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Abstract

A connected dominating set in a graph is
a dominating set of vertices that induces a
connected subgraph. We introduce and study
the class of connected-domishold graphs,
which are graphs that admit non-negative real
weights associated to their vertices such that
a set of vertices is a connected dominating
set if and only if the sum of the correspond-
ing weights exceeds a certain threshold. We
show that these graphs form a non-hereditary
class of graphs properly containing two
well known classes of chordal graphs: block
graphs and trivially perfect graphs. We char-
acterize, in several ways, the graphs every
induced subgraph of which is connected-
domishold: in terms of forbidden induced
subgraphs, in terms of 2-asummability of cer-
tain derived Boolean functions, and in terms
of the dually Sperner property of certain de-
rived hypergraphs.

Introduction
A possible approach for dealing with the in-
tractability of a given decision or optimization
problem is to identify restrictions on input in-
stances under which the problem can still be solved
efficiently. One generic framework for describing
a kind of such restrictions in case of graph prob-
lems is the following: Given a graph G, does G
admit non-negative integer weights on its vertices
(or edges, depending on the problem) and a set T
of integers such that a subset X of its vertices (or
edges) has property P if and only if the sum of the
weights of elements of X belongs to T ? Property
P can denote any of the desired substructures we

are looking for, such as matchings, cliques, stable
sets, dominating sets, etc.

The above framework provides a unified way
of describing characteristic properties of several
graph classes studied in the literature, such as
threshold graphs (Chvátal and Hammer 1977),
domishold graphs (Benzaken and Hammer 1978),
total domishold graphs (Chiarelli and Milanič
2013a; 2013b) and equistable graphs (Payan 1980;
Mahadev, Peled, and Sun 1994). If weights as
above exist and are given with the graph, and the
set T is given by a membership oracle, then a dy-
namic programming algorithm can be employed
to find a subset with property P of either maxi-
mum or minimum cost (according to a given cost
function on the vertices/edges) inO(nM) time and
with M calls of the membership oracle, where n
is the number of vertices (or edges) of G and M
is a given upper bound for T (Milanič, Orlin, and
Rudolf 2011). The framework can also be applied
more generally, in the context on Boolean opti-
mization (Milanič, Orlin, and Rudolf 2011).

In general, the advantages of the above frame-
work depend both on the choice of property P and
on the constraints (if any) imposed on the structure
of the set T . For example, if P denotes the property
of being a stable (independent) set, and set T is re-
stricted to be an interval unbounded from below,
we obtain the class of threshold graphs (Chvátal
and Hammer 1977), which is very well under-
stood and admits several characterizations and lin-
ear time algorithms for recognition and for several
optimization problems (see, e.g., (Mahadev and
Peled 1995)). If P denotes the property of being
a dominating set and T is an interval unbounded
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from above, we obtain the class of domishold
graphs (Benzaken and Hammer 1978), which en-
joy similar properties as the threshold graphs. On
the other hand, if P is the property of being a
maximal stable set and T is restricted to consist
of a single number, we obtain the class of equi-
stable graphs (Payan 1980), for which the recogni-
tion complexity is open (see, e.g., (Levit, Milanič,
and Tankus 2012)), no structural characterization
is known, and several NP-hard optimization prob-
lems remain intractable on this class (Milanič, Or-
lin, and Rudolf 2011).

Notions and results from the theory of Boolean
functions (Crama and Hammer 2011) and hyper-
graph theory (Berge 1989) can be useful for the
study of graph classes defined within the above
framework. For instance, the characterization of
hereditary total domishold graphs in terms of for-
bidden induced subgraphs from (Chiarelli and Mi-
lanič 2013b) is based on the facts that every
threshold Boolean function is 2-asummable (Chow
1961) and that every dually Sperner hypergraph
is threshold (Chiarelli and Milanič 2013a). More-
over, the fact that threshold Boolean functions are
closed under dualization and can be recognized
in polynomial time (Peled and Simeone 1985)
leads to efficient algorithms for recognizing to-
tal domishold graphs, and for finding a minimum
total dominating set in a given total domishold
graph (Chiarelli and Milanič 2013a).

It is the aim of this note to present another
application of the notions of threshold Boolean
functions/hypergraphs to the above graph theo-
retic framework. More specifically, we introduce
and study the case when P is the property of be-
ing a connected dominating set and T is an inter-
val unbounded from above. Given a graph G =
(V,E), a connected dominating set (c-dominating
set for short) is a subset S of the vertices of G
that is dominating, that is, every vertex of G is ei-
ther in S or has a neighbor in S, and connected,
that is, the subgraph of G induced by S, hence-
forth denoted by G[S], is connected. The notion
of connected dominating sets in graphs is one of
the many variants of domination. It finds applica-
tions in modeling wireless network connectivity,
and has been extensively studied in the literature,
see, e.g., the books (Du and Wan 2013; Haynes,
Hedetniemi, and Slater 1998b; 1998a), and re-
cent papers (Ananchuen, Ananchuen, and Plum-

mer 2012; Butenko, Kahruman-Anderoglu, and
Ursulenko 2011; Chandran et al. 2012; Duckworth
and Mans 2009; Fomin, Grandoni, and Kratsch
2008; Karami et al. 2012; Schaudt 2012a; 2012b;
Schaudt and Schrader 2012).

Definition 1. A graph G = (V,E) is said to
be connected-domishold (c-domishold for short)
if there exists a pair (w, t) where w : V → R+

is a weight function and t ∈ R+ is a thresh-
old such that for every subset S ⊆ V , w(S) :=∑

x∈S w(x) ≥ t if and only if S is a con-
nected dominating set in G. A pair (w, t) as above
will be referred to as a connected-domishold (c-
domishold) structure of G.

Observe that if G is disconnected, then G does
not have any c-dominating sets and is thus trivially
c-domishold (just set w(x) = 1 for all x ∈ V (G)
and t = |V (G)|+ 1).

Example 1. The complete graph of order n is
c-domishold. Indeed, any nonempty subset S ⊆
V (Kn) is a connected dominating set of Kn, and
the pair (w, 1) wherew(x) = 1 for all x ∈ V (Kn)
is a c-domishold structure of Kn.

Example 2. The 4-cycle C4 is not c-domishold:
Denoting its vertices by v1, v2, v3, v4 in the cyclic
order, we see that a subset S ⊆ V (C4) is c-
domishold if and only if it contains an edge. There-
fore, if (w, t) is a c-domishold structure of C4,
then w(vi) + w(vi+1) ≥ t for all i ∈ {1, 2, 3, 4}
(indices modulo 4), which implies w(V (C4)) ≥
2t. On the other hand, w(v1) + w(v3) < t and
w(v2) + w(v4) < t, implying w(V (C4)) < 2t.

Example 3. The graph G obtained from C4 by
adding to it a new vertex, say v5, and making it
adjacent exactly to one vertex of the C4, say to
v4, is c-domishold: the (inclusion-wise) minimal c-
dominating sets of G are {v1, v4} and {v3, v4},
hence a c-domishold structure of G is given by
w(v2) = w(v5) = 0, w(v1) = w(v3) = 1,
w(v4) = 2, and t = 3.

A graph class is said to be hereditary if it is
closed under vertex deletion. The above exam-
ples show that, contrary to the classes of thresh-
old and domishold graphs, the class of connected-
domishold graphs is not hereditary. This motivates
the following definition:

Definition 2. A graph G is said to be hereditary
connected-domishold (hereditary c-domishold for



short) if every induced subgraph of it is connected-
domishold.

In general, for a graph property Π, we will say
that a graph is hereditary Π if every induced sub-
graph of it satisfies Π.

Our main result (Theorem 2) is a characteriza-
tion of hereditary connected-domishold graphs in
terms of forbidden induced subgraphs, in terms of
2-asummability of certain derived Boolean func-
tions, and in terms of the dually Sperner property
of certain derived hypergraphs. Before stating the
result, we give in the next section some prelimi-
nary definitions and results.

Preliminary results
Boolean functions. Let n be positive integer.
Given two vectors x, y ∈ {0, 1}n, we write x ≤ y
if xi ≤ yi for all i ∈ [n] = {1, . . . , n}. A Boolean
function f : {0, 1}n → {0, 1} is positive (or:
monotone) if f(x) ≤ f(y) holds for every two
vectors x, y ∈ {0, 1}n such that x ≤ y. A positive
Boolean function f is said to be threshold if there
exist non-negative real weights w = (w1, . . . , wn)
and a non-negative real number t such that for
every x ∈ {0, 1}n, f(x) = 0 if and only if∑n

i=1 wixi ≤ t. Such a pair (w, t) is called a
separating structure of f . Every threshold posi-
tive Boolean function admits an integral separating
structure.

Threshold Boolean functions have been charac-
terized in (Chow 1961) and (Elgot 1960), as fol-
lows. For k ≥ 2, a positive Boolean function f :
{0, 1}n → {0, 1} is said to be k-summable if, for
some r ∈ {2, . . . , k}, there exist r (not necessar-
ily distinct) false points of f , say, x1, x2, . . . , xr,
and r (not necessarily distinct) true points of f ,
say y1, y2, . . . , yr, such that

∑r
i=1 x

i =
∑r

i=1 y
i.

(A false point of f is an input vector x ∈ {0, 1}n
such that f(x) = 0; a true point is defined anal-
ogously.) Function f is said to be k-asummable if
it is not k-summable, and it is asummable if it is
k-asummable for all k ≥ 2.
Theorem 1 ((Chow 1961), (Elgot 1960), see also
Theorem 9.14 in (Crama and Hammer 2011)). A
positive Boolean function f is threshold if and only
if it is asummable.

Hypergraphs. A hypergraph is a pairH = (V, E)
where V is a finite set of vertices and E is a set
of subsets of V , called (hyper)edges (Berge 1989).

A transversal of H is a set S ⊆ V such that
S ∩ e 6= ∅ for all e ∈ E . A hypergraphH = (V, E)
is threshold if there exist a weight function w :
V → R+ and a threshold t ∈ R+ such that for all
subsets X ⊆ V , it holds that w(X) ≤ t if and only
if X contains no edge of H (Golumbic 2004). A
hypergraphH = (V, E) is said to be Sperner (or: a
clutter) if no edge of H contains another edge, or,
equivalently, if for every two distinct edges e and
f of H, it holds that min{|e \ f |, |f \ e|} ≥ 1 .
In (Chiarelli and Milanič 2013a), the following
class of threshold hypergraphs was introduced.

Definition 3. (Chiarelli and Milanič 2013a) A hy-
pergraph H = (V, E) is said to be dually Sperner
if for every two distinct edges e and f ofH, it holds
that min{|e \ f |, |f \ e|} ≤ 1 .

Lemma 1. (Chiarelli and Milanič 2013a) Every
dually Sperner hypergraph is threshold.

The main notion that will provide the link be-
tween threshold Boolean functions and hyper-
graphs is that of separators in graphs. A separator
in a graph G = (V,E) is a subset S ⊆ V (G) such
thatG−S is not connected. A separator is minimal
if it does not contain any other separator. The fol-
lowing characterization of c-dominating sets was
proved in (Kanté et al. 2012).

Proposition 1. (Kanté et al. 2012) In every con-
nected graph G = (V,E), a subset D ⊆ V is a
c-dominating set if and only ifD∩S 6= ∅ for every
minimal separator S in G.

In other words, c-dominating sets are exactly
the transversals of the minimal separators. Based
on this fact and the fact that threshold Boolean
functions are closed under dualization (Crama and
Hammer 2011), a similar technique as that used
to prove Proposition 4.1 in (Chiarelli and Milanič
2013b) can be used to characterize c-domishold
graphs in terms of the thresholdness properties of
a derived Boolean function and of a derived hy-
pergraph. Given a graph G = (V,E), its minimal
separator function is the positive Boolean func-
tion msG : {0, 1}V → {0, 1} that takes value 1
precisely on vectors x ∈ {0, 1}V whose support
set S(x) := {v ∈ V : xv = 1} contains some
minimal separator of G. The hypergraph of mini-
mal separators ofG is the hypergraph HmS (G) =
(V (G),S(G)), where S(G) = {S : S ⊆ V (G)
and S is a minimal separator in G}.



Proposition 2. For a connected graph G =
(V,E), the following are equivalent:

1. G is c-domishold.
2. Its minimal separator function msG of G is

threshold.
3. Its hypergraph of minimal separators HmS (G)

is threshold.

Moreover, if (w1, . . . , wn, t) is an integral sep-
arating structure of msG or of HmS (G), then
(w;

∑n
i=1 wi − t) with w(vi) = wi for all i ∈ [n]

is a c-domishold structure of G.

Definition 4. A graph G is ms-dually-Sperner if
its hypergraph of minimal separators HmS (G) is
dually Sperner, and ms-2-asummable if its minimal
separator function msG is 2-asummable.

Proposition 2, Theorem 1 and Lemma 1 imply
the following result.

Proposition 3. Every ms-dually-Sperner graph is
c-domishold. Every c-domishold graph is ms-2-
asummable.

Neither of the two statements in Proposition 3
can be reversed. The reader can easily verify that
the graph obtained from the complete graph K4

by gluing a triangle on every edge is c-domishold
graph but not ms-dually-Sperner. Moreover, there
exists an ms-2-asummable graph G that is not
c-domishold. This can be derived using the fact
that not every 2-asummable positive Boolean func-
tion is threshold (Theorem 9.15 in (Crama and
Hammer 2011)), results from (Chiarelli and Mi-
lanič 2013b) establishing the connections between
threshold Boolean functions and total domishold
split graphs, and the observation that a split graph
without universal vertices is c-domishold if and
only if it is total domishold. (A graph is split if its
vertex set can be partitioned into a clique and an
independent set, where a clique is a set of pairwise
adjacent vertices, and an independent set is a set of
pairwise non-adjacent vertices.)

Our main result (Theorem 2 below) implies a
partial converse of Proposition 3: both statements
can be reversed if we require the properties to
hold in the stronger, hereditary sense. Our proof
of Theorem 2 will rely on the following property
of chordal graphs. Recall that a graph G is chordal
if it does not contain any induced cycle of order at
least 4.

Lemma 2. (Kumar and Madhavan 1998) If S is a
minimal separator of a chordal graphG, then each
connected component of G \ S has a vertex that is
adjacent to all the vertices of S.

Characterizations of hereditary
c-domishold graphs

Now we state our main result. Due to space con-
straints, we only give a part of the proof here.
Theorem 2. For every graph G, the following are
equivalent:

1. G is hereditary c-domishold.
2. G is hereditary ms-2-asummable.
3. G is hereditary ms-dually-Sperner.
4. G is a {F1, F2, H1, H2, . . .}-free chordal graph,

where the graphs F1, F2, and a general member
of the family {Hi} are depicted in Fig. 1.

F2F1 Hi (i ≥ 1)

1 2 i3

Figure 1: Graphs F1, F2, and Hi.

We now examine some of the consequences of
the forbidden induced subgraph characterization
of hereditary c-domishold graphs given by Theo-
rem 2. The diamond and the kite (also known as
the co-fork or the co-chair) are the graphs depicted
in Fig. 2.

kitediamond

Figure 2: The diamond and the kite.

The equivalence between items (1) and (4) in
Theorem 2 implies that the class of hereditary c-
domishold graphs is a proper generalization of the
class of kite-free chordal graphs.
Corollary 1. Every kite-free chordal graph is
hereditary c-domishold.

Furthermore, Corollary 1 implies that the class
of hereditary c-domishold graphs generalizes two
well known classes of chordal graphs, the block
graphs and the trivially perfect graphs. A graph



is said to be a block graph if every block of it
is complete. The block graphs are well known to
coincide with the diamond-free chordal graphs. A
graph G is said to be trivially perfect (Golumbic
1978) if for every induced subgraph H of G, it
holds α(H) = |C(H)|, where α(H) denotes the
independence number of H (that is, the maximum
size of an independent set in H), and C(H) de-
notes the set of all maximal cliques of H . Trivially
perfect graphs coincide with the so-called quasi-
threshold graphs (Yan, Chen, and Chang 1996),
and also with the {P4, C4}-free graphs (Golumbic
1978).

Corollary 2. Every block graph is hereditary c-
domishold. Every trivially perfect graph is heredi-
tary c-domishold.

Sketch of proof of Theorem 2. The implications
(3)⇒ (1)⇒ (2) follow from Proposition 3.

For the implication (2) ⇒ (4), we only need
to verify that none of the graphs in the set F :=
{Ck : k ≥ 4} ∪ {F1, F2} ∪ {Hi : i ≥ 1} is
ms-2-asummable. Let F ∈ F . Suppose first that
F is a cycle Ck for some k ≥ 4, let u1, u2, u3, u4
be four consecutive vertices on the cycle. For a set
S ⊆ V (F ), let xS ∈ {0, 1}V (F ) denote the char-
acteristic vector of S, defined by xSi = 1 if and
only if i ∈ S. Let A = {u1, u3}, B = {u2, u4},
C = {u1, u2} and D = {u3, u4}. Then, A and
B are minimal separators of F , while C and D do
not contain any minimal separator of F . Therefore,
xA and xB are true points of the minimal separator
function msF , while xC and xD are false points
of msF . Since xA + xB = xC + xD, the mini-
mal separator function msF is 2-summable. If F ∈
{F1, F2} ∪ {Hi : i ≥ 1}, then let a and b be the
two vertices of degree 2 in F , letN(a) = {a1, a2},
N(b) = {b1, b2}, let A = N(a), B = N(b),
C = {a1, b1} and D = {a2, b2}. The rest of the
proof is the same as above.

It remains to show the implication (4) ⇒
(3). Since the class of {F1, F2, H1, H2, . . .}-free
chordal graphs is hereditary, it is enough to
show that every {F1, F2, H1, H2, . . .}-free chordal
graph is ms-dually-Sperner. Suppose for a contra-
diction that there exists a {F1, F2, H1, H2, . . .}-
free chordal graph G = (V,E) that is not
ms-dually-Sperner. If G is disconnected, then
HmS (G) = (V (G), {∅}) and G is ms-dually-
Sperner. Thus, G is connected. Since G is not ms-

dually-Sperner, there exist two minimal separators
in G, say S and S′, such that min{|S|, |S′|} ≥ 2.
Let C = {a, b} for some a, b ∈ S \ S′ with a 6= b
and let C ′ = {a′, b′} for some a′, b′ ∈ S′ \ S with
a′ 6= b′. Further, let X , Y be two components of
G− S and X ′, Y ′ two components of G− S′. By
Lemma 2, there exist vertices x ∈ X and y ∈ Y
such that each of x and y dominates S and x′ ∈ X ′

and y′ ∈ Y ′ such that each of x′ and y′ dominates
S′. Define Z = {x, y} and Z ′ = {x′, y′}.

Claim 1. Either N(x) ∩ {a′, b′} = ∅ or N(y) ∩
{a′, b′} = ∅. Similarly, either N(x′) ∩ {a, b} = ∅
or N(y′) ∩ {a, b} = ∅.

Proof. If N(x) ∩ {a′, b′} 6= ∅ and N(y) ∩
{a′, b′} 6= ∅, then there exists an (x, y)-path inG−
S, contrary to the fact that S is an (x, y)-separator.
The other statement follows similarly.

Notice that C ∩C ′ = C ∩Z = C ′∩Z ′ = ∅ and
so |C ∪ C ′| = |C ∪ Z| = |C ′ ∪ Z ′| = 4. Further,
since every minimal separator in a chordal graph is
a clique (Dirac 1961),C andC ′ are cliques. On the
other hand, Z and Z ′ are independent sets, there-
fore |C ∩ Z ′| ≤ 1 and |C ′ ∩ Z| ≤ 1.

Claim 2. |N(C ′)∩Z| ≤ 1 and |N(C)∩Z ′| ≤ 1.

Proof. If |N(C ′)∩Z| > 1 thenZ ⊆ N(C ′). Since
C ′∩S = ∅, this implies that x and y are in the same
connected component of G − S, a contradiction.
The other statement follows by symmetry.

Claim 2 implies that Z 6= Z ′. Up to symme-
try, it remains to analyze five cases, depending
whether the sets C,C ′, Z, Z ′ have vertices in com-
mon (where possible) or not. In what follows we
use the notation u ∼ v (resp. u � v) to de-
note the fact that two vertices u and v are adjacent
(resp. non-adjacent).

Case 1. |C ∩ Z ′| = |Z ∩ Z ′| = 1.
Without loss of generality, we may assume that

a = x′. Since C ∩ Z = ∅ and a = x′ it follows
that x′ /∈ Z, implying Z ∩ Z ′ = {y′}. Without
loss of generality, we may assume that y′ = y. But
the fact that y ∼ a implies y′ ∼ x′, leading to a
contradiction.

The case |C ′ ∩Z| = |Z ∩Z ′| = 1 is symmetric
to Case 1.



Case 2. |Z ∩ Z ′| = 1 and C ∩ Z ′ = C ′ ∩ Z = ∅.
Without loss of generality, we may assume that

x = x′. Since a, b 6∈ S′ and S′ separates x′ and y′,
we conclude that N(y′) ∩ {a, b} = ∅. By sym-
metry, N(y) ∩ {a′, b′} = ∅, and consequently,
y′ 6∈ S and y 6∈ S′. Since S separates x and y and
{a′, b′, y′}∩S = ∅, we have N(y)∩{a′, b′, y′} =
∅, and, similarly, N(y′) ∩ {a, b, y} = ∅.

We must have y � y′ since otherwise G
contains either an induced C4 on the vertex set
{y, a, a′, y′} (if a ∼ a′) or an induced C5 on the
vertex set {y, a, x = x′, a′, y′} (otherwise).

To avoid an induced copy ofH1 on the vertex set
{y, a, b, x = x′, a′, b′, y′}, we may assume, with-
out loss of generality, that a ∼ a′.

Suppose first that b ∼ b′. Then also a ∼ b′

or a′ ∼ b, since otherwise {a, a′, b′, b} would in-
duce a copy of C4. But now (depending if we have
one edge or both) the vertex set {y, a, b, a′, b′, y′}
induces a copy of either F1 or of F2. Therefore,
b � b′.

Suppose that a′ ∼ b. But now, either the vertex
set {y, a, b, x = x′, a′, b′} induces a copy of F2

(if a � b′), or the vertex set {y, a, b, a′, b′, y′} in-
duces a copy of F1 (if a ∼ b′). Therefore, a′ � b,
and by symmetry, a � b′. But now, the vertex set
{y, a, b, x = x′, a′, b′} induces a copy ofF1, a con-
tradiction.
Case 3. |C ∩Z ′| = |C ′ ∩Z| = 1 and Z ∩Z ′ = ∅.

Without loss of generality, we may assume that
a = x′ and a′ = x. By Claim 1 it follows that
b � y′. The fact that y � x = a′ implies y /∈ S′

(since S′ is a clique) and consequently also y � y′

(otherwise x′ = a and y′ would be in the same
component of G − S′). To avoid an (x, y)-path in
G− S, we conclude that y � b′. Now, the vertices
{a = x′, a′ = x, b, b′, y, y′} induce either a copy
of F1 (if b � b′) or of F2 (otherwise). In either
case, we reach a contradiction.
Case 4. |C ∩ Z ′| = 1 and C ′ ∩ Z = Z ∩ Z ′ = ∅.

Without loss of generality, we may assume that
a = x′. By Claim 2, we have |N(C ′) ∩ Z| ≤ 1.
Thus, we may assume that x /∈ N(C ′). Conse-
quently, N(x) ∩ {a′, b′} = ∅ and therefore also
x � y′, for otherwise we would have a C4 in-
duced by {a, a′, y′, x}. To avoid an (x′, y′)-path
in G − S′, we conclude that b � y′. Moreover,
we also have N(b) ∩ {a′, b′} = ∅, since otherwise
the vertex set {x, a = x′, a′, b, b′, y′} induces ei-
ther a copy of F1 (if |N(b) ∩ {a′, b′}| = 1) or of

F2 (otherwise). If y ∼ y′, then, to avoid an in-
duced C4 on {y, a = x′, a′, y′}, we conclude that
y ∼ a′. But now we have a copy of F1 induced
by {x, b, a = x′, a′, y, y′}, a contradiction. Thus,
y � y′, implying also N(y) ∩ {a′, b′} = ∅, since
otherwise the vertex set {b, a = x′, y, a′, b′, y′} in-
duces either a copy of F1 (if |N(y)∩{a′, b′}| = 1)
or of F2 (otherwise).

Since neither of the vertices a′, b′ and y′ is ad-
jacent to b and S is a clique containing b, we con-
clude that {a′, b′, y′} ∩ S = ∅. In particular, if K
denotes the component ofG−S containing a′, this
implies b′, y′ ∈ V (K). By Lemma 2, there exists a
vertex w ∈ V (K) that dominates S. Since S sepa-
rates x from y, we have {x, y} * K; without loss
of generality, we may assume that y /∈ V (K). Let
P = (w1, w2, . . . , wk) be a shortest {a′, b′, y′}–w
path in K where w1 ∈ {a′, b′, y′} and wk = w.
Since w1 is not adjacent to b but wk is, we have
k > 1.

Suppose that k = 2. If w � y′, then the vertex
set {b, a = x′, w, a′, b′, y′} induces either a copy
of F1 (if |N(w) ∩ {a′, b′}| = 1) or of F2 (oth-
erwise), a contradiction. Hence w ∼ y′. To avoid
an induced C4 on the vertices {w, a = x′, a′, y′},
we conclude that w ∼ a′. But now, the vertex set
{y, a = x′, b, w, a′, y′} induces a copy of F1, a
contradiction. Therefore, k ≥ 3.

To avoid an induced copy of a cycle of order
at least 4, we conclude that vertex a = x′ dom-
inates P . If y′ ∼ w2 then also a′ ∼ w2 and
b′ ∼ w2 (or otherwise we would have an induced
C4 on the vertex set {a = x′, w2, b

′, y′} or {a =
x′, w2, a

′, y′}) but that gives us an induced F1 on
the vertex set {y′, a′, a = x′, w2, w3, w4} (where
w4 = b if k = 3). Therefore, y′ � w2. Without
loss of generality, we may assume that w1 = a′.
But now, the vertex set {y′, a′ = w1, b

′, a =
x′, w2, w3} induces a copy of either F1 (if b′ �
w2) or of F2 (otherwise), a contradiction.

The case |C ′∩Z| = 1 and C∩Z ′ = Z∩Z ′ = ∅
is symmetric to Case 4.

It remains to consider the case when C ′ ∩ Z =
C ∩ Z ′ = Z ∩ Z ′ = ∅. This case is analyzed de-
pending on the number of edges between {x, y}
and {x′, y′}, and on the number of edges between
{a, b} and {a′, b′}. Due to space constraints, we
omit here the analysis of this case.



Discussion
We conclude with a brief discussion on algorithmic
aspects of (hereditary) c-domishold graphs. The
characterization of hereditary c-domishold graphs
in terms of forbidden induced subgraphs given by
Theorem 2 can be used to develop a polynomial
time recognition algorithm for this class. More-
over, since the set of all minimal separators of a
given graph can be computed in output-polynomial
time (Shen and Liang 1997), c-domishold graphs
can be recognized in polynomial time in any class
of graphs with only polynomially many minimal
separators, by applying Proposition 2, and verify-
ing whether the minimal separator function msG
is threshold (which can be done in polynomial
time using the algorithm from (Peled and Sime-
one 1985)). Since hereditary c-domishold graphs
are chordal, and chordal graphs have a linear num-
ber of minimal separators (Chandran and Grandoni
2006), the above approach can also be used to
compute a c-domishold structure of a given hered-
itary c-domishold graph.

We leave open the recognition problem for the
general case.
Problem 1. Determine the computational com-
plexity of recognizing c-domishold graphs.
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