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Received 18 May 2014, accepted 23 November 2014, published online 24 July 2015

Abstract

Let ℘ : X̃ → X be a regular covering projection of connected graphs with the group
of covering transformations CT℘ being abelian. Assuming that a group of automorphisms
G ≤ AutX lifts along ℘ to a group G̃ ≤ Aut X̃ , the problem whether the corresponding
exact sequence id → CT℘ → G̃ → G → id splits is analyzed in detail in terms of a
Cayley voltage assignment that reconstructs the projection up to equivalence.

In the above combinatorial setting the extension is given only implicitly: neither G̃
nor the action G → Aut CT℘ nor a 2-cocycle G × G → CT℘, are given. Explicitly
constructing the cover X̃ together with CT℘ and G̃ as permutation groups on X̃ is time
and space consuming whenever CT℘ is large; thus, using the implemented algorithms (for
instance, HasComplement in MAGMA) is far from optimal. Instead, we show that the
minimal required information about the action and the 2-cocycle can be effectively decoded
directly from voltages (without explicitly constructing the cover and the lifted group); one
could then use the standard method by reducing the problem to solving a linear system of
equations over the integers. However, along these lines we here take a slightly different
approach which even does not require any knowledge of cohomology. Time and space
complexity are formally analyzed whenever CT℘ is elementary abelian.
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1 Introduction
A large part of algebraic graph theory is devoted to analyzing structural properties of
graphs with prescribed degree of symmetry in order to classify, enumerate, construct in-
finite families, and to produce catalogs of particular classes of interesting graphs up to a
certain reasonable size. References are too numerous to be listed here, but see for instance
[2, 6, 8, 9, 10, 11, 12, 14, 16, 24, 25, 26, 29, 31, 36, 39, 40, 42, 46, 47, 52, 53, 55], and the
references therein.

It is not surprising, then, that the techniques employed in these studies are fairly rich
and diverse, ranging from pure combinatorial and computational methods to methods from
abstract group theory, permutation groups, combinatorial group theory, linear algebra, rep-
resentation theory, and algebraic topology.

Covering space techniques, and lifting groups of automorphisms along regular cover-
ing projections in particular, play a prominent role in this context. (See Section 2 for exact
definitions of all notions used in this Introduction.) The idea goes back to Djoković [9]
(and to an unpublished work of Conway, see [3, Corollary 19.6]), who constructed first
examples of infinite families of graphs of small valency and maximal degree of transitivity,
and to Biggs [3, Proposition 19.3], who gave a sufficient condition for a group of auto-
morphisms to lift as a semidirect product. While Djoković’s approach is classical in terms
of fundamental groups, Biggs expressed his particular lifting condition combinatorially.
A combinatorial approach to covering projections of graphs in terms of voltages was sys-
tematically developed in the early 70’ by Gross and Tucker, see [20], after having been
introduced by Alpert and Gross [18, 19] in the context of maps on surfaces.

A systematic combinatorial treatment of lifting automorphisms along covering projec-
tions (either in the context of graphs, maps on surfaces, or cell complexes) has been consid-
ered by several authors, see [1, 21, 32, 33, 48, 50] and the references therein. More specific
types of covers, say, with cyclic or elementary abelian groups of covering transformations,
have been extensively studied in [22, 35, 37, 49]; for the applications we refer the reader to
[8, 11, 13, 14, 26, 27, 28, 30, 36, 40, 41, 52, 55]. For some recent results on arc transitive
cubic graphs arising as regular covers with an abelian group of covering transformations
we refer the reader to [7].

Basic lifting techniques in terms of voltages are now well understood, yet several im-
portant issues still remain to be considered. In view of the fact that structural properties of
graphs often rely on the structure and the action of their automorphism groups, one such
topic is investigating the structure of lifted groups – although certain particular questions
along these lines have been addressed, see [3, 15, 33, 51]. Other points of interest are
algorithmic and complexity aspects of lifting automorphisms, which have so far received
even less attention. Certain aspects, but not those considered here, were touched upon in
[34, 48].

Specifically, let ℘ : X̃ → X be a regular covering projection of connected graphs given
in terms of voltages. Assuming that a group G ≤ AutX lifts along ℘, it is of particular
interest to study the corresponding exact sequence id→ CT℘ → G̃→ G→ id. A natural
question in this context is to ask whether the extension is split: on one hand, split extensions
are the most easy ones to analyze, while on the other hand, a restrictive situation stemming
from the fact that the group G, acting on X , acts also on X̃ via its isomorphic complement
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G to CT℘ within G̃, implies that a lot more information about symmetry properties of X̃
can be derived; moreover, split extensions are frequently encountered in many concrete
examples of graph covers. Describing efficient methods for testing whether a given group
lifts as a split extension of CT℘ is the main objective of this paper.

Methods for testing whether a given extension 1→ K → E → Q→ 1 of finite groups
is split, are known, see [5] and [23, Chapters 7 and 8]. In some way or another, all these
methods use the fact that a set of coset representatives of K in E is a complement to K if
and only if these representatives satisfy the defining relations of Q.

The essential case to be resolved in the first place is that of K being (elementary)
abelian. The idea is to modify an arbitrarily chosen set of coset representatives ofK so that
the defining relations of Q are satisfied, if possible. Since K is normal and abelian, this
modification can be traced in the frame of a certain group algebra, which finally leads to a
system of linear equations over the integers (or rather, over prime fields); the complement
exists if and only if such a system has a solution.

In practice, the extension can be given in several different ways: either (i) in terms of
an epimorphism E → Q, or (ii) in terms of E and the generators of a normal subgroup K,
or (iii) via an action θ : Q → AutK together with a 2-cocycle τ : Q × Q → K. In cases
(i) and (ii), an essential requirement is that one must have enough information about the
extended group E; at least one must know its generators and must be able to perform basic
computations in E. In contrast with (i) and (ii), explicit knowledge about E is not needed
in case (iii) since the extension can be, up to equivalence of extensions, reconstructed as
K ×Q with multiplication rule (a, x)(b, y) = (a+ θx(b) + τ(x, y), xy).

In our setting of graph covers, however, the situation is different and does not fall in
any of the above three cases. Namely, the extension id → CT℘ → G̃ → G → id is
given only implicitly: all the information is encoded in the base graph in terms of voltages
that allow G to lift; in particular, neither G̃ nor the action of G on CT℘ nor a 2-cocycle
are given. Naively translating our setting into the frame of (i) or (ii) and then applying
the algorithm already implemented in MAGMA [4] in terms of permutation groups would
mean to first compute the covering graph X̃ together with CT℘ and G̃ acting on X̃ , which,
unfortunately, is time and space consuming whenever CT℘ is large.

Our situation best fits into the frame of (iii). But in order to follow the approach de-
scribed in [5] and [23, Chapters 7 and 8] we first need to compute the actionG→ Aut CT℘
and the 2-cocycle G × G → CT℘. As we here show, the minimal required information
about these data can indeed be effectively decoded directly from voltages (without explic-
itly constructing the cover and the lifted group). In the actual algorithm, however, we
take an approach which is slightly different and even does not require any knowledge of
cohomology. Namely, instead of modifying an initial transversal and working within an ap-
propriate group algebra, a potential complement is constructed directly in terms of certain
parameters – in view of the fact that a lift of an automorphism is uniquely determined by
the mapping of a single vertex – from which the required system of equations is obtained.
Although the method works whenever CT℘ is abelian, it can be adapted – similarly as in
the general context – to treat the case when CT℘ is solvable as well.

The paper is organized as follows. In Section 2 we review some basic facts about regular
covering projections and lifting automorphisms. In Section 3 we show how to recapture
the lifted group G̃ as a crossed product of CT℘ by G via reconstructing the coupling G→
Out CT℘ and the factor set G × G → CT℘ in terms of voltages, see Theorem 3.1. In
Section 4 we give the necessary and sufficient conditions for G to lift as a split extension



116 Ars Math. Contemp. 10 (2016) 113–134

of CT℘, see Theorem 4.1, and a similar result regarding direct product extensions, see
Theorem 4.3. In Section 5 we provide an algorithm for testing whether the extension is split
whenever CT℘ is abelian, see Subsection 5.1 and Theorem 5.2 in particular. The special
case when CT℘ is elementary abelian together with formal analysis of time and space
complexity is treated in Subsection 5.2, see Theorem 5.6. In Subsection 5.3 we briefly
mention the case when CT℘ is solvable. Concluding remarks are given in Section 6. For a
more substantial account on complexity issues and further applications we refer the reader
to [44, 45].

2 Preliminaries

Graphs. Formally, a graph is an ordered 4-tuple X = (D,V ; beg,−1 ), where D(X) = D
and V (X) = V are disjoint sets of darts and vertices, respectively, beg is the function
assigning to each dart its initial vertex, and −1 is an arbitrary involution on D that creates
edges arising as orbits of −1. For a dart x, its terminal vertex is the vertex end(x) =
beg(x−1). An edge e = {x, x−1} is called a link whenever beg(x) 6= end(x). If beg(x) =
end(x), then the respective edge is either a loop or a semi-edge, depending on whether
x 6= x−1 or x = x−1, respectively.

There are several reasons for treating graphs formally in a manner just described. For
one thing, it is quite versatile for writing down formal proofs; moreover it is indeed natural,
even necessary, to consider graphs with semi-edges in different contexts, for instance when
dealing with graph covers or when studying graphs that are embedded into surfaces. For a
nice use of semi-edges in the context of Cayley graphs we refer the reader to [17].

A walk W : u → v of length n ≥ 0 from a vertex u0 = u to a vertex un = v is a
sequence of vertices and dartsW = u0 x1 u1 x2 u2 . . . un−1 xn un where beg(xj) = uj−1

and end(xj) = uj for all indices j = 1, . . . , n. Its inverse walk W−1 : v → u is the walk
obtained by listing the vertices and darts appearing in W in reverse order. The walk u
is the trivial walk at the vertex u. Walks of length 1 are sometimes referred to as arcs.
A graph is connected if any two vertices are connected by a walk. A walk is reduced if
no two consecutive darts in the walk are inverse to each other. Clearly, each walk W has
an associated reduced walk W obtained by recursively deleting all appearances uxvx−1

of consecutive pairs of inverse darts (together with the respective vertices). Two walks
W,W ′ : u→ v with the same reduction are called homotopic. Homotopy is an equivalence
relation on the set of all walks, with homotopy classes denoted by [W ]. Observe that the
naturally defined product of walksW1W2 by ‘concatenation’, when defined, carries over to
homotopy classes, [W1][W2] = [W1W2]. Assuming the graph X to be connected, the set
of homotopy classes of closed walks u → u, equipped with the above product, defines the
first homotopy group π(X,u). The trivial class 1u = [u] consists of all walks contractible
to u. Note that the isomorphism class of π(X,u) does not depend on u. More precisely,
π(X,u) is isomorphic to the free product of cyclic groups Z or Z2 (where the Z2 factors
correspond bijectively to the set of all semi-edges in X). A generating set for π(X,u) is
provided by fundamental closed walks at u relative to an arbitrarily chosen spanning tree.

LetX andX ′ be graphs. A graph homomorphism f : X → X ′ is an adjacency preserv-
ing mapping taking darts to darts and vertices to vertices, or more precisely, f(beg(x)) =
beg(f(x)) and f(x−1) = f(x)−1. Homomorphisms are composed as functions, (fg)(x) =
f(g(x)). Given a graph X we frequently need to consider the restricted (and the induced)
left action of its group of automorphisms AutX on certain subsets of X , for instance
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the sets of vertices, darts, edges etc. As AutX is by definition a permutation group on the
union V (X)∪D(X) of disjoint sets of vertices and darts, it acts faithfully on V (X)∪D(X).
However, its action on V (X) need not be faithful unless X is simple, that is, if it has no
parallel links, loops, or semi-edges. We say that a group G ≤ AutX acts semiregularly
on X whenever it acts freely on V (X) (meaning that if g ∈ G fixes a vertex it must be the
identity on vertices and darts).

Covers. To fix the notation and terminology, and for easier reading, we quickly review
some essential facts about covers. The interested reader is referred to [20, 33, 54] for more
information.

A covering projection of graphs is a surjective homomorphism ℘ : X̃ → X mapping
the set of darts with a common initial vertex in the covering graph X̃ bijectively to the set
of darts at the image of that vertex in the base graphX . The preimages fibu = ℘−1(u), u ∈
V (X), and fibx = ℘−1(x), x ∈ D(X), are the vertex- and dart-fibres, respectively. From
the definition of a covering projection it immediately follows that for any walk W : u→ v
inX and an arbitrary vertex ũ ∈ fib(u) there is a unique lifted walk W̃ ũ with beg(W̃ ũ) = ũ
that projects to W . This is known as the unique-path lifting property. Consequently, if X
is connected (which will be our standard assumption without loss of generality) then all
fibres have equal cardinality, usually referred to as the number of folds. It is also immediate
that homotopic walks lift to homotopic walks, and that ũ · [W ] = end(W̃ ũ) defines a
‘right action’ of homotopy classes on the vertex set of X̃ . In particular, the fundamental
group π(X,u) acts on the right on fibu, with the stabilizer of ũ ∈ fibu being isomorphic
to π(X̃, ũ). It is precisely this action that is responsible for the structural properties of the
covering.

Covering projections that are particularly important when studying symmetry proper-
ties of covers are the regular covering projections. By definition, a covering projection
℘ : X̃ → X is regular if there exists a semiregular group C ≤ Aut X̃ such that its orbits
on vertices and on darts coincide with vertex- and dart-fibres, respectively. In other words,
C acts regularly on each fibre (hence the name), and so the covering projection is |C|-fold.

Regular covering projections can be grasped combinatorially as follows. First of all,
given a graph X and an (abstract) group Γ, let ζ : D(X) → Γ be a function such that
ζ(x−1) = (ζ(x))−1. (For convenience we shall write ζx = ζ(x) and ζ−1

x = (ζx)−1.) In
this context, Γ is called a voltage group, ζ is a Cayley voltage assignment on X , and ζx
is the voltage of the dart x. We remark that a voltage assignment as above is known as
an ordinary voltage assignment in the literature [20]. With these data we may define the
derived graph Cov(ζ) with vertex set V (X)×Γ and dart setD(X)×Γ, where beg(x, c) =
(beg(x), c) and (x, c)−1 = (x−1, c ζx). The projection onto the first coordinate defines
a regular covering projection ℘ζ : Cov(ζ) → X . The required semiregular group C is
obtained by viewing C = Γ as a group of automorphisms of Cov(ζ) via its left action on
the second coordinates by left multiplication on itself: an element a ∈ Γ maps the vertex
(u, c) to (u, ac) and the dart (x, c) to (x, ac). In addition, call the right action of Γ on itself
by right multiplication a voltage-action. This action determines how walks of length 1 lift:
a walk uxv lifts to walks (u, c)(x, c)(v, c ζx), for c ∈ Γ.

Conversely, with any regular covering projection ℘ : X̃ → X we can associate a Cay-
ley voltage assignment ζ on X such that ℘ζ : Cov(ζ) → X ‘essentially reconstructs’ the
projection ℘ in a sense to be described below. Indeed, let Γ = C be the semiregular group
from the definition of a regular covering. As Γ acts regularly on each fibre we may label
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the vertices and the darts of X̃ by elements of V (X) × Γ and D(X) × Γ, respectively, as
follows. Choosing arbitrarily a vertex ũ ∈ fibu we label the vertex c(ũ) ∈ fibu, c ∈ Γ, by
(u, c). This way we obtain a bijective labeling of fibu by {u} × Γ. Similarly, the darts in
fibx are labeled by {x} × Γ, where (x, c) is the label of the dart in fibx having its initial
vertex labeled by (u, c). For x ∈ D(X), let ζx ∈ Γ be such an element of the voltage group
that (end(x), ζx) is the label of the terminal vertex of the dart in fibx labeled by (x, 1). Then
the terminal vertex of any dart in fibx, say, labeled by (x, c), is labeled by (end(x), cζx).
Clearly, ζx−1 = ζ−1

x . The respective regular covering projection ℘ζ : Cov(ζ) → X is
equivalent to ℘, a concept that we are now going to define.

Two covering projections ℘ : X̃ → X and ℘′ : X̃ ′ → X are isomorphic if there exists
an automorphism g ∈ AutX and an isomorphism g̃ : X̃ → X̃ ′ such that the following
diagram

X̃ X̃ ′

X X

g̃

℘ ℘′

g

is commutative. If in the above diagram one can choose g = id, then the projections are
equivalent. Covering projections are usually studied up to equivalence, or possibly up to
isomorphism (which is considerably more difficult).

A voltage assignment ζ : D(X)→ Γ can be naturally extended to walks as follows: if
W = u0 x1 u1 x2 u2 . . . un−1 xn un, then ζW = ζx1

ζx2
. . . ζxn . Clearly, homotopic walks

carry the same voltage, and so voltages can be assigned to homotopy classes. Moreover,
the ‘right action’ of homotopy classes via unique path-lifting along ℘ζ : Cov(ζ) → X is
essentially the voltage-action: if W : u → v is a walk in X and ũ ∈ fibu is labeled by
(u, c), then ũ · [W ] ∈ fibv is labeled by (v, c ζW ). We may therefore say that the voltage-
action faithfully represents the ‘action’ of homotopy classes, and in particular, the action
of π(X,u). It immediately follows that ζ defines a group homomorphism ζ : π(X,u)→ Γ
(denoted by the same symbol for convenience).

Lifts of automorphisms. An automorphism g ∈ AutX lifts along a covering projection
℘ : X̃ → X if there exists an automorphism g̃ ∈ Aut X̃ such that the diagram

X̃ X̃

X X

g̃

℘ ℘

g

is commutative. The automorphism g̃ then projects to g. A group G ≤ AutX lifts if all
g ∈ G lift. We call such a covering projection G-admissible. The collection of all lifts of
all elements in G form a subgroup G̃ ≤ Aut X̃ , the lift of G. In particular, the lift of the
trivial group is known as the group of covering transformations (or self-equivalences of ℘)
and denoted by CT℘. Moreover, the sequence

id→ CT℘ → G̃→ G→ id
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is short exact. In other words, G̃ is an extension of CT℘ by G, and hence g ∈ G has
exactly |CT℘| distinct lifts, a coset of CT℘ within G̃. Furthermore, if G lifts along a
given projection ℘, then it lifts along any covering projection equivalent to ℘. This allows
us to study lifts of automorphisms combinatorially in terms of voltages, see for instance
[1, 21, 32, 33, 48, 50]. Also note that if G̃ and G̃′ are the lifts of G along equivalent
projections ℘ and ℘′, respectively, then the short exact sequences id→ CT℘ → G̃→ G→
id and id → CT℘′ → G̃′ → G → id are isomorphic. Thus, structural properties of lifted
groups can be studied combinatorially in terms of voltages as well. In this paper we focus
on G-admissible covering projections such that the extension id→ CT℘ → G̃→ G→ id
is split. We call such a covering projection G-split-admissible. Note, however, that the
lifted group G̃ might contain a subgroup H isomorphic to CT℘ such that the extension
id→ H → G̃→ G→ id is split even if id→ CT℘ → G̃→ G→ id is not.

From now on we shall be assuming that covering projections are regular and moreover,
that covering graphs are connected as well. By assuming connectedness we essentially
do not loose on generality, however, we technically gain a lot. Let us remark that if X
is connected, then the covering graph is connected if and only if the fundamental group
π(X,u) acts transitively on fibu. An equivalent requirement in terms of a voltage assign-
ment ζ : D(X) → Γ is that the homomorphic image ζ(π(X,u)) ≤ Γ acts transitively
relative to its voltage-action on Γ, that is, ζ(π(X,u)) = Γ, which in turn amounts to saying
that the voltages assigned to fundamental closed walks at u generate the voltage group Γ.
With the assumption on connectedness, the group CT℘ acts regularly on each fibre, and
hence any lift g̃ of g ∈ AutX , if it exists, is uniquely determined by the mapping of just
one vertex (or dart). Also, the semiregular group C from the definition of a regular cov-
ering is now C = CT℘, and the voltage assignment ζ : D(X) → Γ that reconstructs the
projection takes values in an abstract group Γ ∼= CT℘.

Consider now a regular covering projection ℘ζ : Cov(ζ) → X of connected graphs,
where X is assumed to be finite, and let u0 ∈ V (X) be an arbitrarily chosen base vertex.
By the basic lifting lemma, see [32, Theorem 4.2] and [33, Theorem 7.1], a group G ≤
AutX lifts along ℘ζ if and only if any closed walk W at u0 with ζW = 1 is mapped to a
walk with ζgW = 1, for all g ∈ G. This is equivalent to requiring that for each g ∈ G there
exists an induced automorphism g#u0 ∈ Aut Γ of the voltage group defined locally at u0

by

g#u0 (ζW ) = ζgW , W ∈ π(X,u0).

Note that if the condition is satisfied at u0, it holds locally at any vertex. In general, for
g, h ∈ G the automorphisms g#u and g#v at distinct vertices, as well as the automorphisms
(gh)#u and g#uh#u , differ by an inner automorphism of Γ. More precisely, the follow-
ing holds. (Throughout the paper, Ψt denotes the inner automorphism Ψt(a) = tat−1,
whatever the group. Note further that all automorphisms are composed as functions.)

Proposition 2.1. Let G ≤ AutX be a group of automorphisms that lifts along a regular
covering projection of connected graphs ℘ : X̃ → X given in terms of a voltage assignment
ζ : D(X)→ Γ. Then for any g, h ∈ G we have

Ψg#u (ζQ)ζ−1
gQ

g#v = g#u , Q : v → u,

Ψg#u (ζQ)ζ−1
gQ

(gh)#u = g#uh#u , Q : hu→ u.
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Proof. Let W be a closed walk at v and Q : v → u an arbitrary walk. Then Q−1WQ is a
closed walk at u, and by the definition of induced automorphisms of Γ at v and u we have
g#v (ζW ) = ζgW and g#u(ζQ−1WQ) = ζg(Q−1WQ). Clearly, ζQ−1WQ = ζ −1

Q ζW ζQ and
ζg(Q−1WQ) = ζ−1

gQζgW ζgQ. Since g#u is an automorphism we have

g#u(ζQ)−1g#u(ζW )g#u(ζQ) = ζ−1
gQζgW ζgQ.

Hence Ψg#u (ζQ)ζ−1
gQ

g#v = g#u , and the first part is proved. For the second part, let W be
a closed walk at u and Q : hu→ u an arbitrary walk. Then

(gh)#u(ζW ) = ζghW = g#hu(ζhW ) = g#hu(h#u(ζW )).

Hence (gh)#u = g#huh#u . By the first part we have Ψg#u (ζQ)ζ−1
gQ
g#hu = g#u , and

consequently, Ψg#u (ζQ)ζ−1
gQ

(gh)#u = g#uh#u , as required.

Clearly, the function

#u0
: G→ Aut Γ, g 7→ g#u0 ,

is not a group homomorphism in general. But if we define g# = g#u0 mod Inn Γ, then,
by Proposition 2.1, g# does not depend on u0, and #: G → Out Γ, g 7→ g#, is a ho-
momorphism. In particular, if the covering projection is abelian, meaning that Γ ∼= CT℘
is abelian, then # = #u0

: G → Aut Γ is a homomorphism, which turns Γ into a Z[G]-
module. We shall make substantial use of this fact later on.

If g lifts, denote by Φv,g̃ the permutation on the voltage group Γ corresponding to the
restriction g̃ : fibv → fibgv . In other words,

g̃(v, c) = (gv,Φv,g̃(c)). (2.1)

As it was shown in [32, 33], the mappings of labels at different fibres relate to each other
as follows:

Φu,g̃(c) = Φu,g̃(1) g#u(c) (2.2)
Φv,g̃(c) = Φu,g̃(c) g

#u(ζQ)ζ−1
gQ , (2.3)

where Q : v → u is an arbitrary walk. Finally, for t ∈ Γ we denote by g̃t the uniquely
defined lift of g mapping the vertex in fibu0 labeled by 1 ∈ Γ to the vertex in fibgu0 labeled
by t ∈ Γ, that is,

g̃t(u0, 1) = (gu0, t).

In particular, ĩdt is the covering transformation acting on the second coordinates in Cov(ζ)
by left multiplication by t on Γ. Indeed, since id#u = id for all u ∈ V (X), it follows from
(2.2) and (2.3) that

ĩdt(u, c) = (u, tc).
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3 Extensions in terms of voltages
The method how to recapture a given group extension 1 → K → E → Q → 1 in the
form of a crossed product is known and goes back to Schreier (cf. [38]). First choose
a system of coset representatives of K within E (also called an algebraic transversal)
T = {tx | x ∈ Q} (and usually normalized in the sense that t1 = 1). Then compute the
factor set F : Q×Q→ K defined by

F : (x, y) 7→ txtyt
−1
xy ,

and the function Ψ: Q −→ AutK, x 7→ Ψtx (recall that Ψtx(a) = txat
−1
x ); in general,

Ψ is not a group homomorphism, and is often referred to as the weak action of Q on K
(which, when reduced modulo inner automorphisms of K, gives rise to a homomorphism
Q → OutK known as the coupling or the twisting map). These data determine a group
operation on K ×Q defined by

(a, x)(b, y) = (aΨtx(b)F(x, y), xy).

The resulting group is called the crossed product of K by Q and denoted K ×Ψ,F Q. The
mapping K ×Ψ,F Q → E defined by (a, x) 7→ atx is an isomorphism taking K × 1 onto
K and 1×Q onto the algebraic transversal T , and establishes an equivalence of short exact
sequences

K ×Ψ,F Q

1 K Q 1.

E

Suppose now that a regular covering projection ℘ = ℘ζ : Cov(ζ) → X of connected
graphs is given in terms of a Cayley voltage assignment ζ : D(X) → Γ, and let a group
G ≤ AutX of automorphisms lift to G̃ ≤ Aut Cov(ζ).

In order to recapture G̃ as a crossed product of CT℘ by G let us choose a particular
algebraic transversal by taking tg = 1 for all g ∈ G, that is, T = {g̃1 | g ∈ G}. To compute
the factor set G ×G → CT℘ we need to identify c ∈ Γ such that g̃1h̃1(g̃h)−1

1 = ĩdc. We
do that by evaluating g̃1h̃1 = ĩdc(g̃h)1 at (u0, 1). Using (2.2) and (2.3) we get

c = g#u0 (ζQ)ζ−1
gQ , where Q : hu0 → u0

is arbitrary. As for the weak action G → Aut CT℘ we need to find t ∈ Γ such that
g̃1 ĩdag̃

−1
1 = ĩdt. Evaluating g̃1 ĩda = ĩdtg̃1 at (u0, 1) and using (2.2) we obtain

t = g#u0 (a).

In view of the isomorphism CT℘ ∼= Γ, ĩdt 7→ t, we have an isomorphism of short exact
sequences

id CT℘ G̃ G id

1 Γ G̃ G id.



122 Ars Math. Contemp. 10 (2016) 113–134

Hence the lifted group G̃ can be written, up to isomorphism, as a crossed product Γ×Ψ,FG,
where F : G×G→ Γ is given by F(g, h) = g#u0 (ζQ)ζ−1

gQ and Ψ: G→ Aut Γ is defined
by Ψg = g#u0 . Note that the weak action Ψ is precisely #u0

defined in Preliminaries. We
have therefore proved the following theorem.

Theorem 3.1. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X)→ Γ, and let a group G ≤
AutX of automorphisms lift to G̃ ≤ Aut Cov(ζ). Choosing a base vertex u0 ∈ V (X), let
Ψ: G→ Aut Γ and F : G×G→ Γ be functions defined by

Ψg = g#u0 and F(g, h) = g#u0 (ζQ)ζ−1
gQ , Q : hu0 → u0,

respectively. Then there is an isomorphism

Γ×Ψ,F G→ G̃, (a, g) 7→ g̃a

taking Γ× id onto CT℘ and 1×G onto the algebraic transversal {g̃1 | g ∈ G}. �

4 Split extensions in terms of voltages
Recall that a short exact sequence 1 → K → E → Q → 1 is split if there exists an
algebraic transversal T = {tx |x ∈ Q} which is a subgroup, called a complement to
K within E. Relative to such a complement, the respective factor set F ≡ 1 is trivial
and the weak action Ψ is in fact an action, that is, Ψ: Q → AutK is a homomorphism.
Consequently, recapturing E as the corresponding crossed product results in a semidirect
product K oΨ Q with the group operation (a, x)(b, y) = (aΨtx(b), xy).

In the next theorem, the necessary and sufficient condition for a regular covering pro-
jection ℘ to be G-split-admissible, together with an explicit description of the lifted group
as a semidirect product of CT℘ by G, are given in terms of voltages.

Theorem 4.1. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X) → Γ, and let a group
G ≤ AutX of automorphisms lift to G̃ ≤ Aut Cov(ζ). Then ℘ is G-split admissible if
and only if there exists a normalized function t : G→ Γ (that is, tid = 1) such that

tgh = tgg
#u0 (th) g#u0 (ζQ)ζ−1

gQ (4.1)

where Q : hu0 → u0 is an arbitrary walk. In this case there exists a homomorphism
θ : G→ Aut Γ given by

θg(c) = tgg
#u0 (c)t−1

g , (4.2)

and (a, g) 7→ g̃a tg defines an isomorphism ΓoθG→ G̃ which takes Γ× id onto CT℘ and
id×G onto the algebraic transversal G = {g̃tg | g ∈ G}, a complement to CT℘.

Proof. Let us recover the lifted group G̃ as in Theorem 3.1. The extension splits if and
only if there exists an algebraic transversal {(tg, g), g ∈ G} to Γ× id in Γ×Ψ,F G which
is a subgroup. Equivalently, we must have (tgh, gh) = (tg, g)(th, h). By the definition of
multiplication in Γ×Ψ,F G the right hand side is equal to (tgg

#u0 (th)F(g, h), gh). Hence
the necessary and sufficient condition (4.1) can be expressed as stated in the theorem.

That (4.2) defines a homomorphism can be shown by computation, using (4.1) and
Proposition 2.1. The rest is straightforward as well.
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Remark 4.2. In the abelian case, (4.1) rewrites as tgh = tg + g#u0 (th) + τ(g, h), where
τ(g, h) = F(g, h) = g#u0 (ζQ)− ζgQ is the 2-cocycle. Thus, (4.1) is equivalent to the fact
that τ(g, h) = tgh − tg − g#u0 (th) must be a 2-coboundary. �

From Theorem 4.1 we readily obtain the necessary and sufficient conditions for G to
lift as a direct product extension of CT℘, that is, when CT℘ has a normal complement
within the lifted group G̃.

Theorem 4.3. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X) → Γ. Then G lifts along
℘ as a direct product extension of CT℘ if and only if there exists a normalized function
t : G→ Γ (that is, tid = 1) satisfying

tgh = thζQtgζ
−1
gQ , (4.3)

where Q : hu0 → u0 is an arbitrary walk. In this case, (a, g) 7→ g̃a tg defines an isomor-
phism Γ×G→ G̃ which takes Γ× id onto CT℘ and id×G onto the algebraic transversal
G = {g̃tg | g ∈ G}, a normal complement to CT℘.

Proof. Suppose that G lifts as a direct product such that CT℘ has a normal complement
G = {g̃tg | g ∈ G}. By Theorem 4.1 the respective function t : G → Γ satisfies (4.1).
Normality ofG implies that θg(c) given by (4.2) must be the identity automorphism. Hence
g#u0 (c) = t−1

g ctg , and by (4.1) we have tgh = thζQtgζ
−1
gQ , as required.

For the converse suppose that a function t : G→ Γ satisfies tgh = thζQtgζ
−1
gQ . Taking

h = id we obtain ζgQ = t−1
g ζQtg for all closed walks Q : u0 → u0. Therefore, if ζQ = 1

then ζgQ = 1 for all g ∈ G. By the basic lifting lemma G lifts, and g#u0 takes the form
g#u0 (c) = t−1

g ctg . It follows that tgh = tgg
#u0 (th) g#u0 (ζQ)ζ−1

gQ . By Theorem 4.1 we
have G̃ ∼= Γ oθ G where θg(c) = tgg

#u0 (c)t−1
g = c. Hence G̃ ∼= Γ×G, and the proof is

complete.

Remark 4.4. Notice the subtle difference in assumptions in Theorems 4.1 and 4.3. While
in 4.1 we had to assume in advance that G had a lift, this assumption is not required in 4.3
as condition (4.3) does not involve g#u0 . �

We also note the following. Suppose that G lifts as a split extension of CT℘. In
general, normal and non-normal complements to CT℘ might exist. So a priori knowledge
about a given extension being split does not make it easier to check whether the extension
is actually a direct product extension. In the abelian case, however, things are different
since complements are either all normal or all non-normal. This means that if t : G →
Aut Γ is just any normalized function satisfying (4.1), the extension will be a direct product
extension if and only if the corresponding homomorphism θ as in (4.2) is trivial.

For later reference, see Corollary 5.5, we explicitly record the following corollary.

Corollary 4.5. Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected
graphs given in terms of a Cayley voltage assignment ζ : D(X) → Γ. Suppose that G ≤
AutX lifts along ℘ as a split extension. Then G lifts as a direct product extension of CT℘
if and only if ζgW = ζW holds for all closed walks W from a basis of the first homology
group H1(X,Z) and all g from some generating set of G.
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Proof. By Theorem 4.1 there exists a normalized function t : G→ Γ satisfying (4.1). Now,
in the abelian case the extension is a direct product extension if and only if θ as in (4.2)
is trivial. Since θg(c) = g#u0 (c), this amounts to saying that ζgW = ζW must hold for
all closed walks based at u0 and all g ∈ G. Moreover, recall that in the abelian case g#u0

does not depend on u0. Hence the above necessary and sufficient condition can be replaced
by only considering closed walks from a basis of the first homology group. Clearly, it is
enough to consider just the automorphisms from a generating set of G.

Remark 4.6. Note that if the covering projection is abelian and the condition ζgW = ζW
holds true for all closed walks and all g ∈ G, then G clearly lifts (by the basic lifting
lemma). However, the extension might not be split.

As an example, let X be the 2-dipole with vertices 1 and 2 and two parallel links from
1 to 2 defined by the darts a and b. The voltage assignment ζa = ζa−1 = 0, ζb = ζb−1 = 1
in the group Z2 gives rise to a connected covering graph isomorphic to the 4-cycle C4.
Clearly, ζgW = ζW holds for all g ∈ AutX ∼= Z2×Z2 and all closed walks W . However,
the lifted group is isomorphic to D4, viewed as a central extension of Z2 by Z2 × Z2, and
this extension is clearly not split. �

5 Algorithmic aspects
Let ℘ = ℘ζ : Cov(ζ) → X be a regular covering projection of connected graphs given in
terms of a Cayley voltage assignment ζ : D(X)→ Γ, where X is assumed to be finite, and
let G ≤ AutX be a group of automorphisms. Speaking of algorithmic and complexity is-
sues related to lifting automorphisms one would certainly first need to address the question
of how difficult is to test whether G lifts at all. However, this will not be our concern here;
the problem has been considered, to some extent, in [48].

Assuming that G is known to have a lift we focus on efficient algorithms (in terms
of voltages) for testing if G lifts as a split extension of CT℘. Testing condition (4.1)
of Theorem 4.1 is hard even if Γ is abelian – as one has to take into account all group
elements of G. (Indeed, Theorem 4.1 is of purely theoretical interest.) A much better
alternative would be to consider just the generators, and in fact, one must then assume that
G is given by a presentation, which is sensible assumption. Proposition 5.1 below is a
reformulation of a standard result, c.f. [23, Lemma 2.76], tailored to our present needs. For
completeness we provide the proof.

Proposition 5.1. Let ℘ : X̃ → X be a regular covering projection of connected graphs,
and let G ≤ AutX be a group given by the presentation G = 〈S | R〉, where S =
{g1, g2, . . . , gn} and the R-relations are Rj(g1, g2, . . . , gn) = id, j = 1, 2, . . . ,m. Sup-
pose that G lifts. Then the lifted group G̃ is a split extension of CT℘ if and only if
there are lifts ḡ1, ḡ2, . . . , ḡn of g1, g2, . . . , gn, respectively, satisfying the defining relations
Rj(ḡ1, ḡ2, . . . , ḡn) = id, j = 1, 2, . . . ,m.

Proof. Suppose first that there are lifts ḡ1, ḡ2, . . . , ḡn of g1, g2, . . . , gn satisfying the R-
relations, and letC = 〈ḡ1, ḡ2, . . . , ḡn〉 ≤ G̃. Since theR-relations are the defining relations
of G there exists an epimorphism G → C, gi 7→ ḡi. On the other hand, C projects onto
G, with ḡi 7→ gi. Consequently, C ∼= G. As C isomorphically projects onto G it must
intersect the kernel CT℘ of the projection G̃ → G trivially. Hence C is a complement to
CT℘ within G̃.
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Conversely, suppose that there are lifts ḡ1, ḡ2, . . . , ḡn of g1, g2, . . . , gn such that C =
〈ḡ1, ḡ2, . . . , ḡn〉 ≤ G̃ is a complement to CT℘ within G̃. Then C ∼= G, and since ḡi 7→
gi we have that each automorphism Rj(ḡ1, ḡ2, . . . , ḡn) projects to Rj(g1, g2, . . . , gn) =
id. So Rj(ḡ1, ḡ2, . . . , ḡn) ∈ C belongs to CT℘. As C is the complement we have
Rj(ḡ1, ḡ2, . . . , ḡn) = id, and the proof is complete.

The condition Rj(ḡ1, ḡ2, . . . , ḡn) = id can be tested just by checking whether the au-
tomorphism Rj(ḡ1, ḡ2, . . . , ḡn), which necessarily belongs to CT℘, fixes a vertex. With
our assumption that the covering graph is reconstructed as Cov(ζ) we choose this vertex
to be (u0, 1). Let ḡi(u0, 1) = (giu0, ti), and recall that a lift is uniquely determined by
the image of a single vertex. If t1, t2, . . . , tn are explicitly given, then Rj(ḡ1, ḡ2, . . . , ḡn)
can be evaluated recursively using (2.2) and (2.3). To find whether the required lifts
ḡ1, ḡ2, . . . , ḡn exist by checking the whole set Γn for all possible values of t1, t2, . . . , tn is
far from optimal. The core of the problem is therefore to evaluate Rj(ḡ1, ḡ2, . . . , ḡn) effi-
ciently when t1, t2, . . . , tn are seen as symbolic variables, in which case the requirements
Rj(ḡ1, ḡ2, . . . , ḡn)(u0, 1) = (u0, 1) translate to an equivalent problem of solving a system
of equations in the variables t1, t2, . . . , tn ∈ Γ.

We are faced with two main difficulties. First, to evaluate Rj(ḡ1, ḡ2, . . . , ḡn) using
symbolic variables we need to express g#u0 by a ‘closed formula’, and second, we have to
solve a (possibly a non-linear) system of equations over Γ. Both are rather hopeless if Γ
is nonabelian. On the other hand, if Γ ∼= CT℘ is a finitely presented abelian group, then
the automorphisms of Γ can be represented by integer matrices acting on the left on integer
column vectors representing group elements. (In what follows, we shall be freely using the
term ‘vector’ for ease of expression.) Moreover, as we shall see, in the abelian case the
system of equations results in a linear system over the integers.

5.1 Abelian covers

Let us therefore assume that Γ is abelian, given by a presentation Γ = 〈∆ | Λ〉, where
∆ = {c1, c2, . . . , cr} is a generating set and Λk(c1, c2, . . . , cr) = 0, where k = 1, 2, . . . , s,
are the Λ-relations. Each element c ∈ Γ can be represented by a column vector c ∈ Zr,1
such that

c = [λ1, λ2, . . . , λr]
T , where c =

r∑
i=1

λici.

This representation is unique modulo the kernel (generated by the defining relations Λj) of
the natural quotient projection κ : Zr,1 → Γ. Moreover, any automorphism φ ∈ Aut Γ can
be represented (again not in a unique way) as a matrix over Z by expressing each φ(ci) as
φ(ci) =

∑r
j=1 αji cj , and taking Mφ = [αij ] ∈ Zr,r. Clearly, the following diagram

Zr,1
Mφ−−−−→ Zr,1

κ
y yκ
Γ −−−−→

φ
Γ

is commutative, or in other words, evaluation of the automorphism φ is given by φ(c) =
κ(Mφc).
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Coming back to our original setting of evaluating the lifted automorphisms, recall from
Preliminaries that in the abelian case the automorphism g# = g#u0 does not depend on
the base vertex, and that (gh)# = g#h#. Also, we shall simplify the notation for the
matrix representing g#

i by writing Mi = Mg#i
. In view of (2.2) and (2.3), the formula for

evaluating the lifted automorphism ḡi at an arbitrary vertex (v, c) is now given by

Φv,ḡi(c) = ti + g#
i (c) + g#

i (ζQ)− ζgiQ,

where Q : v → u0 is an arbitrary walk. This can be rewritten in vector form as

Φv,ḡi(c) = ti +Mic+MiζQ − ζgiQ. (5.1)

So far we have overcome part of the problem: representation of g#
i ’s by a ‘closed

formula’. However, since ti’s and the vector c (which linearly depends on ti’s when the
formula is applied recursively while processing Rj) are symbolic variables, the evaluation
requires symbolic computation – and that is something we still want to avoid. To this end
we do the following.

Let t = [t1
T , t2

T , . . . , tn
T ]T ∈ Zrn,1 be the ‘extended’ column of all the vectors

t1, t2, . . . , tn, and let Ei = [0, . . . ,0, I,0, . . . ,0] ∈ Zr,rn be the matrix consisting of n−1
zero submatrices 0 ∈ Zr,r and one identity submatrix I ∈ Zr,r at ‘i-th position’. Clearly,
ti = Eit. At each iteration step of the evaluation we can express the vector c linearly in
terms of t as c = Ajt + bj , for an appropriate matrix Aj ∈ Zr,rn and vector bj ∈ Zr,1,
neither of which depends on t.

Indeed. Suppose that while scanning the relator Rj from right to left we need to evalu-
ate ḡi at vertex (v, κc). Substituting c with Ajt + bj in (5.1) we get

Φv,ḡi(c) = (Ei +MiAj)t +Mi(bj + ζQ)− ζgiQ, Q : v → u0,

and so the label Φv,ḡi(κc) (the modified c as the input at the next step) is again of the form
Ajt + bj , with Aj substituted by Ei +MiAj and bj substituted by Mi(bj + ζQ)− ζgiQ.
Initially, Aj is the zero matrix and bj the zero vector. The method for evaluating the
automorphism Rj(ḡ1, ḡ2, . . . , ḡn) is formally encoded in algorithm Evaluate.

Let the evaluation Rj(ḡ1, ḡ2, . . . , ḡn)(u0, 0) using algorithm Evaluate terminate with
Φu0,Rj (0) = Ajt + bj , for j = 1, 2, . . . ,m. Then Rj(ḡ1, ḡ2, . . . , ḡn)(u0, 0) = (u0, 0) is
equivalent to Ajt + bj ∈ Ker κ, for all j. Putting together we must have

[AT
1 ,A

T
2 , . . . ,A

T
m]T t = −[bT1 , b

T
2 , . . . , b

T
m]T (5.2)

modulo the relations Λj . Introducing additional auxiliary variables x1, x2, . . . , xm ∈ Zs,1
we finally obtain the following linear system over Z


A1 Λ 0 . . . 0
A2 0 Λ . . . 0

...
...

. . .
...

Am 0 . . . Λ




t
x1

x2
...
xm

 = −


b1
b2
...
bm

 , (5.3)

where Λ = [Λ1,Λ2, . . . ,Λs] ∈ Zr,s and Λk is the vector representing the relator Λk.
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Algorithm: Evaluate
Input: word Rj(g1, g2, . . . , gn),

set T of |V (X)| vectors ζQ ∈ Zr,1 with Q : v → u0 for all v ∈ V (X),
list Z of n sets each containing |V (X)| vectors ζgiQ ∈ Zr,1,

listM of n matrices Mi ∈ Zr,r representing g#
i

Output: matrix Aj ∈ Zr,rn, vector bj ∈ Zr,1

1: set Aj ∈ Zr,rn to be the zero matrix and bj ∈ Zr,1 the zero vector; v ← u0;
2: suppose Rj = gkl · · · gk1 ;
3: for i← 1 to l do (*scan word Rj from right to left*)
4: Aj ←M[ki]Aj ; (*multiply Aj on the left by Mki*)
5: for s← 1 to r do (*add Eki to Aj*)
6: Aj [s][r ∗ ki + s]← Aj [s][r ∗ ki + s] + 1;
7: let ζQ ∈ T and ζgkiQ ∈ Z[ki] with Q : v → u0;

8: bj ←M[ki](bj + ζQ)− ζgkiQ;

9: v ← gki(v);
10: return Aj , bj

The problem of testing whether a given extension is split-admissible has now been
reduced to an equivalent problem of checking whether the linear system (5.3) has a solution.
Efficient algorithms for solving a system of linear equations over Z are long known, and
are based on reducing the matrix of coefficients into Hermite or Smith normal form, see
[23, Sections 9.2.3 and 9.2.4].

Theorem 5.2. Let X be a finite connected graph and G ≤ AutX a group of automor-
phisms given by a presentation G = 〈S | R〉, where S = {g1, g2, . . . , gn} is a generat-
ing set and Rj(g1, g2, . . . , gn) = id, j = 1, 2, . . . ,m, are the R-relations. Further, let
℘ = ℘ζ : Cov(ζ) → X be an abelian G-admissible regular covering projection of con-
nected graphs arising from a Cayley voltage assignment ζ : D(X) → Γ. Suppose that the
abelian group Γ is given by a presentation Γ = 〈∆ | Λ〉, where ∆ = {c1, c2, . . . , cr} is a
generating set and Λk(c1, c2, . . . , cr) = 0, k = 1, 2, . . . , s, are the Λ-relations.

Then the short exact sequence id → CT℘ → G̃ → G → id is split if and only if
the system of linear equations (5.3) has a solution in Z. Moreover, let Ω ⊆ Γn be the
set of all solutions of (5.3) reduced relative to the defining relations in Λ. Then Ω is in
bijective correspondence with all complements to CT℘ within G̃ (which correspond to all
derivations G → Γ), and two solutions in Ω correspond to conjugate complements if and
only if they differ by an inner derivation.

Proof. In view of Proposition 5.1 and the above discussion it is clear that the extension
splits if and only if the linear system (5.3) has an integer solution. It is also clear that each
complement to CT℘ in G̃ corresponds to some solution of (5.3), and hence to a solution
in Ω. Moreover, two distinct solutions from Ω give rise to distinct complements. Indeed.
Suppose that (t1, t2, . . . , tn) and (t′1, t

′
2, . . . , t

′
n) are two distinct solutions from Ω giving

rise to the same complement G. Then there is an index i such that ti 6= t′i, that is, ḡi 6= ḡ′i.
As ḡi and ḡ′i are two lifts of the same automorphism gi, we must have ḡ′i = ĩdc ḡi, where
ĩdc ∈ CT℘. But since G is a complement to CT℘ we must have ḡ′i = ḡi, and therefore
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ti = t′i, contrary to the assumption. It follows that all solutions in Ω correspond bijectively
to all complements.

Let G and G
′

be two conjugate complements. Without loss of generality we may as-
sume they are conjugate by an element ĩdc ∈ CT℘, that is, G

′
= ĩdcG ĩd

−1

c . Since for

any ḡ ∈ G the elements ĩdc ḡ ĩd
−1

c and ḡ′ from G
′

both project to g ∈ G we must have
ḡ′ = ĩdc ḡ ĩd

−1

c , for all g ∈ G. Rewrite as

ḡ′ ĩdc = ĩdc ḡ,

and let ḡ(u0, 0) = (gu0, tg) and ḡ′(u0, 0) = (gu0, t
′
g). Then the left hand side maps the

vertex (u0, 0) to (gu0, t
′
g + g#(c)), while the right hand side maps (u0, 0) to (gu0, tg + c).

Hence t′g + g#(c) = tg + c, and so

tg − t′g = δc(g),

where δc ∈ Inn(G,Γ) is an inner derivation. In particular, the above relation holds for
(t1, t2, . . . , tn) and (t′1, t

′
2, . . . , t

′
n) from Ω giving rise to G and G

′
.

For the converse, let (t1, t2, . . . , tn) and (t′1, t
′
2, . . . , t

′
n) from Ω give rise to G and G

′

such that ti − t′i = δc(gi) for i = 1, 2 . . . , n. Then we can work backwards to find that
ḡ′i = ĩdc ḡi ĩd

−1

c for all indices. Hence G and G
′

are conjugate subgroups. This completes
the proof.

Remark 5.3. Theorem 5.2 can be used to compute the first cohomology group H1(G,Γ),
c.f. [23, Section 7.6]. Next, observe that each solution (t1, t2, . . . , tn) ∈ Ω extends
uniquely to a function t : G → Γ satisfying condition (4.1), and that two such functions
differ precisely by a derivation, t′ − t ∈ Der(G,Γ). Thus, the set of functions G → Γ
satisfying condition (4.1) forms a coset of Der(G,Γ) in the group of all functions G → Γ
equipped with pointwise addition. Consequently, an alternative proof of the last statement
in Theorem 5.2 can be given using the standard result which states that two derivations give
rise to conjugate complements if and only if they differ by an inner derivation. �

Remark 5.4. Algorithm Evaluate requires some precomputations. First, we need to com-
pute the vectors ζQ ∈ Zr,1, for some Q : v → u0 and all v ∈ V (X), and consequently,
the vectors representing voltages of fundamental walks at u0. This can be done efficiently
using breadth first search. During the search we also compute the vectors representing
voltages of the mapped paths in order to obtain, upon completion of the search, the vectors
ζgiQ ∈ Zr,1 together with the vectors representing voltages of the mapped fundamental
walks, for each gi. Second, with these data in hand we then build the systems of linear
equations over Z whose solutions give rise to the matrices Mi ∈ Zr,r representing g#

i . �

Theorem 5.2 can also be used for testing whether a given group lifts as a direct product
extension. In view of Corollary 4.5 we first check if the condition ζgW = ζW holds for all
g ∈ S and all closed walks W from a basis of H1(X,Z). If true then G lifts, and we test
whether the extension splits by solving the linear system (5.3) using algorithm Evaluate
with all g#

i = id. Algorithm Evaluate simplifies in that all matrices Mi are now equal
to the identity matrix. Also, since the covering projection is abelian, recall that if some
complement to CT℘ is normal, then all complements are normal. We record this formally
as Corollary 5.5.
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Corollary 5.5. With assumptions and notation above, id → CT℘ → G̃ → G → id is a
direct product extension if and only if the following two conditions are satisfied:

(i) ζgW = ζW holds for all g ∈ S and all closed walks W from a basis of H1(X,Z);

(ii) the (simplified) system of linear equations (5.3) has a solution in Z.

Moreover, in this case the set of solutions of (5.3), reduced relative to the defining relations
in Λ, is in bijective correspondence with normal complements to CT℘ within G̃. �

5.2 Elementary abelian covers

One particular special case worth mentioning is that of CT℘ being elementary abelian.
In this case, Γ can be identified with the vector space over the corresponding prime field,
and the automorphisms of Γ are then viewed as invertible linear transformations. More
precisely, let Γ = Zrp. The generating set {c1, c2, . . . , cr} is now understood to be the stan-
dard generating set (of a vector space), and (5.1) can be viewed as a formula in this vector
space. Consequently, instead of (5.3) we need to find solutions of (5.2) over Zp, which
can be done using Gaussian elimination. This makes computation easier; in particular, we
do not experience difficulties which might otherwise be present with computations over Z
(like uncontrolled integer growth). An algorithm for testing whether the extension is split
now immediately follows from the above discussion. It is formally encoded in algorithm
IsSplit.

Algorithm: IsSplit

Input: Cayley voltage assignment ζ : D(X)→ Zdp giving rise to connected cover,
automorphism group G = 〈g1, g2, . . . , gn |R1, R2, . . . , Rm〉 that lifts

Output: true, if the lifted group is split extension, false otherwise
1: set A ∈ Z0,dn to be the zero matrix and b ∈ Z0,1 the zero vector;
2: take an arbitrary vertex u0 in X;
3: compute set T of |V (X)| vectors ζQ ∈ Zd,1p with Q : v → u0 for all v ∈ V (X);
4: compute list Z of n sets each containing |V (X)| vectors ζgiQ ∈ Zd,1p ;

5: compute listM of n matrices Mi ∈ Zd,d representing g#
i ;

6: for j ← 1 to m do
7: let Aj and bj be the output of evaluating the relator Rj at (u0, 0) using the

algorithm Evaluate;

8: A←
[

A
Aj

]
; b←

[
b
bj

]
;

9: if system A t = −b has a solution then
10: return true
11: else
12: return false

Theorem 5.6. Let ℘ = ℘ζ : Cov(ζ) → X be an elementary abelian regular covering
projection of connected graphs arising from a Cayley voltage assignment ζ : D(X)→ Zdp.
Further, let a given group of automorphisms G = 〈g1, g2, . . . , gn |R1, R2, . . . , Rm〉 lift
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along ℘. Then the algorithm IsSplit tests whether the lifted group is a split extension of
CT℘ by G in

O(n|V (X)|+ nd|D(X)|+ d3r + nd2r + nd3L+ nd3m2)

steps using
O(n|V (X)|+ nd|D(X)|+ nd2m)

memory space, where r is the Betti number of X and L =
∑
j=1,2,...,m |Rj |.

Proof. It remains to consider time and space complexity. The vectors ζWk
representing

the voltages of the fundamental walks Wk, k = 1, 2, . . . , r, at u0 together with the vectors
ζgiWk

representing the voltages of the mapped fundamental walks giWk, i = 1, 2, . . . , n,
as well as the vectors ζQ and ζgiQ can be computed as described in Remark 5.4 using
breadth first search at the cost of O(d) steps per edge; altogether this takes O(n|V (X)|+
nd|D(X)|) steps. As for constructing the matrices Mi ∈ Zd,d we first need to solve d
systems of linear equations:

x1,1 ζW1
+ x1,2 ζW2

+ · · ·+ x1,r ζWr
= e1

x2,1 ζW1
+ x2,2 ζW2

+ · · ·+ x2,r ζWr
= e2

... (5.4)
xd,1 ζW1

+ xd,2 ζW2
+ · · ·+ xd,r ζWr

= ed,

where ei’s are the standard basis vectors of Zd,1p . Solving d systems using Gaussian elim-
ination requires O(d3r) steps. An arbitrary matrix Mi can then be computed in O(d2r)
steps; thus O(nd2r) steps are required to compute n such matrices. Algorithm Evaluate
takes O(nd3|Rj |) steps for evaluating an arbitrary relator Rj . Hence all relators can be
evaluated in O(nd3L) steps, where L =

∑
j=1,2,...,m |Rj |. It remains to solve the system

A b = −b for A ∈ Zdm,dnp and b ∈ Zdn,1p , which takes O(nd3m2) steps using Gaussian
elimination. Hence the problem of testing whether the extension splits can be solved in
O(n|V (X)|+ nd|D(X)|+ d3r + nd2r + nd3L+ nd3m2) steps.

Representing the graphX using adjacency list takesO(|V (X)|+ |D(X)|) space, while
representing a vector in Zd,1p takes O(d) space. Therefore the representation of the Cayley
voltage assignment ζ takesO(|V (X)|+d|D(X)|) space. As for the representation of auto-
morphisms as permutations, this takes O(n|D(X)|) space. During breadth first search we
also need O(n|V (X)|) space to store the mapped vertices, and O(nd|D(X)|) additional
space to store the voltages of the mapped walks. It takes O(nd2) space to store all the ma-
trices Mi, while storing the matrix A ∈ Zdm,dnp takes O(nd2m) space. Putting together,
the space complexity is O(n|D(X)|+ nd|D(X)|+ nd2m).

Example 5.7. Let X be the 3-dipole with vertices 1 and 2 and three parallel links from
1 to 2 defined by the darts a, b and c. The voltage assignment ζa = ζa−1 = (0, 0), ζb =
ζb−1 = (1, 0), ζc = ζc−1 = (0, 1) taking values in the elementary abelian group Z2 × Z2

gives rise to a connected covering graph X̃ isomorphic to the 3-cube graph. Consider
the group G = 〈σ, τ | τ2 = σ3 = τστσ2 = 1〉 acting as a subgroup of AutX , where
σ = (abc)(a−1b−1c−1) and τ = (aa−1)(bb−1)(cc−1). By computation, G lifts along ℘ζ .
We now test whether ℘ζ is split-admissible for the group G.
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Choosing u0 = 1 as the base vertex, let us work through the computation on the first
relator τ2. Observe that Mτ = [ 1 0

0 1 ]. Set Eτ = [ 0 0 1 0
0 0 0 1 ]. Initially we have A1 = [ 0 0 0 0

0 0 0 0 ],
b1 = [ 0

0 ], and v = 1. Scanning the relator from right to left we start with the generator τ .
We multiply A1 on the left by Mτ , and then add Eτ to get A1 = [ 0 0 1 0

0 0 0 1 ]. For the walk
W = 1a2b−11 we have µW = µτW = [ 1

0 ]. So we add µW to b1, multiply the result on the
left byMτ , and subtract µτW to obtain b1 = [ 0

0 ]. Further, mapping the vertex v by τ we get
v = 2. Moving left we scan the generator τ again. Multiplying A1 on the left by Mτ and
adding Eτ gives A1 = [ 0 0 0 0

0 0 0 0 ]. For the walk W = 2c−11 we have µW = µτW = [ 0
1 ].

We then add µW to b1, multiply the result on the left by Mτ , and subtract µτW to get
b1 = [ 0

0 ].
Similarly, the computation on the second relator σ3 gives A2 = [ 0 0 0 0

0 0 0 0 ] and b2 = [ 0
0 ],

while the computation on the third relator τστσ2 results in A3 = [ 0 0 1 1
0 0 1 0 ] and b3 = [ 0

1 ].
Putting together we obtain the following system over Z2 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 0

[ xy
u
v

]
=

 0
0
0
0
0
1

 ,
which is clearly consistent. Thus the projection ℘ζ is G-split-admissible. �

5.3 Solvable covers

The elementary abelian version of Theorem 5.2 can be used to decide whether G lifts as a
split extension of CT℘ whenever CT℘ is solvable.

First recall, c.f. [35, 51], that if q : Z → X is a regular covering projection of connected
graphs, and q = r s where r : Y → X and s : Z → Y are regular covering projections with
CTs a characteristic subgroup of CTq , then q is admissible for a group of automorphisms
G ≤ AutX if and only if G lifts along r and its lift lifts along s (in which case this lift is
the lift of G along q).

The following lemma (c.f. [5, Theorem 4.2]) shows that testing whether the projection
q : Z → X is split-admissible can be reduced to testing whether the projections r : Y → X
and s : Z → Y are split-admissible. We omit the obvious proof.

Lemma 5.8. Let q : Z → X be a regular covering projection of connected graphs, and let
q = r s where r : Y → X and s : Z → Y are regular covering projections with CTs a
characteristic subgroup of CTq . Suppose that q is admissible for a group of automorphisms
G ≤ AutX . Then the following statements are equivalent.

(i) The projection q is split-admissible for G.

(ii) The projection r is split-admissible for G, and s is split-admissible for some comple-
ment to CTr within the G-lift along r. �

Remark 5.9. Denote by G̃ the lift of G along q : Z → X and by H the lift of G along
r : Y → X . Observe that the projection s : Z → Y as in Lemma 5.8(ii) should be checked,
at least in principle, relative to all complements of CTr withinH (in particular, this requires
the construction of all such complements). However, if K is a complement, then any
subgroup conjugate to K is also a complement; and if K lifts along s : Z → Y as a split
extension, then any of its conjugate complements also lifts as a split extension. Therefore,
when applying Lemma 5.8(ii) we only need to consider representatives of conjugacy classes
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of complements within H . A method for constructing such representatives is described in
[5, 23]. �

Coming back to the case when CT℘ is solvable, we first find a series of characteristic
subgroups CT℘ = K0 > K1 > . . . > Kn = id with elementary abelian factorsKj−1/Kj .
The method is known, see [23, Chapter 8]. The covering projection ℘ then decomposes as
X̃ = Xn

℘n→ Xn−1 → . . . → X1
℘1→ X0 = X , where ℘j : Xj → Xj−1 is a regular

elementary abelian covering projection with CT℘j isomorphic to Kj−1/Kj . At each step
we may then recursively apply Lemma 5.8. To this end, one has to explicitly construct
(among other things) the voltage assignments that define the intermediate projections in
the above decomposition. For more details we refer the reader to [44].

6 Concluding remarks
In order to evaluate the performance of the above method for testing whether a given
solvable covering projection is split-admissible the second author has implemented it in
MAGMA [4], as a part of a larger package for computing with graph covers, see [43], and
[44] for a more detailed account on experimental results.

We further remark that in the case of solvable covers one can take an alternative ap-
proach that even does not require explicit reconstruction of the intermediate covering pro-
jections. It is enough to first compute the automorphisms g#u0 and the factor setF(g, h) =
g#u0 (ζQ)ζ−1

gQ (partially as needed) in order to reconstruct the lifted group as a crossed
product, and then consider the decomposition abstractly without reference to covers. This
is discussed in [45].

Acknowledgement. The authors would like to thank the referee for detailed comments
that helped us improve the presentation.
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[41] P. Potočnik, M. Škoviera and R. Škrekovski, Nowhere-zero 3-flows in abelian Cayley graphs,
Discrete math. 297 (2005), 119–127.
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