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ABSTRACT

MACHINE LEARNING FOR COMPUTER AIDED PROGRAMMING: FROM STOCHASTIC

PROGRAM REPAIR TO VERIFIABLE PROGRAM EQUIVALENCE

Computer programming has benefited from a virtuous cycle of innovation as improvements

in computer hardware and software make higher levels of program abstraction and complexity

possible. Recent advances in the field of machine learning, including neural network models for

translating and answering questions about human language, can also be applied to computer pro-

gramming itself. This thesis aims to make progress on the problem of using machine learning

to improve the quality and robustness of computer programs by contributing new techniques for

representation of programming problems, applying neural network models to code, and training

procedures to create systems useful for computer aided programming. We first present background

and preliminary studies of machine learning concepts. We then present a system that directly pro-

duces source code for automatic program repair which advances the state of the art by using a

learned copy mechanism during generation. We extend a similar system to tune its learning for

security vulnerability repair. We then develop a system for program equivalence which generates

deterministically checkable output for equivalent programs. For this work we detail our contri-

bution to the popular OpenNMT-py GitHub project used broadly for neural machine translation.

Finally, we show how the deterministically checkable output can provide self-supervised sample

selection which improves the performance and generalizability of the system. We develop breadth

metrics to demonstrate that the range of problems addressed is representative of the problem space,

while demonstrating that our deep neural networks generate proposed solutions which can be ver-

ified in linear time. Ultimately, our work provides promising results in multiple areas of computer

aided programming which allow human developers to produce quality software more effectively.
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Chapter 1

Introduction

Machine learning and artificial intelligence have been advancing for decades. Originally named

in the 1950’s [156], the field of artificial intelligence has been constantly advanced by researchers

throughout the world. For almost as long, the field of computer aided programming has pursued

the goal of having computers handle the bulk of the work required to build and maintain code [26].

In parallel with these software efforts, the field of computer hardware was exponentially growing

the number of transistors available on a computer chip year after year following Moore’s law [162].

Now is the time when these ongoing trends have enabled the opportunity for computers to learn

to repair and analyze programs directly - to use machine learning running on modern computing

hardware to enable computers to not merely provide useful development tools and compilers to

software engineers, but to directly understand and improve programs themselves. Providing such

capability will allow human programmers to work at higher levels of abstraction, creating quality

software with fewer bugs and fewer security vulnerabilities.

The field of program synthesis studies the goal of generating code to meet a given set of require-

ments, i.e., programming. Given recent advances in machine learning and artificial intelligence,

researchers have begun to pursue the dream of having computers aid in their own programming in

order to improve the quality of programs and reduce the effort needed to create and maintain them.

Advances in hardware capability and software algorithms have enabled deep learning to apply neu-

ral network models to a variety of problems. Typically, a deep learning model is learning how to

map information from an input distribution (in the sense of a statistical or probabilistic distribu-

tion) to an output distribution. The mapping rarely yields a 100% accuracy in the result, whether

the output is a class label for image recognition [62], a word identifier for language generation

[208], or the optimal action in reinforcement learning [83]. In some applications, such as image

identification on a web application, imperfect outputs can be tolerated so long as a given quality

metric is met. When processing or generating computer code, however, some form of automated

1



verification of the output becomes necessary to ensure the output is usable in the highly structured

world of computer programming.

The problem area addressed in this thesis is built upon prior work in program synthesis and

its intersection with machine learning. Prior work on computer aided programming has explored

directed search and probabilistic code synthesis [143, 34], various machine learning techniques for

generating language tokens and syntax [197, 29], and learned representations of code for machine

learning generalization [12]. Recognizing that computer code is a form of human communication,

techniques from natural language processing have been successfully applied to computer code

understanding and generation. Recognizing machine learning outputs may be imprecise, various

software engineering techniques for verification can be combined to help improve the output qual-

ity of a system. By advancing the state-of-the art for machine learning on computer code, we hope

to improve the efficiency of software engineers and computer scientists and support their efforts to

continue innovating on more and more complex tasks.

Recurrent 

Neural 

Network

Recurrent 

Neural 

Network

Hidden 

State

Recurrent 

Neural 

Network

Recurrent 

Neural 

Network

Recurrent 

Neural 

Network

Encoder

Decoder
x1 x3x2

h1 h2h0

y1 y2

Figure 1.1: Sequence-to-Sequence model showing encoder, decoder, and hidden state

Computer programs are typically thought of by both programmers and the computers process-

ing the program as a sequence of computer language tokens. For example, if ( x < 0 ) is

a sequence of 6 tokens which checks whether the variable x is a negative number. The types of

machine learning models most commonly used for token sequence analysis are called sequence-

to-sequence models [208, 202]. Figure 1.1 diagrams an early type of sequence-to-sequence model

using a recurrent neural network (RNN) to encode an input sequence into a hidden state which can

then be decoded to produce an output sequence. The recurrent neural network provides a method
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for the model to learn a function f which encodes the sequence of tokens provided by xt into a

hidden state h that the model uses to solve a given problem. The model output uses a learned

function g to create output tokens yt based on the problem the model has been designed to solve

and the hidden state created by encoding the input tokens.

ht = f(xt, ht−1)

yt = g(ht)

The functions f and g are learned by a neural network model by providing it thousands or

even millions of example input and output sequences. After being trained on these sequences, the

model can be used to produce output for previously unseen input samples. In this way, we can

use a sequence-to-sequence model to process computer code and generate output targeting a given

programming task. For example, as we shall discuss in Chapter 4, the input could be a buggy

program and the output could be a patch which repairs the bug. Alternately, as we shall discuss in

Chapter 6, the input could be 2 programs and the output could be a sequence of steps which prove

the 2 programs are identical. A challenge of using machine learning models on code is that their

output is stochastic - it is the ’best guess’ by the model at the correct output based on the training

data it has received. This thesis aims to address the problem of using stochastic machine learning

models for computer aided programming.

Given this background, we next investigate and evaluate techniques for validating neural net-

work outputs in an automated way. The general approach is to construct a system which involves

a machine learning generator and an automated validation component of some kind. Using these

techniques we show contributions which advance the state of the art in multiple areas and demon-

strate these contributions with full implementations of 4 computer aided programming systems.

Contributions to Machine Learning Processes

In this section we summarize 4 key contributions we make which have general benefit for

machine learning as applied to computer code. These contributions could be applied to a wide

3



array of problems and cover advances for machine learning models for code, code representation

for machine learning, and novel techniques for training neural network models.

Self-Supervised Sample Selection For sequence generation problems in which the output can be

automatically checked, we can leverage the aforementioned stochastic nature of machine learning

to create new samples on which to iteratively train and improve a model [124]. Because of the

stochastic nature of the model, the outputs can be ranked in likelihood based on what the model

has learned from previous training examples. For example, the output sequence a=0 might be

ranked higher than b=1. When the highest ranked output from the model is indeed correct, then

the problem given as input is already well represented by the current model. However, when

the highest ranked output is wrong, but a lower ranked output is correct, then the model can be

trained on a new input/output example based on this result so that its learned functions improve

for future use. Training sample created using our method are inherently biased towards the more

challenging problems in the input distribution. During initial model training it is important to have

target output provided for a given input so that the model can learn the correct representation, but

with self-supervised sample selection, input problems with no known output can be provided to a

model and useful training samples can be created for improving the model. While we show how

to apply this approach to analyzing computer code, any machine learning system which allows for

automated sample generation combined with robust output verification could benefit from it.

Transfer Learning From Bug Fix to Security Vulnerability Fix The specific problem of re-

pairing security vulnerabilities is critical to software engineers today, but before-and-after exam-

ples of such fixes are limited as their creation requires careful attention by developers. This data

limitation is a problem for machine learning which typically relies on large sample counts on

which to train. To address this, we train a model on abundant examples of generic bug fixes and

then tune the model for the problem of vulnerability repair [47]. We show that our process exceeds

the performance of training on the smaller vulnerability dataset alone, training only on the generic

dataset, and is also better than pretraining with a state-of-the-art noising model. While we apply
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this approach to security vulnerabilities, many types of targeted program modifications could be

initially trained using a similar technique.

Input and output representations for applying machine learning to computer aided program-

ming We develop and analyze multiple ways of presenting computer aided programming prob-

lems to machine learning models in formats which allow the model to learn a mapping between

the input and output which is useful for addressing a given problem. For the task of generating

code patches to address bugs or vulnerabilities in code, we present the construction of a novel

abstract buggy context which leverages Java code context as input to a model for patch generation

[48]. For succinctly specifying a multi-line patch to code, we design a novel code representation

for the program repair task which we call the token context diff because it identifies the location

of a code change using the token sequences which occur before and after the change [47]. For

precisely presenting programs for symbolic reasoning and proof generation by a neural network,

we demonstrate using abstract syntax trees (AST) as neural network model inputs and rewrite rules

as model outputs to specify transformations on the AST [123, 124].

Token Copy Mechanism to Address Large Vocabulary of Computer Code Prior works for

machine learning on code tended to rename functions and variables to reduce the size of language

vocabularies necessary to represent a program. We introduce and study the use of a copy mech-

anism which can be used by a machine learning system to learn when an arbitrary input token

should be copied for use in the output sequence [48]. This output behavior is particularly valuable

in conjunction with abstract buggy context which provides a concise presentation of tokens which

might be useful for output. The copy mechanism is also useful when used with token context diff

which identifies code change locations specifically by copying context tokens from the input to the

output.
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Applying Machine Learning to Computer Aided Programming

In this section we summarize the contribution of 4 systems to solve problems in computer

aided programming with machine learning. For each system, we highlight the machine learning

process contributions that are used and analyzed empirically in each work. All 4 of these systems

are provided to the research community through open source contributions.

SequenceR SEQUENCER is a system which uses a sequence-to-sequence model with copy mech-

anism to generate proposed Java code to patch bugs in the input Java methods [48]. The full class

surrounding the method is provided as input using our abstract buggy context format. The vali-

dation component is the test suite from the project which allowed for automated detection of the

bug and is used for automatic evaluation of a fix before asking a human to review the proposal.

The full process of automatically detecting, localizing, repairing, and validating patches is auto-

mated by our R-Hero repair bot. Our full datasets, models, and analysis scripts are provided to the

community on GitHub1.

VRepair VREPAIR is a system which uses a sequence-to-sequence model to generate proposed

C code to repair security vulnerabilities in functions [47]. Because vetted examples of before-

and-after vulnerability fixes are limited, we improve the model result using Transfer Learning

From Bug Fixes to Security Vulnerability Fixes and demonstrate its benefit over a state-of-the-art

pre-training system based on denoising. We show the ability of the system to generate multi-line

changes to repair a vulnerable function using our token context diff. Our full datasets, models, and

analysis scripts are provided to the community on GitHub2.

pe-graph2axiom We next create a system which uses a graph-to-sequence machine learning sys-

tem to output a sequence of rewrite rules which prove two programs represented as complex linear

algebra expressions to be semantically equal [123]. The system input uses an AST representation

1https://github.com/KTH/chai

2https://github.com/SteveKommrusch/VRepair

6



for model input and produces a Rewrite Rule Format for the proof steps which is automatically

verifiable. The validation component in this case applies the proposed axioms and checks that the

input is correctly transformed, allowing for a system which creates 0% false positives by construc-

tion. We implement our system by contributing the gated-graph neural network encoder model to

OpenNMT-py; details on how to use the model are provided to the community on GitHub3.

S4Eq Our final contribution is system which is capable of proving computational basic blocks

(straight-line programs) equivalent [124]. For this problem we use an AST representation as input

to a transformer model which produces verifiable Rewrite Rule proof steps. We incrementally train

the model using self-supervised sample selection and show how this approach improves perfor-

mance and generalization of the system. We generalize from synthetic programs used for initial

training to program sequences derived from GitHub in which we find cases where humans created

lexically distinct but semantically equivalent programs. Our full datasets, models, and analysis

scripts are provided to the community on GitHub4.

Outline

The remaining chapters of this dissertation are organized as follows. The background Chapter 2

provides a foundation to the reader on the topics of machine learning, program repair, program

equivalence, and discusses original background research on machine learning topics. Chapter 2

also includes formal definitions and a proof of the complexity class for program equivalence in

a given language. Chapter 3 dives deeply into the key computer aided programming areas ad-

dressed by my research work including introducing and integrating the next 4 chapters, which

are all based on published work. Chapter 4 discusses SEQUENCER in detail and shows how a

sequence-to-sequence model can be used to generate Java code fixes given buggy Java code as

input. Chapter 5 discusses VREPAIR and shows how to train a model which can repair C language

3https://opennmt.net/OpenNMT-py/examples/GGNN.html

4https://github.com/SteveKommrusch/PrgEq
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security vulnerabilities despite limited data available for training. Chapter 6 details a system us-

ing a graph-to-sequence generator which produces a verifiable proof of equivalence between two

linear algebra expressions. Chapter 7 builds on the work which we discuss in Chapter 6 to include

multi-statement programs mined from GitHub C repositories. Chapter 7 details how the verifi-

able nature of the program equivalence output from a neural network may itself be used to create

new samples to improve the model incrementally. Chapter 8 concludes this thesis and summarizes

multiple avenues of future research based upon our contributions.
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Part I

Machine Learning on Programs:

Background and Our Contributions
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Chapter 2

Background on Machine Learning for Computer

Aided Programming

As our focus is using machine learning for computer aided programming, this chapter pro-

vides background and discusses key prior contributions that lay the foundation on which this thesis

builds. As this background will show, many successful approaches to applying machine learning to

human language have been shown to work well for generating computer languages as well. Alla-

manis, et al. provide a broad summary of the research in this area in their survey paper [9]. In their

survey, the authors note that computer language creates a bridge between humans and computers.

Hence, while computer language syntax is more precisely defined than human language, humans

writing code tend to certain coding patterns and styles. This creates meaningful statistical distri-

butions at token, loop, function, method, and class levels that can be discovered through machine

learning techniques.

This chapter is organized as follows. In Section 2.1 we discuss machine learning background

for the contributions made in this thesis with particular focus on sequence generation models. In

Section 2.2 we cover topics in computer aided programming including summarizing the prob-

lems of program repair and program equivalence. In Section 2.3 we present our original research

on 3 machine learning problems which, although not directly computer aided programming sys-

tems, provide insights useful for the contributions of this thesis. In Section 2.4 we present formal

definitions and an overview of complexity classes for problems of proving program equivalence.

Section 2.5 summarizes limitations of prior work which motivates the contributions made by this

thesis.
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2.1 Machine Learning for Syntax Understanding and Sequence

Generation

Machine learning models learn a complex function which maps data from the input domain

to the target output domain. The following subsections will describe various models useful for

analyzing token sequences along with the mathematics used to produce the output given the input

sequence. In all of the cases, training occurs through backpropagation of the error term through

the network [189]. That is, the inputs are processed through the mathematical model as described

in the section and a result is obtained. During the training process, if the output does not match

the expected result, then the internal parameters of the model are adjusted slightly based on the

gradient of the error relative to the parameter, i.e., for a given neural network weight parameter wi

and an output error E, the weight is updated as wi = wi − α ∂E
∂wi

. The α term is referred to as the

learning rate, which may vary as more samples are processed to improve stability [116].

2.1.1 Neural machine translation with sequence-to-sequence learning

Neural machine translation (NMT) evolved from statistical machine translation (SMT). SMT

made use of smoothed n-gram models to predict the probabilities of words in a destination language

given a source language and neighboring words. NMT, by use of examples and back propagation,

uses a neural network to learn the most likely translation for a given input [208].

An early example of a sequence-to-sequence network uses an RNN (recurrent neural network)

to read in tokens and generate an output sequence, as shown in Figure 2.1 [208]. In this network,

outputs are created from the same neurons that received the inputs. The input tokens are denoted

xt, and after receiving all of the input tokens and a special <EOS> token, the output tokens are fed

into the network to aid in proper generation of the next token. The output tokens are denoted yt. In

the following equations, ht is the hidden state of a recurrent neural network, W hx,W hh, and W yh

are weights learnable with supervised learning and backpropagation.

ht = σ(W hxxt +W hhht−1)
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Figure 2.1: Figure from Sequence-to-Sequence paper [208] showing example of early model

yt = W yhht

A softmax function is then used to turn the yt values in the preceding equation into probabilities

to choose the most likely token from a learned vocabulary. In this early example, one can see how

the weight matrices can mimic the learning of n-gram data used in SMT; after processing the input

sequence, the hidden state h<eos> encodes the most likely initial token to begin the output and

each subsequent ht can use the W matrices to predict the most likely next token given the input as

well as preceding tokens produced on the output. The W matrices can, thus, encode n-gram-like

information, but can also learn when to encode longer range likelihoods based on the information

in the training data.

2.1.2 Gated recurrent unit

Early neural machine translation architectures made use of Long Short Term Memories (LSTMs)

[208], but gated recurrent units were found to train more effectively and produce improved accu-

racy in some cases [51]. A gated recurrent unit is slightly simpler than an LSTM as it has only 2

gates to learn instead of 3. The feedback is shown in figure Figure 2.2. In the equations below,

the notation [· ]j represents the jth element of a vector. x is the input vector to the GRU layer; r is

the reset gate; and z is the update gate. Wr, Ur, Wz, Uz, W , and U are all matrices with learnable

weights. ht
j is the hidden state of the jth unit after t iterations of the recurrent equations.

rj = σ([Wrx]j + [Urht−1]j)

zj = σ([Wzx]j + [Uzht−1]j)
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Figure 2.2: Figure from initial GRU paper [51] showing GRU functionality. The update gate z selects

whether the hidden state is to be updated. The reset gate r decides whether the previous hidden state is

ignored.

h̃t
j = tanh([Wx]j + [U(r ⊙ ht−1)]j)

ht
j = zjh

t−1
j + (1− zj)h̃t

j

Papers published recently still may use LSTM or GRU, but the GRU was developed specifically

to aid in the problem of learning for neural machine translation.

2.1.3 Get to the Point: Summarization with Pointer-Generator Networks

See et al. introduce a new approach to copying information from an input sequence to an

output sequence when using a sequence-to-sequence model for natural language processing [197].

A pointer-generator in a neural network model allows the model to ’point’ to a specific token on

the input sequence that should be copied to the output sequence. In early versions of sequence-to-

sequence learning, only tokens that were learned as part of the training vocabulary were available

for producing the output [208]. The paper details how a pointer-generator network is useful for text

summarization by allowing accurate use in the output of out-of-vocabulary words such as person

or place names. In particular, the field of automatically summarizing natural language processing

includes both extractive approaches where certain key sentences and phrases are copied in full from

the source, and abstractive approaches which can involve rewording ideas in the input and sound

more natural to most readers. The paper notes that abstractive approaches benefit from their copy

mechanism, which can use token embedding and encoding information to point to specific tokens

that aren’t in the language vocabulary but are in the input sequence and should be used at specific
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points in the output sequence. In addition to improving natural language models, copying tokens

from the input directly to the output also has key advantages for program repair. A known challenge

to using sequence-to-sequence models for program repair is the issue that the full vocabulary for

source code is nearly infinite due to specific identifier names, numbers, strings, etc. [90]. Similar to

the summarization problem, in program repair new tokens from the computer language vocabulary

may be needed for a bug fix, and copying rare tokens can be used to solve the unlimited vocabulary

problem.

See et al. did not introduce the copy mechanism for NLP, but their paper has been received

by the NLP community as a base on which to build further work. For example, their paper is

the basis for the copy mechanism implementation in OpenNMT, a popular open framework for

neural machine translation. The main difference between this work and previous work is explicitly

computing pgen, the probability for copying a token from the input versus using a token from the

vocabulary. The next paragraphs will briefly build up the model to show how pgen is computed and

used.

Encoder The encoder is a recurrent neural network using LSTM gates [97] to process the input.

It is a bidirectional encoder [196] that allows the encoding for a token to incorporate information

from tokens both before and after its occurrence in the input data. The encoder converts the source

sequence X = [x1, ..., xn] into a sequence of encoder hidden states hi using a learnable recurrence

function fe. After reading the last token, the last hidden state, he
n is used as the context vector c for

initializing the decoder [51]:

he
i = fe(xi, h

e
i−1); (2.1)

Decoder The decoder is also a recurrent neural network using LSTM gates. When initialized

by the encoder, it begins production of the output sequence by receiving the special start token as

input y0. For each previous output token yj−1, the decoder updates its hidden state hd
j using the

learnable recurrence function fd [51]:

hd
j = fd(yj−1, h

d
j−1, c) (2.2)
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The decoder states hd
j are used for token generation by the attention and copy mechanisms in

Equation 2.4 and Equation 2.5. The model stops updating decoder hidden states and generating

new tokens when the last token generated by the model is a special end-of-sequence token.

Attention The attention mechanism provides a way to create a context vector cj for each de-

coder output token yj using a linear combination of the hidden encoder states he
i [21]:

cj =
n

∑

i=1

αj
ih

e
i (2.3)

Where αj
i represents attention weights computed with a learnable function based on the relation

between the encoder hidden state and the decoder hidden state: αj
i = softmax(fα(h

e
i , h

d
j−1)). This

context vector cj is used by a learnable function fa to allow each output token yj to pay "attention"

to different encoder hidden states when predicting a token from the vocabulary V :

PV (yj | yj−1, yj−2, ..., y0, cj) = fa(h
d
j , yj−1, cj) (2.4)

Copy The copy mechanism further adjusts Equation 2.4 to produce a token candidate by intro-

ducing pgen, the probability that the decoder generates a token from its initial vocabulary. Hence,

1− pgen is the probability to copy a token from input tokens depending on the attention vector αj

in Equation 2.3 [197]:

pgen = fc(h
d
j , yt−1, cj) (2.5)

P (yj) = pgenPV (yj) + (1− pgen)
∑

i:xi=yj

aji (2.6)

fc in Equation 2.5 is learnable function. Using Equation 2.6, the output token yj for the current de-

coder state is selected from the set of all tokens that are either: 1. tokens in the training vocabulary

(including the <unk> token) or 2. tokens in the input sequence.

In addition to the copy mechanism, See et al. introduce a technique for limiting repetition

of output sequences. This technique is important for the text summarization use case they envi-
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sion, but is less relevant for source code. Reusing the same variable multiple times in a line may

sometimes be appropriate (i.e. "if (x < 8) && (x > 2)").

2.1.4 Graph neural networks

Researchers have applied graph analysis to human language generation models, and graphical

representations of code are common in compiler research. The key initial paper relating to graph

neural networks was written in 2009 [193].

In the 2009 paper, the graph neural network is described as an iterative encoding network.

The network uses as input labels for nodes and edges, the labels having dimensions dN and dE

respectively. The labels attached to node n are denoted ln ∈ R
dN ; the labels attached to edge

(n1, n2) are denoted ln1,n2
∈ R

dE . Additionally, lco[n] and lne[n] are the labels for edges connected

to node n and labels of nodes connected by edges to node n, respectively.

Figure 2.3 shows diagramatically how the input information is used in a GNN. xn is the hidden

state for node n, and on is the output of node n. These are computed by iterating on the equations

below:

xn(t+ 1) = fw(ln, lco[n], xne[n](t), lne[n])

∀n ∈ N, on(t) = gw(xn(t), ln)

The outputs on of the network allow for training samples to be used for setting the weights in

the functions fw and gw. Typically xn(0) is initialized to 0 for all nodes. The 2009 paper discusses

the constraints on the learnable function fW that ensures xn(t) converges over some finite number

of steps. The function fW is implemented as a different matrix for each edge type, so the number

of parameters to learn in a GNN grows linearly with the number of edge types. The hidden state

of all connected nodes is processed through each edge matrix to create the final output of fW . As

can be surmised, the number of iteration steps is equal to the hop distance to the furthest node in

the graph that can affect another node.
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Figure 2.3: Figure from initial graph neural network paper [193]. Using label values for nodes and edges,

a learned function fW is iterated on at each node and ultimately used to produce on(t).

As presented in Figure 2.3, the GNN is producing one output per node. Another use case

for a GNN is to do a softmax function on on, which allows a node to be selected as an output.

Alternately, summing all on together can produce a usable single output for a graph.

2.1.5 Graph-to-Sequence Learning using Gated Graph Neural Networks

Sequence-to-sequence models for code generation have been augmented to include some AST

information [43], but the rich information available statically during program analysis would ben-

efit from a graph neural network. Beck et al., like the Pointer paper, discuss natural language

processing, and the concept introduced invites use for code analysis [29]. Beck et al. use a gated

graph neural network to analyze an input string after the string is transformed into an Abstract

Meaning Representation (AMR) graph. To minimize the number parameters in the graph neural

network model due to edge types, they discuss transforming the edges in the graph to be extra

vertices through a Levi graph transformation. For code analysis, a Levi transformation could be

valuable - it allows for a wider variety of edge types to be represented with a reasonable number

of parameters.

Figure 2.4 shows an overview of their approach. In a sequence-to-sequence model with at-

tention, as described in Section 2.1.3, the attention is computed using the encoder hidden states

for each received token. The encoder state includes information from the embedding of the input
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Figure 2.4: Figure from Graph-to-Sequence paper [29] showing encoder and attention mechanism feeding

into sequence generation

token, as well as a function of the encoder states before and after this token. In a graph neural net-

work, the attention is computed using the node hidden states after the network has iterated on the

structure. Since the nodes are initialized with the token inputs, the node hidden states can include

information from an embedding of the input, as well as any other nodes that can be reached during

network iteration. An aggregation of the final node states can be used to initialize the hidden state

of the sequence decoder.

The transformation of the input AMR graph into a Levi graph allowed for fewer edge types

in the model. The paper shows that for optimal performance, the Levi network had these types

of edges: self edges, forward and reverse token sequence edges, and forward and reverse tree

connection edges. This results in five edge types, each of which has a weight matrix to compute

how the gated recurrent unites (GRUs) update each iteration step.

As is common for reporting machine translation results, the authors evaluate results using

BLEU scores (BiLingual Evaluation Understudy). The BLEU score was proposed by Kishore

Papineni et al. in their 2002 paper “BLEU: a Method for Automatic Evaluation of Machine Trans-

lation“ [172] and scores candidate translations based on a reference translation. Their test set con-

tains both english-to-german and english-to-czeck translation tasks. In their results section they
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show the highest BLEU scores for the models tested, including the same test set tested with recent

state-of-the-art approaches. Interestingly, they also include results for the ChrF++ scoring method,

for which their approach does not score the best. They note that ChrF++ scores have been found

to align better with human translation scoring than BLEU and leave the challenge of improving

ChrF++ scores to future work. The merits of BLUE versus ChrF++ methods for language out-

put scoring are not directly related to machine learning for code sequence generation. The scores

can help alert code generation researchers to new improvements in sequence generators, but the

methods tend to relate best to human languages.

2.1.6 Transformer Networks Use Attention Layers

Sequence-to-sequence (seq2seq) learning has become widely successful on many applications

such as automated translation [236], text summarization [167] and other tasks related to natural

language. The transformer model [220] is a powerful and versatile sequence-to-sequence model,

used by GPT-3 [36] as well as showing strong results for source code summarization [3]. As an

extension of the original seq2seq model which we introduce in Section 2.1.1, modern seq2seq

models generally consist of two parts, an encoder and a decoder. The encoder maps the input

sequence X = (x0, x1, ..., xn) to an intermediate continuous representation H = (h0, h1, ..., hn).

Then, given H , the decoder generates the output sequence Y = (y0, y1, ..., ym). Note that the size

of the input and output sequences, n and m, can be different. A seq2seq model is optimized on a

training dataset to maximize the conditional probability of p(Y | X), which is equivalent to:

p(Y | X) = p(y0, y1, ..., ym | x0, x1, ..., xn)

=
m
∏

i=0

p(yi | H, y0, y1, ..., yi−1)

Prior work has shown that source code has token and phrase patterns that are as natural as

human language [95], and thus techniques used in natural language processing can work on source

code as well, including seq2seq learning [48].
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In our work, we use a variant of a seq2seq model called “Transformer” [220], which is con-

sidered the state-of-the-art architecture for seq2seq learning. The main improvement introduced

by Transformers is the usage of self-attention. The number of operations required to propagate

information between two tokens in seq2seq learning based on recurrent neural networks grows

linearly with the distance, while in the Transformer architecture it is a constant time operation with

the help of self-attention. Self-attention updates all hidden states simultaneously by allowing all

tokens to attend to all previous hidden states. Since there are no dependencies between tokens,

this operation can be done in parallel without recurrence. This also helps to mitigate the issue of

long term dependencies which can be a problem for recurrent neural networks. Self attention can

be described as the process of mapping a query and key-value pairs to an output. Query, key, and

value are concepts borrowed from information retrieval systems, where the search engine maps a

query against keys and returns values. In a Transformer model, Query (Q), key (K), and value (V)

are vectors of the same dimension dk computed for each input. Mathematically, the matching of

Query to Key is done with a dot product and the result is used to scale the Value selected:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

The Transformer model is trained with multiple attention functions (called multi-head atten-

tion) which allows each attention function to attend to different learned representations of the input.

Since the Transformer model computes all hidden states in parallel, it has no information about the

relative or absolute position of the input. Therefore the Transformer adds positional embedding to

the input embeddings, which is a vector representing the position.

The encoder of a Transformer has several layers, each layer having two sub-layers. The first

sub-layer is a multi-head self-attention layer, and the second sub-layer is a feed forward neural

network. The outputs from both sub-layers are normalized using layer normalization together with

residual connections around each sub-layer.

The decoder also has several layers, each layer has three sub-layers. Two of the decoder sub-

layers are similar to the two sub-layers in the encoder layer, but there is one more sub-layer which
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Figure 2.5: Code Generation Neural Architecture based on Transformers

is a multi-head self-attention over the output of the encoder. A copy attention mechanism, as

discussed in Section 2.1.3, can be used in conjunction with a Transformer in order to support data

copies from input to output. The Transformer architecture we utilize for our work in this thesis is

shown in Figure 2.5 and discussed in further detail in subsection 5.3.7 and subsection 7.3.2.

The Transformer model shown in Figure 2.5 includes example input and output tokens which

represent computer code. The Transformer for learns to generate outputs (in this example, cor-

rected computer code) by first receiving as input the code with a defect. Multiple copies of multi-

head attention layers learn hidden representations of the input data. These representations are then

used by multiple copies of a second set of multi-head attention layers to produce a table of proba-

bilities for the most likely token to output. The first token to output is based solely on the hidden

representations the model has learned to produce from the input code. As tokens are output they

are available as input to the model so it can adjust the next token probabilities correctly. For ex-

ample, in Figure 2.5, after the sequence of tokens ’&& ( d > a *’ has been output, the model

predicts that the next token should be ’b’ with a probability of 0.8.
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Libraries The Transformer model we use in our research is implemented in Python using state-

of-the-art tools. Once the input code is processed, OpenNMT-py is used to train the core Trans-

former model [117].

2.2 Computer Aided Programming

In this section we present background work related to computer analysis and generation of

computer programs. Works describing attempts to address these concerns without machine learn-

ing are presented as well as some initial works which do use machine learning but have weaknesses

which we aim to address with the work presented in this thesis.

2.2.1 Staged Program Repair with Condition Synthesis

Long et al. introduce staged program repair (SPR), which creates a search space of potential

bug fixes in C code [143]. The repair attempts are based on pre-defined parameterized transfor-

mation schemas that combine with multiple ways to synthesize changes to conditional statements.

The approach to evaluating the schemas allows for a relatively efficient pruning of the search space

that improved performance over prior work. There are 6 specific schemas discussed in the paper,

which can be useful as a baseline for evaluating machine learning techniques for program repair

and synthesis work to see which types of repairs can be found. This paper from 2015 is particu-

larly interesting because it discusses the algorithmic implementation of many program ideas that

are today starting to be explored using machine learning techniques.

Before exploring repair schemas, SPR does error localization by finding blocks of code that are

often executed for failing test cases but rarely executed for passing test cases. Given the suspected

faulty code blocks, SPR will then search for a successful repair by performing code transformations

and rerunning the passing and failing tests. The order SPR searches the repair space is a key

contribution of this work as it decreases the search time. For example, the first schema evaluated

is to change only a branch condition (e.g., tighten and loosen a condition). Further details are in

the paper, but a summary of the 6 schemas that SPR uses to explore code transformations are:
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• Condition Refinement: Given a target if statement, SPR transforms the condition of the if

statement by conjoining or disjoining an abstract condition to the original if condition.

• Condition Introduction: Given a target statement, SPR transforms the program so that the

statement executes only if an abstract condition is true.

• Conditional Control Flow Introduction: SPR inserts a new control flow statement (return,

break, or goto an existing label) that executes only if an abstract condition is true.

• Insert Initialization: For each identified statement, SPR generates repairs that insert a mem-

ory initialization statement before the identified statement.

• Value Replacement: For each identified statement, SPR generates repairs that replace either

1) one variable with another, 2) an invoked function with another, or 3) a constant with

another constant.

• Copy and Replace: For each identified statement, SPR generates repairs that copy an ex-

isting statement to the program point before the identified statement and then apply a Value

Replacement transformation.

Three of the six transformations involve adding an abstract condition. An abstract condition

abstract_cond() can be added to an existing if statement by adding ’&& abstract_cond()’ or ’||

abstract_cond()’ to the statement. The condition to add is generated by creating traces of passing

and failing tests that track values of different variables for each case and a new condition is searched

for that causes the failing cases to pass.

Listing 2.1 is an example of a one-line patch found by SPR. The failure results because the

body of the if statement did not execute when it should have. An abstract_cond() was added to the

condition, then concretized to produce the correct fix.

− if ( isostr_len ) {

+ if ( isostr_len || ( isostr != 0)) {

Listing 2.1: Patch that uses Condition Refinement schema to correct if statement
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A strength of the SPR paper is its discussion on the balance between plausible (passing all

tests) and correct patches. Out of 38 plausible patches, 11 are correct, which is a 29% correct/plau-

sible ratio. Other papers have cited lower ratios for correct/plausible; a careful analysis of prior

techniques (GenProg, RSRepair, and AE) shows that they have correct/plausible ratios of less than

12% [181]. Given that the authors compare directly against GenProg and AE, their relatively high

ratio implies that the repair schemas they use represent reasonable transformations.

Ultimately, the authors compare their results to two other well-cited repair programs (GenProg

and AE). On the same benchmark set, SPR was able to fix five times as many defects as the prior

art, representing a significant advance.

A weakness of the approach in the SPR paper is that it cannot effectively apply more than one

transformation to attempt a patch. As Chapter 4 will show, this is an area that can be addressed by

machine learning for patch generation.

2.2.2 PHOG: Probabilistic Model for Code

Beilik et al. create a statistical model of code that can be used for code generation (including

code completion, patch generation, and programming language translation) [34]. The model is

based on their domain-specific TCOND language which allows for grammar production rules to

be context dependent. The probabilities for each contextualized production rule are computed from

the training data and evaluated based on how well AST nodes in the test data could be predicted.

The paper builds up ideas based on context-free grammars (CFGs) [15], which include produc-

tion rules that define how non-terminals can be transformed. Some examples to show the format

are:

• 〈expr〉 → number

• 〈expr〉 → 〈expr〉+ 〈expr〉

• 〈expr〉 → 〈expr〉 − 〈expr〉
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Table 2.1: Evaluation of prediction for AST nodes in JavaScript

Model Error

Rate

Non-Terminals

PCFG 48.5%

3-Gram 30.8%

10-Gram 35.6%

PHOG 25.9%

Terminals

PCFG 49.9%

3-Gram 28.7%

10-Gram 29.0%

PHOG 18.5%

After discussing CFGs, the concept of a high order grammar (HOG) is introduced, which allows

for production rules to be based on contexts such that α[γ]→ β represents a rule transforming the

non-terminal α with context γ into β, where β can be a terminal or non-terminal of the grammar. A

context is created by analyzing the program up to the production rule use point and might include

statement types or local variable names. For example: 〈expr〉[return] → True could represent

the rule that 〈expr〉 expands to True when the expression is in a return statement.

The paper defines a PHOG as: a probabilistic high order grammar is a tuple (G, q) where G

is a HOG (high order grammar) and q : R → R
+ scores rules such that they form a probability

distribution. G includes a set of non-terminals N and a conditioning set C (i.e., the contexts). The

probability distribution is computed as:

∀α ∈ N, γ ∈ C :
∑

β:α[γ]→β∈R

q(α[γ]→ β) = 1

The function q is learned by counting rule expansions observed in a set of training data, and

the authors use smoothing techniques to address sparseness in the training data. This is a straight-

forward technique to learn probabilities. Machine learning approaches, which can learn similar

distributional information, are not as easily understood an the technique used for PHOG.
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To evaluate PHOG, the authors predict JavaScript elements using PHOG and 3 alternate tech-

niques. The prediction test is done by deleting a node from an AST (and its subtree and all nodes

to the right) and querying the model to identify the missing node. Their alternate techniques are

a PCFG (probabilistic context-free grammar) that only conditions on the parent non-terminal (no

context used), and a 3-gram and 10-gram model (an n-gram model conditions on the n-1 previous

symbols in the AST traversal as used in Allamanis et al. [10]). Table 2.1 shows their results on

predicting both terminal and non-terminal elements. Their results are very strong in this analysis

relative to previous techniques; but Chapter 4 will show a more flexible approach using a machine

learning technique for patch generation.

2.2.3 Abstract Syntax Trees

Human languages can be parsed and broken down into clauses and parts of speech, but this

process is not mathematically precise due to exceptions and nuances in human language [63].

Computer languages, on the other hand, are designed to be automatically and predictably parsed.

Figure 2.6 shows a typical abstract syntax tree (AST) for a short code snippet [233]. The tree

is abstract in that certain syntax (such as parenthesis) are not necessary, but given the AST for a

code snippet, equivalent code can be reconstructed. The tree provides a structure for identifying

the way in which control statements and variables are used in the program, and Section 2.2.4 will

show how it can be useful as an input to machine learning approaches on code.

2.2.4 code2vec: Learning Distributed Representations of Code

Alon et al. describe an approach to create an embedding vector for entire Java methods [12] in

a way similar to the widely successful word2vec approach used in NLP [159]. The example use

case is to predict method names, but the paper aims to produce an embedding that can be used for

a variety of cases. Indeed, this approach can be directly applied to the problem of program equiv-

alence. The paper presents cases where similar methods have similar embeddings and ’adding’

the embedding from one program can have meaningful results in the method name predicted. In

this way, a possible future application for code2vec would be test two programs for equivalence

26



Figure 2.6: Wikipedia image of an abstract syntax tree for a short code snippet
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by subtracting their embeddings and the resulting vector could be used to seed a sequence decoder

and create a description of the program differences.

The paper builds up d-dimensional embedding for a piece of code (in their example use case

they are looking at methods). The embedding is built up using weighted summations of embed-

dings for path-contexts. A path-context is a sample from the AST for the code that includes a start

terminal, the non-terminals from the AST, and the end terminal. In theory, a snippet of code with

n terminals in the AST has n2 path-contexts, but the authors set AST distance constraints on the

path-contexts allowed and also have found that an upper bound of 200 path-contexts is sufficient to

represent most code correctly. Like the popular word2vec, embeddings are learned during model

training for the terminals and AST paths. The embeddings for the set of all terminal symbols are

collected into value_vocab, and the embeddings for all of the paths seen in the training set are

collected into path_vocab. Hence, given a path-context that starts at terminal xs and terminates at

xt following a path pj through the AST, the path-context is mathematically represented as:

ci = embedding(〈xs, pj, xt〉) = [value_vocabs; path_vocabj; value_vocabt] ∈ R
3d

Figure 2.7 shows an example of path-contexts. For example, the path-context for the red path

labeled 1© in the figure is the embedding for:

〈elements,(Name ↑ FieldAccess ↑ Foreach ↓Block ↓ IfStmt ↓Block ↓Return ↓BooleanExpr),true〉

Using the path-context ci and a trainable weight matrix W ∈ R
d×3d, the combined context

vector c̃i is:

c̃i = tanh(W · ci)

A trainable global attention vector a ∈ R
d is used in a softmax function to compute attention

weights αi based on the path context embeddings:
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Figure 2.7: Figure from code2vec paper [12] showing different paths through AST. The top-4 attended

paths learned by the model are shown in red, blue, green, and yellow. Path width is proportional to the

attention given.

αi =
exp(c̃i

T · a)
∑n

j=1 exp(c̃j
T · a)

Ultimately, the whole code snippet is represented by an aggregated code vector v ∈ R
d:

v =
n

∑

i=1

αic̃i

A strength of the code2vec paper is that it teaches a way to visualize the parts of the program

that are being used to determine the method name, which is a helpful way to improve understanding

of the neural network. Since understanding what a network has learned is a known problem in

machine learning, this attention visualization is valuable. Figure 2.7 shows the various weights of

the top 4 paths used in computing v for the snippet based on the thickness of lines. Figure 2.8

diagrams the full use model of the code2vec paper. The original code, with ’?’ for the method

name is shown, along with the top 4 weighted paths used to predict the method name ’count’.

A weakness of the code2vec paper is that it learns on full tokens (not subtokens) and has a

vocabulary limitation. It cannot learn embeddings for novel variable names. Also, the embeddings

it does learn are based on the training set provided, hence the embedding may not be appropriate for
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Figure 2.8: Figure from code2vec paper [12] showing full use model from code snippet to method name

prediction

30



∗
a +
∗

1 b

∗
1 c

P1: a ∗ (1 ∗ b+ 1 ∗ c)

∗
a +

b c

P2: a ∗ (b+ c)

+

∗
a b

∗
a c

P3: a ∗ b+ a ∗ c

+

∗
a c

∗
a b

P4: a ∗ c+ a ∗ b

Figure 2.9: Examples of Computations Shown as Symbolic Expressions and Dataflow Graphs

how a variable is used in a given method. For example, a method that iterates over an array using

i and accumulates the sum of array elements into sum is semantically equivalent to a method that

uses j for the iterator and i for the accumulation. But the somewhat odd use of i for accumulation

would result in a shifted code vector for the method.

2.2.5 Program repair

Program repair is the problem of finding a patch to a buggy input program in order to ad-

dress a bug. In the survey paper “Automatic Software Repair: a Bibliography” [161], Monperrus

discusses several kinds of repair. First, the paper discusses behavioral repair where test-suites, con-

tracts, models, or crashing inputs are taken as test oracles to determine software quality. Second,

it discusses state repair, also known as runtime repair or runtime recovery, with techniques such

as checkpoint and restart, reconfiguration, and invariant restoration. The paper spans the research

communities that contribute to this body of knowledge: software engineering, dependability, oper-

ating systems, programming languages, and security. It provides a novel and structured overview

of the diversity of bug oracles and repair operators used in the literature.

2.2.6 Program equivalence

The problem of proving program equivalence is one of the earliest problems in computer sci-

ence [101]. The problem is to determine when two programs with different textual representations

have the same semantics. In particular, proving that for all program inputs the two programs pro-

duce identical output. The applications for program equivalence checking include: 1. validation

of any algorithm that does program transformations (such as compilers) 2. plagiarism detection
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(useful in MOOCs etc.) 3. formal verification when refactoring code (for readability, security au-

tomation, etc.) 4. virus and other malware detection by detecting similar code sequences.. Since

the problem of program equivalence can range from undecidable [79], to trivial in the case of test-

ing the equivalence of a program with itself, new techniques for program equivalence can improve

software quality and reduce development time.

In order to reason precisely about programs, symbolic expressions and other program con-

structs can be represented as abstract syntax trees, as we discuss in Section 2.2.3. Figure 2.9

shows an example of 4 semantically equivalent computations along with their dataflow graphs. A

challenge addressed by this thesis is how to formally prove such programs equivalent.

2.2.7 Neural Network-based Graph Embedding for Cross-Platform Binary

Code Similarity Detection

Xu et al. use graph neural networks to detect binary code similarity [241]. Like the code2vec

paper (which is more recent), Xu et al. learn and embedding function on code and the use model

is to compare embedding functions to detect code similarity for vulnerability detection. They refer

to their approach as Structure2vec.

The Structure2vec approach starts with an ACFG (attributed control flow graph), in which

each node represents a basic block and includes attributes such as ’number of calls’, ’numeric

constants’, ’number of offspring’, and five other easily computed attributes. After initializing and

iterating the graph neural network for T iterations, the embedding for the graph φ(g) is computed

using a learned matrix W to combine the final hidden state µ
(T )
v of each vertex:

φ(g) = W ·
∑

v∈V

µ(T )
v

Figure 2.10 diagrams the approach for detecting code similarity. Subfigure (a) shows how after

T iterations of the graph neural network, φ(g) is created. The Siamese architecture shows how the
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(a) Graph Embedding Network Overview                         (b) Siamese Architecture             

Figure 2.10: Figures from Code Similarity paper [241] showing generation and use of φ(g)

difference between two code embeddings is computed using the cosine of two multidimensional

vectors.

A disadvantage of this approach is that the cosine function tends to limit each dimension of

the embedding to a gradient representation of some feature. If the cosine function were replaced

by a 2-layer neural network, then mappings from the program embedding to the equivalence value

could account for disjoint but similar areas in the embedding spaces.

2.3 Preliminary Studies on Machine Learning Concepts and

Limitations

In this section we will explore 3 topics in machine learning with our original research. These

3 subsections are outside the field of program analysis, and hence are not necessary reading for

understanding the work presented in this thesis. But they provide some insights into machine

learning concepts which inform certain decisions taken in our primary research area.
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In Section 2.3.1 we explore the limits of neural networks when attempting to learn pseudo-

random datasets such as this study on finding a hash function on binary data. As neural networks

excel at finding patterns in data and generalizing an output to these patterns, when no discernible

pattern is available a neural network is likely not the best approach. As shown in Parts II and III

of this thesis, the general problem of machine learning on code does have patterns and relations

which a machine learning system can help address.

In Section 2.3.2 we explore the effects of network size (number of neurons and number of

layers) on the ability of a model to avoid overfitting and generalize well on the dataset. We study

the problem of generalizing on 3D lung nodule data using a novel scoring metric based on distri-

butional differences of the shape characteristics. We find that a network that is too small may not

have sufficient learnable parameters to fully generalize to the data, while a network that is too large

may overfit the training data that is used to learn the parameters but then may generalize poorly

beyond the training data.

In Section 2.3.3 we use a well-defined problem to explore the ability of a system to learn to

solve multiple goals with sparse reward information. The system studied is a hand/eye coordination

task within a 2D grid world in which hand and eye movements can be used to accomplish a goal.

The goal is defined as getting the hand or eye to a given position, or visually seeing the hand at

a given position in the visual field. This problem relates to our problem in this thesis of proving

program equivalence. In the case of program equivalence, rewrite rules are actions instead of

hand/eye movements and a target equivalent program is the goal instead of a hand/eye position.

We find that the concept of hindsight experience replay is very valuable for solving this hand/eye

problem and we leverage that finding into our work on program equivalence which we present in

Chapter 7.
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2.3.1 Multilayer Perceptron (Vanilla) Neural Network Models And the Chal-

lenge of Learning Hash Functions

The simplest form of neural network is a fully-connected multilayer perceptron, sometimes

called a ’vanilla’ nueral network. We now explore an attempted use case of such a network which

introduces neural network concepts and demonstrates some limitations of neural networks. This

section will also cover techniques which could be used to transform a neural network which has

learned a symbolic equation back into such equation.

The problem we explore is to reverse-engineer the Cache/Home Address (CHA) mapping for

the L3 cache of the Intel Xeon-Phi. Successfully reverse-engineering the mapping could allow

software to map data in the large L3 such that they are close to the CPU core executing code which

needs the data. The neural network sample data for this mapping has as input 29 bits of the address

which are used to map an address location to one of 36 CHA locations.

Table 2.2 shows 3 fully connected neural network models of varying sizes which were trained

on the CHA mapping problem. We found in earlier experiments that classifying each 29 bit address

input into one of 36 CHA classes did not work well, so we surmised that training a different model

per CHA bit may be productive (6 CHA bits can represent 36 possible CHA identifiers). We also

found that having the network produce 2 classes per bit (the bit ’high’ class and the bit ’low’ class)

yielded better results than a single binary output. Our expectation here is that having a 2 bit output

approximates one more layer in the network and hence allowed some more learning opportunities

for the network. We trained on 384,000 samples for 500,000 iteration steps and tested on a separate

128,000 samples. As the table shows, all 3 network sizes learned CHA bit 0 well as shown by the

Test Error scores of 0.04% or less for this bit, but none of the networks learned CHA bit 4 well

as shown by the Test Error scores of over 48% on this bit. Of course random prediction for any

bit will result in 50% error rate, so 48% error is quite poor. From this observation we surmise that

the function for CHA bit 4 is relatively chaotic in the same sense as functions which Bahi et al.

demonstrated are difficult for a neural network to learn in their work studying neural networks and

chaos [22].
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Table 2.2: Training and test results as vanilla network size varies

Number of elements in layer CHA Training Test

Input L1 L2 L3 L4 L5 Output bit Error Error

29 256 256 64 64 64 2 0 0.00% 0.03%

1 43.26% 49.98%

2 37.20% 49.67%

3 6.35% 17.36%

4 38.86% 48.94%

5 13.84% 23.13%

29 512 256 64 64 64 2 0 0.00% 0.04%

1 0.00% 0.04%

2 0.05% 5.01%

3 2.03% 16.85%

4 13.07% 48.94%

5 6.26% 25.68%

29 1024 512 256 128 64 2 0 0.00% 0.04%

1 0.88% 49.77%

2 0.00% 2.96%

3 0.25% 48.82%

4 0.80% 49.33%

5 0.15% 22.37%

Outside the scope of this thesis, we developed and published a process which did not use ma-

chine learning to decode the CHA mapping [125]. The binary functions which compute CHA bits

0 and 4 are shown in Figure 2.11. As we can see, CHA bit 0 has several layers of exclusive-or

functions and a few logical and, or, and invert functions. Despite this moderate Boolean complex-

ity, all 3 models in Table 2.2 were able to learn this function well. However, CHA bit 4 uses a

complex function g to select one of 2 other complex functions f and h to produce the final output.

This layering of complex functions was not learned well by any of our 3 models.

Had our machine learning model succeeded in learning the CHA decoding, we can see that

the number of neurons and layers in our models would make efficient computation challenging.

It would be of interest for practical usage to successfully transfer learned neural network models

into more direct discrete computations. Figure 2.12 illustrates how this process could be attempted

for a neural network trained on a Boolean function. In this figure, training has settled the weights
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CHA0 = a6 ⊕ a8 ⊕ a9 ⊕ a10 ⊕ a14 ⊕ a15 ⊕ a17 ⊕ a18 ⊕ a20 ⊕ a23 ⊕ a27 ⊕ ((a30a31)|(a30a31(a32|a33)))
CHA4 = fg|gh, where:

f = a6 ⊕ a11 ⊕ a12 ⊕ a16 ⊕ a18 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a26 ⊕ a30 ⊕ a31 ⊕ a32

g = ((a11 ⊕ a16 ⊕ a17 ⊕ a21 ⊕ a23 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a31) |
(a10 ⊕ a15 ⊕ a16 ⊕ a20 ⊕ a22 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a30 ⊕ a34))

(a7 ⊕ a12 ⊕ a13 ⊕ a17 ⊕ a19 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a25 ⊕ a27 ⊕ a31 ⊕ a32 ⊕ a33)

(a9 ⊕ a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a29 ⊕ a33 ⊕ a34)

h = (a7 ⊕ a12 ⊕ a13 ⊕ a17 ⊕ a19 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a25 ⊕ a27 ⊕ a31 ⊕ a32 ⊕ a33)

(a6 ⊕ a12 ⊕ a13 ⊕ a14 ⊕ a18 ⊕ a20 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a26 ⊕ a29 ⊕ a31 ⊕ a32 ⊕ a33)

(a8 ⊕ a12 ⊕ a14 ⊕ a16 ⊕ a18 ⊕ a19 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a30 ⊕ a33)

(a9 ⊕ a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a29 ⊕ a33 ⊕ a34)

(a10 ⊕ a11 ⊕ a13 ⊕ a16 ⊕ a17 ⊕ a18 ⊕ a19 ⊕ a20⊕
a21 ⊕ a22 ⊕ a27 ⊕ a28 ⊕ a30 ⊕ a31 ⊕ a33 ⊕ a34)

Figure 2.11: Reverse-engineered mapping function between memory blocks and Caching/Home Agent

(CHA) bits 0 and 4.
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z= σ(∑ wixi ௜ +b)
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Figure 2.12: Discrete functions can be extracted from a trained neural network [227]

37



such that w0 = w1 = 10, w2 = −10, and b = −5 for the single neuron shown, which uses a

sigmoid function to clamp the z result between floating point values of 0.0 and 1.0. We can see

from the z columns in the figure that the values in the floating point result closely approximate

the binary computation of z = x0x1|x2(x0|x1)). Other researchers have explored the problem of

extracting grammar rules from recurrent neural networks [227], but in our study of CHA the neural

network did not learn the problem well enough to attempt this effort. Additionally, as we discuss

in Parts II and III of this thesis, the stochastic nature of neural network outputs can be useful when

a mechanism for verifying the outputs exists. A stochastic result can be used to create multiple

proposals from a network, which can increase the likelihood of a useful result being produced.

Section key points: We confirmed that neural networks do not learn hash functions well. We

also found that larger networks may often learn training data well but may not generalize well

(they can overfit).

2.3.2 Generalizing to a Target Distribution With Proper Network Sizing

Figure 2.13: Six of the 51 seed nodules showing

the middle 8 out of 20 2D slices

Figure 2.14: Autoencoder and derived feature and

generator networks for nodules

In work outside the scope of this thesis, we created a method to score autoencoder output dis-

tributions for use in generating artificial examples of 3D lung nodule images to aid in lung cancer

diagnosis. One of the challenges of using machine learning techniques with medical data is the
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frequent dearth of source image data on which to train. A representative example is automated lung

cancer diagnosis, where nodule images need to be classified as suspicious or benign. In our pub-

lished work [120], we propose an automatic synthetic lung nodule image generator. Our 3D shape

generator is designed to augment the variety of 3D images. Our proposed system takes root in

autoencoder techniques, and we provide extensive experimental characterization that demonstrates

its ability to produce quality synthetic images.

Figure 2.13 shows 6 of the 51 CT scan images which were available for training our model.

Each of the images is centered in the 20×40×40 training size. One of our nodules was slightly

too wide and 21 out of 1290 total voxels were clipped; all other nodules fit within the training size.

From an original set of 51 images, 816 are generated: 8 copies of each nodule are the 8 possible

reflections in X,Y, and Z of the original; and 8 copies are the X,Y, and Z reflections of the original

shifted by 0.5 pixels in X and Y. The reflections are still representative of legal nodule shapes to

the analyzer, so it improves the generality of the autoencoder to have them included. The 0.5-pixel

shift also aids generalization of the network by training it to tolerate fuzzy edges and less precise

pixel values. We do not do any resizing of the images as we found through early testing that

utilizing the full voxel data resulted in better generated images than resizing the input and output

of the autoencoder.

Our autoencoder is trained initially with the 816 images in our base set. We use Adam [116]

for stochastic optimization to minimize the mean squared error of the generated 32,000 voxel 3D

images. As shown in Figure 2.14, the trained autoencoder network can be split into feature and

generator networks. The feature network can be used to map actual nodules into a latent feature

space so that novel images similar to the actual input nodule can be created using the generator

network. If stepping is done between the latent feature values of nodule suspected as cancerous

and another suspected to be non-cancerous, a skilled neurologist could identify the shape at which

the original suspicious nodule would not be considered suspicious to help train and improve an

automated classifier. The generator network can also be used to generate fully random images for
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improving a classifier. For our random generation experiments we use uniform values from -1 to 1

as inputs for the 3 latent feature dimensions.

The autoencoder structure which yielded the best results is not symmetric in that there are fewer

layers before the bottleneck layer than after. Like the seminal work by Hinton and Salakhutdinov

[96], we explored various autoencoder sizes for our problem, but we added in an exploration

of non-symmetric autoencoders. We found during hyperparameter testing that a 2-layer feature

network (encoder) performed better than a 1-layer or 3-layer network. We suspect that a single

layer for the feature network was not optimal due to limiting the feature encoding of the input

images to linear combinations of principle components [88]. We suspect that 3 layers for our

feature network was less optimal than 2 layers due to overfitting the model to our limited training

set. Given our goal of generating novel nodule shapes, overfitting is a particular concern and we

address this using a network scoring metric.

Metrics for scoring the accepted image set The composite score that we use to evaluate net-

works for LuNG is comprised of 4 metrics used to combine key goals for our work. We compute

the percentage of nodule images randomly generated by the generator that are accepted by the

analyzer. For assessing the variation of output images relative to the seed images, we compute a

feature distance FtDist based on the 12 3D image features used in the analyzer. To track how

well the distribution of output images matches the seed image variation, we compute a FtMMSE

based on the image feature means. The ability of the network to reproduce a given seed image

is tracked with the mean squared error of the image output voxels, as is typical for autoencoder

image training.

Our metric of variation, FtDist, is the average distance over all accepted images to the closest

seed image in the 12-dimensional analyzer feature space and is scaled in a way similar to Maha-

lanobis distances. As FtDist increases, the network is generating images that are less similar to

specific samples in the seed images, hence it is a metric we want to increase with LuNG. Given an

accepted set of n images Y and a set of 51 seed images S, and given yi denotes the value of feature

i for an image and σSi denotes the standard deviation of feature i within S:
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FtDist = 1/n
∑

y∈Y

min
s∈S

√

√

√

√

12
∑

i=1

(
yi − si
σSi

)2

FtMMSE tracks how closely LuNG is generating images that are within the same analyzer

feature distribution as the seed images. It is the difference between the means of the images in Y

and S for the 12 3D features. As FtMMSE increases, the network is generating images that are

increasingly outside the seed image distribution, hence we want smaller values for LuNG. Given

µSi is the mean of feature i in the set of seed images and µY i is the mean of feature i in the final

set of accepted images:

FtMMSE = 1/12
12
∑

i=1

(
µY i − µSi

σSi

)2

Figure 2.15: 6 images generated using uniform

distribution as inputs to generator network

Figure 2.16: There are 4 components used to com-

pute the network score. The component values are

scaled as shown so that they can all be plotted on

the same scale.

Score is our composite network scoring metric used to compare different networks, hyperpa-

rameters, feedback options, and reconnection options. In addition to FtDist and FtMMSE, we

use AC, which is the fraction of generated images which the analyzer accepted, and MSE which is

the mean squared error that results when the autoencoder is used to regenerate the 51 seed nodule

images.
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Score =
FtDist− 1

(FtMMSE + 0.1) ∗ (MSE + 0.1) ∗ (1− AC)

Score increases with FtDist and AC and decreases with FtMMSE and MSE. The con-

stants in the equation are based on qualitative assessments of network results; for example, using

MSE + 0.1 means that MSE values below 0.1 don’t override the contribution of other components

and aligns with the qualitative statement that an MSE of 0.1 yielded visually acceptable images in

comparison with the seed images.

Figure 2.15 shows 6 example lung nodules generated randomly by our generator network.

Results using Score to evaluate networks and LuNG interface features are shown in Figure 2.16.

Note that the MSE metric (mean squared error of the network on training set) continues to decrease

with larger networks, but Score is optimal with 3 bottleneck latent feature neurons. Our intuition is

that limiting our network to 3 bottleneck neurons results in most of the available degrees of freedom

being required for proper image encoding. As such, using a −1 to 1 uniform random distribution

as the prior distribution for our generative network creates a variety of acceptable images. The

Score metric helps us to tune the system such that we do not require VAE techniques to constrain

our random image generation process, although such techniques may be a valuable path for future

research.

Our use of Score to evaluate the entire nodule generation process rates the quality of the ran-

dom input distribution, the generator network, the reconnection algorithm, the analyzer acceptance,

and the interaction of these components into a system. Our use of the analyzer acceptance rate is

similar in some functional respects to the discriminator network in a GAN as both techniques are

used to identify network outputs as being inside or outside an acceptable distribution.

Section key points: We developed an autoencoder problem which can be used to explore how

network and feature sizes can generalize on a limited dataset.
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2.3.3 Using Hindsight Learning to Improve Goal Achievement In Multigoal

Environment With Sparse Rewards

For the problem of program understanding, some researchers have used reinforcement learning

to explore ways to repair code [83] as well as to prove symbolic statements [69, 23, 171]. One

challenge with reinforcement learning on code is that a reward function to train on may be quite

sparse since there is no easy distance metric from buggy code to fixed code. Additionally, for the

case of proving programs equivalent, the goal to be reached is itself part of the input (we want to

prove a first program equal to a second program). Hence, we would like to study a reinforcement

learning system which has multiple goals and a sparse reward. We researched the ability of rein-

forcement learning to solve this challenge by creating a problem simpler than program analysis for

study of learning techniques: a multigoal grid world [122].

We based our reinforcement learning model on the Deep Q Network (DQN) tutorial for Py-

Torch [174], which includes a replay buffer [141, 139], and a target network [160] to help with

stability. As we will show, the base network performs poorly on the multi-goal learning problem

due in part to a sparse reward, so we added hindsight experience replay [14] to create a system

which is able to learn more complex behaviors. In our previously published work, we show how

a symbolic learner performs on this same task [122], but for this thesis we are interested in results

applicable to neural networks.

Model inputs For the DQN model, the input is the current world state, including the desired goal,

and the output is the action the model recommends taking. Figure 2.17 shows the full set of inputs.

The DQN receives data about the current world state through hand and eye proprioception (a sense

of where the hand and eye are in space) as well as a visual field which is the same dimension as

the grid world. These 3 input forms are provided as 3 N×N input values. A fourth N×N matrix

encodes the goal state:

• IN[3][0][x] specifies the X position of the goal

• IN[3][1][y] specifies the Y position of the goal
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• IN[3][2:N-1][0] set to 1 for goal to move hand to a given proprioceptive position

• IN[3][2:N-1][1] set to 1 for goal to move eye to a given proprioceptive position

• IN[3][2:N-1][2] set to 1 for goal to see hand at a given position in visual field

Figure 2.17: Input tensor has four 2D grids. Three grids represent sensory input, and one grid represents

the goal to achieve.

The network output is the 8 possible actions: move hand forward, backward, left, right, and

move eye forward, backward, left, or right.

During reinforcement learning, the model is trained by using back-propagation as the model

optimizes an action policy given the input state [14]. In typical reinforcement learning, an action

policy determines which action to apply in which state: π(s) : S → A. Reinforcement learning

works by learning a Q-function Q(s, a) which represents the reward from the environment achieved

by taking action a in state s. For any given state s, the action a with the highest Q(s, a) value is the

recommended action to take, as it achieves the highest reward. The optimal Q-function Q∗(s, a) is

given by the Bellman equation, shown in Equation 2.7. In this equation, Q∗(s, a) is the expected

value over all possible next states of the immediate reward r(s, a) achieved by taking action a in

state s plus the best Q-value of the possible future states discounted by a depreciation factor λ.

Q∗(s, a) = Es′∼p(·|s,a)[r(s, a) + γmax
a′∈A

Q∗(s′, a′)] (2.7)
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From the Bellman equation, we can see that having frequent non-zero rewards will help a

system learn the correct Q-function and, hence, the correct action to take in a given state. But

our goal in this study is to model a system which is only rewarded when the goal is achieved,

which models situations in which a distance to goal metric for an incremental reward may be

difficult to evaluate. As we will show, sparse rewards can create training convergence challenges

to traditional reinforcement learning models. In order to learn with sparse rewards, the model needs

to get sufficiently lucky to take the correct action when it happens to be right next to a goal, then

the system can learn how to take actions that get it one action away from the goal, and so on. But

with enough random actions occurring, the ability to learn the Q function can become intractable.

Andrychowicz et al. address the issue of learning with sparse rewards in a multi-goal system by

introducing hindsight learning [14]. In hindsight learning, the current state and goal state are given

and the system chooses an action given it’s currently poorly performing Q-function. This action is

not likely to have a reward, but the training can be adjusted to reward the state achieved. Hindsight

works by adding a training sample as if the state reached was the goal. For example, if the model

is asked to achieve goal g from current state s and it takes action a resulting in state s′, then a

training sample is created which teaches the model that if the goal had been to reach s′ from s

then the correct action was a. In this way, every step taken by the model provides some teachable

information.

Figures 2.18 and 2.19 show the importance of using hindsight to enhance the ability of the

DQN network to learn from sparse rewards; the DQN needs reward information to learn well.

The blue lines in the graphs are the path length to reach the goal each episode, the gold line is

the average path length over 200 episodes. For example, when there are no blue lines reaching to

the max path length (4 times the length of a grid side) then for that period the network solved all

the goal challenges presented. Hindsight learning learns 2 datum per action step - it trains on the

benefit of the action taken with respect to the actual goal requested, and it trains on the benefit of

the given action as if the next state reached was the goal. The gold lines in the figures show that

a model with hindsight learns to solve multiple goals in a 7x7 grid faster than a model without
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Figure 2.18: Gold line shows the average steps to

reach a random goal (hand, eye, or vision) on a 7x7

grid. Learning progresses slower without hindsight.

Figure 2.19: The benefit of hindsight. Multigoal

learning on a 7x7 grid converges to nearly optimal

relatively quickly.

hindsight. Without hindsight, learning the multi-goal problem on a 9x9 grid did not converge with

our model.

Section key points: We developed a system to explore multigoal problems with sparse re-

wards and found hindsight learning to be highly valuable in adding training information from

every action taken.

2.4 Complexity Classes for Program Equivalence

Computational complexity classifies problems based on the computation resources required

to solve a problem [234]. The famous P vs NP problem, one of the seven unsolved mathematical

problems for which the Millennium Prize would be awarded, is based on computational complexity

theory [59]. Figure 2.20 shows some of the complexity classes related to the problem of program

equivalence. The classes are defined in relation to using a Turing machine [218] to solve the prob-

lems. A Turing machine is a mathematical model of computation useful for precise discussions

of algorithmic complexity and we shall use Turing machines to define the complexity classes in

Definitions 2.4.1 through 2.4.6. The ’simplest’ problems for a computer to solve in Figure 2.20

would be in complexity class P. The next most difficult are NP, then PP, and finally ’Decidable’
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Decidable

PP

NP

P
NP

hard



Figure 2.20: Complexity classes indicate how hard a problem is for a Turing machine to solve.

problems. Some problems, including some program equivalence problems as we shall show, are

undecidable.

Definition 2.4.1. Complexity class P is the class of problems which can be solved by a determin-

istic Turing machine in polynomial time. Effectively this means that for a problem of size N , a

computer algorithm which can be run on a typical physical computer today can solve the problem

in time less than k∗Np. Where k and p are positive constants related to the details of the algorithm.

Definition 2.4.2. Complexity class NP is the class of problems which can be solved by a non-

deterministic Turing machine in polynomial time. A non-deterministic Turing machine describes

a system which can have multiple next states given a certain input and current computation state;

i.e., the next state is non-deterministic.

A non-deterministic Turing machine can be conceptualized as being allowed to pick the ’best’

next state for the goal of solving the problem, which is not currently realizable by physical com-

puters (although quantum computers are expected to be able to address some problems that are

part of NP but not in P [1]). It has not been proven that P is not equal to NP; i.e., it is not known if

a non-deterministic Turing machine can actually solve problems in polynomial time which could

not be solved by a deterministic machine in polynomial time, but it is expected by most computer

science researchers that P is not equal to NP. Many problems that are in NP currently take expo-
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nential time to solve on modern computers. Indeed, many modern security protocols rely on this

exponential time for securing critical data.

Definition 2.4.3. NP-complete is a subset of problems in NP which can be used to simulate every

other problem in NP [60]. Because we require that mapping an NP problem to an NP-complete

problem must be possible in polynomial time on a deterministic Turing machine, if any problem

that is NP-complete is found to be in complexity class P, then any NP problem can be solved in

polynomial time on a deterministic Turing machine, in which case P = NP .

Definition 2.4.4. NP-hard is a class of problems which have proven to be “at least as hard” as

NP-complete problems. Proving that a problem is NP-complete requires proving that the given

problem can indeed be solved by a non-deterministic Turing machine in polynomial time (i.e., the

problem is in NP). But proving a problem is NP-hard is easier; one must only prove that an NP-

complete problem can be mapped into the given problem such that a solution for the given problem

could also be used to solve the NP-complete problem. Hence, the NP-hard classification contains

all NP-complete problems, but also includes some problems which are undecidable.

Definition 2.4.5. Complexity class PP is the class of problems which can be solved by a prob-

abilistic Turing machine in polynomial time. If a binary yes/no decision problem is in PP, then

there is an algorithm which is allowed to flip coins to make random decisions and will answer the

problem correctly more than 1/2 of the time. All of the problems in NP are also in PP, and all of

the problems in PP are decidable.

Definition 2.4.6. Decidable problems are all problems which can be computed by a Turing ma-

chine with no bound on the time or space required.

One famously undecidable problem is the halting problem [219]. This is the problem of de-

termining whether an arbitrary computer program with a given input will finish running or run

forever. This yes/no problem is not itself computable by a computer program.

Definition 2.4.7. Program equivalence Programs P1 and P2 are considered equivalent if, for all

inputs in the input domain D the programs produce the same output(s).
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Foo(x) {

print(“Done”);

}

Foo(x){

f(x);

print(“Done”);

}

?

Figure 2.21: The general case of determining program equivalence requires solving the halting problem on

f(x), and hence is undecidable.

Language:

<prog> := <output> = <expr>

<expr> := var

var + <expr>

Rewrite rule:

Commute: var1 + var2  var2 + var1

Program examples:

Program #1: x = v3 + v1 + v4

Program #2: x = v2 + v2 + v4

Program #3: x = v4 + v3 + v1

Program #4: x = v3 + v1

Equivalence algorithm:

N=length(prog1);

if (length(prog2) != N):

return NOT_EQUAL

for i = 1 to N:

if (prog1.v[i] != prog2.v[i]):

for j = i+1 to N:

if (prog1.v[j] == prog2.v[i]):

while (j > i):

Commute(prog1.v[j], prog1.v[j-1])

j = j-1

break;

if (prog1.v[i] != prog2.v[i]):

return NOT_EQUAL

return EQUAL

Figure 2.22: A rather simple language with only a single operator (+) and only a single program rewrite

rule (Commute) can be checked for equivalence with a polynomial-time algorithm requiring fewer than

k ×N2 steps, where N is the program length and k is a constant.

It can be quickly shown that the general case of program equivalence is undecidable with

reference to Figure 2.21. The only difference between these 2 programs is that the one on the right

will only print “Done” if the function f(x) halts. Hence, proving these 2 programs equivalent is

synonymous with solving the halting problem, which is undecidable.

One the other end of the complexity spectrum, consider the language defined in Figure 2.22. In

this language a program is only allowed to contain a single statement which sums up one or more

variables. Two programs will be equivalent if they contain the same variable list (in any order) in

the summation expression.
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Table 2.3: Mapping Boolean functions to scalar mathematics

Boolean expression Scalar expression

a 1− a
a ∨ b 1− (1− a)(1− b)
a ∧ b a ∗ b

Language:

<prog> := o = <expr>

<expr> := <const>

<var>

<expr> <op> <expr>

(<expr>)

Zero-function:

o = 0

Example SAT problem: (i1 ˅ i2 ˅ i3) ˄ (i2 ˅ i3 ˅ i4)

Program based on example SAT problem:

o = (1-(1-i1) * i2 * (1-i3)) * (1-(1-i2) * i3 * (1-i4))

<const> := 0

1

<var>    := ij

<op>     := +

-

*

Figure 2.23: A simple computer language into which the Boolean satisfiability problem can be mapped.

Definition 2.4.8. Rewrite rule is defined as a rule which can be applied to a program which adjusts

the program lexically but not semantically. Applying a rewrite rule does not change the computa-

tion performed by a program and creates a program equivalent to the original.

By applying the rewrite rule shown in Figure 2.22 multiple times we can see that example

program #1 is equivalent to program #3. Starting with program #1, we first apply Commute such

that v1 + v4↔ v4 + v1 and then again such that v3 + v4↔ v4 + v3, which results in a program

lexically equal to program #3.

The algorithm shown in Figure 2.22 demonstrates how to determine program equivalence given

this constrained language. The algorithm uses the Commute rewrite rule to transform one program

into the other if it is possible. Given programs of length N , since the i and j loops may both grow

by N , this algorithm will run in time less than k × N2 where k is some constant. Hence, this

algorithm is in complexity class P.

Given the synthetic language for straight-line programs we detail in Chapter 7, we can demon-

strate that solving the program equivalence problem in this language is at least as difficult as solv-

ing the Boolean satisfiability problem, which is itself NP-complete [60]. Our proof is based on the

ability to map a Boolean SAT problem into our scalar expression language as shown in Table 2.3.
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Definition 2.4.9. Boolean satisfiability problem (SAT) This is the problem of determining whether,

given a Boolean function S with Boolean input values b1..n, there is a set of Boolean input values

for which the function returns “True”. The Boolean function may include logical AND, OR, and

INVERT operations on the variables, which may be operated on in any order.

The Boolean satisfiability problem (SAT) has been proven to be NP-complete [60]. Hence, if

we can show that a program equivalence problem could be used to solve SAT then that program

equivalence problem is NP-hard.

Definition 2.4.10. Binary Domain Program is defined for discussion to be the language shown in

Figure 2.23. This language supports the normal +,−, and × operations on real numbers, but the

inputs and constants in the language are limited to the values 0 and 1.

Theorem 2.4.1. Binary Domain Program equivalence is NP-hard.

Proof. Consider a specific Boolean satisfiability problem S in which the task is to determine if

there is a configuration of inputs to S such that S will return “true”. Using Table 2.3, map S

into our scalar expression language to create program P . This mapping is shown with an example

SAT problem in Figure 2.23. If, given inputs from the domain {0,1}, we can prove P is equal to

a program which simply returns 0 (the zero-function), then there is no input to P which returns

1. Additionally, if there is a set of inputs for which P returns 1, that set of inputs maps to a set

of logical inputs which would satisfy S. Hence, P computes the zero-function if and only if S

is not satisfiable and hence the general case of proving a program in our language equal to the

zero-function is at least as hard as NP-complete, which means it is in NP-hard.

In their paper “Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs”

[102], Ibarra and Moran further prove that when the the input to two straight-line programs is

limited to a finite set of integers of cardanality ≥ 2 then the equivalence problem is NP-hard, and

when the input can be an infinite field (such as all rational numbers) then the equivalence problem

for straight-line programs in a language which includes only +,−, ∗, and / is probabilistically

decidable in polynomial time. In other words our full program equivalence problem as covered
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in chapter Chapter 7 is in complexity class PP, a class which contains NP. (Gurari and Ibarra also

study the complexity of varying program equivalence problems [85]).

2.5 Limitations of Prior Research

While the prior research we discuss in Sections 2.1, 2.2, and 2.3 provide a solid foundation for

machine learning as applied to computer aided programming, they have several weaknesses which

this thesis aims to address.

Program repair research is very active and dominated by techniques based on static analysis

(e.g., SPR [143] and Angelix [157]) and dynamic analysis (e.g., CapGen [230]). While great

progress has been achieved, the current state of automated program repair is limited to simple

small fixes, mostly one line patches [191, 230]. These techniques are heavily top-down, based on

intelligent design and domain-specific knowledge about bug fixing in a given language or a specific

application domain. Another weakness of prior work is vocabulary limitations [12]. Such works

cannot learn representations for novel variable names. Also, the representations which are learned

are based on the training set provided, hence they may not be appropriate for how a variable is

used. For example, a Java method that iterates over an array using i and accumulates the sum of

array elements into sum is semantically equivalent to a method that uses j for the iterator and i

for the accumulation. But the somewhat odd use of i for accumulation would result in a shifted

internal representation for the method. Given continually advancing machine learning techniques

[208, 197, 220], a framework for utilizing machine learning to automatically repair bugs is needed.

Machine learning models benefit from having millions of training samples on which to gen-

eralize [207]. For concrete problems in computer science, the problem domain may suffer from

a limited set of labeled data. For example, security vulnerability repair has a small number of

reviewed examples for some vulnerability categories [68, 32], and linear algebra equivalence also

has limited examples on which to learn [114]. Systems to provide samples to machine learning

models are needed in order to train such models effectively.
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The general problem of program equivalence is undecidable by modern computers, as we detail

in Section 2.4. This invites the use of machine learning as it may be able to learn equivalence proofs

beyond what static algorithms can solve. The primary weakness with applying machine learning

to program equivalence is the imprecision in the results when determining equivalent semantics

[12, 241]. If machine learning is to be useful in situations where a guarantee of correctness for

program equivalence is needed then we must develop a new approach.

Traditional machine learning systems often use early stopping [178] to detect when the training

has plateaued for a given training dataset and further training will not improve the model. Devel-

oping a system which can create additional samples which specifically target areas where a model

needs improvement could increase both performance and generalization.

In Chapter 3 we further detail the problems addressed in this thesis and summarize the contri-

butions we make to the field of machine learning for computer aided programming.
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Chapter 3

Contributions to Machine Learning on Computer

Aided Programming

Machine learning techniques have produced strong and useful results in areas where imper-

fect outputs are acceptable. Achievements of image classification and language translation that

exceed human capabilities are used in a wide range of commercial applications [106, 209, 36]. In

parallel, the importance of having a verification of correctness comes up in many environments.

Safety systems such as self-driving cars would benefit from techniques that can demonstrate how

to create robust systems which can generate verifiable output. Systems which generate sequences

constrained in some technical way - be it computer code generation, manufacturing sequence op-

timizations, or formal proof generation - would benefit from understanding how training datasets

can improve the learning of rigid constraints in a given target environment.

Verifiable correctness can help address problems recognized by the broader research commu-

nity. The problem of robustness to distributional shift is one of 5 failure modes for AI noted in

’Concrete problems in AI safety’ [13]. Techniques which can help prove that a system has learned

to generate correct output could help address this key challenge for AI. The White House has posted

a memorandum to executive agencies titled “Guidance for Regulation of Artificial Intelligence Ap-

plications” [225]; three of its 10 principles for the stewardship of AI applications are related to the

effort of verifying machine learning outputs well: "scientific integrity and information quality",

"risk assessment and management", and "safety and security".

In the following sections, we will introduce problems in machine learning which will be ex-

plored in depth in the remaining chapters of this thesis. In addition to addressing specific problems

with machine learning, these applications also demonstrate concepts for machine learning on com-

puter aided programming which can be leveraged to solve other problems.
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3.1 Repairing Functional Bugs in Java Programs

People have long dreamed of machines capable of writing computer programs by themselves.

Having machines writing a full software system is science-fiction but teaching machines to modify

an existing program to fix a bug is within the reach of current software technology; this is called

automated program repair [161].

Program repair research is very active and dominated by techniques based on static analysis

(e.g., Angelix [157]) and dynamic analysis (e.g., CapGen [230]). While great progress has been

achieved, the current state of automated program repair is limited to simple small fixes, mostly one

line patches [191, 230]. These techniques are heavily top-down, based on intelligent design and

domain-specific knowledge about bug fixing in a given language or a specific application domain.

In Chapter 4, we also focus on one line patches, but we aim at doing program repair in a language-

agnostic generic manner, fully relying on machine learning to capture syntax and grammar rules

and produce well-formed, compilable programs. By taking this approach, we aim to provide a

foundation for connecting program repair and machine learning, allowing the program repair com-

munity to benefit from training with more complete bug datasets and continued improvements to

machine learning algorithms and libraries.

As the foundation for our model, we apply sequence-to-sequence learning [208] to the prob-

lem of program repair. Sequence-to-sequence learning is a branch of statistical machine learning,

mostly used for machine translation: the algorithm learns to translate text from one language (say

French) to another language (say Swedish) by generalizing over large amounts of sentence pairs

from French to Swedish. The training data comes from the large amount of text already translated

by humans, starting with the Rosetta stone written in 196 BC [204]. The name of the technique is

explicit: it is about learning to translate from one sequence of words to another sequence of words.

Now let us come back to the problem of programming: we want to learn to ’translate’ from one

sequence of program tokens (a buggy program) to a different sequence of program tokens (a fixed

program). The training data is readily available: we have millions of commits in open-source code

repositories. Yet, we still have major challenges to overcome when it comes to using sequence-to-
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sequence learning on code: 1. the raw (unfiltered) data is rather noisy; one must deploy significant

effort to identify and curate commits that focus on a clear task; 2. contrary to natural language,

misuse of rare words (identifiers, numbers, etc) is often fatal in programming languages [91]; in

natural language some errors may be tolerable because of the intelligence of the human reader

while in programming languages the compiler (or interpreter) is strict 3. in natural language, the

dependencies are often in the same sentence (“it” refers to “dog” just before) , or within a couple

of sentences, while in programming, the dependencies have a longer range: one may use a variable

that has been declared dozens of lines before.

We are now at a tipping point to address those challenges. First, sequence-to-sequence learning

has reached a maturity level, both conceptually and from an implementation point of view, that it

can be fed with sequences whose characteristics significantly differ from natural language. Second,

there has been great recent progress on using various types of language models on source code [9].

Based on this great body of work, we present our approach to using sequence-to-learning for

program repair, which we created to repair real bugs from large open-source projects written in the

Java programming language.

Our end-to-end program repair approach is called SEQUENCER and it works as follows. First,

we focus on one-line fixes: we predict the fixed version of a buggy programming line. For this,

we create a carefully curated training and testing dataset of one-line commits. Second, we devise

a sequence-to-sequence network architecture that is specifically designed to address the two main

aforementioned challenges. To address the unlimited vocabulary problem, we use the copy mech-

anism [197]; this allows SEQUENCER to predict the fixed line, even if the fix contains a token

that was too rare (i.e., an API call that appears only in few cases, or a rare identifier used only in

one class) to be considered in the vocabulary. This copy mechanism works even if the fixed line

should contain tokens which were not in the training set. To address the dependency problem, we

construct abstract buggy context from the buggy class, which captures the most important context

around the buggy source code and reduces the complexity of the input sequence. This enables us

to capture long range dependencies that are required for the fix.
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We evaluate SEQUENCER in two ways. First, we compute accuracy over 4,711 real one-line

commits, curated from three open-source projects. The accuracy is measured by the ability of the

system to predict the fixed line exactly as originally crafted by the developer, given as input the

buggy file and the buggy line number. Our golden configuration is able to perfectly predict the

fix for 950/4,711 (20%) of the testing samples. This sets up a baseline for future research in the

field. Second, we apply SEQUENCER to the mainstream evaluation benchmark for program repair,

Defects4J. Of the 395 total bugs in Defects4J, 75 have one-line replacement repairs; SEQUENCER

generates patches which pass the test suite for 19 bugs and patches which are semantically equiv-

alent to the human-generated patch for 14 bugs. To our knowledge, this is the first report ever on

using sequence-to-sequence learning for end-to-end program repair, including validation with test

cases.

Overall, the novelty of this work is as follows. First, we create and share a unique dataset

for evaluating learning techniques on one-line program repair. Second, we report on using the

copy mechanism on seq-to-seq learning on source code. Third, on the same buggy input dataset,

SEQUENCER is able to produce the correct patch for 119% more samples than the closest related

work [216].

To sum up:

• Our key contribution is an approach for fixing bugs based on sequence-to-sequence learning

on token sequences. This approach uses the copy mechanism to overcome the unlimited

vocabulary problem in source code.

• We present the construction of an abstract buggy context that leverages code context for

patch generation. The input program token sequences are at the level of full classes and

capture long-range dependencies in the fix to be written. We implement our approach in a

publicly-available program repair tool called SEQUENCER.

• We evaluate our approach on 4,711 real bug fixing tasks. Contrary to the closest related

work [216], we do not assume bugs to be in small methods only. Our golden trained model
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is able to perfectly fix 950/4,711 testing samples. To the best-of-our knowledge, this is the

best result reported on such a task at the time of writing this thesis [216, 182, 155].

• We evaluate our approach on the 75 one-line bugs of Defects4J, which is the most widely

used benchmark for evaluating programming repair contributions. SEQUENCER is able to

find 2,321 patches for these bugs, 761 compile successfully, 61 are plausible (they pass

the full test suite) and 18 are semantically equivalent to the patch written by the human

developer.

• We provide a qualitative analysis of 8 interesting repair operators captured by sequence-to-

sequence learning on the considered training dataset.

3.2 Repairing Security Vulnerabilities in C Language Programs

On the code hosting platform GitHub, the number of newly created code repositories has in-

creased by 35% in 2020 compared to 2019, reaching 60 million new repositories during 2020 [213].

This is a concern to security since the number of software security vulnerabilities is correlated with

the size of the software [184]. Perhaps worryingly, the number of software vulnerabilities is in-

deed constantly growing [98]. Manually fixing all these vulnerabilities is a time-consuming task;

the GitHub 2020 security report finds that it takes 4.4 weeks to release a fix after a vulnerabil-

ity is identified [75]. Therefore, researchers have proposed approaches to automatically fix these

vulnerabilities [86, 49].

In the realm of automatic vulnerability fixing [104], there are only a few works on using neural

networks and deep learning techniques. One of the reasons is that deep learning models depend

on acquiring a massive amount of training data [207], while the amount of confirmed and curated

vulnerabilities remains small. Consider the recent related work Vurle [152], where the model is

trained and evaluated on a dataset of 279 manually identified vulnerabilities. SeqTrans is another

recent effort, trained and evaluated on a dataset with 1282 vulnerabilities [49]. On the other hand,

training neural models for a translation task (English to French) has been done using over 41
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million sentence pairs [35]. Another example is the popular summarization dataset CNN-DM [94]

that contains 300 thousand text pairs. Li et al. showed that the knowledge learned from a small

dataset is unreliable and imprecise [134]. Schmidt et al. found that the error of a model predicting

the thermodynamic stability of solids decreases with the size of training data [194]. We argue that

learning from a small dataset of vulnerabilities suffers from the same problems (and will provide

empirical evidence later).

In Chapter 5, we address the problem that vulnerability fix datasets are too small to be mean-

ingfully used in a deep-learning model. Our key intuition to mitigate the problem is to use transfer

learning. Transfer learning is a technique to transfer knowledge learned from one domain to solve

problems in related domains, and it is often used to mitigate the problem of small datasets [2]. We

leverage the similarity of two related software development tasks: bug fixing and vulnerability fix-

ing. In this context, transfer learning means acquiring generic knowledge from a large bug fixing

dataset and then transferring the learned knowledge from the bug fixing task to the vulnerability

fixing task by tuning it on a smaller vulnerability fixing dataset. We realize this vision in a novel

system for automatically repairing C vulnerabilities called VRepair.

To train VRepair, we create a sizeable bug fixing dataset, large enough to be amenable to

deep learning. We create this dataset by collecting and analyzing all 892 million GitHub events

that happened between 2017-01-01 and 2018-12-31 and using a heuristic technique to extract all

bug fix commits. In this way, we obtain a novel dataset consisting of over 21 million bug fixing

commits in C code. We use this data to first train VRepair on the task of bug fixing. Next, we

use two datasets of vulnerability fixes from previous research, called Big-Vul [68] and CVEfixes

[32]. We tune VRepair on the vulnerability fixing task based on both datasets. Our experimental

results show that the bug fixing task can be used to train a model meant for vulnerability fixing;

the model only trained on the collected bug fix corpus achieves 14.77% accuracy on Big-Vul and

15.1% on CVEfixes, which validates our initial intuition that these tasks are profoundly similar.

Next, we show that by using transfer learning, i.e., by first training on the bug fix corpus and

then by tuning the model on the small vulnerability fix dataset, VRepair increases its accuracy
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to 17.77% on Big-Vul and 19.94% on CVEfixes, demonstrating the power of transfer learning.

Additionally, we compare transfer learning with a denoising pre-training followed by fine-tuning

on the vulnerability fixing task and show that VRepair’s process is better than pre-training with

a generic denoising task. We also show that transfer learning improves the stability of the final

model.

In summary, our contributions are:

• We introduce VRepair, a Transformer Neural Network Model which targets the problem of

vulnerability repair. The core novelty of VRepair is to employ transfer learning as follows:

it is first trained on a bug fix corpus and then tuned on a vulnerability fix dataset.

• We design a novel code representation for the program repair task with neural networks. Our

output code representation is a token difference instead of the entire fixed source code used

in recent research [216].

• We empirically demonstrate that on the vulnerability fixing task, the transfer learning VRe-

pair model performs better than the alternatives: 1) VRepair is better than a model trained

only on the small vulnerability fix dataset; 2) VRepair is better than a model trained on a

large generic bug fix corpus; 3) VRepair is better than a model pre-trained with a denoising

task. In addition, we present evidence that the performance of the model trained with transfer

learning is stable.

• We share all our code and data for facilitating replication and fostering future research on

this topic.

3.3 Proving Equivalence of Complex Linear Algebra Expres-

sions

Deep neural network systems have excelled at a variety of classification and reinforcement

learning tasks [81]. However, their stochastic nature tends to hinder their deployment for auto-
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mated program analysis: ensuring the correctness of the solution produced is often required, e.g.,

when determining the semantics equivalence between two programs (or symbolic expressions).

In Chapter 6 we target the problem of automatically computing whether two input symbolic ex-

pressions are semantically equivalent [110], under a well-defined axiomatic system for equivalence

using semantics-preserving rewrite rules [64]. Program equivalence is summarized as determining

whether two programs would always produce the same outputs for all possible inputs, and is a

central problem in computing [110, 77, 221]. The problem ranges from undecidable, e.g. [79],

to trivial in cases of testing the equivalence of a program with itself. Our work directly studies

the subset of programs represented by symbolic linear algebra expressions which include scalar,

vector, and matrix types for both constants and variables, and 16 different operators with 147 dis-

tinct axioms of equivalence. For example, the expression using matrices, scalars, and a vector:

(A + B)I((a + (b − b))/a)~v − A~v can be proven equivalent to B~v by applying 10 axioms in

sequence; our work generates the proof steps between these expressions.

While prior work has shown promise for deep networks to compute some forms of program

equivalence [241, 12], the system typically outputs only a probability of equivalence, without any

reasoning or insight that can be verified easily: false positive can be produced. Programs can be

represented as a tree (or graph) of symbols, and deep networks for symbolic reasoning have been

studied, e.g. to compute the derivative of a symbolic expression [130]. In this work, we take a

significantly different approach to the problem of symbolic program reasoning with deep networks:

we make the system produce the sequence of steps that lead to rewriting one program into another,

that is the reasoning for (or proof of) equivalence between the two programs, instead of producing

directly the result of this reasoning (e.g., a probability of equivalence, without explanation about

the reasoning). In a nutshell, we approach expression equivalence as a theorem proving problem,

in which all the axioms as well as tactics to compute a proof are all learned by example in a deep

learning system, without any human insight.

We propose a method for generating training samples using probabilistic applications of pro-

duction rules within a formal grammar, and then develop a graph-to-sequence [137, 29] neural
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network system for program equivalence, trained to learn and combine rewrite rules to rewrite one

program into another. It can deterministically prove equivalence, entirely avoids false positives,

and quickly invalidates incorrect answers produced by the network (no deterministic answer is

provided in this case, only a probability of non-equivalence). In a nutshell, we develop the first

graph-to-sequence neural network system to accelerate the search in the space of possible combina-

tions of transformation rules (i.e., axioms of equivalence in the input language) to make two graphs

representing symbolic expressions structurally identical without violating their original semantics.

We propose a machine learning system for program equivalence which ensures correctness for all

non-equivalent programs input (specificity = 100%) , and a deterministically checkable output for

equivalent programs (no false positives). We make the following contributions:

1. We design, implement and evaluate two competing approaches using graph-to-sequence neu-

ral network systems to generate proofs of equivalence. We provide the first implementation

of such graph-to-sequence systems in the popular OpenNMT-py framework [117].

2. We present a complete implementation of our system operating on a rich language for multi-

type linear algebra expressions. Our system provides a correct rewrite rule sequence between

two equivalent programs for 93% of the 10,000 test cases. The correctness of the rewrite rule

is deterministically checkable in all cases in negligible time.

3.4 Proving Equivalence of Basic Block Expressions in C Code

Deep neural networks have excelled at a variety of classification, reinforcement learning, and

sequence generation tasks [81]. However, their stochastic nature complicates the use of such net-

works in formal settings where one requires a guarantee that the result produced is provably cor-

rect, such as to assess semantic equivalence between programs.

Proving program equivalence means determining whether two programs always produce iden-

tical output if given the same input, for all possible inputs, and is a central problem in computing

[110, 77, 221]. The problem ranges from undecidable [79], to trivial in the case of testing the

equivalence of a program with itself. Proving program equivalence is useful for e.g. verifying
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compiler correctness [169], replacing code fragments by more optimized ones [74], malicious

software detection [146] or automated student feedback [57]. In Chapter 7, we propose a machine

learning framework for proving program equivalence, named S4Eq.

S4Eq takes as input two programs and generates a sequence of rewrite rules under a well-

defined system for equivalence using semantics-preserving rewrite rules [64]. Our work studies

programs represented as a list of statements with straight-line control-flow, using multiple vari-

able types and complex mathematical expressions to compute values. S4Eq outputs a verifiable

sequence of rewrite rules, meaning that it guarantees no false positives (no programs are stated

equivalent if they are not) by design.

The problem domain at hand, generating a provably correct sequence of rewrite rules, requires

a specific training procedure. We devise a novel self-supervised learning technique for proving

equivalence. We initially train a model in a supervised manner with synthetic data which has

a broad distribution on the use of rewrite rules. Then we propose a self-supervised technique

based on comparing results between broad and narrow proof searches to incrementally train our

model. Rewrite rule sequences demonstrating equivalence found by a quick, narrow search are

not considered interesting for further training; while sequences found by a broad search indicate

samples for which the model’s rewrite rule selections could be improved. We name this procedure

self-supervised sample selection. We fully implement our learning and inference models in the

popular OpenNMT-py framework [117], based on the transformer model.

We demonstrate S4Eq by proving equivalence between unrelated program blocks derived from

C functions mined on the popular code hosting platform GitHub [213]. We process GitHub C func-

tions to find 13,215 unique multi-statement program blocks which can be analyzed for equivalence.

We show that S4Eq can prove that various compilation and optimization steps, such as Common

Sub-expression Elimination [58] produce equivalent and correct code; and we search for equivalent

codes between the GitHub samples themselves.

To sum up, we make the following contributions:
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• We present S4Eq, an end-to-end deep learning framework to find equivalence proofs be-

tween two complex program blocks. S4Eq produces a sequence of semantics-preserving

rewrite rules that can be built to construct one program from the other, via successive

rewrites. We consider rewrites which support complex program transformations such as

Common Subexpression Elimination and computational strength reduction. S4Eq emits a

verifiable sequence of rewrites, leading to no false positives by design.

• We devise an original training technique, tailored to our problem domain, called self-supervised

sample selection. This incremental training approach further improves the quality, general-

izability and extensibility of the deep learning system.

• We present extensive experimental results to validate our approach, demonstrating our sys-

tem can successfully prove equivalence on both synthetic programs and programs derived

from GitHub with up to 97% success, making the system ready for automated and unsuper-

vised deployment to check equivalence between programs.

• We provide all our datasets to the community including synthetic generation techniques for

the problem of program equivalence via rewrite rules, as well as sequences mined from

GitHub [121].
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Part II

Machine Learning for Repairing Software

Defects
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Chapter 4

SequenceR: Sequence-to-Sequence Learning for

End-to-End Program Repair

4.1 Introduction

The problem of program repair is the challenge of finding the correct modification to an existing

program which will resolve a fault of some kind. Using machine learning to automate this task

would significantly improve the productivity of software developers while improving the quality

of code created.

As we introduce in Section 3.1, we develop SEQUENCER to learn to ’translate’ a buggy pro-

gram into a fixed program using machine learning. To efficiently utilize machine learning on this

problem, we must adjust the input presented to the model such that sufficient information needed

to fix the program is available as input. We accomplish this by introducing the abstract buggy

context to represent the input code. Also, when creating a fix for a program it may be necessary to

draw from a large vocabulary of identifiers (such as variable names). We demonstrate that using a

token copy mechanism can allow the system to propose program fixes which use any token from

the input at an appropriate point in the output.

Our contributions detailed in this chapter are:

• Our key contribution is an approach for fixing bugs based on sequence-to-sequence learning

on token sequences. This approach uses a token copy mechanism to overcome the unlimited

vocabulary problem in source code.

• We present the construction of an abstract buggy context that leverages code context for

patch generation. The input program token sequences are at the level of full classes and

capture long-range dependencies in the fix to be written. We implement our approach in a

publicly-available program repair tool called SEQUENCER.
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• We evaluate our approach on 4,711 real bug fixing tasks. Contrary to the closest related

work [216], we do not assume bugs to be in small methods only. Our golden trained model

is able to perfectly fix 950/4,711 testing samples. To the best-of-our knowledge, this is the

best result reported on such a task at the time of writing this chapter [216, 182, 155].

• We evaluate our approach on the 75 one-line bugs of Defects4J, which is the most widely

used benchmark for evaluating programming repair contributions. SEQUENCER is able to

find 2,321 patches for these bugs, 761 compile successfully, 61 are plausible (they pass

the full test suite) and 18 are semantically equivalent to the patch written by the human

developer.

• We provide a qualitative analysis of 8 interesting repair operators captured by sequence-to-

sequence learning on the considered training dataset.

4.2 Background on Neural Machine Translation with Seq-to-

Seq Learning

SEQUENCER is based on the idea of receiving buggy code as input and producing fixed code as

output. The concept is similar to neural machine translation where the input is a sequence of words

in one language and the output is a sequence in another language. In this section, we provide a

brief introduction to neural machine translation (NMT).

In neural machine translation, the dominant technique is called “sequence-to-sequence learn-

ing”, where “sequence” refers to the sequence of words in a sentence. An early example of a

sequence-to-sequence network is summarized in Section 2.1.1 and diagrammed in Figure 2.1. A

problem with the sequence generation described in Section 2.1.1 is that the output vocabulary that

can be produced is limited: only tokens which are in the training set are available for output as yt.

In the case of natural human language, words such as proper names (e.g., Chicago, Stockholm)

may be so rare that they do not appear in the training vocabulary, but those words may be neces-

sary for proper output. One successful approach to overcome the vocabulary problem is to use a
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copy mechanism [197]. The basic intuition behind this approach is that rare words not available in

the vocabulary (i.e., unknown words, referred as <unk>), may be directly copied from the input

sentence over to the output translated sentence. This relatively simple idea can be successful in

many cases - especially when translating sentences containing proper names - where these tokens

can be easily copied over.

For example, let’s consider the task of translating the following English sentence "The car is

in Chicago" to French. Let’s also assume that all the tokens in the sentence are in the vocabulary,

except "Chicago". An NMT model might output the following sentence: "La voiture est à <unk>".

With a copy mechanism, the model would be able to automatically replace the unknown token with

one of the tokens from the input sentence, in this case, "Chicago".

The copy mechanism can be particularly relevant for source code, where the size of the vo-

cabulary can be several times the size of a natural language corpus [217]. This results from the

fact that developers are not constrained by any vocabulary (e.g., English dictionary) when defining

names for variables or methods. This leads to an extremely large vocabulary containing many rare

tokens, used infrequently only in specific contexts. Thus, the copy mechanism applied to source

code allows a system to generate rare out-of-vocabulary identifier names and numeric values as

long as they are somewhere in the input. Furthermore, in natural language, a human recipient may

be able to use context to cope with one missing word in an automatically translated sentence. In

a programming language, the compiler does not make any semantic inference, and the generation

has to be complete. For example, if the code to predict is "if (i < num_cars)", then generating "if (i

< int)" is not going to work at all. The prior research on the copy mechanism is presented in Sec-

tion 2.1.3 and we discuss the mathematics of the copy mechanism in the context of SEQUENCER

in Section 4.3.3.

Tufano et al. [216] proposed using NMT with the goal of learning bug-fixing patches by

translating the entire buggy method into the corresponding fixed method. Before the translation,

the authors perform a code abstraction process which transforms the source code into an abstracted

version, which contains: (i) Java keywords and identifiers; (ii) frequent identifiers and literals
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(a selection of 300 idioms); (iii) typified IDs (e.g., METHOD_1, VAR_2) that replace identifiers

and literals in the code. In Section 4.6 we highlight differences and improvements introduced in

SEQUENCER.

Another approach to addressing the vocabulary size problem in code is to use byte pair en-

coding (BPE), which has been widely used in NLP and also applied to source code [112]. For

SEQUENCER, we did preliminary experiments with BPE to solve the unlimited vocabulary prob-

lem, but our early results showed that it is less effective than the copy mechanism.

Figure 4.1: Overview of our approach using sequence-to-sequence learning for program repair.

4.3 Approach to Using Seq-to-Seq Learning for Repair

SEQUENCER is a sequence-to-sequence deep learning model that aims at automatically fixing

bugs by generating one-line patches (i.e., the bug can be fixed by replacing a single buggy line

with a single fixed line). We do not consider line deletion because: 1) it does not require a method

for token generation (and is thus less interesting to our research) and 2) if desired, SEQUENCER

could be combined with the lightweight Kali [182] to include line deletion. We do not consider line
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1 class Foo {

2 int i = 0;

3 int bar ;

4 Foo ( int bar){

5 this . bar = bar ;

6 }

7 int decrement(){

8 return bar−1;

9 }

10 int increment (){

11 return bar−1;

12 }

13 }

Listing 4.1: Original code

1 class Foo {

2 int i = 0;

3 int bar ;

4 Foo ( int bar){

5 }

6 int decrement(){

7 }

8 int increment (){

9 <START_BUG>

10 return bar−1;

11 <END_BUG>

12 }

13 }

Listing 4.2: abstract buggy context

1 class <unk> {

2 int i = 0;

3 int <unk>;

4 <unk> ( int <unk>){

5 }

6 int <unk>(){

7 }

8 int increment (){

9 <START_BUG>

10 return <unk>−1;

11 <END_BUG>

12 }

13 }

Listing 4.3: Context with <unk>

Figure 4.2: Illustration of the abstract buggy context step in SEQUENCER. bc is highlighted in yellow, bm

is highlighted in orange and bl is highlighted in red.

addition because spectrum based fault localization, used in most of the related work, is not effective

for line addition patches [249]. We note that in 64% of all 395 bugs in Defects4J are fixed by

replacing existing source code [107]. Given a Software System with a faulty behavior (i.e., failing

test case), state-of-the-art fault localization techniques are used to identify the buggy method and

the suspicious buggy lines. Such techniques have been shown to predict the correct buggy line as

one of the top 10 candidates in 44% of the time [249]. SEQUENCER then performs a novel Buggy

Context Abstraction (Section 4.3.2) process which intelligently organizes the fault localization

data (i.e., buggy classes, methods, and lines) into a representation that is concise and suitable for

the deep learning model yet able to preserve valuable information regarding the context of the

bug, which will be used to predict the fix. The representation is then fed to a trained sequence-to-

sequence model (Section 4.3.3) which performs Patch Inference (Section 4.3.4) and is capable of

generating multiple single-lines of code that represent the potential one-line patches for the bug.

Finally, SEQUENCER in the Patch Preparation (Section 4.3.5) step generates the concrete patches

by formatting the code and replacing the suspicious line with the proposed lines. Figure 4.1 shows

the aforementioned steps both for the training phase (left) and inference phase (right). In the
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remainder of this section we will discuss the common steps as well as those specific for training

and inference.

4.3.1 Problem Definition

Given a buggy system bs, and test suite t, we assume a fault localization technique, FL, which

identifies an ordered set of potential bug locations l = {l1, l2, ...}, where each location li consists

of the buggy class bci , buggy method bmi , and the buggy line bli:

l = {loc | loc ∈ FL(bs, t)}

∀li ∈ l, li = {bci , bmi , bli} and bli ⊂ bmi ⊂ bci

The problem is to predict (i.e., generate) a fixed line f l
i , where li is the true bug location, such

that by replacing bli with f l
i in bmi , the resulting system f s passes the test suite and the bug is

considered fixed. SEQUENCER tackles this problem by taking as input the fault localization data

(i.e., l = {l1, l2, ...}) of a buggy system and attempts to generate fixed line f l
i for each li in order.

The bs, t, l, li, b
c
i , b

m
i , bli, f

l
i and f s notations are used throughout this work.

4.3.2 Abstract Buggy Context

The context of a bug plays a fundamental role in understanding the faulty behavior and rea-

soning about the possible fix. During bug-fixing activities, developers usually identify the buggy

lines, then analyze how they interact with the rest of the method’s execution, and observe the con-

text (e.g., variables and other methods) in order to reason about the possible fix and possibly select

several tokens in the context to build the fixed line [118].

SEQUENCER mimics this process by constructing the abstract buggy context and organizing

the fault localization data into a representation that is concise yet retains the necessary context that

allows the model to predict the possible fix. During this process SEQUENCER needs to balance

two contrasting goals: (i) reduce the buggy context into a reasonably concise sequence of tokens

(since sequence-to-sequence models suffer from long sentences [50]), (ii) while at the same time
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retaining as much information as possible to allow the model to have enough context to predict a

possible fix.

Given the bug locations l = {l1, l2, ...}, for each li ∈ l, li = {bci , bmi , bli}, SEQUENCER performs

the following steps:

Buggy Line <START_BUG> is inserted before the first token in the buggy line bli and <END_BUG>

is inserted after the last token. The rationale is that we would like to propagate the informa-

tion extracted by the fault localization technique and indicate to the model what is a buggy

line. In doing so, we mimic developers who focus on the buggy lines during their bug-fixing

activities.

Buggy Method The remainder of the buggy method bmi is kept in the representation. The rationale

is that the method provides crucial information on where the buggy line is placed and its

interaction with the rest of the method.

Buggy Class From the buggy class bci we keep all the instance variables and initializers, along

with the signature of the constructor and non-buggy methods even if they are not called in

the buggy method. The body of the non-suspcious methods is stripped out. The rationale for

this choice is that the model could use variables and method signatures as potential sources

when building the fixed line f l
i .

After these steps, SEQUENCER performs tokenization and truncation to create the abstract

buggy context. Truncation is used to limit the abstract buggy context to a predetermined size

in cases where the input sequence is too long. This allows SEQUENCER to process input files

of arbitrary size without running out of memory. The truncation process can be summarized as:

1. the truncation size will be chosen such that most input files do not require truncation 2. if the

buggy line itself is over the truncation limit, as many tokens as possible from the start of the line are

included up to the limit 3. otherwise, the buggy line is included in abstract buggy context and twice

as many tokens are included before the line as after the line. For example, if the truncation limit is

1,000 tokens and a 5,000 token file has a buggy line with 100 tokens (including the START_BUG
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and END_BUG tokens) in the middle of the file, then abstract buggy context will consist of 600

tokens before the buggy line, then 100 tokens of the buggy line, then 300 tokens after the buggy

line. Generally, truncation will delete the actual class definition from the input, but context near

the buggy line is preserved to aid in patch generation.

The abstract buggy context represents the input to the sequence-to-sequence network which

will be used to predict the fixed line. Internally, abstract buggy context is represented as a sequence

of tokens belonging to a vocabulary V . The out-of-vocabulary tokens (token 6∈ V ) are replaced

with the unknown token <unk>. In Section 4.3.6 we describe how we empirically derive the

vocabulary V and in Section 4.3.3 we explain how the copy mechanism helps in overcoming the

unknown tokens problem.

Figure 4.2 shows the output of this process. The original class is presented in Listing 4.1

and Listing 4.2 displays the buggy class after Buggy Context Abstraction. Listing 4.3 illustrates

the class when tokens that are out of vocabulary are replaced with the unknown token <unk>.

Programming language tokens such as class and int are not replaced with <unk> because they

are part of the vocabulary. Other in-vocabulary tokens include common variable names such as i.

Our sequence-to-sequence network receives Listing 4.2 as input.

4.3.3 Sequence-to-Sequence Network

In this phase we train SEQUENCER to learn how to generate a fix for a given bug. Specifically,

we train a Sequence-to-Sequence Network with Encoder-Decoder model (with attention and copy

mechanism) to translate the abstract buggy context of a bug to the corresponding target fixed line

fl. To train such a network we rely on a large dataset of bug fixes mined from different sources,

explained in Section 4.4.3. The bug fixes are divided into training and testing data, which are used

to train and evaluate the Sequence-to-Sequence Network described in Section 4.3.3.

Model

Figure 4.3 shows our model for sequence-to-sequence learning to create Java source code

patches. The basis of our model is a recurrent neural network similar to a natural language process-
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Figure 4.3: Sequence-to-sequence model used in SEQUENCER.

ing architecture [208]. During training, the source token sequence X = [x1, ..., xn] (i.e., abstract

buggy context) is provided to the encoder, where n is the token length of abstract buggy context.

Then, the decoder produces the target sequence Y = [y1, ..., ym] (i.e., the fixed line), where m is

the token length of the fixed line. Back propagation is used to update the parameters in the net-

work with stochastic gradient decent during training [115]. The trained parameters are unchanged

during inference (patch generation in our case).

Encoder, Decoder, Attention, and Copy Mechanism

We are the first to use the copy mechanism from natural language processing models (which

we detail in Section 2.1.3) to solve the unlimited vocabulary problem on source code. The final

probability of output token yj being produced by the network is given in Equation 2.6 and we

repeat it here for discussion:

P (yj) = pgenPV (yj) + (1− pgen)
∑

i:xi=yj

aji (4.1)
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In this equation, the encoder, decoder, and attention networks contribute to PV (yj) as tokens are

processed during inference. The encoder receives tokens from the abstract buggy context. When

initialized by the encoder, it begins production of the patch candidate by receiving the special start

token as input y0. For each previous output token yj−1, the decoder updates its hidden state as we

summarize in Section 2.1.3.

In Section 4.2 we presented the intuition behind the copy mechanism, while in this section we

describe how it operates during patch generation. The copy mechanism can significantly improve

the performance of the system by allowing the model to select a token from any of the tokens

provided in the abstract buggy context, even when the tokens are not contained in the training vo-

cabulary. We empirically show the improvements offered by this approach by comparing it to the

vanilla sequence-to-sequence model without a copy mechanism in Section 4.4.4. The copy mech-

anism contributes to Equation 4.1 to produce a token candidate. The copy mechanism calculates

pgen, the probability that the decoder generates a token from its initial vocabulary. And 1− pgen is

the probability to copy a token from the input tokens depending on the attention vector αj . Using

Equation 4.1, the output token yj for the current decoder state is selected from the set of all tokens

that are either: 1. tokens in the training vocabulary (including the <unk> token) or 2. tokens in the

abstract buggy context. Although there are no <unk> targets in the training set for patches, if the

PV computation is very uncertain which token is correct, it may happen to have a high likelihood

for <unk>. If at the same time, pgen is high then a <unk> token will be produced as the copy

mechanism did not replace it. Such outputs are discarded as discussed in Section 4.3.5.

4.3.4 Patch Inference

Once the sequence-to-sequence network is trained, it can be used to generate patches for

projects outside of the training dataset. During patch inference, we still generate abstract buggy

context for the bug, as described in Section 4.3.2. But we will use beam search to generate multiple

likely patches for the same buggy line, as done in related work [216, 5]. Beam search works by

keeping the n best sequences up to the current decoder state. The successors of these states are
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1 return 1 ;

2 return i ;

3 return <unk> ;

4 return <unk> + 1 ;

5 return <unk> . <unk>;

Listing 4.4: Without copy

mechanism

return 1 ;

return i ;

return <unk> ;

return bar + 1 ;

return Foo . bar ;

Listing 4.5: Network output

return 1;

return i ;

// discarded

return bar+1;

return Foo.bar ;

Listing 4.6: After patch

preparation

Figure 4.4: Patch preparation step using copy mechanism

computed and ranked based on their cumulative probability; and the next n best sequences are

passed to next decoder state. n is often called the width or beam size, and beam search with an

infinite n corresponds to doing a complete breath-first-search. In Listing 4.5, we have an example

of predictions with beam size 5 for the bug presented in Listing 4.2. Each row is one prediction

from the model, representing one potential bug fix, and each of them is further processed by the

patch preparation step described below.

4.3.5 Patch Preparation

The raw output from the sequence-to-sequence network cannot be used as a patch directly.

First, the predictions might still contain <unk> tokens not handled by the copy mechanism. List-

ing 4.4 illustrates token values before the copy mechanism replaces <unk> for samples 4 and 5.

But the copy mechanism may not replace all such tokens as seen in sample 3 of Listing 4.5. Sec-

ond, the predictions contain a space between every token, which is not well-formed source code

in many cases. (For example, a space is not allowed between the dot separator, ".", and a method

call, but a space is required between a type and the corresponding identifier name.)

Consequently, we have a final patch preparation step as follows. We discard all line predictions

that contain <unk> and we reformulate the remaining predictions into well-formed source code by

removing or adding the required spaces. An example is shown between Listing 4.5 and Listing 4.6,

whitespaces are adjusted and the third prediction from Listing 4.5 is removed since it contains

<unk> token. Each one of the line predictions is used to create a candidate program by replacing
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the original buggy line bli (i.e., the <START_BUG>, <END_BUG> and all tokens in between are

replaced with the model output).

More formally, the remaining candidate fixed lines, candi = {pre1i , pre2i , ..}, will replace

the buggy line bli in buggy system bs and generate candidate patches {patch1
i , patch

2
i , ...}, which

should be verified with any patch validation technique, such as test suite validation. When the

test suite is weak to specify the bug, we can have different patches {patch1
i , patch

1
j , ...} for dif-

ferent bug locations {li, lj, ...} that passed the test suite. Then, the correctness can be verified, for

example, by manual inspection.

4.3.6 Implementation Details & Parameter Settings

Library. We have implemented our Encoder-Decoder model using OpenNMT-py [117], built

in the Python programming language and the PyTorch neural network platform [173].

Vocabulary In this chapter, we consider a vocabulary of the 1,000 most common tokens. To the

best of our knowledge, this is one of the largest vocabularies considered for machine learning for

patch generation: for comparison, DeepFix [84] has a vocabulary size of 129 words, and Tufano et

al. [216] considered a vocabulary size of 430 words.

Limit for truncation We truncate if the abstract buggy context is longer than 1,000 tokens.

This is motivated by Figure 4.6, where we can see that abstract buggy context is often less than

1,000 tokens long. SEQUENCER truncates by keeping the buggy line but removing statements,

class definitions, and method definitions until abstract buggy context is 1,000 tokens or less.

Network parameters We explored a variety of settings and network topologies for SEQUENCER.

Most major design decisions are verified with ablation experiments that change a single variable

at a time as detailed further in Section 4.5. We train our model with a batch size of 32 for 10,000

iterations. To prevent overfitting, we use a dropout of 0.3. In relation to the components shown

in Figure 4.3, below are the primary matrix sizes associated with each component along with a

reference to the equations in Section 4.3.3 to which they relate:

77



• Token embedding (our model uses the same embedding for both ge and gd): 1,004x256

(1,000 + 4 special tokens)

• Encoder bidirectional LSTM (part of ge fuction): 256x256x4x2x2

• Decoder LSTM (part of gd function): 512x256x4x2 + 256x256x4x2

• Token generator (part of ga function): 256x1004

• Bridge between encoder and decoder (path for he
i to initialize hd

0): 256x256x2

• Global Attention (αj
i weights): 256x256 + 512x256

• Copy selector (gc function): 256x1

We use a beam size of 50 during inference, which is the default value used in the literature

[216, 5] and which proves to be good empirically.

Input and output summary The input to SequenceR is a Java class of any size. The non-empty

faulty line within a method on which to attempt repair has been identified by another technique

(usually line-based fault localization). The output is the fixed line which must have fewer than 100

tokens with our current model.

Usage After SEQUENCER is trained, we can use it to predict fixes to a bug. SEQUENCER takes

as input the buggy file and a line number indicating where the bug is. The output is a list of patches

in the diff format, so that the user can run their own patch validation step, which could either be

test validation or manual inspection.

The source code of SEQUENCER is available at https://github.com/kth/SequenceR,

together with the best model we have identified and the synthesized patches.

4.4 Evaluation

In this section, we describe our evaluation of SEQUENCER.
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4.4.1 Research Questions

The two first research questions focus on machine learning:

• RQ1: To what extent can the fixed line be perfectly predicted?

• RQ2: How often does the copy mechanism generate out-of-vocabulary tokens for a patch,

and which parts of abstract buggy context are referenced for the copy?

The last two research questions look at the system from a domain-specific perspective: we

assess the performance of SEQUENCER from the viewpoint of program repair research.

• RQ3: How effective is SEQUENCER’s sequence-to-sequence learning in fixing bugs in the

well-established Defects4J benchmark?

• RQ4: What repair operators are captured with sequence-to-sequence learning?

4.4.2 Experimental Methodology

Methodology for RQ1

We train SEQUENCER with the parameter settings described in Section 4.3.6. The training and

validation accuracy and perplexity will be plotted. Perplexity (ppl) is a measurement of how well

a model predicts a sample and is defined as:

ppl(X, Y ) = exp(
−∑|Y |

i=1 logP (yi | yi−1, . . . , y1, X)

| Y | )

where X is the source sequence, Y is the true target sequence and yi is the i-th target token [117].

Luong et al. found a strong correlation between a low perplexity value and high translation quality

[148].

The resulting model is tested on our testing dataset, CodRep4 (see Section 4.4.3). Next, in

order to compare SEQUENCER against the state-of-the-art approach by Tufano et al. [216], we

created CodRep4Medium. It is a subset of CodRep4 containing 1,116 samples where the buggy

method length is limited to 100 tokens.
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Methodology for RQ2

To evaluate the effectiveness of the copy mechanism (described in Section 4.3.3), we consider

all samples from CodRep4. For each successfully predicted line, we categorize tokens in that line

based on whether the token is in the vocabulary or not. And at the same time, for tokens that are

out-of-vocabulary but are copied from the input sequence, we try to find the original location of

the copied token. By analyzing the original location of out-of-vocabulary tokens, we can measure

the importance of the context, in particular of the abstract buggy context we define in this chapter.

The copy mechanism allows the system to be more powerful by providing more tokens beyond the

vocabulary to be used in the patch.

Methodology for RQ3

We evaluate SEQUENCER on Defects4J [107], which is a collection of reproducible Java bugs.

Most recent approaches in program repair research on Java use Defects4J as an evaluation bench-

mark [155, 240, 239, 230, 105].

Since the scope of this chapter is on one-line patches, we first focus on Defects4J bugs that have

been fixed by developers by replacing one single line (there are 75 such bugs). In order to study

the effectiveness of sequence-to-sequence itself, we isolate the fault localization step as follows:

the input to SEQUENCER is the actual buggy file and the buggy line number. SEQUENCER then

produces a list of patches (recall that beam search produces several candidate patches). All patches

are compiled and then executed against the test suite written by the developer.

Each candidate patch generated by SEQUENCER is then categorized as follows:

• Compilable patch: The patch can be compiled.

• Plausible patch: The patch is compilable and passes the test suite. The patch may yet be

incorrect because of the overfitting problem [203].

• Correct patch: The patch passes the test suite, and is semantically equivalent to the human

patch. We hand-check for semantic equivalence for this evaluation.
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As per the definitions, there is a strict inclusion structure in those categories: correct patches

are necessarily plausible and compilable, plausible patches are necessarily compilable.

Methodology for RQ4

For RQ4, we aim at having a qualitative understanding of the cases for which our sequence-

to-sequence repair approach works. This research question is motivated by the need to understand

what grammatically correct code transformations are captured by SEQUENCER, even though it is

purely a token-based approach with no first class AST or grammar knowledge. For gaining this

understanding, we use a mixed method combining grounded theory and targeted analysis. The

results would be an understanding of the variety of repair operators and programming language

syntax captured by SEQUENCER in cases where the model output correctly matches the test data.

For the grounded theory, we have been regularly sampling successful cases, i.e., cases in our

testing dataset CodRep4 for which SEQUENCER was able to predict the fixed line, for each case,

the authors reached a consensus to know whether 1) the case is interesting from a programming

perspective (e.g., it represents a common bug fix pattern), and 2) the case highlights a phenomenon

that has already been covered in a previously found case. For the targeted analysis, we specifically

searched for 2 kinds of results: cases where the copy mechanism was used and cases where a

specific programming construct was involved (method call, field reference and string literals).

4.4.3 Training Data

SEQUENCER is trained based on past modifications made to source code, i.e., it is trained on

past commits. In our experiments, we combine two sources of past commits, the CodRep dataset

[46] and the Bugs2Fix dataset [216], into what appears to be the largest dataset of one-line bug

fixes published to date. Both datasets 1) consider Java code and 2) have been built based on the

history of open-source projects.

The CodRep dataset focuses solely on one-line source code fixes (aka one-line patches), it

contains 5 datasets curated from real commits on open-source projects. The Bugs2Fix dataset

contains diffs mined from Github between March 2010 and October 2017 for bug-fixing commits
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(based on heuristics to only consider bug-fixing commits). Neither dataset requires the buggy

project to have a test suite for exposing the buggy behavior, instead they are focusing on collecting

bug fix commits.

Data Preparation

Since CodRep and Bugs2Fix datasets are in different formats, we first unify these two datasets

as follows. First, we only keep diffs from Bugs2Fix which are fixes with a single line replacement.

Further, we filter out certain diffs if the changes are outside of a method.

Since the Bugs2Fix dataset comes from a generic bug-fix data mining which includes multi-

line fixes and fixes outside of methods, we can look at its statistics to help understand the generality

of SEQUENCER. Bugs2Fix contains 92,849 commits. 15,548 of these (17%) are one-line patches

within a method, and are within the problem domain of SEQUENCER.

After preparing the dataset, we divide it into training and testing data. CodRep is originally

split into 5 parts, numbered from 1 to 5, with each part containing commits from different groups

of projects. Our training data consists of CodRep datasets 1,2,3 & 5 and the Bugs2Fix dataset.

Our testing data is CodRep dataset 4 (or CodRep4 for short). We chose dataset 4 because it

is approximately 20% of the entire CodRep data (data set 1 is less than 10% and data set 5 is

over 30%) and because CodRep 4 contains a broad and representative set of projects on which to

evaluate [46].

Furthermore, we ensure there are no duplicate samples between the training and testing datasets.

During the model setup, we use a random subset of 95% of the training data for model training and

5% as our validation dataset.

Descriptive Statistics of the Datasets

In total, we have 35,578 samples in our training set and 4,711 samples in our testing set.

Input Size Figure 4.6 shows the size distribution of the abstract buggy context in number of

tokens before truncation is done. The CodRep training data has a median token length of 372; the

Bugs2Fix dataset has a median length of 340 tokens; and the testing dataset has a median length
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Figure 4.5: Overview of vocabulary: token count occurrences follow a Zipf’s law distribution.

Figure 4.6: Only 14% of samples exceed the 1K token length limit and require truncation.

of 411. These variations are a result of using different Java projects in the datasets, but we observe

that the distribution of lengths is similar.

Prediction Size The lines from the abstract buggy context samples in our dataset had a median

length of 6. 99% of the lines were 30 tokens or fewer, which fits well typical output sizes used

for natural language processing. To sum up, the order of magnitude of the sequence-to-sequence

prediction receives an input sequence with an average length of 350 tokens and produces an output

sequence with an average length of 6 tokens.

Vocabulary Size In our training data, the full vocabulary is 567,304 different tokens. Figure 4.5

shows the distribution of the number of occurrences for the whole vocabulary. It is a typical power-
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Table 4.1: Comparison with state-of-the-art approach by Tufano et al.

Approach Prediction Accuracy

CodRep4Medium CodRep4

simple seq2seq line2line, no copy 77/1116 (6.9%) 206/4711 (4.4%)

Tufano et al. [216] 157/1116 (14.1%) N/A

SEQUENCER 344/1116 (30.8%) 950/4711 (20.2%)

law like distribution with a long tail. We limit our training vocabulary to the 1,000 most common

tokens.

4.4.4 Experimental Results

Answer to RQ1: Perfect Predictions

We trained our model on a GPU (Nvidia K80) for 1.2 hours. For a typical training run on

our golden model, Figure 4.7 shows the training and validation accuracy per token generated (the

accuracy for the entire patch would be lower) and Figure 4.8 shows the perplexity (ppl) per token

generated over the training and validation datasets. In this particular run, the best results for both

the perplexity and accuracy on the validation dataset occur at 10,500 iterations. We chose 10,000

iterations as the standard training time for our model.

CodRep4 On the 4,711 prediction tasks of our best model, SEQUENCER is able to generate

the perfect fix in 950 cases (from Table 4.1). In all those cases, the predicted line that replaces the

buggy line is exactly the line fix implemented by the developer. The copy mechanism is used in a

number of cases, this will be further discussed in section 4.4.4.

Comparison to state-of-the-art To the best of our knowledge, the state-of-the-art approaches

are from Tufano et al. [216] and Hata et al. [87]. We only compare against Tufano et al. since

their approach has been open sourced while that one of Hata et al. was not made available at the

time of writing this chapter. The approach used by Tufano et al. is limited to fixes only inside

small methods, consisting of less than 100 tokens. The limitation is due to the fact that their

approach generates the entire fixed source code method as output of the decoder. This means that

the decoder may need to generate a long sequence of source code tokens, which is one of the major
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challenges for NMT models [119]. SEQUENCER does not make any assumption on the size of

the buggy method. In order to compare against [216], we select those 1,116 tasks from CodRep4

where the buggy line resides in a method smaller than 100 tokens. Those 1,116 tasks are called the

CodRep4Medium testing dataset.

Our testing accuracy for both CodRep4 and CodRep4Medium are shown in Table 4.1. From the

table, we see that the accuracy of SEQUENCER is 344/1,116 (30.8%) while Tufano et al. [216] is

157/1,116 (14.1%). This is a clear indicator that SEQUENCER outperforms the current state-of-the-

art showing twice as many correct predictions. It shows that our construction of the abstract buggy

context, together with the copy mechanism, leads to higher accuracy than only having the buggy

method as context with a specific encoding for variables. Recent fault localization research [249]

indicates that best-in-class techniques can predict the faulty line 44% of the time and the faulty

method 68% of the time. If we extrapolate these percentages to our data, SEQUENCER is more

likely to find correct one-line patches than the prior work [216] is to find method replacements,

and SEQUENCER can process and repair larger methods as demonstrated by the right-hand column

of Table 4.1.

We now concentrate on the effectiveness of the approach depending on the buggy method

length. Overall, we observe that SEQUENCER has a lower accuracy on longer methods (30.8%

accuracy on CodRep4Medium, 20.2% accuracy on CodRep4). This phenomenon is explained by

the fact that fixes in long methods are usually more complex and involve more context variables,

identifiers and literals that are not easily captured by the learning system. This phenomenon has

also been previously observed [216].

Answer to RQ2: Copy Mechanism

We now look at to what extent the copy mechanism is used. Figure 4.9 shows the origin of

tokens in successfully predicted lines, per patch size. Let us consider the highest bar, corresponding

to all successfully predicted lines consisting of 7 tokens. For those 7-token patches, the black bar

means that all tokens are taken from the vocabulary. The non-black bars mean that the copy

mechanism has been used to predict the line fix. Overall, there is a minority of patches (216/950,
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Figure 4.7: Training and validation accuracy

Figure 4.8: Training and validation perplexity

23%) for which all tokens come from the vocabulary. At the extreme, the longest successful patch

generated by SEQUENCER was 68 tokens long, but the longest successful patch without the copy

mechanism was only 27 tokens long.

Figure 4.9 also lets us analyze the location origin of the copied token. The brown bars represent

those patches for which copied tokens all come from the buggy line: this is the majority of cases

(641/950, 68%). However, we also observe cases where some copied tokens have been taken from

the buggy method (green bars) and cases where the copied tokens has been taken from the buggy

class (red bars), i.e., taken from the class context as captured in our encoding.
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As an example, Listing 4.7 replaces variable masterNode with nonMasterNode as in the

correct human patch. nonMasterNode in the fixed line does not occur in our training data and

hence it is not in our 1000 token vocabulary. Therefore, SEQUENCER was able to generate this

patch because it copied the out-of-vocabulary token nonMasterNode from within the buggy

method. As this example is a 4 token long patch, it would contribute to the green bar for patch

length 4 in Figure 4.9.

while( nonMasterNode == null ) {

nonMasterNode=randomFrom( internalCluster().getNodeNames());

if ( nonMasterNode.equals( masterNode ) ) {

− masterNode = null ;

+ nonMasterNode = null;

}

}

Listing 4.7: Example of the copy mechanism creating a correct patch by incorporating a variable

which is not in the vocabulary from the broader context around the buggy line.

Overall, Figure 4.9 shows that the copy mechanism is extensively used (734/950, 77%) and

that our class level abstraction enables us to predict difficult cases where only the buggy line or the

buggy method would not have been enough.

In order to understand the benefits of context size with the copy mechanism, we measured the

distance in tokens to reach a copied token used to generate a patch. In the 87 cases where a copied

token was needed from the buggy method bm, the median distance from the buggy line bl to the

nearest use of the copied token was 9 tokens, 90% of the 87 cases were within 49 tokens of bl, and

100% were found within a 122 token distance. In the 7 cases when a copied token was needed from

the buggy class bc, the median distance to the copied token from bm was 25 tokens, and 100% were

found within a 241 token distance. In addition to ablation study results discussed is Section 4.5,

the preceding data supports our decision to create the abstract buggy context.
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Figure 4.9: Histogram showing correctly generated patches: 1) that only use tokens in our 1,000 token

vocabulary, 2) that need to copy tokens from the buggy line, 3) from the buggy method and 4) from the

buggy class.

4.4.5 Defects4J Evaluation

As explained in Section 4.4.2, we consider 75 Defects4J bugs that have been fixed with a one-

line patch by human developers. In total SEQUENCER finds 2,321 patches for 58 of the 75 bugs.

The main reason that we are unable to fix the remaining 17 bugs is due to fact that some bugs are not

localized inside a method, which is a requirement for the fault localization step that SEQUENCER

assumes as input. Listing 4.8 is one such example where the Defects4j bug is not localized inside a

method. We have 2,321 patches instead of 2,900 (58x50) because some predictions are filtered by

the patch preparation step (Section 4.3.5), i.e., patches that contain the <unk> token. The statistics

about all bugs can be found in Figure 4.10. Out of 75 bugs, SEQUENCER successfully generated at

least one patch for 58 bugs, 53 bugs have at least one compilable patch, 19 bugs have at least one

patch that passed all the tests (i.e., are plausible) and 14 bugs are considered to be correctly fixed
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with correct patches 14

with plausible patches 19

with compilable patches 53

Bugs with patches 58

Total bugs 75

0 15 30 45 60 75 90

Figure 4.10: SEQUENCER results on the 75 one-line Defects4J bugs.

Correct patches 18

Plausible patches 61

Compilable patches 761

Total patches 2321

0 500 1000 1500 2000 2500 3000

Figure 4.11: Stastistics on patches synthesized by SEQUENCER for the 75 one-line Defects4J bugs.

(semantically identical to the human-written patch). Of these 14 bugs, in 12 cases the plausible

patch with the highest ranking in the beam search results was the semantically correct patch.

− private static final double DEFAULT_EPSILON = 10e−9;

+ private static final double DEFAULT_EPSILON = 10e−15;

Listing 4.8: An example of Defects4J defect (Math 104) where the bug is not localized inside a method. In

this case, a class variable is changed.

Figure 4.11 gives a different perspective on this data, focusing on patches (and not bugs). SE-

QUENCER is able to generate 761 compilable patches (33% of all patches). SEQUENCER finds 61

plausible patches spread over 19 bugs, thus there can be several plausible patches for the same bug,

a phenomenon well-known in the program repair field [155]. One reason is that some Defects4J

bugs have a weak test suite. To the best of our knowledge, we are the first to report the correctness

of patches generated by a sequence-to-sequence model, where correctness means passing the test

suite and being semantically equivalent to the human patch. In the end, SEQUENCER is able to

generate 18 patches that are semantically equivalent to the correct bug fix.
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For SEQUENCER applied to Defects4J bugs, we observe that out of 61 plausible patches, 18 are

correct, which is a ratio of 30%. An analysis of prior techniques which used a different benchmarck

in C (GenProg [131], RSRepair [180], and AE [229]) shows that they have a correct patch ratio of

less than 12% [182]. We did not evaluate SEQUENCER on the same benchmark as this prior work

(we target Java not C), but the ratio is evidence that SEQUENCER has learned to produce outputs

which represent reasonable patch proposals.

Although we did not directly include fault localization in our evaluation of SEQUENCER, we

can estimate the performance of a repair system which includes state-of-the-art fault localization

techniques [249] as follows. It has been shown that there is an estimated 44% success of correctly

identifying a faulty line in the top 10 candidates. Hence, in order to process 75 total bugs from

Defects4J, 750 candidate abstract buggy contexts would need to be prepared for input to our model.

We have run fault localization with Gzoltar [41] and found that it successfully localized the faulty

line for 9 of the 14 bugs for which SEQUENCER found a correct fix.

Let us now discuss timing. We estimate the machine time required to automatically find patches

for 75 bugs with the summation below5:

• Estimated time to run fault localization on 75 bugs and identify 10 likely faulty line locations:

112 minutes

• Time to create 750 abstract buggy contexts (10 created for each bug): 29 minutes

• Time to create 37,500 patch candidates (50 candidates created from beam size 50 for each

abstract buggy context): 9 minutes

• Estimated time to prune raw patches down to 23,210 total patches: 2 minutes

• Time to attempt compile on 23,210 patches: 1378 minutes

• Time to run test cases on 7,610 patches: 6287 minutes

5Our Defects4J testing was run on an Intel Core i7 at 3.5GHz and our sequence-to-sequence model was run on an

Nvidia K80.
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• Final result estimated to take 130 total machine hours to find patches which correctly fix 9

bugs.

Listing 4.9 shows the SEQUENCER patch for Math 75, which is semantically equivalent to the

human patch. We observe that it contains some unnecessary parentheses, and the same behavior

occasionally occurs in other patches found by SEQUENCER. We have observed unnecessary paren-

thesis in some of the human-generated patches in our training data and SEQUENCER occasionally

replicates this human style. In this case, the parentheses do not change the order of evaluation.

Therefore the SEQUENCER patch for Math 75 is semantically equivalent to the human patch.

Interestingly, getPct is not part of the vocabulary, and it did not appear in the buggy method.

The getPctmethod is defined in the same buggy class, as captured by our abstract buggy context.

In Defects4J, the copy mechanism is also useful to capture the right tokens to add in the patch.

− return getCumPct((Comparable<?>) v);

+ return getPct ((Comparable<?>) v); // Human patch

+ return getPct ((( Comparable<?> )(v))) ; // SEQUENCER patch

Listing 4.9: Found patch for Math 75

We now compare those results against the patches found by recent program repair tools that are

publicly available. Elixir [191], CapGen [230] and SimFix [105] have reported 26, 22, 34 correctly

repaired bugs for all Defects4J bugs, where the patch is identical to the human patch or claimed as

correct. Of those correctly repaired bugs, 22, 19 and 17 respectively are for the 75 one-line bugs

that we consider for SEQUENCER. We notice that the majority of claimed correct patches are for

one-line bugs. We observe that SEQUENCER does not fix more one-line Defects4J bugs.

While Elixir, CapGen, and SimFix are driven with intelligent design and require substantial

configuration and handcrafted rules, our goal with SEQUENCER is to be agnostic and to not design

any repair operator upfront. For example, CapGen implements context-aware operator selection

and context-aware ingredient prioritization [230]. The CapGen implementation heavily relies on

code transformation tools and carefully selected algorithms/parameters/metrics. In constrast, our

SEQUENCER can be considered less heavyweight. We note that the required parameter tuning
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in SEQUENCER can easily be performed using grid search or other meta-optimization techniques

[30]. To that extent, it is remarkable that such a generic approach is able to learn bug-fixing patterns

and synthesizes 18 patches that are semantically equivalent to the human repair, without any static

or dynamic analysis. By providing a generic approach, SEQUENCER will improve in the future as

machine learning sequence-to-sequence techniques improve, and as more bug fix training data is

provided. Also, since SEQUENCER learns repair operators from examples, it could be trained on

less common languages (such as COBOL).

We assume perfect fault localization while other related tools ran fault localization to localize

the buggy source code. Yet, different papers use different fault localization algorithms, implemen-

tations, and granularity (e.g., methods versus line). Liu et al. pointed out that because of different

assumptions about fault localization, it is hard to compare different repair techniques [142]. By

assuming perfect fault localization, we purely focus on the patch generation step of the algorithm.

4.4.6 Qualitative Case Studies

We now answer RQ4 by presenting the diversity of repair operators that are captured by SE-

QUENCER. These cases are culled from the 950 correct patches SEQUENCER generated for the

CodRep4Full test dataset. Both the buggy line that was part of the input is shown and the correct

patch which includes examples of repair operators. We also highlight again the effectiveness of the

copy mechanism by using a bold underlined font for those tokens that were copied (i.e., that are

outside the vocabulary of the 1,000 most common tokens).

Case study: method call change

Our training and evaluation data consist of object-oriented Java software. We observe that

SEQUENCER captures different kinds of operations related to method calls.

Call change Here a call to method writeUTF is replaced by a call to method writeString.

− out .writeUTF( failure ) ;

+ out .writeString( failure ) ;

Listing 4.10: Call change
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Call deletion The buggy line chains two method calls; this successful prediction consists of

deleting one of them.

− FieldMappers x = context .mapperService () .smartNameFieldMappers( fieldName ) ;

+ FieldMappers x = context .smartNameFieldMappers( fieldName ) ;

Listing 4.11: Call deletion.

Argument addition In this patch, SEQUENCER adds an argument (which in Java, means call-

ing another method).

− stage .getViewport () .update( width, height ) ;

+ stage .getViewport () .update( width, height , true ) ;

Listing 4.12: Argument addition

Target change In this successful case, the patch also calls method isTerminated but on another

target (scheduledExecutorService instead of executorService, which is copied from the input

context).

− if ( !( executorService . isTerminated () ) ){

+ if ( !( scheduledExecutorService . isTerminated () ) ){

Listing 4.13: Target change

Case study: if-condition change

SEQUENCER can change if conditions, and in this particular case, removes two clauses from

the Boolean formula.

− if ( ( ( t >= 0 ) && ( t <= 1 ) ) && ( intersection != null ) )

+ if ( intersection != null )

Listing 4.14: if-condition change

Case study: Java keyword change

SEQUENCER is also able to generate patches involving the replacement of programming lan-

guage keywords, indicating clues of syntax understanding.
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− break ;

+ continue ;

Listing 4.15: Java keyword change

Case study: change from field access to method call

A good practice of software engineering is to implement encapsulation by calling methods

instead of directly accessing fields, this is handled by SEQUENCER as follows (size to size())

− app . log( "PixmaPackerTest" , ( "Number of textures: " + ( atlas .getTextures () . size ) ) ) ;

+ app . log( "PixmaPackerTest" , ( "Number of textures: " + ( atlas .getTextures () . size () ) ) ) ;

Listing 4.16: change from field access to method call

Case study: off-by-one repair

Finally, SEQUENCER is also able to repair classical off-by-one errors.

− nextIndex = currentIndex ;

+ nextIndex = ( currentIndex ) − 1;

Listing 4.17: off-by-one repair

Overall, SEQUENCER uses all three kinds of token operations: 1. Token deletion, e.g., List-

ing 4.11; 2. Token addition, e.g., Listing 4.12; 3. Token replacement, e.g., Listing 4.10.

4.5 Ablation Study

We perform an ablation study to understand the relative importance of each component of

our approach. The process is as follows. First, we identify the golden model based on a greedy

optimization in the parameter search space. This is the model that we described in section 4.4.

Then we change one single parameter to a different reasonable value and report the performance

on the same testing dataset. The ablation results demonstrate that parameter selections for the

golden model produce the highest acceptance rates for the configurations we tested. The model
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parameters we found with our dataset are likely to yield reasonable results when training for other

computer languages so long as a form of abstract buggy context can be done to provide context

related to the buggy line. We provide details on our ablation results to aid future researchers in

understanding which variables are most likely to improve their own models.

Due to randomness in learning, for each parameter, we run each configuration multiple times

and report the mean and standard deviation for the model as recommended for assessment of ran-

dom algorithms [16]. As our goal is to select the best model for use in our Defects4J evaluation,

we use the test set from CodRep4Full to select the best run of each model, hence we report the

percentage decrease of the best run for a given model from the best result found with the golden

model. Due to computational constraints, we only run each model 10 times; for the 18 config-

urations reported, almost 200GB of disk storage was used and 400 machine-hours. When using

SEQUENCER to learn new datasets, we would recommend a similar approach where a validation

set is used to select the best performing model after multitple training runs.

First, we consider the very coarse grain features. Table 4.2 shows the performance of four

models, starting from a simplistic seq-to-seq model that only takes a single buggy line bl as input

when learning to produce the fixed line fl. Then we show beam search, copy, and the use of the

abstract buggy context improving the model performance. These results confirm our answer to

RQ2 that the copy mechanism is essential to the performance of the system.

Second, Table 4.3 shows the results of our ’Golden model’ against the results of single specific,

targeted changes made to the model. Ablation ID 1 shows that our 10K training limit is sufficient

given our training data. ID 2 shows that a vocabulary smaller than 1K tokens performs worse -

likely due to a loss of learned tokens that can be used even if an instance of the token is not in

the abstract buggy context. ID 3 shows that a vocabulary larger than 1K tokens performs worse

- perhaps due to the additional tokens having insufficient training examples for learning a proper

embedding. To further understand the effect of vocabulary size, we analyzed the raw output of

our model before the patch preparation step. For the golden model (vocab=1000), 38% of the

generated patches on CodRep4 have <unk> tokens and would be discarded; with ID 2 (700) it is
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43%, and with ID 3 (1400) it is 37%. Hence, although a larger vocabulary had fewer raw <unk>

tokens, the 1000 token vocabulary was able to produce better optimized models.

ID 4 is about pretraining; in order to provide more opportunities to learn a quality embedding,

we created unsupervised pretraining data for the encoder/decoder. Using this unsupervised data

did not improve the model, it worsened it.

ID 5 a and b show the value of combining the CodRep and Bugs2Fix data sets to improve

the generalization of the model. ID 6 demonstrates the effect of removing the bridge between the

encoder and decoder, which improved the mean for the model but tightened the standard deviation

and hence produced a lower best result that the golden model. This is perhaps due to the bridge

layer allowing for more variation in the encoder hidden state embedding and decoder hidden state

embedding.

IDs 7 through 10 demonstrate that our LSTM network is sized correctly; presumably a smaller

network cannot generalize on the model data well enough whereas a larger network has too many

degrees of freedom. Our speculation is that a 2 layer encoder/decoder network allows the layer

connected directly to the token embedding to ’focus’ the weight matrix on input syntax while the

layer connected to the attention/copy mechanism ’focuses’ on output generation. ID 11 shows the

loss in accuracy when abstract buggy context is reduced to just the buggy line.

ID 12 shows that truncation is necessary otherwise an out-of-memory error crashes the system,

due to too many time steps being stored in memory per token in the sequence. ID 13 shows that if

we truncated to 4,000 tokens then the system passes, but the increased context size (4,000 vs the

golden model 1,000) did not improve accuracy of the model. ID 14 shows that using a 500 token

limit for abstract buggy context hurts accuracy presumably because there are less opportunities for

token copy. We also speculate that a possible advantage of 1K truncation instead of 500 could be

that 1K provides a type of unsupervised learning for the encoder hidden states, the global attention,

and the copy mechanism.

ID 15 removes the <START_BUG> and <END_BUG> tokens from the abstract buggy context

input. The target output is still the correct single-line patch. Without these labels, SEQUENCER
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Table 4.2: Performance impact of the key features of beam size, copy, and context.

Model description CR4Full ratio

50K vocab, no copy, beam size 1, no context 55 baseline

50K vocab, no copy, beam size 50, no context 206 3.7x

1K vocab, copy, beam size 50, no context 826 15.0x

Golden Model (with abstract buggy context) 950/4711 17.3x

must learn line break positions and learn a type of fault localization in order to create a valid patch.

Because abstact buggy context does not include test coverage data or other information useful for

fault localization, there is a significant accuracy loss for this ID, but the network was still able to

create 356 correct patches.

Our primary use case modeled in this chapter is to use our golden model for SEQUENCER on

projects for which it was not trained. This allows for a simpler use model than retraining the model

periodically on an ongoing project. ID 16 explores the use case where SEQUENCER is trained

with samples from the same projects that the buggy test cases come from. CodRep4 is added to

the training set data and then 4,711 random samples are removed for testing (these samples may

be from CodRep or Bugs2Fix project files). When the training data includes bugs from the same

projects as the test data, we see a 12% improvement in the best model. This use model is viable,

but it does require more complete integration of SEQUENCER into a project regression system.

4.6 Related Work

The work presented here is on built on top of two big and active research fields: program repair

and machine learning on code. We refer to recent surveys for getting a good overview on them:

[161] for program repair and Allamanis et al.’s [9] for the latter. In the following, we focus on

those works that are about learning and automatic repair.

sk_p is a program repair technique for syntactic and semantic errors in student programs sub-

mitted to MOOCs [179]. First, it uses the previous and next statement to predict the statement

in the middle, i.e., to replace the current statement. The probability of a patch is the product of
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Table 4.3: Results with selected configurations in the parameter neighborhood of the golden model. For ID

0 through 15, results are total exact matches when model is tested on 4,711 testcases from CR4Full. ID16

results selected 4,711 testcases after merging CR1,2,3,4, and 5 with Bugs2Fix.

ID Model description mean SD max chng

0 Golden Model 859 61 950 —

1 more training iterations (20K vs 10K) 832 78 901 -5%

2 smaller token vocabulary (700 vs 1000) 824 70 886 -7%

3 larger token vocabulary (1400 vs 1000) 868 32 907 -5%

4 with unsupervised pretraining 821 65 922 -3%

5a less training data (CR vs CR+Bugs2Fix) 742 47 810 -15%

5b less training data (Bugs2Fix vs CR+Bugs2Fix) 748 24 785 -17%

6 no bridge layer from encoder to decoder 887 34 942 -1%

7 fewer LSTM layers on enc/dec (1 vs 2) 281 203 513 -46%

8 more LSTM layers on enc/dec (3 vs 2) 833 49 914 -4%

9 fewer LSTMs per layer (128 vs 256) 848 40 888 -11%

10 more LSTMs per layer (512 vs 256) 812 89 907 -5%

11 without context (input only buggy line) 738 63 826 -13%

12 no truncation of abstract buggy context crash

13 truncate to larger context (4K vs 1K) 848 79 950 -0%

14 truncate to smaller context (500 vs 1K) 826 54 890 -6%

15 remove START_BUG & END_BUG 331 33 412 -57%

16 Intraproject training (4,711 testcases from CR+Bugs2Fix) 984 47 1068 +12%

the probabilities for all chosen statements. As we do, sk_p uses beam search to produce the top n

predictions.

Another paper on MOOCs [33] repairs student submissions in Python by combining learning

and sketch-based synthesis. The approach by Wang et al. [226] considers MOOC but the technique

itself is completely different: [226] does deep learning on program traces in order to predict the

kind of bug affecting a student submission. The main differences between those works and ours are

that 1) we consider a larger context (the buggy class) and 2) we consider real programs for training

and testing that are bigger and more complex than student’s submissions. Shin et al. [201] consider

simple programs in the educational programming language Karel. As SEQUENCER, their system

predicts to delete, insert or replace tokens. Henkel et al. [92] compute an embedding for symbolic
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traces and perform a pilot experiment for fixing error-handling code, which is very different from

concrete bug fixing as we do here.

DeepFix is a program repair tool for fixing compiler errors in introductory programming courses

[84]. The input is the whole program, (100 to 400 tokens long for their data), and the output is a

single line fix. The vocabulary size is set to 129, which was enough to map every distinct token

type to a unique word in the vocabulary. TRACER is another program repair tool for fixing com-

piler errors which outperforms DeepFix in terms of success rate [5]. Santos et al.’s [192] further

refines the idea and evaluates it with an even larger dataset. The focus of those three works and

ours is very different, they focus on compiler errors, we focus on logical bugs. For compiler errors,

one does not need to consider the whole vocabulary, but only token types. On the contrary, we

have to address this problem and we do so by using the copy mechanism.

DeepRepair [232] is an early attempt to integrate machine learning in a program repair loop.

DeepRepair leverages learned code similarities, captured with recursive autoencoders [231], to

select repair ingredients from code fragments that are similar to the buggy code. Our usage of

learning is different, DeepRepair uses machine learning to select interesting code, SEQUENCER

uses machine learning to generate the actual patch.

Tufano et al. investigated the feasibility of using neural machine translation for learning bug-

fixing patches via NMT [216]. The authors first perform a source code abstraction process that

relies on a combination of Lexer+Parser which replaces identifiers and literals in the code. The

goal of this abstraction is it reduce the vocabulary while keeping the most frequent identifiers/lit-

erals. In their work the authors analyzed small methods (no longer than 50 tokens) and medium

methods (no longer than 100 tokens) and observed a drop in performance for longer methods. Since

their approach takes a buggy method as input and generates the entire fixed method as output, the

maximum method length Tufano et al. considered is only 100 tokens. Their work addressed the vo-

cabulary problem by renaming rare identifiers through a custom abstraction process. SEQUENCER

is different in the following ways. First, we consider the entire context of the buggy class, rather

than only the buggy method, in order for the model to access more tokens when predicting the fix.
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Second, our abstraction process uniquely utilizes the copy mechanism (which they do not), which

allows SEQUENCER to utilize a larger set of tokens when generating the fix and to include infor-

mation about the context within the abstract buggy context in which a token is used. Beyond those

two major qualitative differences, a quantitative one is that they only consider small methods, no

longer than 100 tokens, while we have no such restriction; SEQUENCER can potentially generate

a one-line patch within a method of any size.

Parallel work by Hata et al. [87] discusses a similar network architecture, also applied to one-

line diffs. The major differences between [87] and our work are the following: First, they do

project-specific training, which means that their approach is only evaluated on testing data coming

from the same project. On the contrary, we do global training and we show that SEQUENCER

captures repair operators applicable to any project. Our qualitative case studies are unique with

that respect. Second, they only look at wellformedness of the output, while we also compile and

execute the predicted patch. Our work is an end-to-end test-suite based repair approach. Third,

their input is limited to the precise buggy code to replace, while SEQUENCER uses abstract buggy

context, which allows for a broader set of tokens for the copy mechanism to select from.

4.7 SEQUENCER Summation

In this chapter, we have presented a novel approach to program repair, called SEQUENCER,

based on sequence-to-sequence learning. Our approach uniquely combines an encoder/decoder ar-

chitecture with the copy mechanism to overcome the problem of large vocabulary in source code.

On a testing dataset of 4,711 tasks taken from projects which were not in the training set, SE-

QUENCER is able to successfully predict 950 changes. On Defects4J one-line bugs, SEQUENCER

produces 61 plausible, test-suite adequate patches. To our knowledge, this work is the first ever to

show the effectiveness of the copy mechanism for program repair, which provides a mechanism to

alleviate the unlimited vocabulary problem.

This work opens promising research directions. First, we aim to improve and adapt SE-

QUENCER with the goal of addressing multi-line patches. We believe there are different ways
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we can tackle this: (i) for fixes modifying contiguous lines of code (i.e., hunk) we can extend

SEQUENCER to learn to generate multiple lines of code as output, with the special tokens (i.e.,

<START_BUG> and <END_BUG>) surrounding the entire hunk; (ii) for fixes modifying multiple

lines in different locations, we could envision SEQUENCER generating a finite set of combinations

of the program containing a predicted fixed line for each of the suspicious locations. Second, there

is some preliminary work on tree-to-tree transformation learning [43], which conceptually is very

appropriate for code viewed as parse trees. Such techniques may augment or supersede sequence-

to-sequence approaches. Finally, the originality of our context abstraction is to capture class-level,

long range dependencies: we will study whether such a network architecture is able to capture

dependencies beyond that, at the package or application level.

4.8 Continuous Integration with SEQUENCER

Working with a broad team of experienced researchers, we have integrated SEQUENCER into a

continuous learning system which we have named R-HERO [27] which is capable of automatically

finding and repairing bugs on the GitHub platform.

Figure 4.12 shows the six main building blocks of R-HERO: Continuous integration, Fault

localization, Patch generation, Compilation & Test execution, Overfitting prevention, and Pull-

request creation. R-HERO stores its knowledge in two databases respectively composed of human-

written and machine-synthesized patches.

R-HERO receives and analyzes the events from a continuous integration (CI) system such as

Travis CI. It collects commits that result in a passing build as determined by CI. The changes from

a commit may or may not have been a bug fix, but the fact that the change passes all tests hints

that it is useful training data. The extraction of single-line changes works as follows: for each

commit, R-HERO goes over the corresponding diff and iterates over each hunk. It extracts training

data only from hunks that describe single-line changes. This may produce several useful training

data points per commit. In other words, R-HERO uses the before and after commit code to train

its machine learning model for patch generation. R-HERO currently relies on the SequenceR ML-
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based patch generator [48], a sequence-to-sequence neural network model trained to receive buggy

code as input and to generate patch proposals as output. At each training step, SequenceR updates

its model’s weights to determine the tokens that should be output in the proposed patches.

Next, we detail the repair process, shown with blue arrows in Figure 4.12. The repair process

is triggered by R-HERO monitoring the continuous integration to detect failing builds, manifested

by at least one failing test case. For a given failing build, R-HERO checks out the version of the

project that produces the failing build. Then, the fault localization component models the program

under repair and pinpoints the locations that could be buggy (file names and line numbers). R-

HERO passes the collected locations to SequenceR which generates one or more potential patches

for each location. Because the patch generation was trained on any kind of one-line change that

results in a passing build, R-HERO repairs both compilation errors and test failures.

R-HERO then validates each candidate patch. It first compiles the patches and executes all

the tests to verify if, after applying the patch, the compilation and test execution do not fail any-

more. The patches that pass both validations are known as plausible patches. Once R-HERO finds

plausible patches, it assesses them, in order to avoid annoying developers with overfitting patches.

This check is based on the overfitting detection system ODS [245]. ODS is a probabilistic model

trained using supervised learning on both human patches (which are assumed to be positive ex-

amples), and machine patches (labelled as correct or incorrect), collected from previous program

repair research [243].

Finally, when a high-quality patch is identified by ODS, R-HERO submits a pull-request to

the corresponding GitHub project which has the failing build. The pull-request message to the

developer describes the build failure and the patch, https://bit.ly/3fRIHhd is an example of such a

pull-request.

R-HERO demonstrates how a machine learning system such as SEQUENCER can be integrated

into a fully automated repair system. Detailed analysis of the R-HERO system is outside the scope

of this thesis, but is available in our published work [27].
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Figure 4.12: Overview of R-HERO, a software bot that learns to generate patches, build after build.
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Chapter 5

Neural Transfer Learning for Repairing Security

Vulnerabilities in C Code

5.1 Introduction

In the realm of automatic vulnerability fixing [104], there are only a few works on using neural

networks and deep learning techniques. One of the reasons is that deep learning models depend

on acquiring a massive amount of training data [207], while the amount of confirmed and curated

vulnerabilities remains small.

As we introduce in Section 3.2, we address the problem that vulnerability fix datasets are

too small to be meaningfully used in a deep-learning model. Our key intuition to mitigate the

problem is to use transfer learning from bug fixing to vulnerability fixing. Transfer learning is a

technique to transfer knowledge learned from one domain to solve problems in related domains,

and it is often used to mitigate the problem of small datasets [2]. We leverage the similarity of two

related software development tasks: bug fixing and vulnerability fixing. In this context, transfer

learning means acquiring generic knowledge from a large bug fixing dataset and then transferring

the learned knowledge from the bug fixing task to the vulnerability fixing task by tuning it on

a smaller vulnerability fixing dataset. We realize this vision in a novel system for automatically

repairing C vulnerabilities called VRepair.

In addition to transfer learning, we develop a change representation technique that allows for

multi-line fixes to be encoded efficiently by a machine learning system. Our token context diff

allows large functions to have changes defined compactly, which has been shown in prior work

to improve performance. In contrast to prior change techniques, the token context diff makes use

of the copy mechanism introduced in Section 2.1.3 which is an efficient mechanism for machine
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learning to use. By supporting multi-line changes, we double the number of real fixes which can

be attempted by VRepair.

In summary, our contributions are:

• We introduce VRepair, a Transformer Neural Network Model which targets the problem of

vulnerability repair. The core novelty of VRepair is to employ transfer learning as follows:

it is first trained on a bug fix corpus and then tuned on a vulnerability fix dataset.

• We design a novel code representation for the program repair task with neural networks. Our

output code representation supports specifying multi-line patches but is a token difference

instead of the entire fixed source code used in recent research [216].

• We empirically demonstrate that on the vulnerability fixing task, the transfer learning VRe-

pair model performs better than the alternatives: 1) VRepair is better than a model trained

only on the small vulnerability fix dataset; 2) VRepair is better than a model trained on a

large generic bug fix corpus; 3) VRepair is better than a model pre-trained with a denoising

task. In addition, we present evidence that the performance of the model trained with transfer

learning is stable.

• We share all our code and data for facilitating replication and fostering future research on

this topic.

5.2 Background on Software Vulnerabilities and Related Ma-

chine Learning

5.2.1 Software Vulnerabilities

A software vulnerability is a weakness in code that can be exploited by an attacker to perform

unauthorized actions. For example, one common kind of vulnerability is a buffer overflow, which

allows an attacker to overwrite a buffer’s boundary and inject malicious code. Another example

is an SQL injection, where malicious SQL statements are inserted into executable queries. The
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exploitation of vulnerabilities contributes to the hundreds of billions of dollars that cybercrime

costs the world economy each year [144].

Each month, thousands of such vulnerabilities are reported to the Common Vulnerabilities and

Exposures (CVE) database. Each one of them is assigned a unique identifier. Each vulnerability

with a CVE ID is also assigned to a Common Weakness Enumeration (CWE) category representing

the generic type of problem.

Definition a CVE ID identifies a vulnerability within the Common Vulnerabilities and Expo-

sures database. It is a unique alphanumeric assigned to a specific vulnerability.

For instance, the entry identified as CVE-2019-9208 is a vulnerability in Wireshark due to a

null pointer exception. 2019 is the year in which the CVE ID was assigned or the vulnerability

was made public; 9208 uniquely identifies the vulnerability within the year.

Definition a CWE ID is a Common Weakness Enumeration and identifies the category that a

CVE ID is a part of. CWE categories represent general software weaknesses.

For example CVE-2019-9208 is categorized into CWE-476, which is the ’NULL Pointer Deref-

erence’ category. In 2020, CWE-79 (Cross-site Scripting), CWE-787 (Out-of-bounds Write) and

CWE-20 (Improper Input Validation) are the 3 most common vulnerability categories6.

Each vulnerability represents a threat until a patch is written by the developers.

5.2.2 Transformers

In VRepair, we use a variant of a seq2seq model called the “Transformer” [220], which is

considered the state-of-the-art architecture for seq2seq learning, and is presented in detail in Sec-

tion 2.1.6 and diagrammed in Figure 2.5.

5.2.3 Transfer Learning

Traditional machine learning approaches learn from examples in one domain and solve the

problem in the same domain (e.g., learning to recognize cats from a database of cat images).

6https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
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Figure 5.1: The VRepair Workflow: Two phases of training for transfer learning to repair vulnerabilities.

However, as humans, we do better: we are able to apply existing knowledge from other relevant

domains to solve new tasks. The approach works well when two tasks share some commonalities,

and we are able to solve the new problem faster by starting at a point using previously learned

insights. Transfer learning is the concept of transferring knowledge learned in one source task

to improve learning in a related target task [215]. The former is called the source domain and the

latter the target domain. Transfer learning is commonly used to mitigate the problem of insufficient

training data [2]. If the training data collection is complex and hard for a target task, we can seek

a similar source task where massive amounts of training data are available. Then, we can train a

machine learning model on the source task with sufficient training data, and tune the trained model

on the target task with the limited training data that we have.

Tan et al. divide transfer learning approaches into four categories: 1) Instance-based 2) Mapping-

based 3) Adversarial-based 4) Network-based [211]. Instance-based transfer learning is about

reusing similar examples in the source domain with specific weights as training data in the target

domain. Mapping-based transfer learning refers to creating a new data space by transforming in-

puts from both the source and target domains into a new representation. Adversarial-based transfer

learning refers to using techniques similar to generative adversarial networks to find a represen-

tation that is suitable on both the source and target domain. Network-based transfer learning is

where we reuse the network structure and parameters trained on the source domain and transfer

the knowledge to the target domain; this is what we do in this chapter.
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5.3 VRepair: Repairing Software Vulnerabilities with Trans-

fer Learning

In this section, we present a novel neural network approach to automatically repair software

vulnerabilities.

5.3.1 Overview

VRepair is a neural model to fix software vulnerabilities, based on the state-of-the-art Trans-

former architecture. The prototype implementation targets C code and is able to repair intrapro-

cedural vulnerabilities in C functions. VRepair uses transfer learning (see subsection 5.2.3) and

thus is composed of three phases: source domain training, target domain training, and inference,

as shown in Figure 5.1.

Source domain training is our first training phase. We train VRepair using a bug fix corpus

because it is relatively easy to collect very large numbers of bug fixes by collecting commits (e.g.,

on GitHub). While this corpus is not specific to vulnerabilities, per the vision of transfer learning,

VRepair will be able to build some knowledge that would turn valuable for fixing vulnerabilities.

From a technical perspective, training on this corpus sets the neural network weights of VRepair

to some reasonable values with respect to manipulating code and generating source code patches

in the considered programming language.

Target domain training is the second phase after the source domain training. In this second

phase, we used a high quality dataset of vulnerability fixes. While this dataset only contains

vulnerability fixes, its main limitation is its size because vulnerability fixes are notoriously scarce.

Based on this dataset, we further tune the weights in the neural network of VRepair. In this phase,

VRepair transfers the knowledge learned from fixing bugs to fixing vulnerabilities. As we will

demonstrate later in subsection 5.5.2, VRepair performs better with transfer learning than with just

training on the small vulnerability fixes dataset.

Inference is the final phase, where VRepair predicts vulnerability fixes on previously unseen

functions known to be vulnerable according to a given vulnerability localization technique. VRe-
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Hypothetical buggy source code:         (a)

int getVal(int *array, int len, int index) {
if (index < len)
{

return array[index];
} else {

return index;
}

}

Hypothetical repaired function:           (b)

int getVal(int *array, int len, int index) {
if (index < len && index >= 0)
{

return array[index];
} else {

return -1;
}

}

Neural network input (CWE-xxx, StartLoc and EndLoc tokens added, newlines removed):                                                     (c)

CWE-119 int getVal ( int * array , int len , int index ) { <StartLoc> if ( index < len ) <EndLoc> { return array [ index ] ; } else { return index ; } }

Neural network token context diff output with context size 3:                   (d)

<ModStart> index < len &&  index >= 0 <ModStart> else { return -1 <ModEnd> ; } }

3 context tokens     Tokens inserted after ‘index < len’   Token replaces ‘index’

Color key:
     Incorrect line

     Correct line

     Context before

     Context after 

     VRepair special token

Neural network token context diff output with context size 2:                   (e)

<ModStart> < len &&  index >= 0 <ModStart> { return -1 <ModEnd> ; }

Context size 3 has only the correct repair as a possible interpretation, but context size 2 has these 3 interpretations:            (g)

int getVal ( int * array , int len , int index ) { if ( index < len && index >= 0 ) { return -1 ; } else { return index ; } }
int getVal ( int * array , int len , int index ) { if ( index < len && index >= 0 ) { return -1 ; } }
int getVal ( int * array , int len , int index ) { if ( index < len && index >= 0 ) { return array [ index ] ; } else { return -1 ; } }

Syntax for 3 types of change modification       (f)

Type       Syntax

Add
Delete
Replace  <ModStart> context new <ModEnd> context

<ModStart> context new

<ModStart> context <ModEnd> context

Figure 5.2: The VRepair code representation, based on a token diff script. Outputs are shown for a network

trained to produce context size 3 and another network trained to produce context size 2.

pair is agnostic with respect to vulnerability localization, it could be for example a human security

expert or a static analyzer dedicated to some vulnerability types. For each potentially vulnera-

ble location, VRepair may output multiple predictions which may be transformable into multiple

source code patches. Those tentative patches are meant to be verified in order to check whether

the vulnerability has disappeared. This means that, like localization, verification is independent

of VRepair. It would typically be another human security expert, or the same static analyzer used

before.

5.3.2 Code Representation

Early works on neural repair [216] simply output the full function for the proposed patched

code, but the performance of such a system was seen to diminish as the function length increased

[216]. Recently, other output representations have been proposed, including outputting a single line

[48], and outputting transformations as repair instructions [158, 212, 248]. Inspired by this recent

related work, we develop a token-based change description for repairs. It allows for sequences

shorter than a full function to be generated, it is easily applied to code, and it can represent any
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token change necessary for code repair. To sum up, in VRepair, the core idea is to represent the

patch as an edit script at the token level.

The full overview of the input and output formats for VRepair are shown in Figure 5.2. As

shown in box (c), Similar to SequenceR which we present in Chapter 4, VRepair adjusts the input

by removing all newline characters and identifying the first suspicious code line with the special

tokens <StartLoc> and <EndLoc>. However, because VRepair is acting on C functions and

SequenceR acts on Java code, VRepair does not use the abstract buggy context from Chapter 4 as

input. Those localization tokens come from an external entity localizing the vulnerable line, such

as any vulnerability detection system from the corresponding prolific literature [140, 138, 190] or

a human security expert. For instance, a static analyzer such as Infer [67] outputs a suspicious line

that causes a vulnerability. The input function is also labeled with the vulnerability type suspected

by adding a vulnerability type token at the start of the Transformer model input as detailed in

subsection 5.3.4 (prefixed by CWE by convention).

Regarding the neural network output, it is known that a key challenge for using neural nets

on code is that many functions are made of long token sequences [216], and the performance of

seq2seq models decreases with the size of the sequence [52]. In VRepair, the core idea is that

the network only outputs the changed source code tokens, and not the whole function, i.e., not

the whole token sequence. By doing this: 1) the representation allows for representing multi-

ple changes to a function 2) the representation decreases the size of the output sequence to be

generated. As seen in box (d) on Figure 5.2, our system uses a special token to identify a change,

<ModStart>, followed by ncontext tokens which locate where the change should start by specify-

ing the tokens before a change. <ModEnd> is used when tokens from the input program are being

replaced or deleted, and it is followed by ncontext tokens to specify the completion of a change.

Definition a token context diff is a full change description for a function, identifying multiple

change locations on multiple lines, using two special tokens <ModStart> and <ModEnd> to

identify the start and end contexts for change locations.
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Definition The context size is the number of tokens from the source code used to identify

the location where a change should be made. The context after the <ModStart> special token

indicates where a change should begin, and the context after a <ModEnd> special token indicates

where a change that removes or replaces tokens should end.

For example, Figure 5.2 boxes (a) and (b) show a buggy function in which 2 lines are changed

to repair the vulnerability. For this repair, the change encoded with a context size of 3 results in a

17-token sequence show in box (d). Box (e) shows that the same change can be represented with a

context size of 2, this would result in a 14 token sequence.

There are 3 types of changes used to patch code: new tokens may be added, tokens may be

deleted, or tokens may be replaced. Our novel code representation supports them all, as shown in

box (f) of Figure 5.2. Technically, only add and delete would be sufficient, but the replacement

change simplifies the specification and allows a token context diff to be processed sequentially

without backtracking.

A shorter context size minimizes the output length to specify a code change, hence poten-

tially facilitates the learning task. Yet, the issue that arises is that shorter context sizes risk having

multiple interpretations. For example, in box (d) of Figure 5.2, the context size 3 specification

uniquely identifies the start and end locations for the token modifications in the example function.

The 3 token start contexts ’index < len’ and ’else { return’ and the end context ’; }

}’ each only occur once in the buggy source code, so there is no ambiguity about what the re-

sulting repaired function should be. But as shown in box (g), the context size 2 specification has

multiple interpretations for the token replacement change. This is because ’{ return’ and ’;

}’ both occur 2 times in the program resulting in 3 possible ways the output specification can be

interpreted. For example, the first time the tokens ’{ return’ occur in the buggy source code is

directly before ’arrax[index]’, which is not the correct location to begin the modification to

produce the correct repaired function. In this example, we see that a 2-token context is ambiguous

whereas 3 tokens are sufficient to uniquely identify a single possible patch. Our pilot experiments
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showed that a context size of 3 successfully represents most patches without ambiguity, and hence

we use this context size to further develop VRepair.

In addition to confirming a context size of 3, our initial experiments have shown that the token

context diff approach supports multi-line fixes, which is an improvement on prior work only at-

tempting to repair single lines [48]. We note that 49% of our source domain dataset which we will

use in the experiment (see subsection 5.4.2) contains multi-line fixes, demonstrating the impor-

tance of the token context diff. We also present in subsection 5.5.3 a case study of such a multi-line

patch.

In summary, VRepair introduces a novel context-based representation for code patches, usable

by a neural network to predict the location where specific tokens need to be added, deleted, or

modified. Compared to other works which limit changes to single lines [48] or try to output the

entire code of repaired functions [84, 216], our approach allows for complex multi-line changes to

be specified with a small number of output tokens.

5.3.3 Tokenization

In this work we use a programming language tokenizer with no subtokenization. We use Clang

as the tokenizer because it is the most powerful tokenizer we are aware of, able to tokenize un-

preprocessed C source code. We use the copy mechanism to deal with the out-of-vocabulary

problem per [48]. We do not use sub-tokenization such as BPE [198] because it increases the input

and output length too much (per the literature [52], confirmed in our pilot experiments). Variable

renaming is a technique that renames function names, integers, string literals, etc. to a pool of pre-

defined tokens. For example function names GetResult and UpdateCounter can be replaced with

FUNC_1 and FUNC_2. We do not use variable renaming because it hides valuable information

about the variable that can be learned by word embeddings. For example, GetResult should be a

function that returns a result.
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5.3.4 Source Domain Training

In the source domain training phase, we use a corpus of generic bug fixes to train the model

on the task of bug fixing. In this phase, the network learns about the core syntax and the essential

primitives for patching code. This works as follows. From the bug fix corpus, we extract all

functions that are changed. Each function is used as a training sample: the function before the

change is seen as buggy, and the function after the change is the fixed version.

We follow the procedure described in subsection 5.3.2 to process the buggy and fixed functions

and extract the VRepair representation to be given to the network. All token sequences are pre-

ceded with a special token ’CWE-xxx’, indicating what type of CWE category this vulnerability

belongs to. We add this special token because we believe that vulnerabilities with the same CWE

category are fixed in a similar way. For the bug fix corpus where we don’t have this information,

we use the ’CWE-000’ token meaning “generic fix”. This special token is mandatory for target

domain training and inference as well, as we shall see later.

In machine learning, overfitting can occur when a model has begun to learn the training dataset

too well and does not generalize well to unseen data samples. To combat this issue we use the

common practice of early stopping [178] during source domain training. For early stopping, a sub-

set of our generic bug fix dataset is withheld for model validation during training. If the validation

accuracy does not improve after two evaluations, we stop the source domain training phase and use

the model with the highest validation accuracy for target domain training.

5.3.5 Target Domain Training

Next, we use the source domain validation dataset to select the best model produced by source

domain training, and tune it on a vulnerability fixes dataset. The intuition is that the knowledge

from bug fixing can be transferred to the vulnerability fix domain. We follow the same procedure

mentioned in the subsection 5.3.4 to extract the buggy and fixed functions in the VRepair represen-

tation from all vulnerability fixes in the vulnerability dataset. We precede all inputs with a special

token ’CWE-xxx’ identifying the CWE category to which the vulnerability belongs. To ensure
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sufficient training data for each ’CWE-xxx’ special token, we compute the most common CWE

IDs and only keep the CWE IDs with sufficient examples in the vocabulary. The top CWE IDs that

we keep cover 80% of all vulnerabilities and the CWE IDs that are not kept in the vocabulary are

replaced with ’CWE-000’ instead. Early stopping is also used here, and the model with the highest

validation accuracy is used for inference, i.e., it is used to fix unforeseen vulnerabilities.

5.3.6 Inference for Patch Synthesis

After the source and target domain training, VRepair is ready to be used as a vulnerability

fixing tool. The input provided to VRepair at inference time is the token sequence of a potentially

vulnerable function with the first vulnerable line identified with special tokens <StartLoc> and

<EndLoc>, as described in subsection 5.3.2. The input should also be preceded by a special

token ’CWE-xxx’, representing the type of vulnerability. If the vulnerability was found by a static

analyzer, we use a one-to-one mapping from each static analyzer warning to a CWE ID. VRepair

then uses the Transformer model to create multiple token context diff proposals for a given input.

For each prediction of the neural network, VRepair finds the context to apply the patch and applies

the predicted patch to create a patched function.

As we discuss in Section 5.3.7, the Transformer model learns to produce outputs that are likely

to be correct based on the training data it has processed. Beam search is a well-known method [216]

in which outputs from the model can be ordered and the n most likely outputs can be considered

by the system. Beam search is an important part of inference in VRepair. We introduce in VRepair

a novel kind of beam, which is specific to the code representation introduced in subsection 5.3.2,

defined as follows.

Definition The Neural beam is the set of predictions created by the neural network only, start-

ing with the most likely one and continuing until the maximum number of proposals configured

has been output [216]. Neural beam search works by keeping the n best sequences up to the current

decoder state. The successors of these states are computed and ranked based on their cumulative

probability, and the next n best sequences are passed to the next decoder state. n is often called
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the width or beam size. When increasing the beam size, the benefit of having more proposals is

weighed against the cost of evaluating their correctness (such as compilation, running tests, and

executing a process to confirm the vulnerability is repaired).

Definition The Interpretation beam is the number of programs that can be created from a given

input function given a token context diff change specification. The interpretation beam is specific

to our change representation. For example, Figure 5.2 shows a case where a 3 token context size

has only 1 possible application, while the 2 token context can be interpreted in 3 different ways.

Hence, the interpretation beam is 3 for context size 2, and 1 for context size 3.

Definition The VRepair beam is the combination of the neural beam and the interpretation

beam, it is the cartesian product of all programs that can be created from both the Neural beam and

the Interpretation beam.

Once VRepair outputs a patch, the patched function is meant to be verified by a human, a test

suit, or a static analyzer, depending on the software process. For example, if the vulnerability was

found by a static analyzer, the patched program can be verified again by the same static analyzer

to confirm that the vulnerability has been fixed by VRepair. As this evaluation may consume time

and resources, we evaluate the output of the VRepair system by setting the limit on VRepair beam

which represents the number of programs proposed by VRepair for evaluation.

5.3.7 Neural Network Architecture

VRepair uses the Transformer architecture [220] as sketched in Figure 2.5. The Transformer

for VRepair learns to repair vulnerabilities by first receiving as input the code with a vulnerability

encoded in our data representation (subsection 5.3.2). Multiple copies of multi-head attention

layers learn hidden representations of the input data. These representations are then used by a

second set of multi-head attention layers to produce a table of probabilities for the most likely

token to output. In addition, we use a copy mechanism that trains an alternate neural network to

learn to copy input tokens to the output in order to reduce the vocabulary size required [82, 48].
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The first token to output is based solely on the hidden representations the model has learned to

produce from the input code. As tokens are output they are available as input to the model so it

can adjust the next token probabilities correctly. For example, in Figure 2.5, after the sequence of

tokens ’&& ( d > a *’ has been output, the model predicts that the next token should be ’b’

with a probability of 0.8.

Libraries VRepair is implemented in Python using state-of-the-art tools. We download all

GitHub events using GH Archive [73]. For processing the source code we use GCC and Clang.

Once the source code is processed, OpenNMT-py is used to train the core Transformer model

[117].

Hyperparameters Hyperparameters define the particular model and dataset configuration for

VRepair and our primary hyperparameters are presented in Table 5.1. The context size is a hyper-

parameter specific to VRepair and is discussed in more detail in subsection 5.3.2. We include the

most common 80% of CWE IDs among our 2000 word vocabulary. For both learning rate and the

hidden and embedding size, we do a hyperparameter search for finding the best model among the

values specified in Table 5.1. The learning rate decay is 0.9, meaning that our model decays the

learning rate by 0.9 for every 10,000 training steps, starting from step 50,000.

Beam Width An important parameter during inference is the beam width. Since the majority of

papers on code generation use a value of 50 for neural beam size [48, 216, 5], we also select this

number. Recall that the interpretation beam combines with the neural beam (see subsection 5.3.6),

which may increase the number of proposals. Hence, we also set the VRepair beam width to 50

(50 possible predictions per input). Our ablation study in section 5.6 provides data demonstrating

that a beam width of 50 produces more accurate results than smaller beam widths we tested.

The scripts and data that we use are available at https://github.com/SteveKommrusch/VRepair.

5.3.8 Usage of VRepair

As indicated by Figure 5.1, VRepair is intended to be used for proposing vulnerability fixes

within an environment that provides vulnerability detection. Recall that vulnerability detection
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Table 5.1: Training Hyperparameters in VRepair.

Hyperparameter Value

Context size 3

Batch size 32

Vocabulary size 2000

Layers (N copies of attention) 6

Learning rate [0.005, 0.001, 0.0005, 0.0001, 0.00005]

Hidden and embedding size [128, 256, 512, 1024]

Feed forward size 2048

Dropout [205] 0.1

Label smoothing [210] 0.1

Attention heads 8

Learning rate decay 0.9

is not in the scope of VRepair per se, tools such as Infer can be used to statically analyze code

and indicate a suspicious line containing a vulnerability (see subsection 5.3.2). Once a patch is

generated, the expected use case is to recompile the function with the proposed vulnerability fix,

to pass a functional test suite if such a test suite exists, and then to pass the vulnerability checker

under consideration (such as Infer). As the last step, having the patch reviewed by a human is

likely to be done in a practical setting. The human review would occur after a patch has been

shown to compile and pass the test suite and vulnerability oracle, in order to save human effort. It

is also possible to integrate VRepair in continuous integration, based on the blueprint architecture

of R-HERO [27].

5.4 Experimental Protocol

In this section, we describe our methodology for evaluating our approach by defining 4 research

questions and how we propose to answer them.

5.4.1 Research Questions

1. RQ1: What is the accuracy of only source or only target domain training on the vulnerability

fixing task?
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2. RQ2: What is the accuracy of transfer learning with source and target domain training on

the vulnerability fixing task?

3. RQ3: What is the accuracy of transfer learning compared to denoising pre-training?

4. RQ4: How do different data split strategies impact the accuracy of models trained with

transfer learning and target domain training?

RQ1 will explore the performance of the neural model when only trained with the small dataset

available from the target domain (vulnerability fixing), or only trained with a larger dataset from

the bug fixing source domain; both being called ‘single domain training’. After exploring single

domain training, RQ2 will study the effectiveness of using transfer learning to mitigate the issue

of the small vulnerability dataset size demonstrated in RQ1. For RQ2, we study whether a model

trained on the source domain (bug fixing) and then tuned with the target domain (vulnerability

repair), produces a better result than either source or target domain training alone. Once we have

explored transfer learning, in RQ3, we will investigate the possibility of using an unsupervised

denoising pre-training technique to alleviate the small dataset problem. In RQ4, we would like to

understand how transfer learning’s measurement is affected when we split the evaluation data with

different strategies.

5.4.2 Datasets

We create a bug fixing dataset for the purpose of the experiment (see section 5.4.2). For vul-

nerabilities, we use two existing vulnerability fix datasets from the literature, called Big-Vul [68]

and CVEfixes [32] that both consist of confirmed vulnerabilities with CVE IDs.

Bug Fix Corpus

We create a bug fix corpus by mining the GitHub development platform. We follow the proce-

dures in related works [216, 151] and collect our bug fixing dataset by filtering GitHub commits to

C code projects based on keywords such as ’bug’ or ’vulnerability’ in the commit message. Filter-

ing commits based on commit messages can be imprecise and generate false positives. However,
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this imprecision has minimal effect for our source domain dataset - any code change will likely

help train the model on how to propose code patches.

We download 892 million GitHub events from the GH Archive data [73] which happened

between 2017-01-01 and 2018-12-31. These events have been triggered by a Github issue creation,

an opened pull request, and other development activities. In our case, we focus on push events,

which are triggered when at least one commit is pushed to a repository branch. In total there were

478 million push events between 2017-01-01 and 2018-12-31.

Next, we filter bug fix commits as follows. Per the related work [216, 151], we adopt a

keyword-based heuristic: if the commit message contains keywords (fix OR solve OR repair)

AND (bug OR issue OR problem OR error OR fault OR vulnerability), we consider it a bug fix

commit and add it to our corpus. In total, we have analyzed 729 million (728,916,054) commits

and selected 21 million (20,568,128) commits identified as bug fix commits. This is a dataset size

that goes beyond prior work by Tufano et al. [216], who uses 10 million (10,056,052) bug-fixing

commits.

In our experiment, we focus on C code as the target programming language for automatic

repair. Therefore we further filter the bug fix commits based on the file extension and we remove

commits that did not fix any file that ends with ’.c’, resulting in 910,000 buggy C commits.

For each changed file in each commit, we compare all functions before and after the change to

extract functions that changed; we call these function pairs. To identify these function pair changes,

we use the GNU compiler preprocessor to remove all comments, and we extract functions with the

same function signature in order to compare them. Then, we used Clang [54] to parse and tokenize

the function’s source code. Within a ’.c’ file we ensure that only full functions (not prototypes) are

considered.

In the end, we obtain 1,838,740 function-level changes, reduced to 655,741 after removing du-

plicate functions. The large number of duplicates can be explained by code clones, where the same

function is implemented in multiple GitHub projects. As detailed in Section 5.3.2, our preferred
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context size is 3 tokens; when duplicate functions plus change specifications are removed using

this representation, we have 650,499 unique function plus specification samples.

For all of our experiments, we limit the input length of functions to 1000 tokens and the token

context diff output to 100 tokens in order to limit the memory needs of the model. A 100 token

output limit has been seen to produce quality results for machine learning on code [216]. For all

research questions, we partition this dataset into Btrain (for model training, 534,858 samples) and

Bval (for model validation, 10,000 samples).

Vulnerability Fix Corpus

We use two existing datasets called Big-Vul [68] and CVEfixes [32] for tuning the model

trained on the bug fixing examples. The Big-Vul dataset has been created by crawling CVE

databases and extracting vulnerability related information such as CWE ID and CVE ID. Then,

depending on the project, the authors developed distinct crawlers for each project’s pages to obtain

the git commit link that fixes the vulnerability. In total, Big-Vul contains 3754 different vulnerabil-

ities across 348 projects categorized into 91 different CWE IDs, with a time frame spanning from

2002 to 2019.

The CVEfixes dataset is collected in a way similar to the Big-Vul dataset. This dataset contains

5365 vulnerabilities across 1754 projects categorized into 180 different CWE IDs, with a time

frame spanning from 1999 to 2021. By having two datasets collected in two independent papers,

we can have higher confidence about the generalizability of our conclusions. All the research

questions will be done on both vulnerability fix datasets.

5.4.3 Methodology for training with either source or target domain samples

For RQ1, we would like to understand the performance of a model which is trained with source

domain only or target domain only. For our source domain dataset, we train on Btrain and validate

with Bval, as detailed in section 5.4.2. Next, we randomly divide the vulnerable and fixed function

pairs from Big-Vul into training Big-Vulrandtrain, validation Big-Vulrandval and testing Big-Vulrandtest sets,

with 2226 (70%), 318 (10%) and 636 (20%) examples in each respective set. Similarity, we also
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Table 5.2: Number of top-10 CWE examples from

the Big-Vulrandtest in Big-Vulrandtrain, Big-Vulrandval and

Big-Vulrandtest

CWE ID Examples in train/valid/test

CWE-119 698/108/187

CWE-20 152/25/51

CWE-125 164/15/45

CWE-264 129/16/32

CWE-399 95/19/29

CWE-200 103/19/28

CWE-476 87/12/26

CWE-284 66/10/26

CWE-189 58/8/26

CWE-362 76/2/26

Table 5.3: Number of top-10 CWE examples from

the CVEfixesrandtest in CVEfixesrandtrain, CVEfixesrandval

and CVEfixeslrandtest

CWE ID Examples in train/valid/test

CWE-119 322/37/102

CWE-20 216/26/55

CWE-125 244/34/55

CWE-476 118/23/39

CWE-362 110/9/30

CWE-190 98/17/29

CWE-399 75/8/26

CWE-264 105/18/26

CWE-787 97/15/24

CWE-200 113/12/22

randomly divide the vulnerable and fixed function pairs from CVEfixes into training CVEfixesrandtrain,

validation CVEfixesrandval and testing CVEfixesrandtest sets, with 2383 (70%), 340 (10%) and 681 (20%)

examples in each respective set. Big-Vulrandtest and CVEfixesrandtest are used to evaluate the models

trained with source and target domain training. For all of the data splits in each dataset, we make

sure that all of the examples are mutually exclusive, as recommended by Allamanis [7]. The

number of examples for the top-10 CWE values from Big-Vulrandtest and CVEfixesrandtest are given in

Table 5.2 and Table 5.3.

For the model with only source domain training, we train on Btrain and apply early stopping

with Bval. The model is then evaluated by using a VRepair beam size of 50 on each example in

Big-Vulrandtest and CVEfixesrandtest , and the sequence accuracy is used as the performance metric. The

sequence accuracy is 1 if any prediction sequence among the 50 outputs matches the ground truth

sequence, and it is 0 otherwise. We compute the average test sequence accuracy over all examples

in Big-Vulrandtest and CVEfixesrandtest .

For the model with only target domain training, we train on Big-Vulrandtrain (or CVEfixesrandtrain)

and apply early stopping on Big-Vulrandval (or CVEfixesrandval ). The model is then evaluated by using

VRepair beam size 50 on each example in Big-Vulrandtest (or CVEfixesrandtest ), and the predictions

are used to calculate the sequence accuracy. We hypothesize that the test sequence accuracy with
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source domain training will be lower than target domain training. This is because in source domain

training, the training dataset is from a different domain, i.e., bug fixes. But the result will show if

a model trained on a large number of bug fixes can perform as well as a model trained on a small

number of vulnerability repairs on the target task of vulnerability repair.

5.4.4 Methodology for transfer learning with source and target domain data

The state-of-the-art vulnerability fixing models are usually trained on a relatively small vul-

nerability fixing dataset [49], or generated from synthesized code examples [86]. Based on prior

studies showing the effectiveness of large datasets for machine learning [207], we hypothesize that

it is hard for a deep learning model to generalize well on such a small dataset. For RQ2, we com-

pare the performance between the transfer learning model and the model only trained on the small

vulnerability fix dataset.

We first train the models with source domain training, i.e., we train them on Btrain and apply

early stopping on Bval. The models from source domain training are used in the target domain

training phase. We continue training the models using Big-Vulrandtrain (or CVEfixesrandtrain) and the new

model is selected based on Big-Vulrandval (or CVEfixesrandval ) with early stopping. During the target

domain training phase, per the standard practice of lowering the learning rate when learning in the

target domain [200], we use a learning rate that is one tenth of the learning rate used in the source

domain training phase. Finally, the final model is evaluated with Big-Vulrandtest (or CVEfixesrandtest )

by using VRepair beam size 50 on each example, which we will use to calculate the sequence

accuracy.

5.4.5 Methodology for pre-training with denoising samples

For RQ3, we compare our source domain training with the state of the art pre-training tech-

nique of PLBART [4], which is based on denoising. Specifically, we select full functions from our

bug fix corpus and apply PLBART’s noise function techniques for token masking, token deletion,

and token infilling. This results in artificial ’buggy’ functions whose target repair is the original

function. As per PLBART (and the original BART paper addressing natural language noise func-
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Table 5.4: Number of top-10 CWE examples from

the Big-Vul
year
test in Big-Vul

year
train, Big-Vul

year
val and

Big-Vul
year
test

CWE ID Examples in train/valid/test

CWE-119 835/41/117

CWE-125 71/78/75

CWE-416 48/19/47

CWE-476 64/15/46

CWE-190 48/3/43

CWE-787 14/13/27

CWE-20 165/37/26

CWE-200 103/21/26

CWE-362 68/11/25

CWE-415 9/0/13

Table 5.5: Number of top-10 CWE examples from

the CVEfixes
year
test in CVEfixes

year
train, CVEfixes

year
val

and CVEfixesl
year
test

CWE ID Examples in train/valid/test

CWE-125 172/35/126

CWE-20 185/11/101

CWE-787 37/44/55

CWE-476 107/25/48

CWE-119 396/20/45

CWE-416 48/24/30

CWE-190 92/24/28

CWE-362 117/11/21

CWE-200 123/14/10

CWE-415 12/17/9

tions [133]): token masking replaces tokens with a special token <MASK> in the ’buggy’ function;

token deletion removes tokens; and token infilling replaces multiple consecutive tokens with a sin-

gle <MASK> token. As in PLBART, we sample from a Poisson distribution to determine the length

for the token infilling noise function.

Following this methodology, we generate the pre-training dataset from the bug fix corpus di-

vided into Pretrain (728,739 samples) and Preval (10,000 samples). For the pre-trained model,

similar to subsection 5.4.4, we first train the models on Pretrain and apply early stopping on Preval.

We continue training the models using Big-Vulrandtrain (or CVEfixesrandtrain) and the new model is se-

lected based on Big-Vulrandval (or CVEfixesrandval ) with early stopping. Finally, the final model is

evaluated with Big-Vulrandtest (or CVEfixesrandtest ), and compared against the transfer learning models

trained in subsection 5.4.4.

5.4.6 Methodology for data split strategies

In RQ4, we wish to study how the performance of a vulnerability fixing model varies with

different data split strategies compared to only target domain training. For this, we divide the Big-

Vul and CVEfixes dataset using two strategies: 1) random, as done previously in subsection 5.4.3,

subsection 5.4.4, and subsection 5.4.5; 2) time-based;
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Time-based splitting First, we sort the Big-Vul dataset based on CVE publication dates. Re-

call that Big-Vul contains vulnerabilities collected from 2002 to 2019. We create a testing set

Big-Vul
year
test of 603 data points, containing all buggy and fixed function pairs with a published date

between 2018-01-01 to 2019-12-31. The validation set Big-Vul
year
val (302 examples) contains all

buggy and fixed function pairs with a published date between 2017-06-01 to 2017-12-31, and the

rest are in the training set Big-Vul
year
train (2272 examples).

Similarly, for the CVEfixes dataset, we create a testing set CVEfixes
year
test of 794 data points,

containing all buggy and fixed function pairs with a published date between 2019-06-01 to 2021-

06-09. The validation set CVEfixes
year
val (324 examples) contains all buggy and fixed function

pairs with a published date between 2018-06-01 to 2019-06-01, and the rest are in the training set

CVEfixes
year
train (2286 examples). The dates are chosen so that we have roughly 70% data in the

training set, 10% data in the validation set and 20% data in the test set. This data split strategy

simulates a vulnerability fixing system that is trained on past vulnerability fixes, and that is used to

repair vulnerabilities in the future. The number of examples of the top-10 CWE from Big-Vul
year
test

and CVEfixes
year
test are given in Table 5.4 and Table 5.5.

For all strategies, we train two different models with source+target domain training (transfer

learning) and only target domain training, following the same protocol in subsection 5.4.3, subsec-

tion 5.4.4, and subsection 5.4.5, but with different data splits. We report the test sequence accuracy

on all data splits.

5.5 Experimental Results

We now present the results of our large scale empirical evaluation of VRepair, per the experi-

mental protocol presented in section 5.4.

5.5.1 Results for training with either source or target domain samples

We study the test sequence accuracy of models trained only with source or only with target do-

main training. Given our datasets, source domain training means training the model only with bug
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Table 5.6: RQ1: Test sequence accuracy on Big-Vulrandtest with source/target domain training, we also present

the accuracy on the top-10 most common CWE IDs in Big-Vulrandtest . The absolute numbers represent # of C

functions in test dataset.

CWE ID Source domain training Target domain training

CWE-119 11.23% (21/187) 8.56% (16/187)

CWE-20 17.64% (9/51) 11.76% (6/51)

CWE-125 20% (9/45) 8.89% (4/45)

CWE-264 9.38% (3/32) 3.13% (1/32)

CWE-399 20.69% (6/29) 6.9% (2/29)

CWE-200 28.57% (8/28) 3.57% (1/28)

CWE-476 26.92% (7/26) 3.85% (1/26)

CWE-284 0% (0/26) 23.08% (6/26)

CWE-189 15.38% (4/26) 3.85% (1/26)

CWE-362 19.23% (5/26) 0% (0/26)

All 14.77% (94/636) 6.76% (43/636)

fix examples from Btrain, while target domain training uses only Big-Vulrandtrain (or CVEfixesrandtrain).

Both models are evaluated on the vulnerability fixing examples in Big-Vulrandtest (or CVEfixesrandtest ).

Table 5.6 gives the results on Big-Vulrandtest . In the first column we list the top-10 most common

CWE IDs in Big-Vulrandtest . The second column shows the performance of the model only trained

with source domain training. The third column shows the performance of the model only trained

with target domain training. The last row of the table presents the test sequence accuracy on the

whole Big-Vulrandtest . The result for CVEfixesrandtest is in Table 5.7.

Even when the model is trained on the different domain of bug fixing, the model still achieves

a 14.77% accuracy on Big-Vulrandtest and 15.1% accuracy on CVEfixesrandtest . This is better than the

models that are trained with only target domain training, i.e., training on a small vulnerability fix

dataset, that has a performance of 6.76% on Big-Vulrandtest and 11.29% on CVEfixesrandtest . The result

shows that training on a small dataset indeed is ineffective and even training on a bug fix corpus,

which is a different domain but has a bigger dataset size, will increase the performance.

If we compare the results across the top-10 most common CWE IDs in both Big-Vulrandtest and

CVEfixesrandtest , we see that the source domain trained models outperform the target domain trained

models over almost all CWE categories. In Big-Vulrandtest , the only exception is for CWE-284 (Im-
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Table 5.7: RQ1: Test sequence accuracy on CVEfixesrandtest with source/target domain training.

CWE ID Source domain training Target domain training

CWE-119 8.82% (9/102) 9.8% (10/102)

CWE-20 20% (11/55) 18.18% (10/55)

CWE-125 21.82% (12/55) 5.45% (3/55)

CWE-476 12.82% (5/39) 10.26% (4/39)

CWE-362 3.33% (1/30) 3.33% (1/30)

CWE-190 24.14% (7/29) 27.59% (8/29)

CWE-399 15.38% (4/26) 3.85% (1/26)

CWE-264 0% (0/26) 3.85% (1/26)

CWE-787 12.5% (3/24) 0% (0/24)

CWE-200 31.82% (7/22) 13.64% (3/22)

All 15.1% (103/682) 11.29% (77/682)

proper Access Control) where the source domain training has 0% accuracy and target domain

training has 23.08% accuracy. When inspecting the Big-Vul dataset, we found a vulnerability with

CVE ID CVE-2016-3839 and category CWE-284, which changed the vulnerable function across

33 different files. All the vulnerable functions were changed in a similar way, giving enough data

for the neural network to learn how to fix this kind of vulnerability. Therefore, the target domain

trained model obtains a high test accuracy for CWE-284 on Big-Vulrandtest .

In Listing 5.1 we show an example of a vulnerability fix that was correctly predicted by the

model trained on the target domain only. The vulnerability is CVE-2013-3231 with type CWE-200

(Exposure of Sensitive Information to an Unauthorized Actor) from the Linux project. CVE-2013-

3231 can leak sensitive information by a crafted system call7. The vulnerability is fixed by setting

the msg_namelen to 0, which is correctly predicted by the VRepair model.

7https://nvd.nist.gov/vuln/detail/CVE-2013-3231
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Table 5.8: RQ2: Test sequence accuracy on Big-Vulrandtest with transfer learning. The ’Improvement over

source domain training’ and ’Improvement over target domain training’ columns show the percentage and

numerical improvement compared to the result in Table 5.6. Transfer learning achieved better overall per-

formance and on almost all CWE IDs.

CWE ID Transfer learning Improvement over source domain training Improvement over target domain training

CWE-119 18.72% (35/187) +7.49%/+14 +10.16%/+19

CWE-20 19.61% (10/51) +1.97%/+1 +7.85%/+4

CWE-125 17.78% (8/45) -2.22%/-1 +8.89%/+4

CWE-264 6.25% (2/32) +3.13%/-1 +3.12%/+1

CWE-399 31.03% (9/29) +10.34%/+3 +24.13%/+7

CWE-200 39.29% (11/28) +10.72%/+3 +25.72%/+10

CWE-476 26.92% (7/26) +0%/+0 +23.07%/+6

CWE-284 0% (0/26) +0%/+0 -23.08%/-6

CWE-189 15.38% (4/26) +0%/+0 +11.53%/+3

CWE-362 19.23% (5/26) +0%/+0 +19.23%/+5

All 17.77% (113/636) +3%/+19 +11.16%/+71

int target; /* Read at least this many bytes */

long timeo;

+ msg->msg_namelen = 0;

+

lock_sock(sk);

copied = -ENOTCONN;

if (unlikely(sk->sk_type == SOCK_STREAM && sk->sk_state == TCP_LISTEN))

Listing 5.1: CVE-2013-3231 is correctly predicted by the model trained with target domain only.

Answer to RQ1: Training a VRepair Transformer on a small vulnerability fix dataset achieves

accuracies of 6.76% on Big-Vul and 11.29% on CVEfixes. Surprisingly, by training on a bug

fix only, the same neural network achieves better accuracies of 14.77% on Big-Vul and 15.1%

on CVEfixes, which shows the ineffectiveness of just training on a small vulnerability dataset.

5.5.2 Results for transfer learning with source and target domain samples

In RQ2, we study the impact of transfer learning, i.e., we measure the performance of a model

with target domain training applied on the best model trained with source domain training. The

results are given in Table 5.8 and Table 5.9. The first column lists the top-10 most common CWE

IDs. The second column presents the performance of the model trained with transfer learning, i.e.,
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Table 5.9: RQ2: Test sequence accuracy on CVEfixesrandtest with transfer learning. The ’Improvement over

source domain training’ and ’Improvement over target domain training’ columns show the percentage and

numerical improvement compared to the result in Table 5.7.

CWE ID Transfer learning Improvement over source domain training Improvement over target domain training

CWE-119 18.63% (19/102) +9.81%/+10 +8.8%/+9

CWE-20 23.64% (13/55) +3.64%/+2 +5.46%/+3

CWE-125 21.82% (12/55) +0%/+0 +16.37%/+9

CWE-476 15.38% (6/39) +2.56%/+1 +5.12%/+2

CWE-362 3.33% (1/30) +0%/+0 +0%/+0

CWE-190 24.14% (7/29) +0%/+0 -3.45%/-1

CWE-399 19.23% (5/26) +3.85%/+1 +15.38%/+4

CWE-264 0% (0/26) +0%/+0 -3.85%/-1

CWE-787 16.67% (4/24) +4.17%/+1 +16.67%/+4

CWE-200 40.91% (9/22) +9.09%/+2 +27.27%/+6

All 19.94% (136/682) +4.84%/+33 +8.65%/+59

taking the source domain trained model from Table 5.6 (or Table 5.7) and tuning it with target

domain training. The third and fourth column gives the performance increase compared to the

model with only source or target domain training. The last row of the table presents the test

sequence accuracy on the whole Big-Vulrandtest (or CVEfixesrandtest ).

The main takeaway is that the transfer learning model achieves the highest test sequence accu-

racy on both Big-Vulrandtest and CVEfixesrandtest with an accuracy of 17.77% and 19.94% respectively.

Notably, transfer learning is superior to just target domain training on the small vulnerability fix

dataset. In addition, transfer learning improves the accuracy over all CWE categories when com-

pared to only source domain training. This shows that the knowledge learned from the bug fix task

can indeed be kept and fine-tuned to repair software vulnerabilities and that the previously learned

knowledge from source domain training is useful. The result confirms that the bug fixing task and

the vulnerability fixing task have similarities and that the bug fixing task can be used to train a

model from which knowledge can be transferred.

Now, we compare the results across the top-10 most common CWE IDs in Big-Vulrandtest and

CVEfixesrandtest . For all rows except for CWE-125 and CWE-264 in Table 5.8, along with CWE-190

and CWE-264 in Table 5.9, the CWE ID performance is better with the transfer learning model. For

CWE-284 (Improper access control), the transfer learning model did not fix a single vulnerability

in this category. This is explained by the fact that the transfer learning model prefers generalization
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(fixing more CWE types) over specialization. The same phenomenon has been observed in a

compiler error fix system, where pre-training lowers the performance of some specific compiler

error types [242]. Overall, the best VRepair transfer learning model is able to fix vulnerability

types that are both common and rare.

Finally, we discuss a vulnerability where the VRepair transfer learning model is able to predict

the exact fix, but not the target domain trained model. Vulnerability CVE-2019-19079, labeled with

type CWE-401 (Missing Release of Memory after Effective Lifetime) is shown in Listing 5.2. The

vulnerability can cause a denial of service by a memory leak8. The vulnerability patch frees the

kbuf buffer after usage. VRepair with transfer learning successfully predicts the patch, but not the

target domain trained model, showing that the source domain training phase helps VRepair to fix

a more sophisticated vulnerability.

Listing 5.2 is also a notable case where VRepair successfully predicts a multi line patch. The

data representation we described in subsection 5.3.2 allows VRepair to have a concise output repre-

senting this multi line patch. The token context diff makes it easier for VRepair to handle multi-line

patches, since the output is shorter than the full functions used in related work [216]. Additionally,

we note that kfree is in our target vocabulary, but kbuf is not; so the use of kbuf in the patch was

done using the copy mechanism.

8https://nvd.nist.gov/vuln/detail/CVE-2019-19079
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if (!kbuf)

return -ENOMEM;

- if (!copy_from_iter_full(kbuf, len, from))

+ if (!copy_from_iter_full(kbuf, len, from)) {

+ kfree(kbuf);

return -EFAULT;

+ }

ret = qrtr_endpoint_post(&tun->ep, kbuf, len);

+ kfree(kbuf);

return ret < 0 ? ret : len;

}

Listing 5.2: CVE-2019-19079 is correctly predicted by VRepair. It is an example of a multi line

vulnerability fix, and the target domain trained model failed to predict the fix.

Answer to RQ2: By first learning from a large and generic bug fix dataset, and then tuning

the model on the smaller vulnerability fix dataset, VRepair achieves better accuracies than

just training on the small vulnerability fix dataset (17.77% versus 6.76% on Big-Vulrandtest ,

and 19.94% versus 11.29% on CVEfixesrandtest ). Our experiment also shows that the VRepair

transfer learning model is able to fix more rare vulnerability types.

5.5.3 Results for pre-training with denoising samples

RQ3 studies the effect of replacing the source domain training phase of transfer learning with

denoising as pre-training in VRepair. As explained in subsection 5.4.5, we consider the state-

of-the-art pre-training technique from PLBart [4]. In Table 5.10 and Table 5.11, we see that the

transfer learning model dominates both test datasets, with 17.77% versus 10.06% on Big-Vulrandtest

and 19.94% versus 12.02% on CVEfixesrandtest . This means that first training on the bug fixing task

is better than first training on a denoising task. But when comparing the same result against only

training on the vulnerability fix dataset (target domain training) in Table 5.6 and Table 5.7, we

can see that denoising pre-training does improve the result (6.76% to 10.06% on Big-Vulrandtest and
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Table 5.10: RQ3: Comparison between transfer learning and pre-training + target domain training on

Big-Vulrandtest . The result shows the merit of first training on a related task, instead of generic pre-training.

CWE ID Transfer learning Pre-training + target domain training

CWE-119 18.72% (35/187) 12.83% (24/187)

CWE-20 19.61% (10/51) 21.57% (11/51)

CWE-125 17.78% (8/45) 11.11% (5/45)

CWE-264 6.25% (2/32)) 0% (0/32)

CWE-399 31.03% (9/29) 13.79% (4/29)

CWE-200 39.29% (11/28) 14.29% (4/28)

CWE-476 26.92% (7/26) 15.38% (4/26)

CWE-284 0% (0/26) 0% (0/26)

CWE-189 15.38% (4/26) 7.69% (2/26)

CWE-362 19.23% (5/26) 3.85% (1/26)

All 17.77% (113/636) 10.06% (64/636)

Table 5.11: RQ3: Comparison between transfer learning and pre-training + target domain training on

CVEfixesrandtest .

CWE ID Transfer learning Pre-training + target domain training

CWE-119 18.63% (19/102) 6.86% (7/102)

CWE-20 23.64% (13/55) 14.55% (8/55)

CWE-125 21.82% (12/55) 7.27% (4/55)

CWE-476 15.38% (6/39) 12.82% (5/39)

CWE-362 3.33% (1/30) 3.33% (1/30)

CWE-190 24.14% (7/29) 20.69% (6/29)

CWE-399 19.23% (5/26) 11.54% (3/26)

CWE-264 0% (0/26) 0% (0/26)

CWE-787 16.67% (4/24) 16.67% (4/24)

CWE-200 40.91% (9/22) 31.82% (7/22)

All 19.94% (136/682) 12.02% (82/682)

11.29% to 12.02% on CVEfixesrandtest ). This shows that denoising pre-training is an alternative if

collecting a large labeled source domain dataset is a hard task.

From a qualitative perspective, denoising pre-training has the advantage of being unsupervised

and therefore does not require collecting and curating a source domain dataset. Thanks to this

property, CodeBERT [70], CuBERT [109] and PLBART [4] all have millions of examples in the

pre-training dataset. On the other hand, He, Girshick, and Dollár found that the performance of a

pre-trained model scales poorly with the pre-training dataset size [89]. This result shows that even

when the size of the source domain dataset (i.e., Btrain and Bval) is slightly smaller than the size of
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Table 5.12: Test sequence accuracy on testing data

Big-Vulrandtest

CWE ID Transfer learning Target domain training

CWE-119 18.72% (35/187) 8.56% (16/187)

CWE-20 29.62% (20/51) 11.76% (6/51)

CWE-125 17.78% (8/45) 8.89% (4/45)

CWE-264 6.25% (2/32) 3.13% (1/32)

CWE-399 31.03% (9/29) 6.9% (2/29)

CWE-200 39.29% (11/28) 3.57% (1/28)

CWE-476 26.92% (7/26) 3.85% (1/26)

CWE-284 0% (0/26) 23.08% (6/26)

CWE-189 15.38% (4/26) 3.85% (1/26)

CWE-362 19.23% (5/26) 0% (0/26)

All 17.77% (113/636) 6.76% (43/636)

Table 5.13: Test sequence accuracy on testing data

Big-Vul
year
test

CWE ID Transfer learning Target domain training

CWE-119 10.26% (23/117) 0% (0/117)

CWE-125 22.67% (17/75) 9.33% (7/75)

CWE-416 31.91% (15/47) 0% (0/47)

CWE-476 26.09% (12/46) 2.17% (1/46)

CWE-190 16.28% (7/43) 0% (0/43)

CWE-787 3.7% (1/27) 0% (0/27)

CWE-20 19.23% (5/26) 0% (0/26)

CWE-200 19.23% (5/26) 0% (0/26)

CWE-362 12% (3/25) 0% (0/25)

CWE-415 23.08% (3/13) 0% (0/13)

All 19.4% (117/603) 1.99% (12/603)

Table 5.14: Test sequence accuracy on testing data

CVEfixesrandtest

CWE ID Transfer learning Target domain training

CWE-119 18.63% (19/102) 9.8% (10/102)

CWE-20 23.64% (13/55) 18.18% (10/55)

CWE-125 21.82% (12/55) 5.45% (3/55)

CWE-476 15.38% (6/39) 10.26% (4/39)

CWE-362 3.33% (1/30) 3.33% (1/30)

CWE-190 24.14% (7/29) 27.59% (8/29)

CWE-399 19.23% (5/26) 3.85% (1/26)

CWE-264 0% (0/26) 3.85% (1/26)

CWE-787 16.67% (4/24) 0% (0/24)

CWE-200 40.91% (9/22) 13.64% (3/22)

All 19.94% (136/682) 11.29% (77/682)

Table 5.15: Test sequence accuracy on testing data

CVEfixes
year
test

CWE ID Transfer learning Target domain training

CWE-125 12.7% (16/126) 0% (0/126)

CWE-20 7.92% (8/101) 0% (0/101)

CWE-787 3.64% (2/55) 0% (0/55)

CWE-476 14.58% (7/48) 0% (0/48)

CWE-119 13.33% (6/45) 0% (0/45)

CWE-416 20% (6/30) 0% (0/30)

CWE-190 42.86% (12/28) 0% (0/28)

CWE-362 0% (0/21) 0% (0/21)

CWE-200 0% (0/10) 0% (0/10)

CWE-415 0% (0/9) 0% (0/9)

All 14.71% (117/795) 0% (0/795)

the pre-training dataset (i.e., Pretrain and Preval), transfer learning clearly outperforms denoising

pre-training.

Answer to RQ3: In this experiment, transfer learning outperforms denoising pre-training and

fine-tuning with datasets of similar size (17.77% versus 10.06% on Big-Vulrandtest , and 19.94%

versus 12.02% on CVEfixesrandtest ). This result shows that the effort of collecting and curating

a source domain dataset, arguably a tedious and consuming task, pays off with respect to

performance. Overall, the specific source domain task of bug fixing is better than the generic

task of denoising.
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5.5.4 Results for data split strategies

In RQ4, we explore different ways of creating test datasets, each of them capturing an important

facet of transfer learning. Table 5.12, Table 5.13, Table 5.14 and Table 5.15 show the test sequence

accuracies for all considered data splitting strategies. For each table, the first column lists the

top-10 most common CWE IDs in each data split of the respective dataset. The second column

shows the performance of the transfer learning model, which is a model trained on the large bug

fix corpus, and then tuned with the vulnerability fix examples. The third column presents the

performance of the model trained with the small dataset only, i.e., only target domain training on

each training split of different data splits. The last row of each table presents the test sequence

accuracy on the whole test set on each data split.

From all tables, we can clearly see a large difference between the performance of transfer

learning and target domain learning confirming the results of RQ2. The models that are only

trained with the small vulnerability fix dataset (i.e., target domain training), have a performance of

6.76% on Big-Vulrandtest , 1.99% on Big-Vul
year
test , 11.29% on CVEfixesrandtest and 0% on CVEfixes

year
test .

They are all worse than the models trained with transfer learning whose performance are 17.77%

on Big-Vulrandtest , 19.4% on Big-Vul
year
test , 19.94% on CVEfixesrandtest and 14.71% on CVEfixes

year
test .

For both data split strategies (random and time-based) the transfer learning model outperforms the

target domain learning model showing that the result is independent of the data split. In other

words, this is an additional piece of evidence about the superiority of transfer learning.

Interestingly, the performance of models trained with target domain training only varies a lot

between different data split strategies. It varies from 0% in CVEfixes
year
test on the CVEfixes dataset to

11.29% in CVEfixesrandtest . In other words, the performance of a vulnerability fixing system trained

on a small dataset is unstable; it is highly dependent on how the data is divided into training,

validation, and testing data. This has been observed in prior research as well [134]: the knowledge

learned from a small dataset is often unreliable. On the other hand, transfer learning models

have stable performance, staying in a high range from 14.71% on CVEfixes
year
test to 19.94% on

CVEfixesrandtest .
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When comparing the test sequence accuracy for each vulnerability type, i.e., different CWE

IDs, the transfer learning models also surpassed models trained only on the target domain. The

only exceptions are CWE-284 in Big-Vulrandtest , CWE-190 and CWE-264 in CVEfixesrandtest . It may

be that the nature of the fixes for the CWEs varies over time such that transfer learning was more

beneficial for the Big-Vul
year
test and CVEfixes

year
test splits. When comparing the overall performance on

Big-Vulrandtest and CVEfixesrandtest , target domain training versus transfer learning, the transfer learning

model is still to be preferred.

We argue that splitting the vulnerability fix dataset based on time is the most appropriate split

for evaluating a vulnerability repair system. By splitting the dataset based on time and having the

newest vulnerabilities in the test set, we simulate a scenario where VRepair is trained on past vul-

nerability fixes and evaluated on future vulnerabilities. To this extent, we suggest that Big-Vul
year
test

and CVEfixes
year
test are the most representative approximations of the performance of VRepair in

practice.

Answer to RQ4: For the two considered data splitting strategies (random and time-based)

transfer learning achieves a more stable accuracies (14.71% to 19.94% for transfer learning,

and 0% to 11.29% for models only trained on the small vulnerability fix dataset). This vali-

dates the core intuition of VRepair: transfer learning overcomes the scarcity of vulnerability

data for deep learning and yields reliable effectiveness.

5.6 Ablation Study

During the development of VRepair, we explored alternative architectures and data formats.

To validate our explorations, we perform a systematic ablation study. Table 5.16 highlights 8

comparisons that are of particular interest. The description column explains the way the model

was varied which produced the results. All the models in the ablation study are evaluated on

the Big-Vul dataset. ID 0 is our golden model of VRepair. We include it in the table for easier

comparison against other architectures and dataset formats that we have tried. ID 1 summarizes the

benefit of using beam search from the neural network model for our problem. In this comparison,
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the pass rate on our target dataset Big-Vulrandtest increased from 5.66% with a single model output to

17.77% with a beam size of 50. ID 2 indicates the benefit of the Transformer architecture for our

problem. Here we see that the Transformer model outperforms the bidirectional RNN model.

ID 3 highlights the importance of fault localization for model performance. When a model was

trained and tested on raw vulnerable functions without any identification of the vulnerable line(s),

we saw rather poor performance. When all vulnerable lines in the source file are identified, the

model was much more likely to predict the correct patch to the function. Also, by localizing where

the patch should be applied, there are fewer possible interpretations for the context matching to

align with and this improves the viability of smaller context sizes. Given that we rely on fault lo-

calization for VRepair, labeling all possible vulnerable lines would be ideal and results in a 22.64%

test sequence accuracy. However, most static analysis tools will not provide this information.

If we limit our model to only predict changes for a contiguous block of lines (i.e, one or more

lines after the erroneous line is identified), then the test sequence accuracy is 23.96%. We note

that single block repairs (which include single-line repairs) form 57.84% of our dataset, so even

with 23.96% success, the single block model solves 23.96%× 57.84% = 13.86% of the test data,

which is less than the 17.77% our golden model solves. Ultimately, our model identifies only the

first vulnerable line for input, but repairs may be done to lines after the identified line also. We

consider it a reasonable assumption that a fault localization tool, e.g., static analyzer or human,

would tend to identify the first faulty line. In other words, we make no assumption if the first

buggy vulnerable line is the only vulnerable line, meaning that VRepair still can fix multi line

vulnerabilities, as we have seen in Listing 5.2.

IDs 4 to 7 show our ablation of the key hyperparameters in our golden model. ID 8 shows

why our vocabulary size is set to a rather low value of 2000, which is done thanks to using the

copy mechanism. We clearly see that by using the copy mechanism, the model can handle the

out-of-vocabulary problem well with a low vocabulary size.
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Table 5.16: A sample of ablation results over 8 hyperparameters.

ID Description Results

0 VRepair 17.77%

1 Beam width 1 5.66%

Beam width 10 13.99%

Beam width 50 (VRepair) 17.77%

2 RNN seq2seq 15.41%

Transformer seq2seq (VRepair) 17.77%

3 No vulnerable line identifier 10.52%

All vulnerable lines ID’d 22.64%

Single block ID’d 23.96%

First vulnerable line ID’d (VRepair) 17.77%

4 Learn rate 0.0001 (VRepair) 17.77%

Learn rate 0.0005 0%

Learn rate 0.00005 16.67%

5 Hidden size 1024 (VRepair) 17.77%

Hidden size 512 16.19%

6 Layers 6 (VRepair) 17.77%

Layers 4 17.45%

7 Dropout 0.1 (VRepair) 17.77%

Dropout 0.0 15.25%

8 Vocabulary size 2000 (VRepair) 17.77%

Vocabulary size 1000 16.82%
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5.7 Related Work

5.7.1 Vulnerability Fixing with Learning

We include related work that fixes vulnerabilities with some kind of learning, meaning that

the system should learn fix patterns from a dataset, instead of generating repairs from a set of

pre-defined repair templates.

Vurle is a template based approach to repair vulnerability by learning from previous examples

[152]. They first extract the edit from the AST diff between the buggy and fixed source code. All

edits are then categorized into different edit groups to generate repair templates. To generate a

patch, Vurle identifies the best matched edit group and applies the repair template. Vurle is an

early work that does not use any deep learning techniques and is only trained and evaluated on 279

vulnerabilities. In contrast, VRepair is trained and evaluated on 3754 vulnerabilities and is based

on deep learning techniques.

Harer et al. [86] proposed using generative adversarial networks (GAN), to repair software vul-

nerabilities. They employed a traditional neural machine translation (NMT) model as the generator

to generate the examples to confuse the discriminator. The discriminator task is to distinguish the

NMT generated fixes from the real fixes. The trained GAN model is evaluated on the SATE IV

dataset [170] consisting of synthetic vulnerabilities. Although Harer et al. trained and evaluated

their work on a dataset of 117,738 functions, the main limitation is that the dataset is fully syn-

thetic. In contrast, our results have better external validity, because they are only based on real

world code data.

SeqTrans is the closest related work [49]. SeqTrans is a Transformer based seq2seq neural net-

work with attention and copy mechanisms that aims to fix Java vulnerabilities. Similar to VRepair,

they also first train on a bug fix corpus, and then fine-tune on a vulnerability fix dataset. Their input

representation is the vulnerable statement, and the statements that defined the variables used in the

vulnerable statement. To reduce the vocabulary, the variable names in the buggy and fixed methods

are renamed and they use BPE to further tokenize the tokens. VRepair is different from SeqTrans

in that we target fixing C vulnerabilities instead of Java vulnerabilities. Importantly, we utilize the
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copy mechanism to deal with tokens outside the training vocabulary and not BPE. Our evaluation

is done based on two independent vulnerability fix datasets to increase the validity. VRepair’s code

representation is also different, and allows us to represent multi-line fixes in a compact way. We

have shown in Listing 5.2 that we are able to fix multi-line vulnerabilities, while SeqTrans focused

on single statement vulnerabilities.

5.7.2 Vulnerability Fixing without Learning

We include related work that fixes vulnerabilities without learning. Usually, these works do so

by having a pool of pre-defined repair templates or using different program analysis techniques to

detect and repair the vulnerability.

Senx is an automatic program repair method that generates vulnerability patches using safety

properties [100]. A safety property is an expression that can be mapped to variables in the program,

and it corresponds to a vulnerability type. It uses the safety property to identify and localize the

vulnerability and then Senx generates the patch. In the implementation, three safety properties are

implemented: buffer overflow, bad cast, and integer overflow. For buffer overflow and bad cast,

Senx generates a patch where the error handling code is called. But for integer overflow, Senx will

generate a patch where the vulnerability is actually fixed.

Mayhem is a cyber reasoning system that won the DARPA Cyber Grand Challenge in 2016

[17]. It is able to generate test cases that expose a vulnerability and to generate the corresponding

binary patch. The patches are based on runtime property checking, i.e., assertions that are likely

to be true for a correctly behaving program and false for a vulnerable program. To avoid inserting

many unnecessary checks, Mayhem uses formal methods to decide which runtime checks to add.

Fuzzbuster is also a cyber reasoning system that has participated in the DARPA Cyber Grand

Challenge [166]. It can find security flaws using symbolic execution and fuzz testing, along with

generating binary patches to prevent vulnerability. The patches typically shield the function from

malicious input, such as a simple filter rule that blocks certain inputs.
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ExtractFix is an automated program repair tool that can fix vulnerabilities that can cause a

crash [72]. It works by first capturing constraints on inputs that must be satisfied, the constraints

capturing the properties for all possible inputs. Then, they find the candidate fix locations by using

the crash location as a starting point, and use control/data dependency analysis to find candidate fix

locations. The constraints, together with the candidate fix locations, are used to generate a patch

such that the constraints cannot be violated at the crash location in the patched program.

MemFix is a static analysis based repair tool for fixing memory deallocation errors in C pro-

grams [132], e.g., memory leak, double free, and use-after-free errors. It does so by first generating

candidate patches for each allocated object using a static analyzer. The correct patches are the can-

didate patches that correctly deallocate all object states. It works by reducing the problem into an

exact cover problem and using an SAT solver to find the solution.

LeakFix is an automatic program repair tool for fixing memory leaks in C programs [71]. It

first builds the control flow graph of the program and uses intra-procedural analysis to detect and

fix memory leaks. The generated fix is checked against a set of procedures that ensures the patch

does not interrupt the normal execution of the program.

ClearView is an early work that can protect deployed software by automatically patching vul-

nerabilities [176]. To do so, ClearView first observes the behavior of software during normal

execution and learns invariants that are always satisfied. It uses the learned invariant to detect and

repair failures. The patch can change register values and memory locations, or change the control

flow. It has been able to resist 10 attacks from an external Red Team.

IntRepair is a repair tool that can detect, repair, and validate patches of integer overflows [164].

It uses symbolic execution to detect integer overflows by comparing the execution graphs with

three preconditions. Once an integer overflow is detected, a repair pattern is selected and applied.

The resulting patched program is executed again with symbolic execution to check if the integer

overflow is repaired.

SoupInt is a system for diagnosing and patching integer overflow exploits [228]. Given an

attack instance, SoupInt will first determine if the attack instance is an integer overflow exploit
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using dynamic data flow analysis. Then, a patch can be generated with different policies. It can

either change the control flow or perform a controlled exit.

VRepair is different than all these vulnerability fix systems since it is a learning based system.

The major difference is that VRepair is not targeting a specific vulnerability, rather it is able to fix

multiple types of vulnerabilities, as seen in Table 5.8 and Table 5.9. VRepair is also designed to be

able to learn arbitrary vulnerability fixes, rather than having to manually design a repair strategy

for each type of vulnerability.

5.7.3 Vulnerability Datasets

Big-Vul is a C/C++ code vulnerability dataset collected from open sourced GitHub projects

[68]. It contains 3754 vulnerabilities with 91 different vulnerability types extracted from 348

GitHub projects. Each vulnerability has a list of attributes, including the CVE ID, CWE ID,

commit ID, etc. This dataset can be used for vulnerability detection, vulnerability fixing, and

analyzing vulnerabilities.

CVEfixes [32] is a vulnerability fix dataset based on CVE records from National Vulnerability

Database (NVD) . The vulnerability fixes are automatically gathered from the associated open-

source repositories. It contains CVEs up to 9 June 2021, with 5365 CVE records in 1754 projects.

Reis & Abreu collected a dataset of security patches by mining the entire CVE details database

[187]. This dataset contains 5942 security patches gathered from 1339 projects with 146 different

vulnerability types in 20 languages. They also collected 110k non-security related commits which

are useful in training a system for identifying security relevant commits.

A vulnerability detection system, VulDeePecker [138], created the Code Gadget Database. The

dataset contains 61,638 C/C++ code gadgets, in which 17,725 of them are labeled as vulnerable and

the remaining 43,913 code gadgets are labeled as not vulnerable. The Code Gadget Database only

focuses on two types of vulnerability categories: buffer error (CWE-119) and resource manage-

ment error (CWE-399). By contrast, the Big-Vul that is used in this chapter contains vulnerabilities

with 91 different CWE IDs.
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Ponta et al. created a manually curated dataset of Java vulnerability fixes [177] which has been

used to train SeqTrans, a vulnerability fixing system [49] presented above. The dataset has been

collected through a vulnerability assessment tool called "project KB", which is open sourced. In

total, Ponta’s dataset contains 624 vulnerabilities collected from 205 open sourced Java projects.

SATE IV is a vulnerability fix dataset originally used to evaluate static analysis tools on the task

of finding security relevant defects [170]. SATE IV consists of 117,738 synthetic C/C++ functions

with vulnerabilities spanning across 116 CWE IDs, where 41,171 functions contain a vulnerability

and 76,567 do not.

VulinOSS is a vulnerability dataset gathered from open source projects [76]. The dataset is

created from the vulnerability reports of the National Vulnerability Database. They manually as-

sessed the dataset to remove any projects that do not have a publicly available repository. In total,

the dataset contains 17,738 vulnerabilities from 153 projects across 219 programming languages.

Cao et al. collected a C/C++ vulnerability dataset from GitHub and the National Vulnerability

Database, consisting of 2149 vulnerabilities [42]. They used the dataset to train a bi-directional

graph neural network for a vulnerability detection system.

5.7.4 Machine Learning on Code

Here we present related works that use machine learning on source code. In general, we refer

the reader to the survey by Allamanis et al. for a comprehensive overview on the field [9].

One of the first papers that used seq2seq learning on source code is DeepFix [84], which is

about fixing compiler errors. They encode the erroneous program by replacing variable names

with a pre-defined pool of identifiers to reduce the vocabulary. The program is then tokenized, and

a line number token is added for each line, so that the output can predict a fix for a single code line.

C programs written by students are encoded and used to train DeepFix, and it was able to fix 27%

of all compiler errors completely and 19% of them partially.

Tufano et al. investigated the possibility of using seq2seq learning to learn bug fixing patches in

the wild [216]. Similar to our approach, they collected a bug fix corpus by filtering commits from
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GitHub based on the commit message. The input is the buggy function code, where identifiers are

replaced with a general name, such as STRING_X, INT_X, and FLOAT_X. Then, they trained a

seq2seq model where the output is the fixed function code. They found that seq2seq learning is a

viable approach to learn how to fix code, but found that the model’s performance decreased with

the output length.

SequenceR learned to fix single line Java bugs using seq2seq learning [48]. The input to Se-

quenceR is the buggy class, where unnecessary context is removed, such as the function body of

non-buggy functions. The input also encodes the fault localization information by surrounding the

suspicious line with <START_BUG> and <END_BUG>. The output is the code line to replace

the suspicious line. They used the copy mechanism to deal with the vocabulary problem, instead

of renaming identifiers. SequenceR was evaluated on Defects4J [107] and was able to fix 14 out

of 75 bugs.

CoCoNut is an approach that combines multiple seq2seq models to repair bugs in Java pro-

grams [150]. They used two encoders to encode the buggy program; one encoder generates a

representation for the buggy line, and another encoder generates a representation for the context.

These two representations are then merged to predict the bug fix. They trained multiple different

models and used ensemble learning to combine the predictions from all models.

DLFix is an automated program repair tool for fixing Java bugs [136]. It is different from other

approaches in that it uses tree-based RNN and has two layers. The first layer is a tree-based RNN

that encodes the AST that surrounds the buggy source code, which is passed to the second layer.

The second layer takes the context vector and learns how to transform the buggy sub-tree. It will

generate multiple patches for a single bug, and it deploys a character level CNN to rank all the

generated patches.

Code2Seq [11] uses AST paths to represent a code snippet for the task of code summarization.

An AST path is a path between two leaf nodes in the AST. They sample multiple AST paths and

combine them using a neural network to generate sequences such as function name, code caption,
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and code documentation. They found that by using AST paths, Code2Seq can achieve better

performance than seq2seq neural network and other types of neural networks.

CODIT is a tree-based neural network to predict code changes [44]. The neural network takes

the AST as input, and generates the prediction in two steps. The first step is a tree-to-tree model that

predicts the structural changes on the AST, and the second step is the generation of code fragments.

They evaluate CODIT on real bug fixes and found that it outperforms seq2seq alternatives.

Yin et al. worked on the problem of learning distributed representation of edits [246]. The

edits they learned are edits on Wikipedia articles and edits on GitHub C# projects. They found that

similar edits are grouped together when visualizing the edit representation, and that transferring

the neural representation of edits to to a new context is indeed feasible.

The major difference between VRepair and these works is that VRepair is targeting vulner-

abilities. In this work, we evaluate VRepair with the most notable vulnerabilities which have a

CVE ID; they are all confirmed vulnerabilities reported by security researchers. These vulnerabil-

ities are essentially different from related works which consider functional bugs, for example from

Defects4J [107].

5.7.5 Transfer Learning in Software Engineering

To the best of our knowledge, there are only a few works that use transfer learning in the

software engineering domain, and none of them use it for generating code fixes. Recently, Ding

has done a comprehensive study on applying transfer learning to different software engineering

problems [66], such as code documentation generation and source code summarization. He found

that transfer learning improves performance on all problems, especially when the dataset is tiny

and could be easily overfitted. In our work, we deploy transfer learning for vulnerability fixing and

show that it also improves accuracy. Also, we show that our model trained with transfer learning

has a more stable and superior performance compared to training on the small dataset.

Huang, Zhou, and Chin used transfer learning to avoid the problem of having a small dataset

for the error type classification task, i.e., predict the vulnerability type [99]. They trained a Trans-
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former model on the small dataset and achieved 7.1% accuracy. When training first on a bigger

source dataset and tuned afterward on the same dataset, Huang et al. [99] managed to get 69.1%

accuracy. However, their work is not about transfer learning and therefore the transfer learning ex-

periment was relatively simple and short. In our work, we conduct multiple experiments to show

the advantages of using transfer learning for vulnerability fixing.

Sharma et al. have applied transfer learning on the task of detecting code smell [199]. They

train the models on C# code and use them to detect code smells with Java code examples and vice

versa. They found that such models achieved similar performance to models directly trained on

the same program language. This is different from our work; we observed that transfer learning

improved the performance and made the performance more stable.

Ma et al. used character, word and sentence-level features from the input text to recognize

API uses. They adopted transfer learning to adapt a neural model trained on one API library to

another API library. They found that the more similar the API libraries are, the more effective

transfer learning is. Overall, this related literature, together with our work presented here, show

the applicability and benefits of using transfer learning in software engineering.

5.8 Conclusion

In this chapter, we have proposed VRepair, a novel system for automatically fixing C vulnera-

bilities using neural networks. To tackle the problem of having only small vulnerability fix datasets,

our key insight is to use transfer learning: we first train VRepair with a big bug-fix corpus, and

then we fine-tune on a curated vulnerability fix dataset.

We have performed a series of original and large scale experiments. In our experiments, we

found that VRepair’s transfer learning outperforms a neural network that is only trained on the

small vulnerability fix dataset, attaining 17.77% accuracy instead of 6.76% on Big-Vul dataset, and

19.94% accuracy instead of 11.29% on CVEfixes dataset. This result shows that transfer learning

is a promising way to address the small dataset problem in the domain of machine learning for

vulnerability fixing. Put in another way, our experiments show the knowledge learned from the
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bug fixing task can be transferred to the vulnerability fixing task, which has never been studied

before to the best of our knowledge.

In the future, we would like to explore the possibility of using an even larger source domain

dataset. We believe that one can achieve results similar to those of GPT-3 – a massive, generic

natural language model with 175 billion parameters [36]. In the context of software engineering,

we envision that we could train a single model on all code changes from GitHub, not just bug fixes,

and tune it on tasks such as code comment generation, function name prediction, and vulnerability

fixing.
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Part III

Producing Verifiable Program Equivalence

Proofs Using Machine Learning
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Chapter 6

Proving Equivalence Between Complex Linear

Algebra Expressions With Graph-to-Sequence

Neural Models

6.1 Introduction

Deep neural network systems have excelled at a variety of classification and reinforcement

learning tasks [81]. However, their stochastic nature tends to hinder their deployment for auto-

mated program analysis: ensuring the correctness of the solution produced is often required, e.g.,

when determining the semantics equivalence between two programs (or symbolic expressions).

In Chapters 4 and 5 we presented techniques for generating bug and vulnerability patches which

could be partially checked by test suites or static analyzers but currently still engage a human for

final approval of the output.

In this work we target the problem of automatically computing whether two input symbolic ex-

pressions are semantically equivalent [110], under a well-defined axiomatic system for equivalence

using semantics-preserving rewrite rules [64]. Additionally, we want a guarantee of correctness

for the output of our neural network. As we introduce in Section 3.3, program equivalence is

summarized as determining whether two programs would always produce the same outputs for all

possible inputs, and is a central problem in computing [110, 77, 221].

We propose a method for generating training samples using probabilistic applications of pro-

duction rules within a formal grammar, and then develop a graph-to-sequence [137, 29] neural

network system for program equivalence, trained to learn and combine rewrite rules to rewrite one

program into another. It can deterministically prove equivalence, entirely avoids false positives,

and quickly invalidates incorrect answers produced by the network (no deterministic answer is pro-

vided in this case, only a probability of non-equivalence). We make the following contributions:
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Figure 6.1: Examples of Computations Shown as Symbolic Expressions and Dataflow Graphs

1. We design, implement and evaluate two competing approaches using graph-to-sequence neu-

ral network systems to generate proofs of equivalence. We provide the first implementation

of such graph-to-sequence systems in the popular OpenNMT-py framework [117].

2. We present a complete implementation of our system operating on a rich language for multi-

type linear algebra expressions. Our system provides a correct rewrite rule sequence between

two equivalent programs for 93% of the 10,000 test cases. The correctness of the rewrite rule

is deterministically checkable in all cases in negligible time.

The rest of this chapter is organized as follows. Sec. 6.2 outlines the program equivalence

problem we address, and motivates our proposed approach. Sec. 6.3 formalizes the equivalence

problem addressed. Automatic sample generation is discussed in Sec. 6.4 before Sec. 6.5 which

introduces our DNN system, its overall design principles and key components. A complete exper-

imental evaluation of our system is detailed in Sec. 6.6. We present related work in Sec. 6.7 before

concluding.

6.2 Motivation and Overview for Machine Learning Applied to

Program Equivalence

Rewrite rules as axioms of equivalence In this work we represent programs with symbolic

expressions made of variables (e.g., a, b, c), operators (e.g., +, *) and neutral/absorbing elements

(e.g., 1). We consider a rich linear algebra expression language, supporting three variable types

(scalars, vectors, and matrices) and 5 different variables per type; 16 operators including operators
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mixing different variable types such as vector-matrix product. We represent these programs as

dataflow graphs [37] with a single root node, that is to compute a single value.

Figure 6.1 diagrams 4 equivalent programs which we shall discuss with reference to rewrite

rules. P1 is equivalent to P2 if we consider the axiom A1 : 1N ∗ x = x, ∀x ∈ N. This axiom is

also a clear rewrite rule: the LHS expression 1N ∗ x (with x ∈ N) can be matched and replaced

by the RHS expression x anywhere in the program without altering its semantics. An axiom, or

equivalently here a graph rewrite rule, may be applied repeatedly to different subtrees. When

applying A1 on a specific location, the node b of P1, we obtain an equivalent and yet syntactically

different program, we note P1 ≡ A1(b, P1). These equivalences can be composed, incrementally,

to form a complex transformation: we have P1 ≡ A1(c, A1(b, P1)). The result of these semantics-

preserving transformations can be computed in sequence: first implement A1(b, P1) to obtain

a new program P ′, then A1(c, P ′) to obtain P ′′. To prove P1 ≡ P2, we simply check P ′′ is

structurally identical to P2, a linear time process.

To assess the validity of a transformation sequence S where P2 = S(P1), one simply needs

to check for S, in sequence, that each axiom is applicable at that program point, apply it to obtain

a new temporary program, and repeat the process for each axiom in the complete sequence. If the

sequence is verified to be valid, and S(P1) is structurally equivalent to P2, then we have proved

P1 ≡ P2, and S forms the complete proof of equivalence between the two programs. Using

A2 : x ∗ (y + z) = x ∗ y + x ∗ z, ∀x, y, z ∈ N and A3 : x + y = y + x, ∀x, y ∈ N, we have

P1 ≡ P4 ≡ A3(+, A2(∗, A1(c, A1(b, P1)))), a verifiable proof of equivalence under our axioms

between the programs a(1b + 1c) and ac + ab, which involved structural changes including node

deletion, creation and edge modification. Note the bidirectional nature of the process: one can

rewrite from a(1b + 1c) to ac + ab, or the converse using the same (but reverted) sequence. Note

also the non-unicity of a sequence: by possibly many ways a program can be rewritten into another

one, for example the sequence P4 ≡ A3(+, A1(c, A1(b, A2(∗, P1)) also correctly rewrites P1 into

P4. Conversely, a sequence may not exist: for example no sequence of the 3 above axioms allow

to rewrite a+ b into a∗ b. We call these non-equivalent in our system, that is precisely if there is no
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sequence of axioms that can be applied to rewrite one program into the other. Our approach aims

to compute some S for a pair of programs P1, P2, so that S is verified correct when P1 ≡ P2.

Consequently, if P1 6≡ P2, no sequence S produced can be verified correct: true negatives are

trivially detected.

Pathfinding program equivalence proofs Intuitively, we can view the solution space as a graph,

where every possible syntactically different program in the language is represented by its own

vertex vi. And ∃ e(Ak,x) : vi → vj iff ∃Ak an axiom and x a node in vi such that vj = Ak(x, vi). Any

two programs connected by a path in this graph are therefore semantically equivalent. Building S

for P1 ≡ S(P2) amounts to exposing one path between P1 and P2 in this graph when it exists,

the path forming the proof of equivalence. We build a deep learning graph-to-sequence system

to learn a stochastic approximation of an iterative algorithm to construct such feasible path when

possible, trained only by randomly sampling pairs of programs and one carefully labeled path

between them. This avoids the need to craft smart exploration heuristics to make this path-finding

problem practical.

Figure 6.2: pe-graph2axiom System Overview

Graph-to-sequence network for pathfinding Instead of crafting path exploration heuristics,

we let a neural network learn heuristics automatically; and specifically we implemented a graph

neural network to solve this problem [193, 241]. We contributed the graph-to-sequence model

to OpenNMT-py based on the concepts we cover in Section 2.1.5. We rely on the network to
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suggest a transformation path by inference, and then verify its validity in linear time. To imple-

ment our approach, we enumerate randomly valid sentences in a language, and a set of axioms of

equivalence expressible as semantics-preserving rewrite rules from one to the other. The system

in Fig. 6.2 takes as input two programs represented as symbolic trees, and produces a sequence

of axioms along with their position of application (or node) that can be used to rewrite sequen-

tially one input program into the other input program. To train the system, we generate pairs of

equivalent programs by iterating the axioms with random probability on one program, thereby

generating both a path to equivalence and the target program. Random programs are generated

so as to respect the grammar defined. The training set is then appropriately selected from these

random samples, as detailed in Sec. 6.6. Node initialization initializes the graph neural network,

converting the input programs text (e.g., (a + (b + c)) into nodes and edges in the Graph Neural

Network [193, 241]. The details of the network are covered in Sec. 6.5. In a nutshell, the key

principle is to combine a memory-based neural network approach, e.g., using Long-Short Term

Memory (LSTM) [97] neurons and a graph neural network design (which uses Gated Recurrent

Units (GRUs) internally) [29] that matches our program graph representation. Token embedding

is a neural network layer in which tokens are assigned a learnable multidimensional embedding

vector [159]. Each layer in LSTM 2 layers has 256 neurons, which support sequence generation.

Token generator is the final output portion of the network. It learns to output the tokens based on

the current LSTM hidden states and the Global Attention from the graph neural network. As each

token is output, it feeds back into the LSTM layer through the embedding layer to affect its next

state. We use a sequence generation principle, using a global attention mechanism [149] to allow

observation of program graph node information while generating the axiom and location on which

it is applied. As developed below, we specifically study the robustness of our approach to gen-

erate proofs of increasingly complex length, contrasting models to output the entire path at once

with pe-graph2axiom which incrementally builds the sequence one step at a time, as shown in

Sec. 6.6.
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6.3 Framework for Program Equivalence

We now present the formalism we use in this work to represent symbolic expressions and their

equivalences. We carefully co-designed this problem representation and the (graph) neural network

approach to make the best use of machine learning via deep networks, as discussed in Sec. 6.5.

6.3.1 Input Representation

A key design aspect is to match the capability of the neural network to model the input as a

walkable graph with the actual input program representation to be handled. We therefore model

“programs” in a dataflow-like representation (i.e., a directed graph), using a single root/output

node. Symbolic expressions computing a single result typically fit this representation. The fol-

lowing definitions are applicable to programs represented as dataflow graphs, albeit we specialize

them to symbolic expressions.

Definition 6.3.1 (Expression graph node). A node n ∈ N in the expression graph models n-ary

operations and input operands. A node produces a value which can be consumed by any of its

immediate successors in the graph. When a node has no predecessor, it models an input value. The

output value for the computation is produced by the unique root node nroot of the graph, the only

node without successor.

Definition 6.3.2 (Expression graph directed edge). A directed edge en1,n2
: n1 → n2 with n1, n2 ∈

N in the expression graph connects the producer of a value (n1) to a node consuming this value in

the computation.

Definition 6.3.3 (Expression graph). A expression graph G is a directed dataflow graph modeling

the computation, made of nodes ni ∈ N and edges eni,nj
∈ E as defined in Def. 6.3.1 and

Def. 6.3.2. That is, G = 〈nroot, N,E〉. There is no dandling edge nor unconnected node in G.

Language of linear algebra expressions We developed a complex-enough language to evaluate

carefully our work, that captures rich linear algebra expressions. Specifically, we support 3 types

of data/variables in the expression: scalars, vectors and matrices. We use the standard notation
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a,~a, A for scalars, vectors and matrices. We evaluate using different variable names for each of the

3 types above, along with their identity and absorbing elements.

We also model a rich set of operators, mixing different unary and binary operations for each

type. Specifically, we support ∗s,+s,−s, /s between scalar operands, and +v,−v, ∗v between

vectors and +m,−m, ∗m for matrices. For−, / we also support their unary version for all types, e.g.

−1s for unary scalar inversion and −um for unary matrix negation. For example a−1s computes to

1/a. We also support multi-type operations, such as vector and matrix scaling by a scalar ∗sv, ∗sm.

We support two specific unary matrix operations, transpose tm and matrix inversion as −1m . Note

every operator has a unique name in our language, driven by the type of its operand. This will

facilitate the learning of the expression embedding, avoiding the need to learn type propagation.

Examples Expressions of the form A(BCtD)E−1, ~a + b~c−1 − 0~e, (a + b) + (c(d/e)), (aA +

bB)Ct etc. can be parsed trivially to our representation, one simply needs to be able to provide a

unique name for each operand and operator type (possibly via some analysis, or simple language

design principles), that is avoiding to overload the semantics of operators and operands. Note the

semantics is never explicitly provided to our DNN approach, it is learned by examples. There will

be no example of the form e.g. a+ A, an invalid expression in our language.

We believe a sensible approach is to develop a clean, regular grammar for the language to

be handled, as implicitly these are concepts the DNN will need to learn. We did so, using a

classical LL(1) grammar description of our linear algebra language. This is not a requirement of

our approach, as one can arrive to the desired input expression graph by any means necessary, but

we believe making the reasoning on the language structure “easy” is an important design aspect.

6.3.2 Axioms of Equivalence

A central aspect of our approach is to view the problem of expression equivalence as finding

a sequence of locally-correct rewrite rules that each preserve the semantics, thereby making incre-

mental reasoning possible. We explicitly do not consider non-semantics-preserving axioms. A rich

structure of alternate but equivalent ways to rewrite one expression to another makes the problem
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easier to sample and more amenable to machine learning. Semantics-preserving axioms enable

incremental per-axiom reasoning, and enforce semantics preservation without overly complicated

semantics analysis; while still manipulating a very rich space of transformations. To illustrate this

we specifically design axioms that perform complex graph modifications, such as node deletion or

creation, subtree manipulation, multi-node graph changes, etc.

A graph pattern can be viewed as a pattern-matching rule on graphs and its precise applicability

criteria. It can also be viewed as a sentential form of the language grammar, e.g. ScalarVal

PlusOp ScalarVal is a pattern, if the grammar is well formed.

Definition 6.3.4 (Graph pattern). A graph pattern P is an unambiguous structural description of

a (sub-)graph GP , which can be deterministically matched in any expression graph G. We have

P = 〈GP ,Mn,Me〉 where for each node ni ∈ NGP , {nmatch} = Mn(ni) returns the set of node

values nmatch accepted to match ni on a graph G. For ni, nj ∈ NGP , ei = Me(ni, nj) returns the

set of edges between M(ni) and M(nj) to be matched in G. A pattern GP is matched in G if (a)

∀ni ∈ Gp, ∃ nm = M(ni) ∈ NG; (b) ∀ei ∈ EGP , ∃ eMn(ni),Mn(nj) = Me(ni, nj) ∈ EG; and (c)

6 ∃eMn(ni),Mn(nj) ∈ EG 6= Me(ni, nj).

Note when a graph pattern models a rewrite, Mn and Me are adjusted accordingly to output

the rewrite of a node n ∈ NG into its desired value, instead of the set of acceptable nodes from

n ∈ NGP .

Definition 6.3.5 (Axiom of equivalence). An axiom A is a semantics-preserving rewrite rule G′ =

A(n,G) that can arbitrarily modify a expression graph G, and produces another expression graph

G′ respecting Def. 6.3.3 with identical semantics to G. We note A : 〈Pmatch, Preplace〉 an axiom,

where Pmatch, Preplace are graph patterns as per Def. 6.3.4. The application of axiom A to node n

in G is written A(n,G).

We can compose axioms to form a complex rewrite sequence.

Definition 6.3.6 (Semantics-preserving axiom composition). Given a sequence of m axiom appli-

cations S : A1(n1, A2(n2, ..., Am(nm, G))). It is a semantics-preserving composition if for each
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Gj = Ai(ni, Gi) ∈ S, PAi

match succeeds on the subgraph with root ni in Gi, and Gj is obtained by

applying PAi

replace to ni.

Theorem 6.3.1 (Expression graph equivalence). Given a expression G. If G′ = S(G) such that S

is a semantics-preserving sequence as per Def. 6.3.6, then G ≡ G′, they are equivalent under the

axiom system used in S.

This is a direct consequence of using only semantics-preserving axioms, each rewrite cannot

individually alter the semantics, so such incremental composition does not. It leads to the formal

problem we are addressing:

Corollary 6.3.1.1 (Expression graphs equivalence matching). Given two expressions G,G′. If

there exist a semantics-preserving sequence S such that G′ = S(G), then G ≡ G′.

Note here = means complete structural equivalence between the two graphs: they are identical

in structure and label/node values. Determining G = G′ amounts to visiting both graphs simulta-

neously e.g. in depth-first search from the root to ensure structural equivalence, and also verifying

the same node labels appear in both at the same time. This is trivally implemented in linear time

in the graph size.

Language of linear algebra expressions We have implememented a total of 102 different ax-

ioms for our language, made of the multi-type versions of the 13 core restructuring axioms de-

scribed later in Table 6.1. They all follow established linear algebra properties. Note different

data types have different axioms following typical linear algebra rules, e.g., matrix-multiplication

does not commute, but scalar and vector multiplications do. Examples of axioms include x(yz)→

(xy)z, X − X → O, −(~x − ~y) → ~y − ~x, or X tt → X , an exhaustive list is displayed in the

Supplementary Material.

In our experiments, we presume matrix and vector dimensions are appropriate for the given

operation. Such dimension compatibility checks are simple to implement by e.g. introducing

additional nodes in the prgram representation, but are not considered in our test language.
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Examples We illustrate axiom-based rewrites using axioms presented in later Table 6.1. Note

axiom names follow the structural changes applied. For example, we have a+b ≡ b+a : {a+b} =

Commute({+}, {b+a}). a+b+c ≡ b+c+a : {a+b+c} = Commute({+1}, Commute({+2},

{b+ c+ a})). Note we refer to different nodes with the same symbol (e.g., +2) subscripting them

by their order in a DFS traversal of the expression graph, starting from the unique root. We have

0 ≡ a − a : {0} = Cancel({−}, {a − a}). These can be combined in complex paths, e.g.,

b+c ≡ c+b+(a−a) : {b+c} = Commute({+}, Noop({+}, Cancel({−}, {c+b+(a−a)}))).

Such axioms are developed for scalars, matrices and vectors, and include complex rewrites such as

distributivity rules and transpositions. A total of 102 axioms are used in our system.

6.3.3 Space of Equivalences

We now define the search space being explored in this work, i.e., the exact space of solutions

on which the DNN system formally operates, and that we sample for training.

Definition 6.3.7 (Graph of the space of equivalences). Given a language L. The directed graph of

equivalences between expressions is Gequiv = 〈N equiv, Eequiv〉 such that ∀l ∈ L, nl ∈ N equiv, and

eAi,x
ni,nj

: ni → nj ∈ Eequiv iff nj ≡ Ai(x, ni), ∀Ai in the axiom system and x a position in ni where

Ai is applicable.

In other words, the graph has one node per possible expression in the language L, and a single

axiom application leads to connecting two nodes. We immediately note that Gequiv is a (possibly

infinite) multigraph, and contains circuits.

Theorem 6.3.2 (Expression equivalence with pathfinding). Given two expressions ni, nj ∈ N equiv.

If there is any path from ni to nj in Gequiv, then ni ≡ nj .

The proof is a direct consequence of Def. 6.3.7. In this work, we randomly sample this exact

graph to learn how to build paths between arbitrary expressions. As it is a multigraph, there will

be possibly many different sequences modeled to prove the equivalence between two expressions.

It is sufficient to expose one to prove equivalence.
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Corollary 6.3.2.1 (Semantics-preserving rewrite sequence). Any directed path in Gequiv is a se-

mantics-preserving rewrite sequence between the expressions, described by the sequence of ax-

ioms and expression position labeling the edges in this path. This sequence forms the proof of

equivalence.

We believe that ensuring there are possibly (usually) many ways to compute a proof of equiv-

alence in our specific framework is key to enable the DNN approach to learn automatically the

pathfinding algorithm for building such proofs. Other more compact representations of this space

of equivalences are clearly possible, including by folding nodes in the equivalence graph for

structurally-similar expressions and folding equivalent paths between nodes. When building e.g. a

deterministic algorithm for pathfinding, such space size reduction would bring complexity benefits

[110, 25]. We believe that for the efficient deployment of graph-to-sequence systems, exposing

significant redundancy in the space facilitates the learning process. We also alleviate the need to

reason on the properties of this space to find an efficient traversal heuristic.

6.4 Samples Generation

The careful creation of our training dataset is key: as we let the DNN learn by example only

what the axioms are and when they are applicable in the structure of a program, we must carefully

sample the space of equivalences to ensure appropriate distributions of the examples. We produce

a final dataset of tuples (P1, P2, S), a pair of input programs and a possible rewrite rule sequence

that proves the pair equivalent. Duplicates are removed such that all samples have a unique P1.

From this dataset, we create 1,000,000 training samples, 10,000 validation samples, and 10,000

test samples. We outline below its generation principles; extensive details and the algorithms used

are presented in section 6.9.1.

Random sample generation Deep learning typically requires large training sets to be effec-

tively deployed, hence we developed a process to automate sample generation. We specifically

use randomized program generation algorithms that are inspired by a given language grammar. By
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randomly choosing between production rulse, one can build random parse trees by simply iterating

the grammar. The leaves obtained will form a sentence accepted by the language, i.e., a program

[34]. We limit to programs of 50 nodes in the program tree (or AST), with a maximal tree depth

of 7. We assert that our random production rule procedure has a non-zero probability of producing

any program allowed by the grammar for our datasets.

We produce equivalent program samples by pseudo-randomly applying axioms on one ran-

domly generated program to produce a rewrite sequence and the associated equivalent program.

Given a randomly selected node in the program graph, our process checks which axiom(s) can be

applied. E.g., the +m operator may have the Commute axiom category applied, or it may have the

Transpose axiom category applied, which affects the operator’s children.

Final experimental dataset: AxiomStep10 To train our network to produce one axiom step at

a time, as described in Sec. 6.2, AxiomStep10 has a single axiom in each output sequence S. For

a complete proof S : A1(A2(...) in a (P1, P2, S) we generated made of N axioms, we then create

N training examples for the network: (P1, P2, AN) the first intermediate step by applying the first

axiom, then (AN(P1), P2, AN−1), etc. We limit proof length to 10 axioms in our experiments

(hence AxiomStep10). Test samples only have the original and target program and the network

proposes axioms which create intermediate programs towards the proof, fed back to the system.

Datasets to study generalizability and robustness In order to study our model’s ability to gen-

eralize, we have created alternate datasets on which to train and test models which are summarized

in table 6.2. WholeProof10 will help us contrast learning approaches. This dataset has the com-

plete proof sequence S made of N ≥ 1 axioms as reference output for a program pair, while for

AxiomStep10, N = 1. Models trained on WholeProofX must maintain internal state representing

the graph transformations that the axioms create. They are not "iterative": a single inference is ex-

pected to produce the complete proof; in contrast to AxiomStep10 for which a single axiom of the

sequence is produced at each inference step. Training long output sequences can benefit from com-
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Table 6.1: Distribution for the 14 axiom categories in AxiomStep10 test set. Considering scalars (a, b, ...),

vectors (~v,~w, ...) and matrices (A, B, ...) types combinations, 147 distinct axioms are represented.

Axiom Category Example axiom(s) Samples with

Cancel (A-A)→O,(b/b)→1 13.8%

NeutralOp (~v - ~o)→ ~v 40.0%

DoubleOp Att → A, 1/1/x→x 7.3%

AbsorbOp (A*O)→O, (b*0)→0 30.3%

Commute (a + b)→ (b + a) 48.6%

DistributeLeft (a + b)c→ ac + bc 36.3%

DistributeRight a(b + c)→ ab + ac 27.8%

FactorLeft ab + ac→ a(b+c) 6.1%

FactorRight ac + bc→ (a+b)c 9.0%

AssociativeLeft a(bc)→ (ab)c 46.3%

AssociativeRight (ab)c→ a(bc) 43.1%

FlipLeft -(~v - ~w)→ ~w − ~v 8.4%

FlipRight a/(b/c)→ a(c/b) 26.1%

Transpose (AB)t → BtAt, 11.1%

plex training approaches such as Professor forcing [129], but we will show that our AxiomStep10

model generalizes well with our sequence model training approach.

Table 6.2: Datasets used for studies in experiments.

Dataset AST depth AST #nodes Proof length Iterative

AxiomStep10 2-7 2-50 1-10 Yes

AxiomStep5 2-6 2-25 1-5 Yes

WholeProof10 2-7 2-50 1-10 No

WholeProof5 2-6 2-25 1-5 No

Complexity of equivalence space Figure 6.3 provides a view of the complexity of the equiva-

lence problem we tackle. The distribution of the dataset per proof length is displayed in the right

chart; the left chart shows by size of bubble the number of test samples with a given number of

semantics-preserving axioms that may be implemented as the first step of the proof and the proof

length needed.

There is a large number of proofs possible in our system, as detailed in Appendix 18. For ex-

ample, for proofs of length 5, about 340,000 proofs made only of legal applications of axioms can

be performed on the average sample in our dataset. Since many programs have multiple possible
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Figure 6.3: Distribution of axiom possibilities and proof complexity for test datasets.

proofs, about 10,000 different programs can be produced, only one of which is the target to prove,

i.e., randomly drawing a valid 5 axiom proof on a program known to be 5 axiom steps from the

target has roughly a 1 in 10,000 chance of being a correct proof of equivalence between the two

programs.

6.5 Deep Neural Networks for Program Equivalence

Fig. 6.2 overviews the entire system architecture including the pe-graph2axiom network,

sample generation, and the rewrite checker. Key design decisions are presented below.

Graph neural network The sample generation discussed in section 6.4 provides input to the

Node Initialization module in Fig. 6.2 to create the initial state of our graph neural network [29].

For each node in the program graph, a node will be initialized in our graph neural network with

a value that encodes the AST level and language token of the program node. To interconnect the

edges we support 9 edge types and their reverse edges which allows information to move in any

direction necessary: 1) left child of binary op, 2) right child of binary op, 3) child of unary op,

4) root node to program 1, 5) root node to program 2, 6-9) there are 4 edge types for the node

grandchildren (LL, LR, RL, RR). The node states and edge adjacency matrix represent the initial

graph neural network state.

After initialization, the graph neural network iterates 10 times in order to convert the ini-

tial node state into the embeddings needed for rewrite rule generation. Given an initial hid-

den state for node n of xn(0), xn(t + 1) is computed with a learnable function f which com-
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bines the current hidden state xn(0), the edge types lin[n] of edges entering node n, the edge

types lout[n] of edges exiting node n, and the hidden states xne[n] of the neighbors of node n:

xn(t+ 1) = f(xn(t), lin[n], xne[n](t), lout[n]).

Each edge type has a different weight matrix for learning, allowing aggregation of information

into a given node related to its function in the full graph of the program. The root node’s initial

state along with the edge types connecting it to the program graph trees allow it to aggregate and

transfer specific information regarding rewrite rules as demonstrated by our experimental results.

This is a novel feature of our network not used in prior work with GNNs on program analysis [8,

241].

Graph neural network output to decoder After stepping the GGNN, the final node values are

used by the decoder in two ways to create rewrite rules. First, the final root node value xroot(10)

is fed through a learnable bridge function to initialize the LSTMs of the decoder. In this way, the

aggregated information of the 2 programs seeds the generation of rewrite rules. The LSTMs update

as each output token yj is generated with a learnable function based on the current decoder hidden

state hd
j at decoder step j and the previous output token yj−1 [48]. Second, all nodes in the graph

can be used by an attention layer [21]. The attention layer creates a context vector cj which can be

used by a learnable function g when computing the probability for generating the jth output token

P (yj): P (yj | yj−1, yj−2, ..., y0, cj) = g(hd
j , yj−1, cj). Because pe-graph2axiom has a robust

output verification, we make use of beam search to track up to 10 likely candidates for proofs of

equivalence.

By using the root node only for seeding the initial hidden state hd
0 of the decoder, the weights

associated with its connections to the program graphs for P1 and P2 learn to represent the informa-

tion necessary for the rewrite rule sequence. In parallel, after the graph neural network iterations

complete, the final embedding for all the nodes in the graphs for P1 and P2 are only used by

the attention network, so their final embedding represents information useful during rewrite rule

generation.
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Intermediate program generation pe-graph2axiom applies the axiom and program node

chosen by the neural network token generator to the input program to create an intermediate pro-

gram P ′ on the path from P1 to P2. If this program is equal to P2, then our axiom path is

complete, otherwise the new pair P ′, P2 is inferred to determine the next axiom step.

Incremental versus non-incremental sequence production The models we train on the Ax-

iomStep5, WholeProof10, and WholeProof5 datasets have the same neural network hyperpareme-

ters as the AxiomStep10 data model. However, the models for WholeProof10 and WholeProof5

are trained to output the entire sequence of axioms needed to prove the 2 programs identical, hence

these models do not make use of the intermediate program generation and instead have a compo-

nent which checks whether the full sequence of axioms legally transforms P1 into P2. We encode

the path to the AST node an which to apply an axiom using ’left’ and ’right’ tokens which specify

the path from the current program root node. This encoding is sufficient for the iterative model and

necessary to allow the non-iterative model to identify nodes which may not have been in the initial

AST for P1. The non-iterative models must learn a representation in the LSTM network to allow

them to track AST transformations as they are generated.

6.6 Experimental Results

We now present extensive experimental results, and compare the quality of several neural net-

work approaches to address the problem of program equivalence. We have proceeded incremen-

tally for fine-tuning the final system design, and report on several of these design points below.

We focus our experiments below on 4 key questions: 1) Is performance related to input program

size? 2) Is performance related to proof length? 3) Is the incremental, per-axiom approach more

generalizable than producing the full sequence in a single inference step? And 4) Is performance

consistent across a range of datasets, including human-written examples?

Implementation setup We developed the neural network system presented in the OpenNMT-py

system [117], adding on a new encoder based on a prior implementation of gated graph neu-
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ral networks [137]. Our integration work contributed the yellow encoder components shown in

Figurer̃effig:Full to OpenNMT-py. The input to the GGNN encoder involved integrating ’Node

initialization’ into the existing OpenNMT-py framework including optionally using input token

embeddings. The output of the GGNN encoder involved integrating into the bridge layer con-

necting it to the decoder and providing the proper attention information necessary for the global

attention logic in OpenNMT-py. For our training and evaluation experiments, we use systems

with Intel Xeon 3.6GHz CPUs and 6GB GeForce GTX 1060 GPUs. During training, we save a

model snapshot every 50,000 iterations and score the accuracy the model achieved on the valida-

tion dataset. Graphs showing that validation accuracy plateaus at 200,000 to 300,000 iterations are

provided in section 6.9.4. We run each model twice and evaluate the test set using the saved model

which achieved the highest validation score.

Evaluation procedure and neural network alternatives The benefits of key components of

our neural network model are studied in table 6.3. The bidirectional RNN model is similar to

state-of-the-art sequence-to-sequence models used for program repair [48]. The results for the

graph-to-sequence model without attention show the benefit of providing the node information

during the axiom generation process.

Table 6.3: pe-graph2axiom mini ablation study.

Beam width

Model description 1 2 5 10

Bidirectional RNN seq-to-seq with attention 48 62 71 75

Graph-to-sequence w/o attention 73 81 87 90

pe-graph2axiom model 76 84 90 93

Our final design was influenced by explorations we performed on varied models, datasets, and

hyperparameters such as LSTM layers and graph neural network parameters. In relation to the

model’s ability to learn a representation of the proof sequence, we note that our GGNN initial-

ization using the root node connection to the decoder outperforms the embedding learned by a

bidirectional RNN model. Also, we found that averaging the embedding of all graph nodes had
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about 10% lower accuracy than using the more specific root node information. Numerous addi-

tional results are reported in Suppl. material 6.9.4.

Generalizing across different datasets We specifically look at the generalization potential for

our models by studying their success rate as a function of the input program complexity, repre-

sented as the AST depth, in Table 6.4, and as a function of the output complexity, represented by

the proof length in Table 6.5, all using a beam size of 10. We designed our datasets in Sec. 6.4 to

study how well pe-graph2axiom generalizes and to assess we are not overfitting on training

data. Extensive in-depth additional experimental results are presented in Suppl. Material 6.9.4, we

summarize key results only below.

Table 6.4: Performance vs. AST size: counts and percentage pass rates.

Testset Model trained Model trained

Sample Count on AxiomStep5 on AxiomStep10

AST depth AS5 AS10 AS5 AS10 AS5 AS10

2-6 10000 6865 99 93 99 94

7 0 3135 n/a 86 n/a 92

All 10000 10000 99 90 99 93

Table 6.4 illustrates the ability of a model trained on AxiomStep5 (i.e., limited to proofs of

length 5) to perform well when evaluated on the more complex AxiomStep10, which includes

proofs of unseen length of up to 10. The robustness to the input program complexity is illustrated

with the 86% pass rate on AST depth 7, for the model trained on AxiomStep5 which never saw

programs of depth 7 during training.

Table 6.5: Performance vs. proof length: percentage pass rates.

Axiom Model trained on Model trained on Model trained on Model trained on

Count in WholeProof5 (WP5) WholeProof10 (WP10) AxiomStep5 (AS5) AxiomStep10 (AS10)

Proof WP5 WP10 AS5 AS10 WP5 WP10 AS5 AS10 WP5 WP10 AS5 AS10 WP5 WP10 AS5 AS10

1-5 95 89 44 44 94 93 44 44 99 97 99 98 99 98 99 98

6 14 4 72 5 81 88 90 93

7 0 1 63 2 67 81 83 87

8 0 0 54 1 54 75 73 82

9 0 0 47 0 35 64 63 74

10 0 0 34 0 24 57 46 66

All 95 66 44 27 94 84 44 27 99 87 99 90 99 93 99 93
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Table 6.5 compares the results of our 4 models, each trained on one of our 4 datasets, and

evaluated with the test set of all 4 datasets. The models all have identical hypermeter settings.

We observe the inability of models trained to output the whole proof to generalize to proofs of

higher length (WP5 model on AS10/WP10), with near zero success rate. However, per-axiom

models (AS5 and AS10) show potential for generalization to proof length: AS5 model performs

well when evaluated on AS10, showing the ability to produce proofs of length/complexity unseen

in training. Overall, the success rate degrades gracefully with proof length, bottoming at 66% for

AS10 for proofs of length 10.

Table 6.6: Results for various language complexities studied, on non-incremental models (WholeProof).
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1 Rewrite sequence is only single Commute,

uses sequence-to-sequence model

2 1 10 3-19 1-5 S2S 80,000 90.0% 96.2%

2 Rewrite sequence is exactly 2 Commutes,

uses sequence-to-sequence model

2 1 10 5-24 3-10 S2S 80,000 80.3% 96.5%

3 Rewrite sequence exactly 2 Commutes 2 1 10 5-24 3-10 G2S 80,000 98.9% 99.8%

4 Rewrite sequence exactly 3 Commutes 2 1 10 7-45 5-15 G2S 80,000 91.4% 99.0%

5 Rewrite sequence 1 to 3 Commutes 2 1 10 3-45 1-15 G2S 180,000 97.1% 99.2%

7 Commute, Noop, Cancel, Distribute Left,

Distribute Right

4 5 12 3-45 1-15 G2S 180,000 93.1% 97.4%

8 Scalars, Vectors, and Matrixes 16 5 20 3-30 1-25 G2S 250,000 88.3% 95.6%

9 13 Axioms 16 13 20 3-30 1-25 G2S 400,000 85.5% 95.5%

10 Rewrite sequence or Not_equal 16 13 20 3-30 1-25 G2S 500,000 79.8% 93.8%

11 Test sequence-to-sequence 16 13 20 3-30 1-25 S2S 400,000 59.8% 81.1%

12 Add loop axioms 18 15 20 3-30 1-25 G2S 400,000 83.8% 94.7%

6.6.1 WholeProof Models: Language Complexity and Performance

Table 6.6 shows the result of 12 different experiments and designs for versions of WholeProof

models. In particular, we incrementally increase the problem complexity from rows 1 to 10, in-

creasing the number of Operators that can be used in any input program, of Axioms used in

the rewrite sequence, of Operands in any input program, of the maximal number of nodes in an

input program graph (the Program length, directly influencing the size of the graph network),

and the Rewrite rule length, which contains the description of paths from the root node to reach
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the position of application of an axiom, this is directly related to the maximal graph height, itself

determined by the maximal program size. Details on each row are provided in Supplementary

Material.

We specifically compare against a sequence-to-sequence (S2S) approach, to quantify the gains

brought by employing graph-to-sequence (G2S). When the space is small enough, S2S still per-

forms well, especially using aggressive beam search. We recall that by design of our system testing

the correctness of one sequence is trivial and deterministic, so one can easily use large beam sizes

without any correctness impact nor major performance penalty during inference. For example,

inference of beam 1 is about 15ms for our most complex networks, but beam 10 only takes 16ms.

Checking correctness is << 1ms.

Contrasting rows 2 and 3 displays the merits of the G2S approach for our problem: on this

simple problem, in fact G2S gets near-perfect accuracy already. Progressively increasing the com-

plexity of the search space, till row 9 and 10, displays a slow but steady decrease in quality, while

still maintaining excellent scores near or above 95% with beam 10. To reassess the limits of a

sequence-to-sequence approach, row 9 and 11 can be constrasted: they operate on the same search

space, but S2S peaks at 81% accuracy, while G2S reaches 95%.

Row 10 displays the result when learning using also samples of non-equivalent programs, using

the “empty path” symbol Not_equal. We evaluated this system to measure the impact of training

on only equivalent programs vs. also sampling pairs of unconnected nodes in the equivalences

graph. We recall that by design, if no rewrite rule produced is verified as correct, our system

outputs the programs are not equivalent. In other words, whichever the sequence(s) produced by

the network, if the two input programs are non-equivalent, the system will always output they are

not equivalent: no equivalence sequence produced can be verified as correct. So training on only

equivalent programs is clearly sensible for such system; furthermore as shown in row 10 vs. 9,

even increasing the training set size, training using non-equivalent programs seem to lower the

performance slightly.
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Human written test expressions from Khan academy exercises Unfortunately there is a dearth

of existing large reference datasets for equivalence of linear algebra expressions, which justified

our careful dataset creation approach in Sec. 6.4 and their upcoming public release. However nu-

merous math exercises involve exactly this problem, and can provide small but human-written

datasets. We solve all of the matrix expression equivalence programs from 2 relevant Khan

academy modules designed to test student’s knowledge of matrix algebra [114]. Our Axiom-

Step10 model is able to correctly prove all 15 equivalent pairs from the modules with beam width

1 and wider. With a beam width of 10, the WholeProof10 model proved 12. An example problem

solvable by AxiomStep10 but not WholeProof10 is: c(1A + B) = cB + cA which can be proven

by applying the rewrite rules NeutralOp, DistributeRight, and Commute to the proper nodes. The

WholeProof10 model mostly fails because it was not trained on how to apply repeated transfor-

mations at the same point in the AST. This suggests AxiomStep10 has generalized well to these

hand-written problems.

6.7 Related Work

Theorem provers The problem of equivalence as we formulated may be solved by other (smart)

brute-force approaches, where a problem is solved by pathfinding. This ranges from theoreom

proving systems like Coq [31] which supports the formal framework for equivalence we describe

in this chapter, to (Approximate Probabilistic) Model Checking [56, 40, 93], where a program

equivalence system can also be built, e.g. [206, 55, 224, 168]. Our contribution is not in the

formal definition of program equivalence we presented, semantics-preserving rewrite systems have

been studied, e.g. [223, 145, 186]. But understanding why this particular formalism was well

suited to deep learning graph-to-sequence systems was key. The merits of stochastic search to

accelerate such systems has been demonstrated, e.g. [165, 93, 78]. The novelty of our approach is

to develop carefully crafted graph-to-sequence neural networks to automatically learn an efficient

pathfinding heuristic for this problem. Our approach is potentially applicable in these areas too,

however training scalability can become a challenge if increasing the input representation size
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excessively. Theorem provers using deep learning have recently started to be investigated, Aygun

et al. [18] developed a graph neural network system for automatic proof generation. Wu et al. [237]

explores the ability of theorem provers using GNNs, TreeLSTMs, and BagOfWords architectures

to generalize and solve proofs with lengths up to 7 axioms and found that GNNs performed the best

of the architectures studied when more complex proofs were required. While our model works in

a slightly different problem space, we study the ability of our models to generalize on proofs with

lengths up to 10, with 14 different rewrite rules acting on 147 distinct axioms. These frameworks

could also be used to prove equivalence between symbolic expressions, as theorem provers.

Static program equivalence Algorithms for static program equivalence have been developed,

e.g. [222, 6, 25, 103]. These approaches typically restrict to demonstrating the equivalence of

different schedules of the operations, possibly dynamically [24]. In this work we target graph-

modifying rewrites (and therefore which alter the operation count). Barthou et al. [25, 6] have

developed techniques to recognize algorithm templates in programs. These approaches are re-

stricted to static/affine transformed programs. Karfa et al. also designed a method that works for

a subset of affine programs using array data dependence graphs (ADDGs) to represent input and

transforming behaviors. Operator-level equivalence checking provides the capability to normal-

ize expressions and establish matching relations under algebraic transformations [113]. Mansky

and Gunter used the TRANS language [108] to represent transformations. The correctness proof

implemented in the verification framework [154] is verified by the Isabelle [175] proof assistant.

Other works also include translation validation [127, 169].

Program analysis with machine learning Numerous prior works have employed (deep) ma-

chine learning for program analysis, e.g. [9, 12, 216, 128, 185, 28]. code2vec [12] teaches a

method for creating a useful embedding vector that summarizes the semantic meaning of a snippet

of code. Program repair approaches, e.g. [216, 48] are deployed to automatically repair bugs in a

program. Output accuracies of up to 20% on the test set is reported, using sequence-to-sequence

models. Wang et al. [227] learns to extract the rules for Tomita grammars [214] with recurrent neu-
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ral networks. The learned network weights are processed to create a verifiable deterministic finite

automata (DFA) representation of the learned grammar. This work demonstrates that deterministic

grammars can be learned with RNNs, which we rely on.

Graph Neural Networks Graph neural networks [193, 238] use machine learning to analyze a

set of nodes and edges for patterns related to a target problem. Using a graph-to-sequence net-

work with attention has been analyzed for natural language processing [29]. Allamanis et al. use

graph neural networks to analyze code sequences and add edge types representing LastUse, Com-

putedFrom, and LastWrite to improve the system’s ability to reason about the code [8]. Their

work achieves 84% accuracy on correcting variable misuse cases and provides insights to use-

ful edge types. Structure2vec [241] uses a graph neural network to detect binary code similarity.

Structure2vec uses a graph neural network to learn an embedding from a annotated control flow

graph (ACFG) of a program. This learning process targets the embedding so that equivalent pro-

grams will have equivalent embeddings, reporting precision scores of 84% and 85% on various test

datasets for correctly predicting program equivalence. It only outputs a probability of equivalence,

and not a verifiable proof, which is sufficient in their context.

The G2SKGE model [135] has a similar graph network structure which uses a node embedding

(which they refer to as an information fusion mechanism) in order to predict relationships between

nodes. This technique of using a neural network to understand and predict node interelationships

is common to our approach.

6.8 Conclusion

In this work, we presented pe-graph2axiom, the first graph-to-sequence neural network

system to generate verifiable axiomatic proofs (via rewrite rules) for equivalence for a class of

symbolic programs. Evaluated on a rich language for linear algebra expressions, this system pro-

duces correct proofs of up to 10 axioms in length in 93% of the 10,000 equivalent cases evaluated.

We believe the performance of our approach comes in part from using graph neural networks for
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what they aim to excel at: learning efficient heuristics to quickly find paths in a graph; and the

observation that program equivalence can be cast as a path-based solution that is efficiently found

by such networks.

6.9 Supplementary Materials

This section provides further details on pe-graph2axiom. We have provided below numerous

additional information for completeness. Our supplementary materials are organized as follows:

• Subsection 6.9.1 of this document presents the dataset generation approach we developed.

• Subsection 6.9.2 of this document presents exhaustively the language for complex linear algebra

expressions we evalaute on, including the list of all 147 axioms of equivalence we learned.

• Subsection 6.9.3 of this document presents additional details about the neural network architec-

tures we developed.

• Subsection 6.9.4 of this document presents complementary experimental results and additional

in-depth details on results presented in the main paper body.

6.9.1 Dataset generation

Generation of Examples

Machine learning benefits from large training sets, so in order to produce this data, we created

algorithms that would generate programs meeting a given language grammar along with target

programs which could be reached by applying a given axiom set. By creating this process, we

could create as large and varied a dataset as our machine learning approach required.

Algorithm 1 provides an overview of the full program generation algorithm. For this generation

process, we define a set of operations and operands on scalars, matrices, and vectors. For our

process, we presume matrix and vector dimensions are appropriate for the given operation as such

dimension checks are simple to implement and are not considered in our procedure. Note the

token syntax here is exactly the one used by our system, and is strictly semantically equivalent to

the mathematical notations used to describe these operations, e.g. 1N is 1.
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• Scalar operations: +s -s *s /s is ns, where is the unary reciprical and ns is the unary

negation.

• Matrix operations: +m -m *m im nm tm, where im is matrix inversion, nm negates the ma-

trix, and tm is matrix transpose.

• Vector operations: +v -v *s nv, where nv is the unary negation.

• Scalars: a b c d e 0 1

• Matrices: A B C D E O I, where O is the empty matrix and I is the identity matrix.

• Vectors: v w x y z o, where o is the empty vector.

• Summary: 16 operations, 20 terminal symbols

Initially, GenP1 is called with GenP1("+s -s *s /s +s -s *s /s +s -s *s /s

is ns +m -m *m +m -m *m +m -m *m im nm tm +v -v *v +v -v *v +v -v

*v nv", 0.94). In this initial call binary operations are repeated so that they are more likely

to be created than unary operations, and the initial probability that a child of the created graph node

will itself be an operation (as opposed to a terminal symbol) is set to 94%. Since the algorithm

subtracts a 19% probability for children at each level of the graph, trees are limited to 7 levels.

Algorithm 1 starts execution by randomly selecting an operation from the set provided as input.

When GenP1 is called recursively, the operation set is limited such that the operation produces

the correct type as output (scalar, matrix, or vector). Lines 3 through 15 of the algorithm show

an example case where the *s operation is processed. This operation requires scalar operands. If

the probability of children at this level is met, then GenP1 is called recursively with only scalar

operands available, otherwise a random scalar operand is chosen.

The text for algorithm 1 does not show the process for all operations. Certain operations, such

as *v, have a variety of operand types that can be chosen. The *v operand is a multiplication

which produces a vector. As such, Av (matrix times vector), bv (scalar times vector), or vc (vector

times scalar) are all valid options and will be chosen randomly.
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Algorithm 1: GenP1

Result: Prefix notation of computation with parenthesis

Input : Ops, P

Output: (op L R) or (op L)

1 op = select randomly from Ops

2 // Create subtree for chosen op

3 if op == "*s" then

4 if random < P then

5 L = GenP1("+s -s *s /s +s -s *s /s is ns",P-0.19)

6 else

7 L = select random scalar operand

8 end

9 if random < P then

10 R = GenP1("+s -s *s /s +s -s *s /s is ns",P-0.19)

11 else

12 R = select random scalar operand

13 end

14 return (op L R)

15 end

16 // Other ops may have more complex options for children types.

17 // (For example, "*m" may have a matrix multiplied by a scalar or matrix)

18 ...

After generating a program which follows the grammar rules of our language, algorithm 2 will

produce a new program along with a set of rewrite rules which transform the source program to

the target program.

Algorithm 2 receives as input the source program (or subprogram) along with the path to

the current root node of the source program. If the source program is a terminal symbol, the

algorithm returns with no action taken. Otherwise, the program starts with an operation and the

algorithm proceeds to process options for transforming the given operation. For our wholeproof10

and wholeproof5 datasets, algorithm 2 is only called once, simplifying the possible node order

and proof complexity. for the axiomstep10 and axiomstep5 datasets, algorithm 2 is called multiple

times, allowing for the possibility that after a path is chosen for one axiom any node can be accessed

for the next axiom (including the same node).
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As shown on line 10 of the algorithm, when the operation and children meet the conditions

necessary for a rewrite rule (in this case NeutralOp), the rule is applied with some probability

(in this case 50%). Note that before processing a node, the left and right operands are further ana-

lyzed to determine their operators and operands as well (or⊥ if the child is a terminal). Processing

the left and right operands allows for complex axioms to be applied, such as distribution or factor-

ization. When a rule is applied, the rewrite rule is added to the rewrite rule sequence and a new

target program is generated for any remaining subtrees. When creating the rewrite rules for sub-

trees, the path variable is updated as rewrites are done. In the case of NeutralOp, the current

node is being updated, so the path is not changed. But in the case of the Commute rule, the re-

turn would be generated with (op GenP2(R,path."left ") GenP2(L,path."right

")) which creates rewrite rules for the prior right and left operands of the op and updates the

path used to the new node positions. In order to analyze nearly equal programs, illegal rewrites

can be optionally enabled; for example, commuting a subtraction operation or mutating one op-

eration into another. In that case, the GenP2 process continues to create a target program, but

transform_sequence is set to Not_equal.

After these generation algorithms are run, a final data preparation process is done which prunes

the data set for the learning algorithm. The pruning used on our final data set ensures that the

(P1, P2) program pair total to 100 tokens or fewer (where a token is an operation or terminal),

that the graph is such that every node is reachable from the root with a path of length 6 or less, and

that there are 10 or fewer rewrite rules applied. But within these restrictions, we assert that our

random production rule procedure has a non-zero probability of producing any program allowed

by the grammar. Also, the pruning ensures that there are no lexically equivalent programs in the

process and removes some of the cases with fewer than 10 rewrite rules generated to bias the

dataset to longer rewrite sequences. Table 6.1 details the distribution of rewrite rules created by

the full process. Section 6.9.2 details all axioms when variable types and operators are considered.

We produce equivalent program samples by pseudo-randomly applying axioms on one ran-

domly generated program to produce a rewrite sequence and the associated equivalent program.
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Algorithm 2: GenP2

Result: Second program and transform_sequence

Input : P1, path

Output: P2

1 if terminal symbol then

2 return P1

3 end

4 op = find operator of P1

5 L = find left operand of P1

6 R = find right operand of P1

7 Lop,LL,LR = operator and operands of left child

8 Rop,RL,RR = operator and operands of right child

9 // Randomly apply transform if allowed

10 if random < 0.5 and ((op == "+v" and (L == "o" or R == "o")) or (op == "-v" and R ==

"o")) then

11 append path."NeutralOp " to transform_sequence

12 // Eliminate unnecessary operator and 0 vector

13 if L == "o" then

14 return GenP2(R,path)

15 else

16 return GenP2(L,path)

17 end

18 end

Given a randomly selected node in the program graph, our process checks which axiom(s) can be

applied. E.g., the +m operator can have the Commute axiom applied, or depending on subtrees

it may be allowed to have the Factorleft axiom applied, as discussed in Sec. 7.4.4. Generally we

choose to apply or not an operator with 50% probability, so that pe-graph2axiom is forced

to rely on analysis of the two programs to determine whether an operator is applied instead of

learning a bias due to the local node features.

Intermediate program generation

The intermediate program generation algorithm is very similar to algorithm 2. For program

generation of the target program, algorithm 2 will check that a node can legally apply a given

rule, apply the rule with some probability, record the action, and process the remaining program.

For intermediate program generation, we begin with a P1 and a rewrite rule. We follow the path

174



provided to identify the node, check that a node can legally accept a rule, apply the rule, and return

the adjusted program. If a rule cannot legally be applied, P1 is not successfully transformed. If a

rule can be legally applied to P1, the program is compared lexically to P2 and if they match then

equivalence has been proven.

Complexity of Proving Equivalence

Table 6.7 shows the complexity of the solution space for our problem for proofs from our Ax-

iomStep10 test dataset up to length 7 (deterministically computing all possible programs requires

too many resources for longer proof lengths). The ’All possible nodes and axioms’ row includes

the total number of proofs of a given length available to our problem space. The entry 5933 for

a single axiom represents that for an AST depth of 7 we have 43 axioms which can be applied to

all 63 possible operator nodes and 104 axioms which can be applied to the 31 nodes which possi-

bly have child operator nodes themselves: 63*43+31*104=5933. Subsequent columns can select

repeatedly from the same set growing as 59332 to 59337. The ’sample node + axiom group’ row

is based on our 10,000 sample test dataset and represents the possible selection of any of the 14

axiom groups being applied to any node in the program. The ’sample node + legal axiom’ row

represents only legal node plus legal axiom group being applied and effectively represents the total

number of programs derivable from the start program in the test dataset. The final row ’Sample

derivable unique programs’ represents the total number of programs derived from legal node and

axiom sequences which are lexically unique.

Table 6.7: Counts for equivalence proof possibilities

Proof length in axioms

Proof description 1 2 3 4 5 6 7

All Possible nodes and axioms 5933 3.5E+07 2.1E+11 1.2E+15 7.4E+18 4.4E+22 2.6E+26

Sample Node + Any Axiom 226 46900 1.5E+07 8.8E+09 5.0E+12 3.3E+15 2.7E+18

Sample Node + Legal Axiom 11.2 77.8 931 15812 3.4E+05 8.2E+06 1.8E+08

Unique Programs from Sample 9.2 47.4 264 1574 10052 65176 4.6E+05
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6.9.2 Language and Axioms for Complex Linear Algebra Expressions

We now provide the complete description of the input language for multi-type linear algebra

expressions we use to evaluate our work, and the complete list of all axioms that are used to

compute equivalence between programs.

Variable types We model programs made of scalars, vectors and matrices. We limit programs

to contain no more than 5 distinct variable names of each type in a program:

• Scalar variables are noted a, b, ..., e.

• Vector variables are noted ~v, ~w, ..., ~z.

• Matrix variables are noted A, B, ..., E.

Note we also explicitly distinguish the neutral and absorbing elements for scalars and matrices,

e.g. 1 = 1N. This enables the creation of simplification of expressions as a program equivalence

problem, e.g. if A+B − (B + A) = 0K×K

Unary operators We model 6 distinct unary operators, all applicable to any variable of the ap-

propriate type:

• is(a) = a−1 is the unary reciprocal for scalars, im(A) = A−1 is matrix inverse.

• ns(a) = −a is unary negation for scalars, nv(v) = −~v for vectors, nm(M) = −M for

matrices.

• tm(M) = M t is matrix transposition.

Binary operators We model 10 distinct binary operators that operate on two values. 7 operators

require the same type for both operands, while 3 enable multi-type operands (e.g., scaling a matrix

by a scalar). Note we do not consider potential vector/matrix size compatibility criterion for these

operators, in fact we do not represent vector or matrix sizes at all in our language, for simplicity.

• +s(a, b)= a + b, the addition on scalars, along with -s(a,b) = a − b, *s(a,b) = a ∗ b

and /s(a,b) = a/b.
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Figure 6.4: pe-graph2axiom System Overview
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Figure 6.5: Examples of Computations Shown as Symbolic Expressions and Dataflow Graphs

• +v( v, w) = ~v + ~w, the addition on vectors, along with -v( v , w) = ~v − ~w, *v( v,

w) = ~v.~w the dot product between two vectors, producing a scalar.

• +m(A, B) = A + B, the addition on matrices, along with -m(A, B) = A− B, and *m(A,

B) = AB the product of matrices.

• *m(a,A) = aȦ and *m(A,a) = Aȧ are used to represent scaling a matrix by a scalar.

• *m(v,A) = ~vA represents a vector-matrix product.

• *v(a,v) = a~v and *v(v,a) = ~va represent scaling a vector by a scalar.

List of axioms of equivalence Tables 6.8-6.9 show the full 147 axioms supported by our rewrite

rules. Many rewrite rules can be applied to all 3 variable types as well as multiple operator types.

6.9.3 Details on neural network model

Figure 6.4 overviews the entire pe-graph2axiom architecture including sample genera-

tion, the graph-to-sequence network, the intermediate program generation, and lexical equivalence

checker. In this section we will discuss the implementation details of these components.

177



Rewrite Rule ID Example(s)

Cancel 1 (a - a)→ 0

2 (b/b)→ 1

3 (A - A)→ O

4 (A ∗A−1)→ I

5 (A−1 ∗A)→ I

6 (v - v)→ o

NeutralOp 7 (a + 0)→ a

8 (0 + a)→ a

9 (a - 0)→ a

10 (a * 1)→ a

11 (1 * a)→ a

13 (a / 1)→ a

14 (A + O)→ A

15 (O + A)→ A

16 (A - O)→ A

17 (A * I)→ A

18 (I * A)→ A

19 (v + o)→ v

20 (o + v)→ v

21 (v - o)→ v

DoubleOp 22 -(-a))→ a

23 (a−1)−1 → a

24 −(−A)→ A
25 (A−1)−1 → A
26 (At)t → A
27 −(−v))→ v

DistributeRight 64 a(b + c)→ ab + ac

65 a(b - c)→ ab - ac

66 a(v + w)→ av + av

67 a(v - w)→ av - av

68 A(B + C)→ AB + AC

69 A(B - C)→ AB - AC

70 a(B + C)→ aB + aC

71 a(B - C)→ aB - aC

Rewrite Rule ID Example(s)

AbsorbOp 28 (a * 0)→ 0

29 (0 * a)→ 0

30 (A * 0)→ O

31 (0 * A)→ O

32 (A * O)→ O

33 (O * A)→ O

34 (A * o)→ o

35 (a * o)→ o

36 (o * a)→ o

37 (0 * v)→ o

38 (v * 0)→ o

39 (O * v)→ o

Commute 40 (a + b)→ (b + a)

41 (a * b)→ (b * a)

42 (A + B)→ (B + A)

43 (A * a)→ (a * A)

44 (a * A)→ (A * A)

45 (A * O)→ (O * A)

46 (O * A)→ (A * O)

47 (A * I)→ (I * A)

48 (I * A)→ (A * I)

49 (v + w)→ (w + v)

50 (v * a)→ (a * v)

51 (a * v)→ (v * a)

DistributeLeft 52 (a + b)c→ ac + bc

53 (a - b)c→ ac - bc

54 (a + b)/c→ a/c + b/c

55 (a - b)/c→ a/c - b/c

56 (v + w)*a→ va + wa

57 (v - w)*a→ va - wa

58 (A + B)C→ AC + BC

59 (A - B)C→ AC - BC

60 (A + B)v→ Av + Bv

61 (A - B)v→ Av - Bv

62 (A + B)a→ Aa + Ba

63 (A - B)a→ Aa - Ba

Table 6.8: Full axiom count with all type options and other supported permutations included (part 1 of 2)

Graph neural network internal representation The sample generation discussed in section

6.4 provides input to the Node Initialization module in Fig. 6.4 to create the initial state of our

graph neural network. For each node in the program graph, a node will be initialized in our graph

neural network. Each node has a hidden state represented by a vector of 256 floating point values
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Rewrite Rule ID Example(s)

FactorLeft 72 ab + ac→ a(b+c)

73 ab - ac→ a(b-c)

74 AB + AC→ A(B+C)

75 AB - AC→ A(B-C)

76 Av + Aw→ A(v+w)

77 Av - Aw→ A(v-w)

78 Aa + Ab→ A(a+b)

79 Aa - Ab→ A(a-b)

80 va + vb→ v(a+b)

81 va - vb→ v(a-b)

FactorRight 82 ac + bc→ (a+b)c

83 ac - bc→ (a-b)c

84 a/c + b/c→ (a+b)/c

85 a/c - b/c→ (a-b)/c

86 AC + BC→ (A+B)C

87 AC - BC→ (A-B)C

88 Av + Bv→ (A+B)v

89 Av - Bv→ (A-B)v

90 Aa + Ba→ (A+B)a

91 Aa - Ba→ (A-B)a

92 va + wa→ (v+w)a

93 va - wa→ (v-w)a

AssociativeLeft 94 a+(b+c)→ (a+b)+c

95 a+(b-c)→ (a+b)-c

96 a(bc)→ (ab)c

97 a(b/c)→ (ab)/c

98 A+(B+C)→ (A+B)+C

99 A+(B-C)→ (A+B)-C

100 A(BC)→ (AB)C

101 A(Ba)→ (AB)a

102 A(aB)→ (Aa)B

103 a(AB)→ (aA)B

104 A(Bv)→ (AB)v

105 A(va)→ (Av)a

106 A(av)→ (Aa)v

107 a(Av)→ (aA)v

108 v+(w+x)→ (v+w)+x

109 v+(w-x)→ (v+w)-x

110 v(ab)→ (va)b

111 a(vb)→ (av)b

112 a(bv)→ (ab)v

Rewrite Rule ID Example(s)

AssociativeRight 113 (a+b)+c→ a+(b+c)

114 (a+b)-c→ a+(b-c)

115 (ab)c→ a(bc)

116 (A+B)+C→ A+(B+C)

117 (A+B)-C→ A+(B-C)

118 (AB)C→ A(BC)

119 (AB)a→ A(Ba)

120 (Aa)B→ A(aB)

121 (aA)B→ a(AB)

122 (Av)a→ A(va)

123 (Aa)v→ A(av)

124 (aA)v→ a(Av)

125 (va)b→ v(ab)

126 (av)b→ a(vb)

127 (ab)v→ a(bv)

128 (v+w)+x→ v+(w+x)

129 (v+w)-x→ v+(w-x)

FlipLeft 130 -(a - b)→ b-a

131 (a/b)−1 → b/a

132 −(A−B)→ (B - A)

133 −(v − w)→ (w - v)

FlipRight 134 a/(b/c)→ a(c/b)

135 a/(b−1)→ ab

136 a-(b-c)→ a+(c-b)

137 a-(-b)→ a+b

138 A-(B-C)→ A+(C-B)

139 A-(-B)→ A+B

140 v-(w-x)→ v+(x-w)

141 v-(-w)→ v+w

Transpose 142 (AB)→ (BtAt)t

143 (A+B)→ (At +Bt)t

144 (A−B)→ (At −Bt)t

145 (AB)t → BtAt

146 (A+B)t → At +Bt

147 (A−B)t → At −Bt

Table 6.9: Full axiom count with all type options and other supported permutations included (part 2 of 2)
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which are used to create an embedding for the full meaning of the given node. Initially all 256

dimensions of the hidden states of the nodes are set to zero except for 2. Given N tokens in our

input program language, one of the dimensions from 1 through N of a node will be set based on

the token at the program position that the node represents. For example, if the scalar variable a

is assigned to be token 3 in our language, then the a nodes of Fig. 6.5 recalled below would have

their 3rd dimension initialized to 1.0. This is a one-hot encoding similar to that used in neural

machine translation models which leverage Word2vec [159]. The second non-zero dimension in

our node initialization indicates the tree depth, with the root for the program being at depth 1. We

set the dimension N+depth to 1.0; hence, the a nodes in Fig 6.5, which vary from level 2 or 3

in the graph, would set dimension N + 2 or N + 3 to 1. In addition to nodes correlating to all

tokens in both input programs, we initialize a root node for program comparison which has edges

connecting to the root nodes of both programs. The root node does not represent a token from the

language, but it is initialized with a 1.0 in a hidden state dimension reserved for its identification.

For a graph neural network, the edge connections between nodes are a crucial part of the setup.

In particular, to match the formulation of our problem, we must ease the ability of the network to

walk the input program graphs. We therefore designed a unified graph input, where both program

graphs are unified in a single graph using a single connecting root node; and where additional

edges are inserted to make the graph fully walkable.

In our full model, we support 9 edge types and their reverse edges. The edge types are: 1) left

child of binary op, 2) right child of binary op, 3) child of unary op, 4) root node to program 1, 5)

root node to program 2, 6-9) there are 4 edge types for the four node grandchilden (LL, LR, RL,

RR). After the node hidden states and edge adjacency matrix are initialized, the network is ready

to begin processing. This initial state is indicated in figure 6.6 by the solid circles in the lower left

of the diagram.

Beam search A typical approach when using sequence-to-sequence systems is to enable beam

search, the process of asking for multiple answers to the same question to the network. It is

particularly relevant when creating outputs which can be automatically checked [48, 5]. Beam
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Figure 6.6: Graph-to-sequence neural network data flow details.

search can be viewed as proposing multiple possible axioms to apply. Given the stochastic nature

of generation model, a beam width of n can be thought of as creating the n most likely sequences

given the training data the model as learned on. Each proposal can be checked for validity, the first

valid one is outputted by the system, demonstrating equivalence. Our system builds on the neural

network beam search provided by OpenNMT to create a ’system beam search’ of variable width. In

particular, we set the OpenNMT network beam search to 3, which constrains the token generator

to produce 3 possible axiom/node proposals for a given pair of input programs. Using these 3

proposals, when our system beam width is 10, we build up to 10 intermediate programs that are

being processed in the search for a proof. To illustrate with a system beam width of 5, after P1 and

P2 are provided to the neural network, 3 possible intermediate programs may be created (so long

as all axioms are legal and don’t produce duplicates). After those 3 intermediates are processed, 9

possible new intermediates are created, all of which are checked for lexical equivalence with P2,

but only 5 of which are fed back into the neural network for further axiom generation. This process

is continued for up to 12 axioms at which point the system concludes an equivalence proof cannot

be found and the programs are likely not equivalent. We evaluate in Sec. 7.4.4 beam sizes ranging

from 1 to 10, showing higher success with larger beams.
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6.9.4 Details on Experimental Results

Complementary Results and Observations

Table 6.10 describes part of our neural network hyperparameter tuning showing that our golden

model has as high a result as other variations explored. Note that the validation token accuracy is

not too high (it’s not above 90%) despite the ability to predict full correct proofs with over 93%

accuracy. This is because the training dataset can have multiple examples of axioms given similar

input programs. For example, proving "(a+b)(c+d) = (b+a)(d+c)" requires commuting the left

and right subexpressions. The training dataset could have similar programs which are sometimes

transformed first with a right Commute and then a left or vice-versa. Given this data, the network

would learn to apply one or the other (it would not get trained to use associativity for these program

pairs for example), hence the actual output given may or may not match the validation target axiom.

We will discuss this further in section 6.9.4.

Table 6.10: Hyperparameter experiments. Summary of best validation token accuracy result after 2 runs

for up to 100,000 training iterations. The golden model has 256 graph nodes and decoder dimensions, 2

decoder LSTM layers, starts training with a learning rate of 0.8, and uses 10 steps to stabilize the GGNN

encoder.

Parameter Value Validation

token accuracy

Golden model 83.89

Graph node+decoder LSTM dimension 192 83.89

320 83.58

Decoder LSTM layers 1 83.53

Initial learning rate 0.75 83.76

0.85 83.57

GGNN stability steps 12 83.19

8 83.61

Training convergence Since our model trains on axiomatic proofs which may vary in order

(allowing 2 or 3 options to be correct and occur in the training set), we see our training and token

accuracies plateau below 90% during training for AxiomStep10 as shown in Figure 6.7. Full
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testset proof accuracies for beam width 10 exceed 90%, but also plateau along with the training

and validation results. This result differs from our WholeProof10 training, which achieves training

and validation accuracies above 96% because the expected axiom sequence is more predictable,

but as we have seen less generalized.

As another observation on generalization and overfitting, we note that figure 6.7 shows a slight

separation between the training and validation accuracies starting at around iteration 180,000.

While the training accuracy rises slowly, validation accuracy plateaus, indicating slight overfit-

ting on the training data. Yet our model continues to slowly increase in quality, with the model

snapshot that scores best on both validation and test accuracies occurring at iteration 300,000. This

is our golden model, with 93.1% of P1 to P2 proofs accurately found using beam width 10.

Figure 6.7: Model training percentage accuracy up to 300,000 iterations on AxiomStep10. Training and

Validation accuracies are per-token on the target axioms in the samples. Test accuracies are for full correct

proofs of P1 to P2.

Testing simpler models In addition to the sequence-to-sequence and graph-to-sequence models,

we explored a feed-forward equal/not equal classifier on a simple version of our language. That

model uses an autoencoder on the program to find an embedding of the program and then a classi-

fier based on the program embeddings found. It achieves a 73% accuracy on identifying equivalent

pairs in the test data, which, as expected, is much lower than the full proof rate of 93% achieved

with a graph-to-sequence proof generator on our full language. This simple experiment highlights
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the importance of a system which prevents the false positives which a classifier might have by

creating a verifiable proof.

We explore initial language generation using a simple language in order to assess feasibility of

different approaches. For fine tuning network parameters and architectural features, we add more

complexity to the language as shown in table 6.11. Language IDs 1 through 3 are all based on a

simple grammar which only allows the "+" or "-" operators on scalar variables labeled a through

j. The only axiom is Commute, which can be applied on up to 3 nodes in language IDs 2 and 3.

Language ID 4 adds the scalar constants 0 and 1, scalar operations * and /, and 4 more axioms.

We perform a fair amount of network development on this model in an effort to maintain high

accuracy rates. Language ID also 4 expands the operands to 3 types and hence the number of

operators also increases. To speed up model evaluation, we reduced the program length for IDs

5, 6, and 7, allowing us to train larger data sets for more epochs. ID 7 is a forward looking-

model which makes a minor increment to the language to support the analysis of loop rolling and

unrolling, discussed further in section 6.9.4. ID 8 is the WholeProof5 model in relation to these

early experiments.
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1 Rewrite sequence is only single Commute,

uses sequence-to-sequence model

2 1 10 3-19 1-5 S2S 80,000 90.0% 96.2%

2 Rewrite sequence is exactly 2 Commutes,

uses sequence-to-sequence model

2 1 10 5-24 3-10 S2S 80,000 80.3% 96.5%

3 Rewrite sequence exactly 2 Commutes 2 1 10 5-24 3-10 G2S 80,000 98.9% 99.8%

4 Rewrite sequence exactly 3 Commutes 2 1 10 7-45 5-15 G2S 80,000 91.4% 99.0%

5 Rewrite sequence 1 to 3 Commutes 2 1 10 3-45 1-15 G2S 180,000 97.1% 99.2%

7 Commute, Noop, Cancel, Distribute Left,

Distribute Right

4 5 12 3-45 1-15 G2S 180,000 93.1% 97.4%

8 Scalars, Vectors, and Matrixes 16 5 20 3-30 1-25 G2S 250,000 88.3% 95.6%

9 13 Axioms 16 13 20 3-30 1-25 G2S 400,000 85.5% 95.5%

10 Rewrite sequence or Not_equal 16 13 20 3-30 1-25 G2S 500,000 79.8% 93.8%

11 Test sequence-to-sequence 16 13 20 3-30 1-25 S2S 400,000 59.8% 81.1%

12 Add loop axioms 18 15 20 3-30 1-25 G2S 400,000 83.8% 94.7%

Table 6.11: Results for various language complexities studied, on non-incremental models (WholeProof).
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We designed our datasets in section 6.4 with the goal of using the varied models to under-

stand the generalizability of pe-graph2axiom and to show that our model is not overfitting on

training data. For these next experiments, all results of for beam width 10, which provides for

a neural-network directed search of up to 10 axiomatic proofs of equivalence for each program

pair. Recall that our most complex dataset is AxiomStep10 which includes (P1, P2, S) samples

requiring up to 10 rewrite rules, P1 and P2 can have up to 50 AST nodes each, and an AST depth

of up to 7. AxiomStep5 has samples requiring up to 5 rewrite rules, P1 and P2 can have up to 25

AST nodes each, and an AST depth of up to 6. Tables 6.12 and 6.13 (repeated from main paper

below) demonstrate the ability of a model trained on AxiomStep5 to perform well on the larger

distribution of programs from AxiomStep10, implying that the model has generalized well to our

program equivalence problem and that pe-graph2axiom does not overfit its response to merely

the training set distribution.

Table 6.12: Generalizing to longer P1 inputs. Percentage pass rates for equivalence proofs with P1 having

increasing program graph nodes. The model trained with the AxiomStep5 dataset had no training examples

more than 25 program graph nodes yet it performs relatively well on these more complex problems. The

furthest right column shows the pe-graph2axiom model results on the most complex dataset.

Testset Model trained Model trained

Sample Count on AxiomStep5 on AxiomStep10

P1 nodes AS5 AS10 AS5 AS10 AS5 AS10

1-5 231 109 100 100 100 100

6-10 2147 1050 100 99 99 99

11-15 3980 2175 99 96 99 96

16-20 2583 2327 98 92 98 93

21-25 1059 1989 97 89 98 92

26-30 0 1229 N/A 83 N/A 90

31-35 0 698 N/A 78 N/A 88

36-40 0 304 N/A 74 N/A 87

41-45 0 101 N/A 68 N/A 84

46-50 0 27 N/A 67 N/A 85

All 10000 10000 99 90 99 93

Table 6.13 illustrates the ability of a model trained on AxiomStep5 (i.e., limited to proofs of

length 5) to perform well when evaluated on the more complex AxiomStep10, which includes
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Table 6.13: Performance vs. AST size: counts and percentage pass rates.

Testset Model trained Model trained

Sample Count on AxiomStep5 on AxiomStep10

AST depth AS5 AS10 AS5 AS10 AS5 AS10

2 5 3 100 100 100 100

3 306 133 100 100 100 100

4 1489 577 100 99 99 99

5 4744 1844 99 94 98 95

6 3456 4308 98 90 98 93

7 0 3135 n/a 86 n/a 92

All 10000 10000 99 90 99 93

proofs of unseen length of up to 10. The robustness to the input program complexity is illustrated

with the 86% pass rate on AST depth 7, for the model trained on AxiomStep5 which never saw

programs of depth 7 during training.

As an indication of the breadth of equivalent programs represented by AxiomStep10 relative to

WholeProof10, table 6.14 shows the full detail of models trained on all 4 datasets when tested on

test data from all 4 datasets. AxiomStep10, while training on our broadest dataset in which axioms

can be applied to nodes repeatedly and in variable order, achieves a 93% average success rate.

72% of the proofs of length 6 from the WholeProof10 testset were solved by the model trained

on WholeProof10, but only 5% of such proofs from AxiomStep10 were, suggesting the method of

generating AxiomStep pairs covers the problem space more thoroughly.

The complete result for the WholeProof10 model on the WholeProof10 dataset was 8,388 out

of 10,000 program pairs had a correct proof found; of those, 8,350 were the exact proof created

during P1, P2 generation, implying that WholeProof10, while performing well on its own testset

distribution, is not learning to generalize to alternative proof paths.

Manual verifications We conducted a series of manual verifications of the system used to pro-

duce all the above results. First, we are happy to confirm that most likely AB 6= BA given no

verifiable equivalence sequence was produced, but that provably ab = ba indeed. We also verified

that Att(B + C − C) = AB, and that AB~v −AB~w = AB(~v − ~w) which would be a much faster
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Table 6.14: Generalizing to longer proofs. Percentage pass rates for equivalence proofs of increasing axiom

counts when testing each of 4 datasets on models trained using each of 4 datasets.

Axiom Model trained on Model trained on Model trained on Model trained on

Count in WholeProof5 (WP5) WholeProof10 (WP10) AxiomStep5 (AS5) AxiomStep10 (AS10)

Proof WP5 WP10 AS5 AS10 WP5 WP10 AS5 AS10 WP5 WP10 AS5 AS10 WP5 WP10 AS5 AS10

1 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100

2 99 98 66 64 99 99 65 63 100 99 100 99 100 100 100 100

3 98 94 34 33 97 95 33 33 100 98 99 98 100 99 99 99

4 93 84 16 15 90 88 16 15 98 95 98 97 99 98 98 98

5 84 70 8 7 84 82 8 7 96 91 96 95 97 95 96 96

6 14 4 72 5 81 88 90 93

7 0 1 63 2 67 81 83 87

8 0 0 54 1 54 75 73 82

9 0 0 47 0 35 64 63 74

10 0 0 34 0 24 57 46 66

All 95 66 44 27 94 84 44 27 99 87 99 90 99 93 99 93

implementation. The system correctly suggests that AB~v − BA~w 6= AB(~v − ~w). We ensured

that At(AAt)−1A 6= At(AA−1)tA, from a typo we once made when typing the computation of an

orthonormal sub-space. We also verified that indeed AB + AC + aD − aD = A(B + C).

Generalizing variable types We explored the ability of the model to understand variable typing

by training a model with the AxiomStep10 distribution but with no samples that included the

scalar variable ’e’ and scalar multiplication ∗s. This removed about 50% of the training set, as

longer programs were often included both tokens. When tested with the unaltered AxiomStep10

test set and beam width 10, test samples that included a scalar variable not ’e’ and ∗s were proven

equal 90% of the time; test samples that included ’e’ and ∗s were also proven equal 90% of the

time. For beam width 1 the proof success rates were 72% and 70% for without and with ’e’,

implying that the heavily biased training set did have a small effect on the system generalization.

pe-graph2axiom was still able to generalize the relation of ’e’ to the ∗s operator given that ’e’

was used in contexts similar to other scalar variables in the training samples that were provided,

implying it was forming an internal representation of a ’scalar’ type by learning from examples.
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Learning that multiple axiom choices are possible

Our AxiomStep10 model is trained on axioms which may be applied in varying order in the

training set. For example, ((a + b) ∗ (c + d)) = ((b + a) ∗ (d + c)) may have the training data to

Commute the left node a+ b first and then c+ d second; in the same dataset, ((a+ e) ∗ (b+ c)) =

((e+a)∗ (c+ b)) might occur and the training data has the right node Commuted first. In this way,

we expect the model to learn that either commuting the left or right node is a proper first axiom

choice. Table 6.15 explores the ability of the model to produce such axiom proposals. Given 5

scalar variables, there are 120 possible expressions where two 2-variable additions are multiplied

together such as ((a + b) ∗ (c + d)). We consider here all 120 program pairs in which the left

and right additions are commuted. The table shows which axioms and positions are recommended

by the graph-to-sequence neural network model within the pe-graph2axiom system as most

probably moving the 2 programs closer to equivalence by the beam width 3 on this problem. Note

that the 2 correct axioms are always within the top 3 choices and the other 2 axioms (Commute

and DistributeLeft on the root), while not necessary for this problem, are at least legal choices for

axioms within our expression language.

The results in table 6.15 relate to the value of our approach in relation to reinforcement learn-

ing models for proof generation [69, 23]. To make an analogy with reinforcement learning, in our

training, the world ’state’ is presented as a P1, P2 pair and the system must learn to produce an

axiom at a location which performs an ’action’ on the ’state’ of P1 in a predictable way. Unlike

reinforcement learning, we do not produce a reward function and our system cannot learn from a

poor reward produced by an incorrect axiom. However, we have demonstrated that our system,

as it is presented with a wide distribution of (P1, P2, S) tuples to train on, learns a probability

distribution of possibly correct axioms to produce for a given program pair. There may be value in

combining our graph-neural-network within a reinforcement learning framework that used a hind-

sight mechanism [14] to learn from every attempted axiom, but it is not immediately obvious that

our approach of learning only from examples of successful equivalence proofs would be improved.
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Table 6.15: Learning multiple output options. When considering scalar expressions that can be proven

equivalent by commuting the left and right subexpressions, such as (a + b)(c + d) = (b + a)(d + c),
pe-graph2axiom learns that either the left or right commute can occur first. The columns show counts

for axioms and locations proposed by the token generator with beam width of 3 when given 120 different

scalar expression pairs.

Axiom

Beam Commute Commute Commute DistributeLeft

position left child right child root root

First 49 35 36 0

Second 58 59 3 0

Third 13 26 45 36

Any of top 3 120 120 84 36

Exploration of alternate designs In order to design the system, we explored parts of the design

space quickly and performed several single training run comparisons between 2 options, as shown

in Table 6.16.

In cases where 2 options were similar, we chose the model which ran faster, or run the models

a second time to get a more precise evaluation, or use our experience based on prior experiments

to select an option.

Table 6.16: Example explorations as a single feature or parameter is changed. Each comparison is a distinct

experiment, as the entire network and language used was being varied.

Match Match

Options compared beam

1

beam

10

1 layer LSTM vs 198 1380

2 layer LSTM vs 5020 9457

3 layer LSTM 4358 8728

No edges to grandchild nodes vs 9244 9728

Edges to grandchild nodes 9284 9774

Encoder->Decoder only root node

vs

8616 9472

Encoder->Decoder avg all nodes 7828 9292

Experiments such as these informed our final network architecture. In pe-graph2axiom,

for example, we include 4 edges with learnable weight matrices from a node to its grandchildren

because such edges were found to improve results on multiple runs. Li et al. [135] discusses
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the importance of selecting the optimal process for aggregating the graph information hence we

explore that issue for our network. Our approach uses the root comparison node to create aggregate

the graph information for the decoder as it performs better than a node averaging.

Including Not_equal option Table 6.17 analyzes the challenge related to a model which only

predicts Equal or Not_equal for program pairs along with various options which produce rewrite

rules which can be checked for correctness. In all 4 output cases shown, 2 programs are provided

as input. These programs use an earlier version of our language model with 16 operators, 13 core

axioms, and 20 operands generated with a distribution similar to WholeProof5.

Table 6.17: Table showing alternate options for handling not equal programs

Network Predicted Correct

output Predicted Rules Rewrite

Description Actual NotEq or Eq Rules

Eq or NotEq, Eq 5.4% 94.6% N/A

Beam width 1 NotEq 90.4% 9.6% N/A

Rules or NotEq, Eq 6.6% 93.4% 70.7%

Beam width 1 NotEq 90.9% 9.1% N/A

Rules only, Eq N/A 100% 87.8%

Beam width 1 NotEq N/A N/A N/A

Rules only, Eq N/A 100% 96.2%

Beam width 10 NotEq N/A N/A N/A

For the first output case, the output sequence to produce is either Equal or Not_equal.

Given a false positive rate of 9.6%, these results demonstrate the importance of producing a ver-

ifiable proof of equivalence when using machine learning for automated equivalence checking.

For the second output case, the model can produce either Not_equal or a rewrite rule sequence

which can be checked for correctness. The source programs for the first and second case are iden-

tical: 250,000 equivalent program pairs and 250,000 non-equivalent program pairs. In the second

case, the false positive rate from the network is 9.1% (rules predicted for Not_equal programs), but

the model only produces correct rewrite rules between actual equivalent programs in 70.7% of the

cases.
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One challenge with a model that produce rules or Not_equal is that beam widths beyond 1

are less usable. Consider that with a beam width of 1, if the network predicts Not_equal then the

checker would conclude the programs are not equal (which is correct for 90.9% of the actually not

equal programs). With a beam width of 10, there would be more proposed rewrite rules for equal

programs to test with, but if 1 of the 10 proposals is Not_equal, should the checker conclude

they are not equal? Or should the the checker only consider the most likely prediction (beam

width 1) when checking for non-equivalence? The third and fourth network output cases provide

an answer. For these 2 cases, the training set is 400,000 equivalent program pairs - none are non-

equivalent. 250,000 of these pairs are identical to the equivalent programs in the first 2 cases,

and 150,000 are new but were produced using the same random generation process. Note that by

requiring the network to focus only on creating rewrite rules, beam width 1 is able to create correct

rewrite rules for 87.8% of the equivalent programs. And now, since we’ve remove the confusion

of the Not_equal prediction option, beam width 10 can be used to produce 10 possible rewrite

rule sequences and in 96.2% of the cases these rules are correct. Hence, we propose the preferred

use model for pe-graph2axiom is to always use the model which is trained for rule generation

with beam width 10 and rely on our rule checker to prevent false positives. From the 10 rewrite

rule proposals, non-equivalent programs will never have a correct rewrite rule sequence produced,

hence we guarantee there are no false positives.

An Example of Back-Edge in the Program Graph

Figure 6.8 shows an example of DoX and DoHalf. The new operators result in 2 new edges

in our graph representation (along with 2 new back-edges): there is a ’loopbody’ edge type from

the loop operator node to the start of the subgraph, and there is a ’loopfeedback’ edge type from

the variable which is written to each loop iteration. These 2 edge types are shown in the figure.

The new Dohalf axiom intuitively states that DoX(g(y)) = DoHalf(g(g(y))) (where y is the

variable reused each iteration), and Dox states the reverse.
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DoX

/
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(a) DoX(b = (a +
b)/c)

DoH
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+

a /

+

a b
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(b) DoHalf(b = (a +
(a+ b)/c)/c)

Figure 6.8: Adding loop constructs creates cycles in the program graph.
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Chapter 7

Self-Supervised Learning to Prove Equivalence

Between Programs via Semantics-Preserving

Rewrite Rules

7.1 Introduction

We now build upon the program equivalence work presented in Chapter 6 by extending pro-

grams from complex linear algebra expressions to multiple assignment statements made up of such

complex expressions. Additionally, we combine automatic verification concepts from R-HERO

which we discuss in Section 4.7 and synthetic equivalence generation techniques from Chapter 6

to create self-supervised sample selection as we introduce in Section 3.4.

S4Eq takes as input two programs and generates a sequence of rewrite rules under a well-

defined system for equivalence using semantics-preserving rewrite rules [64]. Our work studies

programs represented as a list of statements with straight-line control-flow, using multiple vari-

able types and complex mathematical expressions to compute values. S4Eq outputs a verifiable

sequence of rewrite rules, meaning that it guarantees no false positives (no programs are stated

equivalent if they are not) by design. The system we present in Chapter 6 uses a graph neu-

ral network in a graph-to-sequence model; we want to support a larger language (bigger and more

complex programs) AND make the axioms much more complex: the decision of legally applying

them will no longer only need to look at a node and its subtree, but instead may require program-

wide analysis (looking at parent nodes), such as for common sub-expression elimination. As we

show in Table 7.4, the Transformer model performs significantly better than a graph2sequence

model when compared on similar equivalence proof problems, which justified our new proposed

design.
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The problem domain at hand, generating a provably correct sequence of rewrite rules, requires

a specific training procedure. We devise a novel self-supervised learning technique for proving

equivalence. We initially train a model in a supervised manner with synthetic data which has

a broad distribution on the use of rewrite rules. Then we propose a self-supervised technique

based on comparing results between broad and narrow proof searches to incrementally train our

model. Rewrite rule sequences demonstrating equivalence found by a quick, narrow search are

not considered interesting for further training; while sequences found by a broad search indicate

samples for which the model’s rewrite rule selections could be improved. We name this procedure

self-supervised sample selection. We fully implement our learning and inference models in the

popular OpenNMT-py framework [117], based on the transformer model.

To sum up, we make the following contributions:

• We present S4Eq, an end-to-end deep learning framework to find equivalence proofs be-

tween two complex program blocks. S4Eq produces a sequence of semantics-preserving

rewrite rules that can be built to construct one program from the other, via successive

rewrites. We consider rewrites which support complex program transformations such as

Common Subexpression Elimination and computational strength reduction. S4Eq emits a

verifiable sequence of rewrites, leading to no false positive by design.

• We devise an original training technique, tailored to our problem domain, called self-supervised

sample selection. This incremental training approach further improves the quality, general-

izability and extensibility of the deep learning system.

• We present extensive experimental results to validate our approach, demonstrating our sys-

tem can successfully prove equivalence on both synthetic programs and programs derived

from GitHub with up to 97% success, making the system ready for automated and unsuper-

vised deployment to check equivalence between programs.
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Prog A (source code):                                      (a)
y_diff = ( particles [ i ] . y_pos - particles [ j ] . y_pos ) ;

r = sqrt ( ( x_diff * x_diff ) + ( y_diff * y_diff ) ) ;

mass = particles [ j ] . mass ;

mass /= ( ( r + EPSILON ) * ( r + EPSILON ) 

* ( r + EPSILON ) ) ;

x_diff *= mass ;

y_diff *= mass ;

sumX += x_diff ;

sumY += y_diff ;

Prog B (source code):                                        (d)
distancey = y - src -> center_y ;

rij = sqrt ( distancex * distancex + distancey * distancey ) ;

cst_j = src -> center_mass * 1.0 / ( ( rij + E0 ) * ( rij + E0 ) 

* ( rij + E0 ) ) ;

cord_x = cst_j * distancex ;

cord_y = cst_j * distancey ;

Fx += cord_x ;

Fy += cord_y ;

Prog A (abstracted):   (b)
t1 = ( i1 - i2 ) ;

t2 = f1 ( ( i3 * i3 ) + ( t1 * t1 ) ) ;

t3 = i4 ;

t4 = t3 / ( ( t2 + i5 ) 

* ( t2 + i5 ) * ( t2 + i5 ) ) ;

t5 = i3 * t4 ;

t6 = t1 * t4 ;

o1 = i6 + t5 ;

o2 = i7 + t6 ;

Prog B (abstracted): (e)
t1 = i1 - i2 ;

t2 = f1 ( i3 * i3 + t1 * t1 ) ;

t3 = i4 * 1s / ( ( t2 + i5 )

* ( t2 + i5 ) * ( t2 + i5 ) ) ;

t4 = t3 * i3 ;

t5 = t3 * t1 ;

o1 = i6 + t4 ;

o2 = i7 + t5 ;

Prog A (prefix encoding of AST):      (c)
s28 = ( -s s01 s02 ) ;

s27 = ( u1s ( +s ( *s s03 s03 ) ( *s s28 s28 ) ) ) ;

s26 = s04 ;

s25 = ( /s s26 ( *s ( +s s27 s05 )

( *s ( +s s27 s05 ) ( +s s27 s05 ) ) ) ) ;

s24 = ( *s s03 s25 ) ;

s23 = ( *s s28 s25 ) ;

s30 === ( +s s06 s24 ) ;

s29 === ( +s s07 s23 ) ;

Prog B (prefix encoding of AST): (f)
s28 = ( -s s01 s02 ) ;

s27 = ( u1s ( +s ( *s s03 s03 ) ( *s s28 s28 ) ) ) ;

s26 = ( *s s04 ( /s 1s ( *s ( +s s27 s05 ) 

( *s ( +s s27 s05 ) ( +s s27 s05 ) ) ) ) ) ;

s25 = ( *s s26 s03 ) ;

s24 = ( *s s26 s28 ) ;

s30 === ( +s s06 s25 ) ;

s29 === ( +s s07 s24 ) ;

Equivalence Rewrite Rule Sequence: (g)
stm4 MultOne Nr 

stm4 Inline s26    stm3 Rename s26

stm3 DeleteStm stm4 Rename s25

stm5 Rename s24

stm4 Commute N 

stm3 NeutralOp Nr 

stm3 DivOne Nr 

stm3 FlipRight N 

stm5 Commute N

ProgInt after “stm3 Deletestm”:        (h)
s28 = ( -s s01 s02 ) ;

s27 = ( u1s ( +s ( *s s03 s03 ) ( *s s28 s28 ) ) ) ;

s25 = ( /s s04 ( *s 1s ( *s ( +s s27 s05 )

( *s ( +s s27 s05 ) ( +s s27 s05 ) ) ) ) ) ;

s24 = ( *s s03 s25 ) ;

s23 = ( *s s28 s25 ) ;

s30 === ( +s s06 s24 ) ;

s29 === ( +s s07 s23 ) ;

Figure 7.1: Equivalence proven between 2 multi-statement programs. The equivalence proof is 11 steps

long involving expression and statement rules.

• We provide all our datasets to the community including synthetic generation techniques for

the problem of program equivalence via rewrite rules, as well as sequences mined from

GitHub [121].

7.2 Problem Statement

We now explain the problem domain of proving program equivalence via rewrite rule se-

quences.

7.2.1 Scope

In this work we represent programs as a list of statements comprising symbolic expressions

made of variables, operators, function calls, and neutral/absorbing elements (e.g., 0, 1). We support
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Table 7.1: The 23 rewrite rules considered by S4Eq. Considering combinations with scalar (a, b, ...) and

vector (~v, ~w, ...) types, rewrite rules represent multiple operations of linear algebra.

Rewrite Rule Example or Description Rewrite Rule Example or Description

SwapPrev Swap assign statements Inline VarID Replace VarID with expression

UseVar VarID Replace expr. with VarID NewTmp NodeID VarID Assign VarID to NodeID expr.

DeleteStm Delete assign stm Rename VarID Change assignment to VarID

AddZero NodeID ~v →(~0 + ~v), b→0+b SubZero NodeID ~v→ (~v - ~0), b→b-0

MultOne NodeID ~v →(1×~v), b→1×b DivOne NodeID a→ a/1

Cancel NodeID (~v − ~v)→ ~0,(b/b)→1 NeutralOp NodeID (~v - ~o)→ ~v, 1×a→a

DoubleOp NodeID −(−~v)→ ~v, 1/1/x→x AbsorbOp NodeID (~v×0)→ ~0, (b×0)→0

Commute NodeID (a + b)→ (b + a) DistributeLeft NodeID (a + b)c→ ac + bc

DistributeRight NodeID a(b + c)→ ab + ac FactorLeft NodeID ab + ac→ a(b+c)

FactorRight NodeID ac + bc→ (a+b)c AssociativeLeft NodeID a(bc)→ (ab)c

AssociativeRight NodeID (ab)c→a(bc), (ab)/c→a(b/c) FlipLeft NodeID -(~v - ~w)→ ~w − ~v
FlipRight NodeID a/(b/c)→ a(c/b)

both vector and scalar types, as well as operators and functions that mix these types. We support

programs with single or multiple outputs of varying types.

This language is most applicable when comparing complex mathematical computations such

as linear algebra expressions, sequences of basic blocks, or straight-line code equivalence [146,

102].

7.2.2 Encoding of Programs and Rewrite Rules

We now discuss how we represent programs and rewrite rules. Figure 7.1 illustrates how pro-

grams are represented. The input C programs, shown in boxes (a) and (d), contain multiple assign-

ment statements in sequence. We process this code to create an abstracted representation, shown

in boxes (b) and (e). Our lowest level of representation, shown in boxes (c) and (f), uses a prefix

representation of the computation tree, with all computations using a one-operand syntax of (op

op1) or a two-operand syntax of (op op1 op2). This representation is an encoding of the

abstract syntax tree (AST) for the abstracted program and it is this precise representation on which

our rewrite rules operate.

We first process C programs using variable renaming [126] and global value numbering [188];

that is, to reduce the number of distinct tokens to handle we rename all distinct variables/array ac-

cesses to a unique and canonical name for that program. For example, particles[i].y_pos
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becomes i1 in the abstracted program. Without any loss of (local) semantics, this abstraction

reduces the number of different variable names to handle.

We identify all inputs to a program block as those variables which are not assigned within

the block; and outputs of the block are variables which are not read after assignment within the

block. Our abstracted programs use i1,i2,... for input variables, t1,t2,... for temporary

variables, and o1,o2,... for output variables.

Next, a prefix encoding of the AST is designed to provide for precise specification of rewrite

rules with consideration for deep learning language representations, as discussed further in Sec-

tion 7.3. The parenthesis positioning in this encoding allows for direct recognition of subtrees,

and nodes of this tree can be used when rewrite rules are specified. For example, with reference

to Figure 7.1, ProgA in subfigure (c) is transformed into ProgB in subfigure (f) with the 11 step

rewrite rule sequence shown in subfigure (g).

Our rewrite rule syntax is:

stm# RuleName [NodeID] [VarID]

where stm# is the assignment statement number in ProgA which should have RuleName applied.

NodeID optionally identifies the node within the right hand side of the statement, and VarID is

the optional name of the variable to use for applying the rule.

For example, the very simple MultOne rewrite rule represents the semantically correct rewrite

A1 : x = 1N ∗ x, ∀x ∈ N when considering natural arithmetic. The first rewrite in Figure 7.1 is

performed on statement 4, and applies the MultOne rule at NodeID Nr, which is our syntax to

model the right child (r) of the root expression node (N). For example, the left child of node Nr

would be denoted Nrl. Hence here, s25 = (/s s26 ( *s ... ) ) is transformed into

s25 = (/s s26 (*s 1s (*s ... ) ) ). The Inline rewrite rule replaces all in-

stances of a given variable in the indicated statement with the RHS of its most recent assigment,

and the DeleteStm rewrite rule will remove an assignment statement (this rule is only legal when

the variable assigned is not an output of the program and is not used after being assigned). Hence,
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the second and third rules in box (g) inline the value of s26 into the current statement 4 and then

delete the unnecessary assignment of s26 resulting in the intermediate program shown in box (h).

We include in our rewrite rules 2 main groups: linear algebra axioms sufficient to allow our set

of vectors to be considered an Abelian group mathematically and our set of scalars to be considered

a field; then statement interactions which allow standard inter-statement compilation actions to be

applied (such as replacing a variable by its assigned expression, which we refer to as (variable)

inlining, or defining a new variable which can be shared by multiple statements). A description of

all 23 of our rewrite rules is provided in Table 7.1.

Ultimately, the goal is produce a verifiable sequence of rewrite rules to transform ProgA into

ProgB. Indeed, a sequence of rewrite rules forms a transformation recipe for a program: taking

ProgA, we apply the first rewrite rule to obtain ProgA’, then we apply the second rule in the

sequence on ProgA’ to obtain ProgA”, etc. till the end of the sequence to obtain ProgAtrans, by

successive rewrite steps. Then, to determine whether ProgA and ProgB are equivalent under this

rewrite sequence, we check whether ProgAtrans is syntatically identical to ProgB. We also need

to ensure the validity of the rewrite sequence: before each application of one rewrite rule, we first

verify it is legal to apply by ensuring the conditions of applications are met (e.g., it is applied on an

appropriate node/subtree structure). If the sequence can be legally applied, meaning each step does

preserve semantics, and ProgAtrans is syntactically identical to ProgB, then we have computed a

verified proof of equivalence between ProgA and ProgB. Verifying the validity of a sequence is

trivial as it amounts to a simple (sub)tree shape and token values matching in our rewrite system.

7.2.3 Pathfinding Rewrite Rule Sequences

Intuitively, we can view the program equivalence solution space as a very large graph, where

every possible syntactically different program in the language is represented by its own vertex v.

Then, two vertices vi and vj are connected by a labeled edge iff applying one particular rewrite

rule on a particular node of vi is valid, and leads to producing the program vj . The edge is labeled

by the rewrite rule applied (as defined above). This graph is a multigraph, as multiple different

198



rewrites may connect the same two programs. It also contains cycles, as a sequence of rewrites can

"undo" changes. Therefore, any two programs connected by a path in this graph are semantically

equivalent: the rewrite sequence is the set of labels along the edges forming the path.

Building the rewrite rule sequence S for ProgB ≡ S(ProgA) amounts to exposing one path

(out of possibly many) from ProgA to ProgB in this graph when it exists, the path forming the

proof of equivalence. We build a deep learning system to learn a stochastic approximation of an

iterative algorithm to construct such feasible path when possible. Our approach avoids entirely the

need to craft smart exploration heuristics for such large equivalence graph to make this path-finding

problem practical (akin to building tactics in theorem provers): instead, the traversal heuristic is

learned automatically, without any user input, by deep learning.

7.3 S4Eq: Deep Learning to Find Rewrite Rule Sequences

We propose to use a deep learning model to find rewrite rule sequences which transform one

program into a semantically equivalent target program. The idea is to learn from correct rewrite

sequences, and then to solve previously unseen program equivalence problems.

7.3.1 Overview of S4Eq

Prior work has shown that source code has patterns that are similar to human language [95],

and thus techniques used in natural language processing can work on source code as well, includ-

ing deep learning [48]. Deep learning has the ability to learn syntactic structure and expected

outputs related to programs. For S4Eq we aim to create a deep learning model which, given 2

programs, will predict a sequence of rewrite rules which can formally prove equivalence between

the 2 programs.

For S4Eq we use the state of the art sequence-to-sequence deep learning model known as the

transformer model [208]. Because sequence-to-sequence models are stochastic, they can be used

to produce multiple answers for the same query; this is called beam search. By using beam search
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Figure 7.2: Transformer model used to predict rewrite rules given 2 input programs.

we can order rewrite rules proposed by the model. By composing beam search recursively, we can

construct proofs which use heuristics learned by the model to guide proof search.

In S4Eq, we devise an original training process specifically for the task of proving equivalence.

The S4Eq training process combines supervised and self-supervised learning and does not require

human labeling.

7.3.2 Transformer Model

For S4Eq, we use a transformer model for sequence to sequence modeling based on the system

we cover in Section 2.1.6. We introduce the input and output languages for X and Z in Section 7.2.

Subfigures 7.1(c) and 7.1(f) are examples of such inputs. The output language for Z is illustrated in

subfigure 7.1(g). For input to the transformer, we add a special token Y to separate the 2 programs,

with ProgA being input before ProgB. The input and output languages are fully detailed in our

GitHub repository [121].

In S4Eq, the transformer model we use is shown in Figure 7.2. The yellow boxes represent the

model’s learned interpretation for the tokens in the input and output. Tokens such as ’*s’ and ’=’ in
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the input language or ’stm3’ and ’Commute’ in the output language have learned embeddings used

by the transformer model. The model accomplishes context-dependent interpretation with multiple

attention layers which learn a complex representation for a program node by learning which other

nodes should be “attended to” while creating the higher level representation. 

ProgB

ProgA
Transformer

Model

Rewrite 
Rule11

Rewrite 
Rule12

Rewrite

Rule13

ProgB

Transformer

Model

Rewrite 
Rule21

Rewrite 
Rule22

Rewrite 
Rule23

Prog

Int11

ProgB

Transformer

Model

Rewrite 
Rule24

Rewrite 
Rule25

Rewrite 
Rule26

Prog

Int12

ProgB

Prog

Int21

ProgB

Prog

Int22

Given a program pair, the model proposes 
B rewrite rules (B=3). Legal rules are used 
to create I intermediate programs (I=2) 
which are paired with the original ProgB
from which the model proposes rewrite 
rules for the next step. In this example, a 
proof is found using 3 rewrite rule steps.

Transformer
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Rewrite 
Rule31

Rewrite 
Rule32

Rewrite 
Rule33

Transformer
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Rewrite 
Rule34

Rewrite 
Rule35

Rewrite 
Rule36

Prog

Int31

ProgB

Figure 7.3: Proof search: Transformer model produces multiple rewrite rules at each step. Unusable rules

are marked with X.

In the transformer model, the encoder and decoder use layers which provide an attention mech-

anism which relates different positions of a single sequence in order to compute a representation of

the entire sequence. For example, the attention layers provide a mechanism for information related

to the assignment of a variable to affect the representation of other parts of the program where the

variable is used.

Multi-head attention allows for the different heads to learn different aspects of the data. For our

problem of program equivalence, the model is trained to produce correct rewrite rules and hence

all of the learnable functions are learning representations useful for this task. To illustrate, one of

the heads may tend to build a representation for addition and subtraction of vectors, while another

head might build a representation for multiplication and division of scalars. What the heads learn

is not constrained by the architecture, so the true meaning of the heads at each layer is not easily

decipherable, but multi-head attention has been shown by others and by our own ablation studies

to be valuable.

Figure 7.2 identifies ’N layers’ for both the encoder on the left (which encodes the input pro-

grams to an intermediate representation) and the decoder on the right (which decodes the represen-
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tation to produce the rewrite rule output). The ’N layer encoder’ is using self-attention in which

the information processed by a given layer is provided by the layer below. A similar situation

holds for the ’N layer decoder’, however the H connection from the encoder layers to the decoder

layers allows the decoder to process information from the decoder and encoder. The transformer

model we employ also includes residual and feed-forward sublayers and a full description of the

interactions within the model can be read in the work by Vaswani, et al. [220]. We used the Adam

optimizer [116] to adjust the weights in the network based on the loss function between the target

token expected in the training sample and the result produced by the current network.

The intermediate representation H encodes the complex representations for each token of the

input, in our case a pair of programs. The decoder model will generate a first output token based on

H and then generate subsequent tokens based on H and the previously output tokens. The Softmax

function normalizes the output of the final decoder layer to a probability distribution:

Softmax(zi) =
ezi

∑K

j=1 e
zj

for z = (z1, ..., zK) ∈ R
K

The effect of the Softmax layer is to create an output that can be interpreted as representing the

probability that a given token is correct, given the training the model has been exposed to. As

the output is generated, when the tokens with the highest Softmax values are selected we create a

rewrite rule which represents the most likely next edge in our path through the program space from

ProgA to ProgB.

7.3.3 Beam Search to Explore Multiple Possible Proofs

A typical approach when using sequence-to-sequence models is called “beam search”, it is the

process of asking the deep learning model to produce multiple answers for the same question. As

the network produces likely token selections, the Softmax layer shown in Figure 7.2 is effectively

producing probabilities for each token. Using these probabilities we can produce multi-token

outputs sorted in order based on the total probability the model assigns to the sequences.
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In S4Eq, we use this beam search to enumerate the possible next rewrite rule to apply. Each

proposal is then checked for legality (whether the proposed rewrite rule can indeed be applied at

the given program location) and novelty (the program resulting from the rule application does not

match a previously seen program for this search).

In addition to the rewrite rule beam, S4Eq uses a second type of beam during the proof search.

The idea is to feed the network again based on the result of the application of the previously

suggested rewrite rules. We denote the number of enumerated rewrite rules B. As the search

advances, the B outputs from the neural network all lead to potential intermediate programs from

which a search can continue. After having checked for legality, we limit this potential exponential

growth in the search to at most configurable I intermediate programs which may be explored at a

given proof step.

Consider a search where we set B to 3 and I to 2, as diagrammed in Figure 7.3. When a

transformation search between 2 programs is attempted, at first there is only 1 sample (the original

2 programs to prove equivalent) fed into the transformer model which will propose 3 rewrite rules.

Perhaps the first 2 are legal rewrite rules; both of these are checked for equivalence to the ProgB

goal and assuming there is no match both will be fed into the transformer model on the next step.

This will produce 6 proposed rewrite rules. If a rewrite rule would create an intermediate program

that is already being searched (for example commuting the same node twice in a row) then the

search process will not create the duplicate intermediate program. In the figure, rewrite rules

which are illegal or create duplicate search programs are marked with a red X. The search routine

will select the most likely proposed rule for each ProgInt/ProgB pair if it legally creates a novel

intermediate program.

As diagrammed, the ProgInt11/ProgB pair produces a legal novel program which is used for the

next step, but the ProgInt12/ProgB pair’s 1st proposal is not usable. Since the 2nd proposal from

the ProgInt11/ProgB pair is also not usable, the legal 2nd proposal from the ProgInt12/ProgB pair is

used to complete the 2 entry I beam for the continuing search. Our search will 1st try to use the 1st

proposed rule from each ProgInt/ProgB pair, then the 2nd, and so on until the next I intermediate
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programs are created. We will limit the intermediate programs that feed into the transformer to I

as the search is continued up to the rewrite rule sequence step limit Ns (such as 25 steps). In rare

cases, none of the proposed rewrite rules for any of the intermediate programs will produce a legal

novel intermediate program and the search will terminate before the step limit. In our example, the

2nd rewrite rule proposed from the model when given ProgInt21/ProgB to the transformer rewrites

ProgInt21 into the lexical equivalent of ProgB, and hence, a 3 step proof has been found. ProgA is

transformed into ProgB by applying Rewrite Rule11, Rewrite Rule21, and then Rewrite Rule32.

7.3.4 Training Process

<Rewrite Rule Sequence>
Train Transformer

Model 0        M1

Supervised

T1 data with 

program pairs and 

their rewrite rules

Proof search with 

Transformer Model Mn

Search 

results

Found with Ie

Found with Ih

Failed with Ih

Unsupervised

U: Dataset of 

equivalent program 

pairs

<ProgA/B sample>

<ProgA/B 

sample>

<Rewrite Rule Sequence>
Train Transformer

Model Mn Mn+1

Self-Supervised

Tn+1 data with 

program pairs and 

their rewrite rules

<ProgA/B sample>

Proof found with

Ih but not Ie

Full proof failed, 

but a legal step 

used rare token

Ih proof is at least 2 steps 

shorter than Ie and uses rare 

token or has many steps

+

Figure 7.4: Self-Supervised Sample Selection: proof attempts with I = Ie and Ih intermediate programs

are used to incrementally train the model.

A key novelty of S4Eq lies is the way we train the neural network. We devise an original

training process which is dedicated to the challenges of synthesizing equivalence proofs. This

training process involves three kinds of training which we now present.
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Initial Supervised Training

The typical technique for training sequence-to-sequence models involves providing supervised

training samples which provide the target output paired with sample input. S4Eq performs initial

training using program pairs for which a rewrite rule sequence is known between the two pro-

grams ProgA and ProgB. The details of how to obtain such a supervised dataset are discussed in

Section 7.4.1. We refer to this initial supervised dataset of program pairs and their rewrite rules as

T1, and the we refer to the initial model trained with it as M1.

Incremental training with challenging proofs

After we have an initially trained model, we can use it to attempt new proofs. Because a pro-

posed rewrite sequence between 2 programs can be checked automatically, we can automatically

verify the generated outputs and use them to further optimize the model. At this point, to fur-

ther optimize the model, we don’t need to generate program pair inputs with rewrite rule outputs

in a supervised manner, but only program pair inputs. In other words, this can be considered as

self-supervision since the labeling is automated.

To be effective, the core challenge becomes to effectively select new samples. Hence, we term

this technique self-supervised sample selection, and since our framework uses this technique on

the problem of program equivalence, we name our framework S4Eq.

First, we need a dataset (or a data sample generator) of known equivalent programs which does

not include the rewrite rule steps. We call this dataset U , for Unsupervised, as the pairs do not

have target rewrite rules associated with them. Relative to the samples in T1, the looser restrictions

on the U dataset allows S4Eq to generalize to program distributions and proof distributions which

may be different than those found in T1.

Figure 7.4 gives a complete overview of our training process for the transformer models. As

we show in Section 7.3.4, we start with supervised training and produce model M1 using program

pairs and their expected rules. Now we can use model M1 to attempt proofs with known equivalent

programs in dataset U .
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Our key idea is to focus on challenging problems for the current model. Given an intermediate

program limit, we can say that the model can ’easily’ prove equivalence if a small number of

intermediate programs are available at each search step (such as 1 or 2). In such a case, the most

likely rewrite rules proposed by the model are checked for equivalence up to a given proof step

limit, and if the proof is found, then the model is already well trained for the given problem. Our

variable representing the number of intermediate programs searched at each proof step is I and

the number of steps to search is Ns steps. To check for ’easy’ proofs, we search for a proof with

I = Ie where Ie is a small number. To check for ’challenging’ proofs, we set I = Ih where Ih

is a larger number (10 or more), allowing the proof search to explore more possible rewrite rule

paths which are considered less likely to be correct by the current model. We attempt to prove each

known-equivalent pair with I = Ie and also I = Ih. We define challenging proofs as those found

with I = Ih but not I = Ie. When proofs are attempted with model Mn, the next training dataset

(Tn+1) includes samples with proof steps found with I = Ih but not I = Ie; thus, the model is

more likely to propose similar steps in the future.

In addition to including challenging proofs, if I = Ih found a proof at least 2 steps shorter than

the I = Ie proof we include that proof given certain conditions. We set the probability of including

such proofs based on length in order to bias the self-supervised samples to solve complex proofs.

Also, based on distributions discussed in Section 16, we include the I = Ih proofs when they

include rare output tokens such as referring to higher statement numbers, or deeper expressions

nodes, or rare rewrite rule names.

After creating our initial training samples in T1, we train on various model hyperparameter

options and use validation test sets to determine the model best suited for continued training.

During incremental training, the model size parameters (number of layers, etc.) are constant but

we train with variations on initial learning rate and decay rate. We then select the best model to

continue training using the same validation sets. These validation sets help prevent catastrophic

forgetting [80]. But additionally, if a model becomes weaker at solving certain problems then
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problems similar to those will get selected in the next iteration of the training, again reducing

catastrophic forgetting.

Boosting methods in which models weak in one part of the problem distribution are boosted

by other models have been shown to reduce risk of overfitting [65] and we anticipate that our

methodology for incremental training based on challenging proofs will similarly resist overfitting.

Incremental training with rare tokens

If some input or output tokens are not yet well understood by a given model Mn, it is because

the training datasets so far do not have sufficient samples demonstrating the use of those tokens.

To overcome this problem, we propose another kind of incremental training based on rare tokens.

The core idea is to oversample those proofs and rewrite rules that involve rare tokens. Even when

a full proof search fails, when a rare output token is used legally by a single rewrite rule step in the

proof, we keep it in the training dataset. This type of training improves the model representation

for the rare token and the situations in which it should be applied and is based on the hindsight

experience replay concept [14].

Consider again Figure 7.3 and a case where a required rewrite rule to prove ProgA equal to

ProgB was, for example, stm2 Commute Nlrll. The node Nlrll is an example of a node ID

which specifies the 5th level of the AST for statement 2. If there haven’t been sufficient training

samples with Nlrll then the model may not have a good internal representation for when the

node should be produced by the final Softmax layer of the transformer model and the proof might

fail. However, if, for example, RewriteRule25 was stm2 AssociativeLeft Nlrll and

this was a legal application of AssociativeLeft then the pair with ProgInt12 and ProgInt22

can be proven equal by applying RewriteRule25. If Nlrll is a rare token, this sample can be

included in the next training dataset and this will improve the model’s representation for this rare

token in order to improve use of this token after incremental training.
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7.4 Experimentation

We now describe our experiments to assess S4Eq. We start by carefully devising two datasets

for training and evaluating our system.

7.4.1 Dataset Generation

We devise two separate datasets with different properties. First, we wish to evaluate our al-

gorithm broadly on actual programs from open source C functions found on GitHub, we call this

dataset K. Second, we develop a process to create synthetic program pairs based on applying

rewrite rules, we call this dataset R.

Equivalent program pairs from GitHub

We want to have a dataset representative of developer code with straight-line programs match-

ing our grammar. For this, we use an existing dataset of C programs mined from GitHub suitable

for machine learning [48].

We process these C functions to find sequences of assign statements that correspond to our

straight-line program grammar. We search for C snippets of mathematical computations, with at

least 2 assignments, at least one multiply or divide statement, and require at least 1 temporary vari-

able is used in an output variable. To create our abstracted programs (a process similar to function

outlining [247]), we collapse complex data structure accesses into an intermediate variable. For

example, C code of the form delta = ca->tcp_cwnd - cwnd ; max_cnt = cwnd /

delta ; will be abstracted to t1 = i1 - i2 ; o1 = i2 / t1 ;. Two complete ex-

amples of abstracted programs are shown in subfigures 7.1(b) and 7.1(e).

Algorithm 3 provides an overview of the process we use. After finding source GitHub pro-

grams and abstracting them, we perform 3 high-level compilation steps on the abstracted C code:

common subexpression elimination, strength reduction, and variable reuse. For training sample

generation, Encode will transform abstracted C code into the prefix encoding of the AST. En-

code will randomly reassign scalar variable IDs to temporary variables with each iteration of the

foreach loop; so t1 may be assigned to s03 for one program and s25 for another program.
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Algorithm 3: GenerateKnownEqual

Input : Tokenized C Functions from GitHub: F
Output: Prefix encoded known equivalent pairs K

1 K ← ∅ {Compiler equivalence program pairs}

2 S ←FindSourcePrograms(F ) {Possible programs}

3 foreach s in S do

4 s̃←Abstraction(s) {Abstracted source code}

5 s̃cse ←CommonSubexpressionElimination(s̃)
6 s̃str ←StrengthReduction(s̃cse)
7 s̃reuse ←VariableReuse(s̃str)
8 p←Encode(s̃) {Encode into prefix format}

9 pcse ←Encode(s̃cse)
10 pstr ←Encode(s̃str)
11 preuse ←Encode(s̃reuse)
12 prules ←Rules(preuse) {Probabilistic application of rewrite rules}

13 if CheckLimits(p, pcse, pstr, preuse, prules) then

14 K ← K+MixPairs(p, pcse, pstr, preuse, prules)
15 end

16 end

The goal of the random assignment by Encode is to help with generalization. The high-level com-

pilation steps utilize many of the 23 rewrite rules shown in Table 7.1, but in order to ensure all

rewrite rules are represented in K, we call the Rules function on preuse (the encoded program after

all compilation steps) which may apply one or more rewrite rules to create prules. The Rules func-

tion is used heavily in Section 16 and is discussed further there. The CheckLimits function ensures

that our samples meet the model limits9.

Using these rules, the dataset K derived from C functions from Github eventually contains

49,664 unique known equivalent program pairs for our experimentation.

Synthetic equivalent program pairs

As we discuss in Section 7.3.4, we need to create an initial training set with broad distribution

on the input and output tokens necessary for our problem of proving programs equivalent. We

create legal input programs by probabilistically applying production rules from a grammar which

9We limit each program to 20 statements, at most 100 AST nodes, at most 30 scalar variables, an expression depth

of 5 levels of parenthesis (expression AST depth of 6), and at most 2 outputs.
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defines our target program space. This approach allows us to create arbitrarily large amounts of

training data.

Algorithm 4: GenerateRewrites

Input : Probabilistic grammar: G, Number of samples desired: n
Output: Prefix encoded equivalent program pairs R

1 R← ∅ {Rewrite rule equivalence program pairs}

2 while samples in R < n do

3 pA ←GenerateProgA(G) {Probabilistic production rule generation}

4 pB ←Rules(Rules(Rules(pA))) {3 passes over pA with probabilistic application of

rewrite rules}

5 if CheckLimits(pA, pB) then

6 R← R + (pA, pB)
7 end

8 end

Prog A (prefix encoding of AST):   (a)
v26 = ( -v v27 ( h5v v27 v27 ) ) ; 

v27 = ( +v ( -v 0v 0v ) ( -v 0v v26 ) ) ; 

s21 = ( u4s ( is s01 ) ) ; 

s01 = ( ns ( ns s21 ) ) ; 

v08 === ( *v ( -s s21 s01 ) ( -v v26 v26 ) ) ; 

s26 === ( h4s v26 ( nv v27 ) ) ;

Prog B (prefix encoding of AST): (b)
v26 = ( -v v27 ( h5v v27 v27 ) ) ; 

v08 === 0v ; 

v27 = ( -v 0v v26 ) ; 

s26 === ( h4s v26 ( nv v27 ) ) ;

Rewrite Rule         (c)

Sequence:
stm2 AssociativeLeft N 

stm5 Cancel Nr 

stm5 AbsorbOp N 

stm4 DeleteStm

stm2 NeutralOp Nll

stm3 SwapPrev

stm4 SwapPrev

stm2 DeleteStm

stm3 NeutralOp Nl

Inputs:    v27, s01

Outputs: v08, s26

Figure 7.5: Equivalence proven between 2 multi-statement programs generated synthetically. The equiva-

lence proof is 9 steps long involving expression and statement rules.

Algorithm 4 shows the synthesis algorithm. Our program grammar defines a program as made

up of a series of assign statements which assign scalar and vector variables to complex mathemat-

ical expressions. Our program generation process starts by creating assignment statements for the

output variable(s). Then a subset of the variables used in the expression may have earlier assign
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statements added. This process continues adding assign statements randomly to the beginning of

the program.

Variables which are used but never assigned are considered program inputs. For example, in

the program “c = b + a; d = c * a + b;”; a and b are inputs, d is an output, and c is a

temporary variable. Subfigure 7.5(a) shows an example ProgA generated using our algorithm. It

includes 6 statements and produces one vector output v08 and one scalar output s26 identified with

=== tokens.

Rules In order to create training samples with known paths between equivalent programs, after

creating a program we randomly apply legal rewrite rules to the start program. For example,

Figure 7.5(c) shows the rewrite rules randomly selected which transform ProgA in subfigure (a)

into ProgB in subfigure (b).

Synthetic distribution Figure 7.6 diagrams the distribution of samples generated by Algorithm 4

with a plot of the number of AST nodes in ProgA and the number of rewrite rules used to generate

ProgB in the sample. When GenerateProgA generates a program with more AST nodes, more

rewrite rules are found by invoking of Rules function. We limit the number of AST nodes to 100,

as shown in the distribution, but the number of rewrite rule steps is not strictly limited and we have

some cases with over 40 steps between ProgA and ProgB (not shown in figure).

Certain rewrite rules, such as Commute, tend to be applicable to many nodes in a program

AST, while others, such as FactorLeft, require rarer patterns in order to be legally applied.

We adjust the likelihood of rewrite rules being applied to help balance the likelihood a proof will

use any given rewrite rule. All 23 rules shown in Table 7.1 will occur in our synthetic dataset.

Because the Commute rule can be applied to a large number of operators in our AST, we limit the

likelihood it will be applied to about 9% per location with the result that 60.2% of the proofs use it

for generating ProgB. Conversely, given our random program generation process, FactorLeft

and FactorRight are not so likely to be applicable, so we bias the application so that about

65% of the AST nodes which would allow these rules have them applied which results in 7.1% and

7.2% of proofs using these rules.
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Figure 7.6: Distribution of proof length for synthetic program equivalence dataset R.

For algorithm 4 the probabilistic grammar expansion used in GenerateProgA is tuned so as to

create a range of program sizes. We skew the generation to prefer creation of programs with large

AST node counts which have either many statements or deep expressions and rely on CheckLimits

to ensure programs outside our transformer model ranges are pruned out. For the T1 initial training

dataset, we create 150,000 equivalent program pairs; given that the average pair takes multiple

rewrite rules to transform, we create 640,000 rewrite rule steps from these pairs for training the M1

model.

7.4.2 Experimental setup of incremental training

Recall from Section 7.3.4 that the model initially trained on synthetic programs with target

rewrite rules is labeled M1. We train our initial model M1 for 100,000 steps, which is 5 epochs of

our 640,000 sample T1 dataset (after dividing by our effective batch size of 32). As per Figure 7.4,

M7 has gone through 6 iterations of incremental training beyond the initial M1 model. In order

to validate partially trained models during training, we create Rv and Kv, which are each 1,000

equivalent program pairs randomly sampled from the R and K datasets. The success of the inter-

mediate models on proving equivalences in Rv and Kv is used to select the model to use in the next

step of incremental training.

For self-supervised sample selection, after training M1 with T1 we want to create training

data which ensures we continue improving performance on the synthetic dataset R but also learn
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to solve equivalent programs in K. Referring to Figure 7.4, we create the unsupervised set of

program pairs U at each iterative learning step by selecting 60,000 equivalent pairs from R and

40,000 equivalent pairs from K.

In order to attempt to prove equal the program pairs in U , we chose Ie = 2 for the “easy” beam

width as a beam width of only 1 can fail with a single misstep and we wanted to allow recovery

from that case. Due to machine time constraints, we chose Ih = 20 for the “hard” beam width and

Ns = 25 for the maximum number of proof steps to search. From this data, we create Tn for use

in training model Mn.

During incremental training, we train 4 model versions (we vary the learning rates) for 50,000

steps with the new Tn training dataset. Similar to early stopping techniques [178], we use our

validation datasets to select the best performing model during incremental training. We save the

model every 10,000 training steps and select Mn as the model with the highest total proofs found

in the 2,000 test samples when Rv and Kv are combined. Our final iteration is selected when

both Rv and Kv have improved performance by 1% or less when training the next model. For our

experiments, this is M7.

7.4.3 Research Questions

In this section, we describe our research questions for S4Eq and the protocol methodologies

for evaluating them.

Our research questions are:

• RQ1: How effective is S4Eq on the synthetic test dataset?

• RQ2: How useful is incremental learning with self-supervised sample selection in improving

S4Eq’s model?

• RQ3: To what extent does our model generalize outside the training data?

For RQ1 we create a 10,000 sample test dataset drawn from the synthetic programs R which

we call Rt. For RQ2 we create a 10,000 sample test dataset drawn from K which we call Kt.
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The samples in the test datasets do not overlap with any samples used for training nor with the

validation datasets Rv and Kv. To more broadly understand the system behavior, in both RQ1

and RQ2 we analyze subsets of Rt and Kt based on characteristics of the rewrite sequence which

transforms the first program in the sample into the second. Of the 23 rewrite rules shown in

Table 7.1, Rename is the one which occurs the least in our initial T1 training data as it is least

used when synthetically creating program pairs in R (552 out of 10,000 samples in Rt use it),

so we report on the subset of proofs which use Rename to observe the system behavior on this

group. Newtmp is the rule which improves most between M1 and M7 in the Kt test set - improving

from 545 proofs found by M1 to 2,277 proofs found by M7 so we also report based on this rule.

The DistributeLeft rule is the one most improved on between M1 and M7 when attempting

proofs in the Rt test set - improving from 796 proofs found by M1 and 1,771 proofs found by M7.

Proofs that use these 3 rewrite rules will tend to be longer proofs (longer proofs are more likely

to use any given rewrite rule), so we also include a rule category which is subtractive. We report

on proofs which do not include any statement rules (i.e., they don’t use SwapPrev, Usevar,

Inline, Newtmp, DeleteStm, or Rename), which also allows for comparisons with our prior

work [123]. Because our hindsight methodology focuses on NodeIDs at depth 5 of the AST (and

these are individually our least common tokens), we report on proofs which use such an identifier.

Our last 2 proof subsets are based on the length of the rewrite rule sequence used to transform

ProgA to ProgB in the sample - we report on proofs of 1-10 steps as a group as well as proofs of

11 steps or more.

We perform all our experiments on systems with 12 Intel(R) Xeon(R) CPU E5-1650 v4 @

3.60GHz CPU cores and NVIDIA GeForce GTX 1060 6GB for GPU compute. Our model is

based on the transformer model implemented in OpenNMT-py. Proof searches for incremental

model training may use up to 30 systems in parallel.

Methodology for RQ1

To evaluate the effectiveness of S4Eq on finding rewrite rule sequences for the program pairs

selected from the synthetic program dataset R, we analyze the distribution of programs and rewrite
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rules included in R and present data on the success rate for proving various subsets of the test

dataset Rt. Our goal is to understand if our system is unable to perform well on any of our selected

subsets of Rt (i.e., solve at less than a 90% success rate).

Methodology for RQ2

Our incremental training approach is able to learn to solve proofs for which the supervised

proof sequence is not provided during sample generation. To determine how well self-supervised

sample selection improves the quality of the S4Eq model, we study the 10,000 sample Kt dataset

drawn from K alongside our rewrite rule test dataset Rt.

In addition to our golden model M7, which is trained using self-supervised sample selection,

we create a model for comparison called Q which is trained in a more traditional way. Q is trained

for the same number of training steps as M7 but it continues training on the T1 dataset from the M1

model in a supervised manner. To align with our Mn training protocol, we train multiple models

from M1 with varying learning rates and select the strongest model using the Rv and Kv datasets.

We will evaluate the ability of our models to prove the known equivalent program pairs in Kv in

order to determine if self-supervised sample selection adds value to our model.

Methodology for RQ3

We explore the ability of S4Eq to generalize using 2 different methods. The first method fo-

cuses on using the sample generation algorithm 4 for R with different hyperparameters to create

programs outside of the training distribution. The second method relates to actual use cases for

program equivalence and focuses on finding equivalent programs from within different GitHub C

functions. This search could be viewed as a demonstration of the system to find semantic equiv-

alence for a variety of uses, such as identifying opportunities for library calls [163], or grouping

student submissions into semantically equal groups for grading [57], etc.

Regarding the first method, we use algorithm 4 to create programs with exactly 3 outputs and

101 to 120 AST nodes. Recall that in training we limit R and K to include only 1 or 2 output
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programs with up to 100 AST nodes. We test our golden model on this dataset to determine if it

has overfit the training data or if can solve problems from outside the training distribution.

Regarding the second method, the FindSourcePrograms routine in algorithm 3 finds 13,215

unique multi-statement program blocks from GitHub. As we are interested in comparing the more

complex programs in this set, we select only programs with at least 30 AST nodes resulting in a

set of 4,600 programs. We then group the programs and test all pairs of programs which have the

same number of inputs, outputs, and functions. This results in 152,874 unique pairs of programs

to check for equivalence. Since we search in both directions for each pair, our full GitHub test set

G has 305,748 program pairs to attempt equivalence proofs on.

7.4.4 Experimental Results

RQ1: Effectiveness on Synthetic Test Dataset

In this research question, we aim to show the breadth of program pairs and rewrite rule se-

quences in our synthetic dataset and to demonstrate the effectiveness of our M7 golden model.

Table 7.2 details the performance of a variety of subsets of our 10,000 pair synthetic test dataset

Rt. Each cell in the table gives the passing rate and sample counts for each subset. Here the pass-

ing rate means the percentage of program pairs proven equivalent with an appropriate sequence

of rewrite rules (recall that all program pairs in R are equivalent by construction). The first data

row gives the effectiveness over the whole dataset. The other rows in the table provide data on

subsets of the sample based on the rewrite rules used to generate the ProgB in the sample given the

synthetically generated ProgB. A full description of the rows is given in Section 7.4.3. Orthogonal

to the rewrite rules used to generate ProgB, the columns explore subsets of interest for the original

ProgA in the sample. The first column provides data for all samples which conform to the rewrite

rule subset given by the rows. The 2nd column shows results for the 6,390 samples that used at

least 3 functions in ProgA. The 3rd column shows results for the 3,340 samples where ProgA starts

with an expression of depth 4-6 (note that a NodeID at depth 5 is used in 533 samples given any

ProgA but only 506 samples when ProgA started with a deep expression; this is due to some rewrite

216



Table 7.2: Success rate for subsets of test dataset Rt. Each entry includes tuned passing percentage and

sample count within Rt.

Maximum

Functions Expression Nodes

Rewrite Rules ALL 3 or more Depth 4-6 30-100

Whole dataset 98%(10000) 98%(6390) 97%(3340) 98%(9470)

Rename 97%(552) 97%(354) 95%(74) 97%(546)

Newtmp 94%(844) 94%(591) 93%(477) 94%(828)

DistributeLeft 96%(2273) 95%(1650) 95%(1524) 96%(2214)

No statement rules 99%(4923) 98%(3208) 98%(2312) 99%(4524)

NodeID at depth 5 92%(533) 92%(429) 92%(506) 92%(522)

Rewrite steps 1-10 99%(8253) 99%(5066) 99%(2269) 99%(7725)

Rewrite steps 11+ 94%(1747) 93%(1324) 92%(1071) 94%(1745)

rules, such as MultOne, adding depth to the original ProgA). The final column provides data on

the larger programs from the dataset (and the size corresponds to the program sizes considered in

RQ3).

In the upper left data cell in Table 7.2, we find that of the 10,000 samples in Rt, M7 was

able to find a rewrite rule sequence from ProgA to ProgB for 98% of them, which is arguably

very high. We see that some subsets of Rt performed better than this overall result, such as cases

where ProgA to ProgB proofs contain 1-10 rewrite rule steps (99% effectiveness). Other subsets

performed worse, such as proving samples where a depth 5 NodeID was use to create ProgB. In

general we see that program pairs generated with shorter rewrite rule sequences are more easily

proven equal than longer ones, corresponding to the intuition that shorter proofs are easier to find.

In the table, there are 5 subsets tied for the poorest result of 92% success: all 4 subsets with

NodeID at depth 5, and cases where ProgA has a deep expression and generating ProgB used over

10 rewrite rule steps. These results show that S4Eq is challenged by deeply nested expressions

and long proofs, however it still achieves over 90% success.

Table 7.2 also shows that S4Eq well handles rare tokens. The output token least represented in

our 640,000 samples in T1 is Nrlrr, used in only 278 samples. Nrlrr is one of 16 tokens used

to indicate that a rule should be applied to a depth 5 node; all 15 of the other such tokens make up

the 15 other least commonly used tokens in the T1 output group. During self-supervised training,

we compensate for this rarity to increase the number of such samples in T2−7. As we show with
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Figure 7.7: Performance metrics on Kv through training process. M7 is the final golden model used for

experiments, Q is purely supervised training on the T1 training data.

the “NodeID at depth 5” row in Table 7.2, our fully trained model has learned to use these tokens

effectively.

Our synthetic ProgA algorithm given in algorithm 4 is designed to ensure a relatively balanced

use of input tokens in T1 for training. This works well, because the least used input token is one

of the 5 tokens representing functions which receive 2 scalars and produce a vector output (f4v)

with 43,458 of the 640,000 samples using it. Table 7.2 shows that those programs using at least 3

functions are proven well by S4Eq.

Answer to RQ1: S4Eq is effective on the R dataset, achieving over 90% successful proofs

on all subsets analyzed. S4Eq handles well both rare input tokens used in the programs to be

analyzed (such as function names) and rare output tokens (such as depth 5 NodeIDs).

RQ2: Incremental Training Benefit

In order to show how the an initial model improves with self-supervised sample selection, we

compare S4Eq training up to model M7 against a model trained only on the supervised training

set T1. For this comparison, we study the Kv and Kt datasets derived from GitHub program com-

pilation steps since these include program pairs which can be proven equal using our rewrite rules.

In Figure 7.7, the orange squares indicate the percentage of proofs found on the Kv dataset as the

model trains only in a supervised manner on T1 (the initial supervised training set of synthetic pro-

grams with known rewrite rules). The blue circles represent training with self-supervised sample
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selection. With traditional training, we see the best performance of the Q model on Kv occurs at

340,000 total training steps (S4Eq had trained to M6 after that many steps). This result is signif-

icantly below the performance S4Eq achieves. The significant improvement of S4Eq on the Kv

dataset demonstrates the benefits on our incremental training procedure.

After training from 340,000 steps to 380,000 steps, Q decreased performance on the GitHub

compiled test dataset. This indicates that Q was starting to overfit on the distribution for R and the

latest learnings were not as applicable to the K problems. On the contrary, since self-supervised

sample selection generates new training samples, S4Eq is able to avoid overfitting and continues

to improve the overall model’s ability to find proofs on the Kv dataset.

Also, we note that Q was able to slightly outperform M7 on the Rv dataset (98.96% pass versus

98.44%, not shown in the figure) which shows that the T1 dataset had sufficient samples to train

for the problem distribution in Rv.

Table 7.3: Performance of M1, Q, and M7 models on the 10,000 Kt test pairs based on GitHub code. The

self-selected samples in T2−7 are biased to areas where M1 is weak, ultimately allowing M7 to outperform

Q in all categories.

Sample or Proof T1 T2−7 M1 Q M7

Sequence Used Samples Samples Proved Proved Proved

Any rewrite rule 640,000 714,332 4,866 7,531 9,688

Rename 5,267 54,925 2,591 4,791 6,315

Newtmp 7,706 33,053 545 810 2,277

DistributeLeft 30,029 24,243 526 649 774

No statement rules 506,217 479,637 968 1,109 1,111

NodeID at depth 5 5,969 35,842 18 91 323

Rewrite steps 1-10 367,976 336,344 4,690 7,329 8,997

Rewrite steps 11+ 272,024 377,988 176 202 691

Table 7.3 shows the benefit of training with samples that are sampled from challenging proofs.

The first row of the table summarizes the total number of samples available in T1 used to train M1

and Q, the total number of samples in T2−7 used to train incrementally up to M7, and the total

proofs in the 10,000 sample GitHub test dataset Kt found by the models M1, Q and M7. For

example, in the upper right corner we show that there were 9,688 (out of 10,000) GitHub program

pairs for which proofs were found by the best model M7. Different subsets of these 9,688 proofs are
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shown in later rows regarding the rewrite rules needed to prove the GitHub program compilation

cases. The 2nd-4th rows introduce the mechanism through which self-supervised sample selection

most benefits the model. For the Rename rewrite rule, we see that, of the 9,688 samples proven

equal by M7, 6,315 of them used Rename for at least one step, but M1 only used Rename in

2,591 of its proofs (less than half of the M7 usage). We can see that from the T1 and T2−7 columns

that self-supervised selection recognized that M1 was weak in this area (implying searches with

Ie rarely found the proof) but was able to augment the training data with more samples using the

Rename rule (implying searches with Ih were able to provide example successes). We can see

that model Q, which continued training only with T1 samples, did not learn this rule as well as

M7. We see a similar effect for the Newtmp rule; 2,277 proofs used this rule for M7, but only

545 used it for M1. We see that T2−7 included more of these samples to help improve the model.

As a counterexample, we see that DistributeLeft is used in 774 successful proofs of the

high-performing M7 model, and in 526 of the proofs for the initial M1 model. Given that M7 was

able to solve 97% of the problems in Kt, M1 had already solved over two thirds of these cases

which implies T2−7 only needed to contain certain cases of DistributeLeft where the model

was still challenged in order to improve the model. In this way, self-supervised sample selection

provides new training samples to improve the areas in which the model is weak.

Table 7.3 also includes ’NodeID at depth 5’, which indicates a rewrite rule was used on an AST

node at depth 5 of an expression. Since we use NodeIDs to identify rule application positions,

there are 25−1 = 16 different IDs needed to correctly locate a given instance. Fewer than 1% of T1

samples (5969) include a depth 5 node, which correlates with poor base model performance (18

cases proven). However, part of our incremental training data are the hindsight steps which use

a depth 5 node. Consequently, the performance increases to 323 found proofs, meaning that the

self-supervised training greatly improves the results.

Self-supervised sample selection also improves performance on long proofs by increasing the

number of samples from such proofs. The last 2 rows of Table 7.3 report on the number of rewrite

rule steps required by the 3 different models to prove pairs equivalent. The last column shows
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Figure 7.8: Proofs found on test set Kt. The length charted is the proof length found with the tuned model

M7, with the unproven cases shown as unknown step count.

us that M7 successfully used long proofs for 691 samples, while M1 only found 176 long proofs.

Indeed, we also see that T2−7 contained more samples from long proofs than T1 to help the model

improve this category, explaining this difference.

The details on long proofs shown with Figure 7.8 demonstrate another benefit of self-supervised

sample selection. Recall that M1 can only prove 176 samples equivalent with a proof over 10 steps.

Of the 691 samples that M7 solves with over 10 steps, M1 only solves 23 of them. The other 153

samples for which M1 found a long proof are still proven by M7, but in 10 steps or fewer. Figure 7.8

shows the benefit of self-supervised sample selection on the performance of proofs of increasing

length in the Kt dataset. Here we see that proofs which M7 proved with only 1-3 steps were solved

with over 50% success by M1; yet proofs that M7 found with over 10 steps were rarely solved by

M1.

We now assess the ability of self-supervised sample selection to avoid catastrophic forgetting

by analyzing the samples which M1, Q, and M7 are able to prove. Of the 4,866 samples that M1

is able to prove equivalent, ALL of them are included in the 9,688 samples that M7 proves after

training based on self-supervised sample selection. However, only 4,774 of them are included

in the 7,531 which Q proves - Q ’forgot’ how to prove 92 samples that the M1 model it trained

from had proven. This shows clearly the benefit of self-supervised sample selection for avoiding

catastrophic forgetting.
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Figure 7.9: Proofs found on test sets Rt and Kt plotted for varying statement and AST node counts. In all

cases the performance of S4Eq closely tracks the dataset distribution.

Answer to RQ2: Compared to supervised training, using self-supervised sample selection

improved performance on our target dataset from 75% success (supervised training) to 97%

success (S4Eq’s novel self-supervised training). Self-supervised sample selection does focus

on areas where the model needed the most improvement by selecting the most interesting new

training samples.

RQ3: Generalization Ability

A concern with machine learning is that it may learn to perform well within the samples on

which it is trained but not generalize well to unseen problems that humans would consider re-

lated. We asses this risk by presenting data on how well S4Eq has generalized beyond its training

distribution.

Let us first discuss the differences in the distribution of programs and rewrite rules between R

and K. Figure 7.9 shows the histograms of the number of assign staments and tokens in ProgA for

R and K. We see the human-written code in K shown as the green distribution tends to have many

samples with fewer than 5 statements and fewer than 50 tokens, while the synthetic code shown as

the grey distribution was designed to create more complex programs and hence has ProgAs with

more statements and more AST nodes. This clearly shows a different distribution. The red areas

show the proofs which are not found. The thinness of the red area showing that there is no obvious
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Figure 7.10: M7 searched 305,748 program pairs based on GitHub functions and found 82 equivalent pairs.

This chart shows the percentage of these 82 cases found as S4Eq trains and as Q trains (Q trains only on T1

data).

weakness on any area of the ProgA distribution. The rewrite rules needed to prove equivalence

also varies between R and K: 49% of the proofs for samples in Rt are solved without rewrite rules

related to statements while less than 12% of proofs on the Kt dataset could be solved without these

rules (compare the “No statement rules” rows from tables 7.2 and 7.3). Taken together, these data

show that S4Eq has generalized well over 2 different datasets.

In order to show S4Eq can generalize outside its training domain, we used algorithm 4 with

CheckLimits and GenerateProgA adjusted such that we created test samples with 101-120 AST

nodes and 3 outputs, which is outside the initial training distribution. Recall that on R (with up

to 100 AST nodes and 1 or 2 outputs), S4Eq achieves 98% success on the Rt test set. Now, on

programs with 101-120 AST nodes and 3 outputs it is still able to prove 60% of the program pairs

equivalent, showing that S4Eq can generalize to larger examples.

For our final evidence of generalization, we present equivalences found between human-written

programs on GitHub. Of the 305,748 program pairs in G, we found 82 provable cases of equiv-

alence. Figure 7.1 shows an example of proven equivalence of GitHub samples. Figure 7.10

illustrates the generalization of S4Eq to this problem as training progresses by showing the per-

centage of the 82 proofs found by M1 through M7. The figure also shows the performance of Q

(which only trains on T1 sampled from R) on the same 82 proofs. We see that after 150,000 train-

ing steps M2 and Q perform about equally well but ultimately Q plateaus with just over 70% of
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Table 7.4: S4Eq ablation study. With the exception of the ’Golden model’, results are shown with only

initial base training of the model. The synthetic datasets for the last 2 rows were regenerated based on the

modified language grammar.

Percent proofs found

Model description Rv Kv

M7 (Golden model) 98% 97%

M1 (Golden model before incremental training) 66% 50%

Faster learning rate (0.0002 vs 0.0001 in M1) 2% 1%

Slower learning rate (0.00005 vs 0.0001 in M1) 49% 35%

Fewer transformer layers (6 vs 8 in M1) 56% 23%

Limit language to scalars (vs scalars+vectors in M1) 63%* 40%

Linear algebra expressions only (and 50 AST node limit vs 100 in M1) 99%* 9%

the proofs found at 340,000 steps. Like Figure 7.7 on Kt data, Q seems to start overfitting on the

T1 data after 340,000 steps and does not generalize well to different problem areas. However, we

see that S4Eq continued to improve on the G test set from M6 to M7 showing it has generalized

to the problem of finding equivalence between human-written programs well.

Answer to RQ3: S4Eq is able to generalize. S4Eq is able to solve 60% of synthetic programs

that are outside of any training data it was presented with. Furthermore, it is able to progres-

sively generalize to find up to 82 proofs of equivalence in the golden human-written samples

from GitHub.

7.4.5 Ablation Study

Table 7.4 illustrates some of the model variations we explored. Except for the golden model,

all of the results are reported only after initial training using the appropriate synthetic dataset. All

of the models are also evaluated on the GitHub dataset.

The faster learning rate shown in Table 7.4 has poor results presumably due to known risks of

divergence with large learning rates. We studied this result further by attempting to do an iteration

with self-supervised sample selection using the poor proof success. As discussed in Section 7.4.4,

self-supervised sample selection requires that sufficient examples of the input and output tokens

are provided for successful incremental training. For example, using the M1 that led to our golden

model, the T2 dataset had 126,630 samples for use during training, 11,737 of which used the
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Rename rule. For the high learning rate model, since even the I=20 search had poor success, its T2

only had 1,482 samples in it and NONE included a successful use of Rename. Hence, unlike our

golden model, incremental training on the high learning rate model did not significantly improve

performance on Rv nor Kv. We see also that a slower learning rate produced a slightly worse result

than our M1 result, hence we selected M1 for our S4Eq training base.

We tested our transformer model with different numbers of attention layers, as well as different

numbers of attention heads and hidden feature sizes. We show a typical result of these searches

with only 6 attention layers. This parameter had a small loss for the Rv success, but did not

generalize as well to the Kv dataset and hence it was not pursued further.

The last 2 rows of Table 7.4 explore training models on alternate language grammars. For

2 these cases only the synthetic proofs found column indicates the number of proofs found for

the synthetic dataset which aligns with the model description. Perhaps surprisingly we see that a

language with only scalar variables and operators performs worse than M1 (which has both scalars

and vectors) on both its own synthetic validation set as well as on Kv. One possible explanation

for the weakness on both the synthetic validation set with only scalars and the compiled GitHub

programs in Kv, which only use scalars, is that the existence of vectors in the training set helps the

attention layers in the model generalize better to complex uses of the rewrite rules. The final row

of the ablation study shows results for a language which has only a single statement with up to 50

AST nodes, but matrixes, vectors, and scalars are supported. We see strong success on a synthetic

dataset with the same features, but this model does poorly on the GitHub compiled equivalence

checks. When compared with prior work on a similar dataset [123] this row demonstrates that for

our problem of program equivalence the transformer model outperforms a well tuned graph-to-

sequence model which itself was found to outperform a bidirectional RNN sequence-to-sequence

model.

This ablation study does not include the full breadth of models and language representations

we explored. For our transformer interface, we tested input variations (such as using infix instead

of prefix or including statement numbers in the input) and output variations (such as different
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Table 7.5: Execution time statistics on S4Eq tasks. Machine hours are approximate as the systems are

pre-emptable by students.

Approx

Machine

Task Description Hours

Train 16 M1 candidates with varying hyperparameters 375

Search for easy and hard proofs on total of 600,000 540

equivalent pairs with models M1 through M6

Train 4 candidates each for models M2 through M7 270

with varying learning rates and learning rate decays

Total to create M7 with self-supervised sample selection 1185

Total to create Q with only supervised samples 645

Search 305,748 mostly unequal abstractions of 775

human-written code in G using M7

rewrite rule syntax including left/right path listing to identify expression nodes and also outputting

the full rewrite sequence as a single long output). We also tested sequence-to-sequence RNN and

graph-to-sequence models on early versions of our language [123], and we explored transformer

model parameters guided by OpenAI’s work on neural language model scaling [111]. In the end

the parameters for our golden model performed best overall in these studies.

7.4.6 Execution time

Table 7.5 shows the machine hours needed for the key steps related to M7 training and usage.

For some steps we use up to 30 machines in parallel as indicated in Section 7.4.3. This table shows

that while our proof search for self-supervised sample selection takes time, it does not double the

model creation time for M7 relative to a model trained with traditional hyperparameter searches

such as Q. Also of note is that almost all of the pairs in G are not equal, and the average search time

per pair with a 50-step limit takes about 9 seconds. Meanwhile, the 600,000 equivalent pairs used

for self-supervised sample selection are each attempted twice in about 3 seconds per pair because

once the proof is found the search terminates.
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7.5 Related Work

7.5.1 Static Program Equivalence

Algorithms for proving program equivalence restricted to specific classes of programs have

been developed [222, 6, 25, 103]. These approaches are typically restricted to proving the equiv-

alence of different schedules of operations, possibly via abstract interpretation [195, 53] or even

dynamically [24]. Popular techniques also involve symbolic execution to compare program behav-

ior [163, 20]. The problem of program equivalence we target may be solved by other brute-force (or

heuristical) approaches, where a problem is solved by pathfinding. This includes theorem provers

[31, 175], which handle inference of axiomatic proofs. Program rewrite systems have been heav-

ily investigated, [64, 206, 55, 224, 168, 108, 154]. While semantics-preserving rewrite systems

for program equivalence have been studied [223, 145, 186, 235], our contribution recognizes this

compositional formalism is well suited to deep learning sequence generator systems. The merits

of stochastic search to accelerate such systems has been demonstrated [165, 93, 78]. The novelty

of our work is to develop carefully crafted sequence generator neural networks to automatically

learn an efficient pathfinding heuristic for this problem.

EqBench [19] proposes a test suite of 147 pairs of equivalent C/Java programs. As they in-

clude if-conditionals, it is not immediately usable with S4Eq. In contrast, we mine and build tens

of thousands of equivalent program pairs, using a richer set of rewrite rules for expressions and

functions. Our complete dataset, including the samples extracted from GitHub, is publicly avail-

able as a program equivalence test suite [121], providing a rich suite complementing EqBench’s.

7.5.2 Incremental and Transfer Learning

For incremental learning in S4Eq, we use an "instance incremental scenario" in that for our

problem we keep the output vocabulary constant while creating new data for incremental learning

model updates [147]. Ye et al. discuss using an output verification process (in their case compi-

lation and test for program repair) to adjust the loss function in later training iterations [244]; our
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approach is related in that we test outputs but instead of adjusting the training loss we create new

training samples which helps to generalize the model to a different problem domain.

To the best of our knowledge, there are only a few works that use transfer learning in the soft-

ware engineering domain, and none of them use it for generating equivalence proofs. Recently,

Ding has done a comprehensive study on applying transfer learning on different software engi-

neering problems [66], such as code documentation generation and source code summarization.

He found that transfer learning improves performance on all problems, especially when the dataset

is tiny and could be easily overfitted. In our work, we deploy transfer learning on program equiva-

lence proofs and show that it also improves generalization.

Huang, Zhou, and Chin used transfer learning to avoid the problem of having a small dataset

for the error type classification task [99]. They trained a Transformer model on the small dataset

and achieved 7.1% accuracy. When training first on a bigger source dataset and tuning afterward

on the small dataset, they reached 69.1% accuracy. However, they do not develop self-supervised

sample selection, and implement a limited analysis of transfer learning. In our work, we develop a

form of transfer learning for program equivalence, and carefully analyze its merits and limitations,

reaching 97% accuracy on our dataset.

7.5.3 Symbolic Mathematics Using Machine Learning

Hussein et al. [69] develop a system which learns to apply a set of inequality axioms and

derived lemmas using a reinforcement learning model with a feed-forward neural network. A

challenge of using reinforcement learning is the determination of a feasible reward function from

the environment and the resulting training time. HOList [23, 171] is a system that can interact with

a large rule set to score tactics in the search for a proof but faces compute time limitations when

training a reinforcement learning network for theorem proving. Unlike their model, we output both

the tactic (rewrite rule) as well as the location to apply it (eliminating the need to score various

premises individually). Similar to recent work on using transformers to propose actions [45], our

network has learned the rewrite rules (actions on a program) which are most likely to transform the
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program into the target program. Our work aims at laying the foundation for program equivalence

proofs by studying a language subset that includes multiple computation statements and maintains

a high accuracy. Our approach to synthetic data modeling is similar to Lample, et al. [130],

who randomly create representative symbolic equations to develop a deep learning sequence-to-

sequence transformer model which can perform symbolic integration. They note that their system

requires an external framework to guarantee validity. Similarly, work by Mali, et al. [153] reasons

on mathematical problems but produces outputs which are not guaranteed correct. Our system

outputs a verifiable reasoning that is straightforward to check for correctness, guaranteeing no

false positive and the correct handling of all true negatives.

A Deep Reinforcement Learning Approach to First-Order Logic Theorem Proving [61] pro-

vides the theorem prover the allowed axioms as input to the model. In contrast, we produce the

rewrite rules as a sequence. As it is a reinforcement learning model, they create training iterations

as proof rewards improve with better models, while our approach creates incremental samples

specifically chosen through beam search to improve output by providing a correct output for a

proof the model currently is challenged by.

7.5.4 Program Analysis using Machine Learning

Numerous prior works have employed (deep) machine learning for program analysis [9, 12,

216, 128, 185, 28]. PHOG [34] presents a probabilistic grammar to predict node types in an

AST. Program repair approaches, [216, 48] are deployed to automatically repair bugs in a pro-

gram. Wang et al. [227] learn to extract the rules for Tomita grammars [214] with recurrent

neural networks. The learned network weights are processed to create a verifiable deterministic

finite automata representation of the learned grammar. This work demonstrates that deterministic

grammars can be learned with neural networks, which we rely on. Recent work by Rabin et al.

[183] shows that neural networks (in their case GGNNs) learn more general representations of se-

mantically equivalent programs than code2vec [12], which creates code representations using AST

paths. Bui, et al. [38] show that using semantics preserving transformation can improve machine
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learning on code, and continue the work with a study on using self-supervised learning to create

similar embeddings for semantically equivalent code [39]. We use beam search to identify model

weaknesses and target learning to generate the transformations that prove semantic equivalence.

7.6 Conclusion

In this work, we presented S4Eq, the first transformer neural network system to generate

verifiable proofs of equivalence for a class of symbolic programs. Evaluated on a rich language for

statements with scalars and vectors, this system produces correct proofs of up to 49 rewrite rules in

length in our synthetic test dataset. We contribute a dataset created from GitHub samples usable for

equivalence evaluation. We develop self-supervised sample selection to incrementally improve our

model performance on the samples. We produce correct proofs for 97% of our cases generated by

applying compiler steps to these GitHub samples. We also analyze unique GitHub programs and

find 82 proofs of equivalence between them. We believe the performance of our approach comes

in part from using transformers for what they aim to excel at: learning efficient representations to

analyze patterns in syntactic input; and the observation that program equivalence can be cast as a

path-based solution that is efficiently found by such networks.
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Chapter 8

Conclusion

Deep learning has been expanding into diverse fields as hardware advances and novel algo-

rithms allow approaches to succeed in new areas [9, 161, 211, 140]. For the problems of program

repair and program equivalence, in this thesis we demonstrate how machine learning techniques

that have roots in natural language processing can be successfully applied to computer languages.

Chapter 4 shows how historic techniques for searching for program repairs using transformation

schemas can be mimicked and improved on by training a network to “translate” buggy code to fixed

code, resulting in similar transformations being learned. As machine learning uses probabilistic

sequence generation, it is capable of mimicking probabilistic models of language grammars.

And yet, generative models using machine learning continue to be imprecise [111, 133]. Meth-

ods to automatically evaluate machine learning outputs for use in settings with a low error tolerance

expand the range of problems on which machine learning can be applied. We demonstrate in Sec-

tion 4.8 how to automate test set execution to verify program patches generated with machine

learning. We show in Chapters 6 and 7 how formally verifying generated proof sequences for

proving programs equivalent can yield systems with a guarantee of no false positives. This thesis

yields valuable results which allow machine learning to be applied to new problem domains in the

field of computer aided programming.

All 

Vulnerability

Fixes

Curated  

Datasets

Bug Fix

Dataset

Synthetic

Denoising Dataset

C function modifications

Figure 8.1: For the vulnerability repair task addressed by VRepair, pretraining with a denoising task has

some benefit to teaching the model about C function modifications, but using transfer learning from a bug

fix dataset trains the model on a more similar task.
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8.1 Contributions

Data representation In this thesis we have contributed dataset organization and presentation

techniques which allow computer programming problems to be mapped into input and output for-

mats on which we show how to apply machine learning. In Chapter 4 we present the SEQUENCER

system [48] which combines useful program information with the abstract buggy context which

can be used by a token copy mechanism when attempting program repairs for buggy Java pro-

grams. In Chapter 5 we present the VREPAIR system [47] which can represent multi-line fixes by

using token context diff to identify where patches should be applied to repair security vulnerabil-

ities in C functions. In Chapter 6 we present the PE-GRAPH2AXIOM system [123] showing both

how to map a linear algebra expression equivalence problem into an AST for use with a graph

neural network as well as how to represent transformations on the expression using rewrite rules

which can be learned by a neural network. And in Chapter 7 we present S4Eq [124] showing how

full straight-line programs can be represented to a transformer model and how such a model can

generate rewrite rules on program statements.

Transfer learning benefit Figure 8.1 is a Venn diagram showing the grouping of datasets used

in our vulnerability repair work in Chapter 5. In that work, we created VREPAIR which is capable

of creating some of the fixes in the “All Vulnerability Fixes” set. Because the size of curated

vulnerability data on which to train a neural network was small, we tested pretraining this model

with a synthetic denoising dataset as well as a bug fix dataset. As the diagram indicates, the

synthetic dataset can provide useful examples of modifying C functions but does not overlap with

our target problem space. Our technique for transfer learning from bug fix to security vulnerability

fix was a more successful way to train the model.

Self-supervised sample selection Figure 8.2 is a Venn diagram showing the grouping of datasets

used in our program equivalence work in Chapter 7. In that work, we created S4Eq which is capa-

ble of proving some equivalent program pairs equal. We studied 3 subsets of equivalent programs:

1) Synthetically generated programs can be used to provide a relatively smooth distribution on
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Figure 8.2: For the program equivalence proof task addressed by S4Eq, synthetic and compiled training

cases improve the ability of the model to find human-generated cases of equivalence. Some cases of proof

failure can indicate true non-equivalence, for example, if there is a bug in the compiler.

tokens and rewrite rules for model training 2) Compiler steps can be used to create equivalent pro-

grams that are related to common optimizations 3) Human written code can provide examples of

alternate human implementations for equivalent programs. Because we can automatically create

examples for the compiled and synthetic datasets, and because we can verify proof correctness,

we developed self-supervised sample selection to improve model coverage and learning on these

datasets. In addition to applications for program equivalence itself, our iterative learning technique

provides an opportunity to confirm that the training data is indeed equivalent. We found during

development that errors in the compiler optimizations could not be proven equivalent and hence,

an occasional review of the failures which occurred with a well tuned model may show that some

input programs which could not be proven equal are indeed not equal, as indicated in Figure 8.2.

Ultimately, learning with self-supervised sample selection created a model which was applicable

to proving human-generated programs equal.

8.2 Avenues for Future Research

This work opens up several promising avenues for continued research and we now summarize

them. Most of these areas relate to the field of computer aided programming; but there are also

general avenues of research in machine learning opened up by the contributions of this dissertation.
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Machine learning for automated program repair The SEQUENCER work presented in Chap-

ter 4 can immediately be extended based on other work in this thesis. While SEQUENCER studied

a sequence-to-sequence model, we have seen that a transformer model will likely work better for

such code transformations in Chapter 5. Also in Chapter 5 we developed and tested token con-

text diff which could be used in any system that makes program modifications, including ones

attempting general program repair. Finally, we have shown some benefit of using a denoising task

to pretrain a program modification model. All of these techniques would likely improve results for

program repair.

Machine learning for automated vulnerability repair We have seen that training on a denois-

ing task is not as valuable as training first on a bug fixing task for developing a vulnerability fix

model. However, it may be useful to do both - first pretrain with denoising, then train with bug

fixing, and finally tune the model with a small number of actual vulnerability fixes. We also note

that our bug fix and vulnerability datasets could be useful for training a vulnerability localization

system.

Machine learning for program equivalence The success rate of 97% for our current model

presented in Chapter 7 is very high for the field of machine learning. With more examples and

more compute time we would expect that a richer language could be used and programs could still

be proven equivalent. The ability to prove complex loop transformations equivalent could have

performance benefits to compiler development.

Machine learning for NP-hard problems using self-supervised sample selection The general

technique for self-supervised sample selection presented in Chapter 7 could be applied to any

problem in which random problems can be generated and a correct answer can be easily verified.

A variety of NP-hard problems fit in this category and this training technique could be used to

improve machine learning results on such problems.
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Transformer models for interfacing symbolic reasoning with neural networks As we have

shown in Chapters 5 and 7, transformer models can successfully provide an interface between

symbolic data (such as programs) and a stochastic neural network. Problems of symbolic reasoning

on the world are gaining visibility in the artificial intelligence community and the ability of the

multi-layer attention network used by Transformers to find connections between varied data will

certainly continue to be explored.
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