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ABSTRACT

INDEPENDENCE COMPLEXES OF FINITE GROUPS

Understanding generating sets for finite groups has been explored previously via the generating

graph of a group, where vertices are group elements and edges are given by pairs of group elements

that generate the group. We generalize this idea by considering minimal generating sets (with

respect to inclusion) for subgroups of finite groups. These form a simplicial complex, which we

call the independence complex. The vertices of the independence complex are nonidentity group

elements and the faces of size k correspond to minimal generating sets of size k. We give a

complete characterization via constructive algorithms, together with enumeration results, for the

independence complexes of cyclic groups whose order is a squarefree product of primes, finite

abelian groups whose order is a product of powers of distinct primes, and the nonabelian class of

semidirect products Cp1p3···p2n−1
⋊Cp2p4···p2n where p1, p2, . . . , p2n are distinct primes with p2i−1 >

p2i for all 1 ≤ i ≤ n. In the latter case, we introduce a tool called a combinatorial diagram, which

is a multipartite simplicial complex under certain numerical and minimal covering conditions.

Combinatorial diagrams seem to be an interesting area of study on their own. We also include

GAP and Polymake code which generates the facets of any (small enough) finite group, as well as

visualize the independence complexes in small dimensions.

ii



ACKNOWLEDGEMENTS

The individuals who have supported me throughout my education are many; thank you to

everyone who I have interacted with along this journey. I will highlight some of the most prominent

and recent interactions.

To my advisors, Alexander Hulpke and Chris Peterson, thank you for your encouragement,

enthusiasm, flexibility and support. Your thoughtful approaches to advising have helped me blos-

som as an early-career mathematician in this stage of my career. You have helped raise in me the

confidence and skills to pursue my own research path independently, and have helped me direct

my career trajectory towards the aspects I enjoy the most. Chris, thank you for getting me excited

about fun open problems and for the fun mathematical talks we have had. Alexander, thank you for

the career and work-life balance talks, and for always knowing the orders of the finite groups we

stumbled upon off the top of your head. Thank you both for inspiring me to travel and supporting

me to do so, and for the unwavering supply of puns.

To my committee members, Henry Adams and Jamie Neilson. Thank you for your support,

thorough feedback, and thoughtful conversations. To Ken McLaughlin, the CSU Mathematics

Department, and the University of Maine Mathematics Department and Friends, thank you for

supporting me as I complete my doctorate and transition into the next stage of my career.

Thanks to Hilary, Patrick, Zube for your creativity in finding peaceful writing nooks and for

helping the child in my spirit giggle and keep its magic alive. Patrick, thank you for being the best

honorary advisor a graduate student could hope for. Thank you, Marquita, for sharing the joy of

writing with me and inspiring me to always keep learning.

To Ryan Bauer, thank you for introducing me to the mathematical playground of combinatorics

and encouraging me to pursue a PhD. To Steve Klee, for introducing me to topological combina-

torics and helping me find where my heart lies in mathematics. Steve, thank you for many helpful

mathematical conversations which inspired and contributed to early results in the dissertation. Gra-

ham Harper, thank you for your alacrity in helping me make my mathematics come alive by sharing

iii



your time and your 3D-printing prowess. To the many mathematicians I have interacted with along

the way, thank you for being a part of my journey.

To Mom and Dad, for all of your love, support, and encouragement. Thank you for giving me

the love of education, of music, and of pursuing hobbies that I love. For encouraging me to find a

career that I love so much that it will hardly feel like work. Thank you for your stalwart support,

and always being there for me, through celebrations and challenges. Thank you for raising me

to believe in my ability to accomplish anything I set my mind to. This mantra, along with your

unwavering encouragement and support, has been instrumental in completing my PhD. Thank you

to my extended family for your words of encouragement, laughter, fun gifts, and sending snacks

in the mail.

To Iván, for all of your support, love and cooking. Thank you for reminding me to take breaks

and take care of myself, and for your refreshing views on careers in academia. Thank you for

adventures and for going above and beyond to support me while I finish grad school and make

career transitions. You are the sweetest, most caring companion.

Thank you to my dear friends for unguarded silliness, music days, baking brigades, disastrous

puns, impromptu walks, creative writing, love for literature, impending thunderstorms, Utah ad-

ventures, nights under the stars, hiking and camping adventures, kung fu, food, unconventional

bike rides, and death-defying nighttime adventures on mountainsides. In particular, thank you to

Brooke, Wes, Amanda, Hilary, Faire, Robert, Hannah, Figo and Iván for taking these delights to

the extremes.

Thank you to my San Soo family and the whole CSU crew for always being there to support

me and making my time in Colorado a wonderful, memorable one. Thank you to Mary and Dick,

Kerry, Johnna, and Christina for being angels in my life.

This work was completed in part with the support of National Science Foundation grant funding

through Dr. Chris Peterson (Summers 2017, 2018) and Dr. Alexander Hulpke (Summers 2019,

2020, 2021).

iv



DEDICATION

For Grandpa

Your continual encouragement

to educate myself to my heart’s content,

complete my PhD, and enjoy life

lives inside me always.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Standard group theoretic results . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Sylow Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Group Actions and Automorphisms . . . . . . . . . . . . . . . . . . . . 6

2.1.5 Bounding sizes of independent generating sets . . . . . . . . . . . . . . 7

2.1.6 Semidirect and Direct Products . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Simplicial complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Joins of simplicial complexes . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Face numbers and h-numbers . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Multipartite simplicial complexes and clutters . . . . . . . . . . . . . . 16

2.3 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Stirling numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Independence Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Frattini subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Order independence complexes . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 Cyclic and Finite Abelian Results (Coprime) . . . . . . . . . . . . . . . . . . 27

3.1 Unique Selling Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Oinc(Cp1 × Cp2 × · · ·Cpn) for distinct primes pi . . . . . . . . . . . . . . 29

3.3 Oinc(Cp1k1 × Cp2k2 × · · · × Cpnkn ) for distinct primes pi . . . . . . . . . . 37

Chapter 4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 GAP, Sage, and Polymake Algorithms . . . . . . . . . . . . . . . . . . . . 44

4.2 Non-abelian Independence Complexes . . . . . . . . . . . . . . . . . . . 45

4.2.1 Independence Complex of S3 × C5 . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Independence Complex of S3 × C3 . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Automorphic Images of In(C3 ×Q8) . . . . . . . . . . . . . . . . . . . 48

4.2.4 Larger examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.5 Representations of Independence Complex of C4 ×Q8 . . . . . . . . . 49

vi



Chapter 5 Main Results (Semidirect product) . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Structure of In(G1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Structure of G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Structure of In(G2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Structure of G2 and facet bound . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Unique selling points . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.3 Structure description of In(G2) . . . . . . . . . . . . . . . . . . . . . . 59

5.2.4 Counting facets of In(G2) . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Group structure of Gn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Main Theorem: Structure of In(Gn) . . . . . . . . . . . . . . . . . . . . . 70

5.5 Main Algorithm: Computing the combinatorial diagrams for Gn . . . . . . 78

Chapter 6 Example: Independent facets for G1 ×G2 ×G3 . . . . . . . . . . . . . . . . 86

6.1 Applying Algorithm 5.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Simplicial Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 7 Example: Counting the number of independent facets for G3 . . . . . . . . . 94

Chapter 8 Conjectures and Future Directions . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix A GAP Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 GAP: Ainc.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 GAP: mainGAP.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendix B Polymake Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1 Polymake: mainPolymake.txt . . . . . . . . . . . . . . . . . . . . . . . . 110

vii



Chapter 1

Introduction

The focus of our study is to understand minimal generating sets for subgroups of finite groups

via an associated simplicial complex. We will call this simplicial complex the independence com-

plex of the group. Often certain generating sets are better suited than others to solve problems

involving group computation. If one can understand all minimal generating sets of a finite group in

a concise way, then choosing a generating set for a group suitable to the problem at hand becomes

much simpler.

Group generation has been studied in various contexts. A classical example is the Cayley graph

of a group G, whose vertices are group elements and, for a particular choice of generating set S of

G and g ∈ G, whose edges are of the form {g, gs} for all s ∈ S. Generated groups (groups together

with a specified set of generators) are widely studied in, for instance, geometric group theory. Tao

has studied the geometry of the Cayley graph of a generated group by assigning a metric to the

group and investigating the asymptotics of the growth of the resulting metric balls [17].

Closely related to our work is the notion of the generating graph Γ(G) of a group G, as defined

in [11]. The generating graph of a finite group G has as its vertex set the elements of G, and has

an edge between any two vertices which generate G (note that G must have a generating set of

size two in order for the generating graph to be nonempty, so typically one restricts to 2-generated

groups). The authors in [11] show that if H is a sufficiently large simple group with Γ(G) ∼= Γ(H)

for some finite group G, then G ∼= H . It is also shown in [11] that if H is a symmetric group with

Γ(G) ∼= Γ(H) for some finite group G, then G ∼= H . In some sense, in these cases the original

group is determined by its generating graph, given the appropriate assumptions.

We generalize the notion of a generating graph by loosening the requirement that the whole

group be generated, restricting our attention to minimal generating sets of subgroups, and con-

sidering generating sets of size larger than 2. The structure that arises is a simplicial complex,

which we call the independence complex of the group (note this is different than the more standard
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independence complex of a graph). The overall theme of this paper is to describe the structure

and combinatorics of the independence complexes of certain finite groups. This paper draws some

inspiration from the authors’ results in [11], in that it seeks to develop results of a similar flavor

(though branching off into different questions) in the context of independence complexes.

In this paper, we define the independence complex of a finite group to be the set of all minimal

generating sets for subgroups of G. We refer to the facets (maximal faces) of an independence

complex as independent facets, and the faces as independent sets. In geometric combinatorics,

quantities such as the number of faces of each dimension (called the f -numbers) of simplicial

complexes having some prescribed structure are widely studied. These lead to statements about

a generalized Euler Characteristic, which gives information about the topology of the complex.

Often a goal is to classify the f -numbers and explore numerical phenomena such as unimodality

(i.e. Does the sequence of f -numbers rise and then fall with no other increases?). In this paper, in

addition to determining the structure of certain independence complexes, we will be interested in

face enumeration.

The authors in [1] classify all finite groups G for which m(G) = d(G), where m(G) is the

maximum size of a minimal generating set of G and d(G) is the minimum size of a minimal

generating set of G. In the setting of the independence complex, this implies all independent

facets have the same dimension, and thus the complex is pure (its maximal faces all have the same

dimension). This result is in the context of independent sets that generate the full group G. In our

work, we will also allow for generation of proper subgroups of G.

See, for instance, [1], [11], and [12] for additional related results about generating graphs and

minimal generating sets for the full group G.

We will be interested in studying combinatorial and topological properties of the independence

complexes of certain finite groups and determining constructions for these complexes based on

the original group structure. An ultimate, yet ambitious, goal is to develop results stating that the

independence complex of a group (under the right conditions) gives information about the structure

of the group from which it came, such as the previous results mentioned about generating graphs
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from [11]. Another ultimate yet ambitious goal is to understand the independence complexes of

all finite groups.

This paper is structured as follows. In Section 2, we provide background on groups, simplicial

complexes, and independence complexes. In Section 3, we give a complete characterization for the

order independence complex (a structure associated to the independence complex) of cyclic groups

whose orders are squarefree products of distinct primes. We then enumerate the number of faces of

the corresponding independence complex. These groups already give rise to interesting structure

and involved enumeration, even though they are among the easiest to study of the abelian groups.

A similar structure to independence complexes was studied by the author in [20] in counting the

number of irredundant generating sets for products of elementary abelian groups. Our results

focus on a different but related structure, as we allow for generation of proper subgroups rather

than requiring an independent set to generate the whole group.

We also give a complete characterization and facet enumeration of the order independence

complexes of groups Cp1k1 × Cp2k2 × · · · × Cpnkn where the pi are distinct primes in Section 3

(here, Cm represents the cyclic group of order m). We then enumerate the number of independent

sets in this order independence complex. One of the highlights of our enumerative results is that

the enumeration arises directly from the constructions for both of these classes of groups, with no

correction for overcounting necessary. Section 3 constitutes our main results about these classes

of cyclic and finite abelian groups.

Another prominent component of this thesis is computation and visualization, which we discuss

in Section 4. The author has written code which uses GAP [6], Polymake [7], and SageMath [18]

to compute and visualize the independence complexes of finite groups in small dimensions. This

code is included in the Appendices. In Section 4.2 we include several examples and images which

we computed with this code.

Our main theoretical results for a class of nonabelian groups are found in Section 5. Here

we give a complete characterization of the independence complexes of groups of the form Gn =

G1 × G2 × · · · × Gn where each Gi is a nonabelian finite group and |G1| = p1p2, |G2| =

3



p3p4, . . . , |Gn| = p2n−1p2n for distinct primes p1, p2, . . . , p2n with p2i−1 > p2i for all 1 ≤ i ≤ n.

This class of nonabelian groups can be realized as a semidirect product of cyclic groups, namely

Gn
∼= Cp1p3···p2n−1

⋊ Cp2p4···p2n . We introduce a new tool called a combinatorial diagram which

we use as a main component of this characterization. We provide an algorithm to generate all

combinatorial diagrams explicitly, which allows one to generate and enumerate all independence

complexes of Gn for the desired value of n.

In Section 6, we apply the results from Section 5 and compute the full independence complex

for G3. In Section 7, we give an example in a particular case of how one would enumerate the

number of independent sets for the independence complex of G3. Section 8 states conjectures and

future directions.
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Chapter 2

Background

2.1 Group Theory

We begin with some standard definitions and results from group theory. Additional group

theory background can be found in the standard literature, for instance [5].

2.1.1 Notation and terminology

Let G be a finite group. We write the subgroup generated by g1, g2, . . . , gs ∈ G as 〈{g1, . . . , gs}〉

or simply 〈g1, . . . , gs〉. Let Cn denote the cyclic group of order n, and D2n denote the dihedral

group of order 2n (rotations and reflections of an n-gon). Recall that Cab
∼= Ca ×Cb if and only if

gcd(a, b) = 1. We use A ⊂ B to denote a proper subset (i.e. A 6= B but A = ∅ is possible) and

A ⊆ B to allow for subset equality; this distinction will be particularly important throughout the

paper. We denote the set {1, 2, . . . , n} by [n]. For sets A,B we write A ⊔ B to denote the disjoint

union of A and B. We denote the identity of G by eG, 1, or 1G depending on the context.

2.1.2 Standard group theoretic results

Corollary 2.1.1 (Corollary to Lagrange’s Theorem). Let G be a finite group with x ∈ G. Then |x|

divides |G|.

Corollary 2.1.2. For any x ∈ G, we have |x| = |〈x〉|.

Definition 2.1.3. Let N be a subgroup of a group G. Let gNg−1 = {gng−1 : n ∈ N, g ∈ G}. We

say N is normal in G, denoted N E G, if for all g ∈ G we have gNg−1 = N .

Definition 2.1.4. Let S be a subset of A. The normalizer of S in G is the set NG(S) = {g ∈

G|gSg−1 = S}. Here, gSg−1 = {gsg−1|s ∈ S}.

A standard group theoretic argument shows that NG(S) is a subgroup of G.
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2.1.3 Sylow Subgroups

Definition 2.1.5. Let G be a finite group of order pαm where p is prime and p ∤ m. A Sylow

p-subgroup of G is any subgroup of G of order pα.

Theorem 2.1.6 (Sylow’s Theorem). Let G be a finite group of order pαm where p is prime and

p ∤ m.

1. Sylow p-subgroups exist

2. Any two Sylow p-subgroups of G are conjugates of each other in G

3. G has np Sylow p-subgroups, where np ≡ 1(mod p). Additionally, if P is a Sylow p-

subgroup, then np equals the index of NG(P ) in G, so np | m.

The following propositions are shown using standard group theoretic arguments (see [5]) and will

be useful in our later work.

Proposition 2.1.7. A Sylow p-subgroup P of G is normal in G if and only if np = 1 (i.e. if and

only if P is the unique Sylow p-subgroup of G).

Proposition 2.1.8. Let |G| = p1p2 for primes p1 > p2. The unique Sylow p1-subgroup is normal

in G; and if Q is any Sylow p2-subgroup which is also normal in G, then G is cyclic.

Thus if G is not cyclic, its unique Sylow p1-subgroup is the only normal subgroup of G.

Definition 2.1.9. A group G is solvable if there is a chain of subgroups eG = G0, G1, G2, . . . , Gm =

G such that

eG = G0 E G1 E G2 E · · · E Gm = G

where for each 1 ≤ i ≤ m, Gi/Gi−1 is abelian.

2.1.4 Group Actions and Automorphisms

Let G,H be groups. A homomorphism from G to H is a structure preserving map, i.e. a map

φ : G → H where φ(ab) = φ(a)φ(b) for all a, b ∈ G. An automorphism of G is a bijective

homomorphism φ : G → G.
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Definition 2.1.10. The automorphism group Aut(G) of a finite group G is the set of all automor-

phisms of G.

The group operation in Aut(G) is composition of automorphisms. Denote by φid the identity

element of Aut(G) satisfying φid(g) = g for all g ∈ G. One prominent property of automorphisms

φ ∈ Aut(G) is that they map generators to generators.

Definition 2.1.11. Let G be a group and S be a set. We say G acts on S if there is a map

· : G× S → S such that

1. eG · s = s for all s ∈ S

2. (gh) · s = g · (h · s) for all g, h ∈ G, s ∈ S

If a group G acts on a set S, we call {g · s : g ∈ G} the orbit of s ∈ S under the group

action. The group Aut(G) acts on G, since the evaluation map ·v : Aut(G) × G → G defined by

φ·vg = φ(g) satisfies φid·vg = φid(g) = g for all g ∈ G and (φ1φ2)·vg = (φ1φ2)(g) = φ1(φ2(g)) =

φ1 ·v (φ2(g)) for all g ∈ G and all φ1, φ2 ∈ Aut(G). We will be interested in the action of Aut(G)

on sets of group elements; in particular, on the facets of the independence complex of G, which

we will discuss in detail in a later section.

2.1.5 Bounding sizes of independent generating sets

In our goal to describe independence complexes, we highlight a result in a slightly different

context aiming to bound the sizes of independent facets. In the case when G is a finite solvable

group, the authors in [12] provide an upper bound on the largest size m(G) of a minimal generating

set for the whole group G. This result is as follows. Let dp(G) be the minimal number of generators

of a Sylow p-subgroup of G, and let π(G) be the number of distinct primes which divide |G|. If

G is finite and nilpotent, then m(G) =
∑

p∈π(G) dp(G). Keith Dennis conjectured, in private

communication with Lucchini, that m(G) does not exceed this sum for any finite group. While

this conjecture does not hold for Sn for certain values of n (see [12] for a description), the authors

in this paper show that if G is a finite solvable group, then m(G) ≤
∑

p∈π(G) dp(G).
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Note that this result pertains to generation of the full group G. In the context of our work, to

determine the largest independent facet in the independence complex of G, we must also check

m(G′) for subgroups G′ of G.

2.1.6 Semidirect and Direct Products

A standard construction in group theory is the semidirect product, which gives a way to take

two abstract groups and form a new group. Let N and K be groups and let φ : K → Aut(N)

be a homomorphism. Define a group by the set of elements G := {(n, k) : n ∈ N, k ∈ K} and

a multiplication by (n1, k1)(n2, k2) = (n1φk1(n2), k1k2) where φk(n) = knk−1 for k ∈ K and

n ∈ N . In this case, N will be normal in G. This construction is called the semidirect product,

which we notate by G = N ⋊K.

Semidirect products can also be recognized by starting with two subgroups of a group G, one

of which is normal in G, and combining them to make a semidirect product.

Proposition 2.1.12. Let N,K be subgroups of a group G, such that

1. N E G

2. N ∩K = 1G

Let φ : K → Aut(N) be the homomorphism that maps k ∈ K to the automorphism of N which

conjugates n ∈ N on the left by k (i.e. φ = φk). Then NK ∼= N ⋊K

We say for subgroups H,K of a group G that K is a complement for H in G if G = HK

and H ∩ K = 1G. From Proposition 2.1.12, given a group G and subgroups H and K, if K is a

complement for H in G and H E G then G is the semidirect product H ⋊K.

Lemma 2.1.13. Let G1, G2 be groups. If N1 E G1 and N2 E G2, then N1 ×N2 E G1 ×G2.

Proof: Let (n1, n2) ∈ N1 × N2 and (g1, g2) ∈ G1 × G2. Observe (g1, g2)(n1, n2)(g1
−1, g2

−1) =

(g1n1g1
−1, g2n2g2

−1) ∈ N1 ×N2 since N1 E G1 and N2 E G2. Thus N1 ×N2 E G1 ×G2. �

A similar approach can be used to identifying direct products.
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Proposition 2.1.14. If a group G has normal subgroups K and H such that G = KH and K∩H =

idG then G ∼= K ×H , the direct product of K and H .

2.2 Simplicial Complexes

2.2.1 Simplicial complexes

Definition 2.2.1. An abstract simplicial complex ∆ on a finite set of vertices V = V (∆) is a

collection of subsets F ⊆ V (∆), called faces of ∆, such that if F ∈ ∆ and G ⊆ F , then G ∈ ∆.

For example, consider the simplicial complex in Figure 2.1 with vertex set

V = {a, b, c, d, e, f, g} and faces:

{a, b, c}, {a, b}, {a, c}, {b, c}, {a, d}, {b, e}, {c, f}, {d, e}, {d, f}, {e, f},

{a}, {b}, {c}, {d}, {e}, {f}, {g}, ∅

a c

b

d f

e

g

Figure 2.1: Non-pure simplicial complex

The dimension of a face F of a simplicial complex ∆ is defined as dimF := |F |−1, where |F |

denotes the number of vertices in F . The dimension of ∆ is defined to be dim∆ := max{dimF :

F ∈ ∆}. If dimF = k we say F is a k-face. For example, the triangular face {a, b, c} in Figure

2.1 consisting of three distinct vertices has dimension two and is called a 2-face. We call 1-faces

9



edges and 0-faces vertices. We say a face is a maximal face, or facet, of ∆ if it is not properly

contained in any other face of ∆. It is convenient to describe a simplicial complex only in terms of

its facets, as proper subsets of facets are implied to be in the complex by definition. The complex

in Figure 2.1 can thus be described by its shorter list of facets:

{a, b, c}, {a, d}, {b, e}, {c, f}, {d, e}, {d, f}, {e, f}, {g}

A simplicial complex ∆ is pure if all of its facets have the same dimension. The simplicial

complex in Figure 2.1 is not pure since it has edges and a 2-simplex which are facets. The boundary

of a tetrahedron (see Figure 2.2) is pure, since all of its facets

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}

are 2-simplices and thus have the same dimension.

a
b

c

d

Figure 2.2: The boundary of a tetrahedron is a pure simplicial complex.

Definition 2.2.2. A subcomplex B of a simplicial complex A is a simplicial complex with B ⊆ A.

In other words, every face of B is also a face of A.

Let ∆ and Γ be simplicial complexes.

Definition 2.2.3. The (k−1)-skeleton of a simplicial complex ∆ is the subcomplex of ∆ consisting

of all faces of dimension k − 1 or less (i.e. of size k or less).

Definition 2.2.4. A map f : V (∆) → V (Γ) is a simplicial map if for every simplex σ =

{v1, v2, . . . , vm} ∈ ∆, we have that f(σ) = {f(v1), f(v2), . . . , f(vm)} is a simplex of Γ.
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Definition 2.2.5. A simplicial map f : V (∆) → V (Γ) is a simplicial isomorphism if f is bijective

and its inverse f−1 : V (Γ) → V (∆) is a simplicial map.

The complexes ∆ and Γ are isomorphic if there is a simplicial map f : V (∆) → V (Γ).

Definition 2.2.6. A simplicial isomorphism f : V (∆) → V (∆) is called a simplicial automor-

phism.

If the vertices of ∆ are labeled, we denote by l(v) the label of a vertex v ∈ V (∆) and say

∆ is labeled. We say a simplicial automorphism f : V (∆) → V (∆) is label-preserving if

for every v ∈ V (∆), l(v) = l(f(v)). We say two labeled simplicial complexes ∆,Γ are label-

equivalent if ∆,Γ are isomorphic and there exists a label-preserving simplicial automorphism

f : V (∆) → V (Γ). In this case we write ∆ ∼l Γ.

2.2.2 Joins of simplicial complexes

New simplicial complexes can be constructed from existing ones by taking a union of all of the

respective faces, as follows.

Definition 2.2.7. Let K and L be simplicial complexes on vertex sets A,B, respectively. The join

of K and L, denoted K ∗L, is the simplicial complex on vertex set A∪B consisting of all simplices

of K and L together with the simplices {σ ∪ τ : σ ∈ K and τ ∈ L}.

For example, consider the following join of two simplicial complexes:

Example 2.2.8. Let K = {{a, b}, {a}, {b}, ∅} and L = {{c}, {d}, ∅} be simplicial complexes on

vertex sets A = {a, b} and B = {c, d}. Then the join of K and L is the 2-dimensional simplicial

complex shown in Figure 2.3 and having the form

K ∗ L = {{a, b, c}, {a, b, d}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b}, {a}, {b}, {c}, {d}, ∅}

If K, L have dimensions m and n, respectively, then K ∗ L has dimension m+ n+ 1. This is

because the largest simplex in K has size m + 1, the largest simplex in L has size n + 1, and the

largest simplex in the join has size m+ n+ 2. Thus the join has dimension m+ n+ 1. For more

information on joins, see [4].
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a b ∗

d

c

= a b

d

c

Figure 2.3

2.2.3 Face numbers and h-numbers

A natural and fundamental combinatorial invariant of a simplicial complex is known as its

f -vector, which lists the number of faces of each dimension in the complex. The f -vector of a

(d− 1)-dimensional simplicial complex ∆ is the integer vector

f(∆) = (f−1(∆), f0(∆), f1(∆), . . . , fd−1(∆))

where fi(∆) equals the number of faces of dimension i in ∆. We call the fi(∆) the face numbers

or f -numbers of ∆. By definition, f−1(∆) = 1 which corresponds to the empty face. Note that

f0(∆) is the number of vertices in ∆, f1(∆) is the number of edges in ∆, and f2(∆) is the number

of 2-simplices in ∆. The boundary of the tetrahedron in Figure 2.2 has f -vector (1, 4, 6, 4) since it

consists of four vertices, six edges, and four triangular faces. Likewise, the simplicial complex in

Figure 2.1 has f -vector (1, 7, 9, 1) since it consists of seven vertices, nine edges, and one triangular

face.

A common technique in geometric combinatorics is to work with a certain linear transforma-

tion of the f -numbers that gives rise to a number of elegant combinatorial relationships (see [4] for

additional details). This linear transformation gives rise to another family of combinatorial invari-

ants of a simplicial complex, known as its h-numbers. The h-numbers of a (d − 1)-dimensional

simplicial complex are defined by the relation

hj(∆) =

j
∑

i=0

(−1)j−i

(

d− i

j − i

)

fi−1(∆), (2.1)
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where 0 ≤ j ≤ d. The h-numbers are organized in a vector h(∆) = (h0(∆), h1(∆), . . . , hd(∆)),

which is called the h-vector of ∆. It can be shown that

fi−1(∆) =
i

∑

j=0

(

d− j

i− j

)

hj(∆),

for 0 ≤ i ≤ d. Thus the f -numbers can be determined by the h-numbers, so knowing the h-

numbers of a simplicial complex is equivalent to knowing its face numbers. In practice, computing

the h-numbers using Equation (2.1) directly can be tedious, so we present a shortcut introduced

by Stanley [16] that allows for quick computation of h-numbers given f -numbers. We present

Stanley’s shortcut only for h-vectors of 2-dimensional simplicial complexes, but the method can

easily be generalized for higher-dimensional simplicial complexes.

Given the f -vector f(∆) = (1, f0, f1, f2) of a simplicial complex ∆, we may compute its

h-vector in the following way:

1. Write a diagonal of 1’s on the left diagonal. On the right diagonal, starting directly after the

first entry at the top of the first diagonal, write f0, f1, f2.

2. Subtract each pair of entries on each line from right to left.

3. When all subtractions have been made, fill in one more 1 in the left-hand diagonal of 1’s.

This will become the first component of the h-vector. Subtract each of the remaining pairs

on the fourth row from right to left to obtain the remaining components of the h-vector.

1

1 f0
1 f0 − 1 f1

1 f0 − 2 f1 − f0 + 1 f2

h(∆) = (1, f0 − 3, f1 − 2f0 + 3, f2 − f1 + f0 − 1) (2.2)

The h-vector is computed easily from the f -vectors by either implementing this process or di-

rectly using the form of the h-vector in Equation (2.2). For example, in Figure 2.2 the boundary of
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the tetrahedron has f -vector (1, 4, 6, 4) so by Equation (2.2) its h-vector is (1, 1, 1, 1). The com-

ponents of an h-vector need not be nonnegative: the complex in Figure 2.1 has f -vector (1, 7, 9, 1)

and h-vector (1, 4,−2,−2).

2.2.4 Matroids

Matroids aim to generalize the notion of linear independence in vector spaces and indepen-

dence in graphs to other settings. For additional information about matroids beyond the examples

provided here, see Oxley [14] and [19].

Definition 2.2.9. A matroid M is an ordered pair (E, I) consisting of a finite set E, called the

ground set of M , and a collection I of subsets of E, called independent sets, satisfying the follow-

ing three conditions:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I , then I ′ ∈ I.

(I3) If I1, I2 ∈ I and |I1| < |I2|, then there exists an element e of I2 − I1 such that I1 ∪ {e} ∈ I.

Here |Ik| denotes the cardinality of Ik and I2 − I1 denotes the complement of I1 with respect to I2.

Condition (I2) is often called the hereditary property and condition (I3) the independence

augmentation property or exchange property. If M is a matroid (E, I), we say that M is a

matroid on E. Any subset of E that is not a member of I is said to be dependent. The termi-

nology “independent set" for matroids has an unfortunate overlap with those which we define for

independence complexes. Outside of our discussion of matroids, we return to our notion of an

independent set as stated in Definition 2.4.1.

Condition (I3) is analogous to the linear algebraic property that every linearly independent col-

lection of vectors can be extended to form a basis for a vector space. Motivated by this observation,

a facet of a matroid is called a basis. The rank of a matroid is defined to be the cardinality of a

basis in the matroid. Just as all bases for a vector space have the same dimension, all bases for a

matroid also have the same dimension, so matroid complexes are pure.
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A matroid can be thought of as a simplicial complex with additional structure imposed by

condition (I3). The next example illustrates this.

Example 2.2.10. Consider the simplicial complex whose faces are the empty set, the vertices

{x1},{x2},{x3},{x4},{x5}, every possible edge connecting those vertices except the edge {x4, x5},

and the triangular 2-faces {x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4}, {x1, x3, x5}, {x2, x3, x4}, and

{x2, x3, x5}. This collection forms the boundary of a bipyramid (see Figure 2.4).

x1 x2

x3

x4

x5

Figure 2.4: The boundary of a bipyramid

We can recognize this simplicial complex as a matroid as follows. Take the independent sets of

M to be all sets of vertices that form a face in the simplicial complex. Form a 3× 5 matrix

1 2 3 4 5

B =













0 0 0 1 1

1 0 1 0 0

0 1 1 0 0













such that every face in the simplicial complex corresponds to a collection of linearly independent

column vectors. Then the independent sets of M arise from B. Observe that the set of column

vectors {4, 5} and any of its supersets is linearly dependent, corresponding to the missing edge

{4, 5} and all 2-faces that would contain that edge if they were present. Additionally, the column

vectors whose labels are 1, 2 and 3 are pairwise linearly independent but collectively dependent,
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corresponding to the edges {1, 2}, {1, 3} and {2, 3} present in the simplicial complex and the

missing face {1, 2, 3}.

In the case of elementary abelian groups, which can be viewed as vector spaces over finite

fields, minimal generating sets correspond to linear algebraic bases for subspaces. This correspon-

dence does not hold for other groups, showing that independence complexes have a more intricate

structure that specializes to vector spaces in an easy case. One might ask whether independence

complexes are matroids. However, not every independent set of an independence complex can be

extended to form a larger independent set, so not every independence complex is a matroid. This

observation together with several GAP [6] and SageMath [18] calculations indicates that indepen-

dence complexes of finite groups have additional rich structure not found in matroids (for example,

the complexes need not be pure, meaning that not all maximal faces have the same dimension). In

this paper, our goal is to describe this rich structure in some restricted classes of groups.

2.2.5 Multipartite simplicial complexes and clutters

Definition 2.2.11. A simplicial complex ∆ on vertex set V (the ground set) is multipartite (or

n-partite) if its vertices can be partitioned into n sets V1 ⊔ V2 ⊔ · · · ⊔ Vn such that the vertices

contained in each facet of ∆ are from distinct vertex sets.

Understanding a simplicial complex’s maximal faces (or facets) is equivalent to understanding

the complex, as once one knows all maximal faces of a simplicial complex, all subsets of those

facets are also faces by definition. As such, often we restrict our attention to only the maximal

faces of a simplicial complex. In the literature, the resulting structure is called a clutter. See [2] for

example, in which the author views clutters from a context particularly relevant to our work.

Definition 2.2.12. A clutter is a pair (V,E) where V is a set of vertices (the ground set) and E is

a collection of subsets I ⊆ V called edges, such that for any I1, I2 ∈ E, we have I1 6⊆ I2.

A clutter (V,E) can be interpreted as the set of maximal faces E of a simplicial complex on

vertex set V . Clutters are also known as Sperner families or Sperner systems, and are a family of

simple hypergraphs [13].
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Definition 2.2.13. A clutter is k-uniform if all edges consist of exactly k vertices.

If a simplicial complex is pure and its facets have size k, its maximal faces form a k-uniform

clutter. An n-partite clutter is a generalization of a bipartite graph (which is a 2-partite, 2-uniform

clutter), and consists of the maximal faces of what we call a multipartite simplicial complex in this

paper. One can also define n-partite n-uniform clutters, as in [2]. We will study a class of multi-

partite non-uniform clutters (i.e. the edges of the clutter have differing sizes, or equivalently, the

simplicial complex is not pure). The language of multipartite simplicial complexes is more natural

for our context, so we will maintain this description while noting that clutters are in themselves a

topic of interest in the literature.

2.3 Combinatorics

2.3.1 Partitions

Definition 2.3.1. Let S be a finite set. A partition of S is a sequence S1, S2, . . . , Sm of nonempty

subsets of S, which we call blocks, such that ∪m
i=1Si = S and Si ∩ Sj = ∅ for every i 6= j.

Note that such a partition is ordered according to the choice of sequence. Throughout the paper

we will signify when we require a specific ordering of blocks.

2.3.2 Stirling numbers

Let St(l, k) be the number of ways to partition l objects into k nonempty unordered subsets.

These are the Stirling numbers of the second kind.

2.4 Independence Complexes

Independent sets and independence complexes

We now define independence complexes, which will be our main topic of study.

Definition 2.4.1. Let G be a finite group. An independent set of G is a set S of group elements

such that removing any element from S generates a smaller subgroup than that generated by S.
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In other words, S is independent if S ′ ⊂ S implies 〈S ′〉 ⊂ 〈S〉. Thus an independent set is a

minimal generating set for some subgroup of G. We will show the collection of all independent sets

of a finite group forms an abstract simplicial complex whose vertices are the non-identity elements

of the group. In this complex, a face of dimension d corresponds to an independent set of size

d + 1. For instance, an independent set {g1, g2, g3} of G of size three corresponds to a 2-simplex

(a filled in triangle). We call the resulting simplicial complex the independence complex of the

group, and denote this by In(G).

Lemma 2.4.2. The independence complex of a finite group is a finite simplicial complex.

Proof: Let F ∈ In(G), so that F is an independent set of G. Let H ⊂ F and suppose to the

contrary that H is not independent. Then there exists h1 ∈ H such that 〈H \ h1〉 = 〈H〉. Then

〈F \ h1〉 = 〈F 〉, since we have the following containments:

1. 〈F \ h1〉 ⊆ 〈F 〉 as any word in the elements of F not including h1 is still a word in F .

2. 〈F 〉 ⊆ 〈F \ h1〉 as if x ∈ 〈F 〉, then x can be written as a word in F . If this word does not

involve h1 we are done. If this word does involve h1, we may write h1 as a word in elements

of H not involving h1, since h1 ∈ H ⊆ 〈H〉 ⊆ 〈H \ h1〉. Thus x can be written as a word in

F not involving h1, so x ∈ 〈F \ h1〉.

Thus F is not independent, a contradiction. For finiteness, note there are finitely many elements in

G, and thus finitely many vertices of the simplicial complex. �

Note that the group identity eG is not in any independent set, as it could always be removed. In

particular, {eG} is not an independent set since 〈{eG}〉 = 〈∅〉 = {eG}, as 〈∅〉 is defined to be the

smallest group containing the empty set, so must contain the group identity.

Proposition 2.4.3. Aut(G) acts on the set of all facets of In(G).

Proof: Let M be the set of all facets (maximal independent sets) of In(G). We claim that

Aut(G) acts on M . Let m = {g1, g2, . . . , gk} be a maximal independent set of In(G). Let
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·v′ : Aut(G) × M → M be the evaluation map on maximal sets defined by φ ·v′ m = φ(m) =

{φ(g1), φ(g2), . . . , φ(gk)}. Since φ is an automorphism, it will map generators to generators, so

the image of the map φ·v′ is a maximal independent set, and thus in M . The remaining properties

of group actions are inherited since Aut(G) acts on G. Thus Aut(G) acts on M . �

We will be interested in describing the structure of the independence complexes of some par-

ticular finite groups. We will focus our attention first on cyclic groups.

Example 2.4.4. Consider the cyclic group G = C6
∼= C2 × C3 = 〈(1, 1)〉 of order 6 under

addition. Any nonidentity singleton element forms an independent set of size 1, so the independence

complex has exactly five vertices. Any independent set of size 2 cannot contain the elements (1,1)

or (1,2) as these generate the whole group. Independent sets of size two must have the form

{(⋆, 0), (0, ⋆)} where ⋆ represents a nonzero element in its respective component. So there are

(p1 − 1)(p2 − 1) = 1 · 2 = 2 independent sets of size 2, where p1 and p2 are the prime group

orders 2 and 3, respectively. Thus there are two edges in the independence complex. There are

no independent sets of size three, as any two independent elements must form an independent

set of the form {(⋆, 0), (0, ⋆)}, which already generates G. The independence complex of C6 is

1-dimensional and is shown in Figure 2.5.

(0, 2)

(1, 0)
(0, 1)

(1, 1)

(1, 2)

Figure 2.5: Independence complex of C6

Theorem 2.4.5. If G is a group with subgroup H ≤ G, then In(H) ⊆ In(G).

Proof: Let H be a subgroup of G. We show that every independent set of H is also an independent

set of G. Since independents sets of a group are faces of its independence complex, it will follow
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that every face of In(H) is also a face of In(G). Let I be an independent set of H . Then I is a set

of elements of H (and thus of G) that generates a subgroup K of H (and thus a subgroup of G).

Let g be any element of I . Then I \{g} is a proper subgroup of K, since I generates K minimally.

So I is an independent set of G. Thus In(H) ⊆ In(G). �

Figure 2.6 illustrates that subgroup inclusion for independence complexes is not facet-preserving.

(In general inclusion doesn’t preserve top-dimensional objects, so this is not surprising behavior.)

p1 p2

p1p2

−֒−−−−→

p1 p2

p3

p2p3 p1p3

p1p2

p1p2p3

Figure 2.6: Inclusion is not facet-preserving. Here, elements of the same order are represented by single

vertices; see later discussion of order independence complexes

Example 2.4.6. Let H = C2 × C3 and G = C2 × C3 × C5. Then H ≤ G and In(H) ⊆ In(G).

However, the image of each facet of In(H) under the inclusion mapping In(H) −֒→ In(G) is no

longer a facet. See Figure 2.6, which is built from Examples 2.4.13 and 2.4.15.

2.4.1 Frattini subgroups

Example 2.4.7. The independence complex for C3×C4 is shown in Figure 2.7. The elements (0, 1)

and (0, 3), which have order 4, can be paired with the elements (1, 0) and (2, 0), which have order

3, or with the elements (1, 2) and (2, 2), which have order 6. These pairings generate C3 × C4.

The element (0, 2), which has order 2, can be paired with (1, 0) and (2, 0), each of which have

order 3. However (0, 2) cannot be paired with either elements of order 3 or order 6, as the second

component of those elements makes the second component of (0, 2) unnecessary. In Figure 2.7,
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group elements (represented by vertices) are arranged and labeled according to their order, and

sets of edges are labeled with the subgroup generated by their boundary vertices.

(1, 2)

(2, 2)

(0, 1)

(0, 3)

(1, 0)

(2, 0)

(0, 2)

C3 × C2

C3 × C4

C3 × C4

p22 = 4

p1p2 = 6

p1 = 3

p2 = 2

Figure 2.7: In((C3 × C4)

This example exhibits the phenomenon that some elements cannot be paired independently

with others to generate the entire group. Namely, the element (0, 2) does not appear as a vertex of

any edge that generates C3 × C4. The element (0, 2) is called a Frattini element in C3 × C4, and

showcases the behavior of such elements in independence complexes. Recall that a subgroup M

of G is maximal if there does not exist a subgroup K of G with M ⊂ K ⊂ G.

Definition 2.4.8. Let G be a finite group. The Frattini subgroup of G, denoted Φ(G), is the

intersection of all maximal subgroups of G.

A standard group theory argument shows that Frattini elements of a group G will always be

redundant in any generating set for G.

Lemma 2.4.9. Let G be a finite group. If an independent set I generates G, then I contains no

Frattini element.
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Proof: Let g ∈ Φ(G) and a1, a2, . . . , am ∈ G. Suppose 〈{g, a1, a2, . . . , am}〉 = G with I =

{g, a1, a2, . . . , am} an independent set. Since I is independent, 〈{a1, a2, . . . , am}〉 is a proper

subgroup of G, and thus lies in some maximal subgroup M of G. But g is in every maximal

subgroup of G since it is a Frattini element, so in particular g ∈ M . Thus 〈{g, a1, a2, . . . , am}〉 ⊆

M . Hence I cannot generate G, so I must not have contained a Frattini element of G. �

Example 2.4.10. The maximal subgroups of the group G = C3 × C4 are H1
∼= C3 × C2 and

H2
∼= C4. The intersection H1 ∩H2 is the Frattini subgroup

Φ(G) = {(0, 0), (0, 2), (1, 0), (1, 2), (2, 0), (2, 2)} ∩ {(0, 0), (0, 1), (0, 2), (0, 3)}

= {(0, 0), (0, 2)}

Example 2.4.11. The group G = C3×Q8 (where Q8 is the quaternion group of order 8) has three

maximal subgroups isomorphic to C3×C4, namely 〈(1, 1), (0, i)〉, 〈(1, 1), (0, j)〉, and 〈(1, 1), (0, k)〉

and one maximal subgroup isomorphic to Q8, namely 〈(0, i), (0, j)〉. The intersection of all these

subgroups is a subgroup isomorphic to C2, namely Φ(G) = {(0, 1), (0,−1)}.

The existence of Frattini elements in a group adds additional structure to its independence com-

plex, as Frattini elements will only occur as vertices of facets that generate proper subgroups, and

never the full group. Independent faces that contain a Frattini element and thus cannot be extended

to an independent set that generates the whole group are one obstruction to the independence com-

plex being a matroid. This is not the only obstruction, however: as shown later in Example 2.4.15,

the independence complex of Cp1 × Cp2 × Cp3 for distinct primes p1, p2, p3 is not a matroid since

the simplicial complex is not pure, and in this case the Frattini subgroup is trivial. Independence

complexes of finite groups will not be pure except in a small number of cases, because minimal

generating sets of groups (and their subgroups) are in general not all the same size.
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2.4.2 Order independence complexes

The independence complex for C3×C4 from Figure 2.7 suggests a way to describe the complex

more succinctly by grouping elements of the same order together. For instance, in this example the

element (0, 1), which has order 4, could be paired with either (1, 0) or (2, 0), both of which have

order 3, to form an independent facet. For cyclic groups, recording only connections between sets

of elements according to their order gives sufficient information about the independence complex,

since elements of the same order behave in the same way in the independence complex. Motivated

by this observation, we form a new simplicial complex that records only the orders of group el-

ements, collapsing group elements of the same order into an equivalence class represented by a

single vertex. We will call this new simplicial complex the order independence complex of G.

Definition 2.4.12. The order independence complex of a group G, denoted Oinc(G), is the com-

plex whose vertices are equivalence classes of elements of G according to element order and whose

faces are collections of these vertices corresponding to the independent sets of the independence

complex.

Example 2.4.13. Let p1 = 2 and p2 = 3. The order independence complex for C2 × C3 is shown

in Figure 2.8. This is also the order independence complex of Cp1 × Cp2 for any distinct primes

p1, p2.

p1 p2

p1p2

Figure 2.8: Order independence complex for C2 × C3

Example 2.4.14. The order independence complex of C3×C4 is shown in Figure 2.9. Each vertex

label represents the order of the elements in its equivalence class. Each edge label represents the

subgroup generated by that edge’s boundary vertices.
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p1p2 = 6

p22 = 4

p1 = 3

p2 = 2

C3 × C2

C3 × C4

C3 × C4

Figure 2.9: Oinc(C3 × C4)

The benefit of studying the order independence complex is that it has significantly fewer faces

than the independence complex, yet still encodes informative information about independent sets.

The face numbers of an independence complex can get very large when working with groups of

larger orders, so working with a smaller object with fewer faces is preferable. The order indepen-

dence complex is a natural object to study when working with cyclic groups and groups of the

form Ck1
p1

× Ck2
p2

× · · · × Ckn
pn where the pi are distinct primes. However, for more general finite

abelian groups Ck1
p1

× Ck2
p2

× · · · × Ckn
pn with nondistinct pi for example, the order independence is

not a natural construction. To see this, consider the independence complex for C2 × C4, shown in

Figures 2.10 and 2.11. Here the primes p1 = p2 = 2 are not distinct. Imposing the structure of the

order independence complex would place the elements (0, 1) and (1, 2) in the same equivalence

class, since both have order p1p2 = p22 = 4. However these elements have very different behavior

in the independence complex: (1, 2) appears in an independent set with the Frattini element (0, 2),

but no independent set containing (0, 1) has a Frattini element. Thus, for nondistinct primes pi in

Ck1
p1
×Ck2

p2
×· · ·×Ckn

pn , the order independence complex removes too much information to usefully

condense the independence complex.
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(1, 1)

(1, 3)

(0, 1)

(0, 3)

(1, 0)

(1, 2)

(0, 2)

C2 × C2

C2 × C4

C2 × C4

C2 × C4

Figure 2.10: In(C2 × C4)

(1, 1)

(1, 3)

(0, 1)

(0, 3)

(1, 0)

(1, 2)

(0, 2)

C2 × C2

C2 × C4

C2 × C4

C2 × C4

(1, p22)

(p1, p
2
2)

(p1, p2)

(p1, 1)

(1, p2)

Figure 2.11: The order independence complex is not a natural construction for In(C2 × C4)

Example 2.4.15. Let G = Cp1 × Cp2 × Cp3 where p1, p2, p3 are distinct primes. The order inde-

pendence complex of G is shown in Figures 2.12 and 2.13 with two different labellings. In the first

diagram, vertices are labeled according to element order. There is exactly one independent set of
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size 3, namely {p1, p2, p3}. There are six maximal independent sets of size 2 (edges), namely

{p1, p2p3}, {p2, p1p3}, {p3, p1p2}

{p1p2, p1p3}, {p1p2, p2p3}, {p1p3, p2p3}

There is one isolated vertex {p1p2p3}. The second diagram uses star notation as in the earlier

discussion in Example 2.4.4.

p1 p2

p3

p2p3 p1p3

p1p2

p1p2p3

Figure 2.12: Order independence complex using order notation

(⋆, 0, 0) (0, ⋆, 0)

(0, 0, ⋆)

(0, ⋆, ⋆) (⋆, 0, ⋆)

(⋆, ⋆, 0)

(⋆, ⋆, ⋆)

Figure 2.13: Order independence complex using star notation
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Chapter 3

Cyclic and Finite Abelian Results (Coprime)

We will describe a constructive algorithm that lists all of the maximal independent sets in the

order independence complex of the cyclic group H = Cp1p2···pn
∼= Cp1 ×Cp2 ×· · ·×Cpn where the

pi are distinct primes. We then enumerate the number of faces of the corresponding independence

complex. After this, we provide a more general constructive algorithm to compute all facets of

the order independence complex of Cp1k1 × Cp2k2 × · · · × Cpnkn for distinct primes pi. We then

enumerate the number of independent sets in this order independence complex. We begin with a

necessary and sufficient condition for a set of elements to be an independent set of H by introducing

the notion of unique selling points.

3.1 Unique Selling Points

Let (a1, a2, . . . , an) ∈ H. If ai is nonzero for some 1 ≤ i ≤ n, then 〈ai〉 = Cpi since the order

of ai is pi in Cpi .

For example, if G ∼= C2 × C3 × C5, then the collection of tuples

{(⋆, 0, 0), (⋆, 0, ⋆), (0, 0, ⋆)} (3.1)

(where the ⋆ in the ith component of a tuple represents a nonzero element of the group Cpi) gen-

erates the subgroup C2 × C5 of G. However, the collection (3.1) is not an independent set, for a

tuple (in fact, any tuple in this example) can be removed and the remaining tuples still generate the

same subgroup. In contrast, the collection

{(⋆, ⋆, 0), (⋆, 0, ⋆)} (3.2)
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generates G and is an independent set, since 〈(⋆, ⋆, 0)〉 = C2 × C3 and 〈(⋆, 0, ⋆)〉 = C2 × C5,

both of which are proper subgroups of G. The following observation leads us to a more general

description of independence in sets of elements of H. Let t1 = (⋆, ⋆, 0) and t2 = (⋆, 0, ⋆). There

is a nonzero entry in the second component of t1, and the second entry of t2 is zero. Likewise, the

third entry of t2 is nonzero and the third entry of t1 is zero. In essence, the set (3.2) is independent

because each tuple has a component entry which makes that tuple necessary. This brings us to the

following definition.

Definition 3.1.1. Let I be a set of k tuples t1, t2, . . . , tk of Cp1 × Cp2 × · · · × Cpn . Denote

each of these tuples by ti = (a(i, 1), a(i, 2), . . . , a(i, n)) where a(i, j) ∈ Cpj , 1 ≤ i ≤ k, and

1 ≤ j ≤ n. Suppose a(i, j) is a nonzero entry of ti and that all other tuples tm ∈ I with m 6= i

have a(m, j) = 0. Then we say ti has a unique selling point a(i, j), or that a(i, j) is a unique

selling point in the set {t1, t2, . . . , tk}.

Lemma 3.1.2. Let I be a set of tuples of H. Then I is an independent set if and only if every tuple

of I has a unique selling point.

Proof: Let I be a set of tuples {t1, t2, . . . , tk} such that for each 1 ≤ i ≤ k, ti has a unique

selling point a(i, j) for some 1 ≤ j ≤ n. Each unique selling point a(i, j) generates a copy of Cpj .

Since a(i, j) is a unique selling point, a(m, j) = 0 for all m 6= i, so none of the elements in the jth

projection of I \ {ti} generate Cpj . Thus 〈I \ {ti}〉 ⊂ 〈I〉 for all 1 ≤ i ≤ k, so I is independent.

Conversely, let I = {t1, t2, . . . , tk} be an independent set. Suppose to the contrary that there

exists some 1 ≤ m ≤ k for which tm ∈ I has no unique selling point. Then for each 1 ≤ j ≤ n

for which the entry a(m, j) of tm is nonzero, there is a tuple ts = (a(s, 1), a(s, 2), . . . , a(s, n))

of I with s 6= m for which a(s, j) is nonzero and generates Cpj (otherwise, removing tm would

decrease generation in the jth component and a(m, j) would be a unique selling point). Thus

〈I〉 = 〈I \ {tm}〉, so I is not independent, a contradiction. Therefore every tuple of I has a unique

selling point. �

28



For example, in (3.2) the unique selling point of t1 is a(1, 2) and the unique selling point of t2

is a(2, 3). Since each tuple has a unique selling point, this is an independent set. Observe that an

element of an independent set may have more than one unique selling point. For example, in the

independent set

{(⋆, 0, 0), (0, ⋆, ⋆)}

where t1 = (⋆, 0, 0) and t2 = (0, ⋆, ⋆), both a(2, 2) and a(2, 3) are unique selling points.

3.2 Oinc(Cp1 × Cp2 × · · ·Cpn) for distinct primes pi

We now construct the order independence complex for cyclic groups whose order is a product

of distinct primes and compute the f -vector of the associated independence complex. The reader

has the luxury of skipping the construction leading up to and the proof of Theorem 3.2.1, as these

results are constructed and proved more generally in Algorithm 3.3.4 and in the proof of Theorem

3.3.5, which gives a constructive algorithm for Oinc(Cp1k1 ×Cp2k2 × · · ·×Cpnkn ) where the pi are

distinct primes. We include the content surrounding Theorem 3.2.1 as it provides a different, but

equivalent, combinatorial method of building independent sets.

Fix n and let H = Cp1 × Cp2 × · · ·Cpn for distinct primes pi and p1 < p2 < · · · < pn. For

fixed 1 ≤ k ≤ n, we will list all facets of size k in the order independence complex of H. Choose

k ≤ l ≤ n of the n primes, say pi1 , pi2 , . . . , pil . There are
(

n
l

)

ways to do this. Partition these l

primes into k sets. There are St(l, k) ways to do this. For each of these sets, form the product of

its elements where the primes in each product are listed in increasing order. Call the set of these

products A. Place these products into the entries of an ordered k-tuple ~w such that the smallest

prime in each entry is larger than the smallest prime in each of the entries to its left. For a set A

of nonempty products of squarefree primes (meaning that the product does not equal 1), we will

denote the corresponding k-tuple ordered in this way by Ord(A). Once the l primes have been

chosen, n− l primes remain, say R = {pj1 , pj2 , . . . , pjn−l
}.

Choose a vector

~c = (c1, c2, . . . , cn−l) ∈ {2, . . . , k}n−l

29



Choose a vector ~v~c of length k whose entries are squarefree (possibly empty, in which case fill

the entry with the value 1) products of primes in R, such that prime pjm appears in exactly cm of

the products. For fixed ~c, there are
∏n−l

m=1

(

k
cm

)

choices for ~v~c (since there are
(

k
cm

)

ways to put pjm

into cm of the k entries of ~v~c). Define an operator Unord which places the entries of a finite-length

tuple into an (unordered) set. We will show that the maximal independent sets of size k are

{Unord(~w ◦ ~v~c)}~c∈{2,...,k}n−l

where ◦ is the Hadamard (component-wise) product on vectors. Summing over all choices of ~c, we

then obtain a count for the number of maximal independent sets of size k, as stated in the following

theorem.

Theorem 3.2.1. Let H = Cp1 × Cp2 × · · ·Cpn for distinct primes pi with p1 < p2 < · · · < pn. Fix

1 ≤ k ≤ n. Then the maximal independent sets of size k in the order independence complex of H

are given by

{Unord(~w ◦ ~v~c)}~c∈{2,...,k}n−l

There are exactly
n

∑

l=k

(

n

l

)

St(l, k)
∑

~c∈{2,...,k}n−l

n−l
∏

m=1

(

k

cm

)

such independent sets.

Proof: We will show that the sets

{Unord(~w ◦ ~v~c)}~c∈{2,...,k}n−l

are in bijection with the collection of all maximal independent sets of size k of the order indepen-

dence complex of H.

(⇐) We show first that every maximal independent set of size k of the order independence com-

plex of G can be realized as the set Unord(~w ◦ ~v~c) for some choice of ~w, ~c, and ~v~c. Let I

be a maximal independent set of size k of the order independence complex of H, and write
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Ord(I) = (f1(p1, . . . , pn), . . . , fk(p1, . . . , pn)) where for each i, fi = p1
a1p2

a2 · · · pn
an for some

a1, . . . , an ∈ {0, 1}. Let U ⊆ {p1, . . . , pn} be the set of all unique selling points of I . Define a

map

L : {ordered tuples coming from indep sets of size k of Oinc(G)}

→ {ordered tuples of nonempty squarefree products of primes pi ∈ U}

L(Ord(I)) = L((f1(p1, . . . , pn), . . . , fk(p1, . . . , pn)))

= (f1(S(p1), . . . , S(pn)), . . . , fk(S(p1), . . . , S(pn)))

where

S(pi) = pi if pi ∈ U

= 1 if pi /∈ U

Let ~w = L(Ord(I)). We now describe ~v~c. Define a map

L2 : { ordered tuples coming from independent sets of size k of Oinc(G)} →

{ ordered tuples of (possibly empty) squarefree products of primes pi /∈ U}

L2(Ord(I)) = L2((f1(p1, . . . , pn), . . . , fk(p1, . . . , pn)))

= (f1(S2(p1), . . . , S2(pn)), . . . , fk(S2(p1), . . . , S2(pn)))
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where S2 : {p1, . . . , pn} → {p1, . . . , pn, 1} and

S2(pi) = pi if pi /∈ U

= 1 if pi ∈ U

Let ~v~c = L2(Ord(I)). Relabel the primes not in U in increasing order with labels pj1 < · · · <

pjn−l
. Let ~c = (c1, . . . , cn−l) be the vector of length n − #U = n − l such that cm is the

number of products in which prime pjm appears in L2(Ord(I)). Then I can be recognized as

Unord(L(Ord(I)) ◦ L2(Ord(I))).

(⇒) We now show that every set of the form Unord(~w ◦ ~v~c) for some ~w, some ~c, and some ~v~c is a

maximal independent set of size k of the order independence complex of H. To do this, we must

show three things:

(a) The entries of the set

Unord(~w ◦ ~v~c)

are nonempty (i.e. not equal to 1) squarefree products of primes among p1, . . . , pn

(b) For all choices of ~w, ~c, and ~v~c, every element of Unord(~w ◦~v~c) has a unique selling point (so

that by Lemma 3.1.2, removing an element results in generation of a smaller subgroup).

(c) Unord(~w ◦ ~v~c) is a facet of size k

We prove these claims as follows.

(a) Consider, for some choice of ~w,~c, and ~v~c, the set Unord(~w ◦ ~v~c). Since the vector ~w was

formed by partitioning l ≥ k primes into k nonempty sets, the entries of ~w are nonempty

squarefree products of primes in U (in particular, no entry of ~w is 1). Thus the Hadamard

product ~w ◦ ~v~c does not have any entries equal to 1 (even though ~v~c could have entries equal

to 1 (for example, take n = 5, k = 3,Ord(I) = (p1p2p5, p3p5, p4),~c = (2), ~v~c = (p5, p5, 1)).
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Since the set of primes from U occurring in ~w is disjoint from the set of primes occuring in

~v~c, and the entries of ~w and ~v~c are each squarefree, their Hadamard product ~w ◦ ~v~c consists

of squarefree products of primes.

(b) We now show that every element of Unord(~w ◦ ~v~c) has a unique selling point. Since every

entry of ~w is a product of unique selling points, and the set of primes in ~v~c are disjoint from

the set of primes in ~w, we know that every prime that was a unique selling point in Unord(~w)

stays a unique selling point in Unord(~w ◦ ~v~c).

(c) An independent set in the order independence complex of G will be maximal if every prime

among p1, . . . , pn appears at least once (otherwise the independent set could be extended by

an element involving one of the missing primes). All l primes in U occur in ~w, and each

remaining prime occurs at least twice in ~v~c since ~c = (c1, . . . , cm) ∈ {2, . . . , k}n−l. Thus

every prime among p1, . . . , pn appears at least once in ~w ◦ ~v~c, so Unord(~w ◦ ~v~c) is a facet of

size k.

�

Example 3.2.2. Let n = 6, k = 3 and l = 4. One choice for ~w is (p1p2, p3, p5). We have

R = {p4, p6} and so j1 = 4 and j2 = 6. We have n − l = 2 so ~c = (c1, c2) is of length 2, and the

possible choices for ~c are (2, 2), (2, 3), and (3, 3). The resulting vectors ~v~c are given by:

If ~c = (2, 3), then ~v~c is one of the following: (p4p6, p4p6, p6),(p4p6, p6, p4p6),(p6, p4p6, p4p6)

If ~c = (3, 3), then ~v~c is (p4p6, p4p6, p4p6)

If ~c = (2, 2), then ~v~c is one of the following:

(p4p6, p4p6, 1),(p4p6, p6, p4),(p6, p4p6, p4)

(p4p6, p4, p6),(p4p6, 1, p4p6),(p6, p4, p4p6)

(p4, p4p6, p6),(p4, p6, p4p6),(1, p4p6, p4p6)
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Note that for ~c = (2, 2) there are
(

3
2

)(

3
2

)

= 9 vectors ~v~c

For ~c = (2, 3) there are
(

3
2

)(

3
3

)

= 3 vectors ~v~c

For ~c = (3, 3) there is
(

3
3

)(

3
3

)

= 1 vector ~v~c

The corresponding independent sets are

For ~c = (2, 3): {p1p2p4p6, p3p4p6, p5p6},{p1p2p4p6, p3p6, p4p5p6},{p1p2p6, p3p4p6, p5p4p6}

For ~c = (3, 3): {p1p2p4p6, p3p4p6, p4p5p6}

For ~c = (2, 2):

{p1p2p4p6, p3p4p6, p5},{p1p2p4p6, p3p6, p4p5},{p1p2p6, p3p4p6, p4p5}

{p1p2p4p6, p3p4, p5p6},{p1p2p4p6, p3, p4p5p6},{p1p2p6, p3p4, p4p5p6}

{p1p2p4, p3p4p6, p5p6},{p1p2p4, p3p6, p4p5p6},{p1p2, p3p4p6, p4p5p6}

Figure 3.1 shows the independence complex for C2 × C3 × C4 generated using GAP and

Polymake. We discuss this code in detail in Section 4. Figure 3.2 shows a paper model of the

order independence complex of Cp1 × Cp2 × Cp3 × Cp4 where p1, p2, p3, p4 are distinct primes.

Some maximal 2-faces and edges have been omitted to better show the internal structure of the

complex. A 3D-printed version of this complex is shown in Figure 3.3 (note that an isolated vertex

is omitted). Many thanks to Graham Harper for generously designing and printing this model.

Figure 3.1: Independence Complex for C2 × C3 × C4
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Figure 3.2: Paper model of Oinc(Cp1 × Cp2 × Cp3 × Cp4)

Figure 3.3: 3D-printed Oinc(Cp1 × Cp2 × Cp3 × Cp4) model, designed and printed by Graham Harper

We now enumerate the faces in each dimension of the independence complex of H, using the

construction of the order independence complex.

Theorem 3.2.3 (Cyclic Group Enumeration). For fixed n, the number of faces of size k of the

independence complex of H = Cp1 × Cp2 × · · · × Cpn where the pi are distinct primes is given by
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n
∑

m=k

∑

S⊆[n]
|S|=m

St(m, k)
∏

i∈S

Ai

∏

j /∈S

(

1 +

(

k

2

)

A2
j + · · ·+

(

k

k

)

Ak
j

)

where Ai = pi − 1 and St(m, k) is the number of ways to partition an m-element set into k

parts.

The proof of Theorem 3.2.3 follows the construction of the order independence complex given

in the text surrounding Theorem 3.2.1, but takes into account the values of the pi and counts

faces rather than only facets. In proving this counting result, we walk through the aforementioned

construction and indicate what changes in this setting.

Proof: Let Ik be an independent set of size k of G. Define Ai := pi − 1, the number of choices

for nonzero elements of Cpi . We describe all the possible forms of Ik, thus giving a count for the

number of sets Ik for a fixed value of k. Since Ik is independent, every element of Ik has at least

one unique selling point. Let S be the set of all unique selling points. There are at minimum k

unique selling points (as each element of Ik has a unique selling point) and at maximum n unique

selling points (as there are only n primes). Partition the m unique selling points into k blocks.

There are St(m, k) ways to do this. Each choice of S contributes
∏

Ai where i ∈ S to the count.

The tuple entries that are outside of S, i.e. those that appear in at least two blocks (and at most k

blocks), must be accounted for. There are
(

k
l

)

ways that a non-unique variable Aj := pj − 1 could

appear in l blocks (where 0 ≤ l ≤ k), and when this occurs that variable contributes Aj
l to the

overall count. Summing over all choices of S of m unique selling points where k ≤ m ≤ n, we

obtain the desired enumeration. Since we allow for Aj to appear in 0 blocks, we obtain a count of

faces, rather than facets, of the independence complex. �

The counting techniques used in this proof generalize combinatorial techniques of Hearne and

Wagner [8] and Clarke [3].

Note that according to the formula in Theorem 3.2.3, the independence complex of C210
∼=

C2 × C3 × C5 × C7 has f -vector (1, 209, 6232, 4988, 48). We can determine the f -vector of the

order independence complex for C210 by studying the order independence complex for Oinc(Cp1×
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Cp2×Cp3×Cp4); a paper model is shown in Figure 3.2. The order independence complex has as its

facets one empty set, 15 vertices, 22 edges, 22 filled-in triangles, and one 3-simplex. Note that the

model in Figure 3.2 omits some two-dimensional faces so one can view its internal face structure.

Adding to these counts all faces that are not facets, we obtain the f -vector (1, 15, 52, 26, 1). This

reduction in the number of faces motivates studying the order independence complex, as, having

fewer faces, it is easier to work with.

If the cyclic group order is p1
k1p2

k2 · · · pn
kn for distinct primes pi and values of ki other than

1, enumeration becomes significantly more difficult. We provide a complete characterization for

this case in the next section. In the more general case of finite abelian groups, which have the form

Cp1k1 ×Cp2k2 ×· · ·×Cpnkn where the primes pi are not necessarily distinct, enumeration becomes

even more complicated. Enumerating the faces of independence complexes for all finite abelian

groups is outside of the scope of this paper.

3.3 Oinc(Cp1
k1 × Cp2

k2 × · · · × Cpnkn
) for distinct primes pi

The following is a constructive algorithm to compute the facets of size k of the order inde-

pendence complex of J = Cp1k1 × Cp2k2 × · · · × Cpnkn where the pi are distinct primes with

p1 < p2 < · · · < pn.

Definition 3.3.1. In the group J , we say a group element a of order pr dominates an element b of

order pt if r > t.

In the context of order independence complexes, such an element order pr dominates the el-

ement order pt. In the group Cp1k1 × Cp2k2 × · · · × Cpnkn , if a dominates b, then the subgroup

〈a〉 ∼= Cpr contains as a subgroup an isomorphic copy of 〈b〉 ∼= Cpt . For example, in C3 × C4, the

element a of order 2 is dominated by any element of order 4, and the latter generates a subgroup

isomorphic to C4, which contains the subgroup 〈a〉 ∼= C2. We say an independent set B is an

extension of an independent set A, or that A can be extended to B, if A ⊂ B.

We define a specific ordering on the sequence S1, S2, . . . , Sm of partition blocks in Definition

2.3.1 which will come into play in Algorithm 3.3.4.
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Definition 3.3.2. Let S be any finite set {pi
ai : pi is prime, ai ≤ ki is a non-negative integer} of

(not necessarily distinct) powers of primes pi, and let S1, S2, . . . , Sm be a partition of S. Define an

ordering ≺1 on the blocks S1, S2, . . . , Sm and an ordering ≺2 on the sets in each block as follows.

1. Within each block Sr, order the prime powers so that

(a) If pi < pj , then pi
ai ≺2 pj

aj .

(b) If pi = pj and ai < aj , then pi
ai ≺2 pj

aj .

2. For each 1 ≤ r ≤ m, define minp(Sr) to be the smallest prime base pi occurring in the

subset Sr. Then

(a) If minp(Sr) < minp(St) then Sr ≺1 St.

(b) If pi = minp(Sr) = minp(St) = pj and ai < aj where ai, aj are the exponents on pi, pj

respectively, then Sr ≺1 St.

Recall that J = Cp1k1 × Cp2k2 × · · · × Cpnkn where the pi are distinct primes with

p1 < p2 < · · · < pn.

Lemma 3.3.3. Let T be the tuple whose entries are the elements of an independent facet of size k

of the order independence complex of J . Order the entries in this tuple according to the orders ≺1

and ≺2 in Definition 3.3.2. Then for each of the k slots of T , there is at most one i for which that

slot contains pi
li when li < ki. Furthermore, any slot containing pi

li with li < ki does not also

contain any pj
lj with lj = kj where i 6= j.

Proof: If some slot of I contains both pi
li and pj

lj with i 6= j, li < ki, and lj < kj , then no

matter what other elements that slot contains, I could be extended by a (k + 1)st
slot {ptii } where

li < ti < ki, implying that I is not a facet. Likewise, if any slot contains both pi
li with li < ki and

pj
lj with lj = kj for i 6= j, then I can also be extended by {ptii } where li < ti < ki, implying that

I is not a facet. �
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Algorithm 3.3.4. We compute the facets of size k for 1 ≤ k ≤ n of the order independence

complex of J = Cp1k1 × Cp2k2 × · · · × Cpnkn , for pi distinct primes with p1 < p2 < · · · < pn.

1. Choose an ordered n-tuple L = (l1, l2, . . . , ln) ∈ [k1]× [k2]× · · · × [kn] such that

(a) li < ki for all i only if k = n

(b) If lj = kj for at least one j, then 0 ≤ m ≤ k where m is the number of entries li with

li < ki.

The tuple L will be the exponent vector encoding the highest prime powers that appear in an

independent set. Let N = {pi
li : li < ki}. Let D = {pi

di : di < li}.

2. Choose a subset U ⊆ {plii : li = ki} such that

(a) If m = k then U = ∅

(b) If 0 ≤ m < k then k ≤ |U|+m ≤ n

3. Partition the elements of N ⊔ U into k blocks as follows. Place each element of N into a

block of its own. Partition the entries of U into the remaining k − m blocks. If necessary,

reorder the k blocks according to the partition ordering described in Definition 3.3.2. Label

these ordered blocks by 1, 2, . . . , k in increasing order from left to right. Let λ be the chosen

partition λ1, λ2, . . . , λk−m of the elements of U after reordering.

4. Let U c = {pj
lj : lj = kj and pj

lj /∈ U}. For each j with pj
lj ∈ U c, choose a subset Aj ⊆ [k]

with |Aj| ≥ 2. Insert pj
lj into the blocks whose labels are the elements of Aj . The products

of the entries in each of the resulting k blocks yield the orders of elements of an independent

set.

5. For each positive integer di < li and for each 1 ≤ i ≤ n, choose a nonempty subset

Bdi ⊆ [k] corresponding to any subset of blocks from Step 4 that do not contain a power

of pi. Insert pi
di into the blocks whose labels are the elements of Bdi . The products of the

entries of each of the resulting k blocks yield the orders of elements of an independent set.
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Theorem 3.3.5. The sets arising from Algorithm 3.3.4 in Steps 4 and 5 are in bijection with the

facets of size 1 ≤ k ≤ n of the order independence complex of J .

Proof: We first show that every set A arising from Algorithm 3.3.4 is an independent facet of

oinc(J ).

Claim: The set A is independent.

To show that A is independent, we show that removing an element a from A results in the gener-

ation of a smaller subgroup. Every element of A has, in particular, either an element of N or an

element of U (and does not contain elements from both). If a has an element of N , then removing

a removes some power pi
li with li < ki, resulting in the generation of a smaller subgroup since

A \ {a} contains no element of order pi
li or any of its higher powers. If a has instead an element

of U , then removing a removes some power pi
ki , resulting in the generation of a smaller subgroup

since pi
ki does not appear in any other element of A. Other prime powers occurring in a are either

elements of U c (and thus appear in another slot of A) or elements pi
di of D (each of which is dom-

inated by pi
li , which appears in another slot of A). In either case, these elements do not contribute

to any new generation. Thus 〈A \ {a}〉 is a proper subgroup of A, so A is independent.

Claim: The set A is a facet.

Let A be a set arising from Algorithm 3.3.4. We show that A cannot be extended by any element

of G and remain independent. Any slot that extends A contains some combination of elements of

U , N , U c, D, or strictly higher powers than the elements of N . If the new slot contains an element

of U , N , or U c, this element does not generate anything new since this element already occurs

in another slot. If the new slot contains an element pi
di of D, this element does not contribute

anything new since it is dominated by the higher power pi
li in another slot.

Suppose the new slot contains pi
hi , a strictly higher power than pi

li ∈ N . Then pi
hi dominates

pi
li which appears in another slot B. We show that the remaining elements of B also become

redundant in the extension of A. The only other elements B could contain are elements of U c or

D (B contains no elements of U or other elements of N by construction). Any element of U c in B

already appears in another slot of A than B. Any pi
di ∈ D in B is dominated by the higher power
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pi
li which occurs, by construction, in a slot of A other than B. Thus the addition of the new slot

containing pi
hi makes B redundant, so this extension is not independent. Thus any extension of A

results in a set that is not independent. So A is a facet.

We now show that every independent facet I has the form of a set arising from Algorithm

3.3.4. Let I be an independent facet of size k. Order the slots in the tuple corresponding to I

and its individual slots according to the orderings in Definition 3.3.2. Label the ordered slots by

1, 2, . . . , k in increasing order from left to right.

• Identify L and show that (a) if m = n then k = n, and (b) if m < n then 0 ≤ m ≤ k.

For each 1 ≤ i ≤ n, identify the highest exponent li such that pi
li occurs in some slot of I .

Let L = (l1, l2, . . . , ln). Let N = {pi
li : li < ki}.

To show (a), suppose li < ki for all 1 ≤ i ≤ n. By Lemma 3.3.3, each slot contains at most

one element of N . Since there are n such prime powers, this implies k = n.

To show (b), suppose lj = kj for at least one j. If m > k then some slot contains more than

one element of N , contradicting Lemma 3.3.3. Thus 0 ≤ m ≤ k.

• Identify U and show that (a) If m = k then U = ∅, and (b) if 0 ≤ m < k then k ≤

|U|+m ≤ n.

Let U be the set of all prime powers pi
li for which li = ki, each of which occur in exactly

one slot of I .

If m = k, then by Lemma 3.3.3 each element of N appears in one of the k slots, leaving no

slots to contain elements of U , so U = ∅.

Now suppose 0 ≤ m < k. Certainly |U| + m ≤ n as there are only n primes pi. Suppose

to the contrary that |U| +m ≤ k − 1. By Lemma 3.3.3, each element of N is in a different

slot. We claim the remaining k −m slots must be filled with the entries of U with no slots

left empty. If there is some slot B that does not contain an element of N ⊔U , then since k is

fixed, B must contain at least one of pi
li where li = ki and pi

li /∈ U , or pj
aj where aj < lj .
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If B contains pi
li , then pi

li appears in some slot other than B since pi
li /∈ U . If B contains

pj
aj , then pj

lj , a higher power of pj , appears in some slot other than B. Thus B is redundant,

so I is not independent, so all k −m slots are filled with elements of U . Thus |U| ≥ k −m,

or |U|+m ≥ k.

Let U = {u1, u2, . . . , uk−m} ⊆ [k] be the set of labels of slots that contain elements of U .

Let λ be the partition λu1
, λu2

, . . . , λuk−m
of U where λui

is the set of all elements of U that

occur in slot ui of I .

• For each j with lj = kj and pj
lj /∈ U , identify Aj .

For each j for which lj = kj and pj
lj appears in more than one slot of I , let Aj ⊆ [k] be the

set of labels of all slots containing pj
lj . Then |Aj| ≥ 2.

• For each 1 ≤ i ≤ n and each ai < li, identify Bai .

For each 1 ≤ i ≤ n and each integer 1 ≤ ai < li such that pi
ai occurs in at least one slot of

I , let Bai ⊆ [k] be the set of labels of all slots that contain pi
ai . Since only one power of a

given prime pi can appear in each slot, no other powers of pi appear in Bai .

�

We now count the number of independent facets I in oinc(Cp1k1 ×Cp2k2 × · · · ×Cpnkn ). First,

we count the number of ways to choose L with |N | = m. There are kij − 1 ways to choose the

ij
th entry of L since this entry can be one of 1, 2, 3, . . . , kij − 1. So there are

∏m
j=1(kij − 1) ways

to choose L with |N | = m. The set N is determined by the choice of L, and there are
(

k
m

)

ways of

placing the m elements of N into m distinct slots of the k slots of I . There are n−m primes pj
lj

with lj = kj , and
(

n−m
s

)

ways to choose s of these to comprise U . Since k ≤ s+m ≤ n by Step 2

of Algorithm 3.3.4, we have k −m ≤ s ≤ n−m. Thus there are
∑n−m

s=k−m

(

n−m
s

)

ways to choose

U where |U| = s. There are St(s, k −m) ways to partition the elements of U into the remaining

k −m slots. Each of the n−m− s elements of U c appears in at least two slots of the k slots of I ,

so there are
∑k

t=2

(

k
t

)

ways to place each of these elements. For each 1 ≤ i ≤ n and each integer

0 ≤ dj < li, there are three cases to consider:
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1. If pi
li ∈ N then pi

li appears in exactly one slot of I , so there are
∑k−1

r=0

(

k−1
r

)

= 2k−1 ways

to insert pi
di into a slot that contains no power of pi already.

2. If pi
li ∈ U then as in Step 1 pi

li appears in exactly one slot of I , so there are
∑k−1

r=0

(

k−1
r

)

=

2k−1 ways to insert pi
di .

3. If pi
li ∈ U c and appears in 2 ≤ t ≤ k slots, then there are

∑k−t
r=0

(

k−t
t

)

= 2k−t

So there are 2 · 2k−1 + 2k−t = 2k + 2k−t ways to insert pi
di into a slot that doesn’t already contain

another power of pi. Summing over all 0 ≤ m ≤ k and over every choice of m elements to belong

to N , we obtain the number of independent facets of size k:

∑

0≤m≤k
i1,...,im∈[n]
i1<···<im

(

m
∏

j=1

(kij − 1)

(

k

m

) n−m
∑

s=k−m

(

n−m

s

)

St(s, k −m)(n−m− s)
k

∑

t=2

(

k

t

)

(2k + 2k−t)
)
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Chapter 4

Computation

4.1 GAP, Sage, and Polymake Algorithms

The author has written GAP [6] and SageMath [18] code which takes as input a finite group

and computes the facets of the independence complex, organizing the output according to orbits

under the automorphism group. In practice, the most efficient ways to store and compute with a

group in GAP are by defining the group using a polycyclic representation (Pc Group) if the group

is solvable, or by a permutation representation (Permutation Group) if the group is not solvable.

If examples are relatively small, one can directly represent the group in GAP as a finitely pre-

sented group (FpGroup) or by using GAP’s Small Groups library. After computing the facets of

the independence complex in GAP, we use this information to compute properties of the simplicial

complex using GAP’s simpcomp package REF and SageMath’s functionality for simplicial com-

plexes. We refer to the independence complex resulting from this GAP code as the Automorphism

Independence Complex. Namely, we define an automorphism independence complex as an in-

dependence complex arising from a finite group G together with an identification of its facet orbits

under the action of Aut(G).

The author also has written GAP code to format the automorphism independence complex

in a way that is readable by Poymake, thus allowing for visualization of the resulting simplicial

complexes in low-dimensional cases (or restricting one’s attention to low-dimensional facets). This

reformatted version is stored in the record from the file mainGAP.txt in Appendix A. The author

includes code which can be used in Polymake’s topaz application in Appendix B. This code

plots a visual representation of the independence complex where the orbits are distinguished by

different colors and which one can manipulate by magnifying and rotating to view the complex

from different angles. One file is produced for each orbit. For technical reasons (see comments in

the appendices), one additional orbit is generated in all the images, which is artificial and should
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be ignored. This additional orbit only appears in the transition from GAP to Polymake, and not

in the output of mainGAP.txt. Appendix B shows some examples of how to relabel the vertices

in Polymake with group element names, according to the chosen group representation in GAP, so

that the independence complex as it relates to the group can be more readily identified.

At a high level, the GAP algorithm, code for which can be found in Appendix A, proceeds as

follows:

1. Compute set orbits of the sets of group elements of desired facet size k, under the action of

Aut(G).

2. For each orbit, choose a representative (without loss of generality, the first set in the orbit)

and check whether that set is independent by removing one element at a time and checking

whether the subgroup generated by the remaining elements reduces in size or stays the same.

3. Return a record which contains a list of all independent facets

The algorithm checks for independent sets of size 2 ≤ k ≤ 5 by brute force, but working

up to group automorphism instead of element-by-element. The code can easily be modified to

include facets of size 1 (isolated vertices). The code can also be modified to compute orbits up to

conjugacy instead of the action of Aut(G). To make computation more efficient when enumerating

tuples up to automorphism, one can also expand on the GAP code in the appendices and move

to the semidirect product of G with Aut(G) to perform enumeration calculations. In this setting,

testing for equivalence under automorphism becomes testing for conjugacy equivalence. For more

information on this algorithm, see [9].

4.2 Non-abelian Independence Complexes

All tables in this section were translated by hand into recognizable group elements from the

output from GAP code.
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4.2.1 Independence Complex of S3 × C5

Table 4.1 shows a list of representatives of independent facets of In(S3 × C5) together with

their corresponding orbit sizes. Here, (1, 2, 3) represents any element from the equivalence class

{(1, 2, 3), (1, 3, 2)}; the element (1, 2) (and likewise the element (1, 3)) represent the equivalence

class {(1, 2), (1, 3), (2, 3)} and a and b are any distinct elements of order 5 in C5. The calculations

in Table 4.1 match GAP calculations for the sizes of orbits.

Table 4.1: Facet Representatives for In(S3 × C5)

Facet Size Orbit Size Facet Representatives

2 24 = 2 · 3 · 4 {((1, 2, 3), a), ((1, 2), 1)}
24 = 2 · 3 · 4 {((1, 2, 3), 1), ((1, 2), a)}
24 = 2 · 3 · 4 {((1, 2, 3), a), ((1, 2), a)}
72 = 2 · 3 · 4 · 3 {((1, 2, 3), a), ((1, 2), b)}
24 =

(

3
2

)

· 4 · 2 {((1, 2), a), ((1, 3), 1)}
12 =

(

3
2

)

· 4 {((1, 2), a), ((1, 3), a)}
36 =

(

3
2

)

· 4 · 3 {((1, 2), a), ((1, 3), b)}
3 24 = 2 · 3 · 4 {((1, 2, 3), 1), ((1, 2), 1), ((), a)}

12 =
(

3
2

)

· 4 {((1, 2), 1), ((1, 3), 1), ((), a)}

The facets of In(S3 × C5) each generate the whole group (the facets of S3 all generate S3, and

the cyclic component does not contribute a significant change). For S4 × C5 this is not the case.

For example, consider the set I = {((1, 2)(3, 4), id), ((1, 3)(2, 4), id), ((), a)} where a is a cyclic

generator of C5. Then I is an independent facet in S4 × C5; here {(1, 2)(3, 4), (1, 3)(2, 4)} is a

facet of S4 that generates C2×C2, so I generates C2×C2×C5. Many Polymake-generated images

become difficult to parse: see Figure 4.1, which depicts all 1-dimensional facets of In(S3 × C5).

4.2.2 Independence Complex of S3 × C3

The facets of an independence complex have different and seemingly more involved behavior

when the component group orders are not coprime (as they were in In(S3×C5)). Table 4.2 lists the
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Figure 4.1: 1-dimensional facets of In(S3 × C5)

orbit representatives from GAP of the action of the automorphism group of S3 × C3 on the facets

of In(S3 × C3). In the table, a and b are distinct nonidentity elements of C3.

Table 4.2: Facet Representatives for In(S3 × C3)

Facet Size Orbit Size Facet Representatives

2 4 {((1, 2, 3), a), ((), a)}
4 {((1, 2, 3), a), ((), b)}
12 {((1, 2), a), ((2, 3), id)}
12 {((1, 2), id), ((1, 2, 3), a)}
6 {((1, 2), a), ((2, 3), a)}
6 {((1, 2), a), ((2, 3), b)}
12 {((1, 2), a), ((1, 2, 3), id)}
12 {((1, 2), a), ((1, 2, 3), a)}
12 {((1, 2), a), ((1, 2, 3), b)}
4 {((1, 2, 3), id), ((1, 2, 3), a)}
4 {((1, 2, 3), id), ((1, 3, 2), a)}
2 {((1, 2, 3), a), ((1, 2, 3), b)}
2 {((1, 2, 3), a), ((1, 3, 2), a)}

3 6 {((), a), ((2, 3), ()), ((1, 2), ())}
12 {((), a), ((2, 3), ()), ((1, 2, 3), ())}
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4.2.3 Automorphic Images of In(C3 ×Q8)

Figure 4.2 illustrates the automorphic images of In(C3 ×Q8), computed in GAP and displayed

in Polymake (see Appendix). In the two top left images, the orbits are highlighted in blue and dark

green, respectively. In the other images, each orbit is highlighted in red. Figure 4.3 shows the

element labels.

Figure 4.2: Automorphic Images of In(C3 ×Q8)

4.2.4 Larger examples

Example 4.2.1. The independence complex of S3 × (C11 ⋊C5) has 23760 facets of size 2, 198000

facets of size 3, and 11880 facets of size 4. This example is computable in a reasonable amount of

time in GAP.
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Figure 4.3: Automorphic Images of In(C3 ×Q8)

4.2.5 Representations of Independence Complex of C4 ×Q8

The 1-dimensional facets of In(C4 ×Q8) are shown in Figure 4.4. The 2-dimensional facets of

In(C4 ×Q8) are listed in Tables 4.3 and 4.4.

Figure 4.4: 1-dimensional facets of In(C4 ×Q8)
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Table 4.3: 2-dimensional Facet Representatives for In(C4 ×Q8) (Part I)

Orbit Size Facet Representatives

12 192 (3,1), (0, i), (0, j) (1,1), (0, i), (0, j)
(3,1), (0, i), (2, j) (1,1), (0, i), (2, j)
(3,1), (2, i), (2, j) (1,1), (2, i), (2, j)
(3,−1), (0, i), (0, j) (1,−1), (0, i), (0, j)
(3,−1), (0, i), (2, j) (1,−1), (0, i), (2, j)
(3,−1), (2, i), (2, j) (1,−1), (2, i), (2, j)

13 384 (3,1), (0, i), (1, j) (1,1), (0, i), (1, j)
(3,1), (0, i), (3, j) (1,1), (0, i), (3, j)
(3,1), (2, i), (1, j) (1,1), (2, i), (1, j)
(3,1), (2, i), (3, j) (1,1), (2, i), (3, j)
(3,−1), (0, i), (1, j) (1,−1), (0, i), (1, j)
(3,−1), (0, i), (3, j) (1,−1), (0, i), (3, j)
(3,−1), (2, i), (1, j) (1,−1), (2, i), (1, j)
(3,−1), (2, i), (3, j) (1,−1), (2, i), (3, j)

14 192 (3,1), (1, i), (1, j) (1,1), (1, i), (1, j)
(3,1), (1, i), (3, j) (1,1), (1, i), (3, j)
(3,1), (3, i), (3, j) (1,1), (3, i), (3, j)
(3,−1), (1, i), (1, j) (1,−1), (1, i), (1, j)
(3,−1), (1, i), (3, j) (1,−1), (1, i), (3, j)
(3,−1), (3, i), (3, j) (1,−1), (3, i), (3, j)

15 384 (3, i), (0,±i), (0, j) (1, i), (0,±i), (0, j)
(3, i), (2,±i), (0, j) (1, i), (2,±i), (0, j)
(3, i), (0,±i), (2, j) (1, i), (0,±i), (2, j)
(3, i), (2,±i), (2, j) (1, i), (2,±i), (2, j)

16 192 (3, i), (0, j), (0, k) (1, i), (0, j), (0, k)
(3, i), (0, j), (2, k) (1, i), (0, j), (2, k)
(3, i), (2, j), (2, k) (1, i), (2, j), (2, k)

17 48 (2,1), (0, i), (0, j)
(2,1), (0, i), (2, j)
(2,1), (2, i), (2, j)

18 48 (2, i), (0, i), (0, j)
(2, i), (0, i), (2, j)

19 48 (2, i), (0,−i), (0, j)
(2, i), (0,−i), (2, j)
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Table 4.4: 2-dimensional Facet Representatives for In(C4×Q8) (Part II). Orbit 22 is a very large orbit, and it

is tedious to discern by hand whether a completely accurate representative was obtained without accidentally

missing information. Hence we mark one orbit by ? to note this uncertainty.

Orbit Size Facet Representatives

20 32 (2, i), (0, j), (0, k)
(2, i), (2, j), (2, k)

21 48 (2,−1), (0, i), (0, j)
(2,−1), (0, i), (2, j)
(2,−1), (2, i), (2, j)

22 384 (0,±i), (1, i), (1, j) (2, i), (3, i), (1, j)
(0,±i), (3, i), (1, j) (2, i), (3, i), (3, j)
(0,±i), (3, i), (3, j) (2, i), (1, j), (1, j) ?

23 64 (1, i), (1, j), (1, k)
(1, i), (1, j), (3, k)
(1, i), (3, j), (3, k)
(3, i), (3, j), (3, k)
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Chapter 5

Main Results (Semidirect product)

Let Gn = G1×G2×· · ·×Gn where each Gi is a nonabelian finite group and |G1| = p1p2, |G2| =

p3p4, . . . , |Gn| = p2n−1p2n for distinct primes p1, p2, . . . , p2n with p2i−1 > p2i for all 1 ≤ i ≤ n.

Our main contribution is to describe the independence complex of Gn. To do so, we introduce a

simplicial complex structure, called a combinatorial diagram, which translates a difficult enumer-

ation problem into one which is made tractable using the language of simplicial complexes. We

first specialize to the cases when n = 1 and n = 2 and describe the structure of the groups G1 and

G2. We describe all facets in the independence complexes of G1 and G2, using a group theoretic

argument in the former and a combinatorial argument in the latter. We next describe the structure

of the groups Gn for arbitrary n and their independence complexes, and provide an algorithm using

combinatorial diagrams with which one can generate the facets of the independence complex of

Gn. Additionally, we implement this algorithm in GAP.

5.1 Structure of In(G1)

Recall G1 is a nonabelian finite group of order p1p2 for distinct primes p1 > p2. We describe the

group structure of G1 and give a description and enumerate the facets of its independence complex.

5.1.1 Structure of G1

Proposition 5.1.1. Any independent facet of G1 has either the form I = {x, y}, where |x| = p1

and |y| = p2 or the form {y, z} where |z| = p2 and y, z are elements from two different Sylow

p2-subgroups.

Proof: Since G1 is nonabelian, it is not cyclic. So G1 has no elements of order p1p2, for such an

element would generate G1 by Corollary 2.1.2 and G1 is not cyclic. By Corollary 2.1.1, possible

element orders of G1 are p1, p2, or 1. Let I be an independent facet of G1. Since I does not contain
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the identity element, elements of I have possible orders p1 or p2. Note that since np1 ≡ 1 mod p1,

np1 |p2, and p1 > p2, we have np1 = 1, so Cp1 is the unique Sylow p1-subgroup.

Suppose first that I has an element x of order p1. Then x generates the unique Sylow p1-

subgroup P of G1. No other element of P can be added without redundancy. A second element, y,

of order p2 from some Sylow p2-subgroup of G1 can be added to {x} without redundancy. Since

y lies in a different subgroup than P , the addition of y generates a strictly larger subgroup than

〈x〉 = P , so 〈x, y〉 = G1. Since 〈x〉 ∼= Cp1 and 〈y〉 ∼= Cp2 , I = {x, y} is independent. No

additional elements can be added without redundancy, so I is a facet.

Now suppose I has no elements of P . Then I consists of elements of order p2. If I = {y} for

some y in some Sylow p2-subgroup Q of G1, then I ∪ {x} is an independent set for any nontrivial

x ∈ P , so I is not a facet. Thus I contains another element z of order p2. If z ∈ Q, then z is

redundant since 〈y〉 ∼= Q. Thus z must be in a different Sylow p2-subgroup of G1 than y. Since

G1 is not cyclic, none of the Sylow p2-subgroups are normal in G1, so np2 6= 1. Since np2 |p1, we

have np2 = p1. Thus at least two Sylow p2-subgroups exist. Since 〈y〉 = Q and z 6∈ Q, we have

〈y, z〉 ∼= G1. Since 〈y〉 ∼= 〈z〉 ∼= Cp2 and no additional elements can be added to I = {y, z} without

redundancy, I is an independent facet.

Observe that if |x| = p1 and |y| = p2 then {x} and {y} are not facets, as each is contained in

a larger independent set. Thus every independent facet of In(G1) has size 2, so In(G1) is pure of

dimension 1.

�

Note that edges of the independence complex of G1 are given by the collection of all sets of

two elements each coming from distinct subgroups. Also observe that G1 has a unique Sylow

p1-subgroup and p1 Sylow p2-subgroups.

We will see in the following text that Lucchini’s bound (see subsection 2.1.5) states that the

maximal size of independent sets of G1 is two. Thus Lucchini’s bound is met here. The following,

due to Burnside, is a classical result in group theory.
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Theorem 5.1.2 (Burnside, see [5]). Let G be a finite group of order pαqβ where p, q are prime and

α, β ∈ Z≥0. Then G is solvable.

The group G1 in Proposition 5.1.1 is solvable by Burnside’s Theorem. Thus by Lucchini’s

bound, the largest size of an independent set that generates G1 is given by summing over the sizes

of the minimal generating sets for the Sylow p-subgroups of G1. Observe that G1 has Sylow p1-

subgroup Cp1 and Sylow p2-subgroup Cp2 . Since m(Cp1) = m(Cp2) = 1, we have

m(G1) ≤
∑

p∈π(G1)

dp(G1) = dp1(G1) + dp2(G1) = 2

As shown in Proposition 5.1.1, this bound is tight. Note that this provides a class of examples

which are not necessarily nilpotent (take for example S3 or C11 ⋊ C5) and achieve the bound (see

for comparison the comments in subsection 2.1.5).

Proposition 5.1.3. The number of independent facets of G1 is
(

p1
2

)

(p22 − 1).

Proof: There are (p1 − 1)p1(p2 − 1) facets of the form {x, y} where |x| = p1 and |y| = p2, since

there are p1 − 1 ways to choose a nonidentity element from the unique Sylow p1-subgroup, and

p2 − 1 ways to choose a nonidentity element from any of the p1 Sylow p2-subgroups. There are

(

p1
2

)

(p2 − 1)2 independent facets of the form {y, z} where y and z have order p2 and are in two

different Sylow p2-subgroups; one first chooses two of the p1 Sylow p2-subgroups, and then selects

from among the p2 − 1 nonidentity elements of each chosen subgroup. Observe

(p1 − 1)p1(p2 − 1) +

(

p1
2

)

(p2 − 1)2 = 2

(

p1
2

)

(p2 − 1) +

(

p1
2

)

(p2 − 1)2

=

(

p1
2

)

(p2 − 1)(p2 + 1)

=

(

p1
2

)

(p22 − 1)

�
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Example 5.1.4. In S3 (here p1 = 3 and p2 = 2), one can have independent facets of the form

{(1, 2, 3), (1, 2)} where the elements have orders p1 and p2, as well as independent facets of the

form {(1, 2), (1, 3)} where both elements have order p2 and lie in different Sylow p2-subgroups.

In S3, there are two elements of order three and there are three Sylow 2-subgroups. There are

2 ∗ 3 = 6 independent facets of the form {p1, p2} (here, we list only the orders of elements)

and
(

3
2

)

= 3 independent sets of the form {p2, p2} (representing the orders of two elements from

different Sylow p2-subgroups). Thus S3 has a total of 9 (in this case, we can count this as
(

5
2

)

− 1)

independent facets of size 2, and is pure-dimensional.

Example 5.1.5. Let G1 = C11 ⋊C5, p1 = 11 and p2 = 5. Then In(G1) has
(

11
2

)

· 24 = 1320 facets.

5.2 Structure of In(G2)

Our next step is to describe and enumerate the facets of the independence complex G2 := G×H

where G,H are nonabelian finite groups of orders p1p2, p3p4, respectively, for distinct primes

p1, p2, p3, p4 with p1 > p2 and p3 > p4.

5.2.1 Structure of G2 and facet bound

We begin by describing all subgroups of G2 and obtaining an upper bound on the size of its

independent facets by showing that G2 is solvable and using Lucchini’s upper bound (see subsection

2.1.5 and [12]). A standard group theory result tells us:

Proposition 5.2.1. [ [10], Exercise 5C.4] If all Sylow subgroups of a group G are cyclic, then for

every divisor m of |G|, there is a subgroup of order m. Furthermore, any two subgroups of G

having order m are conjugate.

Since G2 has order p1p2p3p4, its Sylow subgroups have orders p1, p2, p3 and p4. Such subgroups

exist by Theorem 2.1.6 (Sylow’s Theorem), and are cyclic. Thus by Proposition 5.2.1, G2 has

subgroups of orders given by all proper divisors of p1p2p3p4, and any two subgroups of the same

order are conjugate in G2. Since the order of a subgroup divides the order of the group, these

account for all possible subgroups of G2.
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It is a standard group theoretic result (see [15], Corollary 5.18) that the direct product of two

solvable groups is solvable. Since G and H are both solvable by Theorem 5.1.2 (Burnside’s The-

orem), the direct product G2 = G × H is also solvable. Thus we can apply Lucchini’s upper

bound. Since the Sylow pi-subgroups for all 1 ≤ i ≤ 4 of G2 are all cyclic, and m(Cpi) = 1 for

all 1 ≤ i ≤ 4, by Lucchini’s result we have m(G2) ≤
∑

p∈π(G2)
dp(G2) = 4. Thus any minimal

generating set for G2 will have size no larger than 4 (note that this statement only applies directly

to independent sets which generate the full group G2). Indeed, this bound is met; an independent

set of size 4 that generates G2 by Corollary 2.1.1 is

{(g1, 1H), (g2, 1H), (1G, h1), (1G, h2)} (5.1)

where g1, g2 have orders p1, p2 and h1, h2 have orders p3, p4 respectively.

Note that if G2 is a product of cyclic groups, say G2 = Cp1p2 × Cp3p4 for distinct primes

p1, p2, p3, p4, then in any facet of G2, elements of all orders p1, p2, p3, p4 must appear in their ap-

propriate component. If some pi is missing, the independent set can be extended by the tuple

with an element of order pi in the appropriate component and the identity in the other component.

Hence the only independent facets of G2 having size 4 are of the form given in Expression (5.1)

when the direct product components are cyclic. We get other independent sets, however, when the

component groups of G2 are nonabelian. For example, if G2 = G×H where G,H are nonabelian

groups with |G| = p1p2, |H| = p3p4 for distinct primes pi with p1 > p2, p3 > p4, the set in Expres-

sion (5.1) is also independent when g1, g2 both have order p2 and h1, h2 both have order p4 (each

element taken from a distinct Sylow subgroup). We describe the independent facets of groups with

two nonabelian components in Section 5.2.3.

5.2.2 Unique selling points

Lemma 5.2.2. Let Gn = G1 ×G2 × · · · ×Gn where the Gi are finite groups with relatively prime

orders. Then in any independent set I , for every tuple t ∈ I there is some 1 ≤ i ≤ n such that

〈πi(I \ t)〉 < 〈πi(I)〉 in Gi. We call the element πi(t) a unique selling point of t.
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Proof: Let I be an independent set of G1 × G2 × · · · × Gn where the Gi are finite groups

whose orders are relatively prime. Suppose to the contrary that for some tuple t ∈ I , we have

〈πi(I \ t)〉 = 〈πi(I)〉 for every 1 ≤ i ≤ n. We show that 〈I \ {t}〉 = 〈I〉. First, we determine

|〈I \ {t}〉|. For all 1 ≤ i ≤ n, we have

πi(〈I \ {t}〉) = 〈πi(I \ {t})〉 = 〈πi(I)〉 = πi(〈I〉).

For all 1 ≤ i ≤ n, |πi(〈I \ {t}〉)| divides |〈I \ {t}〉| since πi is a homomorphism. Thus

|〈I \ {t}〉| ≥ lcm(|π1(〈I \ {t}〉)|, . . . , |πn(〈I \ {t}〉)|)

= lcm(|〈π1(I)〉|, . . . , |〈πn(I)〉|)

= |〈π1(I)〉| · |〈π2(I)〉| · · · · · |〈πn(I)〉| (5.2)

where the last equality holds because the factors Gi have relatively prime orders. We now show

that 〈I〉 is a direct product of the same order as the product in line (5.2).

We claim 〈I〉 = 〈π1(I)〉 × · · · × 〈πn(I)〉. By Proposition 2.1.14, we must show that:

1. 〈πi(I)〉 is normal in 〈I〉 for all 1 ≤ i ≤ n

2. 〈I〉 = 〈π1(I)〉〈π2(I)〉 · · · 〈πn(I)〉

3. 〈πi(I)〉 ∩ 〈πj(I)〉 = idGn
for all 1 ≤ i, j ≤ n with i 6= j

We do so as follows.

1. Let g = (g1, g2, . . . , gn) ∈ 〈I〉 and let n = (1, . . . , 1, ni, 1, . . . , 1) ∈ 〈πi(I)〉 where ni is in

the ith component of n. Then

gng−1 = (g1, g2, . . . , gn)(1, . . . , 1, ni, 1, . . . , 1)(g1, g2, . . . , gn)
−1

= (g1g
−1
1 , g2g

−1
2 , . . . , ginig

−1
i , . . . , gng

−1
n )

= (1, . . . , 1, ginig
−1
i , 1, . . . , 1) ∈ 〈πi(I)〉
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where inclusion in the last line holds since gi, g
−1
i ∈ πi(〈I〉) = 〈πi(I)〉 and ni ∈ 〈πi(I)〉. So

〈πi(I)〉 is normal in 〈I〉 for each 1 ≤ i ≤ n.

2. Let g = (g1, . . . , gn) ∈ 〈I〉. Then g can be represented as an element in the product in

the righthand side of (2). If g ∈ 〈π1(I)〉〈π2(I)〉 · · · 〈πn(I)〉, then g can be written as g =

(g1, 1, . . . , 1)(1, g2, 1, . . . , 1) · · · (1, . . . , 1, gn) = (g1, . . . , gn) ∈ 〈I〉.

3. 〈πi(I)〉 ∩ 〈πj(I)〉 = idGn
for all 1 ≤ i, j ≤ n with i 6= j since the |Gi| (and the orders of

subgroups of Gi) are relatively prime, so there is no interaction between different component

projections.

Hence 〈I〉 is a direct product, namely 〈I〉 = 〈π1(I)〉 × · · · × 〈πn(I)〉. Thus

|〈I〉| = |〈π1(I)〉| · |〈π2(I)〉| · · · · · |〈πn(I)〉|

By line (5.2) and the fact that 〈I \ {t}〉 ⊆ 〈I〉, we have that 〈I \ {t}〉 = 〈I〉. Hence I is not

independent, a contradiction. �

For example, let G = C2 × C3
∼= C6. Then I = {(1, 0), (0, 1)} is an independent set, with

unique selling points given by the first tuple’s first component and the second tuple’s second com-

ponent. If the component group orders are not relatively prime, the independent sets need not have

the same notion of unique selling points. For instance, let G = C3 × C3 and I = {(1, 1), (1, 2)},

which is an independent set generating G. Removing either tuple does not decrease generation in

the individual group components, yet both tuples are required to generate G (for if one is removed,

the result generates only a cyclic subgroup). Thus the notion of unique selling points does not

generalize directly to direct products whose component groups have orders with common factors.

Lemma 5.2.3. Let G = G1×G2×· · ·×Gn where the Gi are finite groups. Let I be a set of group

elements of G such that every tuple t ∈ I has a unique selling point. Then I is an independent set.
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Proof: Let I be a set of tuples of G, each of which has a unique selling point. Let t ∈ I . Then for

some 1 ≤ i ≤ n, 〈πi(I \ t)〉 < 〈πi(I)〉. Since subgroup generation is reduced in the ith component

group, we have that 〈I \ t〉 < 〈I〉. �

5.2.3 Structure description of In(G2)

Proposition 5.2.4. Let A,B be distinct nontrivial subgroups of G and C,D distinct nontrivial

subgroups of H. The independent facets of In(G2) have size k = 2, 3 and 4 and have the form:

1. (k = 2) {(a, c), (b, d)}

2. (k = 3)

(i) {(a, c), (1G, d), (b, 1G)}

(ii) {(a, c), (a′, d), (b, 1H)}

(iii) {(a, c), (b, c′), (1G, d)}

3. (k = 4) {(a, 1H), (b, 1H), (1G, c), (1G, d)}

where a, a′ ∈ A, b ∈ B, c, c′ ∈ C, d ∈ D.

Proof: We first show that a facet cannot have size one, and we then describe all independent

facets of G2 of sizes k = 2, 3, and 4.

(k 6= 1) Observe there are no independent facets of G2 of size one, as such a independent

facet I = {(g1, h1)} could only support one element g1 ∈ A of and one element h1 ∈ C where

A,C are subgroups of G,H, respectively. Since G2 is not cyclic, {(g1, h1)} generates some proper

subgroup of G2, and can be extended (for instance) to an independent set {(g1, h1), (g2, h2)} where

g2 /∈ A and h2 /∈ C. In each component projection, the full component group is generated, so

〈(g1, h1), (g2, h2)〉 = G2. Since G,H are both noncyclic, G2 is noncyclic, so neither tuple can be

removed from I ∪ {(g2, h2)} and have the remaining element generate G2, so I ∪ {(g2, h2)} is an

independent facet containing I . Thus there no independent facets of size one.
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(k = 2) Any independent facet of G2 of size 2 will contain one element of the form (g1, h1)

where g1 is in some subgroup of G and h1 in some subgroup of H. If in the second element (g2, h2),

we have that g2, g1 are in the same subgroup and h2, h1 are in the same subgroup, then the second

element can be removed as it is redundant. If g2, g1 are in the same subgroup and h2, h1 are in

different subgroups, then {(g1, h1), (g2, h2), (g3, 1H)}, of size 3, is an independent facet where g3 is

any element from a different subgroup than g1 and g2. So g1, g2 must be in different subgroups of G

and h1, h2 in different subgroups of H. Indeed, removing either tuple from I = {(g1, h1), (g2, h2)}

results in generation of a smaller group, so I is an independent facet.

(k = 3) Let I be an independent facet of G2 of size 3. First observe that each component

projection πi(I) for i ∈ {1, 2} must contain elements from (at least) two distinct subgroups. If,

without loss of generality, π1(I) contains elements from only one nontrivial subgroup A of G, then

I ∪ {(b, 1H)}, where b /∈ A, is independent, a contradiction. So πi(I) contains elements from

(at least) two distinct subgroups for i ∈ {1, 2}. Every tuple of I has (at least one) unique selling

point by Lemma 5.2.2, say without loss of generality a, b in π1(I) and d in π2(I). Without loss of

generality, I has the form I = {(a, _), (b, c), (_, d)} where a ∈ A, b ∈ B, c ∈ C, d ∈ D, A,B are

distinct subgroups of G, and C,D are distinct subgroups of H since (at least) two subgroups must

be represented in each component. Here {a, b} is a facet of G and {c, d} is a facet of H.

We now describe the options for the empty slots of I .

1. Both empty slots could be the identity elements. Note that {(a, 1H), (b, c), (1G, d)} is inde-

pendent and generates G2.

2. One empty slot could be the identity element, and the other nonidentity. Without loss of

generality, suppose I has the form {(a, c′), (b, c), (1G, d)} for some c′ ∈ H. Then c′ ∈ C, for

if c′ was in a different subgroup than C, the facet {c, c′} would generate H, making the tuple

(1G, d) redundant. A similar argument shows that I could be of the form (a, 1H), (b, c), (b
′, d)

where b′ ∈ B.

At least one of the empty slots must be the identity. If not, then I = {(a, c′), (b, c), (b′, d)} where

c′ ∈ H and b′ ∈ G are nonidentity elements. There are four cases:
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1. c′ ∈ C and b′ ∈ B

2. c′ /∈ C and b′ /∈ B

3. c′ ∈ C and b′ /∈ B

4. c′ /∈ C and b′ ∈ B

We show a contradiction is reached in the first case; we leave the other three similar arguments

to the reader. If c′ ∈ C and b′ ∈ B, then 〈a, b′〉 = G and 〈c′, d〉 = H. Thus the tuple (b, c) is

redundant, and hence I is not independent, a contradiction. Contradictions are reached in the other

three cases as well. Thus at least one of the empty slots must be the identity.

(k = 4) By Lemma 5.2.2, every tuple has (at least one) unique selling point, and each projection

has (at least) two distinct nontrivial subgroups represented. So I has the form

{(a, _), (b, _), (_, c), (_, d)}

where a ∈ A, b ∈ B, c ∈ C, d ∈ D are unique selling points for distinct nontrivial subgroups

A,B of G and C,D of H. We claim the remaining entries are identity elements. Assume to

the contrary that there is a nonidentity element in one of the remaining slots; without loss of

generality, a nonidentity element x ∈ H in the last tuple. If x ∈ A then 〈a, b, x〉 = 〈b, x〉 so a is

not a unique selling point of (a, _), a contradiction. Thus x /∈ A, and similarly x /∈ B, so x is in

some other subgroup of G distinct from A and B. Thus, since any two nonidentity elements from

distinct subgroups generate G, 〈a, b, x〉 = 〈b, x〉. Hence a is not a unique selling point of (a, _), a

contradiction. Therefore x = 1G . Thus I has the form

{(a, 1H), (b, 1H), (1G, c), (1G, d)}

Later we present a more efficient way of describing the independent facets of Gn which does

not rely on case analysis and brute force. �
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Table 5.1: Independent facets of G2. For k = 3, facets (a)–(f) are Type (ii); facets (g)–(l) are Type (iii);
and facets (m)–(r) are Type (i), as in Proposition 5.2.4. For facets of size k = 2 and k = 4, the values

in the fourth column are equal to the sum of the values in the corresponding rows in the third column.

In the superscripts, i, j, k,m are all distinct so that, for instance, C
(i)
p2 and C

(j)
p2 represent different Sylow

p2-subgroups. We omit superscripts where there is no ambiguity as to which subgroup is meant.

k Facet Number of Facets by Type

2 (a) {(Cp1 , Cp3), (Cp2 , Cp4)} (p1−1)p1(p2−1)(p3−1)p3(p4−1)
(b) {(Cp1 , Cp4), (Cp2 , Cp3)} (p1−1)p1(p2−1)(p3−1)p3(p4−1)

(c) {(Cp1 , C
(i)
p4 ), (Cp2 , C

(j)
p4 )} 2(p1 − 1)p1(p2 − 1)

(

p3
2

)

(p4 − 1)2

(d) {(C(i)
p2 , Cp3), (C

(j)
p2 , Cp4)} 2

(

p1
2

)

(p2 − 1)2(p3 − 1)p3(p4 − 1)

(e) {(C(i)
p2 , C

(k)
p4 ), (C

(j)
p2 , C

(m)
p4 )} 2

(

p1
2

)

(p2 − 1)2
(

p3
2

)

(p4 − 1)2

3 (a) {(Cp1 , 〈1H〉), (C
(i)
p2 , Cp3), (C

(i)
p2 , Cp4)} See Equation 5.4 for total count

(b) {(Cp1 , 〈1H〉), (C
(i)
p2 , C

(j)
p4 ), (C

(i)
p2 , C

(k)
p4 )}

(c) {(Cp2 , 〈1H〉), (C
(i)
p1 , Cp3), (C

(i)
p1 , Cp4)}

(d) {(Cp2 , 〈1H〉), (C
(i)
p1 , C

(j)
p4 ), (C

(i)
p1 , C

(k)
p4 )}

(e) {(C(j)
p2 , 〈1H〉), (C

(i)
p2 , Cp3), (C

(i)
p2 , Cp4)}

(f) {(C(j)
p2 , 〈1H〉), (C

(i)
p2 , C

(k)
p4 ), (C

(i)
p2 , C

(m)
p4 )}

(g) {(〈1G〉, Cp3), (Cp1 , C
(i)
p4 ), (Cp2 , C

(i)
p4 )}

(h) {(〈1G〉, Cp3), (C
(j)
p2 , C

(i)
p4 ), (C

(k)
p2 , C

(i)
p4 )}

(i) {(〈1G〉, Cp4), (Cp1 , C
(i)
p3 ), (Cp2 , C

(i)
p3 )}

(j) {(〈1G〉, Cp4), (C
(j)
p2 , C

(i)
p3 ), (C

(k)
p2 , C

(i)
p3 )}

(k) {(〈1G〉, C
(j)
p4 ), (Cp1 , C

(i)
p4 ), (Cp2 , C

(i)
p4 )}

(l) {(〈1G〉, C
(j)
p4 ), (C

(k)
p2 , C

(i)
p4 ), (C

(m)
p2 , C

(i)
p4 )}

(m) {(Cp1 , Cp3), (〈1G〉, Cp4), (Cp2 , 〈1H〉)}
(n) {(Cp1 , Cp4), (〈1G〉, Cp3), (Cp2 , 〈1H〉)}

(o) {(Cp1 , C
(i)
p4 ), (〈1G〉, C

(j)
p4 ), (Cp2 , 〈1H〉)}

(p) {(C(i)
p2 , Cp3), (〈1G〉, Cp4), (C

(j)
p2 , 〈1H〉)}

(q) {(C(i)
p2 , Cp4), (〈1G〉, Cp3), (C

(j)
p2 , 〈1H〉)}

(r) {(C(i)
p2 , C

(k)
p4 ), (〈1G〉, C

(m)
p4 ), (C

(j)
p2 , 〈1H〉)}

4 {(〈1G〉, Cp3), (〈1G〉, Cp4), (Cp1 , 〈1H〉), (Cp2 , 〈1H〉)} (p1−1)p1(p2−1)(p3−1)p3(p4−1)

{(〈1G〉, C
(i)
p4 ), (〈1G〉, C

(j)
p4 ), (Cp1 , 〈1H〉), (Cp2 , 〈1H〉)} (p1 − 1)p1(p2 − 1)

(

p3
2

)

(p4 − 1)2

{(〈1G〉, Cp3), (〈1G〉, Cp4), (C
(i)
p2 , 〈1H〉), (C

(j)
p2 , 〈1H〉)}

(

p1
2

)

(p2 − 1)2(p3 − 1)p3(p4 − 1)

{(〈1G〉, C
(k)
p4 ), (〈1G〉, C

(m)
p4 ), (C

(i)
p2 , 〈1H〉), (C

(j)
p2 , 〈1H〉)}

(

p1
2

)

(p2 − 1)2
(

p3
2

)

(p4 − 1)2

5.2.4 Counting facets of In(G2)

We now enumerate the independent facets of G2 of sizes k = 2, 3, and 4. A summary of these

counts are included in Table 5.1. For subgroups Gi ≤ G, Hi ≤ H for 1 ≤ i ≤ m, define the
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following:

(G1, H1), (G2, H2), . . . , (Gm, Hm) :=

{(g1, h1), (g2, h2), . . . , (gm, hm) : gi ∈ Gi, hi ∈ Hi for all 1 ≤ i ≤ m} (5.3)

In Table 5.1, we use this notation to list representatives of the independent facets of G2.

Denote the p1 + 1 nontrivial proper subgroups of G by Cp1 , C
(1)
p2 , C

(2)
p2 , . . . , C

(p1)
p2 , and similarly

Cp3 , C
(1)
p4 , C

(2)
p4 , . . . , C

(p3)
p4 for H. Here C

(i)
pr and C

(j)
pr represent different Sylow pr-subgroups if i 6= j

and the same subgroup if i = j. If the context is clear and there is only one subgroup to reference,

we sometimes omit the superscript (i) on C
(i)
pr .

(k=2) The counts for the independent facets of size 2 are listed in Table 5.1. Here we highlight

the counts for (d) and (e). The rest are similar.

Facets (d) have the form {(C(i)
p2 , Cp3), (C

(j)
p2 , Cp4)}, or namely, all sets of the form {(a, c), (b, d)}

where a, b are from two different Sylow p2-subgroups, c is from the unique Sylow p3-subgroup,

and d is from some Sylow p4-subgroup (here, i and j are distinct). There are (p3 − 1)p3(p4 − 1)

ways to choose the element c from the Sylow p3-subgroup and the element d from the p3 Sylow

p4-subgroups. Once these are chosen, there are
(

p1
2

)

(p2 − 1)2 ways to choose elements a and b

from two of the p1 Sylow p2-subgroups, and then 2 ways to order the elements a and b. Thus there

are a total of 2
(

p1
2

)

(p2 − 1)2(p3 − 1)p3(p4 − 1) independent facets of size 2 having form (d).

Facets (e) have the form {(C(i)
p2 , C

(k)
p4 ), (C

(j)
p2 , C

(m)
p4 )}, namely all sets of the form {(a, c), (b, d)}

where a, b are from two different Sylow p2-subgroups (there are
(

p1
2

)

(p2−1)2 ways to choose these)

and c, d are from two different Sylow p4-subgroups (
(

p3
2

)

(p4 − 1)2 ways). Finally, there are 2 ways

to order a and b. Thus there are a total of 2
(

p1
2

)

(p2 − 1)2
(

p3
2

)

(p4 − 1)2 independent facets of size 3

having form (e).

The total number of facets of Type (ii) of all types (a)–(f) is:

2

(

p1
2

)

(p22 − 1)

(

p3
2

)

(p24 − 1)
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This value can be obtained, for instance, by summing the quantities in the third row of Table 5.1

for k = 2.

(k=3) Now we enumerate the independent facets of G2 of size 3. We begin by counting the

number of independent facets of Type (i) in Proposition 5.2.4. By Proposition 5.1.3, the number

of independent facets of G is G =
(

p1
2

)

(p22 − 1), and the number of independent facets of H is

H =
(

p3
2

)

(p24 − 1). Since A,B,C,D are distinct subgroups, choices of a, b, c, d are in bijection

with the edge facets of G and of H. There are G facets to choose for {a, b} and there are H facets

to choose for {c, d}. Once these are chosen, there are two ways to order each, for a total of 4GH

facets of Type (i).

In Type (ii), we know a and a′ are from the same subgroup from Proposition 5.2.4, so {a, a′}

can be from either a Sylow p1-subgroup or a Sylow p2-subgroup. In the former case, first choose

a Sylow p1-subgroup (1 way), then choose an ordered pair of non-identity elements a, a′ from that

subgroup ((p1 − 1)2 ways). Next, choose a Sylow p2-subgroup (p1 ways) and choose b from that

subgroup (p2− 1 ways). Finally, choose any facet {c, d} of In(H) (H ways). In the latter case, first

choose a Sylow p2-subgroup A (p1 ways), then an ordered pair {a, a′} of non-identity elements

from that subgroup ((p2 − 1)2 ways). Next, choose a non-identity element b outside of A; since

you can choose from any of the p1 − 1 remaining p2-subgroups or from the unique p1-subgroup,

there are (p1 − 1)(p2 − 1) + (1)(p1 − 1) = (p1 − 1)(p2 − 1 + 1) = (p1 − 1)p2 ways to choose b.

Finally, choose a facet {c, d} of In(H) (H ways). Thus there are a total of

(1)(p1 − 1)2p1(p2 − 1)H + p1(p2 − 1)2(p1 − 1)p2H

facets of Type (ii).

The count for facets of Type (iii) is analogous. Here the ordered pair {c, c′} can be from the

unique Sylow p3-subgroup or some Sylow p4-subgroup. In the former case, there are (1)(p3 − 1)2

ways to choose the ordered pair {c, c′}. There are p3(p4 − 1) ways to choose d, and G choices

for {a, b}. In the latter case, first choose a Sylow p4-subgroup C (p3 ways), then an ordered pair

{c, c′} from C ((p4 − 1)2 ways). Next, choose a non-identity element d /∈ C, for which there are
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(p3 − 1)(p4 − 1) + (1)(p3 − 1) = (p3 − 1)(p4 − 1 + 1) = (p3 − 1)p4 ways. Finally, there are G

choices for {a, b}. Thus there are a total of

(1)(p3 − 1)2p3(p4 − 1)G+ p3(p4 − 1)2(p3 − 1)p4G

facets of Type (iii).

Taking the three types together, the total number of facets of size 3 is given by the following

formula:

4GH + (1)(p1 − 1)2p1(p2 − 1)H + p1(p2 − 1)2(p1 − 1)p2H+

(1)(p3 − 1)2p3(p4 − 1)G+ p3(p4 − 1)2(p3 − 1)p4G

= 4GH +H(p1 − 1)p1(p2 − 1)(p1 − 1 + (p2 − 1)p2)+

G(p3 − 1)p3(p4 − 1)(p3 − 1 + (p4 − 1)p4)

= 4GH + 2H

(

p1
2

)

(p2 − 1)(p1 − 1 + 2

(

p2
2

)

) + 2G

(

p3
2

)

(p4 − 1)(p3 − 1 + 2

(

p4
2

)

) (5.4)

(k=4) Let G =
(

p1
2

)

(p22−1) be the number of independent facets of G, and let H =
(

p3
2

)

(p24−1)

be the number of independent facets of H (see Proposition 5.1.3). Observing the structure of all

possible independent facets, as listed in Table 5.1, we see that the total number of independent

facets of size 4 is:

GH =

(

p1
2

)

(p22 − 1)

(

p3
2

)

(p24 − 1)

The numbers of independent facets of each individual type are listed in the third column of Table

5.1; these values sum to GH .
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5.3 Group structure of Gn

Proposition 5.3.1. Let G = G1 × G2 × · · · × Gn where each Gi is nonabelian and |G1| =

p1q1, |G2| = p2q2, . . . , |Gn| = pnqn for distinct primes p1, p2, . . . , pn, q1, q2, . . . , qn with pi > qi

for all 1 ≤ i ≤ n. Then G ∼= Cp1p2···pn ⋊ Cq1q2···qn

Proof: We show that

1. G = Cp1p2···pnCq1q2···qn

2. Cp1p2···pn ∩ Cq1q2···qn = 1G

3. Cp1p2···pn E G

It will follow that G = Cp1p2···pn ⋊ Cq1q2···qn .

1. (⇒) Let g = (g1, g2, . . . , gn) ∈ G. The elements of Gi have order pi, qi, or 1 (Gi has no

elements of order piqi, since by Corollary 2.1.1, if a was an element of order piqi in Gi then

|〈a〉| = |a| = piqi so 〈a〉 ∼= Gi, but Gi is not cyclic). Thus for each 1 ≤ i ≤ n, gi has order

p1, q1 or 1. Write g as a product of tuples t1t2 such that

• if the ith component of g has order pi, gi is placed into the ith component of t1

• if the ith component of g has order qi, gi is placed into the ith component of t2

• if the ith component of g is trivial, 1Gi
is placed into the ith components of both t1 and

t2

Then t1 ∈ Cp1 × Cp2 × · · · × Cpn since its ith entries contain only elements of order pi and

the identity, and t2 ∈ Cq1 × Cq2 × · · · × Cqn since its ith entries contain only elements of

order qi and the identity. Thus g ∈ Cp1p2···pnCq1q2···qn .

(⇐) Let g = (a1, a2, . . . , an)(b1, b2, . . . , bn) ∈ Cp1p2···pnCq1q2···qn . Then for each 1 ≤ i ≤ n,

ai has order pi or 1 and bi has order qi or 1. Then g = (a1b1, a2b2, . . . , anbn). Now for each

1 ≤ i ≤ n, aibi is a product of an element of order pi (or 1) and an element of order qi (or

1), and thus aibi ∈ Gi. Thus g ∈ G.
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2. Let h = (h1, h2, . . . , hn) ∈ Cp1 × Cp2 × · · · × Cpn ∩ Cq1 × Cq2 × · · · × Cqn . Then for each

1 ≤ i ≤ n, hi must be trivial, for if not then hi has order pi and qi for distinct primes pi, qi,

an impossibility. Thus h = 1G .

3. Let (g1, g2, . . . , gn) ∈ G. We show that (g1, g2, . . . , gn)Cp1p2···pn(g1, g2, . . . , gn)
−1 ⊆ Cp1p2···pn .

Let h = (h1, h2, . . . , hn) ∈ Cp1 × Cp2 × · · · × Cpn . Then

(g1, g2, . . . , gn)(h1, h2, . . . , hn)(g1, g2, . . . , gn)
−1 = (g1h1g

−1
1 , g2h2g

−1
2 , . . . , gnhng

−1
n )

= (g1g
−1
1 h1, g2g

−1
2 h2, . . . , gng

−1
n hn)

= (h1, h2, . . . , hn) ∈ Cp1p2···pn

where the second-to-last step holds because the Cpi are abelian for all 1 ≤ i ≤ n. Thus

Cp1p2···pn E G. Therefore, G = Cp1p2···pn ⋊ Cq1q2···qn .

�

Let Gn = G1 × G2 × · · · × Gn where each Gi is nonabelian and |G1| = p1p2, |G2| =

p3p4, . . . , |Gn| = p2n−1p2n for distinct primes p1, p2, . . . , p2n with p2i−1 > p2i for all 1 ≤ i ≤ n.

Lemma 5.3.2. For any independent set I of Gn, the projection πj(I) onto the jth component of I

contains at most two unique selling points for all 1 ≤ j ≤ n.

Proof: Suppose I is an independent set and that for some 1 ≤ j ≤ n, πj(I) has three unique

selling points a, b, c (in other words, three tuples of I have unique selling points in their jth com-

ponent). By definition, 〈πj(I) \ g〉 < 〈πj(I)〉 for all g ∈ {a, b, c} since a, b, c are unique selling

points and the direct product component orders of Gn are relatively prime. We claim {a, b, c}

is independent in Gj . Without loss of generality, assume to the contrary that 〈a, b, c〉 = 〈a, b〉.

Then c ∈ {a, b}, so 〈πj(I) \ c〉 = 〈πj(I)〉 since a, b ∈ πj(I). This is a contradiction, since

〈πj(I) \ c〉 < 〈πj(I)〉. Thus {a, b, c} is an independent set in Gj . But any independent set of

In(Gj) has size at most two by Proposition 5.1.1, so {a, b, c} cannot be independent in In(Gj). �
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In a projection πi(I) of Gn, we say a subgroup Hi of Gi is represented in πi(I) if one or more

elements of πi(I) generate Hi. The following lemma provides some intuition for the structure of

independent facets of Gn. Broadly speaking, the lemma states that if a projection contains at least

one unique selling point, then exactly two distinct subgroups are represented in that projection. We

will later see that components which contain no unique selling points can contain elements from a

much larger variety of subgroups (see Remark 5.4.3). This will be an important observation when

we introduce combinatorial diagrams in Section 5.4 (see Theorem 5.4.7).

Lemma 5.3.3. Let I be an independent facet of Gn. If πi(I) contains exactly one unique selling

point, then k ≥ 3. If πi(I) contains exactly two unique selling points, then k ≥ 2. In both cases,

exactly two distinct subgroups are represented in πi(I).

Proof: Let I be an independent facet of Gn. Throughout this proof, each occurrence of the

elements u, v, w are assumed to be nonidentity.

Case 1: Suppose πi(I) has exactly one unique selling point, u. If πi(I) has only one subgroup,

〈u〉, represented, then I∪{(1, . . . , 1, g, 1, . . . , 1)} where g is an element of a subgroup of Gi distinct

from 〈u〉, is an independent facet, a contradiction. Therefore πi(I) has at least two subgroups

represented. If πi(I) has exactly two distinct subgroups represented, one by u and one by an

element v generating a subgroup H which is distinct from 〈u〉, then k ≥ 3 since πi(I) requires

a second element from H , or else v is a unique selling point. If πi(I) has strictly more than

two distinct subgroups represented, say by u and by elements v, w, all three generating distinct

subgroups, then 〈v, w〉 = Gi, so u is not a unique selling point. This is a contradiction. Thus πi(I)

has exactly two subgroups represented.

Case 2: Suppose πi(I) has exactly two unique selling points, u, v. Then u, v represent two dis-

tinct subgroups H,K of Gi, we require k ≥ 2, and 〈u, v〉 = Gi. If a third subgroup is represented

in πi(I), say by a third element w from a subgroup distinct from H and K, then 〈v, w〉 = Gi so u

is not a unique selling point, a contradiction. Thus only two distinct subgroups are represented in

πi(I). �
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Lemma 5.3.4. Let I be an independent facet of Gn. Then I contains at most 2n tuples.

Proof: Let I be an independent facet of Gn. By Lemma 5.3.2, each of the n component projections

of I contains at most two unique selling points, for a maximum of 2n possible unique selling points

in I . Since I is independent, every tuple t ∈ I contains at least one unique selling point by Lemma

5.2.2. Thus the maximum number of tuples in I is 2n. �

The following corollary shows that the maximum independent facet size in Lemma 5.3.4 is

achieved.

Corollary 5.3.5. Every independent facet I of maximum size k = 2n of Gn has the form:

{(g1, 1, . . . , 1), (h1, 1, . . . , 1), (1, g2, 1, . . . , 1), (1, h2, 1, . . . , 1), . . . , (1, . . . , 1, gn), (1, . . . , 1, hn)}

where {gi, hi} is an independent facet of Gi for all 1 ≤ i ≤ n and the 1’s represent identity

elements from the appropriate component groups.

Proof: Let I be an independent facet of Gn of size k = 2n. Since every tuple of I has a

unique selling point by Lemma 5.2.2, and there are at most 2n unique selling points (see the proof

of Lemma 5.3.4), each tuple contains exactly one unique selling point (and there are exactly 2n

unique selling points). Each of the n component projections has no more than two unique selling

points by Lemma 5.3.2, so every component projection has exactly two unique selling points, and

I has the form:

{(g1, _, . . . , _), (h1, _, . . . , _), (_, g2, _, . . . , _), (_, h2, _, . . . , _), . . . , (_, . . . , _, gn), (_, . . . , _, hn)}

where gi and hi are unique selling points. For each 1 ≤ i ≤ n, gi and hi are nontrivial elements

from distinct subgroups of Gi since both are unique selling points (if gi and hi were from the

same subgroup and gi is the ith component entry of tuple t ∈ I , then 〈πi(I) \ t〉 = 〈πi(I)〉 in Gi,

contradicting the assumption that gi is a unique selling point. Trivial elements cannot be unique
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selling points, as they do not contribute to subgroup generation). So by Proposition 5.1.1, {gi, hi}

is an independent facet of Gi for all 1 ≤ i ≤ n.

The remaining entries are not unique selling points, since there are at most 2n unique selling

points. We claim all of the remaining entries must be identity elements. Suppose some remaining

entry x ∈ πi(I) \ {gi, hi} in some tuple t ∈ I is a nonidentity element of Gi. If x is in the same

subgroup as a unique selling point u ∈ {gi, hi}, where u is the ith component of some other tuple

t∗, then t∗, whose only unique selling point is u, is redundant in I , so 〈πi(I) \ t∗〉 = 〈πi(I)〉.

This is a contradiction since u is a unique selling point. If x is in a different subgroup than either

of the unique selling points gi and hi (which are each in different subgroups), then we reach a

contradiction: Lemma 5.3.3 states that any component projection containing a unique selling point

has at most two subgroups represented.

Thus x must be the identity element, so all of the independent sets have the form

(g1, 1, . . . , 1), (h1, 1, . . . , 1), (1, g2, 1, . . . , 1), (1, h2, 1, . . . , 1), . . . , (1, . . . , 1, gn), (1, . . . , 1, hn)

�

5.4 Main Theorem: Structure of In(Gn)

Definition 5.4.1. A multipartite simplicial complex D is a minimal cover of its vertices if

1. D contains at least two vertices in each component, and

2. Removing a facet of D and all of its subsets not shared by another facet results in some

component having fewer than two vertices.

In the following figures, we group vertices of multipartite simplicial complex visually accord-

ing to how their vertices are partitioned. For instance, in Figures 5.1 and 5.2, there are three vertex

components, each consisting of two vertices: (1) The top two vertices, (2) The leftmost two ver-

tices, and (3) the rightmost two vertices. We use the same illustration scheme throughout similar
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examples in this paper. For example, Figure 5.1 shows a multipartite simplicial complex D whose

facets consist of a single vertex, an edge, and a 2-simplex and which is a minimal cover. Figure 5.2

shows this same complex with an extra edge between the bottom two vertex components. This edge

could be removed and still two vertices are covered in every component, so the complex in Figure

5.2 does not minimally cover its vertices. In Section 7, we will see examples of combinatorial

diagrams which have more than two vertices in each component.

Figure 5.1: A complex which is a minimal cover of its vertices

Figure 5.2: A complex which is not a minimal cover of its vertices

Lemma 5.4.2 (Numerical Condition). Let I be an independent facet of size k of In(Gn). Then the

maximum number of component projections of I which contain no unique selling points is n− k
2

if

k is even, and n− k+1
2

if k is odd.

Proof: Let I be an independent facet of size k of In(Gn). By Lemma 5.2.2, since the component

groups of Gn have relatively prime orders, each of the k tuples has a unique selling point. Thus the

minimum number of unique selling points required among the tuples of I is k. By Lemma 5.3.2, no

component projection has more than two unique selling points. We will show that if I has exactly

k unique selling points (one in each tuple), then the statement of the lemma holds. If I has strictly
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more than k unique selling points, then fewer component projections than the maximum stated by

the lemma will contain no unique selling points.

If k is even and each of the k tuples has exactly one unique selling point, we claim that exactly k
2

component groups are fully generated. First we show that each component projection of I contains

either exactly two unique selling points which come from distinct subgroups, or no unique selling

points. Suppose for some 1 ≤ j ≤ n that πj(I) contains only one unique selling point u, so that Gj

is not fully generated. Then I ∪ {(. . . , v, . . . )}, where v is an element of a subgroup of Gj distinct

from the subgroup containing u, is an independent set containing I . Hence I would not be a facet,

a contradiction. Thus each component projection of I contains exactly two or exactly zero unique

selling points. Thus, among these k tuples which contain exactly one unique selling point each,

these unique selling points must come in pairs, so exactly k
2

component groups are fully generated.

So the maximum number of components which could contain no unique selling points is n − k
2

(this maximum occurs in the case where I has exactly k unique selling points).

If k is odd and each of the k tuples has exactly one unique selling point, then there is some

1 ≤ j ≤ n for which πj(I) has only one unique selling point u (otherwise, if every component

projection had either 0 or 2 unique selling points, then k would be even), so the component Gj is

not fully generated. We claim I must have a (k + 1)st unique selling point, v, in πj(I), from a

subgroup of Gj distinct from the subgroup containing u. If not, then I ∪ {(. . . , v, . . . )}, where v

is in a subgroup of Gj which is distinct from u’s subgroup, is an independent set containing I , a

contradiction since I is a facet. Thus I contains exactly k + 1 unique selling points in this case.

Using the same argument as in the case when k is even, the component projections which contain

unique selling points must have exactly two unique selling points each. Thus k+1
2

component

groups are generated, so there are n − k+1
2

remaining components with no unique selling points.

Thus the maximum number of tuple components which do not contain any unique selling points is

n− k+1
2

. �
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For example, let n = 3, k = 4 and

I = (a1, 1, c1), (a2, 1, c2), (1, b1, c3), (1, b2, c4)} (5.5)

where a1, a2 are elements of distinct subgroups of G1 and b1, b2 are elements of distinct subgroups

of G2. Here the unique selling points a1, a2, b1, b2 are underlined. Then n − k
2
= 3 − 4

2
= 1, and

we see that π3(I) is the only component which contains no unique selling points. The elements

c1, c2, c3, c4 must be chosen from at least two distinct subgroups (or else, using an argument anal-

ogous to those in the proof of Lemma 5.4.2, I is not a maximal face). These elements can come

from as many as k or p5 + 1 distinct subgroups, whichever is smaller (recall that |G3| = p5p6 with

p5 > p6, and G3 has exactly 1 subgroup of order p5 and p5 subgroups of order p6, for a total of

p5 + 1 subgroups).

Remark 5.4.3. In general, if I is an independent facet of size k of In(Gn) and πi(I) contains no

unique selling points, the maximum number of distinct subgroups represented in πi(I) is

min{k, p2i−1 + 1} (since |Gi| = p2i−1p2i where p2i−1 > p2i, and Gi has exactly 1 subgroup of

order p2i−1 and p2i−1 subgroups of order p2i, for a total of p2i−1 + 1 distinct subgroups). The min-

imum number of subgroups represented in πi(I) is two; if fewer subgroups were represented, then

another tuple could be added with an additional distinct subgroup represented in its ith component

and the other components identity elements while retaining independence, so that I would not be

a facet.

Definition 5.4.4. Let I be an independent facet of In(Gn). The tuple (T1, T2, . . . , Tn) ∈ Z≥0 where

Ti is the number of distinct subgroups represented among the entries of πi(I) is called the type of

I .

For example, since the entries c1, c2, c3, c4 can represent a minimum of 2 and a maximum of

min{k, p5 + 1} distinct subgroups, the facet in Equation (5.5) has possible types

(2, 2, 2), (2, 2, 3), . . . , (2, 2,min{k, p5 + 1})
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Definition 5.4.5. Let S be a set of group elements (tuples) of Gn. The group superstructure of S

is the set of tuples whose entries consist of the containing subgroups of the corresponding group

elements in tuples of S. We write 1 to represent the trivial group of Gi for any 1 ≤ i ≤ n.

The notion of independence for a facet and for its corresponding group superstructure remains

the same. An independent group superstructure is simply a collection of a certain family of inde-

pendent sets.

Example 5.4.6. For example, if

I = {(a1, 1, c1), (a2, 1, c
′
1), (1, b1, c2), (1, b2, c3)}

where a1, a2 are from distinct subgroups A1, A2 of G1; b1, b2 are from distinct subgroups B1, B2

of G2; c2, c3 are from distinct subgroups C2, C3 of G3; and c1, c
′
1 are elements from a subgroup C1

which is distinct from C2 and C3 (here, all subgroups are nontrivial), then the group superstructure

of I is:

{(A1, 1, C1), (A2, 1, C1), (1, B1, C2), (1, B2, C3)}

Similarly, one can start with the group superstructure and work backwards to form a corre-

sponding set of group elements (there are many such choices), keeping in mind that the nonzero

elements chosen from the repeated occurrences of C1 can be distinct or equal. When the context is

clear, we refer to independent sets and independent group superstructures simply as independent.

Since there is an easy translation in both directions between a group superstructure and a choice

of independent set, we sometimes refer to these synonymously unless one format in particular is

needed.

We will refer to components of a multipartite simplicial complex D as vertex components,

and components of a tuple which is an element of Gn as tuple components, or when the context

is clear, simply as components. If we have distinguished the vertex components of D by labelling
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them in some order, we say D has vertex type (T1, T2, . . . , Tn) if the ith vertex component of D

contains exactly Ti vertices.

The following theorem describes a bijection between multipartite simplicial complexes on the

appropriate numbers of vertices which are minimal covers, and independent facets arising from the

group Gn for some n.

Theorem 5.4.7 (Main Theorem). Let Gn = G1 ×G2 × · · · ×Gn where each Gi is nonabelian and

|G1| = p1p2, |G2| = p3p4, . . . , |Gn| = p2n−1p2n for distinct primes p1, p2, . . . , p2n with p2i−1 >

p2i for all 1 ≤ i ≤ n. Let S be the set of all multipartite simplicial complexes of vertex type

(T1, T2, . . . , Tn) with k facets where r of the Ti satisfy 2 ≤ Ti ≤ min{k, p2i−1 +1} where 0 ≤ r ≤

m with

m =















n− k
2

if k is even

n− k+1
2

if k is odd

and all other Ti’s equal 2, listed up to simplicial isomorphism. Then the members of S which are

minimal covers of their vertex sets are in bijection with the independent facets of In(Gn).

Proof:

(⇒) Let D be a member of S which is a minimal cover of its vertices. We show D gives

rise to an independent facet I(D) of In(Gn). First, we construct this set I(D). If D has n vertex

components and its ith vertex component has m vertices, label the vertices in component i by

v(i, 1), v(i, 2), . . . , v(i,m) for all 1 ≤ i ≤ n. For each facet ∆ of D, form an n-tuple t whose ith

component is defined to be:

• v(i, j) if ∆ contains vertex v(i, j) for some j

• 1Gi
if ∆ has no vertices in the ith vertex component

for all 1 ≤ i ≤ n. Note that since D is multipartite, ∆ contains at most one vertex from each

vertex component, so the ith component of t is uniquely determined. Let S = S(D) be the

set of the resulting n-tuples (so that each tuple of S corresponds to a facet ∆ of D). We can
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realize S as a group superstructure by considering distinct vertices in the ith vertex component

of D as representing distinct, nontrivial subgroups of Gi, so that distinct labels in the ith tuple

components of the tuples of S correspond to distinct, nontrivial subgroups of Gi. Note that S is

uniquely determined, up to the labelling chosen for the vertex components (the labels chosen for

individual vertices within each vertex component is irrelevant for our purposes, since these only

record whether the corresponding subgroups are distinct or equal). Let I represent any set of group

elements corresponding to S (see Example 5.4.6 and the surrounding comments). The following

does not depend on the choice of I .

We show I is independent. Let t ∈ I . We show that 〈I \ t〉 < 〈I〉. Recall that removing the

tuple t from I corresponds to removing a facet ∆(t) from D. Since D is a minimal cover, for some

1 ≤ i ≤ n the ith vertex component of D \∆(t) has fewer than two vertices, by definition. Thus,

πi(I) has fewer than two distinct subgroups represented, so 〈πi(I \ t)〉 < 〈πi(I)〉. Thus every tuple

of I has a unique selling point by definition, so by Lemma 5.2.3, I is independent.

Next, we show I is a facet. Since D is a minimal cover of its vertices, each vertex component

of D contains at least two vertices by definition. Thus at least two distinct, nontrivial subgroups

are covered in πi(I) for every 1 ≤ i ≤ n. Thus 〈πi(I)〉 = Gi for all 1 ≤ i ≤ n. Thus 〈I〉 = G so

any tuple added to I must be redundant. Hence I is a facet.

(⇐) Let I be an independent facet of In(Gn) of size k. We show I gives rise to a unique

member of S which is a minimal cover of its vertex set. We build a multipartite simplicial complex

D(I) whose ith vertex component consists of vertices which correspond to the distinct subgroups

represented among the nonidentity elements in πi(I) for all 1 ≤ i ≤ n (here, if two elements come

from the same subgroup, they are represented by a single vertex in D(I)). For each tuple of I ,

D(I) has a facet consisting of the vertices which correspond to the containing subgroups of the

nonidentity elements in that tuple. (Note that information about existence of identity elements in

the components of a tuple is retained by the corresponding facet not being full-dimensional.) Let

(T1, T2, . . . , Tn) be the vertex type of D(I). We show D(I) (a) is in S and (b) minimally covers its

vertices.
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(a) Since the vertices of D(I) come from distinct component projections, D(I) is multipartite

with its vertices partitioned into blocks corresponding to each component projection. By Lemma

5.4.2, the maximum number of component projections of I which contain no unique selling points

is n− k
2

if k is even, and n− k+1
2

if k is odd. If πi(I) has no unique selling points for some 1 ≤ i ≤

n, there is a minimum of two and a maximum of min{number of distinct subgroups of Gi, k} =

min{p2i−1 + 1, k} distinct subgroups represented in πi(I). To see this, recall that the number of

distinct subgroups of Gi, where |Gi| = p2i−1p2i with p2i−1 > p2i, is p2i−1 + 1, since Gi has p2i−1

subgroups of order p2i and one subgroup of order p2i−1 (see also Remark 5.4.3 for the minimum

bound of two). Certainly, a set of k tuples cannot contain more than k distinct entries in its ith

component projection.

Since the distinct subgroups represented in πi(I) correspond to distinct vertices in the ith vertex

component of D(I) for each 1 ≤ i ≤ n, we have that r of the Ti satisfy 2 ≤ Ti ≤ min{p2i−1+1, k}

where 0 ≤ r ≤ m with

m =















n− k
2

if k is even

n− k+1
2

if k is odd

for each 1 ≤ i ≤ n.

In the component projections πi(I) which contain either one or two unique selling points,

exactly two distinct subgroups are represented, by Lemma 5.3.3. By Lemma 5.3.2, no other cases

are possible. Thus the remaining Ti’s are equal to 2. Thus D(I) is in S .

(b) Now we show that D(I) is minimally covering. First, note that D(I) contains at least two

vertices in each component, as in part (a) we saw that the Ti satisfy Ti ≥ 2 for all 1 ≤ i ≤ n.

Now we show that removing a facet of D(I) results in some component having fewer than two

vertices. Let F be a facet of D(I) and consider the multipartite simplicial complex D(I) \ F

(where the removal of F is accomplished by removing the facet F and all of its subsets not shared

by another facet of D(I)). The facet F corresponds to a tuple t ∈ I . By Lemma 5.2.2, t has a

unique selling point πj(t) for some 1 ≤ j ≤ n. By Lemmas 5.3.3 and 5.3.2, since πj(I) contains

a unique selling point, exactly two distinct nontrivial subgroups are represented in πj(I). Thus the

77



jth vertex component of D(I) has exactly two distinct vertices. One of these vertices, v, is the

vertex in D(I) which corresponds to the unique selling point πj(t), and is a vertex of F . Thus

removing F from D(I) removes v from the jth vertex component of D(I), which contained only

two vertices before removing F . Thus the jth vertex component of D(I) \ F contains fewer than

two vertices. Therefore, D(I) is a minimal cover of its vertices. Hence I gives rise to a multipartite

simplicial complex which satisfies the numerical conditions in S and is a minimal cover. �

We call a multipartite simplicial complex D(F ) arising from an independent facet F of In(G)

as in Theorem 5.4.7 a combinatorial diagram (i.e. a combinatorial diagram is a multipartite

simplicial complex that is a member of S and is a minimal cover of its vertex set in the sense

of Definition 5.4.1). Note that the first direction of the proof of Theorem 5.4.7 does not rely

on D having membership in S; indeed the more general statement in one direction is true that any

multipartite simplicial complex which is a minimal cover of its vertices gives rise to an independent

facet.

5.5 Main Algorithm: Computing the combinatorial diagrams

for Gn

We have devised an algorithm, namely Algorithm 5.5.4, to make a list of all combinatorial

diagrams for Gn. This is the main topic of the current section. Algorithm 5.5.4 will generate

redundant combinatorial diagrams, so to correct for this we will consider this list up to simplicial

isomorphism. Though one can attempt to write down all combinatorial diagrams naïvely, the

process quickly becomes tedious and it is easy to miss cases. We will later illustrate Theorem

5.4.7 and Algorithm 5.5.4 in Section 6 by computing all combinatorial diagrams for G3 up to

simplicial isomorphism. This will be followed by an example in Section 7 of how to attach a count

to a combinatorial diagram to obtain the total number of independent sets (at the level of elements)

which arise from that diagram.
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One of our first steps in Algorithm 5.5.4 will be to determine all possible ways that unique

selling points can be distributed among the components of the tuples of I . To aid with this, we

introduce dot diagrams.

Definition 5.5.1. Let I be an independent set of Gn = G1 × G2 × · · · × Gn where each Gi is

nonabelian and |G1| = p1p2, |G2| = p3p4, . . . , |Gn| = p2n−1p2n for distinct primes p1, p2, . . . , p2n

with p2i−1 > p2i for all 1 ≤ i ≤ n. The dot diagram U(I) of I is a 1-dimensional multipar-

tite simplicial complex with n vertex components, where the vertices in the jth vertex component

correspond to the unique selling points in the projection πj(I), for each 1 ≤ j ≤ n.

Example 5.5.2. Let I = {(a1, b
′
1, c

′
1), (a2, b

′′
1, c

′′
1), (1, b2, c

′′′
1 ), (1, b

′′′
1 , c2)}, with a1 ∈ A1, a2 ∈ A2,

b′1, b
′′
1, b

′′′
1 ∈ B1, b2 ∈ B2, c′1, c

′′
1, c

′′′
1 ∈ C1, and c2 ∈ C2 where A1, A2 ≤ G1, B1, B2 ≤ G2, and

C1, C2 ≤ G3 are distinct Sylow subgroups of their respective groups Gi and the elements listed in

each subgroup are nontrivial but are not necessarily distinct. Note that I has group superstructure

{(A1, B1, C1), (A2, B1, C1), (1, B2, C1), (1, B1, C2)}. The unique selling points of each tuple in

I and the corresponding subgroups in its group superstructure are underlined. The dot diagram

U(I) is shown in Figure 5.3 (left), with vertices labeled by the containing subgroups of each unique

selling point (i.e. the underlined subgroups in the group superstructure of I).

A1

A2

B2 C2

U(I) M(I)

Figure 5.3: Dot diagram U(I) and multipartite simplicial complex M(I) for I

When the context is clear and we are working only with group superstructures and not indepen-

dent sets directly, we refer to the subgroups in group superstructures which correspond to unique

selling points of I also as unique selling points. We will often focus our attention only on the
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combinatorial distribution of unique selling points among vertex components and omit labels. Dot

diagrams allow us to visualize unique selling points as distinguished vertices in a combinatorial

diagram. We will later organize the list of combinatorial diagrams for G3 in terms of their numbers

of facets and their underlying dot diagrams.

The following remark relates will help us generate all combinatorial diagrams for Gn in Algo-

rithm 5.5.4.

Remark 5.5.3. Let I be an independent facet of Gn of size k. By Lemma 5.2.2, each tuple of t ∈ I

has at least one unique selling point. By Lemma 5.3.2, for each 1 ≤ j ≤ n, πj(I) contains at most

two unique selling points. Let u be the number of unique selling points in I . Since each of the

k tuples of I has at least one unique selling point and there are no more than two unique selling

points in each of the n components, we know k ≤ u ≤ 2n.

We say a partition P of the labeled vertices of a dot diagram is valid if either it corresponds

directly to an independent facet, or if there is some way to insert other labels into the blocks of

P (later, we call these partition fillings and describe these fillings in Steps 6 and 7 of Algorithm

5.5.4) in such a way that the resulting partition corresponds to an independent facet.

Algorithm 5.5.4. Let Gn = G1 × G2 × · · · × Gn where each Gi is nonabelian and |G1| =

p1p2, |G2| = p3p4, . . . , |Gn| = p2n−1p2n for distinct primes p1, p2, . . . , p2n with p2i−1 > p2i for

all 1 ≤ i ≤ n.

1. For all 1 ≤ k ≤ 2n (Independent facet size), do the following:

2. For all k ≤ u ≤ 2n (Total number of unique selling points), do the following:

3. Draw all possible 1-dimensional multipartite simplicial complexes with n vertex components

and u vertices, where each vertex component has 0, 1, or 2 vertices and the ordering of the

vertex components does not matter. (Dot diagrams)

4. Label and then partition the vertices from the previous step into k nonempty blocks, such

that each block contains at most one vertex from the same vertex component. (Partition of

unique selling points)
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5. If every vertex component of the dot diagram in Step 3 has two vertices, then the partition

from the previous step is valid, and directly yields a combinatorial diagram.

6. Suppose k ≥ 3. If some vertex component of the dot diagram in Step 3 has exactly one vertex,

then insert into the partition blocks at least two occurrences of the new vertex (adhering

to the rule that each partition block contains at most one subgroup from the same group

component).

7. If some vertex component of the complex in Step 3 contains no vertices, then choose one of

the following:

• If k ≥ 4, we can insert into the blocks of the partition two distinct nontrivial subgroups,

where each subgroup is represented at least twice.

• If k ≥ 3, we can insert into the blocks of the partition three or more (and no more than

min{k, p2i−1 + 1}) nontrivial distinct subgroups, repeated in any fashion as long as all

three occur at least once.

We call the partitions formed at the end of Steps 6 and 7 partition fillings. We also refer to

these as filled partitions (in contrast with the partitions of the vertices of dot diagrams prior to

filling). Now run over all ways to form dot diagrams in Step 3, all partitions of their vertices in

Step 4, and all ways to fill the partitions in each of the cases described (Steps 5–7). Let L be the list

of resulting partitions. For each Pf ∈ L, form the multipartite simplicial complex whose vertices

correspond to the labels among the blocks of Pf , organized into vertex components according

to the dot diagram from Step 3 and associated partition fillings, and whose facets correspond to

the blocks of Pf . Let C be the list of all of the resulting multipartite simplicial complexes, up to

simplicial isomorphism.

When computing explicit examples, particular shortcuts can be taken; for instance, when form-

ing L, some partitions will have duplicate behavior so only one need to be written down. We

later focus on the particular example G3; for this example, the resulting partitions and their corre-

sponding combinatorial diagrams, both listed up to simplicial isomorphism of the combinatorial
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diagrams, are listed in the rightmost two columns of the tables in Chapter 6. In the following

theorem, we exhibit a surjective map from the set of multipartite simplicial complexes arising

from Algorithm 5.5.4 to the set of combinatorial diagrams. This will show that all combinatorial

diagrams can be generated from Algorithm 5.5.4.

Theorem 5.5.5. Let Gn = G1×G2×· · ·×Gn where each Gi is nonabelian and |G1| = p1p2, |G2| =

p3p4, . . . , |Gn| = p2n−1p2n for distinct primes p1, p2, . . . , p2n with p2i−1 > p2i for all 1 ≤ i ≤ n.

There is a surjective map from the multipartite simplicial complexes arising from Algorithm 5.5.4

in C to the set of all combinatorial diagrams listed up to simplicial isomorphism.

Proof: (⇒) Claim: Let D be a multipartite simplicial complex arising from Algorithm 5.5.4.

We show that D is a combinatorial diagram (namely, we take the identity map ι from the set of

multipartite simplicial complexes in C from Algorithm 5.5.4 to the set of combinatorial diagrams,

and first show the image of this map is indeed a combinatorial diagram). To do so, we first show

that D is a minimal cover of its vertices.

1. First, we show that D contains at least two vertices in each component. In Step 3 of Algo-

rithm 5.5.4 (the dot diagram), every component contains exactly 0, 1, or 2 vertices.

• If every component contains 2 vertices, we are done.

• If some vertex component contains exactly 1 vertex in Step 3, then k ≥ 3 and we

fill the remaining partition blocks with at least 2 occurrences of a distinct subgroup

corresponding to a second vertex. All such vertex components contain two vertices by

the end of Step 6.

• If some vertex component contains no vertices in Step 3, then by the end of Step 7 the

partition blocks are filled with either exactly two or at least three distinct subgroups.

These correspond to distinct vertices.

2. Second, we show that removing a facet from D results in some vertex component having

fewer than two vertices. Every facet F of D corresponds to a block of a partition, and consists
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of at least one element u∗ from Step 4 (a unique selling point) since the blocks in the partition

from Step 4 are nonempty. Removing F from D removes the vertex corresponding to the

unique occurrence of u∗ in the filled partition which corresponds to D. In Algorithm 5.5.4,

the only case where a vertex component can have strictly more than two distinct vertices

is in the case where that vertex component contained no vertices in Step 3, i.e. no unique

selling points (in the other cases, each vertex component has exactly two vertices after any

partition fillings in Steps 5–7). So in the vertex component containing the vertex associated

to u∗, there are a total of two distinct vertices in D. Thus removing the facet containing u∗

removes the vertex corresponding to u∗, leaving that vertex component with only one vertex.

Thus D is a minimal cover of its vertices.

We next show that D ∈ S as in Theorem 5.4.7. Namely, we show that D with k facets has

vertex type (T1, T2, . . . , Tn) where r of the Ti satisfy 2 ≤ Ti ≤ min{k, p2i−1+1} where 0 ≤ r ≤ m

with

m =















n− k
2

if k is even

n− k+1
2

if k is odd

and all other Ti’s equal 2.

1. If every vertex component in Step 3 has two vertices, then no additional vertices are intro-

duced (as there is no additional filling in the later steps). So Ti = 2 for all 1 ≤ i ≤ n. In

other words, D has type (2, 2, . . . , 2).

2. If some vertex component in Step 3 has exactly one vertex, then exactly one more vertex is

introduced in that component during the filling process. So Ti = 2 for all 1 ≤ i ≤ n. Thus

D has type (2, 2, . . . , 2).

3. If, for some 1 ≤ i ≤ n, the ith vertex component contains no vertices in Step 3, then in Step

7 we will fill the ith vertex component with either vertices representing exactly two distinct

subgroups (in which case Ti = 2), or with vertices representing at minimum three and

maximum min{k, p2i−1+1} distinct subgroups (in which case 2 < Ti ≤ min{k, p2i−1+1}).
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We show that the maximum number of vertex components which contain no vertices in

Step 3 is n − k
2

(if k is even) or n − k+1
2

(if k is odd). Let u be the number of vertices

in the dot diagram, where k ≤ u ≤ 2n. If u = k, this corresponds to the case with the

maximum number of empty vertex components in the dot diagram (for if u > k, fewer

vertex components are empty). Assume u = k.

To maximize the number of empty vertex components in the dot diagram in Step 3, we fill

as few as possible of the n vertex components with the u = k vertices. To do so, if k (and

thus u) is even we can fill a minimum of k
2

vertex components with two vertices each; in

this case n − k
2

vertex components remain empty. If k (and thus u) is odd, we can fill a

minimum of k+1
2

vertex components so that one of those components has exactly one vertex

and the rest have two vertices. In this case, n− k+1
2

vertex components remain empty. Thus

the maximum possible number of empty vertex components in the dot diagram in Step 3 is

n− k
2

(if k is even) or n− k+1
2

(if k is odd).

Thus D ∈ S . It follows that D is a combinatorial diagram.

(⇐) Claim: We now show the map ι is surjective. Let D be a combinatorial diagram with k

facets. Then D corresponds to an independent facet I = I(D) by Theorem 5.4.7. We show that D

arises from Algorithm 5.5.4. In other words, we identify k, u, an associated dot diagram U(I), a

partition P of the vertices in U(I), and a specific filling Pf of P , as follows.

The number of facets k in D equals the number of tuples in I . Naïvely, k ≥ 1. By Lemma

5.3.4, k ≤ 2n since I is an independent facet. This value of k corresponds to the value of k in

Algorithm 5.5.4. Let U(I) be the dot diagram of I , as defined in Definition 5.5.1 (in practice, U(I)

can be identified directly from D by identifying all vertices which are contained in only one facet

of D). Let u be the number of vertices in U(I), namely the total number of unique selling points of

I . Then u ≥ k since I has k tuples and each tuple has at least one unique selling point by Lemma

5.2.2. By Lemma 5.3.2, u ≤ 2n since each of the n tuple components contains at most two unique

selling points. Let P be the partition of the vertices in U(I) whose blocks are given by the set of
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unique selling points in each tuple of I . Let Pf be the partition of the vertices of D whose blocks

are given by the set of all nonidentity elements in each tuple of I .

We show that Pf can be recognized as being obtained from P by one of the fillings described

in Steps 5, 6, and 7 of Algorithm 5.5.4.

• (Step 5) If every vertex component of U(I) has two vertices, we are done.

• (Step 6) If for some 1 ≤ i ≤ n, the ith vertex component of U(I) has exactly one vertex, then

since D corresponds to I , by Lemma 5.3.3 exactly one additional subgroup is represented

in πi(U(I)). This additional subgroup is not a unique selling point, so occurs at least twice.

Thus k ≥ 3, so there is room to fill P as described in Step 6 of Algorithm 5.5.4.

• (Step 7) If for some 1 ≤ i ≤ n, the projection πi(U(I)) has no vertices, then Remark 5.4.3

gives the number of possible subgroups represented in πi(U(I)), as follows:

1. If k ≥ 4, it is possible that πi(U(I)) contains exactly two distinct nontrivial subgroups.

Here, we require k ≥ 4 since each of these two subgroups must occur at least twice,

since they are not unique selling points.

2. If k ≥ 3, πi(U(I)) can contain m distinct nontrivial subgroups, where 3 ≤ m ≤

min{k, p2i−1+1} (there is no requirement that any of these subgroups occur more than

once, though they can; we only require that at least three distinct nontrivial subgroups

are represented; hence k ≥ 3).

Thus Pf arises from P in Algorithm 5.5.4. Forming the corresponding multipartite simplicial

complex as described in the last paragraph of Algorithm 5.5.4, we obtain D. Thus D arises from

Algorithm 5.5.4, so ι is surjective. �
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Chapter 6

Example: Independent facets for G1 ×G2 ×G3

To illustrate Theorem 5.4.7 and Algorithm 5.5.4, we describe how to generate the independent

facets of G1 ×G2 ×G3 where the Gi are nonabelian with orders |G1| = p1p2, |G2| = p3p4, |G3| =

p5p6. Here, the pi are distinct primes with p1 > p2, p3 > p4, p5 > p6, and n = 3 and 2 ≤ k ≤ 6.

6.1 Applying Algorithm 5.5.4

Tables 6.1 and 6.2, appearing at the end of this chapter, record the steps to compute all combi-

natorial diagrams for G3. We describe the general process to obtain the entries in these tables for

Gn. Fix k, the number of tuples in an independent facet I . For each k ≤ u ≤ 2n (see Remark

5.5.3), form a dot diagram with u vertices, arranged among n vertex components where each com-

ponent has 0, 1, or 2 vertices. Label these vertices according to their vertex components. These u

vertices will be the unique selling points in I . Then list all possible partitions of these u unique

selling points into k blocks, where each block contains no more than one vertex label from each

component. We list whether the resulting partitions are valid (correspond to some combinatorial

diagram after filling) or invalid. In the penultimate column of the tables, we list all possible parti-

tion fillings for each partition. The last column refers to the corresponding combinatorial diagrams.

These combinatorial diagrams are illustrated in Figures 6.5 and 6.6, which appear at the end of this

chapter.

Algorithm 5.5.4 outlines numerical restrictions to ensure there is ample room for elements

which are not unique selling points. For instance, if k = 3 and we have the dot diagram in Figure

6.1 with partition A1|A2|B1, then although there is room to place a copy of B2 into each of the

first two blocks, the two distinct nontrivial subgroups C1 and C2 cannot be inserted each with mul-

tiplicity two. However, three distinct nontrivial subgroups C1, C2, and C3 can be inserted, one in

each block. This is a particular instance of Step 7 in Algorithm 5.5.4. The resulting partition filling

and combinatorial diagram are listed in Table 6.2, corresponding to the combinatorial diagram (i).
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Figure 6.1: Dot diagram with partition A1|A2|B1

Some partitions do not give rise to valid partitions. For instance, suppose that k = 2, u = 4,

and we have the dot diagram shown in Figure 6.2 with partition A1|A2B1C1 where two vertex

components have only one vertex each (see Step 6 in Algorithm 5.5.4). In this case, there are

not enough blocks in the partition to insert multiple occurrences of distinct nontrivial subgroups

B2 and C2. The partition A1|A2B1C1 is invalid, as it will not give rise to an independent facet.

We indicate in Tables 6.1 and 6.2 which partitions are valid and which are invalid, omitting dot

diagrams for those which are invalid.

Figure 6.2: Dot diagram with partition A1|A2B1C1

Once a partition of unique selling points in the fourth column of Tables 6.1 and 6.2 is deemed

valid, we insert any remaining variables from {A1, A2, B1, B2, C1, C2} (etcetera for other values

of n) which do not already occur into the partition according to Algorithm 5.5.4.

For example, consider the partition A1|B1|B2C2|C1 (corresponding to the first entry k = 4 and

u = 5 in Table 6.1). The only variable which does not occur is A2, which can be inserted into the

last three blocks in
(

3
2

)

+
(

3
3

)

= 4 different ways:

A1|A2B1|A2B2C2|C1 (6.1)

A1|A2B1|B2C2|A2C1 (6.2)

A1|B1|A2B2C2|A2C1 (6.3)

A1|A2B1|A2B2C2|A2C1 (6.4)
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This gives rise to the independent facets which have group superstructures

{(A1, 1, 1), (A2, B1, 1), (A2, B2, C2), (1, 1, C1)}

{(A1, 1, 1), (A2, B1, 1), (1, B2, C2), (A2, 1, C1)}

{(A1, 1, 1), (1, B1, 1), (A2, B2, C2), (A2, 1, C1)}

{(A1, 1, 1), (A2, B1, 1), (A2, B2, C2), (A2, 1, C1)}

respectively. Partitions (6.1) and (6.3) (and their associated group superstructures) correspond

to the combinatorial diagram (h), partition (6.2) to (j) and partition (6.4) to (p) in Tables 6.1 and

6.2 and Figures 6.5 and 6.6.

6.2 Simplicial Perspectives

We can view each of these combinatorial diagrams as being constructed directly as a simplicial

complex from a simpler simplicial complex. For example, the complex (h) can be constructed by

starting with the simplicial complex corresponding to the partition A1|B1|B2C2|C1 of its unique

selling points (Figure 6.3, left) and forming the convex hull of A2 with the other vertices in each

block of the partition where A2 occurs. Figure 6.3 (right) shows one such resulting complex,

associated with the partition A1|A2B1|A2B2C2|C1.

B1

B2

A1

C2

C1

Usp Partition of (h)

B1

B2

A2

A1

C2

C1

Constructing (h)

Figure 6.3: Construction of (h) from its Usp Partition
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Figure 6.4 depicts all four of these deconstructions, using the same coloring scheme. Since

only one vertex, A2, is not a unique selling point, this construction can be interpreted as taking a

join (see Definition 2.2.7) of the vertex A2 with each allowable subset (i.e. respecting that filled

partition blocks should not contain vertices from the same vertex component) of the vertices in the

original partition.

B1

B2

A2

A1

C2

C1

A1|A2B1|A2B2C2|C1

B1

B2

A2

A1

C2

C1

A1|A2B1|B2C2|A2C1

B1

B2

A2

A1

C2

C1

A1|B1|A2B2C2|A2C1

B1

B2

A2

A1

C2

C1

A1|A2B1|A2B2C2|A2C1

Figure 6.4: Simplicial complex join deconstructions

This gives an idea for translation of the partition descriptions of combinatorial diagrams (after

the unique selling points are partitioned) to a constructive description given by joins of simplicial

complexes. Listing all possible combinatorial diagrams becomes easier when viewed as simplicial

complexes since they are much simpler to list up to automorphism than their partition counterparts;

and the partition description allows us to check that we have generated all such complexes. Ex-

panding on this translation seems promising based on examples computed, and would likely be a

fruitful direction to explore in the future.
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k = 6:

(a)

k = 5:

(a) (b) (c) (d) (e)

k = 4 (continued in Figure 6.6):

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v)

Figure 6.5: Combinatorial Diagrams for G3 (Part I)
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k = 4 (continued from Figure 6.5):

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

k = 3:

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

k = 2:

(a)

Figure 6.6: Combinatorial Diagrams for G3 (Part II)
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Table 6.1: Partitions of unique selling points (Part I)

k u Dot Diagram Partition of usps Valid? Partition Fillings Diagram

6 6 A1|A2|B1|B2|C1|C2 yes A1|A2|B1|B2|C1|C2 (a)

5 5 A1|B1|B2|C1|C2 yes A1|A2B1|A2B2|C1|C2 (b)

A1|A2B1|B2|A2C1|C2 (e)

A1|A2B1|A2B2|A2C1|C2 (c)

A1|A2B1|A2B2|A2C1|A2C2 (d)

6 A1|A2|B1|B2C2|C1 yes A1|A2|B1|B2C2|C1 (a)

4 4 A1|A2|B1|C1 yes A1B2C2|A2B2C2|B1|C1 (c)

A1B2C2|A2B2C2|B1C2|C1B2 (a)

A1B2C2|A2B2C2|B1C2|C1 (b)

A1B2|A2B2C2|B1C2|C1B2 (d)

A1B2|A2B2C2|B1C2|C1 (e)

A1|A2B2C2|B1C2|C1B2 (f)

A1B2|A2C2|B1C2|C1B2 (g)

A1|A2|B1|B2 yes A1C1|A2C1|B1C2|B2C2 (r)

A1C1|A2C2|B1C1|B2C2 (q)

A1C1|A2C2|B1C3|B2 (s)

A1C1|A2C2|B1C3|B2C3 (u)

A1C1|A2C3|B1C2|B2C3 (v)

A1C1|A2C2|B1C3|B2C4 (t)

5 A1|B1|B2C2|C1 yes A1|A2B1|A2B2C2|C1 (h)

A1|A2B1|B2C2|A2C1 (j)

A1|A2B1|A2B2C2|A2C1 (p)

A1C2|B1|B2|C1 yes A1C2|A2B1|A2B2|C1 (i)

A1C2|A2B1|B2|A2C1 (k)

A1C2|A2B1|A2B2|A2C1 (o)

6 A1|A2|B1C1|B2C2 yes A1|A2|B1C1|B2C2 (n)

A1C1|A2|B1|B2C2 yes A1C1|A2|B1|B2C2 (m)

A1|A2B2C2|B1|C1 yes A1|A2B2C2|B1|C1 (l)
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Table 6.2: Partitions of unique selling points (Part II)

k u Dot Diagram Partition of usps Valid? Partition Fillings Diagram

3 3 A1|B1|C1 yes A1B2C2|A2B1C2|A2B2C1 (h)

A1|A2|B1 yes A1B2C1|A2B2C2|B1C3 (i)

4 A1|A2C2|B1 yes A1B2C1|A2B2C2|B1C1 (c)

A1|A2|B1C2 yes A1B2C1|A2B2C1|B1C2 (a)

A1|A2B1|B2 yes A1C1|A2B1C2|B2C3 (j)

5 A1|B1C1|B2C2 yes A1|A2B1C1|A2B2C2 (b)

A1C1|B1|B2C2 yes A1C1|A2B1|A2B2C2 (f)

A1B2C2|B1|C1 yes A1B2C2|A2B1|A2C1 (d)

6 A1B2C1|A2C2|B1 yes A1B2C1|A2C2|B1 (e)

A1B2|A2C2|B1C1 yes A1B2|A2C2|B1C1 (g)

2 2 A1|B1 no

A1|A2 no

3 A1B2|B1 no

A1|B1C1 no

4 A1B1|A2C1 no

A1|A2B1C1 no

A1B1|A2B2 no

5 A1B1C1|A2B2 no

6 A1B1C1|A2B2C2 yes A1B1C1|A2B2C2 (a)

1 1 A1 no

2 A1B1 no

3 A1B1C1 no

4 none no

5 none no

6 none no
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Chapter 7

Example: Counting the number of independent

facets for G3

Once a list of combinatorial diagrams is obtained for Gn for a particular choice of n, one is faced

with the task of counting how many independent facets arise from each combinatorial diagram on

the level of elements. We provide an example of how one might perform this count. The process

feels very similar to graph (vertex) coloring or simplicial complex (vertex) coloring problems, yet

with slightly different criteria.

The vertices in each vertex component of the combinatorial diagrams shown in Figures 6.6 and

6.5 can be labeled as follows. If there are exactly two vertices in a vertex component, the vertices

can be labelled by pi, pi+1 or pi+1, p
′
i+1 where i ∈ {1, 3, 5} according to the appropriate vertex

component. Here, the vertex labeling pi+1, p
′
i+1 indicates that each vertex represents an element

from a distinct subgroup of order pi+1 (so that pi+1, p
′
i+1 represent two distinct subgroups of order

pi+1). Depending on the symmetry of the combinatorial diagram, in some cases we will want to

consider ordering to matter in these labelings. We provide an explicit example which illustrates

this point and is indicative of the process involved to compute counts for generic combinatorial

diagrams.

Consider the combinatorial diagram (b) for k = 3 where the vertices correspond to distinct

subgroups of order p2, p4, and p6 (in the appropriate components). We count the number of inde-

pendent facets arising from (b). These facets have the form

{(p2, 1, 1), (p2
′, p4, p6), (p2

′, p4
′, p6

′)}

where the pi, pi
′, and 1 represent orders of the containing subgroups; pi and pi

′ represent the

orders of two distinct subgroups of order pi, and the double occurrence of p2
′ indicates that two
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nonidentity elements (possibly distinct but not necessarily) are taken from a subgroup of order p2

(this subgroup is represented by p2
′). Figure 7.1 shows the corresponding combinatorial diagram

with labelled vertices.

(b)

p2

p2
′

p4

p4
′

p6

p6
′

Figure 7.1: Combinatorial diagram with labelled vertices

We count the number of independents sets to which this diagram gives rise. First, choose a

p2-Sylow subgroup (there are p1 subgroups of order p2), and a non-identity element from that

subgroup (p2− 1 choices). This subgroup corresponds to the vertex labelled p2 in the figure. Next,

choose a different p2-Sylow subgroup (there are p1 − 1 remaining subgroups). This subgroup

corresponds to the vertex labelled p2
′ in the figure.

We consider two cases: (1) The two elements chosen from the subgroup represented by p2
′ are

distinct and (2) these elements are identical.

(1) Choose two distinct nonidentity elements from the chosen subgroup represented by p2
′ (there

are
(

p2−1
2

)

ways to do so).

(2) Choose one nonidentity element from the chosen subgroup represented by p2
′ (there are

p2 − 1) ways to do so.

In Case (1), fix an order for the two distinct elements from the subgroup p2
′ in which they

appear in the independent set tuples. Choose a subgroup of order p4 (there are p3 such subgroups),

and a non-identity element from that subgroup (p4 − 1 ways). Then choose a different subgroup

of order p4 (there are p3 − 1 remaining choices) and a non-identity element from that subgroup

(p4 − 1 ways). Then do the same for the two distinct subgroups of order p6.
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In Case (1), no double counting occurs since the entries corresponding to p2
′ are distinct.

In Case (2), we have only one element from p2
′. Proceed to choose elements of orders p4 and p6

as in Case (1). Now, since the tuple entries corresponding to p2
′ are identical, we obtain a double

count when choosing elements of order p4 and p6, so must divide the result by two.

The total number of independent facets arising from the diagram is:

p1(p2 − 1)(p1 − 1)(

(

p2 − 1

2

)

)p3(p4 − 1)(p3 − 1)(p4 − 1)p5(p6 − 1)(p5 − 1)(p6 − 1)

+
1

2
p1(p2 − 1)(p1 − 1)(p2 − 1)p3(p4 − 1)(p3 − 1)(p4 − 1)p5(p6 − 1)(p5 − 1)(p6 − 1) (7.1)

where the first term corresponds to Case (1) and the second term to Case (2). Expression (7.1)

simplifies to

p1(p1 − 1)(p2 − 1)p3(p3 − 1)(p4 − 1)2p5(p5 − 1)(p6 − 1)2
(

(

p2 − 1

2

)

+
1

2
(p2 − 1)

)

= p1(p1 − 1)(p2 − 1)p3(p3 − 1)(p4 − 1)2p5(p5 − 1)(p6 − 1)2
((p2 − 1)(p2 − 2)

2
+

1

2
(p2 − 1)

)

= p1(p1 − 1)(p2 − 1)p3(p3 − 1)(p4 − 1)2p5(p5 − 1)(p6 − 1)2
1

2
(p2 − 1)2

=
1

2
p1(p1 − 1)(p2 − 1)3p3(p3 − 1)(p4 − 1)2p5(p5 − 1)(p6 − 1)2

= 4

(

p1
2

)

(p2 − 1)3
(

p3
2

)

(p4 − 1)2
(

p5
2

)

(p6 − 1)2

Counts for the remaining diagrams can be obtained using similar combinatorial arguments.
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Chapter 8

Conjectures and Future Directions

Independence complexes of dihedral groups exhibit nice structural properties in small exam-

ples. We have preliminary results (not included in this paper) showing how the independence

complex of the dihedral group D2pq of order 2pq can be constructed from the cyclic group Cpq of

order pq, where p and q are distinct odd primes. More generally, one could explore whether inde-

pendence complexes for certain nonabelian groups can be built from the independence complexes

of abelian groups. Classifying the independence complexes of dihedral groups of restricted or-

der would be another interesting class of nonabelian examples to explore. From a group-theoretic

viewpoint, dihedral groups naturally generalize to metacyclic and metabelian groups.

Dihedral groups have a cyclic normal subgroup N consisting of all rotations, and the factor

group D2n/N is cyclic. A natural question to ask is whether behavior and properties of the inde-

pendence complexes arising from dihedral groups generalize to the class of finite groups G that

have a cyclic normal subgroup N with G/N cyclic (such groups are called metacyclic), possibly

with restricted order conditions. Metabelian groups (those having an abelian normal subgroup such

that the quotient is abelian) are also a natural class of groups to consider. Recall the generating

graph defined in [11]. In this context, it is known that if there is at most one isolated vertex (i.e. an

element g such that when g is combined with any other element in the group, the pair still generates

only a proper subgroup of G) in the generating graph, then for every non-trivial normal subgroup

N of G, the factor group G/N is cyclic. It is possible that a related result could exist in the context

of independence complexes.

Combinatorial diagrams are interesting objects in themselves. An interesting problem would

be to count the number of combinatorial diagrams on certain vertex types; though this additionally

has applications in group theory, it is an interesting combinatorial problem in itself.

As mentioned in Section 7, counting the number of independent facets which arise from a

combinatorial diagram share flavors with graph (vertex) coloring and simplicial complex (vertex)
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coloring. It would be interesting to investigate some of these similarities, and to see whether one

can draw parallels between these areas.

Other objects that would be interesting to investigate are the f -vectors and h-vectors of inde-

pendence complexes. In general, it is common to look for unimodality of h-vectors. Unimodality

of f -vectors, however, is relatively rare, and thus results about unimodal f -vectors are particularly

interesting. We have computed some data with GAP which supports the following conjecture.

Conjecture 8.0.1. The f -vector of the independence complex of Cp1 ×Cp2 × · · · ×Cpn where the

primes pi are distinct is unimodal.

Expanding on the translation between generating partitions in Algorithm 5.5.4 and direct sim-

plicial, combinatorial constructions is a fruitful area to explore. See Section 6.2 for more details.

Developing more code which severely restricts the group type and computes combinatorial

diagrams or independence complexes utilizing these restrictions would be useful in exploring the

independence complexes of other classes of finite groups.
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Appendix A

GAP Code

A.1 GAP: Ainc.txt

## Ainc.txt

## Contents: makeAinc and supporting functions makeAutoOrbitsGroup,

## isIndependentSet

## Final 5/31/2021 version for Dissertation "Independence

## Complexes of Finite Groups"

## Generates orbits under automorphism group action of all sets

## of size 2...size of group elements of G

makeAutoOrbitsGroup:=function(G,size)

local L, aut, ElmtsNZ, k, groupOrb;

L:=[];

aut:=AutomorphismGroup(G);

ElmtsNZ:=Difference(Elements(G),[Identity(G)]);

for k in [2..size] do

groupOrb:=Orbits(aut,Combinations(ElmtsNZ,k),OnSets);

Append(L,groupOrb);

od;

return L; #returns group orbits of all sets of group elements

end;
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## Input: Finite group G, independent set S

## Output: List of all automorphic images of S under every automorphism

## of G

## i.e. calculates the orbit of a set S under action of all elements of

## Aut(G)

generateAutomorphicImages:=function(G,S)

local aut, orb;

aut:=AutomorphismGroup(G);

orb:=Orbits(aut,[S],OnSets);

return orb[1]; #removes outer brackets

end;

## A set I of group elements is independent if for all elements g in I,

## removing g results in a strictly smaller subgroup generated.

## isIndependentSet runs through elements g in I; if for some g in I

## we have <I>=<I/g>, then computation stops as I is not independent.

## If for all g in I, <I/g> < <I>, then I is independent and function

## returns true.

## Input: Finite group G, subset S of nonzero elements of G

## Output: true if S is an independent set of G, false otherwise

isIndependentSet:=function(G,S)

local indep, g;

indep:=true;
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for g in S do

if Subgroup(G,S)=Subgroup(G,Difference(S,[g])) then

indep:=false;

break; #at the first redundant element, break

fi;

od;

return indep;

end;

## Generates Ainc(G), the Automorphism Independence Complex of a finite

## group G

## Generates all orbits of G under action of automorphism group

## Picks a single representative from each orbit (the first)

## Check if representatives are independent, keep the ones that are

## Input: Finite group G, desired size of independent sets size, bool

## generateFullIndepCplx (generates list of full orbits if true), bool

## showNonIndep (if true, displays non-independent sets. If false, does

## not)

## Output: record with info about orbit representatives for Ainc(G):

## r.allFacets: List of all facets of length size, organized as a

## list of orbit lists

## r.orbSizes: List of lengths of each orbit

## r.orbitsPoly: Full list of facets, separated by orbit

## r.polyFacets: Full list of facets, no orbit separation,

## formatted for polymake input

## Prints (additionally, and optionally)

## Total number of orbits
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## r.orbSizes: Size of each orbit

## r.allFacets: All facets of independence complex, according to

## orbit

## Example call for main function:

## makeAinc(G,3,true,false);

makeAinc:=function(G,size,generateFullIndepCplx,showNonIndep,r)

local L, S, l, j, o, f, e, a, b, A, orbs, orbReps, keep,

indepNonFacets, orbitOfS, polymakeL;

r.allFacets:=[];

r.orbSizes:=[];

r.polyFacets:=[];

r.orbitsPoly:=[];

L:=[]; #list of independent facet orbit representatives

orbReps:=[];

#allFacets:=[];

indepNonFacets:=[];

polymakeL:=[];

#orbSizes:=[];

keep:=false;

##SetReducedMultiplication(G); #If G is defined via SmallGroup,

# then comment out line

orbs:=makeAutoOrbitsGroup(G,size);

for o in orbs do

Append(orbReps,[o[1]]);
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#Append(indicesList,[Position(orbs,o)]);

od;

for S in orbReps do

if isIndependentSet(G,S)=true then

Append(L,[S]);

fi;

od;

for S in L do #make sure you’re only keeping facets

for A in L do

if (A in L and Length(A)<Length(S) and IsSubset(S,A)=true) then

Remove(L,Position(L,A));

elif (S in L and Length(S)<Length(A) and IsSubset(A,S)=true) then

Remove(L,Position(L,S));

fi;

od;

od;

if showNonIndep=true then

Print("Non-independent orbit reps and indep set reps that are not

facets:");

Print(Difference(orbReps,L));

Print("\n");

fi;

if generateFullIndepCplx=true then
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for S in L do

orbitOfS:=generateAutomorphicImages(G,S);

Append(r.allFacets,[orbitOfS]);

od;

Print("All facets of independence complex, according to orbit:");

Print(r.allFacets);

Print("\n");

fi;

Print("There are ");

Print(Length(r.allFacets));

Print(" orbits.");

Print("\n");

Print("Sizes of orbits are: ");

for l in r.allFacets do

Append(r.orbSizes,[Length(l)]);

#Print(Length(l));

#Print(",");

od;

Print(r.orbSizes);

Print("\n");

Print("List of representatives of each orbit (facet reps in Ainc):");

Print(L);

Print("\n");

Print("Record is returned with allFacets, orbSizes:");

#return L; #orbits

#return allFacets;

#makes list of facets to feed into polymake (good)

for o in r.allFacets do
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for f in o do

for e in f do

a:=List(f,e->Position(Elements(G),e));

od;

Append(r.polyFacets,[a]);

od;

od;

#makes list of facets to feed into polymake, with labels 0,1,2,3,...

#Makes list of orbits with polymake labels 9/5/19

#For copy and paste into polymake

for o in r.allFacets do

for f in o do

for e in f do

r.orbitsPoly:=List(r.allFacets,o->List(o,f->List(f,e->

Position(Elements(G),e))));

od;

od;

od;

return r; #returns record

end;

A.2 GAP: mainGAP.txt

## mainGAP.txt

## Final 5/31/2021 version for Dissertation "Independence

## Complexes of Finite Groups"
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## To run in GAP in Terminal, first call Ainc.txt by typing:

Read(".../Ainc.txt");

## where ... represents the filepath

r:=rec();

## Sample input for GAP:

## Form a finitely presented group

## (a) by specifying element orders

#C2xC4

G:=AbelianGroup(IsFpGroup,[2,4]);

## or (b) by specifying generators and relations

## for C3xQ8

f:=FreeGroup("a","i","j","k");

rels:=ParseRelators(f,"a3,i4,j4,k4,i2=j2,i2=k2,

j2=k2,(ij)4,(ik)4,(jk)4,[i,a],[j,a],[k,a],ijk=i2");

## for C4xQ8

f:=FreeGroup("a","i","j","k");

rels:=ParseRelators(f,"a4,i4,j4,k4,i2=j2,i2=k2,

j2=k2,(ij)4,(ik)4,(jk)4,[i,a],[j,a],[k,a],ijk=i2");

## for C3xQ8xQ8
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f:=FreeGroup("a","i","j","k","x","y","z");

rels:=ParseRelators(f,"a3,i4,j4,k4,x4,y4,z4,i2=j2,

i2=k2,j2=k2,x2=y2,x2=z2,y2=z2,(ij)4,(ik)4,(jk)4,

(xy)4,(xz)4,(yz)4,[i,a],[j,a],[k,a],[x,a],[y,a],[z,a],

ijk=i2,xyz=x2,[x,i],[x,j],[x,k],[y,i],[y,j],[y,k],[z,i],[z,j],[z,k]");

## for C3xC7xQ8xQ8

f:=FreeGroup("a","b","i","j","k","x","y","z");

rels:=ParseRelators(f,"a3,b7,i4,j4,k4,x4,y4,z4,i2=j2,i2=k2,

j2=k2,x2=y2,x2=z2,y2=z2,(ij)4,(ik)4,(jk)4,(xy)4,(xz)4,(yz)4,

[i,a],[j,a],[k,a],[x,a],[y,a],[z,a],[i,b],[j,b],[k,b],[x,b],[y,b],[z,b],

[a,b], ijk=i2,xyz=x2,[x,i],[x,j],[x,k],[y,i],[y,j],[y,k],[z,i],[z,j],

[z,k]");

G:=f/rels;

StructureDescription(G);

SetReducedMultiplication(G);

myrec:=makeAinc(G,2,true,false,r);
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Appendix B

Polymake Code

B.1 Polymake: mainPolymake.txt

## mainPolymake.txt

## Input: Record output r.polyFacets from mainGAP.txt and Ainc.txt,

## copy and pasted and padded with any unused vertices

## In Polymake:

application ’topaz’;

## GAP outputs from mainGAP.txt and Ainc.txt a list of facets

## r.polyFacets, e.g. [[0,1,2],[2,3,4],[3,4,5],[5,6,7],[7,8,9]]

## and a list of orbits

## [[[0,1,2],[2,3,4]],[[3,4,5],[5,6,7],[7,8,9]]]

## Note that GAP outputs facets of one size at a time; to visualize the

## full complex in Polymake, generate facets of each size separately

## in GAP.

## In Polymake, copy and paste orbit list (r.orbitsPoly) and facet list

## (r.polyFacets) into the following commands from GAP’s record

## output, padding entries according to the following note.

## NOTE: Polymake requires, for technical reasons, that all vertex

## labels appear in the list of facets and orbits. To fix this, one

## can manually add in an extra facet, and an orbit containing that,

## or those, facets, with any unused vertices. For instance, if

## G=C2xC4 then r.polyFacets is the list
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## [[2,4],[2,9],[2,5],[3,4],[2,6],.....] of facets, none of which

## contains vertices 0 or 1, and one should add the facet [0,1]. The

## orbit [[0,1]] should also be added to r.orbitsPoly; i.e. resulting

## in [[[2,4],[2,9],[2,5],[3,4],[2,6],.....],[[0,1]]]. This new facet

## and new orbit are artificial and can be disregarded when

## viewing the final complex.

## Copy padded r.orbitsPoly here

$orbitList= new Array<Array<Array<Int>>>

([[[0,1,2],[2,3,4]],[[3,4,5],[5,6,7],[7,8,9]]]);

## Copy padded r.polyFacets here

$facetList= new Array<Array<Int>>

([[0,1,2],[2,3,4],[3,4,5],[5,6,7],[7,8,9]]);

$s=new SimplicialComplex(INPUT_FACES=>$facetList);

## View with no group element labels, just vertex labels 1,2,3,...

$coloredFacets = new Array<Array<Int>>;

foreach(@$orbitList){$coloredFacets=$_, $s->VISUAL->

FACES($coloredFacets, FacetColor=> new RGB(rand,rand,rand));};

## One can also label the vertices with specified group element names.

## We include a few examples generated by hand, but this process

## could be automated.

## For C3xQ8, using SmallGroup(24,11)
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foreach(@$orbitList){$coloredFacets=$_, $s->VISUAL(VertexLabels=>

["","","f1", "f2", "f3", "f4", "f1*f2", "f1*f3", "f1*f4", "f2*f3",

"f2*f4", "f3^2", "f3*f4", "f1*f2*f3", "f1*f2*f4", "f1*f3^2",

"f1*f3*f4", "f2*f3^2", "f2*f3*f4", "f3^2*f4", "f1*f2*f3^2",

"f1*f2*f3*f4", "f1*f3^2*f4", "f2*f3^2*f4", "f1*f2*f3^2*f4" ])->

FACES($coloredFacets,FacetColor=> new RGB(rand,rand,rand));};

## For C3xQ8, using SmallGroup(24,11), with cleaner labels

foreach(@$orbitList){$coloredFacets=$_, $s->VISUAL(VertexLabels=>

["","","f1", "f2", "f3", "f4", "f1f2", "f1f3", "f1f4", "f2f3",

"f2f4", "f3^2", "f3f4", "f1f2f3", "f1f2f4", "f1f3^2",

"f1f3f4", "f2f3^2", "f2f3f4", "f3^2f4", "f1f2f3^2", "f1f2f3f4",

"f1f3^2f4", "f2f3^2f4", "f1f2f3^2f4" ])->

FACES($coloredFacets,FacetColor=> new RGB(rand,rand,rand));};

## For C4xQ8, using SmallGroup(32,26)

foreach(@$orbitList){$coloredFacets=$_, $s->VISUAL(VertexLabels=>

["","","f1", "f2", "f3", "f4","f5","f1f2", "f1f3", "f1f4", "f1f5",

"f2f3", "f2f4", "f2f5", "f3f4", "f3f5", "f4f5", "f1f2f3", "f1f2f4",

"f1f2f5", "f1f3f4", "f1f3f5", "f1f4f5", "f2f3f4", "f2f3f5",

"f2f4f5", "f3f4f5", "f1f2f3f4", "f1f2f3f5", "f1f2f4f5", "f1f3f4f5",

"f2f3f4f5", "f1f2f3f4f5"])->FACES($coloredFacets,FacetColor=>

new RGB(rand,rand,rand));};

## For C4xQ8, using the group element labels given by representation:

## f:=FreeGroup("a","i","j","k");
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## rels:=ParseRelators(f,"a4,i4,j4,k4,i2=j2,i2=k2,j2=k2,

(ij)4,(ik)4,(jk)4,[i,a],[j,a],[k,a],ijk=i2");

## G:=f/rels;

foreach(@$orbitList){$coloredFacets=$_, $s->VISUAL(VertexLabels=>

["","", "a^-1", "a", "i^-1", "i", "j^-1", "j", "k^-1", "k", "a^-1*i",

"a^-1*j", "a^-1*k", "a^2", "i^-1*a^-1", "i^-1*a", "i*a", "i^2",

"j^-1*a^-1", "j^-1*a", "j*a", "k^-1*a^-1", "k^-1*a", "k*a", "a^-1*i^2",

"i^-1*a^2", "i*a^2", "i^2*a", "j^-1*a^2", "j*a^2","k^-1*a^2", "k*a^2",

"i^2*a^2"])->

FACES($coloredFacets,FacetColor=> new RGB(rand,rand,rand));};

## Collections of facets in the final complex plotted in Polymake are

## colored according to orbit (there is one output file for each orbit)
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