless axial displacement 
and axial force of jth segment can be expressed as:

At xj = 0(i.e., �j = 0), Uj = U1j
 and Nj = −N1j

At xj = Lj(i.e., �j = 1), Uj = U2j
 and Nj = N2j

Substituting the boundary conditions into Eqs. (22, 23) to 
obtain the displacements and forces vectors respectively as:

(24)Ωc =

√
Kj1 K̄1

𝜌j1 Aj1

,

(25)Ωes =

√√√√√√
1 + 𝜇2

Kj1

Ej1Aj1

K̄1

𝜇2
𝜌j1

Ej1

,

(26)Cph = Re

(
Ω1

�j

)
.

(27)Cgr = Re

(
�Ω1

��j

)
.
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The displacements and forces vectors may be expressed 
respectively as:

where,

and �j is the DSM of jth segment without attachments.

The Overall DSM

The overall DSM for all the system (stepped nanorod embed-
ded in various elastic media with different boundary condi-
tions) may be obtained as:

where � is the overall dimensionless attachments matrix in 
diagonal form as:

where K̄s1 =
Ks1E1A1

L
 and K̄s(J+1) =

Ks(J+1)E1A1

L
 are the left and 

right linear dimensionless stiffness respectively.
The overall DSM is function of the dimensionless natural 

frequency parameters Ω1 . Newton–Raphson method is used 
to solve the DSM in Eq. (33). The solution is obtained by 
using very small initial guess Ω0 = 10−9 and using incre-
mental step of Ωinc = 0.001 . The roots of this equation are 
the dimensionless natural frequency parameters Ω1.

(28)

[
U1j

U2j

]
=

[
1 0

cos(�j) sin(�j)

][
C1j

C2j

]
,

(29)

[
N1j

N2j

](
L

E1A1

)
= �j�j

[
0 − 1

− sin(�j) cos(�j)

][
C1j

C2j

]
.

(30)�j = �j�j,

(31)�j = �j�j = �j�j,

(32)�j = �j�
−1
j

=

[
Dj(1, 1) Dj(1, 2)

Dj(2, 1) Dj(2, 2)

]

(33)� =

⎡
⎢⎢⎢⎢⎢⎣

D1(1, 1) D1(1, 2) 0 0 0

D1(2, 1) D1(2, 2) + D2(1, 1) ∶ 0 0

0 ∶ ∶ ∶ 0

0 0 ∶ DJ−1(2, 2) + DJ(1, 1) DJ(1, 2)

0 0 0 DJ(2, 1) DJ(2, 2)

⎤
⎥⎥⎥⎥⎥⎦

+ �

(34)� =

⎡
⎢⎢⎢⎢⎢⎣

K̄s1
0 0 0 0

0 0 0 0 0

0 0 ⋱ 0 0

0 0 0 0 0

0 0 0 0 K̄sJ+1

⎤⎥⎥⎥⎥⎥⎦

Results and Discussions

This section is divided into three subsections. The first sub-
section describes a two-segment rod model. The second sub-
section includes some verification results which are selected 
from literature to verify the results of the present model. The 
third subsection includes some new results obtained using 
the present model.

Two‑Segment Nanorod Embedded in Two Different 
Elastic Media

Figure 2 shows two-segment nanorod made from the same 
material (E21 = �21 = 1) and embedded in two different elas-
tic media. The dimensionless elastic media stiffness of the 1st 
and 2nd segment are K̄1 and K̄2 = K21K̄1 respectively. The first 
and second segment dimensionless length are l1 and l2 = 1 − l1 
respectively. The dimensionless attached springs stiffness at 
the left and right are denoted by K̄s1

 and K̄s3
 , respectively. A21 

is the ratio of the second to the first cross sectional area.

Verification of Results

Example 1  This example presents the analysis of two-
segment nanorod with two different cross-sectional areas. 
The ratio A21 equals to 2, and there is no surrounding 

elastic media (K̄1 = K̄2 = 0 and K21 = 1) . The analysis is 
carried out at nanorod with total length L = 25 nm. The 
effects of the first step locationl1 = [0.01:0.99] and the 
nonlocal parameter e0a = [0 0.2 0.5] nm are investigated. 
C–C (K�

s1
= K�

s3
= ∞) and C–F (K�

s1
= ∞ and K�

s3
= 0) 

Fig. 2   Two-segment nanorod embedded in two different elastic media
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boundary conditions are investigated and compared with 
the results presented in [24].

Figures 3 and  4 show the first dimensionless natural fre-
quency Ω1(1)

 for C–C and C–F rod respectively. Figure 3 
shows that Ω1(1)

 decreases through the first quarter of step 
location and then increases through the second and third 
quarter then return to decreasing by going to the end. Fig-
ure 4 shows that Ω1(1)

 decreases through the first half of the 
step location ratio and return to increase by going to the 
end. It can be seen that the results are in good agreement 
with Loghmani, Yazdi [24] results.

Example 2  This example studies a uniform rod (A21 = 1) that 
is fully embedded in one elastic medium (K21 = 1) . 
Clamped-clamped (K�

s1
= K�

s3
= ∞ ) and C–F (K�

s1
= ∞ 

and K�
s3
= ∞ ) are investigated and compared with the solu-

tion presented in [22]. The analysis is carried out at 

K̄1 = 5, e0a =
0.1421√

12
 nm. Also, the variation of nanorod 

length L = 1:5 nm is examined.

Figures 5 and  6 show the first three dimensionless natu-
ral frequencies for C–C and C–F rod respectively for dif-
ferent lengths. The two figures indicate that with increas-
ing the nanorod length the scale effect decreases, and the 
results close to the classical effect. From the figure results, 
It can be seen that the results are in good agreement with 
the results of Gul et al. [22].

New Results of the Present Model

Spectrum and Dispersion Relations for a Uniform Rod 
Partially Embedded in an Elastic Media

A uniform rod (A21 = 1) partially embedded in an elastic 
media (K21 = 0) is investigated. The total length of nanorod 
L = 25 nm and the two-segment length ratio are (l1 = 0.25 

Fig. 3   The first dimensionless natural frequency for C–C rod

Fig. 4   The first dimensionless natural frequency for C–F rod

Fig. 5   The first three dimensionless natural frequency for C–C rod

Fig. 6   The first three dimensionless natural frequency for C–F rod
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and l2 = 0.75) . The analysis is carried out at K̄1 = 10 for 
e0a = [0, 0.5, 1] nm.

The spectrum and dispersion curves obtained from local 
( e0a = 0 ) and nonlocal rod model for the two segments of 
the rod are shown in Figs. 7 and 8. Figure 7 shows the vari-
ation of the nondimensional wavenumbers with nondimen-
sional wave frequencies for both local and nonlocal theories. 
From this figure, the waves start propagating in the second 
segment at any excitation frequency and does not have a 
cut-off frequency, unlike the first segment, the waves start 
propagation at a certain frequency called cut-off frequency. 
The cut-off frequencies are independent of the nonlocal 
parameter and directly proportional to the elastic media 
stiffness. In the present study and for the first segment, the 

nondimensional cut-off frequency is at 3.1623 for both local 
and nonlocal theories.

For the case of local theory ( e0a = 0 ), the wavenumbers 
increase linearly with the nondimensional frequency for 
the second segment as shown in Fig. 7 . This linear varia-
tion denotes that the waves will propagate in nondispersive 
mode (i.e., the waves do not change their shapes as they 
propagate) as shown in Fig. 8, where the group speed is 
constant with the increase in frequency. Also, the wave-
numbers increase monotonically for first segment with 
the increase in frequency and correspondingly, the group 
speed increase with increase in wave frequency. However, 
at higher frequencies, the group speeds attain a constant 

Fig. 7   Spectrum relation for dif-
ferent nonlocal parameters

Fig. 8   Group speed dispersion 
relation for different nonlocal 
parameters
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value. On the other hand, with the introduction of nonlocal 
parameter, the wave behavior is completely changed. For 
both segments the wavenumbers have a nonlinear variation 
with frequency, which indicates that the waves are dis-
persive in nature. Also, the wavenumbers tend to infinity 
at a certain frequency called escape frequency and after 
this frequency there is no wave propagation. The escape 
frequencies are inversely proportional to the nonlocal 
parameter and directly proportional to the elastic media 
stiffness. In the present case for the first segment, the non-
dimensional escape frequency is at 50.0999 and 25.1992 
and for second segment is at 50.0 and 25.0 for e0a = 0.5 
and 1 nm, respectively.

Uniform Rod Embedded in Two Different Elastic Media

A uniform rod (A21 = 1) embedded in two different elastic 
media is investigated. The total length of nanorod L = 25 nm 
and the two-segment are equal (l1 = l2 = 0.5) . The analysis 
is carried out at e0a = 0.5:2 nm, K21 = 0:5 and K̄1 = 0:10.

Clamped-clamped rod In the case of C–C rod and for free 
vibration analysis, the stiffness of the boundary springs takes 
the following values: K̄s1 = K̄s3 = ∞.

Figure 9 shows the first and second dimensionless natu-
ral frequencies of C–C rod for different nonlocal param-
eters at (a, b, c and d). It shows that with increasing K̄1 
or K21 the natural frequency increases. Figure 9a–d show 

Fig. 9   The first and second 
dimensionless natural frequency 
for C–C rod
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that with increasing the nonlocal parameter the natural 
frequency in both 1st mode and 2nd mode decreases.

Table 1 shows the first five dimensionless natural fre-
quencies for C–C rod at different nonlocal parameters 
e0a, K̄1 and K21 . The table results show that increas-
ing the values of K̄1, K21 , results in an increase in the 
dimensionless natural frequencies. By increasinge0a , the 

dimensionless natural frequencies decrease in all modes 
however the decrease is a slightly bigger in the higher 
modes.

Clamped-free rod In the case of clamped-free bound-
ary conditions the input values for the rod end conditions 
become as follows: K̄s1 = ∞ and K̄s3 = 0.

Table 1   First five natural frequencies for C–C rod

Where n is the mode index

Clamped-clamped rod

e0a = 0.5 nm e0a = 0.5 nm

K̄1
2 5 10 2 5 10

K21 n n

0.5 1 3.3646 3.6793 4.1434 0.5 1 3.3475 3.6636 4.1291
2 6.3525 6.5291 6.8166 2 6.2148 6.3952 6.6882
3 9.3406 9.46 9.6555 3 8.9022 9.0274 9.2318
4 12.2466 12.3384 12.4903 4 11.293 11.3924 11.5565
5 15.0333 15.1079 15.2313 5 13.3553 13.4392 13.5777

 1 1 3.439 3.8506 4.4527 1 1 3.4223 3.8357 4.4399
2 6.3914 6.6219 6.9893 2 6.2546 6.49 6.8644
3 9.3673 9.5261 9.785 3 8.9302 9.0967 9.3675
4 12.267 12.3887 12.5888 4 11.315 11.4468 11.6632
5 15.05 15.1493 15.3134 5 13.3741 13.4858 13.6699

2 1 3.5779 4.1434 4.9194 2 1 3.5618 4.1291 4.9063
2 6.4706 6.8166 7.3693 2 6.3354 6.6882 7.2497
3 9.4204 9.6555 10.0336 3 8.9859 9.2318 9.626
4 12.3079 12.4903 12.7903 4 11.3593 11.5565 11.8792
5 15.0831 15.2313 15.4748 5 13.4113 13.5777 13.8498

e0a = 1.5 nm e0a = 2 nm

K̄1
2 5 10 2 5 10

K21 n n

0.5 1 3.319732 3.637996 4.105913 0.5 1 3.282192 3.603507 4.07456
2 6.004947 6.191208 6.492895 2 5.745523 5.939616 6.25239
3 8.293825 8.427996 8.646293 3 7.623707 7.769288 8.004982
4 10.10755 10.21827 10.40023 4 8.94591 9.070322 9.273089
5 11.49586 11.5931 11.753 5 9.856991 9.970024 10.15475

1 1 3.395204 3.811484 4.418983 1 1 3.358562 3.778881 4.390893
2 6.046093 6.289296 6.674971 2 5.788574 6.042151 6.442638
3 8.323987 8.50228 8.791403 3 7.656542 7.850009 8.162269
4 10.13225 10.27923 10.51962 4 8.973904 9.139526 9.409088
5 11.51762 11.64713 11.85983 5 9.882407 10.03304 10.2792

2 1 3.535571 4.105913 4.884926 2 1 3.50019 4.07456 4.856002
2 6.129582 6.492895 7.0677 2 5.875486 6.25239 6.843321
3 8.383548 8.646293 9.06478 3 7.721122 8.004982 8.453132
4 10.1815 10.40023 10.75501 4 9.029087 9.273089 9.66275
5 11.5608 11.753 12.06507 5 9.932532 10.15475 10.51095
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Figure 10 shows the first and second dimensionless natu-
ral frequencies of C–F rod for different nonlocal parameters 
at (a, b, c and d).

Table 2 shows the first five dimensionless natural frequen-
cies for clamped-free rod at different nonlocal parameters 
e0a, K̄1 and K21 . Table 2 and Figure 10 show that the dimen-
sionless natural frequency increases with the increase in the 
of K̄1orK12 . The subfigures (a, b, c and d) show that with 
increasing the nonlocal parameter, the natural frequency in 
both modes decreases. However, the trend of changing the 
natural frequency with K̄1,K12 and e0a is the same for both 
C–C and C–F boundary conditions.

Fig. 10   The first and second 
dimensionless natural frequency 
for C–F rod

Conclusions

The natural frequencies of a stepped rod embedded in 
several elastic media and for different boundary condi-
tions are introduced in the present work. Dynamics stiff-
ness matrix method and Eringen’s theory are used for this 
analysis. Two cases from the literature are used to validate 
the present model. Then,a selected case of two-segment 
nanorod embedded in two elastic media is deeply investi-
gated. The effects of varying the nonlocal parameter and 
stiffness of elastic media and its ratio were considered. 
The spectrum and dispersion relations were obtained for 
partially embedded nanorod. The results show that the 
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start of wave propagation is independent of the nonlocal 
parameter but depends on the surrounded elastic media 
stiffness.

In local theory, the waves propagate in nondispersive 
mode with constant speed for the segment without surround-
ing elastic media. Unlike the other segment with surround-
ing elastic media, the group speed increase with frequency 

to attain a constant value. In the nonlocal theory, the waves 
propagate in dispersive mode from the cut-off frequency to 
the escape frequency where the wave speed reaches zero. 
The escape frequencies are inversely proportional to the 
nonlocal parameter and directly proportional to the elastic 
media stiffness.

Table 2   First five natural frequencies for C–F rod

Where n is the mode index

Clamped-free rod

e0a = 0.5 nm e0a = 0.5 nm

K̄1
2 5 10 2 5 10

K21 n n

0.5 1 1.9083 2.3212 2.873 0.5 1 1.9068 2.3206 2.8731
2 4.8594 5.102 5.4835 2 4.8002 5.0447 5.4288
3 7.8504 7.9871 8.2105 3 7.5884 7.7304 7.9622
4 10.8095 10.9161 11.0915 4 10.1401 10.2528 10.4379
5 13.6566 13.7372 13.8705 5 12.3652 12.4548 12.6027

1 1 2.1129 2.7321 3.5305 1 1 2.1112 2.7308 3.5295
2 4.8997 5.1968 5.6575 2 4.8416 5.142 5.6072
3 7.8859 8.0739 8.3778 3 7.6246 7.8189 8.1323
4 10.8307 10.9683 11.1939 4 10.1632 10.3098 10.5495
5 13.676 13.7852 13.9654 5 12.3862 12.5067 12.705

2 1 2.4651 3.376 4.4656 2 1 2.4628 3.3731 4.4612
2 4.9809 5.3913 6.0313 2 4.9248 5.3408 5.988
3 7.9569 8.2468 8.7093 3 7.6969 7.9943 8.4671
4 10.8731 11.073 11.3995 4 10.2094 10.4233 10.7715
5 13.7147 13.8812 14.1546 5 12.4279 12.6098 12.9071

e0a = 1.5 nm e0a = 2 nm

K̄1
2 5 10 2 5 10

K21 n n

0.5 1 1.9045 2.3194 2.8732 0.5 1 1.9012 2.3179 2.8732
2 4.7065 4.9543 5.3422 2 4.5849 4.837 5.2301
3 7.2062 7.3567 7.6014 3 6.7597 6.921 7.1821
4 9.26 9.3821 9.5818 4 8.3463 8.4802 8.6979
5 10.8498 10.9524 11.1212 5 9.4441 9.5623 9.7549

1 1 2.1084 2.7286 3.5278 1 1 2.1044 2.7255 3.5254
2 4.7497 5.0556 5.528 2 4.6304 4.9437 5.4259
3 7.2436 7.4478 7.7762 3 6.7986 7.0158 7.3635
4 9.286 9.4462 9.7072 4 8.376 8.5532 8.8406
5 10.8731 11.0102 11.2349 5 9.4704 9.6275 9.8838

2 1 2.4589 3.3683 4.4538 2 1 2.4536 3.3616 4.4435
2 4.8361 5.2611 5.9196 2 4.7211 5.158 5.831
3 7.3179 7.6273 8.1159 3 6.8757 7.2004 7.7083
4 9.3377 9.5727 9.9522 4 8.4345 8.6948 9.11
5 10.9194 11.1237 11.4548 5 9.5222 9.7529 10.1223
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The dimensionless natural frequencies were obtained for 
C–C and C–F rod. The present results indicate that increas-
ing the elastic media stiffness and its ratio, increase the 
dimensionless natural frequencies. Also, increasing nonlocal 
parameter decreases the dimensionless natural frequencies 
except for some points at the first mode of C–F boundary 
conditions. This decrease is more remarkable at the higher 
modes. The present results may be of great benefit in evalu-
ating nanobeam elastic modulus based on the measurement 
of its resonance.
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