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Chapter 1

INTRODUCTION

Biologists have been interested in Phylogenetics, the study o f evolutionary relatedness 

among various groups o f organisms, for more than 140 years. It has only been in the last 40 

years that advances in technology and the availability o f DNA sequences have led to statistical, 

computational and algorithmic work in determining evolutionary relatedness between species. 

Previously morphology, the outward appearance (shape, structure, color, and pattern) o f an or-

ganism, was the only way to determine the historical relationships between groups o f organisms 

or taxa ’ . Morphology relies on the fact that typically, closely related taxa differ less than dis-

tantly related ones, however there are exceptions to this generalization. For example the Earth-

worm and Flatworm have similar morphology but are contained in different taxa. Phylum is the 

taxon below kingdom and above class and the Earthworm is contained in the Phylum Annel-

ida while the Flatworm is contained in the Phylum Platyhelminthes. Partly, as a result o f these 

exceptions scientists are looking to DNA analysis to classify related organisms.

A topic o f interest in combinatorial phylogenetics is the reconstruction o f evolutionary trees. 

All statistical models used to reconstruct evolutionary trees, also known as phylogenetic trees, 

use genetic data available for presently extant species to determine historical relationships. Not 

surprisingly, phylogenetic trees are common in evolutionary biology where biologist use the 

trees to classify new species and determine relationships between known species. Applications

' For a list o f the major taxonomic ranks see page 118



o f phylogenetic trees are not restricted to evolutionary biology, instead the construction o f phylo-

genetic trees helps researchers answer questions in a variety o f fields. For example, evolutionary 

analysis o f how a virus, such as the influenza virus, evolves helps immunologists develop new 

vaccines. Phylogenetic analysis has also been used to gain insight into the Human Immunod-

eficiency Virus (HIV) [50]. Techniques used to create phylogenetic trees have even been used 

by linguists and anthropologists to determine how various cultures have spread across the globe 

[45].

Many techniques exist for inferring phylogenetic relationships from molecular data. One 

such technique involves making assumptions about the evolutionary process and incorporating 

these assumptions into a Markov model. The Markov model relates the rates at which substi-

tutions in the genetic data take place to the probabilities o f different substitutions taking place 

using the equation P =  exp (20  where P and Q are probability and rate matrices, respectively. 

Including the conjugation o f each side o f this equation by a Hadamard matrix allows the deriva-

tion o f invertible analytic formulae relating relative frequencies o f observed patterns from the 

genetic data to an estimation o f the phylogenetic tree that corresponds to the data.

In addition to providing the analytic formulae Hadamard conjugation also corrects for the 

number o f observed differences between genetic sequences. Since the succession o f two or 

more substitutions between sequences will not be observed directly, the number o f observed 

differences between sequences will be underestimated. In 1981 Motoo Kimura [44] derived a 

correction to estimate the number o f substitutions taking place in a three-substitution nucleotide 

model. It can be shown that this correction can be obtained using Hadamard conjugation^.

The usefulness o f Hadamard conjugation also stems from the fact that it provides a method 

to determine how likely an edge in a phylogenetic tree is to exist. Due to assumptions made 

in the evolutionary models, errors in the data and events such as hybridization and horizontal 

gene transfer it is unlikely that exactly one phylogenetic tree will fit the genetic data perfectly.

^For more information on this see [31]



The use o f Hadamard conjugation allows for examination o f the data to determine how tree-

like it is. At times complex evolutionary scenarios are poorly described by models assuming 

a tree and situations motivate the use of phylogenetic networks rather than phylogenetic trees. 

Phylogenetic networks are similar to phylogenetic trees in that vertices represent taxa while 

edges represent evolutionary relationships, however networks differ from trees in that they allow 

cycles. There are several types o f networks used to display phylogenetic data. One type o f 

phylogenetic network is a splits network. Splits networks serve several purposes such as to 

represent incompatibilities within and between data sets, to summarize a large collection o f trees 

resulting from multiple gene analysis, and to help determine if an incorrect evolutionary model 

was used. Due to the possible benefits o f using splits networks I extended the analysis o f Szekely 

et al [60] from phylogenetic trees to phylogenetic splits networks.

Despite the usefulness o f Hadamard conjugation it is limited by the number o f evolutionary 

models to which it can be applied. One of the objectives o f this paper is to examine when 

Hadamard conjugation can be used. Currently in the literature Hadamard conjugation has been 

used with group-based evolutionary models or submodels o f group-based models. I claim that 

depending on the type o f  genetic data being considered it is not necessary for the evolutionary 

model to satisfy the definition o f a group-based model as given in the literature.

The first chapter o f this paper contains the mathematical and biological background useful 

to understanding Hadamard conjugation and the discussion o f phylogenetic inference. Chapters 

2 and 3 discuss evolutionary models as well as how information obtained from genetic sequences 

can be used to determine the most likely phylogenetic tree given the data. In chapter 4 a result 

from Szekely et al [60] is extended to apply to phylogenetic networks and chapter 5 considers a 

different perspective on Hadamard conjugation. Chapter 6 examines whether the presence o f an 

abelian permutation group acting regularly is necessary to apply Hadamard conjugation. It also 

considers new connections between phylogenetics and combinatorics. Finally, chapter 7 raises 

questions for future work.



1.1 Mathematical Introduction

The following sections include a mathematical introduction and references as well as vo-

cabulary necessary to discuss topics which arise later in the paper.

1.1.1 Graphs and Phylogenetic Trees

A taxon is a group o f organisms which are inferred to be phylogenetically related and have 

characteristics which set them apart from other organisms. Historical relationships between taxa 

are often displayed on graphs with specific properties. The following section will introduce 

terminology to describe these graphs. It will also include a discussion o f splits which have 

played a large role in the mathematical development o f combinatorial phylogenetics.

Definition 1. [51 ]  A graph G is an ordered pair (V, E) consisting o f  a non-empty set V o f  vertices 

and a set E o f  edges each o f  which is an element o f  { { x ,y }  : x,y e  V}. The set o f  edges in a given 

graph G is denoted by E{G).

The biological meaning behind the graphs used in combinatorial phylogenetics implies that 

the graphs which arise are simple. Simple graphs are undirected graphs with the properties that 

no edge joins a single vertex to itself and no more than one edge joins any pair o f vertices. In 

addition to considering simple graphs, the assumption that there are no cycles in the graph is 

often made. A sequence o f vertices joined by edges such that there exists an edge connecting 

each vertex in the sequence to the next vertex in the sequence is known as a path. A  path in a 

graph that begins and ends with the same vertex is known as a cycle.

If two vertices V] and V2 in a graph G are joined by an edge e e  E {G ), V] and V2 are said to 

be adjacent or neighbors and edge e is said to be incident with vi and V2.

Definition 2. [25] The degree (or valence) o f  a vertex v in a graph G, denoted deg(v), is the 

number o f  edges incident with v.



A vertex with degree one is known as a pendant vertex. Pendant vertices play an important 

role in the graphs which arise in combinatorial phylogenetics. Trees, connected graphs with no 

cycles, are also important in combinatorial phylogenetic. Trees contain pendant vertices and 

these pendant vertices are often referred to as leaves. Any vertex in a tree that is not a leaf is 

known as an internal vertex.

It is usually assumed in phylogenetics that the trees discussed are binary trees. Binary trees 

have the property that every internal vertex is o f degree three. Scientists use binary trees to orga-

nize related organisms by assigning taxa to the leaves o f the tree and letting the edges in the tree 

represent evolutionary relationships between the taxa. Binary trees labeled in this fashion are 

known as phylogenetic trees. The taxa are generally represented by DNA sequences for a partic-

ular gene. These sequences are made up o f nucleotides, the structural units o f DNA. The hope is 

that information about the phylogenetic tree can be gained by looking at homologous nucleotide 

sequences, or nucleotide sequences which descend from a common ancestral sequence.

A rooted phylogenetic tree is a directed tree with a distinguished vertex r, called the root, 

such that for every other vertex v, there exists a uniqlie directed path from r to v. The taxon 

assigned to the root is the taxon from which all other taxa on the tree evolved. Phylogenetic trees 

that do not have this property are known as unrooted trees.

The following example demonstrates some o f the terminology introduced above.

Example 1. Consider the binary tree provided below.

Vertices 1,2 and 3 are the leaves o f  the tree while vertex s is an internal vertex o f  degree 3.



1.1.2 Representing Phylogenetic Trees

Phylogenetic trees can be uniquely represented by a specific collection o f subsets o f leaves. 

These subsets are known as splits and are formed by deleting an edge o f the tree T. Since 7" is a 

tree and contains no cycles deleting an edge creates two disjoint subgraphs such that each leaf of 

T will be contained in exactly one subgraph. The partition of the set o f leaves into two disjoint 

subsets is the split corresponding to the removed edge. It is important to notice that each edge 

removed from T creates a unique split.

Suppose the leaves o f a tree T are labeled 1,2, . .., «  where leaf n is the root vertex. When 

an edge is removed from T exactly one subset o f leaves, or split half, will contain the root vertex 

n. Let the split half not containing the root n be labeled A. Let the set ct(T) be composed o f all 

sets A corresponding to the edges in T . The following properties hold for the set o:

fO {1 ,2 ,- - • ,/7 -  1} e  aand {;■} 6 a  for all I G {1 ,2 ,- - • ,/i -  1}.

(ii) If P,P' e a th e n  p n p ' G {P ,P ',0 }. [54]

In addition to obtaining a set ol splits from a tree it is desirable to obtain a tree from a given 

set o f splits. In 1971 Peter Buneman  ̂ [10] stated a theorem which provides further information 

regarding the relationship between sets o f splits and phylogenetic trees.

Theorem 1. [54] Any collection o, o f  non-empty subsets o f  - ■ , n — 1} which satisfy (i) and

(ii) corresponds to G {T )for a unique unrooted phylogenetic tree T on {1, • • • ,n}. Furthermore, 

this tree can be recovered from G in polynomial time.

This theorem implies that any tree can be described by its set o f splits and that given a set of 

splits satisfying the above conditions a unique tree can be produced. If a set o f splits satisfies the 

above conditions the set o f splits is compatible. An equivalent definition o f a compatible split 

system is given below.

^Peter Buneman is a computer scientist who works in the areas o f database systems and database theory.



Definition 3. Let the edge e o f  the tree T define a split S =  {A, A '} where A and A' are two disjoint 

subsets o f  leaves such that AUA' =  . .n}. A system a  o f such splits is called compatible,

iffor any two splits =  {Ai ,A j} and Sj — {^ 2,^ 2} in a  one o f  the four intersections

AinA2, AinA2, A', nA2, a ', nA '2

is empty.

Many tree reconstruction methods use splits because o f the relationship between phylo-

genetic trees and compatible split systems. One such method which uses this relationship is 

Hadamard conjugation. Hadamard conjugation, which will be discussed in more detail later in 

the paper, takes a vector containing information regarding the genetic data representing the taxa 

being considered and transforms it into a vector containing values that indicate which splits are 

most likely to exist in the phylogenetic tree. Ideally the splits resulting from Hadamard conjuga-

tion are compatible and therefore correspond to a phylogenetic tree. In the case where the splits 

are not compatible a fitting algorithm is often used to determine which compatible set o f splits 

best fits the data. An alternative approach to fitting data to a tree is to represent the data with a 

splits network. Splits networks will be discussed in section 1.1.3.

The following examples illustrate the relationship between phylogenetic trees and splits.

Example 2. The splits from the tree given in example 1 on page 5 are produced by removing 

edges a, b. and c. The spilts produced are {1 }| {2 ,3 }, {1 ,3 }| {2 }, and {1 ,2 }| {3 }, respectively. 

In general only the split halves not containing the root vertex are recorded. If leaf 3 is the root 

the splits are { 1}, { 2 } and { 1,2 }.

Example 3. Below is a tree with leaves 1,2,3 and 4 and edges a ,b ,c ,d , and e.



Let vertex 4 be the root vertex. The splits produced by removing edges a ,b ,c ,d  and e are {1 }. 

{2 }. {1 ,2 }, {3 }, and {1 ,2 ,3 }  respectively. Notice that the split {2 ,3 }  is not a split o f  this tree 

because there is no edge, which when removed partitions the graph into subgraphs contain-

ing leaves {1 ,4 }  and {2 ,3 }. Out o f  the possible eight subsets containing 1. 2 and 3 only five 

correspond to edges in the graph.

The ability to uniquely describe a phylogenetic tree by a set o f splits has made splits ex-

tremely important in phylogenetic tree reconstruction methods. The connection between a set of 

splits and a phylogenetic tree has allowed splits to be used to describe the structure of a phyloge-

netic tree as well as used to index vectors containing information about the nucleotide sequences 

being considered.

Given the importance o f splits in the setting o f phylogenetic trees it is natural to think 

about splits in phylogenetic networks. Namely how would they be defined and are they useful in 

phylogenetic network reconstruction methods? The next section discusses splits in the context 

o f splits networks, a specific type o f phylogenetic network.

1.1.3 Splits Networks

Complex evolutionary scenarios are often poorly described by evolutionary models assum-

ing a tree. Although many situations are well described using phylogenetic trees there are both 

biological and statistical motivations for studying phylogenetic networks. Phylogenetic networks 

are similar to phylogenetic trees in that vertices represent taxa while edges represent evolution-

ary relationships, however networks differ from trees in that they allow cycles. Several types 

o f phylogenetic networks exist and the different networks attempt to explain different types of 

events. For example reticulate networks, which tend to look like phylogenetic trees with ex-

tra edges added, are used to explain events such as hybridization, genetic recombination and 

horizontal gene transfer. Hybridization is the interbreeding between two animals or plants of 

different taxa while genetic recombination is the process by which a strand o f genetic material



is broken and joined to a different DNA molecule. Horizontal gene transfer occurs when an or-

ganism incorporates genetic material from another organism without being the offspring o f that 

organism. A  phylogenetic tree cannot appropriately describe any o f these biological processes 

and therefore phylogenetic networks are necessary.

A second type o f phylogenetic network that will be examined in this paper is a splits net-

work. Splits networks serve several purposes such as to represent incompatibilities within and 

between data sets, to summarize a large collection o f trees resulting from multiple gene analysis, 

and to help determine if an incorrect evolutionary model was used.

In order to define a splits network a few preliminary definitions are necessary. The first is 

that o f a splits graph. There are a few characterizations o f splits graphs. The one used here is 

attributed to Wetzel [62]. Given a graph G with vertices u and v let d c{u ,v) denote the minimal 

number o f edges in any path from vertex u to vertex v. Next, let K be an edge coloring o f G. For 

each pair o f vertices u, v let Ck (m, v) denote the set of colors that appear on every shortest path 

from u to V.

Definition 4. [8 ] k  is an isometric coloring o f the graph G ifdciu^v) =  |Ck (u , v)|/br all pairs 

M, V e  V{G).

This implies that if there exists an isometric coloring then any two shortest paths between the 

same pair o f vertices have the same set o f edge colors and that the colors along any shortest path 

between vertices are distinct.

Definition 5. A connected graph is a splits graph if and only if it has an isometric coloring [62 ].

At this point it is possible to define a splits network. Suppose G is a splits graph and there 

exists a map (]): X V(G) where X is a finite set.

Definition 6. [8 ] A splits network is a pair =  (G,(])) such that

1. G is a splits graph,



2. each color class induces a distinct split o fX .

In biological applications X  is the set o f taxa being considered. Vertices o f degree one in a 

splits network are labeled by taxa just as the leaves o f  a phylogenetic tree are labeled by taxa. A  

splits network has the appearance o f a phylogenetic tree with parallel edges. The following is an 

example o f a splits network.

Example 4. Consider the set o f  set o f  four taxa {1 ,2 ,3 ,4 }  labeled on the splits network below.

L

’4

The different shades o f  gray represent an isometric coloring o f  the graph. The colors o f  the 

edges along any shortest path between vertices are distinct and any two shortest paths between 

two distinct vertices contain the same set o f  edge colors. Although there can be more than one 

shortest path between vertices in a splits network, the paths are essentially indistinguishable. 

Notice that the graph resulting from removing all edges o f a particular shade o f gray consists 

o f  precisely two connected components and therefore each color class induces a distinct split o f  

the vertices.

In a phylogenetic tree each split corresponds to exactly one edge. In the case o f a splits 

network, splits are formed by removing edges o f the same color class. For example removing 

the lightest gray edges from the splits network above results in the split {1 ,2 }| {3 ,4 }. There are 

6 color classes in the splits network above corresponding to six splits. The splits are:

{ {1}|{2,3,4}, { 1,2}|{3,4}, {1,3}|{2,4}, {1,3,4)|{2}. {1,2,4}|{3}, {1.2,3}|{4}}

10



Notice that this is not a compatible set o f splits. For example, consider the pair o f splits 

{1 ,2 }| {3 ,4 } and {1 ,3 }1 {2 ,4 }. By definition 3 on page 7 in order to be compatible one o f the 

four intersections { l , 2 } n { l , 3 } ,  { l , 2 } n { 2 ,4 } ,  { 3 , 4 } n { l , 3 } ,  { 3 ,4 } n { 2 ,4 }  must be empty, 

however this is not the case. Since the splits given above are not compatible they do not corre-

spond to a unique phylogenetic tree, instead the subsets o f the splits generated from the splits 

network in example 4 represent two different trees. The two trees are given in the next example.

Example 5. The two trees below can each be represented by a subset o f  splits from the splits 

network in example 4.

The tree on the left side can be described by the splits

{ {1 }| {2 ,3 ,4 } , {1 ,2 }| {3 ,4 }, {1 ,3 ,4 }| {2 }, {1 ,2 ,4 }| {3 }, {1 ,2 ,3 }| {4 }}  

while the tree on the right can be described by

{ {1 }| {2 ,3 ,4 } , {1 ,3 }| {2 ,4 }, {1 ,3 ,4 }| {2 }, {1 ,2 ,4 }1 {3 }, {1 ,2 ,3 }| {4 }} .

The ability to represent multiple phylogenetic trees in one splits network has several advan-

tages. In determining the historical relationships between a set o f taxa it is likely that multiple 

genes will be analyzed. It is also likely that looking at different genes will produce different phy-

logenetic trees. When multiple trees arise they can be summarized by a single splits network.

11



In addition to representing multiple trees, splits networks can also be used to determine if a 

systematic error, or mistake in the assumptions o f a model, has occurred. The two most common 

types o f errors are systematic and sampling errors. Sampling error is the random error resulting 

from a small sample size. With improvements in technology and the possibility o f analyzing 

larger nucleotide sequences sampling error is becoming less o f a concern than it was in the past. 

The hope is that if an appropriate evolutionary model is chosen the resulting splits network will 

be close to treelike. If the resulting splits network has a high number o f parallel edges relative to 

the number o f  taxa being considered it is possible a systematic error occurred.

A third benefit o f using splits networks is the ability to extract phylogenetic signals missed 

by tree-based methods. If the set o f splits produced using a tree-based method is not compatible 

a fitting algorithm is used to choose the most likely compatible set o f splits. This requires that at 

least one split must be ignored. In the case o f splits networks all splits can be displayed at once 

even when they are not compatible.

Unfortunately there is also a disadvantage to using splits networks instead o f phylogenetic 

trees, A compatible split system uniquely describes a phylogenetic tree, however this is not the 

case for splits networks. Instead, one split system can describe more than one splits network as 

shown in the next example.

Example 6. [8 ] Consider the set o f  splits

{ { 1,2 ,3} | { 4 ,5 ,6 ,7 }, { 2 ,3 ,4 } | { 1,5, 6 ,7},

{ 1,2 ,7} | { 3,4 ,5 ,6},  { 1,2 ,6 ,7 } | { { 3 ,4 ,5 } }

12



Despite the fact that a set o f non-compatible splits may correspond to more than one splits 

network, splits and splits networks are still useful. Splits can be defined for splits networks and 

can be used in the construction o f splits networks representing the historical relationships o f a 

set o f nucleotide sequences.

The focus in the next several subsections will provide a basic introduction to some o f the 

mathematics used in creating phylogenetic trees and networks.

1.1.4 Hadamard Matrices

Several nucleotide substitution models utilize a technique known as Hadamard conjugation. 

This technique will be introduced in section 1.1.5 and examined more closely throughout the 

paper. In order to use Hadamard conjugation the definition o f a Hadamard matrix is necessary.

Definition 7. A Hadamard matrix  ̂o f order n is an n x n matrix H with entries +1 and - 7, such 

that =  nl.

The set of Hadamard matrices of order 2" defined below are known as Sylvester matrices 

These matrices can be constructed recursively given

H o =  1]
1 1
1 - 1

77„+i =  7 /i 0 / 7 „ ,  where the Kronecker product A 0 B  is the matrix such that each entry a jj o f  A is

replaced by In other words, =  H\ <SiH„ =  

and the inverse o f a Sylvester matrix is H f ' =  2~"Hn

Example 7. The Hadamard matrix Hj o f order 2 .̂

Hn
Hn -H ,

These matrices are invertible

‘’ Named after the mathematician Jacques Hadamard, who introduced them in 1893. 

^They were first constructed by the mathematician J. J. Sylvester in 1867.

13



H2 =  Hx ® H x =

1 1  1 1 
1 - 1  1 - 1  
1 1 - 1 - 1  
1 - 1 - 1  1

1.1.5 Hadamard Transform

This section will provide a very brief introduction to the Hadamard transform as well as 

Hadamard conjugation. The Hadamard transform is known by many names, but is usually re-

ferred to by some combination o f the names Hadamard, Rademacher, Walsh and Sylvester re-

flecting the work done by J. Sylvester in 1867, Hadamard in 1893, Rademacher in 1922 and 

Walsh in 1923. The Hadamard transform H„ is given by a 2" x 2" Hadamard matrix. The ma-

trix transforms a vector of 2" real numbers atj , . . .  ,X2» into a vector o f real numbers with entries 

X|, . . .  ,X2«. A  very small example o f the Hadamard transform is the 2-point Hadamard transfor-

mation.

Example 8. Let x =

o f  the two entries in x, namely, y =  

Fourier transform [26].

Then y =  H]X implies that the entries o fy  are the sum and differences 

. This transform is the same as the 2-point discrete
X q  -t-X] 

X o-X i

Larger examples o f the Hadamard transform are possible using larger Hadamard matrices. 

For an A? =  2" dimensional vector x the transform o f the vector is given by y =  H„x and because 

the Hadamard matrix consists of entries o f -t-1 and -1 the entries in the vector y are found by 

adding and subtracting the components o f x.

The Hadamard transform has applications in a number o f areas including signal processing, 

data compression algorithms, video compression and combinatorial phylogenetics. In combina-

torial phylogenetics a technique known as Hadamard conjugation is used. Although there are 

several formulations o f Hadamard conjugation, it is essentially the multiplication o f rate and 

probability matrices by Hadamard matrices and their inverses. One benefit o f using Hadamard 

conjugation is that it corrects for the number o f substitutions which have actually taken place.
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Since the succession o f two or more substitutions between sequences will not be observed di-

rectly the number o f substitutions will be underestimated without some correction. Hadamard 

conjugation provides this correction.

The problem o f inferring a phylogenetic tree from observed sequences can be quite difficult 

for many nucleotide substitution models^. For some models however, Hadamard conjugation 

allows the derivation o f invertible analytic formula from the observed sequences which can be 

used to determine the appropriate phylogenetic tree.

The invertible formula relating observed sequences to a vector which encodes the tree T 

known as Hadamard conjugation are:

p =  /f~ 'e x p ( //q )  

q =  /f~ 'ln ( / /p ) .

The vector p gives the probabilities o f  each o f the 4" patterns o f nucleotide differences at a site, 

the q vector encodes T and model parameters on the edges o f T, and H is a Hadamard matrix. 

Later sections o f this paper will describe in more detail a few o f the equivalent formulations of 

Hadamard conjugation.

1.1.6 Continuous-time Markov Processes

A Markov processes can be in either discrete or continuous time and in either discrete or 

continuous space. The continuous-time Markov processes considered here will be in continuous 

time and take values from a discrete space. It turns out that these types o f Markov processes are 

useful in evolutionary modeling.

A continuous-time Markov process is a random process that satisfies the Markov property 

and takes values from a set called a state space. For the discussion here let F be a random 

variable that takes on values in some discrete space, but whose values change in continuous

^Information on nucleotide substitution models can be found in section 2.1 on page 34
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time. The Markov property is sometimes referred to as the memoryless property and is defined 

in the following way.

Definition 8. A continuous-time Markov process satisfies the Markov property if given 7= i at 

time u, then the probability that Y= j  at time u + t does not depend on the values o fY  before time 

u.

In other words, the probability of future states occurring in the process depends only on the 

present state and not on past states.

Continuous-time Markov processes are most commonly defined by specifying a set o f tran-

sition rates, qij, which give the rate at which state / will change to state j. The rate qtj is contained 

in the ( i j ) '^  entry o f a transition rate matrix Q. In order to ensure that the probabilities o f start-

ing in a given state and either ending up in a different state or ending in the same state add 

up to one there are a few constraints on the Q matrix. All entries q,] such that i j  must be 

nonnegative and diagonal entries <7/, =  so that row sums o f Q are equal to zero.

For processes where the state space is finite the transition probabilities can also be repre-

sented by a matrix. The transition probability matrix P{t) is a matrix whose rows and columns 

are indexed by the states and whose { i j ) ' ' '  entry is equal to pij =  Pr{Y„+\ =  j  \ Y„ =  i).

By using Kolmogorov’s backward equation j,P {t)  =  QP[t) with initial condition F(0) =  /, 

where 7 is the identity matrix it is possible to relate P{t) to 2  in a single equation. The unique 

solution to this differential equation is

P[t) =

For details on this derivation see [56].

1.1.7 Matrix Exponential

When considering continuous time Markov processes it is necessary to understand the ma-

trix exponential. This section provides a brief introduction to the matrix exponential as well as a 

few standard results. The definition and results can be found in [5].
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Definition 9. [5 ] Let A £ F"^". Then the matrix exponential £ F"^" or exp(A) £ F” ^" is the 

matrix
oo ,

k=0' -̂

This series converges for all A £ F"^

Proposition 2. [5 ] Let A £ F"^". Then the following statements hold:

1. e  ̂ is nonsingular and ( ^ ) “ ' =  e~^.

2. If A =  diag{A\,. . .  ,Ak), where Ai £ F"'^"'/;?/- all i =  I , . .. ,k, then e^ =  diag{e^ ' , . . .

3. IfS  £ F” ’ "̂ is nonsingular, then ê '̂  ̂ ' =  Se^S~\

Proposition 3. [5 ] LetA ,B  £ F"""'', then AB =  BA if and only if fo r  all t £ [0 ,oo),

^  r̂(A+B)

Corollary 1. [5 ] Let A ,B  £ F "’'", and assume that AB =  BA. Then

+ Be^e^ =  e^e^ =

The next several sections focus on combinatorial objects that will be used in chapter 6 ,

1.1.8 Coherent Configurations and Association Schemes

This section contains a mathematical introduction to association schemes as well as an 

introduction to a more general combinatorial object known as a coherent configuration. Associ-

ation schemes were first used by R. C. Bose in experimental design in statistics. Since then they 

have been used to study various topics in combinatorics.

Both association schemes and coherent configurations can be defined in terms o f a set X 

and binary relations on that set X.

Definition 10. A binary relation on a set X is a subset o f  the cartesian product X y .X . A binary 

relation is symmetric i ffo rx ,y  £ X, (x,y) £ B, implies that (y,x) £ /?,.
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Coherent Configurations

There are several ways to define both coherent configurations and association schemes. 

This section will provide two such ways to define a coherent configuration while a later section 

will discuss association schemes.

Definition 11. [12] Let X b e a  finite set. A coherent configuration on X i s a s e t T =  {R\,R2 , . . . ,  /?.,} 

o f  binary relations on X satisfying the following four conditions:

1. T  is a partition ofX^;

2. there is a subset (Pq o f  P  which is a partition o f  the diagonal A  =  { (a , a) : a  6 X };

3. fo r  every relation Ri € P, its converse RJ =  { (P ,a)  : (a , (3) e  Rj} is in P ; let RJ =

4. there exists integers p'[j, fo r  1 ^  i j f i  ^  i  such that fo r  any (a,|3) e  Ri„ the number o f  

points 7 6  X  such that (a ,y) 6 /?, and (7, p) E Rj is equal to p'lj, and, in particular, is 

independent o f  the choice o f [a, P) 6 Rk-

The integers p\j are also known as intersection numbers since if R{oi) =  {P 6 X : (a, p) 6  /?} 

then p ĵ =  | {f?,(a)n /?J(P ) for (a, P) 6 } |.

In addition to describing coherent configurations in terms o f binary relations on X it is also 

possible to describe coherent configurations in terms o f a certain partition, or coloring o f the 

edges o f a complete graph. This is done by identifying the relations Ri to adjacency relations o f 

a graph G, on the vertex set X. For instance if a, P 6 X, then the relation /?, =  (a, P) represents 

an edge from vertex a  to vertex P in the graph C, . Notice that since the relations are not required 

to be symmetric in a coherent configuration the edges in the graph G,- are directed. Using this 

interpretation the binary relations on X are represented by the adjacency matrices o f the graphs 

G, for 1 ^  i ^  j. The rows and columns of the adjacency matrices, A,, are indexed by X and 

the (a , P) entry is 1 if (a, P) 6  Ri and 0 otherwise. This leads to the following definition o f a 

coherent configuration.
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Definition 12, [11] Let 1 be the identity matrix and J be the all ones matrix. The set o f  matrices 

{A|, . . . ,A.j} is called a coherent configuration if

1.

(=1

2. there is a subset o f {A i,A 2 , ■ ■ ■ whose sum is the identity matrix I;

3. fo r  any i, there exists j  such that AJ =  A j;

4. fo r  any i, j, the product A(A j is a linear combination o f {A \ , . . . , A^}.

In fact, for each pair i, j ,
S

=  L  P'iAk.
k=\

Notice that for a, (3 e  X the (a , p) entry o f A,Ay, denoted (A,Ay)(ct,p), is equal to

E  (^/)(a,Y)(^j)(Y,P) =  Ky : (a,Y) e  Ri and (y ,P) e  /?y}| =  pf-. 
ys3E

As a result o f the biological assumptions that will be made later on it will be o f interest to 

consider the situation when the matrices {A i , . . . ,Â .} are symmetric. A  coherent configuration 

in which all matrices are symmetric is an association scheme,

Association Schemes

As with coherent configurations there are a number o f ways to define an association scheme. 

The first definition given here defines an association scheme in terms o f binary relations on X.

Definition 13. [61] An association scheme on a set X  o f  points consists o f  r +  \ nonempty 

symmetric binary relations Rq, R u -■ ■ ,Rr on X which partition X x X ,  where Rq =  {(x ,x ) : x G 

X } is the identity relation, and such that for  some nonnegative integers p'jj 0 ^  i ,j ,k  ^  r the 

following holds:

1. given any (x,y) e  Rk, there are exactly p'lj elements z e X  such that (x,z) 6 Ri and (z,y) G 

Ri.
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If 6 Ri, then x  and y are i'̂ ' associates and the numbers p ĵ are called the parameters o f the 

scheme.

As with coherent configurations association schemes can be thought o f in terms o f an edge 

coloring o f a complete graph with vertex set X. Since the relations in an association scheme are 

symmetric, the complete graph being considered is undirected. The following two definitions 

are given in terms o f this graph coloration.

Definition 14. [3 ] An association scheme with s associate classes on a finite set X is a coloring 

o f  the edges o f  the complete undirected graph with vertex set X  by s colors such that

1. fo r  all i j , k  in { 1, . . . , ^ }  there is an integer p f  such that, whenever {oc,(3} is an edge o f  

color k then

K ye X  : { a ,y }  has coloriand  {y,P} has color y}| =

2 . every color is used at least once;

3. there are integers a ifor 1 in { 1 , . . . , 5} such that each vertex is contained in exactly ai edges 

o f  color i.

Condition 1 states that if vertices a  and P are fixed with the edge between them colored by k, 

then the number of triangles which consist of edge {a , P} with an i colored edge through a  and 

a i  colored edge through P is exactly

The definition above is equivalent to following definition which is given in terms o f adja-

cency relations o f a graph G, on the vertex set X.

Definition 15. [11] A set {A q , . .. ,A,y} o f  zero-one matrices is an association scheme if the fo l-

lowing conditions hold:

S

1. ^ A i  =  J, the all 1 matrix; 
i=0

2. A o = / ;
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3. fo r  any i, A f  =  A,-;

4. fo r  any i, j  the product A^Aj is a linear combination o f  Aq , . . . ,

As with coherent configurations for each pair i, j ,

k=l

It is straight forward to show that a set o f zero-one matrices commute if they satisfy the 

conditions to be an association scheme.

Lemma 1. [3 ] IfAo, A i , . . .  Aj are the adjacency matrices o f  an association scheme then AiAj =  

A jA iforall i j  in {0 ,1 , . . .

Proof.

AjAi = A j A f

=  {A ,A j f

=  ( L p u ^ k V

=  L p iA
k

=  A,A/

□

The following is an example o f an association scheme. Chapter 6 will discuss the connec-

tion between association schemes and evolutionary models.

Example 9. Let F be an alphabet o f  size n and X be the set o f  words o f  length m over the 

alphabet F. Two m-tuples x, y are i'̂  associates if they disagree in exactly i coordinates, where 

0 ^  I <  m. Notice that the parameters p'-j exist by symmetry. This is an association scheme 

known as the Hamming scheme and is denoted by H{m,n).
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The Hamming scheme H {3,2) is an association scheme on the set o f  points

3C = {(0,0,0), (0,0,1), (0,1,0),(0,1,1), (1,0,0),(1,0,1), (1,1,0), (1,1,1)}.

There are three associate classes which can be visualized by labeling the eight vertices o f  the 

cube with the eight points above in such a way that each edge o f  the cube connects first asso-

ciates.

Next color the edges o f  the cube red. the main diagonals orange, and the face diagonals yellow. 

Each vertex is incident to three red edges, one orange edge, and three yellow edges. IfO'^ asso-

ciates are represented by green, then p^jfor k =  {red,orange,yellow } are given by the following 

matrices where the rows and columns are indexed by {green, red, orange,yellow).

'  0 1 0 0 ■ ■ 0 0 1 0 ■ ' 0 0 0 1 ■
1 0 0 2 o ra n g e  _ 0 0 0 3 y e l lo w 0 2 1 0
0 0 0 1 , P i j  - 1 0 0 0 ' P i j  ~ 0 1 0 0
0 2 1 0 0 3 0 0 1 0 0 2

For further information on association schemes see the texts by A.E. Brouwer, A.M. Cohen 

and A. Neumaier [7] and E. Bannai, and T. Ito [4],

1.1.9 Strongly regular and distance regular graphs

Strongly regular graphs are a type o f graph which correspond to 2-class association schemes. 

A strongly regular graph is a regular graph, a graph where each vertex has the same degree, with 

additional structure.
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Definition 16. [61] A strongly regular graph srg{v,k,X,p) is a graph with v vertices that is 

regular o f  degree k and that has the following properties:

1. For any two adjacent vertices x, y, there are exactly X vertices adjacent to x and to y.

2. For any two nonadjacent vertices x, y, there are exactly p vertices adjacent to x and to y. 

A well known example o f a strongly regular graph is the Peterson graph.

Example 10. The Peterson graph is an srg (10 ,3 ,0 ,1).

Letting two distinct vertices in a strongly regular graph be first associates if they are adjacent 

and second associates if they are not adjacent produces a 2-class association scheme.

A connected strongly regular graph can also be thought o f as a distance regular graph with 

diameter two, where the diameter o f  a connected graph is the maximum distance between any 

pair o f vertices.

Definition 17. [3 ] For any connected graph G let

(ri — E Q x  f l : the distance between x and y is

Then if  G is a connected graph with diameter s and vertex set Tl, G is distance regular if Go, 

G ] , . . . ,  Gsform an association scheme on Q..

1.1.10 Johnson Scheme

The Johnson scheme denoted by J{n,m) is an association scheme that is defined using the 

(^) subsets o f  an n-set. Let D. consist o f all m-subsets o f an n-set T where 1 <  m ^  For 

( =  0 ,1 , . . . ,  w let a  and P be i'̂  associates if |a n  P| =  m — i. Thus 0'^ associates are equal.
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In [3] R. A. Bailey provides a proof that the Johnson scheme is in fact an association scheme 

by showing its correspondence to a distance regular graph. The following is an example o f the 

Johnson Scheme 7(4,2),

on (2) = 6 points.Example 11. J(4,2) yields an association scheme

r = { l , 2 , 3,4 }

f l = { { l , 2 } , { l , 3 } , { l , 4 } , { 2 , 3 } , { 2 , 4 } , { 3 , 4 } }

Two subsets are first associates (/|anp| =  2 — 1 =  1, Therefore the list o f  first associates is

{ ( { 1, 2 } , {1 ,3} ) ,  ( { 1,2 }, {1 ,4 } ) ,  ( { 1,2}, { 2 ,3 }) ,  ( { 1, 2 }, { 2 ,4 }) ,

( {1 ,3 } ,  {1 ,4} ) ,  ( {1 ,3 } ,  { 2 , 3 } ) , ( { 1 , 3 } , { 3 , 4 } ) ,  ( {1 ,4 } ,  {2 ,4 } ) ,

( { 1 , 4 } , { 3 , 4 } ) , ( { 2 , 3 } , { 2 , 4 } ) , ( { 2 , 3 } , { 3 , 4 } ) , ( { 2 , 4 } , { 3 , 4 } ) }

and the list o f  second associates is made up o f  the subsets such that | a n P | = 2 -2  =  0.

C2 =  { ( { 1 , 2 } , { 3 , 4 } ) ,  ( {1 ,3 } ,  {2 ,4 } ) ,  ( {1 ,4} ,  { 2 ,3 } ) }

The coloration o f  the complete graph that corresponds to the association scheme 7 (4 ,2) is given 

below.

{ 1-

f I  ̂*

(i~4}

Example 12. The Johnson scheme 7(6,3) is an association scheme on twenty points with three 

associate classes.

24



1.1.11 Bose-Mesner Algebra

Given an association scheme on a set X  with s associates and adjacency matrices Ao, A\,

. . . ,  Aj there is a corresponding associative commutative algebra, o f the association scheme. 

Notice that the matrices Aq , A ] , . . . ,  A,, must be linearly independent since Aq + A j + . . .  +A., — 7, 

the all ones matrix. Therefore the set '■ ^ has dimension j  +  1 as a

vector space over R. is also closed under multiplication since

S

A,Aj =  £  p'ljAk. 
k=0

is a commutative and associative algebra known as the Bose-Mesner algebra. Since the ma-

trices in are symmetric and commute they can be simultaneously diagonalized.

In addition to being closed under matrix multiplication the axioms for association schemes 

imply that the set is also closed under Schur multiplication.

Definition 18. The Schur product also known as the Hadamard product o f  the n x m  matrices 

A and B is an n x m matrix C such that Cij =  AijBij. ■

Notice that the A, are idempotents with respect to the Schur product and these A,- are known as 

the Schur idempotents of the scheme. In addition to association schemes producing associative 

commutative algebras it is also the case that a finite dimensional vector space of real symmetric 

matrices containing /  and 7, that is closed under both Schur multiplication and matrix multipli-

cation has a unique basis formed o f Schur idempotents and the matrices in this basis form an 

association scheme [23],

1.1.12 Results from  Linear Algebra

The following standard results and definitions from linear algebra will be used later in the 

paper.

Definition 19. Let A € C "^". The complex conjugate transpose o f  A is A* =  A^.

Definition 20. For A € define the following types o f  matrices:

25



1. A is unitary if A* A =  I.

2. A is orthogonal ifA^A  =  I.

3. A is normal if AA* =  A*A.

A set o f matrices are said to be simultaneously diagonalizable if there exists a single in-

vertible matrix P  such that P~^AP is a diagonal matrix for every A in the set. The following 

theorems have been included since the ability to simultaneously diagonalize sets o f matrices will 

be important later on.

Theorem 4. [5 ] Let A G F"^". Then A is diagonalizable by a unitary matrix if and only if A is 

normal.

Corollary 2. Let A be an n x  n real symmetric matrix, then A is diagonalizable by an orthogonal 

matrix.

Theorem 5. [  34] Let A and B be n x n  diagonalizable complex matrices. Then A and B commute 

if and only if they are simultaneously diagonalizable.

1.2 Biological Introduction

The following sections provide a brief introduction to some of the biological concepts re-

lated to the construction o f phylogenetic trees which are used to display the evolutionary rela-

tionships between taxa.

1.2.1 Evolution

In an attempt to understand the world around us scientists have been interested in classifying 

and determining relationships between different species for hundreds o f years. Maritime trade 

caused individuals around the world to become familiar with the wide range of organisms that 

inhabited the planet and in 1735 a Swedish botanist named Carl von Linn6 published the first 

universally accepted system o f taxonomic ranks in Systema naturae. Since it was first published
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the taxonomic ranks have been expanded upon and now include eight major taxonomic ranks as 

well as a number of minor rankings where the most general rank is life and the most specific is 

species. ^

Unfortunately it is difficult to determine specific definitions for the various taxonomic rank-

ings. For instance the definition o f species is often thought to be a group o f organisms that breeds 

internally, but is reproductively isolated from other such groups. Although this definition works 

well for most multi-celled organisms it does not deal with asexually reproducing single-celled 

organisms or the small number o f parthenogenetic multi-celled organisms. Additionally it is 

often difficult to tell whether similar groups o f organisms may be capable of interbreeding.

Despite the difficulty in defining taxonomic ranking and determining what organisms be-

long in a given taxon, there are benefits to determining historical relationships between groups 

o f  organisms. Determining historical relationships help evolutionary biologists understand how 

species evolved and evolutionary analysis of how a virus, such as the influenza virus, evolves 

helps immunologists develop new vaccines. Phylogenetic analysis has even been used to gain 

insight into the Human Immunodeficiency Virus (HIV) [50].

In order to understand the historical relationships between groups of organisms it is nec-

essary to understand how organisms evolve. Evolution is the change in the inherited traits o f a 

population from one generation to the next. These traits are expressions o f genes and are passed 

on to future generations through reproduction. Mutations in genes can cause differences between 

organisms and these difference become more common or rare in a population as evolution takes 

place. As populations change they may speciate into different species, hybridize together again, 

or terminate by extinction.

Once new traits appear in a population there are three basic mechanisms that produce evolu-

tionary change. Perhaps the most widely known mechanism is natural selection; an idea Charles 

Darwin developed during his voyage on the HMS Beagle from 1831 to 1836. During his time

’ For a list o f the major taxonomic ranks see page 118.
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stopped on the Galapagos Islands he observed the distinct species o f tortoise, mocking-thrush, 

finches and plants native to each o f the islands. For twenty years following his voyage Darwin 

constructed the theory o f natural selection. In 1856 he began to record his ideas, but before 

his work was completed he received a manuscript from Alfred Russel Wallace entitled On the 

tendency o f  varieties to depart indefinitely from the original type, which contained similar ideas 

to Darwin’s theory o f natural selection. Wallace’s essay was presented to the Linnean Society o f 

London on July 1, 1858, along with notes from Darwin. In November o f 1859 Darwin published, 

his theory in the text On the origin o f  species.

Natural selection is the process by which inherited traits that make it more likely for an 

organism to survive and reproduce become common in a population over time. This occurs 

because individuals o f a given species have genetic variation. Since unlimited population growth 

o f a species is not sustainable, some individuals will not survive to reproduce. If an individual 

has inherited a trait that makes it more likely for them to survive, they have the possibility o f 

passing on this trait to their offspring. Individuals who are less fit are less likely to survive and 

therefore will not pass on their traits to future generations. Natural selection acts without regard 

to the future. As a result it is possible for changes to occur in a population that are initially 

beneficial, but over time can become less advantageous as the environment changes.

The second mechanism that produces evolutionary change is genetic drift. Unlike natural 

selection which is driven by environmental or adaptive pressures, genetic drift is a change in the 

relative frequency o f traits in a population due to random sampling and chance. Genetic drift 

occurs because traits in offspring are a random sample o f the traits in the parent generation. This 

process is most significant in small populations and less noticeable in larger populations.

A third mechanism is gene flow. Gene flow is the exchange in genes between populations 

and often occurs as the result o f migration. Consequently, greater mobility o f a population 

results in a higher potential for gene transfer between populations. If gene flow is maintained 

between two populations the genetic variation between the two groups is greatly reduced making 

speciation less likely to occur.
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In addition to the above mechanisms of evolutionary change, horizontal gene transfer is 

possible in bacteria. Horizontal gene transfer or lateral gene transfer is any process by which 

an organism transfers genetic material to another cell that is not its offspring. Although there 

is some evidence horizontal gene transfer exists in higher plants and animals its prevalence and 

importance is still being debated.

Since genetic data is only available for presently extant species phylogenetics attempts to 

use knowledge o f evolution to reconstruct the evolutionary relationships between taxa. The 

relationships between taxa are displayed using a phylogenetic tree or phylogenetic network de-

pending on what types o f evolutionary events have occurred.

1.2 .2  D N A  an d  R N A

Deoxyribonucleic acid, also known as DNA, is a nucleic acid which contains genetic in-

structions used in the development and functioning o f living organisms and some viruses. DNA 

has a double helix structure composed o f one long strand o f nucleic acid wrapped around another. 

The backbone of the strand is a string o f alternating sugar molecules and phosphate groups. At-

tached to each sugar molecule is one o f four bases: cytosine (C), guanine (G), adenine (A), and 

thymine (T). The bases A and G are purine bases while the bases C and T are pyrimidines. Each 

base on one strand pairs with exactly one base on the other strand. More specifically A bonds 

with T and C bonds with G. This is known as complementary base pairing and can be seen in 

the picture below.

Thymine —

Cylostne
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The evolutionary models described in the next section are nucleotide substitution models.

Definition 21. A nucleotide is composed o f  a nucleobase (cytosine, guanine, adenine, or thymine 

in the case o f  DNA), a five-carbon sugar (2 ’-deoxyribose), and one to three phosphate groups.

In the evolutionary models below the bases A, C, G, and T are used to abbreviate the four 

nucleotides and a strand o f DNA is thought o f as a string o f A, C, G, and T ’s.

Ribonucleic acid, RNA, has a similar structure as DNA, however it is single stranded and 

the sugar-phosphate backbone contains ribose rather than deoxyribose. Also different are the 

four bases attached to the sugar-phosphate backbone. Instead o f A, C, G, and T, the bases A, C, 

G, and uracil (U) are attached.

There are two main types o f RNA. The first is messenger RNA also known as mRNA. 

mRNA is transcribed from DNA and carries coding information to the sites o f protein synthesis. 

The second type o f RNA is transfer RNA or tRNA. This is the nucleic acid that constructs 

the protein. Proteins are linear chains o f amino acids and each o f the amino acids is encoded 

by a triple o f nucleotides. Although it was originally assumed that there are twenty amino 

acids, recent work has shown that, “ there is also a natural expansion o f the genetic code beyond 

the twenty-amino-acid repertoire that leads to the coding o f modified amino acids [1].” Many 

scientists now believe there are twenty-two amino acids. The ordered triple o f nucleotides that 

encode the amino acids form a codon. Since there are four nucleotides there are 4  ̂=  64 different 

codons.

RN A

Ribonudeic acid
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Many scientists believe that with three exceptions each codon encodes for one o f twenty 

amino acids used in the synthesis of proteins while the remaining three codons are stop codons 

that send a signal to stop building the protein. This belief has also come into question in recent 

years. Ambrogelly, Palioura, and Soil state in a 2007 paper entitled Natural expansion o f  the 

genetic code that in regard to the (stop) codons UAG, UAA, UGA, “ .. .  single occurrence per 

gene renders them particularly good candidates for reassignment given that such a change would 

cause minimal damage to the proteome[l].” They then go on to say that UGA, apart from 

functioning as a stop codon, also encodes selenocysteine, the twenty-first amino acid and that 

UAG encodes pyrrolysine, the twenty-second amino acid. The codon AUG corresponds to an 

amino acid and is a start codon; the first AUG in an mRNA’s coding region is where translation 

into protein begins.

The following chart shows the correspondence between the sixty-four codons and the amino 

acids.
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C h a p ter  2

MODELS OF EVOLUTION

Over the last several years there has been an increased emphasis on methods o f phylogenetic 

inference that are based on models o f evolutionary change [58]. The following chapter discusses 

types o f data used along with some well know models of evolutionary change. Although it is not 

possible to provide an exhaustive review o f the models which exist the chapter provides a brief 

description o f  some of the most commonly used models.

The models discussed here use unordered multistate character data, where the characters 

takes on two or more discrete values. The fact that the character data is unordered implies 

that a character at state i can transform into any other state j. To construct a phylogenetic tree 

sequences o f character data are obtained from each taxon being considered. For example, in the 

case o f a nucleotide substitution model each character in the sequence can take on one o f four 

states. A, C, G, or T resulting in finite sequence made up of the nucleotides A, C, G, and T. 

When choosing sequence data for each taxon it is necessary that the sequences are aligned and 

that the states observed at a giving position in the taxa being considered should all trace their 

ancestry to a single position that occurred in a common ancestor o f those taxa.

In addition to four state nucleotide sequence data there are also models o f evolution that use 

other types o f  character data. One o f the simplest evolutionary model is the Neyman model [48] 

which uses character sequences composed o f two states, purines denoted by R and pyrimidines 

denoted Y. This model assumes symmetric substitutions so that the probabilities o f a substitution 

from state R to Y and from state Y to R have the same value. There also exists evolutionary
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models with a larger numbers o f states. For instance, codon models are models with anywhere 

between sixty-one and sixty-four states. These models will be examined more closely in section 

2.2.

Since nucleotide substitution models occupy a large portion o f the literature regarding Had- 

amard conjugation the following section provides an introduction to nucleotide substitution mod-

els in general as well as a closer look at some specific named nucleotide models.

2.1 A n  in trod u ction  to  N u cleotid e  S u bstitu tion  M o d e ls

A substitution model describes the process by which a sequence o f nucleotides of fixed size 

changes into another nucleotide sequence. Although evolutionary processes consist of mutations 

other than substitutions, most models o f evolution make the simplifying assumption that only 

substitutions take place and that the sequences being compared are properly aligned. This is just 

one o f a few common simplifying assumptions.

2.1.1 A ssu m p tion s  o f  m an y  n u cleotide  su bstitu tion  m od e ls

There are a few assumptions made about the substitutions taking place at sites in the nu-

cleotide sequence. The first o f which is that changes in a single site o f  a nucleotide sequence 

do not affect the probability o f changes taking place in another site. This assumption is known 

as independence. A second assumption results from the fact that the models discussed in this 

section are Markov models. This requires that a change at a single site from state i to j  does 

not depend o f the history o f the site prior to state i and therefore knowledge o f previous states is 

irrelevant. Finally, it is assumed that each site in the sequence may be changed multiple times.

In addition to the assumptions made about the substitutions taking place at different sites 

in the sequence, the majority o f substitution models assume neutral evolution. Neutral evolution 

is the assumption that the molecular changes represented by substitutions do not influence the 

fitness o f the individual organism. In other words, selection does not operate on the substitu-

tions. The theory o f neutral evolution was first formalized by Motoo Kimura in 1968 and is
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now widely accepted, however the debate over relative percentages o f neutral and non-neutral 

selection remains.

There are two main ways in which substitution models measure time. The first, which is 

used in nucleotide substitution models, is to measure time by keeping track o f the number of 

substitutions which have taken place. One benefit of this method is that it avoids the issue of 

whether the rate o f substitutions per unit of time has remained constant or not. The second way 

o f dealing with time is to use the molecular clock assumption. This is the assumption that the 

rate o f substitutions with respect to time remains constant. For this assumption to be used in a 

model a substitution rate must be known. Determining this rate is often very difficult and many 

scientists argue that the molecular clock assumption is unrealistic.

The above assumptions are common to the nucleotide substitution models discussed in this 

paper, however additional assumptions regarding what type of nucleotide substitutions take place 

can also be made. These additional assumptions define a specific nucleotide substitution model.

2.1.2 General nucleotide substitution model

Each nucleotide substitution model can be specified by a table o f rates at which nucleotides 

are replaced by other nucleotides. The rates are contained in a four by four rate matrix Q whose 

rows and columns are indexed by the nucleotides A, C, G and T, respectively. The entry Qjj 

contains the rate o f change o f nucleotide i to nucleotide j  during an infinitesimal time period. 

The most general nucleotide substitution model possible is given by a Q matrix whose entries 

are made up o f a mean instantaneous substitution rate along with a frequency parameter that 

describes the frequency of the given nucleotide. The matrix o f the general nucleotide substitution 

model is given below.

Q =

- j u i a t i c  + b n c  +  c U t  ) / ja n c
lug%A +  dtic -f eizr)
n h tiA  i j j n c
tiittA  n k n c

jatmc
jjdnc
+  jnc + fn r )  
ulna

HCTlj

fjfnr
~iu{inc + kuc + Inr)
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In the matrix above fjz, for z 6 { a, ^, c , . . . is the mean instantaneous substitution rate for 

substitution z. So for example, given the indexing o f the rows and columns, fua is the mean 

instantaneous substitution rate for the substitution from A to C. 7i, for i 6  {A ,C ,C ,T '} are the 

frequency parameters providing the frequency o f each o f the four nucleotides. It is assumed that 

these frequencies remain constant over time. It is also the case that the diagonal entries o f Q are 

chosen such that the row sums are zero. If each and 7i, are chosen to be distinct values the 

Q matrix produced would represent the most general substitution model possible. In practice 

however, additional assumptions are made.

2.1.3 General time-reversible model

With the exception o f strand symmetric models, all evolutionary models discussed in this 

paper will be assumed to be general time-reversible models. Most nucleotide substitution models 

used are time-reversible, which means the rate o f change from nucleotide i to nucleotide j  is the 

same as the rate o f change from j  to i.

Definition 22. Nucleotide substitution models that assume the overall rate o f  change from base 

i to base j  in a given length o f  time is the same as the rate o f  change from base j  to base i are 

said to be time-reversible.

This assumption is equivalent to setting a =  g, b =  h, c =  i, d — j , e  — k, and f  =  1. Setting these 

parameters equal produces the most general time-reversible model defined by the matrix below.

Q =

-/u{anc 4- bnc + ct zt  ) /janc
/uattA -fj{anc dtzc -I- etir)
lubitA jjdnc
MCUa tretic

lubtiG
ladnc

- l j { b n c  +  d n G - \ -  f n j )  

lafttG

f J O l T

/jetiT
laftiT

- l j { c n c  4- etiG  4- f n r )

A desirable result o f choosing to use a time-reversible model, sometimes referred to as an 

REV model, is that the placement of the root need not be considered when choosing a tree that 

most closely fits the data. Although the general time-reversible model makes the simplifying
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assumption that many of the mean instantaneous substitution rates are equal Ziheng Yang con-

cluded in his 1994 paper “Estimating the pattern o f nucleotide substitution” [64] that “ ...the 

use o f the REV model in phylogenetic analysis can be recommended, especially for large data 

sets or for sequences with extreme substitution patterns.. He also states that “ the use o f the 

unrestricted models does not appear to be worthwhile” .

Despite the fact that only a few general time-reversible models have been named there exist 

203 different time-reversible models. Each time-reversible model can have anywhere between 

one and six substitution types. Therefore determining the number o f time-reversible models is 

equivalent to finding the number o f ways a set with six objects can be partitioned into disjoint 

and non-empty subsets. This is equal to the Bell number =  203.

The nucleotide substitution models mentioned in the following sections are specific exam-

ples o f the 203 time-reversible models. They are produced by making assumptions about the 

rates o f the different substitutions taking place, by making assumptions about the frequencies of 

the bases A, C, G and T, or by making assumptions about both the rates and the frequencies. A 

few o f these models will be mentioned below.

The final observation regarding time-reversible models included in this section is given 

below.

Observation 1. The rate matrices o f  time-reversible nucleotide substitution models are real 

symmetric matrices.

Proof It follows from definition o f a time-reversible rate matrix. □

Real symmetric matrices have some nice properties that will be used in later sections to analyze 

time-reversible models.

2.1.4 Tamura and Nei Model

Tamura and Nei introduced the Tamura and Nei model which is also known as the TrN 

model in their 1993 paper “Estimation o f the number o f nucleotide substitutions in the control
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region o f mitochondrial DNA in humans and chimpanzees” [39], The TrN model is a general 

time-reversible model that assumes there are three substitution types. It also assumes that the 

base frequencies are not necessarily equal. The nucleotides can be divided into two chemical 

classes; purines A  and G and pyrimidines T and C. The substitutions taking place within the 

two chemical classes are known as transitions and substitutions between the classes are called 

transversions. The three substitution types in TrN are a^, the probability that a purine will be 

replaced with a purine, ay, the probability a pyrimidine will be replaced with a pyrimidine, and 

P the probability that a transversion will occur.

To determine the rates, consider the following. As before let Tt̂ , Jtc. and %t  be the 

frequencies o f  A, C, G and T respectively. Only considering the purines, the ratio o f purine A 

to purine G is 71.4 : t zg . The total frequency o f the purines is Ur  =  t i a+  t iq  so the frequencies 

o f A and G considering purines are ’Ka /'̂ r  and Kg /t ir . A similar computation can be done for 

the pyrimidines. If Tty is the total frequency o f pyrimidines, then t ic /^ k and 7t7- /7ty are the 

frequencies o f C and T amongst the pyrimidines.

Given these probabilities and frequencies the rate matrix is given below. The entries on the 

diagonal are chosen such that the row sums are zero, however the terms have been omitted to 

make the matrix easier to read.

Q

-  Pt ic  aRTCc/TtR-h pTCc pTtr ■
PtlA -  pTlc ayTC7-/7ly +  P7t7-

a/fTl^/Tt^ +  p7t̂  p7lc -  P7I7-
PtI/1 ay7Cc/7ty-f Pttc PtIg  -

The next model discussed is a specific case of the Tamura and Nei model.

2.1.5 Hasegawa-Kishino-Yano Model

The Hasegawa-Kishino-Yano model, also known as the HKY model, was introduced in 

the 1985 paper, “Dating o f the human-ape splitting by a molecular clock o f mitochondrial 

DNA” [27]. Although it was published after the Tamura and Nei model it is a specific case 

o f the TrN model where (Xr /ol y =  7t/?/7Cy,
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2.1.6 Kim ura’s Three-Substitution type Model

The Kimura three-substitution type model was introduced in Motoo Kimura’s 1981 paper, 

“Estimation o f evolutionary distances between homologous nucleotide sequences’’ [44] and is 

different from the TrN and HKY models above in that it requires the base frequencies o f all four 

nucleotides to be equal. Like the HKY model however, it assumes there are three substitution 

types. The three substitution types are transitions, and two types o f transversions, /up and qy

A  ̂G, T <—* C 

/7p; A <-» T, G <—» C 

/Vy: A C, T <—> G

Using the notation from the rate matrices given above the Q matrix for the three-substitution 

type model is

Q =
. 2 5  Hy ■25 jjix .25 f ip

.2 5 /Jy “ •7 5 (/ ia  - f  ^3 -l-^y) .25^ 3 .25/Toi

.25/T(x .25/^3 - .7 5 ( ;U a + ^ p  +A<y) .2 5 j jy
.  -25/03 •25/Ua . 2 5 /Jy - .7 5 (y o c 4 - / j3

It is common to combine the base frequency and substitution rate into a single term, therefore 

the rate matrix for the Kimura three-substitution type model is typically given as

Q

- K T a P
y - K P a
a P - K y
P a y - K

where K =  a  -I- (3 -h y

The Kimura three-substitution type model will be discussed again later in the paper.
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2.1.7 K im ura’s Two-parameter Model

The Kimura two-parameter model was introduced in the 1980 paper “A simple method for 

estimating evolutionary rate o f base substitutions through comparative studies o f nucleotide se-

quences” [43] and is a specific case o f the three-substitution type model. The model also known 

as the K2ST model again assumes equal base frequencies, but only allows two substitution types. 

The model has one substitution rate for transitions and one rate for transversions. Therefore the 

K2ST model can be obtained from the K3ST model be setting P =  y. The rate matrix is given by

Q =

- K P a P
P - K P a
a P - K P
P a P - K

where /if =  a -t-2p.

2.1.8 Jukes and Cantor Model

T.H. Jukes and C.R. Cantor’s paper, “Evolution of protein molecules” [38], was published 

in 1969. The paper describes the Jukes and Cantor model which is the most basic nucleotide 

substitution model. The model assumes that all base frequencies are equal and that all substitu-

tions occur at the same rate. Combining the base frequency and substitution rate into one term 

yields a rate matrix

Q

—3a a a a
a - 3 a a a
a a - 3 a a
a a a - 3 a

Several examples in this paper will assume the Jukes and Cantor model because of its simplicity.

The following diagram, modified from a diagram in Hillis [58], helps to demonstrate the 

relationships between the models that have been discussed.
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2.1.9 Strand Symmetric Models

Strand symmetric models are a class o f models which encompass three o f the models men-

tioned above, the Jukes and Cantor model, the Kimura two-parameter model and the Kimura 

three-substitution type model. The idea o f a strand symmetric model was first introduced in a 

1995 paper, “ Intrastrand Parity Rules of DNA Base Composition and Usage Biases o f Synony-

mous Codons” by Noboru Sueoka [57] and resulted from recognizing the base-pairing rule o f 

the Watson and Crick DNA structure and trying to incorporate that into an evolutionary model.

Strand symmetric substitution implies that both strands o f the genome segment undergo any 

given type o f substitution at the same rate, hence complementary substitution rates are equal. For 

example, the substitution rate, r\, for A —y T on strand one is equivalent to the substitution rate.
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S2 , for 7" —* A on strand two. Similarly the substitution rate, ri, for 7  A on strand one is 

equivalent to the substitution rate, j'l, for A —» 7  on strand two and thus r\ =  S2 and =  ^i- 

Furthermore since A T ax the same rate in both strands, r\ =  r2 and under strand

symmetric substitution.

The above equalities illustrate that when there are no biases in mutation and selection be-

tween the two strands o f DNA, in the case o f a strand symmetric model, the twelve possible 

substitution rates o f the nucleotides reduce to six. The six rates correspond to the six substitu-

tion types

a \ A < ^ T
b - . A ^ G , T ^ C
c : G - ^ A , C ^ T
d - . G - ^ T , C - ^ A
e A —> C, T ~^G
f . G ^ C .

Additionally strand synunetric models must have base frequencies that satisfy

Ttk = ttr Tic — Tic-

The models mentioned in this section are only a sampling o f the existing nucleotide sub-

stitution models. Although all the models mentioned require assumptions to be made, they still 

help to provide insight into the evolutionary history o f different taxa. Undoubtedly as more work 

is done in the area the models considered will continue to improve.

2.2 Codon Models o f Evolution

Creating more realistic evolutionary models has been an important area o f research in the 

area o f phylogenetic inference. In 1994 two papers, one by Nick Goldman and Ziheng Yang 

[24] and another by Spencer Muse and Brandon Gaut [47], started discussion on the use of 

codon models o f evolution.
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Yang and Goldman describe in their paper how they .. devised a model o f  nucleotide 

substitution that uses simultaneously the nucleotide-level information in DNA sequences and 

knowledge o f the genetic code and hence the amino acid-level information o f the synonymous 

(silent) and nonsynonymous (replacement) nucleotide substitutions.” [24] They did this by mod-

eling at the codon level instead o f modeling at the nucleotide or amino acid levels. Although 

they consider codon models o f evolution much o f the discussion contained in this paper regard-

ing nucleotide substitution models applies to the codon models o f evolution.

Both Yang and Goldman and Muse and Gaut consider Markov-Process Models of codon 

substitution. They assume that the data they are analyzing is a DNA sequence with no gaps. They 

also assume insertions and deletions cannot occur. Recall that a codon is a triple o f nucleotides 

and that while there are 4  ̂ =  64 different codons, Yang and Goldman assume that only sixty- 

one correspond to amino acids. The remaining three codons are stop codons and are often not 

considered. As a result the sixty-one sense codons make up the states of the continuous-time 

Markov process. A 61 x 61 rate matrix, g , is indexed by the sixty-one sense codons so that Qij 

for i ^  j  contains the rate at which codon i changes to codon j.  Qa is chosen so that row sums 

o f the rate matrix equal zero. The equation

P{t) =  exp{Qt)

relates the Q matrix to the matrix P where Pij gives the probability that codon i is replaced by 

codon j  after time t.

It is also assumed that mutations occur in the three codon positions independently and that a 

mutation corresponds to a single nucleotide substitution. As with nucleotide substitution models 

the rate at which each substitution takes place in a codon model is proportional to the equilibrium 

frequency nj o f  the codon j  being changed to.

Given the fact that the number o f codons coding for amino acids may actually be larger 

than sixty-one it may also be o f interest to consider codon models o f evolution with sixty-two, 

sixty-three or sixty-four states. Support for this is given in the 2007 paper [1] by Ambrogelly, 

Palioura, and Soil.
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Chapter 3

RELATING DNA SEQUENCE DATA TO PHYLOGENETIC
TREES

Hadamard conjugation allows invertible calculations between predictive data from DNA 

sequences and the phylogenetic tree for a given a nucleotide substitution model. The following 

chapter explains how information from DNA sequences can be organized into a vector known 

as the observed sequence spectrum. Hadamard conjugation can then applied to the observed 

sequence spectrum to obtain the conjugate spectrum which corresponds to a vector containing 

information about the corresponding tree. The vector associated to the tree will be discussed 

later in the paper, for now the discussion will focus on the observed sequence spectrum.

3.1 The observed sequence spectrum vector f(D)

The observed sequence spectrum vector is created by analyzing a set o f aligned DNA se-

quences from n different taxa. The i'̂  component o f the vector contains the expected relative 

frequency of the differences between the n taxa at a given site. In order to understand how this 

information is included in the vector some background on bipartitions and quadripartitions is 

necessary.

3.1.1 Two state substitution models and bipartitions

Let us first look at the 2-state model. The 2-state model allows for two substitutions. A 

purine (denoted R) can change to a pyrimidine (denoted Y) or a pyrimidine can change to a 

purine. Suppose we have the following four sequences from four different taxa; •
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root (4) Y R Y Y Y R R
1 Y Y Y R Y Y R
2 R R Y Y Y R Y
3 R Y Y R Y Y Y

In this example the character states for these sequences are {R,Y} .  The site partitions are 

determined by examining the character states at each site in the sequence.

Definition 23. The character state at a site split the taxon set into subsets oftaxa with a common 

character state. This partition is known as a site partition.

For example the site partition o f site 1 is {1 ,4 } , {2 ,3 }  since taxa 1 and 4 are pyrimidines while 

taxa 2 and 3 are purines. There are exactly 2” “ ’ bipartitions possible where n is the number of 

taxa being considered. It is important to be able to list the 2'’ ~ ' bipartitions in a logical order. The 

first step in doing this is to consider only the split half, or bipartition half, that does not contain 

the root. Without loss o f generality I will consider the root to be taxa n unless otherwise noted. 

Next these subsets will be listed in a lexicographical order beginning with the set Nq =  {0 }  and 

ending with =  { 1 > 2 , — 1} where taxa i £ Nj if and only if the i’  ̂ binary digit o f j

counting from the right is 1. For example N\\ = { 1 ,2 ,4 }  since 11 =  2'’ +  2' +  2 .̂

Example 13. Below are the bipartitions and lexicographical ordering o f  four taxa { 1 ,2 ,3 ,4 }.

Bipartitions Splits Lexicographical ordering
Bo {0 }| {1 ,2 ,3 ,4 } { 0 }

{1 }| {2 ,3 ,4 } { 1}
B2 {2 }| {1 .3 ,4 } { 2 }
B3 {1 :2 }| {3 ,4 } { 1>2 }
Ba {3 }| {1 ,2 ,4 } {3 }
Bs {1 ,3 }| {2 ,4 } {1 ,3 }
Be {2 ,3 }| {1 ,4 } {2 .3 }
Bi {!>2 ,3}| {4 } {1 ,2 ,3 }

The lexicographical ordering provides a method o f indexing vectors and matrices in a con-

sistent way and provides a standard labeling o f the edges in a tree. Before continuing with
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the discussion o f the observed sequence spectrum an example o f the lexicographical ordering 

corresponding edge labeling is given.

Example 14. Recall the four leaf tree given in example 3.

Since removing edge a corresponds to the split {1 } which has bipartition number 1, edge a is 

labeled 1. Removing edge e corresponds to the split {1 ,2 ,3 }  which has bipartition number 7, 

therefore edge e is labeled 7. Below is a graph with edge labels coming from the bipartitions.

The lexicographical ordering also provides the indexing for the observed sequence spectrum 

whose definition is given below.

Definition 24. The vectorf(D ) is known as the observed sequence spectrum. Each component f  

off(D ) is the expected frequency o f  the i'̂  bipartition as a site bipartition, where the bipartitions 

are numbered with the same lexicographical order.

Example 15. Recall the four 2-state sequences from above:
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root Y R Y Y Y R R
1 Y Y Y R Y Y R
2 R R Y Y Y R Y
3 R Y Y R Y Y Y

The site partitions fo r  the seven sites are given below.

Site Partition
1 {2 ,3 }| {1 ,4 }
2 {1>3}|{2,4}
3 {0 }| {1 ,2 ,3 ,4 }
4 {1 .3 }| {2 ,4 }
5 {0 }| {1 ,2 ,3 ,4 }
6 {1 .3 }| {2 ,4 }
7 {2 .3 }| {1 ,4 }

Therefore the sequence spectrum is:

f { D)  =  (2 /7 ,0 /7 ,0 /7 ,0 /7 ,0 /7 ,3 /7 ,2 /7 ,0 /7 )

3,1 .2  S eq u en ce  S p ectru m  fo r  a m od el w ith  three su bstitu tion  types

Site patterns are used to create an analogous description o f the sequence spectrum for the 

three-parameter general time-reversible group-based model.

Site P attern s

Previously - when each site was represented by a purine or pyrimidine - the taxa, or leaves 

o f the tree, were divided into a bipartition of leaves labeled R and leaves labeled Y. If sequences 

are made up o f the nucleotides A, C, G, and T each site can now be divided into quadripartitions. 

Site patterns are used to keep track of which substitutions have taken place .

Suppose the DNA sequences o f four taxa are given below.

root (4) C A T C C A A
1 C C T A C C A
2 G G T C T A T
3 G T T G T C T
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Since each site contains a nucleotide rather than just a purine or pyrimidine the substitutions 

taking place between the root and the leaves can be broken into three types. These substitution 

types are listed below.

oc: A  <—> G , C  «-► 7"

P: C ^ G

y :  A ^ C , G ^ T

If a group element from Z 2 x Z 2 is associated to each o f the nucleotides A, C, G, and T 

then each o f the substitution types can also be associated to a group element. This is done 

by associating to each substitution type the difference between the group element associated to 

the starting nucleotide and the group element o f the ending nucleotide. Let the nucleotides be 

assigned to the group elements o f Z 2 x Z 2 in the following way:

A ^  (0,0)

C ^ ( l , l )

r ^ ( i , 0).

Therefore substitution type a  coiTesponds to

( 0 , 0 ) - ( 0 , l )  =  ( l , l ) - ( l , 0 ) ^ ( 0 , 1 )-> G .

Referring back to the table containing the four nucleotide sequences the substitution in site one, 

from the root to taxon 3, is o f type p which can be represented as (1,0). Determining the 

substitutions o f each leaf for each site yields the following table.

site: 1 2 3 4 5 6 7
root to 1 (00) ( 11) (00) ( 11) (00) ( 11) (00)
root to 2 ( 10) (01) (00) (00) (01) (00) ( 10)
root to 3 ( 10) ( 10) (00) ( 10) (01) ( 11) ( 10)
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Next notice that for any given site a 1 appearing in the first entry o f an ordered pair implies 

that a substitution o f type (3 or 7 took place between the root and that leaf. Similarly if a 1 appears 

in the second entry o f an ordered pair a substitution o f type a  or y took place between the root 

and that leaf. Given this, let the set A be defined for a given site as the set o f leaves with a 1 in 

first position o f the ordered pair. Let the set B be defined for a given site as the set o f leaves with 

a 1 in the second position o f the ordered pair. The sets A and B for the example above are:

site: 1 2 3 4 5 6 7
A {2,3} {1,3} { 0 } { 1 , 3 } { 0 } {1 ,3 } {2 ,3 }
B { 0 } { 1,2 } { 0 } { 1} {2 ,3 } {1 ,3 } { 0 }

If a leaf belongs to the sets A and B then a y substitution took place. If a leaf belongs to 

just A then a p substitution took place and if a leaf belongs to just B then an a  substitution took 

place. Therefore (A,B)  gives the substitutions that took place between the root and each leaf at 

a given site. (A ,S) is known as a site pattern.

The number o f possible site patterns (A,B) depends on the number o f taxa being consid-

ered. Notice that each set A and B are possible bipartition halves which do not contain the root. 

Therefore there are 2"“ ' possibilities for both sets A and B. Hence there are 2"“ ' x 2"“ ' =  4"“ * 

possibilities for {A,B).  An ordering o f the sets (A,B) that will be used later on is to fix B as the 

first bipartition half given in the lexicographical ordering above and let the set A range through 

the bipartition half ordering given above. Then let B be the next bipartition half in the ordering 

and let A range through the values again. Continue this until the final pair listed is {A,B)  where 

A and B are the sets { l ,2 ,3 , . . . ,n  — 1}. These sets {A.B)  are also referred to as quadripartitions, 

a partition into four or fewer subsets o f the taxa. This is because each set A and B corresponds 

to a split half not containing the root vertex. Therefore {A,B)  refers to four subsets o f the taxa.

In the case o f a three-substitution type model the component o f the observed sequence 

spectrum contains the expected frequency of the site pattern where the site patterns are listed 

in the order given above.
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Example 16. Consider the three leaf tree below.

If leaf 3 is the root vertex then the possible bipartitions o f  the leaves not containing the root are

fio =  {0}, fii =  { l } ,  B2 =  {2}, 53 =  {1,2},

All site patterns o f  the tree above are o f  the form where 0 ^  ^  3 and 0 ^ j  ^ 3 . The

ordering o f  the site patterns as described above is:

(5 o ,5 o ) , ( 5 , ,5 o ) ,(5 2 ,5 o ) ,(5 3 ,5 o ) , ( 5 o ,5 , ) , (5 | ,5 ,) , (5 2 ,5 i ) ,(5 3 ,5 ,) ,

(So,52), (5 i,5,), (52,52), (S3,52), (5o,53), (5 i.53), (52,53), (53,53).

3.1.3 Relating the observed sequence spectrum to a tree

The observed sequence spectrum is obtained from aligned DNA sequences that may contain 

some error. There are also assumptions made in the evolutionary model that will produce error. 

As a result it is generally not the case that applying Hadamard conjugation to the expected 

sequence spectrum will produce a vector that exactly corresponds to a phylogenetic tree; rather 

it produces a vector known as the conjugate spectrum, y(D). A fitting algorithm such as least- 

squares best fit is then used to obtain the edge length spectrum, q(T), which corresponds exactly 

to a phylogenetic tree. In the case the that y(D) = q(T) the data fits a model exactly and no fitting 

algorithm is necessary.

If a tree is assumed initially it is possible write down the expected sequence spectrum, f(T). 

This is the vector that the observed sequence spectrum, f(D), hopes to approximate. If Hadamard 

conjugation is applied to f(T) the edge length spectrum q(T) is obtained. This result is given in 

the following section along with further explanation o f the expected sequence spectrum and the
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edge length spectrum. Before moving to the next section a diagram is provided to make clear 

the relationships between the vectors f(D), y(D), q(T), and f(T).

Edge length spectrum

q iT ) <— >

E.vpected sequence 
spectrum

f (T )

T
Conjugate spectrum Observed sequence

T (D )
<---------- > spectrum

f(D )

The double arrows are invertible Hadamard conjugations and the single arrow represents a fitting 

algorithm [28],

3.2 The edge length spectrum as it relates to the expected sequence spectrum

Ideally it would be nice to use the observed sequence spectrum, f(D), to say something 

about the phylogenetic tree associated to the sequences being examined. To do this Fourier 

calculus over a finite abelian group along with a fitting algorithm such as least-squares or the 

closest tree algorithm can be used. The following section contains the results o f Szekely, Steel 

and Erdos from their 1993 paper “Fourier Calculus on Evolutionary Trees” [60] as they apply to 

phylogenetic trees. In chapter 4 I will extend these results to splits networks.

The first lemma is a well known result which summarizes what is needed on characters and 

the Fourier transform. The statement o f the lemma is taken from [60].

Lemma 2. Let G be a finite abelian group, then

(i) the character group G is isomorphic to G.
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(ii) i f f  . G ^ C i s a  complex-valued function and f  : G ^  C is defined by

then fo r  all g E G

/ ( % ) =  L x (g ) / (5 )>
g6G

f i g )  =  E  x ( g ) / ( x ) -
1̂1 X6G

(Hi) The characters o f a finite direct product o f  finite abelian groups are exactly the products 

o f  characters.

3.2.1 P re lim in a ry  N otation

The following notation will be given in general without respect to a phylogenetic tree, 

however its interpretation in the phylogenetic setting will be given when appropriate as it is 

used.

Let X h t & p  X q matrix with integer entries. Let G be a finite abelian group with elements 

o f G‘> written in the vector form x =  (xi ,X2, . .. ,Xq)' ,̂ where Xj £ G. Similarly let y 6 G'  ̂ be the 

vector y =  (y i,y2,-.-,yp ) such that
9

V/ =  £  aijXj
j=i

so that Ax =  y.

Next let : G —> C for 1 ^ j  and let

For y £ G^, let

=  t\pj i^j ) -

/ ( y )  =  L  ^ ( x ) -
xeĜ
Ax=)'

(3.1)

(3.2)

The next theorem is a general result which will be restated in the phylogenetic setting in 

theorem 9.

Theorem 6. [60] I f x  =  (Xi, • ■ ■ ,X/j )^ e  then

f i x )  =  n  E  Pji^j)t[X-ii^U^j)-
i=\xeGi (=1
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Proof. By part ii o f Lemma 2,

h x )  = L  x (y ) /(y )
yeCP

yeGP xeC"
-4x=y

By expanding and regrouping it can be seen that

E  x(y) • E  =  E
y€GP xeG’

Ax=y
X6G«

Next notice that by definition,

X(Ax) = fjx/(('4x),)
f= l
P

Using Lemma 2 and expanding and regrouping once again gives,

p /  9 \ 9 p

1=1 Vi=' /  ;= 1'=1

Therefore,
f i x )  = E  ^ (x )x (^ x )

xeG?
9 P

"  E  n ^ f ( ^ j ) r i 5 C 'K u )
x€C i j= ]  i=\

9 P

= n  E  Pji^j)Y[Xi{aijXj)
j= \ \ € C ‘l (=1

which is the desired equality.

3.2 .2  N ota tion  related  to  p h y logen etic  trees

□

Let n be the number o f taxa being considered. Then n is also the number o f leaves in the 

phylogenetic tree T with leaf set L and «  — 1 =  p is the number o f non-root leaves. The root leaf 

is referred to as R and the number o f edges in the tree is q.
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The A Matrix

The matrix A was defined in section 3.2.1 as a p x q integer matrix. In this section the A 

matrix will be defined as an (n — 1) x ^ integer matrix which depends on the phylogenetic tree, 

T. It is a matrix whose rows are indexed by the non-root leaves and columns indexed by number 

o f edges in the tree. For example, consider the 3-claw tree shown below with root vertex labeled 

3. This tree has q — 3 and n -  \ — 2.

The A matrix corresponding to this tree is a 2 x 3 matrix with rows indexed by the non-root 

leaves, 1 and 2, and columns indexed by the edges, a, b and c. The matrix is defined by

A,'r =
1 if i and n are on opposite sides o f {Ak,Bk}

0 otherwise.

Therefore the A matrix corresponding to the tree above is

A 1 0 1 
0 1 1

It is possible to read information about the tree off o f the columns of A. In this example, 

the columns o f A show that if edge a is removed then leaf 1 is in the opposite split half from the 

root while leaf 2 is in the same split half as the root. Also, if edge b is removed then leaf 2 is in 

the opposite split half while 1 is in the same split half as the root. If edge c is removed then both 

leaves 1 and 2 are in the opposite split half from the root.

Information can also be read from the rows o f the A matrix. For example the ones in the 

columns indexed by a and c o f the row indexed by 1 show that the path from the root to leaf 1
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includes edges a and c. The row indexed by 2 shows that the path from the root to leaf 2 includes 

edges h and c. In general, the ones appearing in row i, for i a non-root leaf, indicate the edges 

contained in the path from the root to leaf i.

The A matrix will be used along with the vectors x and y which were defined previously. 

L e a f c o lo ra t io n s

For each edge e 6 E{T)  there exists an independent C -valued random variable with 

distributions pe{g)  :=  Prob{% =  g) such that ^gecPeis)  =  1- The set of pe are known as a 

transition mechanism and is denoted by p.

The map a  : L\{ / ? } —> G gives a leaf coloration. The set o f leaf colorations is denoted 

G"” '. The value o f  a  at leaf / G L is denoted a/. In order to produce a random G - c o l o r a t i o n  

of the leaves o f the tree evaluate for every edge and assign to / the color which is the sum 

o f the group elements along the unique R l  path. Let fa  be the probability o f obtaining the leaf 

coloration o  : L \ { R }  ^  G in this way. Notice that fa  is an entry in the vector f(T), the expected 

sequence spectrum discussed above.

Next let x =  (x/ S G : / G be an ordered (n — 1)—tuple o f characters. Thenx £ G"~\

and X acts on G"“ ' according to Lemma 2 (iii). Given this define the set

Le =  {I E L : e separates I form in T}

for c G £'(7’ ). Notice this is just the set of leaves in the opposite split half from the root after 

removing edge e.

E q u ation s

For e G E{T)  and %  G G "~ ', set

Xe =  E  X;
leL,

(3.3)

so Xe 6 G. For h e  G, e E E{T)  define

le{h) =  E KS)PC{S)^
g £ G

(3.4)
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' 'x =  n
t€ £ (T )

(3.5)

At this point is it possible to state the Fourier inverse pair in the phylogenetic setting.

3.2 .3  R esults

T h e o re m  7. /'(50y Mr/z x ( a )  =
ieL\{R}

oeG"-'

|G1

(3.6)

(3.7)
xeG"

See Szekely et al for a proof to Theorem 9.

Theorem 9 provides an equation for which is a specific example o f /(% ) from theorem 

6 , The following small example shows that = /{%) for a specific tree with probabilities each 

edge is assigned a specific group element.

E xa m p le  17. Consider the tree with root vertex 1 given below. (Note that the root vertex is no 

longer the leaf labeled with the greatest number.)

T =  S

Make the following association:

A (0,0) 

( 1, 1) 

( 0 , 1) 

7  ^ ( 1,0 )
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Let

Pa{A)=Pb{A) = { 

p,{C) =  pb{C) =  \ 

PaiG)=Pb{G) = i 

p,{T) =  pb{T) =  \

Since there is only one non-root leaf there are four a  maps. The four maps are a l  which 

colors the non-root leaf with A, o2  which colors the non-root leaf with C, o3 which colors the 

non-root leaf with G, and a4 which colors the non-root leaf with T. Without loss o f  generality /  

will assume that the root is labeled A.

Recall that f c  is the probability o f  obtaining the leaf coloration a. Given the probabilities 

above it is straight forward to compute f^t f o r i  G {1 ,2 ,3 ,4 }. Below is the computation for  f^\. 

The four possible edge colorings that would yield a la  =  A, where 0 I2 is the value o fo\  at leaf 

2, are

a ^  A and b ^ A  

a^-> C and b C 

a G  and b ^  G 

a^-^ T and b ^ T .

The probabilities o f these edge colorings are [\){\) =  \, ( g ) ^ )  =  ^

iu i^  -  J-
64m \ ) , respectively. Therefore /o i  =  j  +  ^  +  3L =  {,{ =  0.34375,32

A similar computation shows fa t =  0.28125, fat =  0.1875, and faA =  0.1875, Given the 

probabilities fai it is possible to compute /(% ) and

/ ( x ) =  L
\ea  ̂t>=\ 1=1
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which fo r  this example is

f { % ) =  E  ’̂"(^')Xl(-«l)Pfc(-^2)Xl(^2)
xeG‘1

= Pa{A)X\{A)pb{A)X\{A) +  Pa{A)X\ {A)ph{C)X\ (C) + ...

+  Pa{T)x^{T)pb{G)x^[G)+pa{T)x^{T)pb{T)x^{T) .

The value o f  the above equation depends on which group element is associated to the character 

Xi- ^fXi associated to A the sum is 1, if it is C the sum is 0.0625, if it is G the sum is 0.25, and 

ifX\ w associated to T the sum is 0.0625.

Next I will compute r-^for this example.

E  Xi(cf|)/a
asC"-'

=  Xl 1 )/a l + X l (o2| ) fa2+X)  (Cf3i )/a3 +  Xl (o4, )/a4 

=  ±0.34375 ±0.28125 ±0.1875 ±0.1875

The sign o f  each term depends on Xi- Again if X\ is associated to A the sum is 1, if it is C the 

sum is 0.0625, if it is G the sum is 0.25, and if X\ is associated to T the sum is 0.0625. These 

values are precisely the values from f  (%) above.

In order to state the main result one more piece o f notation is needed. For e e  E{T)  and 

0 f = g E G  define e so that =  0 for / ^ Le, where / is not the root and =  g for 

I e  Le. Given p"'« let ‘̂ ( r )  =  {p^'« : e £ £ (7 ) ,0  f ^ g E G ) .

\n— 1T h e o re m  8. [60] For 0g«-i ^  p G G” , p ^ ‘̂ (7 ’ ),

fo r  p =  p"'* £ ^{ T) ,

and for  p =  0g„-

xeG"-'

XeO"-' hcG

n  ' 1 “ =  n  n
XeC""' e e E [ T ) h c G
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This result will be stated and proven in the next chapter for a more general setting and 

therefore the proof has been omitted here. For a proof to this statement see [60],

3.2 .4  A n  exam p le  assu m ing the J u k es-C a n tor  m od el

In order to keep the example manageable I will use the 3-claw tree with root vertex 1. For 

convenience it has been given below.

Also to keep things simple the Jukes and Cantor model will be assumed. Recall that the Jukes 

and Cantor nucleotide substitution model assumes that transitions and both transversions occur 

with equal probability. Theorem 11 can accommodate the Kimura three-substitution type nu-

cleotide substitution model which allows for different probabilities for the transitions and each 

transversion. The three probabilities are denoted by p\,P2 ,P3> so for this example where the 

Jukes and Cantor model is assumed p] =  p2 =  pj  =  p. The probability that no nucleotide sub-

stitution has taken place across an edge is po =  1 — 3p. To begin assume that the probability 

o f a nucleotide substitution occurring along edge a is the same as the probability o f a substitu-

tion occurring along edges b and c. Later in this section we will see what happens when these 

probabilities are not equal.

Next recall that f  is the vector o f length 4"“ ’ with entries fa,  the probability o f obtaining 

the leaf coloration o. For this example let the root vertex be colored with the group element 

associated to A, then leaves 2 and 3 can be colored by any of A,C. G, or T. This implies there 

are 16 different colorations a l ,a 2 , . . . a l 6 . To calculate fai for 1 ^  ^  16 it is necessary to 

determine the four possible ways the coloration could be obtained.
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For example, in order to obtain the coloration (A,C) where leaf 2 is colored A and leaf 3 

is colored C, it is possible that no substitution took place on edges a and b and the substitution 

associated to C took place on edge c. To check that this gives the appropriate coloration check 

to see that sum of the group elements along the path from the root to the leaf in question is equal 

to the color o f  the leaf. Again recall that A, C, G, and T are associated to the elements o f Z 2 x Z 2 

in the following way.

A ^  (0,0)

C ^ ( l , l )

G ^ ( O . l )

7’ - - ( 1,0 )

The probability o f the substitutions given above occurring on the edges a. b and c is ( 1 — 

3/?)(l —3p)p.  The remaining three substitutions resulting in (A.C) and their corresponding 

probabilities are given in the table.

(A,C) :
a 1-^ A ai—>C at—*G a\-^T 
b ^  A b C b G b y-* T 
c 1—> C c y-y A c i—y T c 1—► G

probability o f given edge substitutions 0 - 3 p ) ^ p  { l -3p)p^ pi

Therefore the probability o f obtaining the edge coloring (A,C) is

(1 -  3 p f p  +  (1 -  3p)p^ +  2p^.

Doing a similar computation for the remaining fifteen a  yields the entries contained in f  below.
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f =

■ { \ -3 p ) ^  +  3p^
{ l - 3 p ) ^ p  +  { l - 3 p ) p ^ 2p^
{ l - 3 p f p  +  {\-3p)p^- +  2p 
{ \ ~ 3 p Y p  +  ( l - 3 p ) p ^  +  2p^ 
{ \ - 3 p y - p  +  {\-3p)p^-  +  2p^ 
{ \ - 3 p y p  +  { \ -3 p ) p ^  +  2p  ̂

3 {\ - 3 p ) p ^  +  p^
3(1 3p)p- +  p^

(1 - 3 p y p  +  {\ - 3 p )p ^  +  2p  ̂
3 {\ - 3 p ) p ^  +  p  ̂

{ \ - 3 p y p  +  { \ - 3 p ) p ^  +  2p  ̂
3 {\ - 3 p ) p ^  +  p  ̂

{ l - 3 p y p  +  { \ - 3 p ) p ^  +  2p  ̂
3(1 - '  ̂ ’
3(1

-3p)p^ +  p  ̂
-3p)p^ +  p^

{I - 3 p y p  +  {\ -  3p)p^ +  2p^_

If the probability of a substitution taking place across a given edge is p =  0.01 then the resulting 

vector f  is

0.912676
0.009508
0.009508
0.009508
0.009508
0.009508
0.000292
0.000292
0.009508
0.000292
0.009508
0.000292
0.009508
0.000292
0.000292
0.009508

In order to find the edge length spectrum according to Theorem 11 the matrix H =  [x(^)l 

is required. H has rows corresponding to X G C"“ * and columns corresponding to a  £ G'’ “ ' and
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is equivalent to the sixteen by sixteen Hadamard matrix.

1
-1

-1 -

1̂ -
-1

1 -

- I

1 -

-1
-1

-1

1
-1

1
-1
- 1

1
- 1

I
1

- 1
I

-1
- 1

I
- 1

1

1
1

-1
-1
-1
-1

1
1

-1

-1

1 -

- 1  - 1
1 -

- 1  - I
1 -

1 -1

1
1

-1
-1

-1
1
1

-1 -1
-1

- 1  - I  - 1  -

- I

I - I  -

Given f  and H it is now possible to compute the edge length spectrum from Theorem 11. 

Below is the symbolic edge length spectrum from this example as well as the edge length spec-

trum assuming the probability o f a nucleotide substitution taking place across an edge is 0 .01,

\ln{\-4 p ) ■-0.0918494876'
- f /n ( l  -4 p )  
- l /n ( l  -4 p )

- i ln{\ - 4 p )  
- y n { \ - 4 p )

0,0102054986
0.0102054986
0.0102054986
0.0102054986
0.0102054986

0 0
0 0

- \ l n { l - 4 p ) 0.0102054986
0 0

- \ l n { l - 4 p ) 0.0102054986
0 0

- f / n ( l - 4 p ) 0.0102054986
0 0
0 0

-\ln{\ -4p)_ 0,0102054986

for;? =  0 .01 .

Notice there is some rounding error due to taking the natural logarithm.

The entries in the vectors above are indexed by e G"” ',  which can be thought o f as 

leaf colorations on the non-root leaves. These leaf colorations correspond to the site patterns
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that were discussed in the site patterns section 3.1.2. The correspondence works as follows. A 

site pattern, is made up of sets A and B each containing non-root leaves. If leaf i e  A and

i G B then a substitution o f type C took place. If leaf i G A and i 0 B then a substitution o f type 

T took place, while if lea f; ^ A and i G B then a substitution of type G took place. Therefore if 

( {2 } ,  {2 ,3 } )  is the site partition then substitution type C took place between the root and leaf 2 

and substitution type G took place between the root and leaf 3. This implies that the site pattern 

( {2 } ,  {2 ,3 } )  corresponds to the coloration (C,G). A  benefit to this correspondence is that the 

same ordering described in section 3.1.2 can be used to order the colorations and therefore order 

p"'* G G " - '.

Example 18. For the three claw example the ordering o f  the leaf colorations is: (A,A), (A,C), 

(A,G), (A ,T), (C,A), (C,C), (C,G), {C,T).  (G,A), (G,C), (G ,7 ), (7,A), ( 7 ,0 ,  (7 ,7 ) .

Notice that Theorem 11 states that the entries o f the edge length spectrum will have the 

form 0, [K "'/nK p^]/„ or 'LeeE{T)'Lh£G[^~'ln^Pe]h depending on p.
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C h a p ter  4

HADAMARD CONJUGATION AND SPLITS NETWORKS: AN 
EXTENSION TO SPLITS NETWORKS

In 2005 David Bryant published a chapter in Loir Pachter and Bemd Sturmfels’ text, 

Algebraic Statistics for Computational Biology [8] in which he claims to have extended Szekely 

et al’s result from phylogenetic trees to splits networks. Bryant attempts to do this by taking a 

slightly different approach from Szekely et al. In verifying the results o f this chapter I found 

that there appear to be a few errors with Bryant’s result as it is published in [8]. There appear 

to be both an indexing error as well as a counterexample to a lemma Bryant uses to prove the 

extension o f Szekely et al’s result. For further details regarding these errors see appendices A .l  

and A .3 on page 119.

The goal of this chapter is to prove a generalization of Szekely et al’s result which will 

make it possible to take information derived from a set o f nucleotide sequences and apply a 

Fourier transform in order to obtain a set o f splits corresponding to a splits network. Some o f 

the definitions and results from the previous chapter will be repeated here for clarity.

4.1 N ota tion

Choosing the appropriate notation is critical to extending Szekely et al’s results to splits 

networks. By carefully choosing notation and making the appropriate definitions it is possible to 

follow the approach o f Szekely et al in [60].
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4.1.1 A Matrix

As in the previous chapter let A be a p x matrix with zeros and ones. Let G be a finite 

abelian group with elements of written in the vector form x =  (xi ,X2, . . . where xj  6 G 

and let y e  G^ be the vector y =  (yi ,y2i • • • ,yp) such that

y,- — ^  ajjXj.
j=i

Although this property will be abbreviated as Ax =  y notice that multiplying a group ele-

ment by 0 yields the identity element while multiplying a group element by 1 yields the group 

element.

In the context o f phylogenetic networks the A matrix is a (n — 1) x matrix with zeros and 

ones which depends on the network N. The number o f taxa being considered is n, so n — 1 is 

the number o f non-root leaves while q is the number o f color classes. For example, consider the 

splits network given below.

1 = root 3

This splits network has three non-root leaves and six color classes. Notice that an isometric 

coloring o f the graph forces edges b and b' as well as d and d' to have the same coloring. 

Therefore the A matrix corresponding to this network is a 3 x 6 zero one matrix with rows
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indexed by the leaves 2, 3, and 4 and columns indexed by the color classes, {a} ,  {b,b' } ,  { c } ,  

{d,d '} ,  { e }  and { / } ,  Formally the entries in the matrix are given by the following definition.

_ j l  i f ; and n are on opposite sides o f {A i}  I 
’ 0 otherwise.

Therefore the A matrix corresponding to the tree above is

A =
1 1 1 0 0 0'  

1 0  0 1 0  1 
1 1 0  1 1 0

It is possible to read information about the splits network from the columns o f A. The 

entries in each column indicate which leaves are in the opposite split half from the root if the 

edges by which the column is indexed are removed. For example, if edge a is removed then 

all three leaves, 2, 3, and 4, are in the opposite split half from the root. Therefore the column 

indexed by {a }  contains all ones. The column indexed by {b,b' }  only has ones in the rows 

indexed by 2 and 4 since leaves 2 and 4 are in the opposite split half from the root when {b,b'}  

is removed.

Information can also be read from the rows o f the A  matrix. By reading across a row in the 

A matrix it is possible to see which edges are contained in the shortest path between the root and 

the leaf by which the row is indexed. In the above example the row indexed by leaf 2 has ones 

in the columns indexed by {a } , {b,b' }  and { c }  since the shortest path from the root to leaf 2 is 

a, b, c or a, b', c.

4.1 .2  L e a f  C o lo ra tio n s

In order to introduce the Fourier inverse pair in the phylogenetic splits network setting some 

additional notation is needed. Namely it is necessary discuss leaf colorations.

For each color class ec C E{N),  where £ (  A) is the set o f edges in the splits network N, there 

exists an independent G-valued random variable ^ec with distributions Peds)  '■= Prob{i, =  g)
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such that Lg€GPecis) =  1- The set o f are known as a transition mechanism and is denoted 

hy p.

The map a  : L\{R}  —> G is a leaf coloration, that is a map which assigns to each non-root 

leaf a group element g. The set o f leaf colorations is denoted G"“ ' . The value o f a  at leaf I e  L 

is denoted ct/. In order to produce a random G-coloralion of the leaves o f the network evaluate 

for every edge and assign to / the color which is the sum of the group elements along the 

unique Rl path. Let be the probability o f obtaining the leaf coloration o  : L\{R}  ^  G in this 

way.

Next let% =  (x/ G G : I e  L\{R})  be an ordered {n— 1)-tuple o f characters. Then% € G"“ ' , 

and X acts on G"“ ' according to Lemma 2 (Hi). Given this define the set

Lfc =  {I & L : ec  separates / from R in

for ec  C  E{N).  Notice this is just the set o f leaves in the opposite split half from the root after 

removing color class ec.

For ec C E{N)  and X £ G"“ ', set

Xec — Xl (4.1)
leL„

so Xec G G. For h e  G, ec C E {N) define

lecih) =  Ye h{8)Pec{g), (4.2)

''X =  n  ^̂ ciXe
ecCE{N)

(4.3)

4 .1 .3  P re lim in a ry  R esult

At this point is it possible to state the Fourier inverse pair in the phylogenetic setting.
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T h e o re m  9. /'60y W/7/z x ( a )  =  Z/(<^/).
ieL\{R}

■ L  X(«j)/a 

1

I I xeG ''"'

(4.4)

(4.5)

The proof in Szekely et al [60] o f  Theorem 9 carries over to splits networks mutatis mu-

tandis. This is a consequence o f the very specific structure o f splits networks. If each edge in 

a phylogenetic tree is given a probability that it will be assigned a given character state then it 

is possible to determine the probability o f obtaining a given leaf coloration. This is because the 

color o f each leaf is equal to the sum of the edge labelings along the path between the root and 

that leaf. Therefore the probability that a leaf in the tree will be colored a certain way depends 

on the probabilities along the path from the root to that leaf. In the case o f a splits network it is 

required that edges in the same color class must be assigned the same probabilities. The result is 

that even though there may be more than one path between the root and a leaf, the probabilities 

along each o f those paths must be the same. Essentially, the property that in a phylogenetic tree 

there is a unique path between any two vertices corresponds to the fact that in splits networks 

although there may be more the one path all paths must be labeled the same way.

Theorem 9 provides an equation for which is equivalent to / ( x )  from theorem 6 . The 

next section provides an example o f this for a specific splits network.

4.2  A n  illu strated  exam ple

Consider the splits network below.

1 =rool
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As mentioned on page 66 the A matrix corresponding to this splits network is

1 1 1  0 0 0' 
1 0  0 1 0  1 
1 1 0  1 1 0

For simplicity assume a 2-state evolutionary model. This implies that when considering a 

specific site o f a set o f aligned sequences edges and leaves o f a splits network are labeled by 

purines (R) and pyrimidines (7) rather than by the nucleotides A, C, G and T. The purines and 

pyrimidines correspond to the group elements o f Z 2 by associating

R ^ O

Y

If a mutation takes place across an edge the edge is labeled by the group element 1, whereas if no 

mutation takes place the edge is labeled by the identity element 0. Each edge labeling determines 

exactly one leaf labeling. For example if color classes {a}  {b,b' }  and { c }  are labeled 1, 0, 1 

respectively and the root vertex is labeled by a purine, R, then leaf 2 must also be labeled R since 

adding the group elements along the path from the root to leaf 2 is 1 -1- 0 +  1 =  0. Again notice 

that the paths a, b, c and a, b', c are indistinguishable.

Next in order to calculate and /(% ) it is necessary to give the probability that a given color 

class is labeled by either a 0 (I?) or a 1 (T). For this example let pi â) W  =  0-95, P{b,b'}W =  0.9, 

P { c ] W  =  0.85, P[d4 i]{R) =  0.8, P[e]{R) =  0.75 and py^{R)  =  0.7 and note that Ped^)  +  

Pec{y)  =  1. In the 2-state model it is necessary for PedR) >  0.5. In the biological setting this 

corresponds to the probability o f a mutation taking place being less than one half.

Recall from Theorem 6 that

f ix )  =  E  Y I p J i^J) r i  %'■ i^U^j)
x6G «j= l 1=1
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and let p equal the number of non-root leaves and q equal the number o f  color classes. Since 

iXl ^ G : I G L\{R})  there are eight possible values for % and therefore eight f{%).  These 

eight values are contained in the /  vector.

The last item to note is that since we are considering a 2-state model with character states 

R and Y corresponding to the group elements of Z 2 the character table used to determine values 

o f X is

1 1 
1 -1

the character table for Z 2. Given this it is possible to calculate the values o f f {%)  using the 

equation above. Since the length o f the computation is quite long only one term o f the sum 

which yields / ( x )  fo rx  =  {Xr ,%y ,Xy ) is calculated. Let x =  (1 , 1, 1, 1, 1,1), then the term in the 

sum corresponding x is

6 3

y=l ;=1
== P\{x\)X\{a\,iXi)X2{a2AX\)X3{a3jx\)-  . . .■

P(,{x6)Xi{a\,6X6)X2{a2,(yX(,)X3{a3fiXe)

= /’i(1)%i(M)X2(M)X3(M)-....

/̂ 6(1)Xi(0-1)x2(M)x3(0-1)

=  0.05 • Xi ( 1 )X2( 1 )X3( 1) • • • • ■ 0.3 • xi (0)X2( 1 )X3(0)

-  0 .0 5 (1 ) ( - 1 ) ( -1 ) . , . . .0 .3 (1 ) ( - 1 ) ( 1 ) .

Repeating the computation for each term in the sum and for each x  yields the following values 

for f i x ) :
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/(% «.% «,X«) = 1 
f{XR,XR,%y) = 0.216 
fiXR,XY,XR) = 0.216 
fiXR.XY,Xy) = 0.16 
f{XY,XR,XR) = 0.504 
f{XY.XR,Xy) = 0.21 
f{XY,XY,XR) = 0.1344 
f{XY,XY,Xy)  = 0.126

In order to compute rŷ  the value o f fa must be computed for each leaf coloring a. This 

can be done by looking at all possible edge labelings o f the splits network and then determining 

which edge labelings correspond to which leaf colorings. For the above example there are 2® =  

64 possible edge labelings which correspond to 2  ̂ =  8 possible leaf colorings. That means there 

are eight different edge labelings each producing a given a.

For example, suppose there are eight distinct edge labelings which result in the leaf coloring 

oi. Then fa, is equal to the sum of the probabilities o f each o f the eight edge labelings. To 

determine the probability that a given edge labeling occurs the probabilities of obtaining each 

color class’ label are multiplied together.

Recall that Theorem 9 states that

E  X (o )/a

for x (a ) =  Yli€L\[R}Xi{^i)- Just as with f i x )  there are eight values o f r-y corresponding to the 

eight possible %. Given the values of fa, that can be found in example 20 on page 79, the values 

o f Yy for each x  are

{̂Xr .Xr .Xk) = 1

(̂Xr Xr .Xy) = 0.216

’’{XR-XrXR) -  0.216

(̂Xr -XyXy ) = 0.16

{̂Xy,Xr ,Xr ) 0.504

''{Xy Xr .Xy ) = 0,21

{̂Xy ,Xy ,Xr ) = 0.1344

’'{Xy ,Xy ,Xy ] = 0.126.
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Notice that for each x the values o f /{%) and ry, are exactly the same illustrating that /(x) 

and are equal.'

4.3 A Result

The following section contains a theorem that generalizes a result from Szekely et al [60] 

from phylogenetic trees to splits networks. The generalization is proved using earlier results 

along with some additional notation.

For ec  C E{N)  and 0 ^  g G G define G G”^' so that — 0 for / ^ where / is 

not the root and =  g for / G Given p^c-? let : ec  G £ (N ),0  g G G }.

Theorem 10. For0on-\ p G G" , p ^ “̂ {N),

n
xeG"-

..z(p) = 1;

f o r  p =  p"-« G ^[N) ,

and for  p =  Ogn-i,

XCG'' ' heG

n -?”= n
XeC" I eC.E(N)ĥ G

Proof  Let i equal the number o f color classes in the splits network and n -  1 equal the number 

o f non-root leaves. Then the number o f possible vectors % G G ''“ ‘ is |G|" '̂ =  m. Denote these 

vectors by x l ,  X2, • • ■ , X'” - 

Equation (4.3) states that

G =  n
e,CE[N)

' Actual values of } { % )  and ry^ were computed using software written in G by Jonathan McBee.
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Using the notation above I will show that equation (4.3) implies the following:

n  -5"” =  n  n
X€G"-' ecCE{N)heG

First notice that =  n  leXlec) implies
e ,cE (N )

X(P)

This in turn implies

n
xeG"-'

4 ' " ’ = n  '.-(X .,)
\trCE{N) J

4 ,  ( X 2 „  . . .  4 , . ( X 2 . , ) ’^^(P)) ■. . .  •

=  ( / „  (xU, (X2„ . . .  / „  (xm.,

( /„ .(X U j’^'(P)/,,(X2e,.)’'''P> • • •

=  n  • . . . ■ U X ’ne.r^P^)
e,.CE{N)  ̂ '

Consider a term /̂ (̂XeĴ ^P -̂ Notice that /^..(XeJ’ '̂P̂  =  for Xf, =  h. It is possible for

more than one map % to have the property that =  h for some fixed h E G .  Therefore the above 

can be simplified to.

n
xeG"-

„x(p)
ecGE{N) "

ecCE(N)heG
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Therefore

n,x(p) _ X̂ r=h)
X  e c C E { N ) h e G

By equations (4.1) and (4.2) along with the fact that %(p) =  ri/eL\{«} X/(P/)

E { X ( P )  : Xe. = /t} =  L  {  n  X/(P/) : E  X; = -^ }-
X /€ G : / € A ( t ? }  / e z , ,

;€A(z?}

(4 .6 )

Next it is necessary to show that L{X(P) ■ X«c ~  equals the appropriate value for different

C ase 1: p =

If p =  Oq /,-!, then

E {r i5 C /(P /) :  T , l i ^ h } =  E i ^ '
X/CG: ZcAj X/SG:
IeL\R leL\R

To determine the number o f ways X/ — h where h is fixed first let =  { / i } and % =  

(Xi 1X2, • ■ • ,X «-i )■ Then %/, is fixed and X/̂  for e  {2 ,3 ,. . .  ,n — 1} can be one o f |G| possibilities. 

Since there are n -  2 values o f Xt-, there are |G|"~̂  possible x  that satisfy Y.I£L, .Xi =

Next let =  {/| ,(2, • • • for 1 <   ̂ ^ n — 1. Then there are |G| possibilities for each 

o f the X/i >X/2' ■ • ■ i X A i and X/, is fixed so that The remainder o f the X/* for k e

{^ +  1, . ,. ,n -  1} may vary amongst the |G| possibilities. Therefore only one o f the Xk out o f 

n -  1 terms is fixed. Hence there are |Gl"~  ̂possible % that satisfy Xl — 4- So

E  E x /  =  M =  i c r 2
X/€C:
leL\R

implies if p =  then “  FI FI '•
X eG "- '  e ,CE{N)h€G
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Case 2: p =  e  'if{N) 

If p =  p̂ '-”̂  e  then

L {  n 5C/(P/) : L X/ =  M =  K g ) ) .
Xi€C leL\R l e u ,  Xl
leL\R

It is the case that x(P^“'''̂ ) =  K s )  because

X(P"'''^) =  n  X/(P/)
leL\R

=  X/,(P/,)X/2(P/2)-"X /„-,(P /„-| )

where each

X/,(P/,)
xi,{g) i fheL,,
Y/,(0) =  1 if

Since Y . % i  =  h then %/,, +  X;,, +  ■ • ■ +  X;,„ =  h, which implies X/,, (g) ■ Xu (g) ' - - - '  %U {g) =  K g )  
i€ U , ■

and hence /(p^''"^) =  Kg)-  As a result

L  { n  5C/(P/) : I )  X/ = /j} = Y^iKg) ■ Y.%1 = K
X,6G /6A « X/
ieL\R

and by the same argument as in case 1, there are |G|” '^  vectors x  such that ZXi =  h. Therefore

I , {Kg) - 'Lx i  = h} = Kg)\Gr\
X l

So for p =  e  '^{N),

xeG "-' h e G

Case 3: Og /,-1 /  p G G"

Since p ^ '^{N)  and p Oq ,,-! one o f two things must be true. Either
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(a ) There exists / ^ ^  R and p/ ^  Oc-

(P) There exists I J  € such that p/ ^  pj. Notice that if p € p/ =  p ; =  g.

Subcase (a ): Take T| e  G such that ri(p/) ^  1. One must exist because [x(,?)] is invertible 

which implies it cannot be an all ones matrix. Change % from % =  (Xi 1X21 • ■ X /i-i) to x  =  

(Xi.X2,- - . ,r i +  X /,--M X«-i)-

Next consider equation (4.6),

E  { n  X'(p')- E
X /6 G  l e L \ { R }  l e L e ,

I S L \ { R }

with the X above. On one hand the sum is fixed because letting % =  (Xi > • • • ,tl +  X/i • ■ • >Xn-i) is 

like permuting the terms in the sum. This is because the sum ranges over all choices of X/> and 

since ri +  X/ is just like choosing a different value for a %i you get the same sum out. The terms 

have just been added in a different order.

On the other hand taking x =  (X i>• ■ • ill +  %;,• • ■ ,Xn-i) is like multiplying the sum by 

p (p /) i-  1. This is because x(p"^’̂ ) =  X/,(P/,) • • ■ • -Tl(p;,)X/,(p/,) ■ • • ■ ’ X/,,-, (p/„-,) and each term 

in the sum has a factor o f r|(p) so it can be factored out. Hence the sum must be zero.

Subcase (P) : There exists 6  such that p/ ^  p̂  Suppose there exists l , j  e  such 

that p/ 7̂  Py. Take r| such that ri(py — p/) =  'n(Py)'n~’ (p/) 1- Again one must exist since [x(g)]

is regular.

Replace the vectorx=  (Xi, • • •-X/> • • • ,Xy, • • • ,X /.-i) by X =  (Xi - ■ ■ • .X /-T ), • • • ,X j+  T1. • • •-X«-i )• 

Again on one hand the terms of the sum in (4.6) have just been permuted and therefore the sum 

is fixed.

On the other hand notice that

X(p"‘’̂ ) = Xl(Pl)X2(p2)...X/-Tl(P/)---Xy+n(Pi)---X«-l(P«-l)

= Xl(pl) • • -X/(P/)t1"‘ (P;) • • •Xy(Py)Tl(P;) ■ • .X«-l(P«-l)

=  ‘ (p /)fi(p7)(X l(p l) ■ ■ -X«-l (P ,i-l))
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Therefore as in (a ) the sum must be zero. So if 0^,,-! /  p 6 , p ^ “̂ {N )

which implies

E {n ? C / (P / ) :L X /  =  /> }= 0

n = n n
ZeG"-' eceE{N)h€G

n n

The three equalities have been shown.

ec^E{N)hed 
=  1.

□

An alternative formulation o f Theorem 10 is given below. Let K  =  [/i(.?)] denote the matrix 

in which rows correspond to h e  G and columns correspond to ^ G G. Let H =  [x(ct)] denote the 

matrix in which rows correspond to % G G"“ ' and columns correspond to a  G G "" '. The vector 

f  denotes the vector o f f^'s and p,,,.. is the vector o f Pec{g)'s for every ec  C E{N).  Finally, the 

logarithm o f  a vector is vector o f logarithms o f the components.

Theorem 11.

0 ,

(/P  =  P ^ '- ''G ^ (A ),q{N) =  [H-'lagHf]p={[K-HogKpe.]h,
, 'L e , eE {N) ' Lh eG [ f^~ '  l o g K p e r ] h ,  P =  0  

The indexing of the vector q makes it easy to read off the most likely splits occurring in a 

splits network. The following examples discuss the indexing as well as Theorem 11.

Example 19. Suppose the historical relationships between four taxa are being considered by 

examining four aligned sequences representing the taxa. As in previous examples let each se-

quence be made up o f  2-state characters, purines (R) and pyrimidines (Y). Assume that sequence 

1 is the root sequence and that one site o f  that sequence will be compared to the same site in the
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other three sequences. Notice that the three sites being examined which are not from the root 

sequence must he in state R or Y. Therefore there are 2  ̂ =  8 possibilities for  the leaf states at 

the site being considered. For example the ordered triple {R,R,R) indicates that the site being 

considered in sequences 2, 3 and 4 are all at state R. The ordered triple (Y,Y,R) indicates that 

the site being considered in sequences 2 and 3 is at state Y while the site in sequence 4 is at state 

R. The vectors o f  length 2̂  are indexed by the eight ordered triples given in alphabetical order. 

In general the vectors o f  length 2"“ ' are indexed by {n -  l)-tuples, with entries R and Y in the 

case o f  2-state sequences and entries A, C, G and T in the case o f  4-state sequences. The tuples 

are given in alphabetical order. -

The ordered («  -  l)-tuples used in indexing vectors have multiple interpretations. The 

most obvious interpretation is that the {n -  1) -tuples correspond to the possible leaf colorations 

by either R and Y or by A, C, G, and T. A less obvious interpretation o f the tuples is that they 

correspond to a color class. In order to make this correspondence precise recall the notation 

below.

For ec C E {N )  and 0 ^  g £ G define so that =  0 for / ^ where I is not

the root and =  g for / £ Le .̂ If the splits network below is assumed and R and Y correspond 

to elements o f Z 2 with R the identity element, the values o f p^̂ '̂  are as follows:

1 =  root

p(«}T =  Y =  (^y,R,Y) =  (T,/?,/?)
pl^.^'lT =  y_y) p{^}->'=  (y?,/?,y) p l/lT  =
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Notice that for each the positions o f the non-identity group elements give the leaves in 

the opposite split half from the root when ec  is removed. Also notice that not all possible triples 

are listed above. Only the triples corresponding to color classes are given.

The following example is a continuation o f the example presented in section 4.2 and illus-

trates the relationship between f and q given in Theorem 11.

Example 20. Given the four leaf splits network from above with edge probabilities given in 

section 4.2 recall that the vector f  contains the values o f fa  fo r  each a. For this example f  is 

equal to

f  =

0.3208'
0.1428
0.1617
0.1267
0.0772
0.0672
0.0483
0.0553

Multiplying the 8 x 8 Hadamard matrix by f  yields

H t =

1 1 1 1 1 1 1 1
1 -1 1 -1 1 - 1 1 -1
1 1 -1 -1 1 1 -1 - 1

1 -1 -1 1 1 - 1 -1 1
1 1 1 1 - 1 - 1 - 1 - 1

1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 - 1 -1 1 -1 1 1 -1

'0.3208‘ ■ 1 ■
0.1428 0.216
0.1617 0.216
0.1267 0.16
0.0772 0.504
0.0672 0.21
0.0483 0.1344
0.0553. .0 .1 2 6 .

Notice that H t is equal to r-^from section 4.2. Taking the natural log o f  the entries o f  H i and 

multiplying by the inverse o f  the Hadamard matrix yields the vector below. Since the entries are 

expressed as a decimal there is some rounding error resulting from taking the natural log.
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q =  / / - '  l o g H i  =

■ -1 ,4  ■ 
0.3466 
0.4581 
0.2554 
0.1783 
0.1116 

0
0.0527

The entry indexed by [Y,Y,R) represents the split {2 ,3 }  since the nonidentity group ele-

ments are in the first and second positions o f  the triple. The fact that this entry is zero implies the 

split {2 ,3 }  does not exist in the splits network being considered. The six positive entries indicate 

that there are six splits which exist in the splits network while the first entry in the vector is the 

negative value o f  the sum o f  the six positive entries.

The example above is fairly small however it illustrates how probabilities of leaf colorings 

can be transformed using Hadamard conjugation into a vector containing information about the 

existence o f different splits in a splits network. In larger examples assuming different nucleotide 

substitution models even more information such as the probabilities o f different mutations taking 

place across edges can be determined.

Although this paper assumes a splits network in order to compute f, f  can also be computed 

from nucleotide sequences meaning that given a set o f nucleotide sequences representing existent 

taxa it is possible to produce a splits tree or network representing historical relationships between 

taxa.

Until this point the it has been assumed that there is an underlying group based evolutionary 

model describing how mutations take place. The Kimura three-substitutions type model whose 

three types o f mutations correspond to the non-identity elements o f Z 2 x Z 2 was used in many 

examples as well as the 2-state model corresponding to the group Z 2. The next chapter discusses 

a paper by Bryant which provides another formulation o f the equations resulting from Hadamard 

conjugation, Bryant mentions that a motivation for developing a new formulation is the desire 

to be able to apply Hadamard conjugation to non-group-based models.
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C h a p ter  5

A DIFFERENT PERSPECTIVE ON HADAMARD  
CONJUGATION

Hadamard conjugation as it is used in combinatorial phylogenetics was first introduced by 

Hendy and Penny in 1989 and since then has been derived many different ways giving rise to 

several proofs of the same result. Although there are many ways to view Hadamard conjugation 

there are two main approaches to deriving the formula. One approach involves the use o f pathsets 

and the other approach involves a Fourier transform on a finite abelian group. In 1989 Hendy 

and Penny used pathsets to derive the Hadamard conjugation formula. Their results were later 

extend by Hendy and Snir in 2008 [33]. In the early 1990s Steel et al (1992) [53], Evans and 

Speed (1993) [20] and Szekely et al (1993) [60] viewed the transform as an example o f  a Fourier 

transform on abelian groups.

In 2009 “ Hadamard Phylogenetic Methods and the n-taxon Process” by David Bryant [9] 

used a continuous time Markov chain to describe the evolution o f the leaf colorations over time 

and derives the probability matrix P[x] for this process given a vector x o f branch lengths. P[x] 

is the exponential exp(Q[x]) o f a linear combination o f rate matrices for the branches. Bryant 

claims the formula for Hadamard conjugation falls straight out o f the formula for P[xj.

5.1 B ry a n t ’s a p p ro a ch

The following subsections outline the approach taken by Bryant in his derivation o f the 

Hadamard transform. Bryant’s approach makes clear the use o f the continuous Markov chain 

and the need to be able to diagonalize the rate matrices.

81



5.1.1 M o d e ls  o f  evolu tion  a lon g  on e b ra n ch

Bryant focuses on two nucleotide substitution models throughout his paper. The first model 

is a 2-state model known as the binary symmetric model or Neyman model. The binary symmet-

ric model is used to analyze sequences o f purines and pyrimidines. There is only one substitution 

type in this model, the substitution taking a purine to a pyrimidine or a pyrimidine to a purine 

and this substitution happens with rate 1. Consequently, the instantaneous rate matrix for this 

model is a two by two matrix with entries o f -1 on the diagonal and 1 elsewhere.

The second nucleotide substitution model Bryant uses is the Kimura three-substitution type 

model. The rate matrices for each o f these models is given below.

Q{Neyman) _

Q ( K - i S T )  ^

-1  1 
1 - 1

- a - | 3 - Y  a p Y
a - a - p - Y  Y P
P Y - a - p - Y  a
Y P a - a - P - Y

The parameters a, p, and Y are chosen so that a  -|- P -f Y =  1 ■

the probability that the state at the end o f a branch o f length r is j  given that the state 

at the beginning o f the branch is i, is given by the matrix exponential exp((2t). In the case o f the 

binary symmetric model

’ - t t '
t - t ) - [ i ! i  - 2 .  i  +  i  - 2 .2 2  ̂ 2 ^ 2 ^

P{t) — exp

5.1 .2  T h e  n -taxon  p rocess

Bryant works with a continuous time Markov chain whose state space depends on the num-

ber o f states in the substitution model to describe the evolutionary process along the branches 

of a tree with n non-root leaves. The state space for the Markov process is the set o f vectors 

assigning a state to every taxon. If the binary symmetric model is assumed, the state space is
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made up o f 2" vectors. The state space o f the process assuming Kimura three-substitution is 

made up o f 4" vectors since the Kimura three-substitution type model is a four state model.

T erm in o logy  and  N otation

The transition probabilities depend on which lineages at a particular time are ancestral to 

which taxa and at each time point tg, t], ... the rates of substitution for the n-taxon process will 

change. As a result o f this there are several rate matrices that need to be considered. These 

matrices are described below.

1. Q is the rate matrix for the underlying substitution process.

2 . is the rate matrix for the n-taxon process during the time interval [?,_i ,?/]•

3. denotes the rate matrix for the n-taxon process restricted to substitutions occurring on 

a given branch e.

B ra n ch  R a te  M a trices

In order to construct a branch rate matrix for branch e only substitutions occurring along 

branch e are considered. Substitutions occurring at the same time, but along different branches 

are accounted for in the other branch rate matrices. Also, only taxa that are descendants o f a 

given branch are affected by substitutions occurring along that branch. A taxon is a descendant 

o f a branch if it is a descendant o f the ancestors represented by that branch. Let the set A be the 

set o f  descendants o f the branch being considered.

For simplicity consider creating a branch rate matrix for a tree assuming the binary sym-

metric evolutionary model. The branch rate matrix is indexed by the 2" vectors assigning a state 

to every taxon. In the case o f the 3-claw tree the matrix is indexed by the vectors [00], [01], [10], 

[11], where the components in the vector represent the coloration o f the two non-root leaves. For 

example, consider the vector [01]. A 0 in the first component o f [01] indicates leaf one is a purine 

while a 1 in the second component indicates leaf two is a pyrimidine.
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By letting v[/'] be the state of the ancestor of taxon i it is possible to define the branch rate 

matrix for branch e assuming the binary symmetric model.

1 if u[(] 7  ̂v[i] exactly when / G A; 
-1 i fu  =  v;
0 otherwise

Ruv =  {  - 1 if u =  v;

Notice that there are three types o f entries in the branch rate matrix. The first type o f entry 

corresponds to substitutions taking place across an edge. In the case o f the binary symmetric 

model substitutions take place at rate 1, hence if u[i] ^  v[/] when i € A the corresponding entry 

is 1. The second type o f entry occurs along the diagonal when u =  v. These entries are set 

equal to -1 so that row sums are equal to zero. The final entries occurring in the matrix represent 

substitutions that cannot take place. For instance, consider the 3-claw tree given below.

Let leaf 1 be the root o f this tree and consider the branch rate matrix for edge a. If the root is 

labeled 0 then a substitution taking place across branch a changes both leaves 2 and 3 from 0 to 

1. This is because leaves 2 and 3 are both descendants o f branch a. Consequently, a substitutions 

along branch a will never affect only one o f the two descendants o f a and therefore the entries

p (“) _pN)
[̂00],[01) “  [̂00],[10] R («) R («) R R'■[01],[00] -  *'[01],[11] -  ^'[10],[00] -  *'[10],[11] -  ^'[11],[10] -  ^'[11],[10] 

The branch rate matrices for the 3-claw tree assuming the binary symmetric model are

=  0 .

‘  - 1  0 0  1 ' '  - 1  0 1 0  ' '  - 1  1 0  o '

0  - 1  

0  1

1 0  

- 1  0
,  R ( * )  =

0 - 1 0 1

1 0 - 1 0
,  r ( ‘ ' )  =

1 - 1 0  0  

0  0 - 1  1

1 0 0  - 1 0  1 0  - 1 0  0  1 - 1
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Bryant states two lemmas which provide a method o f constructing the branch rate matrices. 

The first lemma is specific to the binary symmetric model while the second lemma is stated in 

terms o f the Kimura three-substitutions type model.

L e m m a  3. Let A be the set o f  taxa that are descendants o f  the population represented by branch 

e. Let £  =  [ I g ]. For each i =  1 ,2 ,3 ,. . .  set =  E i f i £ A  and M ‘̂'i =  I otherwise. Then

r W =  0 ... 0 M("> - 1.

The matrix E represents the one type of substitution that can take place in the binary sym-

metric model. In the case o f the Kimura three-substitution types model there are three substitu-

tion types, a, P, and y. These three substitutions are represented by the three matrices £ /, £ //,

and £■///, where Q = a E l + p Eli  +  y Em  - - ( a +  P +  y) I.

■ 0 1 0 0 ■ ■ 0 0 1 0 ■ ■ 0 0 0 1 ■

E , = 1 0 0 0
, Eli  =

0 0 0 1
. Em  =

0 0
1

1 0
0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 _ 1 0 0 0

Bryant states the following lemma for the Kimura three-substitutions type model.

L em m a  4. Let A be the set o f  taxa that are descendants o f  the population represented by branch 

e. For each i =  \ , 2 , . .. ,n set =  E/ if i £ A and M ‘̂'> — I otherwise; likewise fo r  and 

Mf},. Then

=  a  * 0 . . .  0  +  P m } ’ ̂  0 . . .  0  M\f -I- y A fj'/ 0 . . .  0  - 1.

D ia g on a liz in g  a b ra n ch  rate m atrix

Bryant considers the standard group-based models that have an abelian permutation group 

acting regularly on the set o f states '. He is able to diagonalize the branch rate matrices using 

Hadamard matrices. The following lemma and proof are directly from Bryant [9].

For more about group-ba.sed models see section 6.1 on page 91
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Lemma 5. Let H =  the n‘  ̂ order Hadamard matrix, and let be the rate matrix fo r  the 

n-taxon process restricted to branch e, binary symmetric case. Let A be the set o f taxa that are 

descendants o f  branch e. Then

a W : = h r (">H-‘

is a diagonal matrix with

fo r  all state vectors u.

Proof Define matrices M ‘̂'> as in Lemma 3. Then

H (r W +  i ) H - ‘ =  ) 0 ...  0  ).

If i € A, then =  / / £ / / - '  =  A while if i ^ A, we have =  /. The Kronecker

product o f diagonal matrices is diagonal, so A is diagonal,

For the diagonal values, note that

and that

i=l

1 Otherwise

□

The transition probabilities down branch e now follow directly from the diagonalization, since

exp(RW ,) =  H ^'exp(A ("')H .

Bryant also includes a similar lemma for the Kimura three-substitution types model. Like 

with the binary symmetric model conjugation by the Hadamard matrix diagonalizes the branch 

rate matrices. In the case o f the Kimura three-substitution model the resulting diagonal matrix 

has diagonal entries

-|_Y(_l)l{ie'^:ul'l=CorG}| _  I
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Transition probabilities over multiple lineages

Frequently multiple lineages are evolving independently during a given time interval. The 

rate matrix for the substitution process over all lineages in each time interval, Q ‘̂\ is the sum 

o f the rate matrices, for the individual branches present at that time point. Between time 

points to and the present time there is a sequence o f rate matrices . . . ,  Each rate

matrix equals the sum of the rate matrices for all branches e present during the interval 

[r,_i,r,]. During each interval, the probability transitions are given by the standard exponential 

formula

p ( ')= e x p (Q « (r , - r ,_ , ) ) ,

so the transition probabilities between time to and time t/̂ are given by

p  _  p(IJp(2)  ̂  ̂  ̂ p(i}^

Since each branch rate matrix is diagonalized by the same Hadamard matrix the sums Q' 

are also diagonalized and the matrices Q ‘ must commute. Notice that if two matrices X and Y 

commute that exp(X)exp(Y) =  exp(X +  Y) and therefore

P =  exp .

Theorem 12.  ̂ Let P[x] be the matrix o f transition probabilities in the n-taxon process for  the 

binary symmetric case given a branch length vector x. Define

Q[x ] =  £ r W x ,
e

where e ranges over branches in the tree, R̂ *') is the matrix given in Lemma 3, and x̂  is the 

length o f  branch e. Then HQ[x]H~' is a diagonal matrix and

P[x] =  exp{Q[x\).

^The same theorem exists for the Kimura three-substitution types model. See Bryant (2009) [9] theorem 14.

87



Commenting on the above theorem Bryant states the following. The probability distribution 

for a tree can be recovered from the above equation by noting that at the root, the process is 

0 =  [0 ,0 , . . .  ,0] with probability 7to =  5 and 1 =  [1,1, . . . ,  1] with probability 5 . If u is the pattern 

o f states at the leaves, then the probability o f observing u equals

P =  ^PouW +  ^PluW.

Using Theorem 12 Bryant derives the Hadamard conjugation formula originally derived by 

Hendy and Penny in 1989.

Theorem 13. Suppose that the tree has taxa at the root with state 0. For each non-zero vector u 

(indexed by the remaining taxa), let qu be the length o f the branch with descendants { / :  u[(] =  1}, 

if there is such a branch in the tree, and zero otherwise. Let qo be the negative o f  the sum o f  all 

the branch lengths in the tree. Let p„ be the probability o f  observing the pattern u at the leaves. 

Then

p =  H“ ’ cx/?(Hq).

Flere the exponential is entry-wise.

Proof. [9] Let 0 denote the vector [0, 0, . . . ,  0]. Both P and Q are indexed by vectors o f states: 

By 0-row or 0-column, we mean the row or column with index 0. We seek the probabilities 

Pu =  PouW- As P[x] is symmetric, Pou[x] =  PucM-

The vector q is the 0-column o f Q[x]. Let A =  HQ[x]H“ ',  so that HQ =  AH. The 0- 

column o f H is all ones, so the 0-column o f AH is made up o f the diagonal entries o f A. Hence, 

the entries on Hq are the entries along the diagonal o f A. Taking entry-wise exponentials, we 

have that exp(Hq) equals the entries along the diagonal o f exp(A) and so exp(Hq) is the first 

column o f exp(A)H. Hence, H “ ’ exp(Hq) is the 0-column o f H “ *exp(A)H, which by Theorem 

12 equals P. □

5.1.3 Example

Below an example using the approach outlined in Bryant’s 2009 paper [9].
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-3 a a a a
a -3 a a a
a a - 3 a a
a a a - 3 a

Jukes-Cantor model using Bryant 2009

Let

If the probability any type o f substitution takes place along a given edge is p =  0.01 then since 

P =  exp (2 f), 0.01 =  — Thi s implies a t  w 0.010205. a t  is equal to the number o f 

one type of mutation taking place over some time t. Since there are three mutation types in the 

general group-based model the total number o f mutations along a branch over time t is equal to 

3 0.030615. ■

The matrices representing the possible substitutions are:

E l =

If the 3-claw is assumed then the branch rate matrices are:

r W = a (£ 1 (gi£  1) + a (E2 0  E2)-f a  (£3  ® £ 3) - 1 

=  a ( 7 0 £ 1 )  4-a  ( / 0 £ 2 )  -ba ( 7 0 £ 3 )  -  I 

R(") = a  (£ 1 0  7) -f- a (£2  0  7) + a (£3 0  7) - 1.

Each o f these matrices have a -1 on the diagonal and three additional nonzero entries in each 

row. Notice that the row sums for each matrix are always zero. Each o f these matrices can 

also be diagonalized by the Hadamard matrix. Diagonalizing each matrix, adding them together, 

and multiplying by T «  0.030615 yields Q[x] as defined in Theorem 12. Exponentiating Q[x] 

produces a diagonal matrix Bryant refers to as P[t ] with the following entries on the diagonal.

■ 0 1 0 0 ■ ■ 0 0 1 0 ■ ■ 0 0 0 1 ■
1
0

0 0 0
, £ 2  = 0 0 0 1

. £3  =
0 0 1 0

0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 _ 1 0 0 0
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V  =

0.92160
0.92160
0.92160
0.92160
0.92160
0.88473
0.88473
0.92160
0.88473
0.92160
0.88473
0.92160
0.88473
0.88473
0.92160

Multiplying v by the 16 x 16 inverse Hadamard matrix produces the leaf coloration probability 

vector.

0.912676
0.009508
0.009508
0.009508
0.009508
0.009508
0.000292
0.000292
0.009508
0.000292
0.009508
0.000292
0.009508
0.000292
0.000292
0.009508

H - 1. f =

Notice that this vector is equal to the vector obtained in section 3.2,4 on page 61.

If the 3-claw tree being considered had different edge lengths the above computations would 

be very similar. The only difference would be that instead o f having a single edge length value 

X , there would be a value x, for each edge i in the tree.
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C h a p te r  6

EXTENDING HADAMARD CONJUGATION

One o f the major limitations o f Hadamard conjugation is its restriction to group-based sub-

stitution models. Currently the literature regarding the use o f Hadamard conjugation assumes 

any substitution model being used is a group-based model or a submodel o f a group-based model. 

Bryant states in [9] that if the substitution model is assumed to be time-reversible then the only 

three-parameter group-based nucleotide substitution model is the Kimura three-substitution type 

model and the only nucleotide substitution models that are available to use with Hadamard con-

jugation are special cases o f the Kimura three-substitution type model. Therefore although there 

are 203 different time-reversible nucleotide substitution models only a handful are currently used 

with Hadamard conjugation [36].

In this chapter I will examine what it means to be a group-based model and look at the 

possibility o f  extending Hadamard conjugation beyond the Kimura three-substitution type model 

and submodels o f Kimura three-substitution type model. After first focusing on nucleotide based 

evolutionary models I will look at the possibility o f extending Hadamard conjugation to other 

types o f evolutionary models.

6.1 G r o u p -b a s e d  substitu tion  m odels

Current literature on Hadamard conjugation assumes that the technique is restricted to 

group-based substitution models, such as the Kimura three-substitution type model. Although 

the Kimura three-substitution type model was first published in 1981, the relationship between
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the Klein four group and the model was not recognized until the early 1990s. One o f the first pa-

pers recognizing the group structure o f the Kimura three-substitution type model was the 1993 

paper by Steven Evans and T.P, Speed [20], In this paper they described the relationship be-

tween the evolutionary model and the group by creating a correspondence between the bases 

{ A , C , G , T }  and the elements o f an abelian group with the group operation defined by the fol-

lowing addition table:

-f- A C G T
A A C G T
C C A T G
G G T A C
T T G C A

This group is isomorphic to the Klein four group, Z 2 x Z 2. One possible isomorphism is given 

by A (0,0), C <-> (0,1), G <-» (1,0) and T  (1,1). Each o f the substitution types can also 

be associated to a group element by associating to each substitution type the difference between 

the group element associated to the starting nucleotide and the group element of the ending 

nucleotide. For example if y  is the substitution which takes A to C, C to A, G io T  and T  

to G, then using the isomorphism above, y  corresponds to the group element (0,0) - ( 0 ,1 )  =  

(1,0) -  ( 1 ,1) =  (0,1). The substitution types a , P and y  along with the identity substitution, 

e, produce a group under composition which acts on the nucleotide set {A ,C , G,7’ }, From this 

perspective the fact that the Kimura three-substitution type model is abelian group-based means 

that there exists a permutation group acting regularly on the four bases.

Bryant gives the following equivalent definition o f a group-based model in his chapter o f 

Lior Pachter and Bernd Sturmfels text [8].

D efin ition  25. A mutation model on state space { 1 , 2 , . . . ,  r }  is said to be a group-based model 

i f  there exists an abelian group G with elements g j ,  g2 ,---,gr and a function \|/: G —» R such 

that the instantaneous rate matrix Q satisfies

Qij = ¥(̂ / -  gj)

fo r  all i and j .
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The definition implies that there is a regular abelian group o f automorphisms, defined to be 

permutations o f the bases such that Qa(i),aU) =  2 <7- acting on the four bases.

T h e o re m  14. Let G be an abelian group with G — {g\,g2 , . .. .,gr}. A model is group-based as 

defined by Bryant if and only if there exists an abelian group, A, o f  permutations o / { 1 ,2 , . . . , r} 

that are automorphisms o f  the model and A acts regularly on { 1, 2 , . . . , r}.

Proof. Let G be an abelian group with G — {g\,g2 , - ■. ,gr]. Consider a group-based model as de-

fined by Bryant. Notice that there is a one-to-one correspondence between the states { 1, 2 , . . . , r} 

and the group elements {gi ,g2> • • ■,gr}- Writing the correspondence formally causes the notation 

to become overly complicated, so to simplify the notation identify state i with group element g, 

fo r i 6  { l , 2 , . . . , r } .

By Bryant’s definition the instantaneous rate matrix Q satisfies Qjj =  \|t(g, — gj) for all i 

and j . Let 7i, : G —> G be the permutation xi-> x-\-gi for all x e G .  Given this map

2ll*(07t*O') =  ’̂ {{gi +  g k ) - { g j+ g k ) )

=  ^ { g i - g j )

— Qiji

where in the second to last equation we use the fact that G is abelian. S o n : G —> Sr, g, 7i, for 

all i is a homomorphism, one-to-one and Qn(s)(i),n(g){j) =  Qij for all i and j. Therefore 7t(G) is a 

group o f automorphisms o f the model which are defined to be permutations of { 1, 2 , . . . , r }  such 

that Qa(j),o(7) =  Qij for all i and j. Hence n{G) is abelian and via 7t, G acts regularly on the set 

{ 1, 2 , . . . , r} o f states.

Next suppose that there exists an abelian group. A, o f  permutations of { l , 2 , . . . , r }  that 

are automorphisms o f the model and let A act regularly on { l , 2 , . . . , r } .  Then for all a  e  A, 

Q<5(i),oU) =  Qi j- Label state m with the identity element e G A. Next identify the states with 

the elements o f A so that a G A corresponds to a{m). Let i, j  be states labeled with a,-, aj G A
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and f  be states labeled with Ui', ay e  A such that aj oo,- ' =  ay oa-, This implies that 

a,' o a “ ' ay o a j '  since A is abelian. Next let b =  <2,/ o a r '.  Then

b{i) =  a iia~ \ i))

= a,v(a,r‘ (a,(/n)))

=  ai>{m)

=  i

and

b {j)  =  a,'(a~ '(;■))

=  a iia -\ a j{m )))

= ay ia j ' {a j { m ) ) )

= ay{m)

=  / .

So Qij =  Qi'y. Therefore there exists \|/ such that Qij =  \|/(a, - a j )  for all i and j. Hence the 

model is group-based by Bryant’s definition. □

Recall that the Kimura two-substitution type model is a submodel o f the Kimura three- 

substitution type model and has rate matrix given by

q {K2ST) ^

' - K Y a Y ■
Y - K Y a
a Y - K Y

. Y a Y -K _

where K =  a  +  2y. The Kimura two-substitution type model and other submodels o f Kimura 

three-substitution type model can be obtained from the Kimura three-substitution type model by 

setting parameters equal to each other. Unlike the Kimura three-substitution type model, in the 

Kimura two-substitution type model there does not exist a permutation group acting regularly

94



on the four bases. Therefore the Kimura two-substitution type model is not group-based in the 

same sense as the Kimura three-substitution type model. From this point of view Hadamard 

conjugation applies to group-based models as well as submodels o f group-based models.

6.2 S im u ltan eou s D iagon a liza tion

In hopes o f expanding the number o f evolutionary models that can be used with Hadamard 

conjugation it is necessary to consider properties o f the models that make the implementation 

o f Hadamard conjugation possible. Since 1989 there have been several different derivations all 

leading to the invertible formulas known as Hadamard conjugation. The utility o f Hadamard 

conjugation comes from the fact that it provides an analytic formula relating observed pattern 

frequencies from DNA data to a vector containing information about the structure o f the phylo-

genetic tree. In general analytic formulas which relate this information do not exist.

In Bryant’s derivation o f the Hadamard conjugation formula given in his 2009 paper [9], 

which was discussed in chapter 5, he relies on the fact that the n-taxon process is a continuous 

time Markov chain that describes the evolution o f a vector o f ancestral states. He derives the 

probability matrix P[x] as being the exponential exp(Q[x]). The vector q as given in Hendy and 

Penny’s derivation o f the o f Hadamard conjugation formula is the first column o f Q[x].

In deriving the equation P[x] = exp(Q[x]) Bryant relies on the fact that the rate matrices, 

Q, are simultaneously diagonalizable. A quote from Bryant’s proof illustrating this fact is given 

below.

“Now comes a key step in the proof. The rate matrices down each branch 

are all diagonalized by the Hadamard matrix H and, therefore, so are the sums Q '̂ .̂

Since every matrix in the product is diagonalized by the same matrix H, the rate 

matrices Q(') all commute. If two matrices X  and Y  commute, then exp(X)exp(Y)

= e x p (X -fY ) [9].’ ’

He goes on to say that applying this identity gives the formula.
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The existence o f the matrix exponential in the proof requires that the rate matrices be si-

multaneously diagonalizable. Recall from section 1.1.7 on page 16 that the matrix exponential 

o f A G is defined as the matrix

If A =  d ia g (A i,...,A i), where A,- G F"'’'"' for all i then =  diag(e^', . . .

However, if A is not a diagonal matrix the matrix exponential produces a matrix with entries that 

will not correspond to the Hadamard conjugation formula given in Bryant 2009 [9] or Szekely 

et al [60].

As well as needing simultaneous diagonalization to obtain the correct formulas, simulta-

neous diagonalization is also needed to reduce the computational complexity o f calculating the 

matrix exponential. The computational complexity becomes even more significant when analyz-

ing evolutionary models with more than four states. This was noted in a paper by a 2007 paper 

by Mayrose, Doron-Faigenboim, Bacharach and Pupko in their discussion o f the use o f codon 

models [46]. They state, “These models tend to be computationally intensive as they involved 

exponentiating a large (61 by 61) rate matrix.”

The ability to simultaneously diagonalize rate matrices appears to be o f significant impor-

tance and so will be contained in the assumptions made in later sections.

6.3 S u b stitu tion  M o d e ls  an d  G ro u p s

An existing theme o f algebraic combinatorics has been the removal o f hypotheses about 

having groups acting, with their successful replacement by regularity conditions that still guaran-

tee the presence o f an algebra. Instances of this include the move from distance-transitive graphs 

to distance-regular graphs and Don Higman’s program of replacing permutation groups by co-

herent configurations, with the centralizer algebra being replaced by the Bose-Mesner algebra. 

It appears that a similar move may also be beneficial in the analysis o f nucleotide substitution 

models. This is suggested by the fact that the set o f possible instantaneous rate matrices, when
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expanded to allow the addition o f linear combinations o f the identity matrix, is isomorphic to the 

real group algebra o f the Klein four group, V, that seems to be necessary for the application o f 

Hadamard conjugation. This implies it may be useful to move attention away from the group V 

and shift it to the group algebra RV. The hrst result o f this section illustrates this shift.

Before stating the first result an explanation o f terminology must be given. Let the set o f 

possible instantaneous rate matrices expanded to allow the addition o f linear combinations o f the 

identity matrix o f a given nucleotide substitution model be known as a 2  space. For example, 

given the Kimura three-substitution type model whose rate matrix is give below

q {K3,ST) ^

' - K y a P ■
y - K P a
a P -K y

. P a y - K

where K  = a -fP  +  y, we have a space that is equal to -|-S/ja, p,y,5 S K}.

T h e o re m  15. I f  there exists a real invertible four by fou r matrix X  that simultaneously diago­

nalizes A, a three parameter Q space, then A =  MV where V is the Klein four group.

Proof Let D  be the set o f all four by four diagonal matrices and A be a three parameter Q 

algebra. XAX~^ C  D,  and by comparing dimensions, equality occurs so thatX A X "’ =  D.  Let 

Q' and Q" belong to A. Then Q^Q”  e  A since XQ 'X^ ' G D  and X Q ”X~  ̂ G D  which implies 

XQ'X~^XQ"X~^ =  XQ 'Q "X~ ' G D. Therefore Q'Q” G =  A. Therefore A is an algebra.

A is isomorphic to D  via X  and since KV is a four dimensional algebra which is diago- 

nalizable by H, a Hadamard matrix, RF =  D. Therefore A =  ML. Notice that an algebra F  is 

isomorphic to the group algebra F G  if and only if there is a basis that under the algebra multi-

plication forms a group isomorphic to G. □

Just as the Kimura two-substitution type model is a submodel o f the Kimura three-substitution 

type model and can be used with Hadamard conjugation, submodels o f M37 can also be used with 

Hadamard conjugation.
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C o ro lla ry  3. Every subspace o f a nucleotide substitution model in which all Q matrices are 

simultaneously diagonalizable is a submodel o f a group algebra where the group is the Klein 

fou r group.

Proof This follows from theorem 15. To see this consider a three parameter Q algebra so that 

theorem 15 holds. Set parameters equal to each other. A is still simultaneously diagonalizable.

□

Since the Q algebra must be simultaneously diagonalizable in order to produce the useful 

analytic formula Hadamard conjugation provides, the above result shows it is not possible to 

completely move away from using the abelian group. On the other hand the result only proves 

isomorphism, not equality, so it does not show that Hadamard conjugation is restricted to the 

Kimura three-substitution type model and submodels. As the following example will show, it 

allows the use of additional models with Hadamard conjugation.

6.3.1 A n  ex a m p le  w ith  m o d e l M 37

Consider the rate matrix for the A/37 nucleotide substitution model with diagonal entries 

chosen so that the row sums are equal to zero.

g(M37) ̂
' - a P P 1

a - P P
P P -

L p P T1 -  _

Next suppose the A/37 substitutions take place with the following probabilities; 

a  type substitution with probability 0.01 

(3 type substitution with probability 0.02 

T| type substitution with probability 0.03

Then since P = exp{Qt)  for a transition probability matrix o f the form
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p =

PO P\ P2 P2
P\ PO P2 P2
P2 Pi P3 P4

_ P2 P2 /?4 P2

the following equations must hold.

PO = 1  +
4 4 2

Pi = 4 4 2

P2 = 4 4

P3 = l + ‘ -4<P+1
4 4 2

P4 = -  +  - e
4 4 2

These equations imply that

a  t

^ t

0.0100922996

0.0208454022

0.0318348556.

If the average o f the off diagonal row sums o f Q are equal to 1, then “ +-P+^+-P 

implies

=  1 which

Therefore

t «  0.062654382.

a  w 0.1610789106 

P a  0.3327046175 

r\ w 0.5081026192.

The next step is to convert the A/37 model into the form o f the Kimura three-substitution 

types model. This will be done by conjugating by a specific matrix. To do this consider the 

Q algebra, M =  -t-5/|a, P ,ij,5  G M} and Y which simultaneously diagonalizes the M37

algebra.
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Y  =

r  i  
2
1
2
1
2 
i

L 2

J _

f
V 5

0
0

V =  {/ ,A ,B ,C } is the Klein four group, where

0
0

X

V 2

B =

1 0  0  0  ' ' 0 1 0 0 '
0  1 0  0 1 0  0  0
0  0  1 0 , A  = 0  0  0  1 1

0  0  0  1 _ 0  0  1 0
1 1 1 - 
?  !  !

r ' '
!  ?

1 1 1 
?  ?

? !  ! , c  = !  ? !  !
!  !  ! !  ! !  ?
2  2  2  - L 2  2 2  2  -

and V spans the M algebra*. Therefore there is an isomorphism between the M  algebra and the 

group algebra MV. Notice that

T“ ‘ (M)T =  {set o f diagonal matrices} =  D

H ~\D )H  =  K3ST Q algebra = ^  d e R } .

Conjugating by the matrix YH yields a matrix with the form o f the Kimura three-substitution 

type rate matrix.

j y r - l y - l g ( M 3 7 ) y ^  =

1, } r i - 2pjtx 2 '

. }a -h p - iT i

jTi -f 5 «
- } a - i T i - 2p 

[a  + P-jT) 
- 5OC + P +  5TI

-jC t +  P+ jTl 
i a - f P - i r i  

- i a - i T i - 2 p
5T1 -f jtt

5« + P -  jTl 
“ 5CC+P + 2"n 

i r i  -t- l a  
1 „  1 .5T1-2PJ

If the parameters of the Kimura three-substitution type model are k , X, and co then the 

equations relating a, p, and r| to k , X, and co are given by

' The presence o f negative entries in the matrices in the Klein four group look troubling, however the isomorphism 
ensures that after the tran.sformation back the results will be biologically meaningful.
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K

X

CO

(k  +  ?̂  +  (0)

2 " + 2 “
■ o >

-2 < X + U + 2 ’1

> o >jCX +  l i - j l l

This implies that

and

K f

X t

COf

=  2TI +  :

=  - 5 “ -

a

i a + p - ^ T i

0.020963
0.017391
0.009974

q {K3ST) ^

- ( k  +  X  -

K

(0

-CO K

( k  +  ? i  +  C0) 

CO

X

X
CO

- ( k  +  X  +  c o )

K

CO

X
K

- ( k  +  ? i + C 0 )

So YH is an isomorphism between the M37 Q algebra and the K3ST Q algebra. Also since 

p{KSST) ^  exp(2 r),

piK iST)

0.94 0.02 0.03 0 .01'
0.02 0.94 0.01 0.03
0.03 0.01 0.94 0.02
0.01 0.03 0.02 0.94

At this point it is possible to determine the leaf coloration probabilities for the Kimura three- 

substitution model with the above probabilities. The probabilities are contained in the following 

vector.
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A4 0,83062
AC 0.01806
AG 0.02736
AT 0.00896
CA 0.01806
CC 0,01806
CG 0.00104
CT 0.00104
GA 0.02736
GC 0.00104
GG 0.02736
GT 0.00104
TA 0,00896
TC 0.00104
TG 0.00104
TT 0.00896

In the Kimura three-substitution type setting the group elements are:

' 1 0 0 0 " ■ 0 1 0 0 '
0 1 0 0 1 0 0 0

1̂ = 0 0 1 0 , g2 = 0 0 0 1
0 0 0 1 _ 0 0 1 0

■ 0 0 1 0 ■ ■ 0 0 0 1 ■
0 0 0 1 0 0 1 0

3̂ = 1 0 0 0 .^4 = 0 1 0 0
0 1 0 0 1 0 0 0

while in the A/37 setting the group elements are:

' 1 0 0 0 ' ■ 0 1 0 0 '
0 1 0  0 1 0  0 0

,?1 = 0 0 1 0 == 0 0 0 1 )

_ 0 0 0 1 _ _ 0 0 1 0 _
r 1 

T
1 1 1 - 

■? ? ?
r ' '

I !
1 1 1 
? !

! \  !  ! ! ! ! !
! ? ! ! ! ! ! ?L 2 2 2 2 - L 2 2 2  2 J
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Calculating

yields

I
ij

8 j ) = P u {g\^§\)+P iz d iig i ) +  ■ .. +  P44{§4^g4)

0,9034 0.0198 0,0384 0.0384 ■ ■ 0.9034 0.0198 0.0384 0,0384
0,0198 0.9034 0.0384 0.0384 0.0198 0,9034 0.0384 0,0384
0.0384 0.0384 0,8666 0.0566 0.0384 0.0384 0.8666 0.0566
0.0384 0.0384 0.0566 0.8666 0.0384 0.0384 0.0566 0.8666

Notice that the ij'^ entry o f these matrices give the probability o f starting at state i going 

through an intermediate state and ending at state j  assuming the M37 model. For example the 

probability o f the root o f a path o f length two being in state T and the leaf in state C is equal to 

(0.02)(0.01) +  (0.02)(0.95) +  (0.03)(0.02) +  (0.93) (0.02) =  0.0384 given the M37 probabilities 

assumed at the beginning o f this example. This value is equal to the T,C entry in the matrices 

above.

Theorem 15 and corollary 3 along with the previous example show that a Klein four group 

must be present in order for a nucleotide substitution model to allow simultaneous diagonaliza- 

tion o f the Q-matrices and so the full force of Hadamard conjugation. The necessary distinction 

that needs to be made is that although the Klein four group must be present, it need not be 

present as a group o f automorphisms of the model. The automorphism group is the centralizer 

in the symmetric group on the states o f the set o f Q-matrices. The Klein four group for the 

M37 model is found instead in the centralizer in the general linear group of degree 4 o f the set 

o f Q-matrices, and this is sufficient to be able to use Hadamard conjugation. This results in an 

expansion o f the number o f time-reversible nucleotide substitution models that can be used with 

Hadamard conjugation.

6.4  A lg e b ra s  an d  A ssocia tion  S ch em es

Recall that the rate matrices for general time-reversible models are real symmetric matri-

ces and therefore are diagonalizable. Recall also that a set o f square diagonalizable matrices
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commute if and only if they are simultaneously diagonalizable and consequently, if the set of 

rate matrices o f an evolutionary model correspond to a commutative algebra they must be si-

multaneously diagonalizable. The ability to simultaneously diagonalize a set o f matrices makes 

it possible to apply Hadamard conjugation using Bryant’s «-taxon process [9], The question 

remaining however, is how to find an appropriate commutative algebra. One way is to use an 

association scheme.

Recall from section 1.1.11 that if lA is the linear span over the reals o f the adjacency matrices 

A o ,. . . ,  Aj o f  an association scheme then A  forms an algebra known as the Bose-Mesner algebra 

o f the scheme. This implies that if the set o f rate matrices form an association scheme there 

exists a commutative algebra. The following theorem given in C.D. Godsil’s text [23] provides 

a method o f  determining whether a set o f rate matrices form an association scheme.

Theorem 16. [23] Given a finite dimensional vector space, M, o f  real symmetric matrices con-

taining /, J and closed under both regular matrix and Schur multiplication then M has a unique 

basis o f  orthogonal Schur idempotents and these matrices form an association scheme.

Given this it is possible to look at the form o f Q and determine if the model corresponds to an 

association scheme. The following result shows the correspondence between certain nucleotide 

substitution models and association schemes on four points.

Theorem 17. A time-reversible s-parameter nucleotide substitution model with rate matrix Q 

such that all entries Qu are equal fo r  1 ^  ^  4 and Qu Qij for  i j, corresponds to an

association scheme with 5 associate classes on a set X — {A,C,G,T} .

Proof Consider the undirected complete graph on four vertices, K ,̂ with vertices labeled A, C, 

G, and T. Since we are considering an ^-parameter model for 1 ^  j  ^  3, each Q,j for i 7  ̂ j  is 

equal to one o f  ̂  rates { 9 i , ... ,0^} and Qu =  - ( 0 , -f , . .  -p 0 ,.).

Let E {i , j )  represent the edge from i to j  in the K4 . Color the edge o f the complete graph so 

that E { i J )  is colored 0„ if Qij =  0„.
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Notice that the rates correspond to the set o f colors on the edges o f K̂ ,. Since the nucleotide 

model is an s'-parameter model, the graph is colored so that each o f the s colors is used at 

least once.

Since the diagonal entries of the Q matrix are equal, the sum o f the off diagonal entries in 

each row must be equal. This implies that each vertex x G is incident to the same number of 

edges o f color 0 i , . . . ,  0̂ . Therefore there are integers ue, for ; G { 1 , . . . j J} such that each vertex 

is contained in exactly â . edges o f color 0,.

Next, choose two vertices in ^4, say x and y, which are connected by an edge of color 0*.

Case 1: Let  ̂=  3. Since  ̂=  3 each vertex is incident to exactly one edge o f each color. 

Also, in there are exactly two paths of length two from vertex x  to vertex y. Since each vertex 

is incident to one edge o f each color, one path will consist o f the edge colored 0, followed by 

the edge colored Qj and the other path will consist o f the edge colored 6 j followed by the edge 

colored 0,-. Therefore whenever (x,y) is an edge of color 0*

|{z G X  : (x,z) has color 0/ and (z,y) has color 0 }̂| =  1 =

Case 2: Let s =  2. If s =  2, each vertex is incident to one edge o f color 0^ and two edges 

o f color 0„. If edge (x,y) is colored 0 „ then in K4 there are two paths of length two from x  to y 

such that each edge is colored 0„. If (x,y) is colored 0„ then there is one path o f length two from 

X to y with an edge colored 0^ followed by an edge colored 0„ and there is one path of length 

two from X to y with an edge colored 0„ followed by an edge colored Therefore there exists 

an integer such that whenever (x,y) is an edge o f color 0*

|{z G X : (x,z) has color 0, and (z,y) has color 0;}| =  Pg*ĝ

Case 3: Let s' =  1. If ̂  =  1 then all edges of K4 are colored the same color. That implies that 

for any edge (x,y) colored 0,̂  there will be exactly two paths o f length two from x to y such that 

each edge in the path is colored 0 .̂ Therefore there exists an integer pg‘ĝ  such that whenever 

(x,y) is an edge o f color 0*:

|{z G X  : (x,z) has color 0, and (z,y) has color 0;}| =  Pg‘ĝ  =  2
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□

T h e a b o v e r e s ult i m pli e s t h at t h e Ki m u r a t w o- s u b s ti t u ti o n t y p e a n d Ki m u r a t h r e e- s u b s ti t u ti o n 

t y p e m o d el s m u st c o r r e s p o n d t o a s s o ci a ti o n s c h e m e s o n f o u r p oi n t s. T h e f oll o wi n g t w o e x a m pl e s 

ill u st r at e t h e c o r r e s p o n d e n c e b e t w e e n t h e m o d el s a n d t h e a s s o ci a ti o n s c h e m e s.

E x a m pl e 2 1. C o n si d e r t h e Ki m u r a t w o- s u b stit uti o n t y p e s n u cl e oti d e s u b stit uti o n m o d el gi v e n  

b y t h e r at e m at ri x

Q
( K 2 S T) _

■ - K P a P

P - K P a

a P - K P

. P a P - K

w h e r e K — ( x +  2 ^. T h e Ki m u r a t w o- s u b stit uti o n t y p e s m o d el c o r r e s p o n d s t o t h e a s s o ci a ti o n  

s c h e m e { A o, A \, A 2 } w h e r e

^ 0

■  1 0 0 0  ■ ■  0 1 0 1 ■ ■  0 0 1 0   '

0 1 0 0 1 0 1 0
, A 2   =

0 0 0 1

0 0 1 0
1 =

0 1 0 1 1 0 0 0

0 0 0 1 1 0 1 0 0 1 0 0

N o ti c e t h at A q  - \- A] - y A t  =  J, A; =  A J f o r  0 ^  ^  2 a n d f o r  a n y i, j  t h e p r o d u ct Ai Aj  i s a li n e a r 

c o m bi n ati o n  o // l o , ^ i i ^ 2 -

E x a m pl e 2 2. C o n si d e r t h e Ki m u r a t h r e e- s u b stit uti o n t y p e s n u cl e oti d e s u b stit uti o n m o d el gi v e n  

b y t h e r at e m at ri x

q { K 3 S T) ^

- K y a P

1 - K P a

a P - K y
P a y - K

w h e r e K =  a  - |- [ 3 +  y. T h e Ki m u r a t h r e e- s u b stit uti o n t y p e s m o d el c o r r e s p o n d s t o t h e a s s o ci a ti o n  

s c h e m e { A o, A \, A 2 , A-i} w h e r e

1 0 6



A q  -

■ 1 0 0 0 ■ ' 0 1 0 0 ■ ' 0 0 1 0 ■ ■ 0 0 0 1 ■
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 , A\ = 0 0 0 1 , A2 = 1 0 0 0 . -43 = 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

Notice that Aq +  Ai +  A2 +  A3 = 7 , A,- =  AJ for  0 ^  ^  3 and for any i, j  the product AjAj is a 

linear combination ofAo, A\, A2, A3.

In the case o f nucleotide substitution models the existence of an association scheme implies 

that the model is a submodel o f the Kimura three-substitution type model.

Theorem 18. If the rate matrix Q o f  a time-reversible s-parameter nucleotide substitution model 

corresponds to an association scheme with s associate classes on a set X =  {A ,C ,G ,T } ,  then 

the nucleotide substitution model is a submodel o f  the Kimura three-substitution type model.

Proof. Consider the definition o f an association scheme that involves the coloring o f the edges 

o f a complete undirected graph with vertex set {A ,C , G, T }.

Case 1: The nucleotide substitution model is a one-parameter model. There is exactly one 

coloring using a single color o f the complete graph on four vertices. This association scheme 

corresponds to the Jukes-Cantor nucleotide substitution model.

Case 2: The nucleotide substitution model is a two-parameter model. By the definition of 

an association scheme the complete graph on four vertices must be colored using two colors. 

Since there are six edges in the graph and there are integers a, for i in {1 , . . .  such that each 

vertex is contained in exactly a, edges color i, each vertex in K4 must be contained in two edges 

o f color a and one edge o f color b. This implies there are two disjoint edges o f color b in the 

graph. The remaining edges are colored a. If the edges colored b are (AG) and (CT)  then the 

model corresponds to the Kimura two-substitution type model. If different edges are colored b 

then the nucleotide substitution model could be obtained be setting the appropriate parameters 

in the Kimura three-substitution type model equal to each other.
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Case 3: The nucleotide substitution model is a three-parameter model. In this case A'4 is 

colored by three colors and each vertex must be contained in exactly one edge o f each color. 

This forces a specific coloration o f the graph corresponds to the Kimura three-substitution type 

model. □

6.5 Larger evolutionary models

Thus far the focus o f this chapter has been on time-reversible nucleotide substitution mod-

els. As mentioned in chapter 2 other types o f time-reversible evolutionary models with a larger 

number of states also exist. Due to the larger number o f states in amino acid and codon mod-

els the theory o f when Hadamard conjugation applies become slightly different. For example, 

complex numbers are required if the number o f states is not a power o f two.

The increased number o f states also raises the question o f how many parameters should 

be included in a model in order to accurately model the biological process without including 

extraneous parameters. Attempting to use a group-based codon model could result in a model 

with as many as sixty-three parameters, if a group o f order 64 is used. In general the number o f 

parameters is equal to one less than the order o f the group. Using other techniques to construct 

the evolutionary models, such as obtaining models from association schemes with few associate 

classes, provides a method o f obtaining models with the number o f parameters equal to the 

number o f associate classes. Such models currently lack biological realism, but provide a source 

o f potential models.

The following result fails for models that have a number o f states not equal to a power of 

two. This explains why amino acid and codon models, except for those on 64 states, differ from 

nucleotide substitution models. Additionally, all results in this section assume the evolutionary 

models being considered are time-reversible. This implies all rate matrices are symmetric.

Theorem 19. If there exists a real invertible 2" x 2" matrix X that simultaneously diagonalizes 

A, a 2" — \ parameter Q space, then A =  RV where V is an elementary abelian group o f  order 

7«
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Proof. Let D be the set o f all 2” x 2" diagonal matrices and A be a 2" -  1 parameter Q al-

gebra. XAX“ * C D, and by comparing dimensions, equality occurs so that XAX  ' =  D. Let 

Q' and Q" belong to A. Then Q'Q" G A since XQ'X~^ G D and XQ"X^^ G D which implies 

X Q ’X-^XQ"X~^ =  X Q 'Q ''X -' G D. Therefore Q'Q" G X “ 'D X =  A. Therefore A is an algebra, 

A is isomorphic to D via X  and since RV is a 2" dimensional algebra which is diagonal- 

izable, RV =  D. Therefore A =  RV. To see that V must be elementary abelian notice that the 

abelian group must have a group algebra diagonalizable over the real numbers. Therefore the 

diagonal entries must only involve real roots o f unity. This implies that the group must have 

exponent 2 , which in turn implies that the group is elementary abelian. □

Corollary 4. Every 2" state evolutionary model in which all Q matrices are simultaneously 

diagonalizable is a submodel o f  a group algebra where the group is an elementary abelian 

group o f  order 2".

Proof. The set o f matrices X A X “ ' is contained in D, the set of n by n diagonal matrices. D =  RV, 

where V is a cyclic group o f order n. Since XAX~' C D, A C X ~ 'D X  =  RV, Therefore A is a 

submodel o f RV. □

Moving to complex scalars, a similar result holds.

Theorem 20. If there exists an invertible n x  n matrix X that simultaneously diagonalizes A =  

A ® C ,  an n — \ parameter Q space, then A =  CV, where V is a cyclic group o f  order n.

Proof. Let D  be the set o f all n by n diagonal matrices and A be an n — 1 parameter Q alge-

bra. X A X “ ' C D, and by comparing dimensions, equality occurs so that X A X “ ' =  D. Let 

e '  and Q" belong to A. Then Q'Q" G A since XQ'X~'  G D and X Q ” X~'  G D which implies 

XQ'X~'XQ' 'X- '  = X Q ' Q " X - '  G D. Therefore Q'Q" & X ^'D X =  A. Therefore A is an algebra.

A is isomorphic to D  via X  and since CV is a n dimensional algebra which is diagonalizable, 

CV ^  D. Therefore A ^  CV. □
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Corollary 5. Every n state evolutionary model in which all Q matrices are simultaneously diag- 

onalizable is a submodel o f  a group algebra where the group is cyclic o f  order n.

Proof. The set of matrices XAX~^ is contained in D the set o f «  by «  diagonal matrices. D =  CV, 

where V is a cyclic group o f order n. Since XAX^^ C D, ri C X " 'D X  =  CV. Therefore A is a 

submodel o f  CV. □

The above theorems show that even for larger evolutionary models there is still an abelian 

group present. That does not mean however, that there is an abelian permutation group acting 

regularly on the bases. Currently Hadamard conjugation is only applied to evolutionary models 

in which an abelian permutation group acting regularly on the bases exists. It appears however, 

that it is possible to use the structure provided by an association scheme, or more generally a 

commutative algebra in order to apply Hadamard conjugation. Although in the case of nucleotide 

substitution models using an association scheme only produces the Kimura three-substitution 

model and submodels of the Kimura three-substitution model, association schemes can be used 

with other types o f evolutionary models to produce models that do not rely on an abelian permu-

tation group acting regularly. For instance, finding an association scheme on twenty points can 

lead to an amino acid substitution model that does not rely on a group, yet has simultaneously 

diagonalizable rate matrices for which Hadamard conjugation would apply.

Each association scheme on a given number o f points corresponds to a class o f evolution-

ary models. Association schemes on twenty to twenty-two points will correspond to amino acid 

models while association schemes on sixty-one to sixty-four points correspond to codon models 

o f evolution. To see the correspondence between an association scheme and an evolutionary 

model consider an association scheme on n points. Each o f the n vertices of the graph cor-

responding to the association scheme can be labeled with an amino acid or codon. Different 

labelings will produce biologically distinct models, which is why given one association scheme 

we end up with a class o f models.

The instantaneous rate matrix is produced from an association scheme by introducing pa-

rameters ttyt for each associate class and setting if and only if (/, j )  e  Rk. The entries
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Qii are chosen so that row sums o f Q are zero. Given this construction it is clear that choosing 

an association scheme with a small number o f associate classes will lead to a model with a small 

number o f parameters.

Below are a few examples o f association schemes on twenty through twenty-two and sixty- 

one through sixty-four points. Recall from section 1.2.2 on page 29 that there is some uncertainty 

regarding the appropriate number o f states to consider in amino acid and codon evolutionary 

models. For references which include a list o f known association schemes and distance regu-

lar graphs see the CRC Handbook o f  Combinatorial designs by Colboum and Dinitz [17] and 

Distance-Regular Graphs by Brouwer, Cohen and Neumaier [7].

A ssocia tion  S ch em e on  20 poin ts

Recall the Johnson scheme which was discussed in section 1.1.10 on page 23. The Johnson 

scheme 7 (6 ,3) is an association scheme on twenty points with three associate classes [7].

A ssocia tion  S ch em e on  21 poin ts

The Johnson scheme 7(7 ,2) is an association scheme on twenty-one points with two asso-

ciate classes [7].

A ssocia tion  S ch em e on  22  poin ts

Consider the field G f  (11) =  {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10} and the set o f squares in G F (l l )  

D =  {t^\t e  G F (l l )* }  =  {1 ,3 ,4 ,5 ,9 } . D is a difference set. A {v,k,'k) difference set is a subset 

D o f a group G such that the order o f G is v, the size o f D is k, and every non-identity element of 

G can be expressed as a product d\df^ o f elements o f D in exactly X ways. Given the difference 

set D and g G G, gD =  {gd : d G D } is also a difference set, and is called a translate o f D. The 

set o f all translates o f D  forms a symmetric design. The design contains v points and v blocks. 

Each block consists o f k points and each point is contained in k blocks. Any two blocks have X 

elements in common and any two points are joined by X blocks.
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The 2-( 11,5,2) design corresponds to an incidence graph. This graph has one vertex for 

each point and each block. For this example that implies the incidence graph has 11 +  11 =  22 

vertices. There also exists one edge for every incidence between a point and a block. This graph 

is distance regular and corresponds to an association scheme on twenty-two points [7].

A sso c ia tio n  S ch em e on  61 poin ts

There exists an association scheme on sixty-one points that corresponds to a Paley graph o f 

order sixty-one. If ^ is a prime power with q =  1 (mod 4) then the Paley graph P{q) is a graph 

with vertices labeled by the elements of the finite field GF{q)  and edges between two vertices 

if the difference between the vertices is a square in GF(q).  The Paley graph is strongly regular 

with parameters s r g { q , \ { q - \ ) , \ { q - 5 ) , \ { q -  1)) [61].

A ssocia tion  S ch em es on  62, 63, an d  64 points

See [17] for examples.

Each o f the above association schemes correspond to an amino acid or codon model o f evo-

lution. The examples produce a twenty amino acid model with three parameters, a twenty-one 

amino acid model with two parameters, and a twenty-two amino acid model with two parame-

ters. There also exists a sixty-one codon model with two parameters, a sixty-two codon model 

with three parameters a sixty-three codon model with three parameters, and a sixty-four codon 

model with two or three parameters.

6.6 N etw ork s  and  H a d a m a rd  con ju g a tion

As can be seen from above, Hadamard conjugation can be applied to a number o f models 

beyond the Kimura three-substitution type model and submodels. In the case of a nucleotide 

substitution model like M 37 it is possible to use the isomorphism between it and the Kimura 

three-substitution type model to apply the results from Szekley et al [60]. This implies that the 

extension o f Szekley’s results to splits networks also applies to the M37 model. Since Hadamard
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conjugation can also exist for larger evolutionary models splits networks can be used in these 

settings as well.

6.7 S tran d  S y m m etric  M od e ls  and  H a d a m a rd  C o n ju g a tio n

Recall from section 2.1.9 on page 41 that Strand symmetric substitution implies that both 

strands o f the genome segment undergo any given type o f substitution at the same rate, hence 

complementary substitution rates are equal. This implies that when there are no biases in muta-

tion there are six substitution types.

a:A<r^T
b : A - ^ G , T - > C
c : G ^  A, C ^ T
d : G ^ T , C ^ A
e : A - ^ C , T - ^ G
f - G ^ C .

do d) dl d-i
d4 ds dt dl
dl d6 d5 d4
dz dl dl do

The rate matrix for the most general strand symmetric model is give below. Recall that the rows 

and columns are indexed by A, C, G and T respectively.

QiSSM) ^

Looking at the eight matrices obtained by defining matrix 0 ^  n ^  7 to be a four by four 

matrix with entry m,y =  1 if — q„ and 0 otherwise it simple to check that Mq , M i , . . . ,  A/y

do not commute. Therefore by theorem 5, it is not possible to simultaneously diagonalize the 

above matrices. Consequently unlike with the three-parameter models analyzed earlier it is not 

possible to diagonalize for all possible rates. In the case o f the general strand symmetric

model it is only possible to block diagonalize 

Notice that the matrix

M:

1 0 0 1

0 1 1 0

0 1 - 1 0

1 0 0 - 1
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qo + q-i q\ +qi 0 0
c/4 + qi ^5+ <76 0 0

0 0 qi -qb q4-qi
0 0 q\ -q i qo-qz

block diagonalizes the rate matrix into a block diagonal matrix with two 2 blocks. Specifically,

The diagonalization o f rate matrix o f a given evolutionary model makes it much simpler to 

find the exponential of the rate matrix. Recall that the transition probability matrix P is related 

to the rate matrix Q by the equation P =  exp(Qt). Given a matrix H that diagonalizes the rate 

matrix notice that if P =  exp{Qt)  then

H-^PH =

=  exp{H~'QtH).

( 6. 1)

(6.2)

Also for an n X  n diagonal matrix A, exp(A) is equal to the diagonal matrix with diagonal entries 

equal to exp(a,) for 1 ^  ^  n. The exponential of a matrix is much more difficult to compute if 

the matrix is not diagonal. In general the matrix exponential o f a matrix A G is defined as

“  1

/t=o

If the matrix A can be block diagonalized into 2 x 2  blocks formulas exist to compute 

however they are rather complicated.

^ ^ and d e f i n e =  {a — d ) - +  Abe and b =  Then,Theorem 21. [5 ] Let A =

uA-d
e 2 coi'(8) +  ^ 2 ^ s i n { 5 )

a ’ d
e 2

a + d

e 2
cosh[h) +  ^^sinh{h)

C
. 3

isin{?>)
cos{d) — ^^sin{5)\ '

1 +  —  1 -r 2
a-d
1 ,

^sinh{?>)
sinh{5) cosh{b) — ^^sinh{o)

Y <  0,  

Y  =  0, 

7 >  0 .
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Given the fact that the general strand symmetric model is not diagonalizable over the real num-

bers and rather only diagonalizable into 2 x 2 blocks the formulas that result do not appear to 

be useful. Comparing the n-taxon derivation o f Hadamard conjugation provided in chapter 5 to 

the formulas given in Szekely et al [60] implies that in order to interpret the results in terms o f 

the relationship between the observed sequence spectrum and the edge length spectrum the rate 

matrices must be simultaneously diagonalizable.

6.7.1 Conclusion

The 1993 paper by Evans and Speed [20] had a significant impact on the way mathe-

maticians and biologists think about nucleotide substitution models and Hadamard conjugation. 

Their observations regarding the Kimura three-substitution type model allows the process o f mu-

tation at a site using the model to be seen as providing a probability distribution on the Klein four 

group, rather than a probability distribution on the nucleotides. A probability distribution on the 

Klein four group, V, can be interpreted as an element o f the real group algebra RV. The same 

observation allows the edges in the tree to be labelled by elements o f V with certain probabilities, 

and these, too, can be interpreted as elements o f the group algebra. These observations suggest 

the idea that it is the algebra, rather than the group, that is significant.

The same observation o f Evans and Speed allows leaf colorations to be seen as colorations 

by elements o f V, rather than by nucleotides. Again a probability distribution can be seen as an 

element o f a group algebra: this time o f MV"“ ' , where n is the number of states in the model. It 

is this interpretation o f leaf colorations that survives in the new setting; the tree is labelled with

an element o f 1 , n - \ , for the new copy Vi o f the Klein four group, as illustrated in the example

with model M 37. Here the subtle distinction between equality and isomorphism allows the for 

the interpretation to be transferred between M37 and Kimura three-substitution type model, while 

still providing biological, if not mathematical, novelty.

In algebraic combinatorics, the replacement o f a group by regularity hypotheses that still 

allow an algebra to be constructed has a long and successful history. Applying this to certain
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phylogenetic models has been one o f the underlying ideas in the preceding chapter. In many 

ways, the group is still present, but only as a kind o f phantom. One way to summarize Don 

Higman’s ideas in algebraic combinatorics is to take the ideas in Schur and Wielandt on cen-

tralizer algebras as demonstrating that instead of permutations preserving a property being of 

leading importance, linear maps preserving that property play the primary role. In our setting, 

this moves attention from the centralizer o f all Q-matrices in the symmetric group on the states 

(the automorphism group of the model) to the centralizer o f all g-matrices in the general linear 

group o f degree equal to the number of states of the model.

Then, it turns out, that the essential ingredient in the full force o f Hadamard conjugation 

is not an abelian permutation group acting regularly on the states, but rather an abelian linear 

group acting regularly on a basis of the (expanded) Q-algebra. This is the “phantom” referred to 

earlier.

The group can be thought as o f a phantom because it is really the commutative algebra 

that matters; that it is a subalgebra of a commutative group algebra is true, but inessential to 

the argument. This is best illustrated in the case of codon models, where a 2-parameter model 

arising from the strongly regular Paley graph on sixty-one vertices would have to be expanded to 

a 60-parameter model to realize the group algebra and so the group, however, the simultaneous 

diagonalization o f  this commutative algebra can be described without resorting to the group.

Finally if the phylogenetic model is structured so that it relates to an association scheme, 

then the Bose-Mesner algebra of that association scheme can serve as the commutative algebra. 

This observation is only significant for models with sufficiently many states such as amino acid 

models in proteomics and codon models. We have displayed models that have few parameters 

and shown that Hadamard conjugation can be extended to these situations, but they are not 

biologically realistic models. In the attempt to create biologically realistic models the challenge 

will be to find commutative association schemes whose structure is biologically meaningful.
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C h a p ter  7

PROBLEMS RAISED

Given the connection between association schemes and evolutionary models it would be 

interesting to consider the question o f how codon models corresponding to association scheme 

could be developed such that they are more biologically realistic. Given that each labeling o f the 

points in an association scheme by codons produce biologically distinct models there are many 

models from which to choose. In order to ensure biologically meaningful models are created 

a dialog between mathematicians and biologists must take place to determine the properties 

such models should possess. Once these properties have been determined computational algebra 

expertise could be applied to search for appropriate models.

Other questions o f interest that arise are:

• Which models exist where Hadamard conjugation works, but the rate matrix does not 

correspond to an association scheme?

• What, if any, is the biological meaning behind the correspondence between evolutionary 

models and association schemes?
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Appendix A

A .l Hierarchy

S p e c ie s

G e n u s

Family

'V

O ld e r

I
C la ss

P h y h u n

I
K in g d o m

D o m a in

L ife

Tlie eiglit major taxonomic ranks fi oni 
the luerarchy o f biological classification 
are listed abo\’e.
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A .2  A n  in d ex in g  e r ro r

In [8] Bryant makes the following definition.

D efin ition  26 . For x, y E G'” let

y(x) =
(=1

Notice that .x and y are vectors o f the same length. Bryant then goes on to state a lemma 

in which z E  G‘> and u € G"“ ‘ . In the phylogenetic setting q represents the number o f edges or 

color classes o f a graph and n — 1 represents the number o f non-root leaves. Consequently z and 

u are not of the same length. Despite this the term z{u) appears in the lemma. It is not clear how 

z{u) should be defined.

A .3  A  co u n terex a m p le  to B ry a n t ’ s L em m a

In [8] Bryant states the lemma provided below.

L e m m a  6. Suppose that zE and y  € G "“ ' . Let A be an [n — \ ) x q integer matrix. Either

L  z{x) =  0 ,
x€G1:Ax=y

or there is u E G"“ ’ such that z — A ^« and so

x€G<<:Ax=y

In Bryant’s notation q is equal to the number o f edges in the tree and n is equal to the number 

o f  leaves. Since Bryant assumes that the root must always be a leaf and never and interior vertex 

n — 1 is equal to the number o f leaves minus the root vertex. Oftentimes vectors are indexed by 

the set of n — 1 non-root leaves.

In the lemma A  is defined to be an {n — \ ) x q integer matrix, however applications o f 

this lemma require A  to have a specific form that is dependent upon a predetermined tree. For 

example, consider the 3-claw tree shown below with root vertex labeled 1. This tree has <7 =  3 

and n — 1 =  2 .
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The A matrix corresponding to this tree is a 2 x 3 matrix with rows indexed by the non-root 

leaves, 2 and 3, and columns indexed by the edges, a, b and c. The matrix is defined by

_  J 1 if i and n are on opposite sides o f {Ajf,Bk}
J\l 1̂ — \

' 0 otherwise.

Therefore the A matrix corresponding to the tree above is

A = 1 1 0 
1 0 1

In the lemma the sum is taken over the set o f x such that Ax =  y, where v is indexed by 

the non-root leaves. The entries in y correspond to the mutation that has taken place along the 

path between the root and the leaf that indexes a particular entry in y. In the case o f the Kimura- 

Three-Substitution types model there are four types o f mutations that can take place and these 

mutations are represented by the elements o f Z 2 x Z 2 =  { (0 ,0 ) , ( 1,1), (0 ,1 ), ( 1,0 )}. These group 

elements can also be associated to the set o f nucleotides. A, C, G, and T in the following way. 

Let A =  (0 ,0 ), C =  (1,1), G =  (0,1) and T =  (1,0).

For example, suppose the tree above is labeled such that the root is A and leaves 2 and 

3 are C and T respectively. Since the root is labeled A and leaf 2 is labeled C the mutation 

changing A to C has taken place along the edges a and b. The mutation is referred toasA  — C — 

(0,0) — (1,1) =  (1 ,1 ). A similar computation gives the mutation taking place between the root 

and leaf 3. Therefore the resulting y is [(0,0) -  ( 1 ,1 ),(0 ,0) -  (1,0)]^ =  [ (1 ,1),(1,0)]^.
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As a result Ax =  y implies that the group elements corresponding to the edges along a 

path from the root to a given leaf sum to the group element representing the mutation that has 

occurred from the root to that leaf. Looking at the example, if y =  [(1,1), (1,0)]^ then Ax =  y 

for the following x.

■(0 ,0 )' ■(1, 1)' ■(0 , 1)' ■(1,0)'
x\ = ( 1>1)

. (1,0 )
, x2  = (0 ,0)

(0 . 1)
, x3 = ( 1, 0)

( 1, 1)
, x4 = (0 , 1)

(0 ,0)

The first entry of y is (1,1) which means that the mutation C has taken place along the path 

from the root to leaf 2. That means that the first two entries o f x, x„ and Xh, must sum to (1,1). 

There are four ways this can happen; (0,0) +  (1 ,1 ), (1,1) +  (0,0), (0 ,1 ) +  (1,0) or (1,0) +  (0 ,1 ). 

Each o f these possibilities correspond to one o f the four x vectors.

In the lemma, both x and z belong to G‘̂ . As before I will assume that G =  Z? x Z 2 and that 

I? =  3. To determine the value o f ?(x) a z and a: must be specified. Let x =  [(0,0), (1 ,1 ), (1,0)]^ 

and z =  [(0 ,1 ), ( 1 ,0 ), ( 1, 1)]^. The character table for G =  Z 2 x Z 2 is also required to determine 

the values o f 'z{x) and so it is given below.

A = (0,0) c  = ( l , l ) G = (0,1) T = (1,0)
A = (0,0) 1 1 1 1
C = (l,l) 1 -1 1 -1
G = (0,1) 1 1 -1 -1
T = (1,0) 1 -1 -1 1

Then by Bryant’s definition,

z{x) = Zi{x\)■Z2 {X2 ) ■ zi{xi)
-  £)((0,0))-£'2((l,l))-r3((l,0))
= 1 - - 1 - - 1  
= 1

T h e  C ou n terex a m p le : The following example shows there is an error in the lemma. In 

this example E.t6G«:Aa=)-?(^) 0> however it is also not equal to Given the 3-

claw tree, the corresponding A matrix, y =  [(1,1), (1,0)]^ and the values o f x listed above, let 

z =  [(0,0), (1,0), (1,0)]^. In order to calculate z{u) I assume the following definition (I also 

checked other possible values for ?(«)).
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Definition 27. F o r z £  G‘<, w G G "" ',

m in {q ,n — 1)

z{u) =  Zi{Ui)
i

Next consider the following computation.

= z (x l )+ z (x 2 )+ z (x 3 )+  £(x4)
x e G i - .A x = y

= £1(0,0) •£̂2(1, 1)-£5(1,0) + £5(1, 1).£'2(0,0) -£5(0, 1)
+  £5(0, l)-z^2(1.0)-£5(1,1) +  £5(1 ,0 )-z l(0 , l ) -£5(0,0)

= (1--1-1) + (1-1--1) + (1-1--1) + (1--1-1)
= -4

Therefore a M e  0 " “ ' exists such that z =  AJ u and that u is [(1 ,0), (1,0)]^. However, notice

that

4 ‘ -£5(1,0)z'^2(1.0)
4 ( - l - - l )
4

and clearly —4 7̂  4.
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