DISSERTATION

MACHINE LEARNING FOR COMPUTER AIDED PROGRAMMING: FROM STOCHASTIC
PROGRAM REPAIR TO VERIFIABLE PROGRAM EQUIVALENCE

Submitted by
Steve Kommrusch

Department of Computer Science

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Spring 2022

Doctoral Committee:

Advisor: Louis-Noél Pouchet
Co-Advisor: Charles Anderson

Ross Beveridge
Mahmood Azimi-Sadjadi

Copyright by Steve Kommrusch 2022
All Rights Reserved

ABSTRACT

MACHINE LEARNING FOR COMPUTER AIDED PROGRAMMING: FROM STOCHASTIC
PROGRAM REPAIR TO VERIFIABLE PROGRAM EQUIVALENCE

Computer programming has benefited from a virtuous cycle of innovation as improvements
in computer hardware and software make higher levels of program abstraction and complexity
possible. Recent advances in the field of machine learning, including neural network models for
translating and answering questions about human language, can also be applied to computer pro-
gramming itself. This thesis aims to make progress on the problem of using machine learning
to improve the quality and robustness of computer programs by contributing new techniques for
representation of programming problems, applying neural network models to code, and training
procedures to create systems useful for computer aided programming. We first present background
and preliminary studies of machine learning concepts. We then present a system that directly pro-
duces source code for automatic program repair which advances the state of the art by using a
learned copy mechanism during generation. We extend a similar system to tune its learning for
security vulnerability repair. We then develop a system for program equivalence which generates
deterministically checkable output for equivalent programs. For this work we detail our contri-
bution to the popular OpenNMT-py GitHub project used broadly for neural machine translation.
Finally, we show how the deterministically checkable output can provide self-supervised sample
selection which improves the performance and generalizability of the system. We develop breadth
metrics to demonstrate that the range of problems addressed is representative of the problem space,
while demonstrating that our deep neural networks generate proposed solutions which can be ver-
ified in linear time. Ultimately, our work provides promising results in multiple areas of computer

aided programming which allow human developers to produce quality software more effectively.

il

ACKNOWLEDGEMENTS

I began my PhD with a goal of making a contribution to the groundbreaking advances now
occurring in machine learning and artificial intelligence. Additionally, I wanted to better under-
stand the scientific process and the community that participates in presenting and discussing ideas
in scientific venues. Finally, I wanted to prepare to do further research after my PhD in the fields
of machine learning and artificial intelligence. Many people have helped me in my pursuit of these
goals.

I would first like to thank my mentor, advisor, and friend Louis-Noél Pouchet. Louis-Noél
encouraged me to explore new areas for applying machine learning with a focus on reasoning
about programs and generating computer code. He shared his experience with the publication
process including being an author, reviewer, and session chair with me and provided many fantastic
opportunities for me to interact with the broader research community. His enthusiasm for all facets
of computer science was a great motivation for me.

In my interest to connect with researchers in Europe, [was able connect with Martin Monperrus
who invited me to research in Sweden during the fall of 2018. During this time I worked with Zimin
Chen, a PhD student at KTH also researching the use of machine learning on computer code. This
was a very fruitful collaboration, resulting in 3 published papers which I authored with Martin and
Zimin and one more paper with Martin in review as of April 2022. I deeply appreciate Martin’s
enthusiasm for open science and his introductions to researchers at KTH but also in London and
Cambridge, England. His support helped broaden my experience. My work with Zimin was also
a great experience - as two PhD students we were able to divide up technical tasks effectively and
made great collaborative contributions to science together. Thank you Zimin and Martin.

My time at CSU let me meet many professors who contributed to my education. Certainly
Chuck Anderson, my co-advisor for this thesis, helped me in many ways. I met with Chuck before
applying as a PhD student and his energy and expertise in the field of machine learning attracted

me to CSU. His insights over the years improved my research path and helped me explore the

il

field more deeply. Ross Beveridge was not only on my thesis committee but helped expand my
knowledge of human-machine interaction using Al and machine learning on videos and agents
acting on the world, which helped prepare me for the industry position I have taken after my
PhD. I also thank Mahmood Azimi-Sadjadi for insightful questions and comments on this thesis,
and professors Krishnaswamy, Blanchard, Ray, Draper, Ortega, and Pallickara for discussions and
teachings that helped make my time at CSU enlightening.

Certainly my friends and family have been instrumental in helping me choose and complete
this PhD adventure. Our discussions have been very helpful as we collectively explored career and
life options. The full list would be too long but Dan, Yi-Fan, Kerri, John, and Andy have been
friends for years and were a great source of support on my path. My parents and brother were
constantly interested in and supportive of my efforts. And my wonderful wife Linda helped keep
our home and social life fun while I worked diligently on this thesis. Indeed, my wife and father
joined my CSU experience as they attended classes on art history and climate science, and we had

many great lunches on campus after class. Thank you so much - I love you all.

v

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e

Chapter 1

Introduction L

I Machine Learning on Programs: Background and Our Contribu-

tions

Chapter 2
2.1
2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.2
2.2.1
222
223
224
225
2.2.6
2.2.7

2.3
2.3.1

232
2.33

24
2.5

Chapter 3
3.1
3.2
33
34

Background on Machine Learning for Computer Aided Programming
Machine Learning for Syntax Understanding and Sequence Generation . .
Neural machine translation with sequence-to-sequence learning
Gatedrecurrentunit Lo
Get to the Point: Summarization with Pointer-Generator Networks . . .
Graph neural networks oL
Graph-to-Sequence Learning using Gated Graph Neural Networks
Transformer Networks Use Attention Layers
Computer Aided Programming,
Staged Program Repair with Condition Synthesis
PHOG: Probabilistic Model forCode
Abstract Syntax Trees L Lo
code2vec: Learning Distributed Representations of Code
Programrepair.
Program equivalence,
Neural Network-based Graph Embedding for Cross-Platform Binary
Code Similarity Detection,
Preliminary Studies on Machine Learning Concepts and Limitations
Multilayer Perceptron (Vanilla) Neural Network Models And the Chal-
lenge of Learning Hash Functions
Generalizing to a Target Distribution With Proper Network Sizing
Using Hindsight Learning to Improve Goal Achievement In Multigoal
Environment With Sparse Rewards
Complexity Classes for Program Equivalence
Limitations of Prior Research

Contributions to Machine Learning on Computer Aided Programming
Repairing Functional Bugs in Java Programs
Repairing Security Vulnerabilities in C Language Programs
Proving Equivalence of Complex Linear Algebra Expressions
Proving Equivalence of Basic Block Expressionsin C Code

10
11
11
12
13
16
17
19
22
22
24
26
26
31
31

32
33

35
38

I Machine Learning for Repairing Software Defects 65

Chapter 4 SequenceR: Sequence-to-Sequence Learning for End-to-End Program Repair 66

4.1 Introduction 66
4.2 Background on Neural Machine Translation with Seq-to-Seq Learning . . 67
4.3 Approach to Using Seq-to-Seq Learning for Repair 69
4.3.1 Problem Definition Lo oL 71
4.3.2 Abstract Buggy Context L. 71
433 Sequence-to-Sequence Network 73
434 Patch Inference oo 75
4.3.5 Patch Preparation L L L 76
4.3.6 Implementation Details & Parameter Settings 77
4.4 Evaluation 78
4.4.1 Research Questions e 79
4.4.2 Experimental Methodology 79
443 Training Data Lo 81
4.4.4 Experimental Results 84
4.4.5 Defects4J Evaluation 88
4.4.6 Qualitative Case Studies e 92
4.5 Ablation Study 94
4.6 Related Work o 97
4.7 SEQUENCER Summation 100
4.8 Continuous Integration with SEQUENCER 101

Chapter 5 Neural Transfer Learning for Repairing Security Vulnerabilities in C Code . . 104

5.1 Introduction 104
5.2 Background on Software Vulnerabilities and Related Machine Learning . . 105
5.2.1 Software Vulnerabilities L. 105
5.2.2 Transformers 106
523 Transfer Learning L. 106
5.3 VRepair: Repairing Software Vulnerabilities with Transfer Learning 108
5.3.1 OVerview 108
5.3.2 Code Representation 109
5.33 Tokenization 112
534 Source Domain Training 113
5.35 Target Domain Training 113
5.3.6 Inference for Patch Synthesis 114
5.3.7 Neural Network Architecture 115
5.3.8 Usageof VRepair 116
54 Experimental Protocol L. 117
54.1 Research Questions 117
542 Datasets 118
543 Methodology for training with either source or target domain samples . 120
544 Methodology for transfer learning with source and target domain data . 122
545 Methodology for pre-training with denoising samples 122

Vi

54.6
5.5
5.5.1
552
553
554
5.6
5.7
5.7.1
5.7.2
5.7.3
5.74
5.7.5
5.8

Methodology for data split strategies 123
Experimental Results 124
Results for training with either source or target domain samples 124
Results for transfer learning with source and target domain samples . . . 127
Results for pre-training with denoising samples 130
Results for data split strategies 133
Ablation Study 134
Related Work 137
Vulnerability Fixing with Learning 137
Vulnerability Fixing without Learning 138
Vulnerability Datasets 140
Machine LearningonCode 141
Transfer Learning in Software Engineering 143
Conclusion L 144

IIT Producing Verifiable Program Equivalence Proofs Using Machine

Learning

Chapter 6

6.1
6.2

6.3
6.3.1
6.3.2
6.3.3

6.4

6.5

6.6
6.6.1

6.7

6.8

6.9
6.9.1
6.9.2
6.9.3
6.9.4

Chapter 7

7.1
7.2
7.2.1

146
Proving Equivalence Between Complex Linear Algebra Expressions With
Graph-to-Sequence Neural Models 147
Introduction 147
Motivation and Overview for Machine Learning Applied to Program Equiv-
alence L 148
Framework for Program Equivalence 152
Input Representation 152
Axioms of Equivalence, 153
Space of Equivalences 156
Samples Generation e 157
Deep Neural Networks for Program Equivalence 160
Experimental Results 162
WholeProof Models: Language Complexity and Performance 165
Related Work 167
Conclusion L 169
Supplementary Materials L Lo 170
Dataset generation Lo 170
Language and Axioms for Complex Linear Algebra Expressions 176
Details on neural network model 177
Details on Experimental Results 182

Self-Supervised Learning to Prove Equivalence Between Programs via Semantics-

Preserving Rewrite Rules 193
Introduction 193
Problem Statement L oL o 195

Scope ... e 195

vii

7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.6

Chapter 8
8.1
8.2

Bibliography

Encoding of Programs and Rewrite Rules 196
Pathfinding Rewrite Rule Sequences 198
S4EQ: Deep Learning to Find Rewrite Rule Sequences 199
Overview of S4EQ 199
Transformer Model 200
Beam Search to Explore Multiple Possible Proofs 202
Training Process 204
Experimentationo 208
Dataset Generation o 208
Experimental setup of incremental training 212
Research Questions e 213
Experimental Results 216
Ablation Study 224
Executiontime 226
Related Work 227
Static Program Equivalence 227
Incremental and Transfer Learning 227
Symbolic Mathematics Using Machine Learning 228
Program Analysis using Machine Learning 229
Conclusion 230
Conclusion L 231
Contributions 232
Avenues for Future Research 233
.. 261

viii

Chapter 1

Introduction

Machine learning and artificial intelligence have been advancing for decades. Originally named
in the 1950’s [156], the field of artificial intelligence has been constantly advanced by researchers
throughout the world. For almost as long, the field of computer aided programming has pursued
the goal of having computers handle the bulk of the work required to build and maintain code [26].
In parallel with these software efforts, the field of computer hardware was exponentially growing
the number of transistors available on a computer chip year after year following Moore’s law [162].
Now is the time when these ongoing trends have enabled the opportunity for computers to learn
to repair and analyze programs directly - to use machine learning running on modern computing
hardware to enable computers to not merely provide useful development tools and compilers to
software engineers, but to directly understand and improve programs themselves. Providing such
capability will allow human programmers to work at higher levels of abstraction, creating quality
software with fewer bugs and fewer security vulnerabilities.

The field of program synthesis studies the goal of generating code to meet a given set of require-
ments, i.e., programming. Given recent advances in machine learning and artificial intelligence,
researchers have begun to pursue the dream of having computers aid in their own programming in
order to improve the quality of programs and reduce the effort needed to create and maintain them.
Advances in hardware capability and software algorithms have enabled deep learning to apply neu-
ral network models to a variety of problems. Typically, a deep learning model is learning how to
map information from an input distribution (in the sense of a statistical or probabilistic distribu-
tion) to an output distribution. The mapping rarely yields a 100% accuracy in the result, whether
the output is a class label for image recognition [62], a word identifier for language generation
[208], or the optimal action in reinforcement learning [83]. In some applications, such as image
identification on a web application, imperfect outputs can be tolerated so long as a given quality

metric is met. When processing or generating computer code, however, some form of automated

verification of the output becomes necessary to ensure the output is usable in the highly structured
world of computer programming.

The problem area addressed in this thesis is built upon prior work in program synthesis and
its intersection with machine learning. Prior work on computer aided programming has explored
directed search and probabilistic code synthesis [143, 34], various machine learning techniques for
generating language tokens and syntax [197, 29], and learned representations of code for machine
learning generalization [12]. Recognizing that computer code is a form of human communication,
techniques from natural language processing have been successfully applied to computer code
understanding and generation. Recognizing machine learning outputs may be imprecise, various
software engineering techniques for verification can be combined to help improve the output qual-
ity of a system. By advancing the state-of-the art for machine learning on computer code, we hope
to improve the efficiency of software engineers and computer scientists and support their efforts to

continue innovating on more and more complex tasks.

Encoder y. Y2
Recurrent Recurrent Recurrent i d den Recurrent Recurrent
Neural Neural Neural St : Neural Neural
Network Network Network ate Network Network
X X X
' 2 } Decoder

Figure 1.1: Sequence-to-Sequence model showing encoder, decoder, and hidden state

Computer programs are typically thought of by both programmers and the computers process-
ing the program as a sequence of computer language tokens. For example, 1f (X < 0) is
a sequence of 6 tokens which checks whether the variable = is a negative number. The types of
machine learning models most commonly used for token sequence analysis are called sequence-
to-sequence models [208, 202]. Figure 1.1 diagrams an early type of sequence-to-sequence model
using a recurrent neural network (RNN) to encode an input sequence into a hidden state which can

then be decoded to produce an output sequence. The recurrent neural network provides a method

for the model to learn a function f which encodes the sequence of tokens provided by x; into a
hidden state h that the model uses to solve a given problem. The model output uses a learned
function g to create output tokens 7; based on the problem the model has been designed to solve

and the hidden state created by encoding the input tokens.

hy = f(mt, htfl)

ye = g(he)

The functions f and g are learned by a neural network model by providing it thousands or
even millions of example input and output sequences. After being trained on these sequences, the
model can be used to produce output for previously unseen input samples. In this way, we can
use a sequence-to-sequence model to process computer code and generate output targeting a given
programming task. For example, as we shall discuss in Chapter 4, the input could be a buggy
program and the output could be a patch which repairs the bug. Alternately, as we shall discuss in
Chapter 6, the input could be 2 programs and the output could be a sequence of steps which prove
the 2 programs are identical. A challenge of using machine learning models on code is that their
output is stochastic - it is the "best guess’ by the model at the correct output based on the training
data it has received. This thesis aims to address the problem of using stochastic machine learning
models for computer aided programming.

Given this background, we next investigate and evaluate techniques for validating neural net-
work outputs in an automated way. The general approach is to construct a system which involves
a machine learning generator and an automated validation component of some kind. Using these
techniques we show contributions which advance the state of the art in multiple areas and demon-

strate these contributions with full implementations of 4 computer aided programming systems.

Contributions to Machine Learning Processes

In this section we summarize 4 key contributions we make which have general benefit for

machine learning as applied to computer code. These contributions could be applied to a wide

array of problems and cover advances for machine learning models for code, code representation

for machine learning, and novel techniques for training neural network models.

Self-Supervised Sample Selection For sequence generation problems in which the output can be
automatically checked, we can leverage the aforementioned stochastic nature of machine learning
to create new samples on which to iteratively train and improve a model [124]. Because of the
stochastic nature of the model, the outputs can be ranked in likelihood based on what the model
has learned from previous training examples. For example, the output sequence a=0 might be
ranked higher than b=1. When the highest ranked output from the model is indeed correct, then
the problem given as input is already well represented by the current model. However, when
the highest ranked output is wrong, but a lower ranked output is correct, then the model can be
trained on a new input/output example based on this result so that its learned functions improve
for future use. Training sample created using our method are inherently biased towards the more
challenging problems in the input distribution. During initial model training it is important to have
target output provided for a given input so that the model can learn the correct representation, but
with self-supervised sample selection, input problems with no known output can be provided to a
model and useful training samples can be created for improving the model. While we show how
to apply this approach to analyzing computer code, any machine learning system which allows for

automated sample generation combined with robust output verification could benefit from it.

Transfer Learning From Bug Fix to Security Vulnerability Fix The specific problem of re-
pairing security vulnerabilities is critical to software engineers today, but before-and-after exam-
ples of such fixes are limited as their creation requires careful attention by developers. This data
limitation is a problem for machine learning which typically relies on large sample counts on
which to train. To address this, we train a model on abundant examples of generic bug fixes and
then tune the model for the problem of vulnerability repair [47]. We show that our process exceeds
the performance of training on the smaller vulnerability dataset alone, training only on the generic

dataset, and is also better than pretraining with a state-of-the-art noising model. While we apply

this approach to security vulnerabilities, many types of targeted program modifications could be

initially trained using a similar technique.

Input and output representations for applying machine learning to computer aided program-
ming We develop and analyze multiple ways of presenting computer aided programming prob-
lems to machine learning models in formats which allow the model to learn a mapping between
the input and output which is useful for addressing a given problem. For the task of generating
code patches to address bugs or vulnerabilities in code, we present the construction of a novel
abstract buggy context which leverages Java code context as input to a model for patch generation
[48]. For succinctly specifying a multi-line patch to code, we design a novel code representation
for the program repair task which we call the token context diff because it identifies the location
of a code change using the token sequences which occur before and after the change [47]. For
precisely presenting programs for symbolic reasoning and proof generation by a neural network,
we demonstrate using abstract syntax trees (AST) as neural network model inputs and rewrite rules

as model outputs to specify transformations on the AST [123, 124].

Token Copy Mechanism to Address Large Vocabulary of Computer Code Prior works for
machine learning on code tended to rename functions and variables to reduce the size of language
vocabularies necessary to represent a program. We introduce and study the use of a copy mech-
anism which can be used by a machine learning system to learn when an arbitrary input token
should be copied for use in the output sequence [48]. This output behavior is particularly valuable
in conjunction with abstract buggy context which provides a concise presentation of tokens which
might be useful for output. The copy mechanism is also useful when used with roken context diff
which identifies code change locations specifically by copying context tokens from the input to the

output.

Applying Machine Learning to Computer Aided Programming

In this section we summarize the contribution of 4 systems to solve problems in computer
aided programming with machine learning. For each system, we highlight the machine learning
process contributions that are used and analyzed empirically in each work. All 4 of these systems

are provided to the research community through open source contributions.

SequenceR SEQUENCER is a system which uses a sequence-to-sequence model with copy mech-
anism to generate proposed Java code to patch bugs in the input Java methods [48]. The full class
surrounding the method is provided as input using our abstract buggy context format. The vali-
dation component is the test suite from the project which allowed for automated detection of the
bug and is used for automatic evaluation of a fix before asking a human to review the proposal.
The full process of automatically detecting, localizing, repairing, and validating patches is auto-
mated by our R-Hero repair bot. Our full datasets, models, and analysis scripts are provided to the

community on GitHub!.

VRepair VREPAIR is a system which uses a sequence-to-sequence model to generate proposed
C code to repair security vulnerabilities in functions [47]. Because vetted examples of before-
and-after vulnerability fixes are limited, we improve the model result using Transfer Learning
From Bug Fixes to Security Vulnerability Fixes and demonstrate its benefit over a state-of-the-art
pre-training system based on denoising. We show the ability of the system to generate multi-line
changes to repair a vulnerable function using our token context diff. Our full datasets, models, and

analysis scripts are provided to the community on GitHub?.

pe-graph2axiom We next create a system which uses a graph-to-sequence machine learning sys-
tem to output a sequence of rewrite rules which prove two programs represented as complex linear

algebra expressions to be semantically equal [123]. The system input uses an AST representation

'https://github.com/KTH/chai

’https://github.com/SteveKommrusch/VRepair

for model input and produces a Rewrite Rule Format for the proof steps which is automatically
verifiable. The validation component in this case applies the proposed axioms and checks that the
input is correctly transformed, allowing for a system which creates 0% false positives by construc-
tion. We implement our system by contributing the gated-graph neural network encoder model to

OpenNMT-py; details on how to use the model are provided to the community on GitHub?.

S4Eq Our final contribution is system which is capable of proving computational basic blocks
(straight-line programs) equivalent [124]. For this problem we use an AST representation as input
to a transformer model which produces verifiable Rewrite Rule proof steps. We incrementally train
the model using self-supervised sample selection and show how this approach improves perfor-
mance and generalization of the system. We generalize from synthetic programs used for initial
training to program sequences derived from GitHub in which we find cases where humans created
lexically distinct but semantically equivalent programs. Our full datasets, models, and analysis

scripts are provided to the community on GitHub?.

Outline

The remaining chapters of this dissertation are organized as follows. The background Chapter 2
provides a foundation to the reader on the topics of machine learning, program repair, program
equivalence, and discusses original background research on machine learning topics. Chapter 2
also includes formal definitions and a proof of the complexity class for program equivalence in
a given language. Chapter 3 dives deeply into the key computer aided programming areas ad-
dressed by my research work including introducing and integrating the next 4 chapters, which
are all based on published work. Chapter 4 discusses SEQUENCER in detail and shows how a
sequence-to-sequence model can be used to generate Java code fixes given buggy Java code as

input. Chapter 5 discusses VREPAIR and shows how to train a model which can repair C language

3https://opennmt.net/0penNMT-py/examples/GGNN. html

“https://github.com/SteveKommrusch/PrgEq

security vulnerabilities despite limited data available for training. Chapter 6 details a system us-
ing a graph-to-sequence generator which produces a verifiable proof of equivalence between two
linear algebra expressions. Chapter 7 builds on the work which we discuss in Chapter 6 to include
multi-statement programs mined from GitHub C repositories. Chapter 7 details how the verifi-
able nature of the program equivalence output from a neural network may itself be used to create
new samples to improve the model incrementally. Chapter 8 concludes this thesis and summarizes

multiple avenues of future research based upon our contributions.

Part I

Machine Learning on Programs:

Background and Our Contributions

Chapter 2
Background on Machine Learning for Computer

Aided Programming

As our focus is using machine learning for computer aided programming, this chapter pro-
vides background and discusses key prior contributions that lay the foundation on which this thesis
builds. As this background will show, many successful approaches to applying machine learning to
human language have been shown to work well for generating computer languages as well. Alla-
manis, et al. provide a broad summary of the research in this area in their survey paper [9]. In their
survey, the authors note that computer language creates a bridge between humans and computers.
Hence, while computer language syntax is more precisely defined than human language, humans
writing code tend to certain coding patterns and styles. This creates meaningful statistical distri-
butions at token, loop, function, method, and class levels that can be discovered through machine
learning techniques.

This chapter is organized as follows. In Section 2.1 we discuss machine learning background
for the contributions made in this thesis with particular focus on sequence generation models. In
Section 2.2 we cover topics in computer aided programming including summarizing the prob-
lems of program repair and program equivalence. In Section 2.3 we present our original research
on 3 machine learning problems which, although not directly computer aided programming sys-
tems, provide insights useful for the contributions of this thesis. In Section 2.4 we present formal
definitions and an overview of complexity classes for problems of proving program equivalence.
Section 2.5 summarizes limitations of prior work which motivates the contributions made by this

thesis.

10

2.1 Machine Learning for Syntax Understanding and Sequence

Generation

Machine learning models learn a complex function which maps data from the input domain
to the target output domain. The following subsections will describe various models useful for
analyzing token sequences along with the mathematics used to produce the output given the input
sequence. In all of the cases, training occurs through backpropagation of the error term through
the network [189]. That is, the inputs are processed through the mathematical model as described
in the section and a result is obtained. During the training process, if the output does not match
the expected result, then the internal parameters of the model are adjusted slightly based on the

gradient of the error relative to the parameter, i.e., for a given neural network weight parameter w;

OF
ow; *

The « term is referred to as the

and an output error F, the weight is updated as w; = w; — «

learning rate, which may vary as more samples are processed to improve stability [116].

2.1.1 Neural machine translation with sequence-to-sequence learning

Neural machine translation (NMT) evolved from statistical machine translation (SMT). SMT
made use of smoothed n-gram models to predict the probabilities of words in a destination language
given a source language and neighboring words. NMT, by use of examples and back propagation,
uses a neural network to learn the most likely translation for a given input [208].

An early example of a sequence-to-sequence network uses an RNN (recurrent neural network)
to read in tokens and generate an output sequence, as shown in Figure 2.1 [208]. In this network,
outputs are created from the same neurons that received the inputs. The input tokens are denoted
x¢, and after receiving all of the input tokens and a special <EOS> token, the output tokens are fed
into the network to aid in proper generation of the next token. The output tokens are denoted 1;. In
the following equations, h; is the hidden state of a recurrent neural network, W= ¥/ and W¥h

are weights learnable with supervised learning and backpropagation.

ht = O'(thl't + Whhht_l)

11

w <EQS>

Il—»[l—»ll—»[l—#l—»l{l—»ll%ﬁl

l—>

T T

A B C <EOS=> Z

s —>

Figure 2.1: Figure from Sequence-to-Sequence paper [208] showing example of early model
Yy = W¥h,

A softmax function is then used to turn the y; values in the preceding equation into probabilities
to choose the most likely token from a learned vocabulary. In this early example, one can see how
the weight matrices can mimic the learning of n-gram data used in SMT; after processing the input
sequence, the hidden state h.,s~ encodes the most likely initial token to begin the output and
each subsequent h; can use the W matrices to predict the most likely next token given the input as
well as preceding tokens produced on the output. The W matrices can, thus, encode n-gram-like
information, but can also learn when to encode longer range likelihoods based on the information

in the training data.

2.1.2 Gated recurrent unit

Early neural machine translation architectures made use of Long Short Term Memories (LSTMs)
[208], but gated recurrent units were found to train more effectively and produce improved accu-
racy in some cases [51]. A gated recurrent unit is slightly simpler than an LSTM as it has only 2
gates to learn instead of 3. The feedback is shown in figure Figure 2.2. In the equations below,
the notation [|; represents the j*" element of a vector. z is the input vector to the GRU layer; r is
the reset gate; and z is the update gate. W,., U,., W,, U,, W, and U are all matrices with learnable

weights. hz» is the hidden state of the ;%" unit after ¢ iterations of the recurrent equations.

rj = o((Wexl; + [Uphy—1];)

zj = o((W.x]; + [U.h];)

12

—@—»or/—)»h< X

Figure 2.2: Figure from initial GRU paper [51] showing GRU functionality. The update gate z selects
whether the hidden state is to be updated. The reset gate r decides whether the previous hidden state is
ignored.

ht = tanh((Wa); + [U(r © hy-1)];)

he = zh ™t 4+ (1 — z;)ht

Papers published recently still may use LSTM or GRU, but the GRU was developed specifically

to aid in the problem of learning for neural machine translation.

2.1.3 Get to the Point: Summarization with Pointer-Generator Networks

See et al. introduce a new approach to copying information from an input sequence to an
output sequence when using a sequence-to-sequence model for natural language processing [197].
A pointer-generator in a neural network model allows the model to ’point’ to a specific token on
the input sequence that should be copied to the output sequence. In early versions of sequence-to-
sequence learning, only tokens that were learned as part of the training vocabulary were available
for producing the output [208]. The paper details how a pointer-generator network is useful for text
summarization by allowing accurate use in the output of out-of-vocabulary words such as person
or place names. In particular, the field of automatically summarizing natural language processing
includes both extractive approaches where certain key sentences and phrases are copied in full from
the source, and abstractive approaches which can involve rewording ideas in the input and sound
more natural to most readers. The paper notes that abstractive approaches benefit from their copy
mechanism, which can use token embedding and encoding information to point to specific tokens

that aren’t in the language vocabulary but are in the input sequence and should be used at specific

13

points in the output sequence. In addition to improving natural language models, copying tokens
from the input directly to the output also has key advantages for program repair. A known challenge
to using sequence-to-sequence models for program repair is the issue that the full vocabulary for
source code is nearly infinite due to specific identifier names, numbers, strings, etc. [90]. Similar to
the summarization problem, in program repair new tokens from the computer language vocabulary
may be needed for a bug fix, and copying rare tokens can be used to solve the unlimited vocabulary
problem.

See et al. did not introduce the copy mechanism for NLP, but their paper has been received
by the NLP community as a base on which to build further work. For example, their paper is
the basis for the copy mechanism implementation in OpenNMT, a popular open framework for
neural machine translation. The main difference between this work and previous work is explicitly
computing pg.,, the probability for copying a token from the input versus using a token from the
vocabulary. The next paragraphs will briefly build up the model to show how p,.,, is computed and
used.

Encoder The encoder is a recurrent neural network using LSTM gates [97] to process the input.
It is a bidirectional encoder [196] that allows the encoding for a token to incorporate information
from tokens both before and after its occurrence in the input data. The encoder converts the source
sequence X = [z1, ..., T, into a sequence of encoder hidden states h; using a learnable recurrence
function f.. After reading the last token, the last hidden state, A, is used as the context vector ¢ for
initializing the decoder [51]:

hi = fe(wi, hi_y); 2.1)

Decoder The decoder is also a recurrent neural network using LSTM gates. When initialized
by the encoder, it begins production of the output sequence by receiving the special start token as
input yo. For each previous output token y;_;, the decoder updates its hidden state h? using the

learnable recurrence function f; [S51]:

he = fa(y;-1,h_y,0) (2.2)

14

The decoder states h;l are used for token generation by the attention and copy mechanisms in
Equation 2.4 and Equation 2.5. The model stops updating decoder hidden states and generating
new tokens when the last token generated by the model is a special end-of-sequence token.

Attention The attention mechanism provides a way to create a context vector c; for each de-

coder output token y; using a linear combination of the hidden encoder states h; [21]:
¢j=> alh; 2.3)
i=1

Where Ozf represents attention weights computed with a learnable function based on the relation
between the encoder hidden state and the decoder hidden state: o = softmax(f, (h¢, hd_,)). This

context vector c; is used by a learnable function f, to allow each output token y; to pay "attention"

to different encoder hidden states when predicting a token from the vocabulary V':

Py (Y; | Yj-1:Yj—2s s Y0, ¢5) = falhS, yj-1,¢5) (2.4)

Copy The copy mechanism further adjusts Equation 2.4 to produce a token candidate by intro-
ducing pg.,, the probability that the decoder generates a token from its initial vocabulary. Hence,
1 — pyen is the probability to copy a token from input tokens depending on the attention vector o/
in Equation 2.3 [197]:

Pgen = fc(h;]/a Yt—1, Cj) (2.5)

P(y;) = PoenPrr () + (1 = pgen) Y @l (2.6)

iwi=y;
fc in Equation 2.5 is learnable function. Using Equation 2.6, the output token y; for the current de-
coder state is selected from the set of all tokens that are either: 1. tokens in the training vocabulary
(including the <unk> token) or 2. tokens in the input sequence.

In addition to the copy mechanism, See ef al. introduce a technique for limiting repetition

of output sequences. This technique is important for the text summarization use case they envi-

15

sion, but is less relevant for source code. Reusing the same variable multiple times in a line may

sometimes be appropriate (i.e. "if (x < 8) && (x > 2)").

2.1.4 Graph neural networks

Researchers have applied graph analysis to human language generation models, and graphical
representations of code are common in compiler research. The key initial paper relating to graph
neural networks was written in 2009 [193].

In the 2009 paper, the graph neural network is described as an iterative encoding network.
The network uses as input labels for nodes and edges, the labels having dimensions dy and dg
respectively. The labels attached to node n are denoted [, € R?V; the labels attached to edge
(n1,ny) are denoted [, ,,, € R? . Additionally, leon) and [y, are the labels for edges connected
to node n and labels of nodes connected by edges to node n, respectively.

Figure 2.3 shows diagramatically how the input information is used in a GNN. z,, is the hidden
state for node n, and o,, is the output of node n. These are computed by iterating on the equations

below:

xn(t + 1) = fw(l’m lco[n]7 Tne[n) <t>’ lne[n])
Vn € N,on(t) = gu(n(t),)

The outputs o,, of the network allow for training samples to be used for setting the weights in
the functions f,, and g,,. Typically z,(0) is initialized to O for all nodes. The 2009 paper discusses
the constraints on the learnable function fy; that ensures x,,(t) converges over some finite number
of steps. The function fy is implemented as a different matrix for each edge type, so the number
of parameters to learn in a GNN grows linearly with the number of edge types. The hidden state
of all connected nodes is processed through each edge matrix to create the final output of fy. As
can be surmised, the number of iteration steps is equal to the hop distance to the furthest node in

the graph that can affect another node.

16

v_,(!)

)
[

lz-—gw

1 L !
fi X_)(f) f

/ Y - I I - "“
) W 2423
L 7)/\3/ A x;(r) o=
2 0;(1)=— Ew = A 8w 03(1)
/u// I3 AR ! ‘ ,//x_,(r) x;(1) F
L) (] M\ 1 1 >
b K\ Y | [W* Lpdigz) | fw RNxr (D) x;(1) Sw U303 o Sw
L a1, \/ . ’
(_-l)\‘/\’q\? (4,3) V \@(7} //
vy
Xy (1)
%fw ol PR Prp.
gw -]4 .fw
v

04(1)
Figure 2.3: Figure from initial graph neural network paper [193]. Using label values for nodes and edges,
a learned function fyy is iterated on at each node and ultimately used to produce o, (t).
As presented in Figure 2.3, the GNN is producing one output per node. Another use case
for a GNN is to do a softmax function on o,, which allows a node to be selected as an output.

Alternately, summing all o,, together can produce a usable single output for a graph.

2.1.5 Graph-to-Sequence Learning using Gated Graph Neural Networks

Sequence-to-sequence models for code generation have been augmented to include some AST
information [43], but the rich information available statically during program analysis would ben-
efit from a graph neural network. Beck et al., like the Pointer paper, discuss natural language
processing, and the concept introduced invites use for code analysis [29]. Beck et al. use a gated
graph neural network to analyze an input string after the string is transformed into an Abstract
Meaning Representation (AMR) graph. To minimize the number parameters in the graph neural
network model due to edge types, they discuss transforming the edges in the graph to be extra
vertices through a Levi graph transformation. For code analysis, a Levi transformation could be
valuable - it allows for a wider variety of edge types to be represented with a reasonable number
of parameters.

Figure 2.4 shows an overview of their approach. In a sequence-to-sequence model with at-
tention, as described in Section 2.1.3, the attention is computed using the encoder hidden states

for each received token. The encoder state includes information from the embedding of the input

17

the

[T

Bilinear
Attention

0 T

|
I | | I
Embeddings GGNN Encoder Attention RANN Decoder

Figure 2.4: Figure from Graph-to-Sequence paper [29] showing encoder and attention mechanism feeding
into sequence generation

token, as well as a function of the encoder states before and after this token. In a graph neural net-
work, the attention is computed using the node hidden states after the network has iterated on the
structure. Since the nodes are initialized with the token inputs, the node hidden states can include
information from an embedding of the input, as well as any other nodes that can be reached during
network iteration. An aggregation of the final node states can be used to initialize the hidden state
of the sequence decoder.

The transformation of the input AMR graph into a Levi graph allowed for fewer edge types
in the model. The paper shows that for optimal performance, the Levi network had these types
of edges: self edges, forward and reverse token sequence edges, and forward and reverse tree
connection edges. This results in five edge types, each of which has a weight matrix to compute
how the gated recurrent unites (GRUs) update each iteration step.

As is common for reporting machine translation results, the authors evaluate results using
BLEU scores (BiLingual Evaluation Understudy). The BLEU score was proposed by Kishore
Papineni et al. in their 2002 paper “BLEU: a Method for Automatic Evaluation of Machine Trans-
lation‘ [172] and scores candidate translations based on a reference translation. Their test set con-

tains both english-to-german and english-to-czeck translation tasks. In their results section they

18

show the highest BLEU scores for the models tested, including the same test set tested with recent
state-of-the-art approaches. Interestingly, they also include results for the ChrF++ scoring method,
for which their approach does not score the best. They note that ChrF++ scores have been found
to align better with human translation scoring than BLEU and leave the challenge of improving
ChrF++ scores to future work. The merits of BLUE versus ChrF++ methods for language out-
put scoring are not directly related to machine learning for code sequence generation. The scores
can help alert code generation researchers to new improvements in sequence generators, but the

methods tend to relate best to human languages.

2.1.6 Transformer Networks Use Attention Layers

Sequence-to-sequence (seq2seq) learning has become widely successful on many applications
such as automated translation [236], text summarization [167] and other tasks related to natural
language. The transformer model [220] is a powerful and versatile sequence-to-sequence model,
used by GPT-3 [36] as well as showing strong results for source code summarization [3]. As an
extension of the original seq2seq model which we introduce in Section 2.1.1, modern seq2seq
models generally consist of two parts, an encoder and a decoder. The encoder maps the input
sequence X = (xg, 1, ..., T,) to an intermediate continuous representation H = (hq, hy, ..., hy,).
Then, given H, the decoder generates the output sequence Y = (yo, y1, .-, Ym). Note that the size
of the input and output sequences, n and m, can be different. A seq2seq model is optimized on a

training dataset to maximize the conditional probability of p(Y" | X'), which is equivalent to:

p(Y ’ X) :p(y07y17 ey Ym | Zo, L1, 7‘7:%)

= Hp(yl ‘ H7 Yo, Y1, "'7yi—1)
=0

Prior work has shown that source code has token and phrase patterns that are as natural as
human language [95], and thus techniques used in natural language processing can work on source

code as well, including seq2seq learning [48].

19

In our work, we use a variant of a seq2seq model called “Transformer” [220], which is con-
sidered the state-of-the-art architecture for seq2seq learning. The main improvement introduced
by Transformers is the usage of self-attention. The number of operations required to propagate
information between two tokens in seq2seq learning based on recurrent neural networks grows
linearly with the distance, while in the Transformer architecture it is a constant time operation with
the help of self-attention. Self-attention updates all hidden states simultaneously by allowing all
tokens to attend to all previous hidden states. Since there are no dependencies between tokens,
this operation can be done in parallel without recurrence. This also helps to mitigate the issue of
long term dependencies which can be a problem for recurrent neural networks. Self attention can
be described as the process of mapping a query and key-value pairs to an output. Query, key, and
value are concepts borrowed from information retrieval systems, where the search engine maps a
query against keys and returns values. In a Transformer model, Query (Q), key (K), and value (V)
are vectors of the same dimension d;, computed for each input. Mathematically, the matching of

Query to Key is done with a dot product and the result is used to scale the Value selected:

KT
Vdy.

The Transformer model is trained with multiple attention functions (called multi-head atten-

Attention(Q, K, V') = softmax(

)%

tion) which allows each attention function to attend to different learned representations of the input.
Since the Transformer model computes all hidden states in parallel, it has no information about the
relative or absolute position of the input. Therefore the Transformer adds positional embedding to
the input embeddings, which is a vector representing the position.

The encoder of a Transformer has several layers, each layer having two sub-layers. The first
sub-layer is a multi-head self-attention layer, and the second sub-layer is a feed forward neural
network. The outputs from both sub-layers are normalized using layer normalization together with
residual connections around each sub-layer.

The decoder also has several layers, each layer has three sub-layers. Two of the decoder sub-

layers are similar to the two sub-layers in the encoder layer, but there is one more sub-layer which

20

Next token output probabilities

Sample tokens: alb |c|d|+]-
a 0.110.8]0.110.0]0.0|0.0
+
==
ModStart
EndLoc N _<|/_

copies
Multi-Head
Attention
e | Lt
4
Multi-Head Masked Multi-
Attention N Head Attention
copies =
[Input Embedding | | Output Embedding |

&&| (| d|==]61]) &&| (| d | >|a | * |«

Code with vulnerability Previous output

Figure 2.5: Code Generation Neural Architecture based on Transformers

is a multi-head self-attention over the output of the encoder. A copy attention mechanism, as
discussed in Section 2.1.3, can be used in conjunction with a Transformer in order to support data
copies from input to output. The Transformer architecture we utilize for our work in this thesis is
shown in Figure 2.5 and discussed in further detail in subsection 5.3.7 and subsection 7.3.2.

The Transformer model shown in Figure 2.5 includes example input and output tokens which
represent computer code. The Transformer for learns to generate outputs (in this example, cor-
rected computer code) by first receiving as input the code with a defect. Multiple copies of multi-
head attention layers learn hidden representations of the input data. These representations are then
used by multiple copies of a second set of multi-head attention layers to produce a table of proba-
bilities for the most likely token to output. The first token to output is based solely on the hidden
representations the model has learned to produce from the input code. As tokens are output they
are available as input to the model so it can adjust the next token probabilities correctly. For ex-
ample, in Figure 2.5, after the sequence of tokens "&& (d > a *’ has been output, the model

predicts that the next token should be ’b” with a probability of 0.8.

21

Libraries The Transformer model we use in our research is implemented in Python using state-
of-the-art tools. Once the input code is processed, OpenNMT-py is used to train the core Trans-

former model [117].

2.2 Computer Aided Programming

In this section we present background work related to computer analysis and generation of
computer programs. Works describing attempts to address these concerns without machine learn-
ing are presented as well as some initial works which do use machine learning but have weaknesses

which we aim to address with the work presented in this thesis.

2.2.1 Staged Program Repair with Condition Synthesis

Long et al. introduce staged program repair (SPR), which creates a search space of potential
bug fixes in C code [143]. The repair attempts are based on pre-defined parameterized transfor-
mation schemas that combine with multiple ways to synthesize changes to conditional statements.
The approach to evaluating the schemas allows for a relatively efficient pruning of the search space
that improved performance over prior work. There are 6 specific schemas discussed in the paper,
which can be useful as a baseline for evaluating machine learning techniques for program repair
and synthesis work to see which types of repairs can be found. This paper from 2015 is particu-
larly interesting because it discusses the algorithmic implementation of many program ideas that
are today starting to be explored using machine learning techniques.

Before exploring repair schemas, SPR does error localization by finding blocks of code that are
often executed for failing test cases but rarely executed for passing test cases. Given the suspected
faulty code blocks, SPR will then search for a successful repair by performing code transformations
and rerunning the passing and failing tests. The order SPR searches the repair space is a key
contribution of this work as it decreases the search time. For example, the first schema evaluated
is to change only a branch condition (e.g., tighten and loosen a condition). Further details are in

the paper, but a summary of the 6 schemas that SPR uses to explore code transformations are:

22

Condition Refinement: Given a target if statement, SPR transforms the condition of the if

statement by conjoining or disjoining an abstract condition to the original if condition.

Condition Introduction: Given a target statement, SPR transforms the program so that the

statement executes only if an abstract condition is true.

Conditional Control Flow Introduction: SPR inserts a new control flow statement (return,

break, or goto an existing label) that executes only if an abstract condition is true.

Insert Initialization: For each identified statement, SPR generates repairs that insert a mem-

ory initialization statement before the identified statement.

Value Replacement: For each identified statement, SPR generates repairs that replace either
1) one variable with another, 2) an invoked function with another, or 3) a constant with

another constant.

Copy and Replace: For each identified statement, SPR generates repairs that copy an ex-
isting statement to the program point before the identified statement and then apply a Value

Replacement transformation.

Three of the six transformations involve adding an abstract condition. An abstract condition

abstract_cond() can be added to an existing if statement by adding *&& abstract_cond()’ or ’ll

abstract_cond()’ to the statement. The condition to add is generated by creating traces of passing

and failing tests that track values of different variables for each case and a new condition is searched

for that causes the failing cases to pass.

Listing 2.1 is an example of a one-line patch found by SPR. The failure results because the

body of the if statement did not execute when it should have. An abstract_cond() was added to the

condition, then concretized to produce the correct fix.

— if (isostr_len) {

+ if (isostr_len I (isostr != 0)) {

Listing 2.1: Patch that uses Condition Refinement schema to correct if statement

23

A strength of the SPR paper is its discussion on the balance between plausible (passing all
tests) and correct patches. Out of 38 plausible patches, 11 are correct, which is a 29% correct/plau-
sible ratio. Other papers have cited lower ratios for correct/plausible; a careful analysis of prior
techniques (GenProg, RSRepair, and AE) shows that they have correct/plausible ratios of less than
12% [181]. Given that the authors compare directly against GenProg and AE, their relatively high
ratio implies that the repair schemas they use represent reasonable transformations.

Ultimately, the authors compare their results to two other well-cited repair programs (GenProg
and AE). On the same benchmark set, SPR was able to fix five times as many defects as the prior
art, representing a significant advance.

A weakness of the approach in the SPR paper is that it cannot effectively apply more than one
transformation to attempt a patch. As Chapter 4 will show, this is an area that can be addressed by

machine learning for patch generation.

2.2.2 PHOG: Probabilistic Model for Code

Beilik ef al. create a statistical model of code that can be used for code generation (including
code completion, patch generation, and programming language translation) [34]. The model is
based on their domain-specific TCOND language which allows for grammar production rules to
be context dependent. The probabilities for each contextualized production rule are computed from
the training data and evaluated based on how well AST nodes in the test data could be predicted.

The paper builds up ideas based on context-free grammars (CFGs) [15], which include produc-
tion rules that define how non-terminals can be transformed. Some examples to show the format

are:
* (expr) — number
o (expr) — (expr) + (expr)

o (expr) — (expr) — (expr)

24

Table 2.1: Evaluation of prediction for AST nodes in JavaScript

Model Error
Rate
Non-Terminals
PCFG 48.5%
3-Gram 30.8%
10-Gram 35.6%
PHOG 25.9%
Terminals
PCFG 49.9%
3-Gram 28.7%
10-Gram 29.0%
PHOG 18.5%

After discussing CFGs, the concept of a high order grammar (HOG) is introduced, which allows
for production rules to be based on contexts such that a[y] — [represents a rule transforming the
non-terminal a with context «y into 3, where (3 can be a terminal or non-terminal of the grammar. A
context is created by analyzing the program up to the production rule use point and might include
statement types or local variable names. For example: (expr)[return| — True could represent
the rule that (expr) expands to T'rue when the expression is in a return statement.

The paper defines a PHOG as: a probabilistic high order grammar is a tuple (G, ¢) where G
is a HOG (high order grammar) and ¢ : R — R™ scores rules such that they form a probability
distribution. G includes a set of non-terminals N and a conditioning set C' (i.e., the contexts). The

probability distribution is computed as:

Va e N,ve C: Z qlaly] = 6) =1
B:aly|—BER

The function ¢ is learned by counting rule expansions observed in a set of training data, and
the authors use smoothing techniques to address sparseness in the training data. This is a straight-
forward technique to learn probabilities. Machine learning approaches, which can learn similar

distributional information, are not as easily understood an the technique used for PHOG.

25

To evaluate PHOG, the authors predict JavaScript elements using PHOG and 3 alternate tech-
niques. The prediction test is done by deleting a node from an AST (and its subtree and all nodes
to the right) and querying the model to identify the missing node. Their alternate techniques are
a PCFG (probabilistic context-free grammar) that only conditions on the parent non-terminal (no
context used), and a 3-gram and 10-gram model (an n-gram model conditions on the n-1 previous
symbols in the AST traversal as used in Allamanis et al. [10]). Table 2.1 shows their results on
predicting both terminal and non-terminal elements. Their results are very strong in this analysis
relative to previous techniques; but Chapter 4 will show a more flexible approach using a machine

learning technique for patch generation.

2.2.3 Abstract Syntax Trees

Human languages can be parsed and broken down into clauses and parts of speech, but this
process is not mathematically precise due to exceptions and nuances in human language [63].
Computer languages, on the other hand, are designed to be automatically and predictably parsed.

Figure 2.6 shows a typical abstract syntax tree (AST) for a short code snippet [233]. The tree
is abstract in that certain syntax (such as parenthesis) are not necessary, but given the AST for a
code snippet, equivalent code can be reconstructed. The tree provides a structure for identifying
the way in which control statements and variables are used in the program, and Section 2.2.4 will

show how it can be useful as an input to machine learning approaches on code.

2.2.4 code2vec: Learning Distributed Representations of Code

Alon et al. describe an approach to create an embedding vector for entire Java methods [12] in
a way similar to the widely successful word2vec approach used in NLP [159]. The example use
case is to predict method names, but the paper aims to produce an embedding that can be used for
a variety of cases. Indeed, this approach can be directly applied to the problem of program equiv-
alence. The paper presents cases where similar methods have similar embeddings and ’adding’
the embedding from one program can have meaningful results in the method name predicted. In

this way, a possible future application for code2vec would be test two programs for equivalence

26

while

conW

compare
op: #

variabl onstant
value: 0

statement |

sequence
return
varia
body name: a
branch
if- body else- body

assign assign

An abstract syntax tree for the following code for the Euclidean

algorithm:
while b # ©
ifa>bhb
a:=a-b
else
b :=b - a
return a

variabl variable varia bin op variable bin op
name: a name: b, name: a op: name: b op: —
'variable variabl variable variable
name: a name: b} name: b name: a
]

Figure 2.6: Wikipedia image of an abstract syntax tree for a short code snippet

27

by subtracting their embeddings and the resulting vector could be used to seed a sequence decoder
and create a description of the program differences.

The paper builds up d-dimensional embedding for a piece of code (in their example use case
they are looking at methods). The embedding is built up using weighted summations of embed-
dings for path-contexts. A path-context is a sample from the AST for the code that includes a start
terminal, the non-terminals from the AST, and the end terminal. In theory, a snippet of code with
n terminals in the AST has n? path-contexts, but the authors set AST distance constraints on the
path-contexts allowed and also have found that an upper bound of 200 path-contexts is sufficient to
represent most code correctly. Like the popular word2vec, embeddings are learned during model
training for the terminals and AST paths. The embeddings for the set of all terminal symbols are
collected into value_vocab, and the embeddings for all of the paths seen in the training set are
collected into path_vocab. Hence, given a path-context that starts at terminal x; and terminates at

x; following a path p; through the AST, the path-context is mathematically represented as:

¢; = embedding((zs, p;, x1)) = [value_vocabs; path_vocab;; value_vocab] € R3d

Figure 2.7 shows an example of path-contexts. For example, the path-context for the red path

labeled (I) in the figure is the embedding for:

(elements,(Name 1 FieldAccess 1 Foreach | Block | IfStmt | Block | Return | BooleanExpr),true)

Using the path-context ¢; and a trainable weight matrix W € R34, the combined context
vector ¢; 18:

¢ = tanh(W-¢;)

A trainable global attention vector @ € R? is used in a softmax function to compute attention

weights «; based on the path context embeddings:

28

MethodDecl
Block

Primitive Name Parameter
i ._//. \ ——
boolean ? (Class VarDeclld ':‘ Foreach) Return
i N) i _\ = N\,
Object|| | target VarDeclExpr I eld, \cc::t;\‘. Hlml-\ BooleanExpr
@ - ' . @ .
Class VarDecl ThisExpr O (mue [t\unl) false
Object| < VarDeclld » [this ['e"l'ér'nen"cs' MethodCall > (Block)
- - . y -__[- —
elem Name Name Name (Return)
' . .

elem| equals| target| (BooleanExpr >
true
Figure 2.7: Figure from code2vec paper [12] showing different paths through AST. The top-4 attended

paths learned by the model are shown in red, blue, green, and yellow. Path width is proportional to the
attention given.

exp(G;T-

o 2
Z Zg ; exp(JT a)

Ultimately, the whole code snippet is represented by an aggregated code vector v € R%:

v = Z ;G
i=1

A strength of the code2vec paper is that it teaches a way to visualize the parts of the program
that are being used to determine the method name, which is a helpful way to improve understanding
of the neural network. Since understanding what a network has learned is a known problem in
machine learning, this attention visualization is valuable. Figure 2.7 shows the various weights of
the top 4 paths used in computing v for the snippet based on the thickness of lines. Figure 2.8
diagrams the full use model of the code2vec paper. The original code, with *?” for the method
name is shown, along with the top 4 weighted paths used to predict the method name ’count’.

A weakness of the code2vec paper is that it learns on full tokens (not subtokens) and has a
vocabulary limitation. It cannot learn embeddings for novel variable names. Also, the embeddings

it does learn are based on the training set provided, hence the embedding may not be appropriate for

29

int count = 0
for (String str : array) {

({."Ebniu(::%trinq "\t_ajraiet,:, ArrayList<String> array) {
t =0

if (targetL.equals(str)) {
countc++;

} s i
P Predictions:
} Eacuneonnis count D) 42.77%
countOccurrences W) 33.74%
indexOf) 8.86%
MethodDecl)__
6’[-j':_Parnlnctey_j_‘}- Parameter —=(_Block
_ o [~ — : .
int [’ Class :;_\"ar[)cn:lld_;,l Class) VarDeclld_ _ VarDeclExpr _Foreach -\Rctnrn"'.
String tar‘get] Name) (Class) [array Primitive) VarDecl " VarDeclExpr) (Name) (Block) (_Name)
ArraylList| String| |int|C VarDeelld » (Integer) (Class) (VarDeel [ar‘r‘ay C ISt _Lcount
count @ String VarDeclld ~ MethodCall T Block
st'r'r (Name _N;ufc _-N:lme _ExprSimt_

target Eﬁﬁ? str| Unary increment
Na}ne

count

Figure 2.8: Figure from code2vec paper [12] showing full use model from code snippet to method name
prediction

30

() @ @
AR R | AR | L&

Pl:a*x (1xb+1%c) P2:ax* (b+c) P3:axb+axc P4 axc+axb

Figure 2.9: Examples of Computations Shown as Symbolic Expressions and Dataflow Graphs

how a variable is used in a given method. For example, a method that iterates over an array using
1 and accumulates the sum of array elements into sum is semantically equivalent to a method that
uses j for the iterator and ¢ for the accumulation. But the somewhat odd use of ¢ for accumulation

would result in a shifted code vector for the method.

2.2.5 Program repair

Program repair is the problem of finding a patch to a buggy input program in order to ad-
dress a bug. In the survey paper “Automatic Software Repair: a Bibliography” [161], Monperrus
discusses several kinds of repair. First, the paper discusses behavioral repair where test-suites, con-
tracts, models, or crashing inputs are taken as test oracles to determine software quality. Second,
it discusses state repair, also known as runtime repair or runtime recovery, with techniques such
as checkpoint and restart, reconfiguration, and invariant restoration. The paper spans the research
communities that contribute to this body of knowledge: software engineering, dependability, oper-
ating systems, programming languages, and security. It provides a novel and structured overview

of the diversity of bug oracles and repair operators used in the literature.

2.2.6 Program equivalence

The problem of proving program equivalence is one of the earliest problems in computer sci-
ence [101]. The problem is to determine when two programs with different textual representations
have the same semantics. In particular, proving that for all program inputs the two programs pro-
duce identical output. The applications for program equivalence checking include: 1. validation

of any algorithm that does program transformations (such as compilers) 2. plagiarism detection

31

(useful in MOQOC:s etc.) 3. formal verification when refactoring code (for readability, security au-
tomation, efc.) 4. virus and other malware detection by detecting similar code sequences.. Since
the problem of program equivalence can range from undecidable [79], to trivial in the case of test-
ing the equivalence of a program with itself, new techniques for program equivalence can improve
software quality and reduce development time.

In order to reason precisely about programs, symbolic expressions and other program con-
structs can be represented as abstract syntax trees, as we discuss in Section 2.2.3. Figure 2.9
shows an example of 4 semantically equivalent computations along with their dataflow graphs. A

challenge addressed by this thesis is how to formally prove such programs equivalent.

2.2.7 Neural Network-based Graph Embedding for Cross-Platform Binary

Code Similarity Detection

Xu et al. use graph neural networks to detect binary code similarity [241]. Like the code2vec
paper (which is more recent), Xu et al. learn and embedding function on code and the use model
is to compare embedding functions to detect code similarity for vulnerability detection. They refer
to their approach as Structure2vec.

The Structure2vec approach starts with an ACFG (attributed control flow graph), in which
each node represents a basic block and includes attributes such as number of calls’, 'numeric
constants’, 'number of offspring’, and five other easily computed attributes. After initializing and
iterating the graph neural network for T iterations, the embedding for the graph ¢(g) is computed

using a learned matrix W to combine the final hidden state uq()T) of each vertex:

olg) =W pll)

veV

Figure 2.10 diagrams the approach for detecting code similarity. Subfigure (a) shows how after

T iterations of the graph neural network, ¢(g) is created. The Siamese architecture shows how the

32

[+) - olg) (+1,-1)

() T f T)
& W W | 3 Cosine(®(g,), Og,)
3
1) ity - 9
N A |3 Og,) Olg,)
| 1 |
N 0‘} 3 0% J 0
a &) 8 Embedding Embedding
'b """""" [remmmemsagis “ Network Network

@ #() 20

e e i e A
.’

. ACFG : 81 82

..............................

(a) Graph Embedding Network Overview (b) Siamese Architecture

Figure 2.10: Figures from Code Similarity paper [241] showing generation and use of ¢(g)

difference between two code embeddings is computed using the cosine of two multidimensional
vectors.

A disadvantage of this approach is that the cosine function tends to limit each dimension of
the embedding to a gradient representation of some feature. If the cosine function were replaced
by a 2-layer neural network, then mappings from the program embedding to the equivalence value

could account for disjoint but similar areas in the embedding spaces.

2.3 Preliminary Studies on Machine Learning Concepts and

Limitations
In this section we will explore 3 topics in machine learning with our original research. These
3 subsections are outside the field of program analysis, and hence are not necessary reading for
understanding the work presented in this thesis. But they provide some insights into machine

learning concepts which inform certain decisions taken in our primary research area.

33

In Section 2.3.1 we explore the limits of neural networks when attempting to learn pseudo-
random datasets such as this study on finding a hash function on binary data. As neural networks
excel at finding patterns in data and generalizing an output to these patterns, when no discernible
pattern is available a neural network is likely not the best approach. As shown in Parts II and III
of this thesis, the general problem of machine learning on code does have patterns and relations
which a machine learning system can help address.

In Section 2.3.2 we explore the effects of network size (number of neurons and number of
layers) on the ability of a model to avoid overfitting and generalize well on the dataset. We study
the problem of generalizing on 3D lung nodule data using a novel scoring metric based on distri-
butional differences of the shape characteristics. We find that a network that is too small may not
have sufficient learnable parameters to fully generalize to the data, while a network that is too large
may overfit the training data that is used to learn the parameters but then may generalize poorly
beyond the training data.

In Section 2.3.3 we use a well-defined problem to explore the ability of a system to learn to
solve multiple goals with sparse reward information. The system studied is a hand/eye coordination
task within a 2D grid world in which hand and eye movements can be used to accomplish a goal.
The goal is defined as getting the hand or eye to a given position, or visually seeing the hand at
a given position in the visual field. This problem relates to our problem in this thesis of proving
program equivalence. In the case of program equivalence, rewrite rules are actions instead of
hand/eye movements and a target equivalent program is the goal instead of a hand/eye position.
We find that the concept of hindsight experience replay is very valuable for solving this hand/eye
problem and we leverage that finding into our work on program equivalence which we present in

Chapter 7.

34

2.3.1 Multilayer Perceptron (Vanilla) Neural Network Models And the Chal-

lenge of Learning Hash Functions

The simplest form of neural network is a fully-connected multilayer perceptron, sometimes
called a ’vanilla’ nueral network. We now explore an attempted use case of such a network which
introduces neural network concepts and demonstrates some limitations of neural networks. This
section will also cover techniques which could be used to transform a neural network which has
learned a symbolic equation back into such equation.

The problem we explore is to reverse-engineer the Cache/Home Address (CHA) mapping for
the L3 cache of the Intel Xeon-Phi. Successfully reverse-engineering the mapping could allow
software to map data in the large L3 such that they are close to the CPU core executing code which
needs the data. The neural network sample data for this mapping has as input 29 bits of the address
which are used to map an address location to one of 36 CHA locations.

Table 2.2 shows 3 fully connected neural network models of varying sizes which were trained
on the CHA mapping problem. We found in earlier experiments that classifying each 29 bit address
input into one of 36 CHA classes did not work well, so we surmised that training a different model
per CHA bit may be productive (6 CHA bits can represent 36 possible CHA identifiers). We also
found that having the network produce 2 classes per bit (the bit "high’ class and the bit "low’ class)
yielded better results than a single binary output. Our expectation here is that having a 2 bit output
approximates one more layer in the network and hence allowed some more learning opportunities
for the network. We trained on 384,000 samples for 500,000 iteration steps and tested on a separate
128,000 samples. As the table shows, all 3 network sizes learned CHA bit 0 well as shown by the
Test Error scores of 0.04% or less for this bit, but none of the networks learned CHA bit 4 well
as shown by the Test Error scores of over 48% on this bit. Of course random prediction for any
bit will result in 50% error rate, so 48% error is quite poor. From this observation we surmise that
the function for CHA bit 4 is relatively chaotic in the same sense as functions which Bahi et al.
demonstrated are difficult for a neural network to learn in their work studying neural networks and

chaos [22].

35

Table 2.2: Training and test results as vanilla network size varies

Number of elements in layer CHA Training Test
Input Ll L2 L3 L4 L5 Output bit Error Error
29 256 256 64 64 64 2 0.00% 0.03%

0

1 43.26% 49.98%
2 37.20% 49.67%
3 6.35% 17.36%
4 38.86% 48.94%
5 13.84% 23.13%

29 512 256 64 64 64 2 0 0.00% 0.04%
1 0.00% 0.04%
2 0.05% 5.01%
3 2.03% 16.85%
4 13.07% 48.94%
5 6.26% 25.68%
29 1024 512 256 128 64 2 0.00% 0.04%

0.88% 49.77%
0.00% 2.96%
0.25% 48.82%
0.80% 49.33%
0.15% 22.37%

N kW = O

Outside the scope of this thesis, we developed and published a process which did not use ma-
chine learning to decode the CHA mapping [125]. The binary functions which compute CHA bits
0 and 4 are shown in Figure 2.11. As we can see, CHA bit O has several layers of exclusive-or
functions and a few logical and, or, and invert functions. Despite this moderate Boolean complex-
ity, all 3 models in Table 2.2 were able to learn this function well. However, CHA bit 4 uses a
complex function g to select one of 2 other complex functions f and h to produce the final output.
This layering of complex functions was not learned well by any of our 3 models.

Had our machine learning model succeeded in learning the CHA decoding, we can see that
the number of neurons and layers in our models would make efficient computation challenging.
It would be of interest for practical usage to successfully transfer learned neural network models
into more direct discrete computations. Figure 2.12 illustrates how this process could be attempted

for a neural network trained on a Boolean function. In this figure, training has settled the weights

36

CHA(= ag © as @ ag a0 ® a14 © a15 © ar7 O a1z © azo © azz © azr © ((azoas1)|(@30a31(asz|ass)))
CHA4 = fg|gh, where:
[=a6® a1 ®ax®aie® aig @ az D ax O a3 O az O aze © azo D az1 D azz
g = ((a11 ® a6 © a17 @ a1 ® a3 © aze © azy © azs D azg D azy) |
(a10 @ a15 ® a16 D ag D az © azs © aze D azr D agg D 30 O azs))
(a7 © a12 D a13 © ar7 © a9 ® aze D a3 D azq © azs © azr D az1 D az2 D azs3)
(ag ® a1s B ars B arg B ag1 D agg B ags B age D agr B agg B azs B azq)
h = (a7 ® a12 ® a13 ® a17 ® a19 B age D agz ® agq D ass ® agy O az; & azz O assz)
(a6 ® a12 D a13 @ arg ® a1z ® az ® ag1 O azx © azz ® age G azs D az9 D az1 © azz O az3)
(a8 @ a12 D a14 © aie ® a1z ® a19 D a2 O a3 © azq © azy © azg D az a3 D a33)
(ag @ a1s ® a1s ® a19 @ azy ® a4 ® ags O age S a7 © azg ® azz ® azy)
(@10 @ a11 ® a13 D a1e © ar7 © aig © a19 D ax®
az @ agz agr D azs © @30 © az1 D azz D aza)

Figure 2.11: Reverse-engineered mapping function between memory blocks and Caching/Home Agent
(CHA) bits 0 and 4.

ARR—
X, 7= 6(},; Wx; + b) (X, & (X | Xy))

X0 0 0 0 00067 0
0 0 1 00000003 0

0 1 0 09933 1

X =Neuron z 0O 1 1 00067 0
W 2= 0l Wi ¥) I 0 0 09933 1
2/v 10 1 00067 0

X, I 1 0 09999997 1
11 1 09933 1

Figure 2.12: Discrete functions can be extracted from a trained neural network [227]

37

such that wy = w; = 10, wy = —10, and b = —5 for the single neuron shown, which uses a
sigmoid function to clamp the z result between floating point values of 0.0 and 1.0. We can see
from the z columns in the figure that the values in the floating point result closely approximate
the binary computation of z = zx|T3(zo|z1)). Other researchers have explored the problem of
extracting grammar rules from recurrent neural networks [227], but in our study of CHA the neural
network did not learn the problem well enough to attempt this effort. Additionally, as we discuss
in Parts I and III of this thesis, the stochastic nature of neural network outputs can be useful when
a mechanism for verifying the outputs exists. A stochastic result can be used to create multiple

proposals from a network, which can increase the likelihood of a useful result being produced.

Section key points: We confirmed that neural networks do not learn hash functions well. We
also found that larger networks may often learn training data well but may not generalize well

(they can overfit).

2.3.2 Generalizing to a Target Distribution With Proper Network Sizing

20x40x40=
32,000 outputs

20x40x40=
32,000 inputs

H
§
H
Neurons in layer * ¢

32 3 64 1024
Trained weights from autoencoder\
. copied to ‘feat’ and ‘gen’ networks .

32,000 § : 3inputs i i 32,000
inputs i /\ 3outputs i/\ i/\ outputs

* Neurons Neurons H
32 3 64 1024

Figure 2.13: Six of the 51 seed nodules showing Figure 2.14: Autoencoder and derived feature and
the middle 8 out of 20 2D slices generator networks for nodules

In work outside the scope of this thesis, we created a method to score autoencoder output dis-
tributions for use in generating artificial examples of 3D lung nodule images to aid in lung cancer

diagnosis. One of the challenges of using machine learning techniques with medical data is the

38

frequent dearth of source image data on which to train. A representative example is automated lung
cancer diagnosis, where nodule images need to be classified as suspicious or benign. In our pub-
lished work [120], we propose an automatic synthetic lung nodule image generator. Our 3D shape
generator is designed to augment the variety of 3D images. Our proposed system takes root in
autoencoder techniques, and we provide extensive experimental characterization that demonstrates
its ability to produce quality synthetic images.

Figure 2.13 shows 6 of the 51 CT scan images which were available for training our model.
Each of the images is centered in the 20x40x40 training size. One of our nodules was slightly
too wide and 21 out of 1290 total voxels were clipped; all other nodules fit within the training size.
From an original set of 51 images, 816 are generated: 8 copies of each nodule are the 8 possible
reflections in X,Y, and Z of the original; and 8 copies are the X,Y, and Z reflections of the original
shifted by 0.5 pixels in X and Y. The reflections are still representative of legal nodule shapes to
the analyzer, so it improves the generality of the autoencoder to have them included. The 0.5-pixel
shift also aids generalization of the network by training it to tolerate fuzzy edges and less precise
pixel values. We do not do any resizing of the images as we found through early testing that
utilizing the full voxel data resulted in better generated images than resizing the input and output
of the autoencoder.

Our autoencoder is trained initially with the 816 images in our base set. We use Adam [116]
for stochastic optimization to minimize the mean squared error of the generated 32,000 voxel 3D
images. As shown in Figure 2.14, the trained autoencoder network can be split into feature and
generator networks. The feature network can be used to map actual nodules into a latent feature
space so that novel images similar to the actual input nodule can be created using the generator
network. If stepping is done between the latent feature values of nodule suspected as cancerous
and another suspected to be non-cancerous, a skilled neurologist could identify the shape at which
the original suspicious nodule would not be considered suspicious to help train and improve an

automated classifier. The generator network can also be used to generate fully random images for

39

improving a classifier. For our random generation experiments we use uniform values from -1 to 1
as inputs for the 3 latent feature dimensions.

The autoencoder structure which yielded the best results is not symmetric in that there are fewer
layers before the bottleneck layer than after. Like the seminal work by Hinton and Salakhutdinov
[96], we explored various autoencoder sizes for our problem, but we added in an exploration
of non-symmetric autoencoders. We found during hyperparameter testing that a 2-layer feature
network (encoder) performed better than a 1-layer or 3-layer network. We suspect that a single
layer for the feature network was not optimal due to limiting the feature encoding of the input
images to linear combinations of principle components [88]. We suspect that 3 layers for our
feature network was less optimal than 2 layers due to overfitting the model to our limited training
set. Given our goal of generating novel nodule shapes, overfitting is a particular concern and we

address this using a network scoring metric.

Metrics for scoring the accepted image set The composite score that we use to evaluate net-
works for LuNG is comprised of 4 metrics used to combine key goals for our work. We compute
the percentage of nodule images randomly generated by the generator that are accepted by the
analyzer. For assessing the variation of output images relative to the seed images, we compute a
feature distance F'tDist based on the 12 3D image features used in the analyzer. To track how
well the distribution of output images matches the seed image variation, we compute a FtMMSE
based on the image feature means. The ability of the network to reproduce a given seed image
is tracked with the mean squared error of the image output voxels, as is typical for autoencoder
image training.

Our metric of variation, F'tDist, is the average distance over all accepted images to the closest
seed image in the 12-dimensional analyzer feature space and is scaled in a way similar to Maha-
lanobis distances. As ['tDist increases, the network is generating images that are less similar to
specific samples in the seed images, hence it is a metric we want to increase with LuNG. Given an
accepted set of n images Y and a set of 51 seed images S, and given y; denotes the value of feature

1 for an image and og; denotes the standard deviation of feature ¢ within S

40

FtDist = 1/anin

yey

FtMMSE tracks how closely LuNG is generating images that are within the same analyzer
feature distribution as the seed images. It is the difference between the means of the images in Y
and S for the 12 3D features. As F'tMMSE increases, the network is generating images that are
increasingly outside the seed image distribution, hence we want smaller values for LuNG. Given
1s; 1s the mean of feature ¢ in the set of seed images and iy is the mean of feature ¢ in the final

set of accepted images:

12
FMMSE = 1/12) (P F50y2

g
i1 St

,, _ Score components for32_* 64 1024 networks

15 o ®

10

0 1 2 3 4 5 6 7 8 9
Neurons in bottleneck layer

Score/10 -+--@--- AC*20 MSE*20K FtDist FEMMSE*20

Figure 2.16: There are 4 components used to com-
pute the network score. The component values are
Figure 2.15: 6 images generated using uniform scaled as shown so that they can all be plotted on
distribution as inputs to generator network the same scale.

Score is our composite network scoring metric used to compare different networks, hyperpa-
rameters, feedback options, and reconnection options. In addition to F'tDist and FtMMSE, we
use AC', which is the fraction of generated images which the analyzer accepted, and MSE which is
the mean squared error that results when the autoencoder is used to regenerate the 51 seed nodule

images.

41

FtDist — 1
(FtMMSE + 0.1) x (MSE + 0.1) % (1 — AC)

Score =

Score increases with FtDist and AC and decreases with F'tMMSE and MSE. The con-
stants in the equation are based on qualitative assessments of network results; for example, using
MSFE + 0.1 means that MSE values below 0.1 don’t override the contribution of other components
and aligns with the qualitative statement that an MSE of 0.1 yielded visually acceptable images in
comparison with the seed images.

Figure 2.15 shows 6 example lung nodules generated randomly by our generator network.
Results using Score to evaluate networks and LuNG interface features are shown in Figure 2.16.
Note that the MSE metric (mean squared error of the network on training set) continues to decrease
with larger networks, but Score is optimal with 3 bottleneck latent feature neurons. Our intuition is
that limiting our network to 3 bottleneck neurons results in most of the available degrees of freedom
being required for proper image encoding. As such, using a —1 to 1 uniform random distribution
as the prior distribution for our generative network creates a variety of acceptable images. The
Score metric helps us to tune the system such that we do not require VAE techniques to constrain
our random image generation process, although such techniques may be a valuable path for future
research.

Our use of Score to evaluate the entire nodule generation process rates the quality of the ran-
dom input distribution, the generator network, the reconnection algorithm, the analyzer acceptance,
and the interaction of these components into a system. Our use of the analyzer acceptance rate is
similar in some functional respects to the discriminator network in a GAN as both techniques are

used to identify network outputs as being inside or outside an acceptable distribution.

Section key points: We developed an autoencoder problem which can be used to explore how

network and feature sizes can generalize on a limited dataset.

42

2.3.3 Using Hindsight Learning to Improve Goal Achievement In Multigoal

Environment With Sparse Rewards

For the problem of program understanding, some researchers have used reinforcement learning
to explore ways to repair code [83] as well as to prove symbolic statements [69, 23, 171]. One
challenge with reinforcement learning on code is that a reward function to train on may be quite
sparse since there is no easy distance metric from buggy code to fixed code. Additionally, for the
case of proving programs equivalent, the goal to be reached is itself part of the input (we want to
prove a first program equal to a second program). Hence, we would like to study a reinforcement
learning system which has multiple goals and a sparse reward. We researched the ability of rein-
forcement learning to solve this challenge by creating a problem simpler than program analysis for
study of learning techniques: a multigoal grid world [122].

We based our reinforcement learning model on the Deep Q Network (DQN) tutorial for Py-
Torch [174], which includes a replay buffer [141, 139], and a target network [160] to help with
stability. As we will show, the base network performs poorly on the multi-goal learning problem
due in part to a sparse reward, so we added hindsight experience replay [14] to create a system
which is able to learn more complex behaviors. In our previously published work, we show how
a symbolic learner performs on this same task [122], but for this thesis we are interested in results

applicable to neural networks.

Model inputs For the DQN model, the input is the current world state, including the desired goal,
and the output is the action the model recommends taking. Figure 2.17 shows the full set of inputs.
The DQN receives data about the current world state through hand and eye proprioception (a sense
of where the hand and eye are in space) as well as a visual field which is the same dimension as
the grid world. These 3 input forms are provided as 3 NxN input values. A fourth N xN matrix

encodes the goal state:

* IN[3][0][x] specifies the X position of the goal

e« IN[3][1][y] specifies the Y position of the goal

43

e IN[3][2:N-1][0] setto 1 for goal to move hand to a given proprioceptive position
e IN[3][2:N-1][1] setto 1 for goal to move eye to a given proprioceptive position

o« IN[3][2:N-1][2] setto 1 for goal to see hand at a given position in visual field

IN[O][x][y] IN[1][x][y] IN[2][x][y] IN[3][x][y]
Hand Eye Vision Goal
Proprioceptive Proprioceptive Grid Encoding

Grid location

One-hot One-hot hig o
position position J:Ef':: Ere

n
U

Unused

Hand Pos Flag
Eye Pos Flag
Vision Flag

Goal Y position

inview Goal X position
01234 012 3 4 01 2 3 4 01 2 3 4

O RLr N WA

Figure 2.17: Input tensor has four 2D grids. Three grids represent sensory input, and one grid represents
the goal to achieve.

The network output is the 8 possible actions: move hand forward, backward, left, right, and
move eye forward, backward, left, or right.

During reinforcement learning, the model is trained by using back-propagation as the model
optimizes an action policy given the input state [14]. In typical reinforcement learning, an action
policy determines which action to apply in which state: 7(s) : S — A. Reinforcement learning
works by learning a Q-function (s, a) which represents the reward from the environment achieved
by taking action a in state s. For any given state s, the action a with the highest Q)(s, a) value is the
recommended action to take, as it achieves the highest reward. The optimal Q-function Q*(s, a) is
given by the Bellman equation, shown in Equation 2.7. In this equation, Q*(s, a) is the expected
value over all possible next states of the immediate reward r (s, a) achieved by taking action a in

state s plus the best Q-value of the possible future states discounted by a depreciation factor \.

Q*(s,a) = Egp(lsw)(r(s,a) + ymax Q*(s', ') (2.7

a’€A

44

From the Bellman equation, we can see that having frequent non-zero rewards will help a
system learn the correct Q-function and, hence, the correct action to take in a given state. But
our goal in this study is to model a system which is only rewarded when the goal is achieved,
which models situations in which a distance to goal metric for an incremental reward may be
difficult to evaluate. As we will show, sparse rewards can create training convergence challenges
to traditional reinforcement learning models. In order to learn with sparse rewards, the model needs
to get sufficiently lucky to take the correct action when it happens to be right next to a goal, then
the system can learn how to take actions that get it one action away from the goal, and so on. But
with enough random actions occurring, the ability to learn the Q function can become intractable.
Andrychowicz et al. address the issue of learning with sparse rewards in a multi-goal system by
introducing hindsight learning [14]. In hindsight learning, the current state and goal state are given
and the system chooses an action given it’s currently poorly performing Q-function. This action is
not likely to have a reward, but the training can be adjusted to reward the state achieved. Hindsight
works by adding a training sample as if the state reached was the goal. For example, if the model
is asked to achieve goal g from current state s and it takes action a resulting in state s’, then a
training sample is created which teaches the model that if the goal had been to reach s’ from s
then the correct action was a. In this way, every step taken by the model provides some teachable
information.

Figures 2.18 and 2.19 show the importance of using hindsight to enhance the ability of the
DQN network to learn from sparse rewards; the DQN needs reward information to learn well.
The blue lines in the graphs are the path length to reach the goal each episode, the gold line is
the average path length over 200 episodes. For example, when there are no blue lines reaching to
the max path length (4 times the length of a grid side) then for that period the network solved all
the goal challenges presented. Hindsight learning learns 2 datum per action step - it trains on the
benefit of the action taken with respect to the actual goal requested, and it trains on the benefit of
the given action as if the next state reached was the goal. The gold lines in the figures show that

a model with hindsight learns to solve multiple goals in a 7x7 grid faster than a model without

45

GrdEny, 7_hand eye.visionpng GridEny_7_hard.eye,vson_hindsight prg

Soiution path length and 700 epkode average Salutian path length nd 200 eptsode average
!

L 35

Fi} 30
= =
ans ;1 m
E a
= ¥
s il |

4 L

B o

n mno g L L] HIIIII 10083 - 2000 4000 B8a00 oo SODOD
Epn=sin Tpnnde

Figure 2.18: Gold line shows the average steps to Figure 2.19: The benefit of hindsight. Multigoal
reach a random goal (hand, eye, or vision) on a 7x7 learning on a 7x7 grid converges to nearly optimal
grid. Learning progresses slower without hindsight. relatively quickly.

hindsight. Without hindsight, learning the multi-goal problem on a 9x9 grid did not converge with

our model.

Section key points: We developed a system to explore multigoal problems with sparse re-
wards and found hindsight learning to be highly valuable in adding training information from

every action taken.

2.4 Complexity Classes for Program Equivalence

Computational complexity classifies problems based on the computation resources required
to solve a problem [234]. The famous P vs NP problem, one of the seven unsolved mathematical
problems for which the Millennium Prize would be awarded, is based on computational complexity
theory [59]. Figure 2.20 shows some of the complexity classes related to the problem of program
equivalence. The classes are defined in relation to using a Turing machine [218] to solve the prob-
lems. A Turing machine is a mathematical model of computation useful for precise discussions
of algorithmic complexity and we shall use Turing machines to define the complexity classes in
Definitions 2.4.1 through 2.4.6. The ’simplest’ problems for a computer to solve in Figure 2.20

would be in complexity class P. The next most difficult are NP, then PP, and finally *Decidable’

46

Decidable

Figure 2.20: Complexity classes indicate how hard a problem is for a Turing machine to solve.

problems. Some problems, including some program equivalence problems as we shall show, are

undecidable.

Definition 2.4.1. Complexity class P is the class of problems which can be solved by a determin-
istic Turing machine in polynomial time. Effectively this means that for a problem of size N, a
computer algorithm which can be run on a typical physical computer today can solve the problem

in time less than k* N?. Where k and p are positive constants related to the details of the algorithm.

Definition 2.4.2. Complexity class NP is the class of problems which can be solved by a non-
deterministic Turing machine in polynomial time. A non-deterministic Turing machine describes
a system which can have multiple next states given a certain input and current computation state;

i.e., the next state is non-deterministic.

A non-deterministic Turing machine can be conceptualized as being allowed to pick the "best’
next state for the goal of solving the problem, which is not currently realizable by physical com-
puters (although quantum computers are expected to be able to address some problems that are
part of NP but not in P [1]). It has not been proven that P is not equal to NP; i.e., it is not known if
a non-deterministic Turing machine can actually solve problems in polynomial time which could
not be solved by a deterministic machine in polynomial time, but it is expected by most computer

science researchers that P is not equal to NP. Many problems that are in NP currently take expo-

47

nential time to solve on modern computers. Indeed, many modern security protocols rely on this

exponential time for securing critical data.

Definition 2.4.3. NP-complete is a subset of problems in NP which can be used to simulate every
other problem in NP [60]. Because we require that mapping an NP problem to an NP-complete
problem must be possible in polynomial time on a deterministic Turing machine, if any problem
that is NP-complete is found to be in complexity class P, then any NP problem can be solved in

polynomial time on a deterministic Turing machine, in which case P = N P.

Definition 2.4.4. NP-hard is a class of problems which have proven to be “at least as hard” as
NP-complete problems. Proving that a problem is NP-complete requires proving that the given
problem can indeed be solved by a non-deterministic Turing machine in polynomial time (i.e., the
problem is in NP). But proving a problem is NP-hard is easier; one must only prove that an NP-
complete problem can be mapped into the given problem such that a solution for the given problem
could also be used to solve the NP-complete problem. Hence, the NP-hard classification contains

all NP-complete problems, but also includes some problems which are undecidable.

Definition 2.4.5. Complexity class PP is the class of problems which can be solved by a prob-
abilistic Turing machine in polynomial time. If a binary yes/no decision problem is in PP, then
there is an algorithm which is allowed to flip coins to make random decisions and will answer the
problem correctly more than 1/2 of the time. All of the problems in NP are also in PP, and all of

the problems in PP are decidable.

Definition 2.4.6. Decidable problems are all problems which can be computed by a Turing ma-

chine with no bound on the time or space required.

One famously undecidable problem is the halting problem [219]. This is the problem of de-
termining whether an arbitrary computer program with a given input will finish running or run

forever. This yes/no problem is not itself computable by a computer program.

Definition 2.4.7. Program equivalence Programs P, and P, are considered equivalent if, for all

inputs in the input domain D the programs produce the same output(s).

48

Foo(x) { Foolx

?
mmm | f(x);
—

print(“Done”); print(*Done”):

i)

Figure 2.21: The general case of determining program equivalence requires solving the halting problem on
f(x), and hence is undecidable.

Language: Equivalence algorithm:
<prog> := <output> = <expr>
<expr> := var N=length(progl);
var + <expr> if (length(prog2) != N):
return NOT_EQUAL
Rewrite rule: fori=1toN:
Commute: varl +var2 < var2 + varl if (progl.v[i] != prog2.v[i]):
forj=i+1to N:
Program examples: if (progl.v[j] == prog2.v[i]):
Program #1: x =v3 + vl + v4 while (j > 1):
Program #2: x =v2 + v2 + v4 Commute(progl.v[j], progl.v[j-1])
Program #3: x =v4 + v3 + vl j=j-1
Program #4: x =v3 + vl break;

if (progl.v[i] != prog2.v[i]):
return NOT_EQUAL
return EQUAL

Figure 2.22: A rather simple language with only a single operator (+) and only a single program rewrite
rule (Commute) can be checked for equivalence with a polynomial-time algorithm requiring fewer than
k x N? steps, where N is the program length and % is a constant.

It can be quickly shown that the general case of program equivalence is undecidable with
reference to Figure 2.21. The only difference between these 2 programs is that the one on the right
will only print “Done” if the function f(x) halts. Hence, proving these 2 programs equivalent is
synonymous with solving the halting problem, which is undecidable.

One the other end of the complexity spectrum, consider the language defined in Figure 2.22. In
this language a program is only allowed to contain a single statement which sums up one or more
variables. Two programs will be equivalent if they contain the same variable list (in any order) in

the summation expression.

49

Table 2.3: Mapping Boolean functions to scalar mathematics

Boolean expression Scalar expression

a 1—a
aVvb 1—(1—a)(1—1b)
alb ax*b
Language: Zero-function:
<prog> := 0 = <expr> <const> :=0 0=0
<expr> := <const> 1 _ _
<var> <var> =i Example SAT problem: (i, Vi, Vi3) A (i, Vi3 V iy)
<expr> <op> <expr> <op> =+
(<expr>) - Program based on example SAT problem:
* 0= (1-(1-1)) * 1, * (1-13)) * (1-(1-1) * i3 * (1-1,))

Figure 2.23: A simple computer language into which the Boolean satisfiability problem can be mapped.

Definition 2.4.8. Rewrite rule is defined as a rule which can be applied to a program which adjusts
the program lexically but not semantically. Applying a rewrite rule does not change the computa-

tion performed by a program and creates a program equivalent to the original.

By applying the rewrite rule shown in Figure 2.22 multiple times we can see that example
program #1 is equivalent to program #3. Starting with program #1, we first apply Commute such
that v1 4 v4 <+ v4 4 v1 and then again such that v3 + v4 <> v4 + v3, which results in a program
lexically equal to program #3.

The algorithm shown in Figure 2.22 demonstrates how to determine program equivalence given
this constrained language. The algorithm uses the Commute rewrite rule to transform one program
into the other if it is possible. Given programs of length V, since the 7 and j loops may both grow
by N, this algorithm will run in time less than k x N? where k is some constant. Hence, this
algorithm is in complexity class P.

Given the synthetic language for straight-line programs we detail in Chapter 7, we can demon-
strate that solving the program equivalence problem in this language is at least as difficult as solv-
ing the Boolean satisfiability problem, which is itself NP-complete [60]. Our proof is based on the

ability to map a Boolean SAT problem into our scalar expression language as shown in Table 2.3.

50

Definition 2.4.9. Boolean satisfiability problem (SAT) This is the problem of determining whether,
given a Boolean function S with Boolean input values b, _,,, there is a set of Boolean input values
for which the function returns “True”. The Boolean function may include logical AND, OR, and

INVERT operations on the variables, which may be operated on in any order.

The Boolean satisfiability problem (SAT) has been proven to be NP-complete [60]. Hence, if
we can show that a program equivalence problem could be used to solve SAT then that program

equivalence problem is NP-hard.

Definition 2.4.10. Binary Domain Program is defined for discussion to be the language shown in
Figure 2.23. This language supports the normal +, —, and X operations on real numbers, but the

inputs and constants in the language are limited to the values 0 and 1.
Theorem 2.4.1. Binary Domain Program equivalence is NP-hard.

Proof. Consider a specific Boolean satisfiability problem .S in which the task is to determine if
there is a configuration of inputs to .S such that S will return “true”. Using Table 2.3, map S
into our scalar expression language to create program P. This mapping is shown with an example
SAT problem in Figure 2.23. If, given inputs from the domain {0,1}, we can prove P is equal to
a program which simply returns O (the zero-function), then there is no input to P which returns
1. Additionally, if there is a set of inputs for which P returns 1, that set of inputs maps to a set
of logical inputs which would satisfy S. Hence, P computes the zero-function if and only if S
is not satisfiable and hence the general case of proving a program in our language equal to the

zero-function is at least as hard as NP-complete, which means it is in NP-hard. L]

In their paper “Probabilistic Algorithms for Deciding Equivalence of Straight-Line Programs”
[102], Ibarra and Moran further prove that when the the input to two straight-line programs is
limited to a finite set of integers of cardanality > 2 then the equivalence problem is NP-hard, and
when the input can be an infinite field (such as all rational numbers) then the equivalence problem
for straight-line programs in a language which includes only +, —, %, and / is probabilistically

decidable in polynomial time. In other words our full program equivalence problem as covered

51

in chapter Chapter 7 is in complexity class PP, a class which contains NP. (Gurari and Ibarra also

study the complexity of varying program equivalence problems [85]).

2.5 Limitations of Prior Research

While the prior research we discuss in Sections 2.1, 2.2, and 2.3 provide a solid foundation for
machine learning as applied to computer aided programming, they have several weaknesses which
this thesis aims to address.

Program repair research is very active and dominated by techniques based on static analysis
(e.g., SPR [143] and Angelix [157]) and dynamic analysis (e.g., CapGen [230]). While great
progress has been achieved, the current state of automated program repair is limited to simple
small fixes, mostly one line patches [191, 230]. These techniques are heavily top-down, based on
intelligent design and domain-specific knowledge about bug fixing in a given language or a specific
application domain. Another weakness of prior work is vocabulary limitations [12]. Such works
cannot learn representations for novel variable names. Also, the representations which are learned
are based on the training set provided, hence they may not be appropriate for how a variable is
used. For example, a Java method that iterates over an array using ¢ and accumulates the sum of
array elements into sum is semantically equivalent to a method that uses j for the iterator and ¢
for the accumulation. But the somewhat odd use of 7 for accumulation would result in a shifted
internal representation for the method. Given continually advancing machine learning techniques
[208, 197, 220], a framework for utilizing machine learning to automatically repair bugs is needed.

Machine learning models benefit from having millions of training samples on which to gen-
eralize [207]. For concrete problems in computer science, the problem domain may suffer from
a limited set of labeled data. For example, security vulnerability repair has a small number of
reviewed examples for some vulnerability categories [68, 32], and linear algebra equivalence also
has limited examples on which to learn [114]. Systems to provide samples to machine learning

models are needed in order to train such models effectively.

52

The general problem of program equivalence is undecidable by modern computers, as we detail
in Section 2.4. This invites the use of machine learning as it may be able to learn equivalence proofs
beyond what static algorithms can solve. The primary weakness with applying machine learning
to program equivalence is the imprecision in the results when determining equivalent semantics
[12, 241]. If machine learning is to be useful in situations where a guarantee of correctness for
program equivalence is needed then we must develop a new approach.

Traditional machine learning systems often use early stopping [178] to detect when the training
has plateaued for a given training dataset and further training will not improve the model. Devel-
oping a system which can create additional samples which specifically target areas where a model
needs improvement could increase both performance and generalization.

In Chapter 3 we further detail the problems addressed in this thesis and summarize the contri-

butions we make to the field of machine learning for computer aided programming.

53

Chapter 3
Contributions to Machine Learning on Computer

Aided Programming

Machine learning techniques have produced strong and useful results in areas where imper-
fect outputs are acceptable. Achievements of image classification and language translation that
exceed human capabilities are used in a wide range of commercial applications [106, 209, 36]. In
parallel, the importance of having a verification of correctness comes up in many environments.
Safety systems such as self-driving cars would benefit from techniques that can demonstrate how
to create robust systems which can generate verifiable output. Systems which generate sequences
constrained in some technical way - be it computer code generation, manufacturing sequence op-
timizations, or formal proof generation - would benefit from understanding how training datasets
can improve the learning of rigid constraints in a given target environment.

Verifiable correctness can help address problems recognized by the broader research commu-
nity. The problem of robustness to distributional shift is one of 5 failure modes for Al noted in
"Concrete problems in Al safety’ [13]. Techniques which can help prove that a system has learned
to generate correct output could help address this key challenge for Al. The White House has posted
a memorandum to executive agencies titled “Guidance for Regulation of Artificial Intelligence Ap-
plications” [225]; three of its 10 principles for the stewardship of Al applications are related to the
effort of verifying machine learning outputs well: "scientific integrity and information quality",
"risk assessment and management", and "safety and security".

In the following sections, we will introduce problems in machine learning which will be ex-
plored in depth in the remaining chapters of this thesis. In addition to addressing specific problems
with machine learning, these applications also demonstrate concepts for machine learning on com-

puter aided programming which can be leveraged to solve other problems.

54

3.1 Repairing Functional Bugs in Java Programs

People have long dreamed of machines capable of writing computer programs by themselves.
Having machines writing a full software system is science-fiction but teaching machines to modify
an existing program to fix a bug is within the reach of current software technology; this is called
automated program repair [161].

Program repair research is very active and dominated by techniques based on static analysis
(e.g., Angelix [157]) and dynamic analysis (e.g., CapGen [230]). While great progress has been
achieved, the current state of automated program repair is limited to simple small fixes, mostly one
line patches [191, 230]. These techniques are heavily top-down, based on intelligent design and
domain-specific knowledge about bug fixing in a given language or a specific application domain.
In Chapter 4, we also focus on one line patches, but we aim at doing program repair in a language-
agnostic generic manner, fully relying on machine learning to capture syntax and grammar rules
and produce well-formed, compilable programs. By taking this approach, we aim to provide a
foundation for connecting program repair and machine learning, allowing the program repair com-
munity to benefit from training with more complete bug datasets and continued improvements to
machine learning algorithms and libraries.

As the foundation for our model, we apply sequence-to-sequence learning [208] to the prob-
lem of program repair. Sequence-to-sequence learning is a branch of statistical machine learning,
mostly used for machine translation: the algorithm learns to translate text from one language (say
French) to another language (say Swedish) by generalizing over large amounts of sentence pairs
from French to Swedish. The training data comes from the large amount of text already translated
by humans, starting with the Rosetta stone written in 196 BC [204]. The name of the technique is
explicit: it is about learning to translate from one sequence of words to another sequence of words.

Now let us come back to the problem of programming: we want to learn to ’translate’ from one
sequence of program tokens (a buggy program) to a different sequence of program tokens (a fixed
program). The training data is readily available: we have millions of commits in open-source code

repositories. Yet, we still have major challenges to overcome when it comes to using sequence-to-

55

sequence learning on code: 1. the raw (unfiltered) data is rather noisy; one must deploy significant
effort to identify and curate commits that focus on a clear task; 2. contrary to natural language,
misuse of rare words (identifiers, numbers, etc) is often fatal in programming languages [91]; in
natural language some errors may be tolerable because of the intelligence of the human reader
while in programming languages the compiler (or interpreter) is strict 3. in natural language, the
dependencies are often in the same sentence (“it” refers to “dog” just before) , or within a couple
of sentences, while in programming, the dependencies have a longer range: one may use a variable
that has been declared dozens of lines before.

We are now at a tipping point to address those challenges. First, sequence-to-sequence learning
has reached a maturity level, both conceptually and from an implementation point of view, that it
can be fed with sequences whose characteristics significantly differ from natural language. Second,
there has been great recent progress on using various types of language models on source code [9].
Based on this great body of work, we present our approach to using sequence-to-learning for
program repair, which we created to repair real bugs from large open-source projects written in the
Java programming language.

Our end-to-end program repair approach is called SEQUENCER and it works as follows. First,
we focus on one-line fixes: we predict the fixed version of a buggy programming line. For this,
we create a carefully curated training and testing dataset of one-line commits. Second, we devise
a sequence-to-sequence network architecture that is specifically designed to address the two main
aforementioned challenges. To address the unlimited vocabulary problem, we use the copy mech-
anism [197]; this allows SEQUENCER to predict the fixed line, even if the fix contains a token
that was too rare (i.e., an API call that appears only in few cases, or a rare identifier used only in
one class) to be considered in the vocabulary. This copy mechanism works even if the fixed line
should contain tokens which were not in the training set. To address the dependency problem, we
construct abstract buggy context from the buggy class, which captures the most important context
around the buggy source code and reduces the complexity of the input sequence. This enables us

to capture long range dependencies that are required for the fix.

56

We evaluate SEQUENCER in two ways. First, we compute accuracy over 4,711 real one-line
commits, curated from three open-source projects. The accuracy is measured by the ability of the
system to predict the fixed line exactly as originally crafted by the developer, given as input the
buggy file and the buggy line number. Our golden configuration is able to perfectly predict the
fix for 950/4,711 (20%) of the testing samples. This sets up a baseline for future research in the
field. Second, we apply SEQUENCER to the mainstream evaluation benchmark for program repair,
Defects4J. Of the 395 total bugs in Defects4J, 75 have one-line replacement repairs; SEQUENCER
generates patches which pass the test suite for 19 bugs and patches which are semantically equiv-
alent to the human-generated patch for 14 bugs. To our knowledge, this is the first report ever on
using sequence-to-sequence learning for end-to-end program repair, including validation with test
cases.

Overall, the novelty of this work is as follows. First, we create and share a unique dataset
for evaluating learning techniques on one-line program repair. Second, we report on using the
copy mechanism on seq-to-seq learning on source code. Third, on the same buggy input dataset,
SEQUENCER is able to produce the correct patch for 119% more samples than the closest related
work [216].

To sum up:

* Our key contribution is an approach for fixing bugs based on sequence-to-sequence learning
on token sequences. This approach uses the copy mechanism to overcome the unlimited

vocabulary problem in source code.

* We present the construction of an abstract buggy context that leverages code context for
patch generation. The input program token sequences are at the level of full classes and
capture long-range dependencies in the fix to be written. We implement our approach in a

publicly-available program repair tool called SEQUENCER.

* We evaluate our approach on 4,711 real bug fixing tasks. Contrary to the closest related

work [216], we do not assume bugs to be in small methods only. Our golden trained model

57

is able to perfectly fix 950/4,711 testing samples. To the best-of-our knowledge, this is the

best result reported on such a task at the time of writing this thesis [216, 182, 155].

* We evaluate our approach on the 75 one-line bugs of Defects4J, which is the most widely
used benchmark for evaluating programming repair contributions. SEQUENCER is able to
find 2,321 patches for these bugs, 761 compile successfully, 61 are plausible (they pass
the full test suite) and 18 are semantically equivalent to the patch written by the human

developer.

* We provide a qualitative analysis of 8 interesting repair operators captured by sequence-to-

sequence learning on the considered training dataset.

3.2 Repairing Security Vulnerabilities in C Language Programs

On the code hosting platform GitHub, the number of newly created code repositories has in-
creased by 35% in 2020 compared to 2019, reaching 60 million new repositories during 2020 [213].
This is a concern to security since the number of software security vulnerabilities is correlated with
the size of the software [184]. Perhaps worryingly, the number of software vulnerabilities is in-
deed constantly growing [98]. Manually fixing all these vulnerabilities is a time-consuming task;
the GitHub 2020 security report finds that it takes 4.4 weeks to release a fix after a vulnerabil-
ity is identified [75]. Therefore, researchers have proposed approaches to automatically fix these
vulnerabilities [86, 49].

In the realm of automatic vulnerability fixing [104], there are only a few works on using neural
networks and deep learning techniques. One of the reasons is that deep learning models depend
on acquiring a massive amount of training data [207], while the amount of confirmed and curated
vulnerabilities remains small. Consider the recent related work Vurle [152], where the model is
trained and evaluated on a dataset of 279 manually identified vulnerabilities. SeqTrans is another
recent effort, trained and evaluated on a dataset with 1282 vulnerabilities [49]. On the other hand,

training neural models for a translation task (English to French) has been done using over 41

58

million sentence pairs [35]. Another example is the popular summarization dataset CNN-DM [94]
that contains 300 thousand text pairs. Li et al. showed that the knowledge learned from a small
dataset is unreliable and imprecise [134]. Schmidt ef al. found that the error of a model predicting
the thermodynamic stability of solids decreases with the size of training data [194]. We argue that
learning from a small dataset of vulnerabilities suffers from the same problems (and will provide
empirical evidence later).

In Chapter 5, we address the problem that vulnerability fix datasets are too small to be mean-
ingfully used in a deep-learning model. Our key intuition to mitigate the problem is to use transfer
learning. Transfer learning is a technique to transfer knowledge learned from one domain to solve
problems in related domains, and it is often used to mitigate the problem of small datasets [2]. We
leverage the similarity of two related software development tasks: bug fixing and vulnerability fix-
ing. In this context, transfer learning means acquiring generic knowledge from a large bug fixing
dataset and then transferring the learned knowledge from the bug fixing task to the vulnerability
fixing task by tuning it on a smaller vulnerability fixing dataset. We realize this vision in a novel
system for automatically repairing C vulnerabilities called VRepair.

To train VRepair, we create a sizeable bug fixing dataset, large enough to be amenable to
deep learning. We create this dataset by collecting and analyzing all 892 million GitHub events
that happened between 2017-01-01 and 2018-12-31 and using a heuristic technique to extract all
bug fix commits. In this way, we obtain a novel dataset consisting of over 21 million bug fixing
commits in C code. We use this data to first train VRepair on the task of bug fixing. Next, we
use two datasets of vulnerability fixes from previous research, called Big-Vul [68] and CVEfixes
[32]. We tune VRepair on the vulnerability fixing task based on both datasets. Our experimental
results show that the bug fixing task can be used to train a model meant for vulnerability fixing;
the model only trained on the collected bug fix corpus achieves 14.77% accuracy on Big-Vul and
15.1% on CVEfixes, which validates our initial intuition that these tasks are profoundly similar.
Next, we show that by using transfer learning, i.e., by first training on the bug fix corpus and

then by tuning the model on the small vulnerability fix dataset, VRepair increases its accuracy

59

to 17.77% on Big-Vul and 19.94% on CVEfixes, demonstrating the power of transfer learning.
Additionally, we compare transfer learning with a denoising pre-training followed by fine-tuning
on the vulnerability fixing task and show that VRepair’s process is better than pre-training with
a generic denoising task. We also show that transfer learning improves the stability of the final
model.

In summary, our contributions are:

* We introduce VRepair, a Transformer Neural Network Model which targets the problem of
vulnerability repair. The core novelty of VRepair is to employ transfer learning as follows:

it is first trained on a bug fix corpus and then tuned on a vulnerability fix dataset.

* We design a novel code representation for the program repair task with neural networks. Our
output code representation is a token difference instead of the entire fixed source code used

in recent research [216].

* We empirically demonstrate that on the vulnerability fixing task, the transfer learning VRe-
pair model performs better than the alternatives: 1) VRepair is better than a model trained
only on the small vulnerability fix dataset; 2) VRepair is better than a model trained on a
large generic bug fix corpus; 3) VRepair is better than a model pre-trained with a denoising
task. In addition, we present evidence that the performance of the model trained with transfer

learning is stable.
* We share all our code and data for facilitating replication and fostering future research on
this topic.
3.3 Proving Equivalence of Complex Linear Algebra Expres-

sions

Deep neural network systems have excelled at a variety of classification and reinforcement

learning tasks [81]. However, their stochastic nature tends to hinder their deployment for auto-

60

mated program analysis: ensuring the correctness of the solution produced is often required, e.g.,
when determining the semantics equivalence between two programs (or symbolic expressions).

In Chapter 6 we target the problem of automatically computing whether two input symbolic ex-
pressions are semantically equivalent [110], under a well-defined axiomatic system for equivalence
using semantics-preserving rewrite rules [64]. Program equivalence is summarized as determining
whether two programs would always produce the same outputs for all possible inputs, and is a
central problem in computing [110, 77, 221]. The problem ranges from undecidable, e.g. [79],
to trivial in cases of testing the equivalence of a program with itself. Our work directly studies
the subset of programs represented by symbolic linear algebra expressions which include scalar,
vector, and matrix types for both constants and variables, and 16 different operators with 147 dis-
tinct axioms of equivalence. For example, the expression using matrices, scalars, and a vector:
(A+ B)I((a+ (b —b))/a)v — AU can be proven equivalent to B¢ by applying 10 axioms in
sequence; our work generates the proof steps between these expressions.

While prior work has shown promise for deep networks to compute some forms of program
equivalence [241, 12], the system typically outputs only a probability of equivalence, without any
reasoning or insight that can be verified easily: false positive can be produced. Programs can be
represented as a tree (or graph) of symbols, and deep networks for symbolic reasoning have been
studied, e.g. to compute the derivative of a symbolic expression [130]. In this work, we take a
significantly different approach to the problem of symbolic program reasoning with deep networks:
we make the system produce the sequence of steps that lead to rewriting one program into another,
that is the reasoning for (or proof of) equivalence between the two programs, instead of producing
directly the result of this reasoning (e.g., a probability of equivalence, without explanation about
the reasoning). In a nutshell, we approach expression equivalence as a theorem proving problem,
in which all the axioms as well as tactics to compute a proof are all learned by example in a deep
learning system, without any human insight.

We propose a method for generating training samples using probabilistic applications of pro-

duction rules within a formal grammar, and then develop a graph-to-sequence [137, 29] neural

61

network system for program equivalence, trained to learn and combine rewrite rules to rewrite one
program into another. It can deterministically prove equivalence, entirely avoids false positives,
and quickly invalidates incorrect answers produced by the network (no deterministic answer is
provided in this case, only a probability of non-equivalence). In a nutshell, we develop the first
graph-to-sequence neural network system to accelerate the search in the space of possible combina-
tions of transformation rules (i.e., axioms of equivalence in the input language) to make two graphs
representing symbolic expressions structurally identical without violating their original semantics.
We propose a machine learning system for program equivalence which ensures correctness for all
non-equivalent programs input (specificity = 100%) , and a deterministically checkable output for

equivalent programs (no false positives). We make the following contributions:

1. We design, implement and evaluate two competing approaches using graph-to-sequence neu-
ral network systems to generate proofs of equivalence. We provide the first implementation

of such graph-to-sequence systems in the popular OpenNMT-py framework [117].

2. We present a complete implementation of our system operating on a rich language for multi-
type linear algebra expressions. Our system provides a correct rewrite rule sequence between
two equivalent programs for 93% of the 10,000 test cases. The correctness of the rewrite rule

is deterministically checkable in all cases in negligible time.

3.4 Proving Equivalence of Basic Block Expressions in C Code

Deep neural networks have excelled at a variety of classification, reinforcement learning, and
sequence generation tasks [81]. However, their stochastic nature complicates the use of such net-
works in formal settings where one requires a guarantee that the result produced is provably cor-
rect, such as to assess semantic equivalence between programs.

Proving program equivalence means determining whether two programs always produce iden-
tical output if given the same input, for all possible inputs, and is a central problem in computing
[110, 77, 221]. The problem ranges from undecidable [79], to trivial in the case of testing the

equivalence of a program with itself. Proving program equivalence is useful for e.g. verifying

62

compiler correctness [169], replacing code fragments by more optimized ones [74], malicious
software detection [146] or automated student feedback [57]. In Chapter 7, we propose a machine
learning framework for proving program equivalence, named S4Eq.

S4Eq takes as input two programs and generates a sequence of rewrite rules under a well-
defined system for equivalence using semantics-preserving rewrite rules [64]. Our work studies
programs represented as a list of statements with straight-line control-flow, using multiple vari-
able types and complex mathematical expressions to compute values. S4EQ outputs a verifiable
sequence of rewrite rules, meaning that it guarantees no false positives (no programs are stated
equivalent if they are not) by design.

The problem domain at hand, generating a provably correct sequence of rewrite rules, requires
a specific training procedure. We devise a novel self-supervised learning technique for proving
equivalence. We initially train a model in a supervised manner with synthetic data which has
a broad distribution on the use of rewrite rules. Then we propose a self-supervised technique
based on comparing results between broad and narrow proof searches to incrementally train our
model. Rewrite rule sequences demonstrating equivalence found by a quick, narrow search are
not considered interesting for further training; while sequences found by a broad search indicate
samples for which the model’s rewrite rule selections could be improved. We name this procedure
self-supervised sample selection. We fully implement our learning and inference models in the
popular OpenNMT-py framework [117], based on the transformer model.

We demonstrate S4Eq by proving equivalence between unrelated program blocks derived from
C functions mined on the popular code hosting platform GitHub [213]. We process GitHub C func-
tions to find 13,215 unique multi-statement program blocks which can be analyzed for equivalence.
We show that S4Eq can prove that various compilation and optimization steps, such as Common
Sub-expression Elimination [58] produce equivalent and correct code; and we search for equivalent
codes between the GitHub samples themselves.

To sum up, we make the following contributions:

63

» We present S4EQ, an end-to-end deep learning framework to find equivalence proofs be-
tween two complex program blocks. S4EQq produces a sequence of semantics-preserving
rewrite rules that can be built to construct one program from the other, via successive
rewrites. We consider rewrites which support complex program transformations such as
Common Subexpression Elimination and computational strength reduction. S4Eq emits a

verifiable sequence of rewrites, leading to no false positives by design.

* We devise an original training technique, tailored to our problem domain, called self-supervised
sample selection. This incremental training approach further improves the quality, general-

izability and extensibility of the deep learning system.

* We present extensive experimental results to validate our approach, demonstrating our sys-
tem can successfully prove equivalence on both synthetic programs and programs derived
from GitHub with up to 97% success, making the system ready for automated and unsuper-

vised deployment to check equivalence between programs.

* We provide all our datasets to the community including synthetic generation techniques for

the problem of program equivalence via rewrite rules, as well as sequences mined from

GitHub [121].

64

Part 11

Machine Learning for Repairing Software

Defects

65

Chapter 4
SequenceR: Sequence-to-Sequence Learning for

End-to-End Program Repair

4.1 Introduction

The problem of program repair is the challenge of finding the correct modification to an existing
program which will resolve a fault of some kind. Using machine learning to automate this task
would significantly improve the productivity of software developers while improving the quality
of code created.

As we introduce in Section 3.1, we develop SEQUENCER to learn to ’translate’ a buggy pro-
gram into a fixed program using machine learning. To efficiently utilize machine learning on this
problem, we must adjust the input presented to the model such that sufficient information needed
to fix the program is available as input. We accomplish this by introducing the abstract buggy
context to represent the input code. Also, when creating a fix for a program it may be necessary to
draw from a large vocabulary of identifiers (such as variable names). We demonstrate that using a
token copy mechanism can allow the system to propose program fixes which use any token from
the input at an appropriate point in the output.

Our contributions detailed in this chapter are:

* Our key contribution is an approach for fixing bugs based on sequence-to-sequence learning
on token sequences. This approach uses a token copy mechanism to overcome the unlimited

vocabulary problem in source code.

* We present the construction of an abstract buggy context that leverages code context for
patch generation. The input program token sequences are at the level of full classes and
capture long-range dependencies in the fix to be written. We implement our approach in a

publicly-available program repair tool called SEQUENCER.

66

* We evaluate our approach on 4,711 real bug fixing tasks. Contrary to the closest related
work [216], we do not assume bugs to be in small methods only. Our golden trained model
is able to perfectly fix 950/4,711 testing samples. To the best-of-our knowledge, this is the

best result reported on such a task at the time of writing this chapter [216, 182, 155].

* We evaluate our approach on the 75 one-line bugs of Defects4J, which is the most widely
used benchmark for evaluating programming repair contributions. SEQUENCER is able to
find 2,321 patches for these bugs, 761 compile successfully, 61 are plausible (they pass
the full test suite) and 18 are semantically equivalent to the patch written by the human

developer.

* We provide a qualitative analysis of 8 interesting repair operators captured by sequence-to-

sequence learning on the considered training dataset.

4.2 Background on Neural Machine Translation with Seq-to-

Seq Learning

SEQUENCER is based on the idea of receiving buggy code as input and producing fixed code as
output. The concept is similar to neural machine translation where the input is a sequence of words
in one language and the output is a sequence in another language. In this section, we provide a
brief introduction to neural machine translation (NMT).

In neural machine translation, the dominant technique is called “sequence-to-sequence learn-
ing”, where “sequence” refers to the sequence of words in a sentence. An early example of a
sequence-to-sequence network is summarized in Section 2.1.1 and diagrammed in Figure 2.1. A
problem with the sequence generation described in Section 2.1.1 is that the output vocabulary that
can be produced is limited: only tokens which are in the training set are available for output as ;.
In the case of natural human language, words such as proper names (e.g., Chicago, Stockholm)
may be so rare that they do not appear in the training vocabulary, but those words may be neces-

sary for proper output. One successful approach to overcome the vocabulary problem is to use a

67

copy mechanism [197]. The basic intuition behind this approach is that rare words not available in
the vocabulary (i.e., unknown words, referred as <unk>), may be directly copied from the input
sentence over to the output translated sentence. This relatively simple idea can be successful in
many cases - especially when translating sentences containing proper names - where these tokens
can be easily copied over.

For example, let’s consider the task of translating the following English sentence "The car is
in Chicago" to French. Let’s also assume that all the tokens in the sentence are in the vocabulary,
except "Chicago”. An NMT model might output the following sentence: "La voiture est a <unk>".
With a copy mechanism, the model would be able to automatically replace the unknown token with
one of the tokens from the input sentence, in this case, "Chicago".

The copy mechanism can be particularly relevant for source code, where the size of the vo-
cabulary can be several times the size of a natural language corpus [217]. This results from the
fact that developers are not constrained by any vocabulary (e.g., English dictionary) when defining
names for variables or methods. This leads to an extremely large vocabulary containing many rare
tokens, used infrequently only in specific contexts. Thus, the copy mechanism applied to source
code allows a system to generate rare out-of-vocabulary identifier names and numeric values as
long as they are somewhere in the input. Furthermore, in natural language, a human recipient may
be able to use context to cope with one missing word in an automatically translated sentence. In
a programming language, the compiler does not make any semantic inference, and the generation
has to be complete. For example, if the code to predict is "if (i < num_cars)", then generating "if (i
< int)" is not going to work at all. The prior research on the copy mechanism is presented in Sec-
tion 2.1.3 and we discuss the mathematics of the copy mechanism in the context of SEQUENCER
in Section 4.3.3.

Tufano et al. [216] proposed using NMT with the goal of learning bug-fixing patches by
translating the entire buggy method into the corresponding fixed method. Before the translation,
the authors perform a code abstraction process which transforms the source code into an abstracted

version, which contains: (i) Java keywords and identifiers; (ii) frequent identifiers and literals

68

(a selection of 300 idioms); (iii) typified IDs (e.g., METHOD_1, VAR_2) that replace identifiers
and literals in the code. In Section 4.6 we highlight differences and improvements introduced in
SEQUENCER.

Another approach to addressing the vocabulary size problem in code is to use byte pair en-
coding (BPE), which has been widely used in NLP and also applied to source code [112]. For
SEQUENCER, we did preliminary experiments with BPE to solve the unlimited vocabulary prob-
lem, but our early results showed that it is less effective than the copy mechanism.

Human commits Bug with source code
l and failing test case

Find single-line repair from
buggy to fixed code

| —

Fault localization

Buggy source code Fixed line Ranked suspicious lines

—

SequenceR SequenceR

Buggy context
abstraction

¥

Sequence to

Buggy context
abstraction

-

Sequence to

Use trained network

sequence network sequence network

to repair bugs

-

Update parameters with

back-propagation Patch preparation

Patch candidates l

Patch validation

Training Inference

Figure 4.1: Overview of our approach using sequence-to-sequence learning for program repair.

4.3 Approach to Using Seq-to-Seq Learning for Repair
SEQUENCER is a sequence-to-sequence deep learning model that aims at automatically fixing
bugs by generating one-line patches (i.e., the bug can be fixed by replacing a single buggy line
with a single fixed line). We do not consider line deletion because: 1) it does not require a method
for token generation (and is thus less interesting to our research) and 2) if desired, SEQUENCER

could be combined with the lightweight Kali [182] to include line deletion. We do not consider line

69

1 class Foo { 1 class Foo { 1 class <unk> {

2 int 1 =0; 2 int 1 =0; 2 int 1 =0;

3 int bar; 3 int bar; 3 int <unk>;

4 Foo (int bar){ 4 Foo (int bar){ 4 <unk> (int <unk>){
5 this .bar = bar; 5 } 5 }

6 } 6 int decrement() { 6 int <unk>(){

7 int decrement(){ 7 } 7 }

8 return bar—1; 8 int increment () { 8 int increment () {
9 } 9 <START_BUG> 9 <START_BUG>
10 int increment () { 10 return bar-1; 10 return <unk>-1;
11 return bar—1; 11 <END_BUG> 11 <END_BUG>

12 } 12 } 12 }

13} 13} 13}

Listing 4.1: Original code Listing 4.2: abstract buggy context Listing 4.3: Context with <unk>

Figure 4.2: Illustration of the abstract buggy context step in SEQUENCER. ¢ is highlighted in yellow, b™
is highlighted in orange and b' is highlighted in red.

addition because spectrum based fault localization, used in most of the related work, is not effective
for line addition patches [249]. We note that in 64% of all 395 bugs in Defects4] are fixed by
replacing existing source code [107]. Given a Software System with a faulty behavior (i.e., failing
test case), state-of-the-art fault localization techniques are used to identify the buggy method and
the suspicious buggy lines. Such techniques have been shown to predict the correct buggy line as
one of the top 10 candidates in 44% of the time [249]. SEQUENCER then performs a novel Buggy
Context Abstraction (Section 4.3.2) process which intelligently organizes the fault localization
data (i.e., buggy classes, methods, and lines) into a representation that is concise and suitable for
the deep learning model yet able to preserve valuable information regarding the context of the
bug, which will be used to predict the fix. The representation is then fed to a trained sequence-to-
sequence model (Section 4.3.3) which performs Patch Inference (Section 4.3.4) and is capable of
generating multiple single-lines of code that represent the potential one-line patches for the bug.
Finally, SEQUENCER in the Patch Preparation (Section 4.3.5) step generates the concrete patches
by formatting the code and replacing the suspicious line with the proposed lines. Figure 4.1 shows

the aforementioned steps both for the training phase (left) and inference phase (right). In the

70

remainder of this section we will discuss the common steps as well as those specific for training

and inference.

4.3.1 Problem Definition

Given a buggy system 0°, and test suite ¢, we assume a fault localization technique, F'L, which
identifies an ordered set of potential bug locations [= {ly, l5, ...}, where each location [; consists

of the buggy class bS, buggy method b, and the buggy line b:

I ={loc | loc € FL(b°,t)}

Vi el l; = {b5, 0" b0} and B C b C b8

1771)T

The problem is to predict (i.e., generate) a fixed line f!, where [; is the true bug location, such
that by replacing b, with f! in b, the resulting system f* passes the test suite and the bug is
considered fixed. SEQUENCER tackles this problem by taking as input the fault localization data
(i.e., | = {l1,ly,...}) of a buggy system and attempts to generate fixed line f! for each /; in order.

The b%, t, 1, I;, b$, b7, b., f! and f* notations are used throughout this work.

4.3.2 Abstract Buggy Context

The context of a bug plays a fundamental role in understanding the faulty behavior and rea-
soning about the possible fix. During bug-fixing activities, developers usually identify the buggy
lines, then analyze how they interact with the rest of the method’s execution, and observe the con-
text (e.g., variables and other methods) in order to reason about the possible fix and possibly select
several tokens in the context to build the fixed line [118].

SEQUENCER mimics this process by constructing the abstract buggy context and organizing
the fault localization data into a representation that is concise yet retains the necessary context that
allows the model to predict the possible fix. During this process SEQUENCER needs to balance
two contrasting goals: (i) reduce the buggy context into a reasonably concise sequence of tokens

(since sequence-to-sequence models suffer from long sentences [50]), (ii) while at the same time

71

retaining as much information as possible to allow the model to have enough context to predict a
possible fix.
Given the bug locations [= {l1, [y, ...}, foreach [; € I,1; = {b¢, b, b\}, SEQUENCER performs

1771)

the following steps:

Buggy Line <START_BUG> is inserted before the first token in the buggy line b and <END_BUG>
is inserted after the last token. The rationale is that we would like to propagate the informa-
tion extracted by the fault localization technique and indicate to the model what is a buggy
line. In doing so, we mimic developers who focus on the buggy lines during their bug-fixing

activities.

Buggy Method The remainder of the buggy method 0;" is kept in the representation. The rationale
is that the method provides crucial information on where the buggy line is placed and its

interaction with the rest of the method.

Buggy Class From the buggy class b we keep all the instance variables and initializers, along
with the signature of the constructor and non-buggy methods even if they are not called in
the buggy method. The body of the non-suspcious methods is stripped out. The rationale for
this choice is that the model could use variables and method signatures as potential sources

when building the fixed line f!.

After these steps, SEQUENCER performs tokenization and truncation to create the abstract
buggy context. Truncation is used to limit the abstract buggy context to a predetermined size
in cases where the input sequence is too long. This allows SEQUENCER to process input files
of arbitrary size without running out of memory. The truncation process can be summarized as:
1. the truncation size will be chosen such that most input files do not require truncation 2. if the
buggy line itself is over the truncation limit, as many tokens as possible from the start of the line are
included up to the limit 3. otherwise, the buggy line is included in abstract buggy context and twice
as many tokens are included before the line as after the line. For example, if the truncation limit is

1,000 tokens and a 5,000 token file has a buggy line with 100 tokens (including the START_BUG

72

and END_BUG tokens) in the middle of the file, then abstract buggy context will consist of 600
tokens before the buggy line, then 100 tokens of the buggy line, then 300 tokens after the buggy
line. Generally, truncation will delete the actual class definition from the input, but context near
the buggy line is preserved to aid in patch generation.

The abstract buggy context represents the input to the sequence-to-sequence network which
will be used to predict the fixed line. Internally, abstract buggy context is represented as a sequence
of tokens belonging to a vocabulary V. The out-of-vocabulary tokens (token & V') are replaced
with the unknown token <unk>. In Section 4.3.6 we describe how we empirically derive the
vocabulary V' and in Section 4.3.3 we explain how the copy mechanism helps in overcoming the
unknown tokens problem.

Figure 4.2 shows the output of this process. The original class is presented in Listing 4.1
and Listing 4.2 displays the buggy class after Buggy Context Abstraction. Listing 4.3 illustrates
the class when tokens that are out of vocabulary are replaced with the unknown token <unk>.
Programming language tokens such as class and int are not replaced with <unk> because they
are part of the vocabulary. Other in-vocabulary tokens include common variable names such as 1.

Our sequence-to-sequence network receives Listing 4.2 as input.

4.3.3 Sequence-to-Sequence Network

In this phase we train SEQUENCER to learn how to generate a fix for a given bug. Specifically,
we train a Sequence-to-Sequence Network with Encoder-Decoder model (with attention and copy
mechanism) to translate the abstract buggy context of a bug to the corresponding target fixed line
f1. To train such a network we rely on a large dataset of bug fixes mined from different sources,
explained in Section 4.4.3. The bug fixes are divided into training and testing data, which are used

to train and evaluate the Sequence-to-Sequence Network described in Section 4.3.3.

Model

Figure 4.3 shows our model for sequence-to-sequence learning to create Java source code

patches. The basis of our model is a recurrent neural network similar to a natural language process-

73

T T T T T
Predicted fixed line

Generator with

r r copy attention

Copy Global Token

N e u ra | Selector Attention Generator

Bidirectional Attention
LSTM 2 layers
LSTM 2 layers v components
I I Decoder
Token Token components
Embedding Embedding
context with <unk> Encoder
components
Replace out of Replace out of
vocab tokens vocab tokens
with <unk> with <unk> Token Sequence
T T T T T
abstract buggy context Start

Figure 4.3: Sequence-to-sequence model used in SEQUENCER.

ing architecture [208]. During training, the source token sequence X = [y, ..., x,] (i.e., abstract
buggy context) is provided to the encoder, where n is the token length of abstract buggy context.
Then, the decoder produces the target sequence Y = [y1, ..., Y| (i.e., the fixed line), where m is
the token length of the fixed line. Back propagation is used to update the parameters in the net-
work with stochastic gradient decent during training [115]. The trained parameters are unchanged
during inference (patch generation in our case).

Encoder, Decoder, Attention, and Copy Mechanism

We are the first to use the copy mechanism from natural language processing models (which
we detail in Section 2.1.3) to solve the unlimited vocabulary problem on source code. The final
probability of output token y; being produced by the network is given in Equation 2.6 and we

repeat it here for discussion:

P(y;) = PoenPrr () + (1 = pygen) Y @l (4.1)

1T =Y

74

In this equation, the encoder, decoder, and attention networks contribute to Pv(yj) as tokens are
processed during inference. The encoder receives tokens from the abstract buggy context. When
initialized by the encoder, it begins production of the patch candidate by receiving the special start
token as input y,. For each previous output token y;_;, the decoder updates its hidden state as we
summarize in Section 2.1.3.

In Section 4.2 we presented the intuition behind the copy mechanism, while in this section we
describe how it operates during patch generation. The copy mechanism can significantly improve
the performance of the system by allowing the model to select a token from any of the tokens
provided in the abstract buggy context, even when the tokens are not contained in the training vo-
cabulary. We empirically show the improvements offered by this approach by comparing it to the
vanilla sequence-to-sequence model without a copy mechanism in Section 4.4.4. The copy mech-
anism contributes to Equation 4.1 to produce a token candidate. The copy mechanism calculates
Pgen» the probability that the decoder generates a token from its initial vocabulary. And 1 — pgcy, 18
the probability to copy a token from the input tokens depending on the attention vector . Using
Equation 4.1, the output token y; for the current decoder state is selected from the set of all tokens
that are either: 1. tokens in the training vocabulary (including the <unk> token) or 2. tokens in the
abstract buggy context. Although there are no <unk> targets in the training set for patches, if the
Py computation is very uncertain which token is correct, it may happen to have a high likelihood
for <unk>. If at the same time, py., is high then a <unk> token will be produced as the copy

mechanism did not replace it. Such outputs are discarded as discussed in Section 4.3.5.

4.3.4 Patch Inference

Once the sequence-to-sequence network is trained, it can be used to generate patches for
projects outside of the training dataset. During patch inference, we still generate abstract buggy
context for the bug, as described in Section 4.3.2. But we will use beam search to generate multiple
likely patches for the same buggy line, as done in related work [216, 5]. Beam search works by

keeping the n best sequences up to the current decoder state. The successors of these states are

75

& R N O R S R

return 1 ; return 1 ; return 1;
return i ; return i ; return 1i;
return <unk> ; return <unk> ; // discarded
return <unk>+1 ; return bar + 1 ; return bar+1;
return <unk>. <unk>; return Foo . bar ; return Foo.bar;

Listing 4.4: Without copy Listing 4.5: Network output Listing 4.6: After patch
mechanism preparation

Figure 4.4: Patch preparation step using copy mechanism

computed and ranked based on their cumulative probability; and the next n best sequences are
passed to next decoder state. n is often called the width or beam size, and beam search with an
infinite n corresponds to doing a complete breath-first-search. In Listing 4.5, we have an example
of predictions with beam size 5 for the bug presented in Listing 4.2. Each row is one prediction
from the model, representing one potential bug fix, and each of them is further processed by the

patch preparation step described below.

4.3.5 Patch Preparation

The raw output from the sequence-to-sequence network cannot be used as a patch directly.
First, the predictions might still contain <unk> tokens not handled by the copy mechanism. List-
ing 4.4 illustrates token values before the copy mechanism replaces <unk> for samples 4 and 5.
But the copy mechanism may not replace all such tokens as seen in sample 3 of Listing 4.5. Sec-
ond, the predictions contain a space between every token, which is not well-formed source code
in many cases. (For example, a space is not allowed between the dot separator, ".", and a method
call, but a space is required between a type and the corresponding identifier name.)

Consequently, we have a final patch preparation step as follows. We discard all line predictions
that contain <unk> and we reformulate the remaining predictions into well-formed source code by
removing or adding the required spaces. An example is shown between Listing 4.5 and Listing 4.6,

whitespaces are adjusted and the third prediction from Listing 4.5 is removed since it contains

<unk> token. Each one of the line predictions is used to create a candidate program by replacing

76

the original buggy line b! (i.e., the <START_BUG>, <END_BUG> and all tokens in between are
replaced with the model output).

More formally, the remaining candidate fixed lines, cand; = {pre},pre?,..}, will replace
the buggy line b} in buggy system b® and generate candidate patches {patch}, patch?, ...}, which
should be verified with any patch validation technique, such as test suite validation. When the
test suite is weak to specify the bug, we can have different patches {patch;, patch}, ...} for dif-
ferent bug locations {/;,[;, ...} that passed the test suite. Then, the correctness can be verified, for

example, by manual inspection.

4.3.6 Implementation Details & Parameter Settings

Library. We have implemented our Encoder-Decoder model using OpenNMT-py [117], built
in the Python programming language and the PyTorch neural network platform [173].

Vocabulary In this chapter, we consider a vocabulary of the 1,000 most common tokens. To the
best of our knowledge, this is one of the largest vocabularies considered for machine learning for
patch generation: for comparison, DeepFix [84] has a vocabulary size of 129 words, and Tufano et
al. [216] considered a vocabulary size of 430 words.

Limit for truncation We truncate if the abstract buggy context is longer than 1,000 tokens.
This is motivated by Figure 4.6, where we can see that abstract buggy context is often less than
1,000 tokens long. SEQUENCER truncates by keeping the buggy line but removing statements,
class definitions, and method definitions until abstract buggy context is 1,000 tokens or less.

Network parameters We explored a variety of settings and network topologies for SEQUENCER.
Most major design decisions are verified with ablation experiments that change a single variable
at a time as detailed further in Section 4.5. We train our model with a batch size of 32 for 10,000
iterations. To prevent overfitting, we use a dropout of 0.3. In relation to the components shown
in Figure 4.3, below are the primary matrix sizes associated with each component along with a

reference to the equations in Section 4.3.3 to which they relate:

77

* Token embedding (our model uses the same embedding for both g. and g;): 1,004x256
(1,000 + 4 special tokens)

Encoder bidirectional LSTM (part of g, fuction): 256x256x4x2x2

Decoder LSTM (part of g, function): 512x256x4x2 + 256x256x4x2

Token generator (part of g, function): 256x1004

Bridge between encoder and decoder (path for A to initialize hd): 256x256x2

Global Attention (a{ weights): 256x256 + 512x256

Copy selector (g, function): 256x1

We use a beam size of 50 during inference, which is the default value used in the literature
[216, 5] and which proves to be good empirically.

Input and output summary The input to SequenceR is a Java class of any size. The non-empty
faulty line within a method on which to attempt repair has been identified by another technique
(usually line-based fault localization). The output is the fixed line which must have fewer than 100
tokens with our current model.

Usage After SEQUENCER is trained, we can use it to predict fixes to a bug. SEQUENCER takes
as input the buggy file and a line number indicating where the bug is. The output is a list of patches
in the diff format, so that the user can run their own patch validation step, which could either be
test validation or manual inspection.

The source code of SEQUENCER is available athttps://github.com/kth/SequenceR,

together with the best model we have identified and the synthesized patches.

4.4 Evaluation

In this section, we describe our evaluation of SEQUENCER.

78

4.4.1 Research Questions

The two first research questions focus on machine learning:
* RQI: To what extent can the fixed line be perfectly predicted?

* RQ2: How often does the copy mechanism generate out-of-vocabulary tokens for a patch,

and which parts of abstract buggy context are referenced for the copy?

The last two research questions look at the system from a domain-specific perspective: we

assess the performance of SEQUENCER from the viewpoint of program repair research.

* RQ3: How effective is SEQUENCER’s sequence-to-sequence learning in fixing bugs in the

well-established Defects4]J benchmark?

* RQ4: What repair operators are captured with sequence-to-sequence learning?

4.4.2 Experimental Methodology
Methodology for RQ1
We train SEQUENCER with the parameter settings described in Section 4.3.6. The training and

validation accuracy and perplexity will be plotted. Perplexity (ppl) is a measurement of how well

a model predicts a sample and is defined as:

—ZLZ‘llogP(yi | ?/1—17'--7y17X))
| Y |

ppl(X,Y) = exp(

where X is the source sequence, Y is the true target sequence and y; is the i-th target token [117].
Luong et al. found a strong correlation between a low perplexity value and high translation quality
[148].

The resulting model is tested on our testing dataset, CodRep4 (see Section 4.4.3). Next, in
order to compare SEQUENCER against the state-of-the-art approach by Tufano et al. [216], we
created CodRep4Medium. It is a subset of CodRep4 containing 1,116 samples where the buggy

method length is limited to 100 tokens.

79

Methodology for RQ2

To evaluate the effectiveness of the copy mechanism (described in Section 4.3.3), we consider
all samples from CodRep4. For each successfully predicted line, we categorize tokens in that line
based on whether the token is in the vocabulary or not. And at the same time, for tokens that are
out-of-vocabulary but are copied from the input sequence, we try to find the original location of
the copied token. By analyzing the original location of out-of-vocabulary tokens, we can measure
the importance of the context, in particular of the abstract buggy context we define in this chapter.
The copy mechanism allows the system to be more powerful by providing more tokens beyond the

vocabulary to be used in the patch.

Methodology for RQ3

We evaluate SEQUENCER on Defects4) [107], which is a collection of reproducible Java bugs.
Most recent approaches in program repair research on Java use Defects4J as an evaluation bench-
mark [155, 240, 239, 230, 105].

Since the scope of this chapter is on one-line patches, we first focus on Defects4J bugs that have
been fixed by developers by replacing one single line (there are 75 such bugs). In order to study
the effectiveness of sequence-to-sequence itself, we isolate the fault localization step as follows:
the input to SEQUENCER s the actual buggy file and the buggy line number. SEQUENCER then
produces a list of patches (recall that beam search produces several candidate patches). All patches
are compiled and then executed against the test suite written by the developer.

Each candidate patch generated by SEQUENCER is then categorized as follows:

* Compilable patch: The patch can be compiled.

 Plausible patch: The patch is compilable and passes the test suite. The patch may yet be

incorrect because of the overfitting problem [203].

* Correct patch: The patch passes the test suite, and is semantically equivalent to the human

patch. We hand-check for semantic equivalence for this evaluation.

80

As per the definitions, there is a strict inclusion structure in those categories: correct patches

are necessarily plausible and compilable, plausible patches are necessarily compilable.

Methodology for RQ4

For RQ4, we aim at having a qualitative understanding of the cases for which our sequence-
to-sequence repair approach works. This research question is motivated by the need to understand
what grammatically correct code transformations are captured by SEQUENCER, even though it is
purely a token-based approach with no first class AST or grammar knowledge. For gaining this
understanding, we use a mixed method combining grounded theory and targeted analysis. The
results would be an understanding of the variety of repair operators and programming language
syntax captured by SEQUENCER in cases where the model output correctly matches the test data.
For the grounded theory, we have been regularly sampling successful cases, i.e., cases in our
testing dataset CodRep4 for which SEQUENCER was able to predict the fixed line, for each case,
the authors reached a consensus to know whether 1) the case is interesting from a programming
perspective (e.g., it represents a common bug fix pattern), and 2) the case highlights a phenomenon
that has already been covered in a previously found case. For the targeted analysis, we specifically
searched for 2 kinds of results: cases where the copy mechanism was used and cases where a

specific programming construct was involved (method call, field reference and string literals).

4.4.3 Training Data

SEQUENCER is trained based on past modifications made to source code, i.e., it is trained on
past commits. In our experiments, we combine two sources of past commits, the CodRep dataset
[46] and the Bugs2Fix dataset [216], into what appears to be the largest dataset of one-line bug
fixes published to date. Both datasets 1) consider Java code and 2) have been built based on the
history of open-source projects.

The CodRep dataset focuses solely on one-line source code fixes (aka one-line patches), it
contains 5 datasets curated from real commits on open-source projects. The Bugs2Fix dataset

contains diffs mined from Github between March 2010 and October 2017 for bug-fixing commits

81

(based on heuristics to only consider bug-fixing commits). Neither dataset requires the buggy
project to have a test suite for exposing the buggy behavior, instead they are focusing on collecting

bug fix commits.

Data Preparation

Since CodRep and Bugs2Fix datasets are in different formats, we first unify these two datasets
as follows. First, we only keep diffs from Bugs2Fix which are fixes with a single line replacement.
Further, we filter out certain diffs if the changes are outside of a method.

Since the Bugs2Fix dataset comes from a generic bug-fix data mining which includes multi-
line fixes and fixes outside of methods, we can look at its statistics to help understand the generality
of SEQUENCER. Bugs2Fix contains 92,849 commits. 15,548 of these (17%) are one-line patches
within a method, and are within the problem domain of SEQUENCER.

After preparing the dataset, we divide it into training and testing data. CodRep is originally
split into 5 parts, numbered from 1 to 5, with each part containing commits from different groups
of projects. Our training data consists of CodRep datasets 1,2,3 & 5 and the Bugs2Fix dataset.
Our testing data is CodRep dataset 4 (or CodRep4 for short). We chose dataset 4 because it
is approximately 20% of the entire CodRep data (data set 1 is less than 10% and data set 5 is
over 30%) and because CodRep 4 contains a broad and representative set of projects on which to
evaluate [46].

Furthermore, we ensure there are no duplicate samples between the training and testing datasets.
During the model setup, we use a random subset of 95% of the training data for model training and

5% as our validation dataset.

Descriptive Statistics of the Datasets
In total, we have 35,578 samples in our training set and 4,711 samples in our testing set.
Input Size Figure 4.6 shows the size distribution of the abstract buggy context in number of
tokens before truncation is done. The CodRep training data has a median token length of 372; the

Bugs2Fix dataset has a median length of 340 tokens; and the testing dataset has a median length

82

10000000

I
E 1000000 | SequenceR
ot I vocab size
S © 100000 |
25 10000 !
g ¥ |
5 = 1000 !
5 C 100
L
£ 10
=
= 1
1 10 100 1000 10000 100000 1000000

Rank order of token

Figure 4.5: Overview of vocabulary: token count occurrences follow a Zipf’s law distribution.

& 400 1
ic':_ | Size limit for
g 300 I"truncation
= |
wv
S 200
o
€ 100
s |
c

O T

0 500 1000 1500 2000

abstract buggy context length

——(CR1235classes

Bugs2Fix classes - CR4 (test) classes

Figure 4.6: Only 14% of samples exceed the 1K token length limit and require truncation.

of 411. These variations are a result of using different Java projects in the datasets, but we observe
that the distribution of lengths is similar.

Prediction Size The lines from the abstract buggy context samples in our dataset had a median
length of 6. 99% of the lines were 30 tokens or fewer, which fits well typical output sizes used
for natural language processing. To sum up, the order of magnitude of the sequence-to-sequence
prediction receives an input sequence with an average length of 350 tokens and produces an output
sequence with an average length of 6 tokens.

Vocabulary Size In our training data, the full vocabulary is 567,304 different tokens. Figure 4.5

shows the distribution of the number of occurrences for the whole vocabulary. It is a typical power-

83

Table 4.1: Comparison with state-of-the-art approach by Tufano et al.

Approach Prediction Accuracy
CodRep4Medium | CodRep4

simple seq2seq line2line, no copy | 77/1116 (6.9%) 206/4711 (4.4%)
Tufano et al. [216] 157/1116 (14.1%) | N/A
SEQUENCER 344/1116 (30.8%) | 950/4711 (20.2%)

law like distribution with a long tail. We limit our training vocabulary to the 1,000 most common

tokens.

4.4.4 Experimental Results
Answer to RQ1: Perfect Predictions

We trained our model on a GPU (Nvidia K80) for 1.2 hours. For a typical training run on
our golden model, Figure 4.7 shows the training and validation accuracy per token generated (the
accuracy for the entire patch would be lower) and Figure 4.8 shows the perplexity (ppl) per token
generated over the training and validation datasets. In this particular run, the best results for both
the perplexity and accuracy on the validation dataset occur at 10,500 iterations. We chose 10,000
iterations as the standard training time for our model.

CodRep4 On the 4,711 prediction tasks of our best model, SEQUENCER is able to generate
the perfect fix in 950 cases (from Table 4.1). In all those cases, the predicted line that replaces the
buggy line is exactly the line fix implemented by the developer. The copy mechanism is used in a
number of cases, this will be further discussed in section 4.4.4.

Comparison to state-of-the-art To the best of our knowledge, the state-of-the-art approaches
are from Tufano ef al. [216] and Hata et al. [87]. We only compare against Tufano et al. since
their approach has been open sourced while that one of Hata et al. was not made available at the
time of writing this chapter. The approach used by Tufano et al. is limited to fixes only inside
small methods, consisting of less than 100 tokens. The limitation is due to the fact that their
approach generates the entire fixed source code method as output of the decoder. This means that

the decoder may need to generate a long sequence of source code tokens, which is one of the major

84

challenges for NMT models [119]. SEQUENCER does not make any assumption on the size of
the buggy method. In order to compare against [216], we select those 1,116 tasks from CodRep4
where the buggy line resides in a method smaller than 100 tokens. Those 1,116 tasks are called the
CodRep4Medium testing dataset.

Our testing accuracy for both CodRep4 and CodRep4Medium are shown in Table 4.1. From the
table, we see that the accuracy of SEQUENCER is 344/1,116 (30.8%) while Tufano et al. [216] is
157/1,116 (14.1%). This is a clear indicator that SEQUENCER outperforms the current state-of-the-
art showing twice as many correct predictions. It shows that our construction of the abstract buggy
context, together with the copy mechanism, leads to higher accuracy than only having the buggy
method as context with a specific encoding for variables. Recent fault localization research [249]
indicates that best-in-class techniques can predict the faulty line 44% of the time and the faulty
method 68% of the time. If we extrapolate these percentages to our data, SEQUENCER is more
likely to find correct one-line patches than the prior work [216] is to find method replacements,
and SEQUENCER can process and repair larger methods as demonstrated by the right-hand column
of Table 4.1.

We now concentrate on the effectiveness of the approach depending on the buggy method
length. Overall, we observe that SEQUENCER has a lower accuracy on longer methods (30.8%
accuracy on CodRep4Medium, 20.2% accuracy on CodRep4). This phenomenon is explained by
the fact that fixes in long methods are usually more complex and involve more context variables,
identifiers and literals that are not easily captured by the learning system. This phenomenon has

also been previously observed [216].

Answer to RQ2: Copy Mechanism

We now look at to what extent the copy mechanism is used. Figure 4.9 shows the origin of
tokens in successfully predicted lines, per patch size. Let us consider the highest bar, corresponding
to all successfully predicted lines consisting of 7 tokens. For those 7-token patches, the black bar
means that all tokens are taken from the vocabulary. The non-black bars mean that the copy

mechanism has been used to predict the line fix. Overall, there is a minority of patches (216/950,

85

3

)

© 95

- C

E 20

- B85

o

g &80

= a5

= 0 2000 4000 6000 8000 10000 12000
=

L Iterations
o

'_...

——Training Accuracy Validation Accuracy

Figure 4.7: Training and validation accuracy

4
&
E 3
a R
|
1
&
o
=0
0 2000 4000 6000 8000 10000 12000

Iterations

Training perplexity Validation perplexity

Figure 4.8: Training and validation perplexity

23%) for which all tokens come from the vocabulary. At the extreme, the longest successful patch
generated by SEQUENCER was 68 tokens long, but the longest successful patch without the copy
mechanism was only 27 tokens long.

Figure 4.9 also lets us analyze the location origin of the copied token. The brown bars represent
those patches for which copied tokens all come from the buggy line: this is the majority of cases
(641/950, 68%). However, we also observe cases where some copied tokens have been taken from
the buggy method (green bars) and cases where the copied tokens has been taken from the buggy

class (red bars), i.e., taken from the class context as captured in our encoding.

86

As an example, Listing 4.7 replaces variable masterNode with nonMasterNode as in the
correct human patch. nonMasterNode in the fixed line does not occur in our training data and
hence it is not in our 1000 token vocabulary. Therefore, SEQUENCER was able to generate this
patch because it copied the out-of-vocabulary token nonMasterNode from within the buggy
method. As this example is a 4 token long patch, it would contribute to the green bar for patch

length 4 in Figure 4.9.

while(nonMasterNode ==null) {
nonMasterNode=randomFrom(internalCluster().getNodeNames());
if (nonMasterNode.equals(masterNode)) {

- masterNode = null ;

+ nonMasterNode = null;

Listing 4.7: Example of the copy mechanism creating a correct patch by incorporating a variable

which is not in the vocabulary from the broader context around the buggy line.

Overall, Figure 4.9 shows that the copy mechanism is extensively used (734/950, 77%) and
that our class level abstraction enables us to predict difficult cases where only the buggy line or the
buggy method would not have been enough.

In order to understand the benefits of context size with the copy mechanism, we measured the
distance in tokens to reach a copied token used to generate a patch. In the 87 cases where a copied
token was needed from the buggy method b,,, the median distance from the buggy line b; to the
nearest use of the copied token was 9 tokens, 90% of the 87 cases were within 49 tokens of b;, and
100% were found within a 122 token distance. In the 7 cases when a copied token was needed from
the buggy class b., the median distance to the copied token from b,,, was 25 tokens, and 100% were
found within a 241 token distance. In addition to ablation study results discussed is Section 4.5,

the preceding data supports our decision to create the abstract buggy context.

87

200
180
160
140
120
100
80
60
40

20 H
o -l
0 5

Number of patches

15 20 25 30 35 40 45 50 55 60 65
Patch Length

W Vocab B Buggyline BuggyMethod W BuggyClass

Figure 4.9: Histogram showing correctly generated patches: 1) that only use tokens in our 1,000 token
vocabulary, 2) that need to copy tokens from the buggy line, 3) from the buggy method and 4) from the
buggy class.

4.4.5 Defects4]J Evaluation

As explained in Section 4.4.2, we consider 75 Defects4J bugs that have been fixed with a one-
line patch by human developers. In total SEQUENCER finds 2,321 patches for 58 of the 75 bugs.
The main reason that we are unable to fix the remaining 17 bugs is due to fact that some bugs are not
localized inside a method, which is a requirement for the fault localization step that SEQUENCER
assumes as input. Listing 4.8 is one such example where the Defects4j bug is not localized inside a
method. We have 2,321 patches instead of 2,900 (58x50) because some predictions are filtered by
the patch preparation step (Section 4.3.5), i.e., patches that contain the <unk> token. The statistics
about all bugs can be found in Figure 4.10. Out of 75 bugs, SEQUENCER successfully generated at
least one patch for 58 bugs, 53 bugs have at least one compilable patch, 19 bugs have at least one

patch that passed all the tests (i.e., are plausible) and 14 bugs are considered to be correctly fixed

88

Total bugs

Bugs with patches

with compilable patches
with plausible patches
with correct patches

90

Figure 4.10: SEQUENCER results on the 75 one-line Defects4]J bugs.

Total patches
Compilable patches 761
Plausible patches | 61
Correct patches | 18

2321

\ \ \ \ \ \
0 500 1000 1500 2000 2500 3000

Figure 4.11: Stastistics on patches synthesized by SEQUENCER for the 75 one-line Defects4J bugs.

(semantically identical to the human-written patch). Of these 14 bugs, in 12 cases the plausible

patch with the highest ranking in the beam search results was the semantically correct patch.

— private static final double DEFAULT_EPSILON = 10e-9;
+ private static final double DEFAULT_EPSILON = 10e-15;

Listing 4.8: An example of Defects4] defect (Math 104) where the bug is not localized inside a method. In

this case, a class variable is changed.

Figure 4.11 gives a different perspective on this data, focusing on patches (and not bugs). SE-
QUENCER is able to generate 761 compilable patches (33% of all patches). SEQUENCER finds 61
plausible patches spread over 19 bugs, thus there can be several plausible patches for the same bug,
a phenomenon well-known in the program repair field [155]. One reason is that some Defects4])
bugs have a weak test suite. To the best of our knowledge, we are the first to report the correctness
of patches generated by a sequence-to-sequence model, where correctness means passing the test
suite and being semantically equivalent to the human patch. In the end, SEQUENCER is able to

generate 18 patches that are semantically equivalent to the correct bug fix.

89

For SEQUENCER applied to Defects4J bugs, we observe that out of 61 plausible patches, 18 are
correct, which is a ratio of 30%. An analysis of prior techniques which used a different benchmarck
in C (GenProg [131], RSRepair [180], and AE [229]) shows that they have a correct patch ratio of
less than 12% [182]. We did not evaluate SEQUENCER on the same benchmark as this prior work
(we target Java not C), but the ratio is evidence that SEQUENCER has learned to produce outputs
which represent reasonable patch proposals.

Although we did not directly include fault localization in our evaluation of SEQUENCER, we
can estimate the performance of a repair system which includes state-of-the-art fault localization
techniques [249] as follows. It has been shown that there is an estimated 44% success of correctly
identifying a faulty line in the top 10 candidates. Hence, in order to process 75 total bugs from
Defects4J, 750 candidate abstract buggy contexts would need to be prepared for input to our model.
We have run fault localization with Gzoltar [41] and found that it successfully localized the faulty
line for 9 of the 14 bugs for which SEQUENCER found a correct fix.

Let us now discuss timing. We estimate the machine time required to automatically find patches

for 75 bugs with the summation below®:

Estimated time to run fault localization on 75 bugs and identify 10 likely faulty line locations:

112 minutes
* Time to create 750 abstract buggy contexts (10 created for each bug): 29 minutes

* Time to create 37,500 patch candidates (50 candidates created from beam size 50 for each

abstract buggy context): 9 minutes
» Estimated time to prune raw patches down to 23,210 total patches: 2 minutes
* Time to attempt compile on 23,210 patches: 1378 minutes

* Time to run test cases on 7,610 patches: 6287 minutes

3Our Defects4] testing was run on an Intel Core i7 at 3.5GHz and our sequence-to-sequence model was run on an
Nvidia K80.

90

* Final result estimated to take 130 total machine hours to find patches which correctly fix 9

bugs.

Listing 4.9 shows the SEQUENCER patch for Math 75, which is semantically equivalent to the
human patch. We observe that it contains some unnecessary parentheses, and the same behavior
occasionally occurs in other patches found by SEQUENCER. We have observed unnecessary paren-
thesis in some of the human-generated patches in our training data and SEQUENCER occasionally
replicates this human style. In this case, the parentheses do not change the order of evaluation.
Therefore the SEQUENCER patch for Math 75 is semantically equivalent to the human patch.

Interestingly, getPct is not part of the vocabulary, and it did not appear in the buggy method.
The getPct method is defined in the same buggy class, as captured by our abstract buggy context.

In Defects4]J, the copy mechanism is also useful to capture the right tokens to add in the patch.

— return getCumPct((Comparable<?>) v);
+ return getPct ((Comparable<?>) v); // Human patch

+ return getPct (((Comparable<?>)(v))); // SEQUENCER patch

Listing 4.9: Found patch for Math 75

We now compare those results against the patches found by recent program repair tools that are
publicly available. Elixir [191], CapGen [230] and SimFix [105] have reported 26, 22, 34 correctly
repaired bugs for all Defects4J bugs, where the patch is identical to the human patch or claimed as
correct. Of those correctly repaired bugs, 22, 19 and 17 respectively are for the 75 one-line bugs
that we consider for SEQUENCER. We notice that the majority of claimed correct patches are for
one-line bugs. We observe that SEQUENCER does not fix more one-line Defects4J bugs.

While Elixir, CapGen, and SimFix are driven with intelligent design and require substantial
configuration and handcrafted rules, our goal with SEQUENCER is to be agnostic and to not design
any repair operator upfront. For example, CapGen implements context-aware operator selection
and context-aware ingredient prioritization [230]. The CapGen implementation heavily relies on
code transformation tools and carefully selected algorithms/parameters/metrics. In constrast, our

SEQUENCER can be considered less heavyweight. We note that the required parameter tuning

91

in SEQUENCER can easily be performed using grid search or other meta-optimization techniques
[30]. To that extent, it is remarkable that such a generic approach is able to learn bug-fixing patterns
and synthesizes 18 patches that are semantically equivalent to the human repair, without any static
or dynamic analysis. By providing a generic approach, SEQUENCER will improve in the future as
machine learning sequence-to-sequence techniques improve, and as more bug fix training data is
provided. Also, since SEQUENCER learns repair operators from examples, it could be trained on
less common languages (such as COBOL).

We assume perfect fault localization while other related tools ran fault localization to localize
the buggy source code. Yet, different papers use different fault localization algorithms, implemen-
tations, and granularity (e.g., methods versus line). Liu ef al. pointed out that because of different
assumptions about fault localization, it is hard to compare different repair techniques [142]. By

assuming perfect fault localization, we purely focus on the patch generation step of the algorithm.

4.4.6 Qualitative Case Studies

We now answer RQ4 by presenting the diversity of repair operators that are captured by SE-
QUENCER. These cases are culled from the 950 correct patches SEQUENCER generated for the
CodRep4Full test dataset. Both the buggy line that was part of the input is shown and the correct
patch which includes examples of repair operators. We also highlight again the effectiveness of the

copy mechanism by using a bold underlined font for those tokens that were copied (i.e., that are

outside the vocabulary of the 1,000 most common tokens).

Case study: method call change
Our training and evaluation data consist of object-oriented Java software. We observe that
SEQUENCER captures different kinds of operations related to method calls.

Call change Here a call to method writeUTTF is replaced by a call to method writeString.

— out.writeUTF(failure);

+ out.writeString(failure);

Listing 4.10: Call change

92

Call deletion The buggy line chains two method calls; this successful prediction consists of

deleting one of them.

— FieldMappers x = context . mapperService () .smartNameFieldMappers(fieldName);

+ FieldMappers x = context.smartNameFieldMappers(fieldName);

Listing 4.11: Call deletion.

Argument addition In this patch, SEQUENCER adds an argument (which in Java, means call-

ing another method).

— stage.getViewport () .update(width, height);

+ stage.getViewport() .update(width, height, true);

Listing 4.12: Argument addition

Target change In this successful case, the patch also calls method isTerminated but on another

target (scheduledExecutorService instead of executorService, which is copied from the input

context).

— if (!(executorService.isTerminated())){

+ if (!(scheduledExecutorService.isTerminated())){

Listing 4.13: Target change

Case study: if-condition change

SEQUENCER can change if conditions, and in this particular case, removes two clauses from

the Boolean formula.

—if(((t>=0) &&(t<=1)) && (intersection != null))

+ if (intersection != null)

Listing 4.14: if-condition change

Case study: Java keyword change

SEQUENCER is also able to generate patches involving the replacement of programming lan-

guage keywords, indicating clues of syntax understanding.

93

— break ;

+ continue ;

Listing 4.15: Java keyword change

Case study: change from field access to method call

A good practice of software engineering is to implement encapsulation by calling methods

instead of directly accessing fields, this is handled by SEQUENCER as follows (sizeto size())

"

— app. log("PixmaPackerTest'", (''Number of textures: "' + (atlas.getTextures().size)));

”"

+ app.log(''PixmaPackerTest", ("Number of textures: " + (atlas.getTextures().size))));

Listing 4.16: change from field access to method call

Case study: off-by-one repair

Finally, SEQUENCER is also able to repair classical off-by-one errors.

— nextIndex = currentlndex;

+ nextIndex = (currentlndex) — 1;

Listing 4.17: off-by-one repair

Overall, SEQUENCER uses all three kinds of token operations: 1. Token deletion, e.g., List-

ing 4.11; 2. Token addition, e.g., Listing 4.12; 3. Token replacement, e.g., Listing 4.10.

4.5 Ablation Study

We perform an ablation study to understand the relative importance of each component of
our approach. The process is as follows. First, we identify the golden model based on a greedy
optimization in the parameter search space. This is the model that we described in section 4.4.
Then we change one single parameter to a different reasonable value and report the performance
on the same testing dataset. The ablation results demonstrate that parameter selections for the

golden model produce the highest acceptance rates for the configurations we tested. The model

94

parameters we found with our dataset are likely to yield reasonable results when training for other
computer languages so long as a form of abstract buggy context can be done to provide context
related to the buggy line. We provide details on our ablation results to aid future researchers in
understanding which variables are most likely to improve their own models.

Due to randomness in learning, for each parameter, we run each configuration multiple times
and report the mean and standard deviation for the model as recommended for assessment of ran-
dom algorithms [16]. As our goal is to select the best model for use in our Defects4] evaluation,
we use the test set from CodRep4Full to select the best run of each model, hence we report the
percentage decrease of the best run for a given model from the best result found with the golden
model. Due to computational constraints, we only run each model 10 times; for the 18 config-
urations reported, almost 200GB of disk storage was used and 400 machine-hours. When using
SEQUENCER to learn new datasets, we would recommend a similar approach where a validation
set is used to select the best performing model after multitple training runs.

First, we consider the very coarse grain features. Table 4.2 shows the performance of four
models, starting from a simplistic seq-to-seq model that only takes a single buggy line b; as input
when learning to produce the fixed line f;. Then we show beam search, copy, and the use of the
abstract buggy context improving the model performance. These results confirm our answer to
RQ2 that the copy mechanism is essential to the performance of the system.

Second, Table 4.3 shows the results of our ’Golden model” against the results of single specific,
targeted changes made to the model. Ablation ID 1 shows that our 10K training limit is sufficient
given our training data. ID 2 shows that a vocabulary smaller than 1K tokens performs worse -
likely due to a loss of learned tokens that can be used even if an instance of the token is not in
the abstract buggy context. ID 3 shows that a vocabulary larger than 1K tokens performs worse
- perhaps due to the additional tokens having insufficient training examples for learning a proper
embedding. To further understand the effect of vocabulary size, we analyzed the raw output of
our model before the patch preparation step. For the golden model (vocab=1000), 38% of the

generated patches on CodRep4 have <unk> tokens and would be discarded; with ID 2 (700) it is

95

43%, and with ID 3 (1400) it is 37%. Hence, although a larger vocabulary had fewer raw <unk>
tokens, the 1000 token vocabulary was able to produce better optimized models.

ID 4 is about pretraining; in order to provide more opportunities to learn a quality embedding,
we created unsupervised pretraining data for the encoder/decoder. Using this unsupervised data
did not improve the model, it worsened it.

ID 5 a and b show the value of combining the CodRep and Bugs2Fix data sets to improve
the generalization of the model. ID 6 demonstrates the effect of removing the bridge between the
encoder and decoder, which improved the mean for the model but tightened the standard deviation
and hence produced a lower best result that the golden model. This is perhaps due to the bridge
layer allowing for more variation in the encoder hidden state embedding and decoder hidden state
embedding.

IDs 7 through 10 demonstrate that our LSTM network is sized correctly; presumably a smaller
network cannot generalize on the model data well enough whereas a larger network has too many
degrees of freedom. Our speculation is that a 2 layer encoder/decoder network allows the layer
connected directly to the token embedding to *focus’ the weight matrix on input syntax while the
layer connected to the attention/copy mechanism ’focuses’ on output generation. ID 11 shows the
loss in accuracy when abstract buggy context is reduced to just the buggy line.

ID 12 shows that truncation is necessary otherwise an out-of-memory error crashes the system,
due to too many time steps being stored in memory per token in the sequence. ID 13 shows that if
we truncated to 4,000 tokens then the system passes, but the increased context size (4,000 vs the
golden model 1,000) did not improve accuracy of the model. ID 14 shows that using a 500 token
limit for abstract buggy context hurts accuracy presumably because there are less opportunities for
token copy. We also speculate that a possible advantage of 1K truncation instead of 500 could be
that 1K provides a type of unsupervised learning for the encoder hidden states, the global attention,
and the copy mechanism.

ID 15 removes the <START_BUG> and <END_BUG> tokens from the abstract buggy context

input. The target output is still the correct single-line patch. Without these