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ABSTRACT

NON-EQUILIBRIUM STATES OF DISORDERED SYSTEMS: FROM LOW-FREQUENCY

PROPERTIES OF GLASSES TO DISTRIBUTION FUNCTION OF ACTIVE

ORNSTEIN-UHLENBECK PARTICLES

This dissertation focuses on stationary and dynamical properties of non-equilibrium systems

of disordered matter. In particular, we discuss the correlation between the stability of ultra-stable

to moderately stable amorphous solids and the structural fluctuations of the elastic field at low

frequencies. We report a strong correlation between the stability and the structural homogeneity

which we demonstrate numerically through the calculation of local elastic moduli of the solid.

Notably, we do not identify any significant length scale associated with elastic correlations which

bears specific implications for the wave attenuation in amorphous solids. In the second part of

the dissertation, we shift our focus to the disordered systems of active matter. We derive a formal

expression for the stationary probability density function of a tagged active particle in an interact-

ing system of active Ornstein-Uhlenbeck particles. We further identify an effective temperature in

the probability density function which allows for the subsequent numerical validation of our theo-

retical results beyond the linear response regime. We show that the effective temperature defined

through the violation of the Einstein relation (or equivalently the fluctuation-dissipation theorem),

can predict the tagged active particle’s density distribution. Lastly, we derive theoretical expres-

sions for the stationary probability density distribution and the current of a non-interacting active

Ornstein-Uhlenbeck particle in a tilted periodic potential. We demonstrate the quantitative agree-

ment of these expressions with our numerical results for small to moderate correlation times of

the colored-noise. We further explore the dependence of the diffusive motion on the strength of

tilting force. We observe a giant enhancement in the diffusion of the particle which becomes more

pronounced with increasing the persistence time.
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Chapter 1

Introduction

1.1 Disordered Systems and Glass Physics of Low-frequency

Spectrum

The physics of condensed systems consists of the study of large numbers of particles when they

interact via relatively strong forces. Examples are ubiquitous in nature and extend from liquids to

solid state structures or even living cells1. This physics focuses on macroscopic properties of many-

body systems and hence the application of statistical techniques and mechanics is an indispensable

part of this area.

Despite its wide scope of study, condensed matter physics can be grouped under two very broad

categories, namely the physics of crystalline systems and disordered systems. A crystalline system

is an N-dimensional pattern that is constructed by infinite repetition of identical groups (known as

unit cells) in space or in time2. Unlike crystals, disordered materials exhibit no structural patterns

on any significant scale3. In this context, the term “disordered system” (also known as amorphous,

non-crystalline, or glassy structure) refers to a wide range of systems including glasses, disordered

crystalline solids, complex fluids such as polymers, supercooled liquids, etc., where there exist

significant deviations in physical properties of such systems from the crystalline systems4.

At moderate to high temperatures, many differences in physical properties of crystalline and

non-crystalline solids, such as the x-ray or neutron diffraction pattern, are immediately explained

based on the structural differences of these solids at the characteristic length scale of a unit cell.

However, at very low temperatures, i.e. near zero kelvin where the wavelength of thermally excited

vibrational modes is long enough to see an average over the order and not the local structural

disorder, the structural disorder becomes an irrelevant factor and one would expect similar low-

temperature thermal and vibrational properties from both disordered and crystalline solids. This

notion of similar low-temperature properties of disordered and crystalline structures was founded

1



on the hypothesis that the number and the thermal population of long wavelength phonons were

independent of the translational periodicity5,6. However, this picture soon changed after conducting

a number of low temperature experiments on glasses circa 19607–10.

At low temperatures and within the harmonic approximation, the vibrational properties of crys-

tals are well described by introducing the phonons, a collection of non-interacting quasi-particles

with the well-defined momentum and energy11. In terms of phonons, the Debye theory success-

fully rationalizes the universal vibrational properties of the crystalline solids. The model predicts

that at low temperatures, the vibrational density of states (vDOS) follows D(ω) ∝ ω2, the heat

capacity scales as C ∝ T 3, and the thermal conductivity due to the phonons follows κ ∝ T 3 where

ω and T are frequency and temperature, respectively3,12. In contrast, at low temperatures and small

frequencies, where the vibrational modes are acoustic phonons, disordered solids such as glasses

or strongly perturbed crystals show a vDOS as well as thermal and transport properties that dif-

fer drastically from those predicted within the scheme of the Debye model13–18. This behavior

is rather unexpected given that in the long wavelength limit where the continuum approximation

holds (ka ≪ 1), solid systems are expected to behave as an elastic medium where the periodicity

and order of the constituent particles do not enter the picture (k = 2π/λ is the wavevector and a is

the interatomic distance).

We note that deviations from the harmonic approximation can happen due to multiple anhar-

monic contributors3. Here, a contrast between anharmonic contributions originating from disorder

and finite temperature effects seems to be necessary. At non-vanishing temperatures two effects

become relevant. The first is the growing anharmonic couplings of the constituent atoms that give

rise to the finite lifetime of phonons which can be accounted for by the Boltzmann transport equa-

tion19. This effect can be important for both ordered and disordered solids. The second effect is

associated with an interplay between disorder and the decreasing wavelength of the vibrational ex-

citations. When the excitations happen at a wavelength comparable to the interparticle spacing, the

importance of the structural order plays a role. Indeed, the existence of disorder in non-crystalline
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solids adds to the complexity of anharmonic effects†. The interplay between the anharmonicity

and disorder of the solids has been the subject of some limited investigations19–25. Most of the

research on the differences between the crystalline and disordered solids (including the work pre-

sented in Chapter 2), however, has focused on the low temperature deviations of the disordered

solids or even quasi-harmonic conditions at zero temperature to avoid the complications due to the

anharmonic effects at higher temperatures26–28.

A plausible rationalization for the low-frequency deviations of non-crystalline solids from the

Debye theory has been a long standing problem in solid state physics whose answer seems to be

necessary to formulate a universal theory that captures the vibrational and transport properties of

such systems. In what follows, we present major vibrational and thermal anomalies of disordered

solids. To this end, we focus on three problems that have been subject of much debate and are

rapidly evolving.

It has been shown that at low enough frequencies, also referred to as the terahertz (THz) fre-

quency range, the vibrational excitations in non-crystalline solids show phonon-like behaviors:

they follow a Debye-like vDOS (D(ω) ∝ ω2 with a different proportionality constant), they prop-

agate with the speed of sound, and finally they show linear dispersion relations29,30. For these

reasons, the vibrational excitations of amorphous solids are highly akin to phonons and in many

theoretical works they are treated as phonons. However, other than having a different proportion-

ality constant, a more characteristic difference of vDOS of amorphous solids is an excess of the

modes over the Debye prediction which is widely referred to as the boson peak (BP), since its

temperature dependence follows that of a Bose-Einstein statistics27. Fig. 1.1 shows the occurrence

of the BP at low frequencies and how it scales with temperature. The BP appears in many amor-

phous solids and supercooled liquids. We note that the BP happens in a frequency region where the

dispersion relation (ω(k)) for phonons remains linear. One way to define the BP, both theoretically

†However, as noted before, this effect should not be an issue as long as one works within the long wavelength
limit.
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and experimentally, is to extract the vDOS (D(ω) or g(ω) in other references) and then look for a

peak in the reduced vDOS with respect to the Debye prediction, i.e. D(ω)/ω2.

Figure 1.1: The dependence of the reduced vibrational density of states g(ω)/ω2 on the frequency, obtained
from numerical results of randomly jamming particles interacting through a pairwise potential29. In this
figure, P k represents the participation ratio which evaluates the extent of spatial localization of mode k.
When P k = O(1), it suggests modes are equally extended over all particles (phonons) and when P k =
O(1/N), it is indicative of localized modes (nonphonons), where N is the number of particles. As shown,
the vDOS is independently calculated for modes with P k smaller and larger than a threshold value as well
as for all modes combined (red circles). By decreasing the frequency below ω∗, the boson peak emerges at
the specific frequency of ωBP. As the frequency is further reduced below ωBP, g(ω)/ω2 decreases more but
does not reach the Debye level A0. In this figure, ω∗ is the onset frequency of the low-frequency anomalies
of amorphous solids and ωex0 marks a finite ω at which the extended modes converge to the Debye behavior.

Another anomaly is observed in the thermal conductivity of amorphous solids. In crystals, the

thermal conductivity κ is given by,

κ =
1

3
CV vl, (1.1)

where CV is the specific heat capacity, v the Debye sound velocity, and l the phonon mean free

path. As a result of less frequent anharmonic umklapp events in crystals at low temperatures, the

thermal conductivity increases with a decrease in the temperature which is due to an increase in

the phonon mean free path. Ultimately, the increase in the mean free path reaches a maximum

when l becomes comparable to the sample dimensions10. Therefore, as Fig. 1.2 illustrates, with

lowering the temperature the change in the thermal conductivity of a crystal is well understood by
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observing a maximum followed by a decrease in κ due to a decrease in heat capacity. While the

conductivity of crystals is very much dependent on the chemical composition of the solid and also

any disturbance of the periodicity lowers the thermal conductivity, in general and at temperatures

below ∼ 10 K, the thermal conductivity scales as κ ∝ T 3. In contrast, in amorphous solids at

T ≤ 1 K the thermal conductivity follows κ ∝ T 2. This observation has led many to conclude that

the vibrational excitations in non-crystalline solids are not phonons even at very low frequency of

ω ∼ 0.1 THz which is far away from the frequency of the BP29.

Figure 1.2: Thermal conductivity of crystalline (α-quartz) and non-crystalline (vitreous silicate) SiO2, all
measured experimentally. The figure shows that below 10 K, the thermal conductivity of a glass is several
orders of magnitude smaller than its crystalline counterpart. In this experiment the heat flow in the crystal
is measured parallel to the c axis10.

Other than a different scaling of the thermal conductivity with temperature, in non-crystalline

solids κ decreases monotonically with a temperature decrease. Besides, κ is independent of the

chemical composition and amorphous solids such as polymers, Se, and GeO2 show equivalent

conductivities10,31. An immediate explanation to qualitatively understand the conductivity in amor-

phous solids is based on the existence of more frequent scattering events. The increase of scattering
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events are due to the disordered structure of these solids. Disorder decreases the mean free path of

the phonons and this in turn lowers the thermal conductivity. This explanation sounds especially

plausible since adding any impurity to crystals decreases their conductivity significantly as well.

On the contrary, an observation of another vibrational deviation of amorphous solids from the

Debye prediction is quite counterintuitive. Fig. 1.3 illustrates the specific heat capacities calculated

from an experimental study of vDOS of SiO2 glasses and crystals by inelastic X-ray scattering. It

is observed that at ∼ 10 K, glasses have an excess of the heat capacity over the Debye law where

the reduced heat capacity of crystals Cp/T
3 is nearly temperature-independent. This deviation

is believed to be related to the excess of the vibrational modes in the ∼ 1 THz frequency range

of D(ω), i.e. the boson peak. An early explanation for the excess of the heat capacity and the

anomalous thermal conductivity of disordered solids, however, was offered by Anderson, Halperin,

and Varma32, and Phillips33. Based on their work, degenerate, neighboring local minima create

tunneling defects or two-level systems which give rise to excess in specific heat. Such tunneling

effects can be important at low-temperature range of ∼ 10− 100 K15.

Figure 1.3: The reduced specific heat capacity Cp/T
3 obtained for non-crystalline and crystalline SiO2. The

specific heat capacities are calculated from the corresponding vDOS measured by inelastic X-ray scattering.
The reduced heat capacity of the crystal remains almost a flat line at T ≤ 10 K while the same quantity for
the non-crystalline form shows a sharp peak. This peak is believed to be related to the boson peak6.
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We emphasize that the vibrational deviations of amorphous solids are not limited to the devia-

tions from the Debye theory presented in this account. One of such anomalies is the extra damping

and scattering of long-wavelength phonons in amorphous solids that has been the subject of intense

investigation17,27,34–36.

1.2 Disordered Systems and Arrested States of Active Matter

The resemblance of many mechanical and statistical properties, patterns and phenomena in

Nature to the physics of glasses is remarkable. For example, an optimization problem running on a

computer can turn into an arrested state of relatively good but imperfect outputs when the number

of constraints are increased37. In this case solving for a perfect solution would become an eternal

job on the computer which is reminiscent of an aging glassy system probing its potential energy

surface for the most stable state. Examples of glassiness are also rich in soft condensed matter and

active materials38,39. Active matter involves many-body systems of interacting units that are capa-

ble of pumping the stored or ambient energy into autonomous, directed motion40–43. Many, if not

all, of the characteristics of glassy dynamics could be observed in dense active systems. Dynamic

arrest becomes a feature of all active systems when there exists a competition between activity

and crowding. Non-equilibrium glass transition happening at large density is another phenomenon

associated with active systems44. The unique property of self-propelled motion in active systems is

mainly associated with the living state and is observed in biological systems across different length

and time scales. Standard examples at the microscale include microswimmers, bacteria, and syn-

thetic colloidal and granular particles41,45,46. Assemblies of living cells with collective motions,

their inracellular activity, and cytoskeletal-driven motion are also regarded as other examples of

self-propelled motion47. At the larger scale, colonies of ants, schools of fish, flocks of birds, or

even groups of mammals and crowds illustrate the collective motion.

An immediate question here would be whether these patterns and motions are system specific?

Indeed, the collective motion across such broad systems of “particles” are unified under the com-

mon theme of a number of properties that are distinct from their thermal counterparts48. First, the
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energy consumption at a single-particle level drives active systems out of the equilibrium state.

This leads to the breakdown of the detailed balance at the level of a single particle which is con-

trary to the standard driven systems whose violation of the detailed balance is controlled through

an external field gradient or boundary conditions41,49. However, we note that as systems far from

equilibrium, the compatibility of the collective dynamics of active matter with the Onsager’s re-

ciprocal relations has been demonstrated50–52. Second, in active systems with an inert background

medium, whose role is to constitute a passive friction, the momentum of the particles involved in

a collision is not conserved40,41,48. On the contrary, in Newtonian mechanics of equilibrium sys-

tems, the total momentum is conserved. Third, the constituents of an active system, regardless of

their interactions, tend to align their directions of motion with their neighbors (where the nature

of the interactions becomes important in the symmetry and polarity of the generated current)40,48.

This behavior is referred to as the emerging collective motion which is also the reason behind the

widespread clustering tendency of active particles near repulsive walls. Fourth, as a highly de-

bated property of active systems, it is asserted that active particles experience a non-equilibrium

and athermal phase transition that is distinct from a thermal-equilibrium system53–57.

Such unique characteristics of active motion have propelled the experimental design of active

colloids with coherent and stable directed motion in the limit of low densities where hydrodynamic

interactions protect a sustained active motion58–61.

Another way to better perceive the fundamental differences between the Brownian particles

(driven by thermal collisions) and active units is to look at how the stochastic equations of mo-

tion are constructed in each case. For a system of particles at thermal equilibrium, the canonical

approach to system modeling is to employ the Newtonian dynamics and include all the stochastic

forces: (a) write down all the contributions to the time evolution of the slow degrees of freedom;

(b) include the fast-varying degrees of freedom in the form of noises; and finally, (c) employ the

principle of detailed balance, i.e. the time reversal symmetry, to define an effective Hamiltonian

that gives the stationary and dissipative parts of the dynamics62. Taking this approach for a Brown-

ian particle with the unit mass, velocity v, and a potential energy that depends solely on the spatial
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coordinate q(t), leads to the coupled Langevin equations,

dq

dt
= v;

dv

dt
= −ξv −∇U(q) + F(t). (1.2)

Here, ξ is the Stokes friction coefficient due to the background, U is the potential energy, and

F is the fast-varying stochastic force. Ornstein and Uhlenbeck showed that stochastic force was

δ-correlated and its distribution followed a Gaussian function63,

〈F(t)〉 = 0; 〈Fi(t)Fj (t
′)〉 = 2Dδi,jδ (t− t′) , i, j = x, y, z. (1.3)

The stochastic events Fi are known as Gaussian white noise with their strength proportional to

the coefficient D = kBTξ (where kB is the Boltzmann’s constant and T is the temperature). We

emphasize that for a more evolved model of Brownian motion with spherical and relatively large

particles, compared to the solvent particles, the time-invariant translational friction coefficient ξ(t)

leads to long-time tails in velocity autocorrelation function which scale as t−3/2 when t → ∞64.

When far from equilibrium, we can construct a similar set of equations by ignoring the de-

tailed balance and replacing the isotropic dissipative force with a featured force that breaks the

symmetries,

dq

dt
= v;

dv

dt
= Fdiss −∇U(q) + F(t). (1.4)

This new dissipative force, Fdiss = −ξ(q,v)v, depends on the spatial coordinates, velocity, and

time. Similar to a Brownian system, here the stochastic force F is characterized by strength D and

a δ-correlated time dependence. However, due to the system being out of equilibrium now, D is

independent of the parameters in the dissipative force.

Associated with these set of Langevin equations, the solution to the Fokker-Planck equation

will give the joint position and velocity distributions of the particles conditional on arbitrary initial

conditions, P (q,v, t |q0,v0, t0),
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∂P (q,v, t | q0,v0, t0)

∂t
= −v

∂P

∂q
−∇U(q)

∂P

∂v
+

∂

∂v

[

ξvP +D
∂P

∂v

]

. (1.5)

Even such a minimal modeling of an active system gives rise to fundamental deviations from

a Brownian system that become evident in the position and velocity distributions. For exam-

ple, in case of Rayleigh-Helmholtz model† for the friction and in the absence of an external field

(∇U(q) = 0), one obtains qualitatively different results for the stationary velocity of the Brownian

and active particles65. Fig. 1.4 shows the velocity distributions for the two systems.

Figure 1.4: Velocity distributions in Cartesian space for Brownian (left panel) and active (right panel)
systems modeled with Rayleigh-Helmholtz friction when ∇U(q) = 065. The absence of external forces
leads to stationary velocity distributions.

Let us now consider the various models of self-propelled motion. These models differ by the

assumptions made on the properties of the self-propulsion velocity v. We note that in all these

models the hydrodynamic details of microswimming mechanism are abandoned and only the net

displacement of the particles are considered. Yet, the models are phenomenological and successful

in describing the realistic active systems. Three of such most studied models are the run-and-

tumble particles (RTPs)46, active Brownian particles (ABPs)66,67 and active Ornstein-Uhlenbeck

particles (AOUPs)41,68.

†Rayleigh-Helmholtz model is a standard model for nonlinear friction which was originally applied to earlier
studies of Brownian dynamics. In this model, the friction coefficient has a quadratic dependence on velocity.
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In a run-and-tumble model, the particle’s motion is characterized by sequences of “runs” which

happen at a velocity with constant modulus, followed by stochastic reorientation of the velocity

vector according to a specific rate, namely “tumbles”. This model describes the self-propulsion

of the bacteria where the runs have varied length and the tumbles are isotropic69. The active

Brownian particles also have a constant-modulus velocity, yet the angular dynamics of the par-

ticles is controlled through free diffusion and the translational and rotational degrees of free-

dom are coupled. The self-propulsion in this case follows the formal expression for the velocity

v = v0 (cos(φ), sin(φ)) with φ being the angular degree of freedom. The model describes the mo-

tion of synthetic or biological active particles with asymmetric chemical or physical features such

as chirality or helicity as well as particles with a circular trajectory, or self-phoretic Brownian par-

ticles41,70. For example, ABPs can model certain groups of bacteria, sperm cells, or self-propelled

Janus colloids56,58,70. The dynamics of AOUPs differ from RTPs and ABPs by existence of a fluctu-

ating norm of the self-propulsion velocity that varies according to an Ornstein-Uhlenbeck process.

This class of particles can model the collective dynamics of cells as well as the motion of passive

tracers in an active medium. For a group of AOUPs, the self-propulsion velocities {vi} form a set

of stochastic processes characterized by their zero-mean colored Gaussian noise with the following

correlations68,71,

〈vi(t)vj(t
′)〉 = δij

D

τ
e−|t−t′|/τ , (1.6)

where the indices denote different particles and D is the strength of the noise. The noise correlation

time τ , also known as the persistence time, describes the relaxation time of the Ornstein-Uhlenbeck

processes. In the limit of τ → 0, the correlation of Gaussian white noise is recovered and the

dynamics of the particles approaches that of an equilibrium state. Thus, the noise correlation time

τ is a parameter indicative of how far an active system is from the equilibrium state. In this context,

we consider time scales much longer than the decay time of the velocity autocorrelation function

of a system in thermal equilibrium.
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Finally, we note that in contrast to an equilibrium system whose dynamics is described by

Gaussian white noise, in all models of active systems the statistics of the self-propulsion (i.e. v’s)

is non-Gaussian.

1.3 Chapter Overview

As I tried to outline in the previous sections, the physics of disordered systems can bring

different facets of seemingly independent phenomena together to provide a more universal picture

of the problem in hand. My research was also an attempt in this direction. One part of my research

was an address to the low-frequency properties of a wide range of glasses from ultra-stable glasses

to relatively stable ones. This research which relied on numerical simulations is briefly reviewed

in the following Sec. 1.3.1. Another part of my research focused on theoretical and numerical

descriptions of a model class of active particles discussed earlier, namely AOUPs. This is also

briefly reviewed in Sec. 1.3.2.

1.3.1 Low-frequency Properties of Stable Glasses Within the Framework of

Fluctuating Elasticity Theory

Many theories have shaped around the distinct vibrational and/or structural characteristics of

disordered solids to account for the low-frequency deviations of disordered solids from the predic-

tions of the Debye theory. The theory of softening of acoustic phonons (vibrational excitations) by

stationary disorder72, the existence of quasi-localized modes and their hybridization with phonon

modes35, and the soft potential model and the effects of anharmonicity at low frequencies73, are

among some of these theories.

One such theory based on the structural differences of amorphous solids is the Fluctuating

Elasticity Theory (FET). Originally proposed by Schirmacher, the theory focuses on the random

fluctuations of transverse (shear) and longitudinal (bulk) elastic constants in amorphous materi-

als74–76. When the local shear (or bulk) modulus† of an amorphous solid is measured, the respec-

†The details of local elastic moduli calculations are presented in Chapter 2.
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tive quantity typically has a normal distribution77–79. In contrast, for crystals the strength of elastic

moduli in the lattice remains uniform and forms a delta function probability distribution. Due to

its formulation and nontrivial measurable parameters defined in it, the FET is mostly applied to

sound attenuation and dissipation of vibrational modes21,34,80.

In the work presented in Chapter 2, we aimed to probe the assumption that whether there

existed a correlation between the fluctuations in the elastic matrix of an amorphous medium and its

stability. This is a basic implication of the FET. To meet this objective, we numerically simulated

a broad range of ultra-stable to moderately stable amorphous solids starting from the respective

configuration of the solid in a supercooled liquid phase. All the calculations were performed for

near-zero temperature solids to investigate the low-temperature properties of the solid and to rule

out the anharmonic contributions of the vibrational modes. We measured the shear and bulk moduli

for local domains of the solid and in accordance with the predictions of the FET, we concluded

that with increasing the stability of the solid there was a reduction in the fluctuation of both shear

and bulk elastic constants. Furthermore, we were interested to examine the spatial correlations in

the elastic matrix. We expected to see these correlations, which enter into the FET, for our most

homogeneous system, i.e. the most stable glass studied. In contrast to the FET, we found that there

were no finite-range spatial correlations within the elastic matrix itself.

1.3.2 Density Distribution of AOUPs in the Presence of an External Poten-

tial

As pointed out earlier, active particles are non-equilibrium systems for which we do not have

a distribution function to determine the moments and cumulants of the statistics. In principle,

we would need to derive an exact or approximate expression for the many-particle distribution to

calculate the measurable properties of the system. Nonetheless, studying a minimal or a single-

particle system has the benefit of pinpointing the effective active particle properties that are inde-

pendent from the collective motion of the particles in a dense phase. Besides, there is evidence in

support of the idea that we can reduce the many-body problem into a single-particle system. For
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instance, assuming pair additivity, most of the properties of interest of many-particle systems can

be expressed in terms of a reduced distribution function such as the pair distribution function, g(r),

which not only provides us with a structural insight but also makes the direct evaluation of the

thermodynamic quantities of the system possible81,82. With that motivation, single-particle active

systems have also been investigated both theoretically and experimentally83–85.

Similarly, we were interested to determine an exact analytical expression for the stationary

distribution function of a tracer particle in a model of interacting AOUPs. We study this model

under the influence of an external potential that acts exclusively on the tracer particle. This would

allow us to write the position distribution as a perturbative solution. This would also allow us to

test the theory beyond the linear response regime for an arbitrary potential with varied amplitudes.

Interestingly, our analytical results showed that the distribution function of the tracer particle had a

form analogous to that of an equilibrium system, i.e. the Boltzmann distribution, with an effective

temperature replacing the heat bath temperature in the distribution function. The effective temper-

ature followed the form of the Einstein temperature (where the latter defines the temperature of

a colloidal system within the linear response regime as the ratio of two transport coefficients, the

mobility and the self-diffusion coefficients). In another part of this research, we used numerical

simulations to support the analytical findings. This work is presented in Chapter 3.

In Chapter 4, we discuss our results on the density distribution of an AOUP in a tilted periodic

potential. Numerous recent theoretical and experimental studies have focused on the behavior

of active particles in the presence of external fields and confinements83,86–90. In this work, we

derive an analytical expression for the stationary density function and the current/mean velocity

of an AOUP within the unified colored-noise approximation (UCNA)91. The density function,

which is derived for a particle under the influence of a tilted periodic potential, is numerically

tested in a state-space of varied temperature, persistence time, and strength of the tilting force.

For small to moderate tilting force, we showed that the analytical results were in agreement with

the numerical simulations across systems with different temperatures and τp ≤ 1.0. However, at

higher amplitudes of the tilting force we found that the theoretical density function overestimates
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the asymmetric effect of the tilting force on the probability density distribution. In the second

part of this study, we simulated the mean velocities and self-diffusion coefficients of active and

Brownian particles under the influence of a tilted external potential. Consistent with the reported

results for a non-interacting Brownian system, we found that both the mean velocity and self-

diffusion coefficient of an AOUP are considerably enhanced in the presence of a tilting periodic

potential. We further determined that the theoretical expression for the mean velocity quantitatively

predicts the results of the numerical simulations at different temperatures as long as τp ≤ 1.0.

Finally, in Chapter 5, we summarize the main findings and conclude with a brief discussion on

the possible avenues for future work.
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Chapter 2

Stability dependence of local structural

heterogeneities of stable amorphous solids.†

2.1 Overview

The universal anomalous vibrational and thermal properties of amorphous solids are believed

to be related to the local variations of the elasticity. Recently it has been shown that the vibrational

properties are sensitive to the glass’s stability. Here we study the stability dependence of the

local elastic constants of a simulated glass former over a broad range of stabilities, from a poorly

annealed glass to a glass whose stability is comparable to laboratory exceptionally stable vapor

deposited glasses. We show that with increasing stability the glass becomes more uniform as

evidenced by a smaller variance of local elastic constants. We find that, according to the definition

of local elastic moduli used in this work, the local elastic moduli are not spatially correlated.

2.2 Introduction

The vibrational modes and the low temperature thermal properties of amorphous solids are

sharply different from those of their crystalline counterparts10,92–94. The uniform structure of crys-

tals allows for the description of the low frequency modes as if it were a classical elastic body

whose properties are governed by the elastic moduli, which forms the basis of the Debye model

for the density of states. This description leads to a T 3 increase of the specific heat for crystalline

solids due to the increase of the density of the vibrational modes as the square of the frequency

ω. Recently it was shown that the low frequency vibrational modes of amorphous solids can be

divided into a Debye term and an excess contribution that increases as the fourth power of the

†This chapter was previously published and is reproduced here with minor modifications. See: A. Shakerpoor,
E. Flenner, and G. Szamel, Stability dependence of local structural heterogeneities of stable amorphous solids, Soft

Matter 2020, 16, 914.
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frequency18,29. The excess modes are spatially quasi-localized. Their spatial extent and density de-

crease with increasing stability. The quasi-localized character of excess modes suggests that there

might be a spatially varying local elasticity.

Indeed, there is a large body of evidence for the existence of spatially varying local elastic con-

stants in amorphous solids17,78,79,95–104. To explain a plateau observed in the thermal conductivity

around 10K for many dielectric amorphous solids, a Rayleigh like scattering of sound waves was

assumed10,94. This assumption posits scattering from uncorrelated defects that are much smaller

than the wavelength of the sound wave, and these defects would naturally give rise to local varia-

tions of the elasticity. Further theoretical analysis assuming local variations of the elasticity repro-

duces the ω4 excess in the vibrational density of states and predicts the Rayleigh scaling k4 (where

k is a wavevector) of sound attenuation18,21,80,105. The k4 scaling of sound attenuation was ques-

tioned in a computer simulation study100 and a logarithmic correction to the Rayleigh scaling was

proposed. This correction was rationalized in terms of a power law decay of the spatial correla-

tions of the local elasticity. However, other simulation studies18,105,106 suggest that the logarithmic

correction either exists only for a narrow range of wavevectors (frequencies) or this correction is

only a good description of the crossover region between the high and low wavevector (frequency)

behavior of sound attenuation.

Pogna et al.104 examined sound attenuation in geologically hyperaged, ultrastable amber within

the framework of fluctuating elasticity theory to establish a link between stability and the local

variation of the elastic constants. They fitted the predictions of the theory for the vibrational density

of states to the experimental data and in this way obtained estimates of the relative variance of the

local elastic constants and of a length scale characterizing their spatial variation. They concluded

that there was a reduction in the variation of the elastic constants by around 6% and an increase

of the characteristic length scale of around 22% in the hyperaged amber compared to a liquid

cooled sample. Thus, increasing stability seemingly narrows the distribution of elastic constants

and increases the range of their correlations.
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However, in a very recent simulational study Caroli and Lemaitre17 argued that the fluctuating

elasticity theory does not describe well sound attenuation in amorphous solids. They based this

conclusion on two results. First, they showed that the fluctuating elasticity theory predicts the k4

Rayleigh scattering-like sound damping whereas their simulations were consistent with a loga-

rithmic correction. Second, they measured the parameters that enter into the fluctuating elasticity

theory in simulations, used them to calculate sound attenuation, and compared these predictions

with sound attenuation observed in the same simulations. They found that the predicted sound

attenuation is two orders of magnitude smaller than the observed one. The second fact implies

that the fluctuating elasticity theory severely underestimates the magnitude of the sound attenua-

tion even if one were to argue that the logarithmic corrections is an intermediate, finite wavevector

feature and the sound attenuation can be described within the Rayleigh scattering picture.

We note that it is difficult to directly probe local variations of the elasticity in experiments78,

which forced Pogna et al. to treat the relative variance of the local shear modulus as a fitting

parameter. In contrast, simulations are able to calculate local elastic constant using several different

methods79,100,105. Lerner demonstrated that the sample to sample fluctuations of the shear modulus

decreased with increasing stability for a model glass former107, but did not examine the local

elastic constants. Mizuno, Mossa, and Barrat found that the width of the distribution of local

elastic constant correlates with sound attenuation99. For their study, they continuously transformed

a crystal into an amorphous solid by continuously changing the size ratio of a binary mixture.

Using the same technique they also demonstrated that the thermal conductivity, the lifetime of

acoustic modes, and the local elastic heterogeneity are correlated95. This investigation, however,

does not mimic the experimental procedure of Pogna et al.104 who studied the stability dependence

of sound attenuation. Importantly, in the work of Mizuno, Mossa, and Barrat the system is changed

systematically in order to establish the correlations between the transport and acoustic properties

and the variation of local elastic constants.

Here we examine the dependence of local elastic moduli of a simulated polydisperse glass

former on its stability. We partition the system into different box sizes w and determine the dis-
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tribution of local elastic moduli for three values of w. We find that the width of the distribution

decreases with increasing stability. However, using our definition of the local elastic moduli, we

find that the local elastic moduli are uncorrelated in space.

2.3 Methods

2.3.1 Molecular Dynamics Simulations

We studied a system of N = 48000 and N = 192000 polydisperse repulsive particles in a

cubic box of volume V with periodic boundaries in 3D. The pair potential is given by

U(rij) =



















ǫ
(

σij

rij

)12

+ v(rij),
σij

rij
< rcut

0,
σij

rij
≥ rcut

(2.1)

with

v(rij) = c0 + c2

(

rij
σij

)2

+ c4

(

rij
σij

)4

. (2.2)

The distance between particle i and particle j is rij = |ri−rj|, σij =
σi+σj

2
(1− e|σi − σj|) where

the mixing parameter e = 0.218,108. The sizes of individual particles σ are given by the probability

distribution

P (σ) =
A

σ3
(2.3)

where σ ∈ [0.73, 1.63] and zero otherwise. The coefficients c0, c2, and c4 are chosen to guarantee

the continuity of the potential up to the second derivative at the cutoff distance rcut = 1.25. This

choice of system inhibits crystallization due to the polydispersity and fractionation due to the

non-additive mixing rule, while allowing the swap Monte Carlo algorithm to equilibrate to low

temperatures108. We present the results in reduced units with ǫ being our unit of energy, the average

of σ = σ0 being our unit of length, and
√

mσ2
0/ǫ being the unit of time.

For each parent temperature Tp ∈ [0.062, 0.200] we studied 4 independent initial configurations

at number density ρ = 1. Each configuration was first equilibrated at its parent temperature and
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then quenched to an inherent structure via the conjugate gradient algorithm. For reference, for

our system the mode-coupling temperature TMCT ≈ 0.108 and the glass transition temperature

Tg ≈ 0.072108. The equilibration was done using the swap Monte Carlo algorithm that combines

conventional Monte Carlo moves with particle swaps108–110.

After quenching, we ran very low temperature NVT molecular dynamics simulations using

LAMMPS111,112 code to which we added the interaction potential for the present model. The time

step for all of MD simulations was dt = 0.02. We first ran short equilibration runs at T = 10−5

in an NVT ensemble using a Nosé-Hoover thermostat. We then ran NVT production runs. Their

length was determined by the time needed to decorrelate a term involving the local and global

stress
〈

σm
αβσγδ

〉

, which was identified as a slowly decorrelating term and discussed by Mizuno

et al.79. This term is defined in Section 2.3.2. We did not observe any finite size effects, but,

consistent with the observation made in Ref. [79], much longer production runs are needed for

larger systems. For a system of N = 48000 particles, which was mainly used to perform the

elastic modulus calculations in this study, the length of the production runs time was ∆t = 3×105,

which corresponds to 1.5× 107 time steps. The results shown in the paper are for the N = 48000

particle system unless otherwise specified. We observed very infrequent jumps in the energy and

the pressure even at the very low temperature that we used, T = 10−5. We attribute these jumps to

transitions between the locally stable minima. In the analysis we only use a continuous portion of

the trajectory that excludes the energy jumps.

2.3.2 Elastic Modulus Calculations

To measure the local elastic response, the system is equally partitioned into cells of size w =

3.30, 4.54, 6.05, and 12.11. Several methods have been proposed to define and calculate the local

elastic constants. Here we use the so-called “fully local” approach described by Mizuno, Mossa,

and Barrat79. This approach was also used in other studies95,99,102. For each box m the volume

averaged stress tensor is calculated as:
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σm
αβ = −ρmTδαβ +

1

w3

∑

i<j

∂U(rij)

∂rij
rijα r

ij
β

rij
qijm
rij

(2.4)

where, ρm is the local number density of cell m, T is the temperature, δ is the Kronecker delta and

rij = |ri − rj|. Here, the first term on the right-hand side shows the kinetic/ideal gas contribution

to the bulk modulus. The parameter qijm is the segment of the line joining ri and rj that lies within

the box m. We use Greek subscripts to denote the Cartesian coordinates (α, β, γ, δ = x, y, z) and

Roman superscripts to denote particle labels. The global stress tensor is given by:

σαβ =
1

V

∑
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w3σm
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1

V
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rij
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We first calculate the local modulus Cm
αβγδ given by

Cm
αβγδ = CAm

αβγδ − CNm
αβγδ
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, (2.6)

where CAm
αβγδ is the affine contribution and CNm

αβγδ is the non-affine contribution. While the non-

affine contribution vanishes in perfect crystalline systems at zero temperature, it has a magnitude

comparable to the affine term in amorphous systems113. The brackets 〈· · · 〉 denotes an ensemble

average. The Born contribution CBm
αβγδ to the affine term stems from the uniform displacement of

all particles and it determines the instantaneous elastic modulus under such displacements96. The

CCm
αβγδ term is due to the initial stress having a finite value79. The CKm

αβγδ term is the kinetic energy
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contribution to the local elastic modulus tensor. Compared to the Born and the non-affine terms,

the kinetic energy contribution to the elastic constant is negligible.

As described by Mizuno et al.79, the local bulk modulus Km is defined from the pressure-

volume change and the five shear moduli Gm
1 , · · · , Gm

5 , are defined from two pure shear and three

simple shear deformations. These moduli are given by the following linear combinations of Cm
αβγδ

Km =
(

Cm
xxxx + Cm

yyyy + Cm
zzzz

+Cm
xxyy + Cm

yyxx + Cm
xxzz + Cm

zzxx + Cm
yyzz + Cm

zzyy

)

/9

Gm
1 =

(

Cm
xxxx + Cm

yyyy − Cm
xxyy − Cm

yyxx

)

/4

Gm
2 =

[

Cm
xxxx + Cm

yyyy + 4Cm
zzzz

+Cm
xxyy + Cm

yyxx − 2
(

Cm
xxzz + Cm

zzxx + Cm
yyzz + Cm

zzyy

)]

/12

Gm
3 = Cm

xyxy

Gm
4 = Cm

xzxz

Gm
5 = Cm

yzyz. (2.7)

The moduli are averaged over MD configurations that are separated by t = 0.5, i.e. over 6×105

time steps.

2.4 Results

Shear and bulk moduli describe the elastic response of the system to a small deformation. In

simulations one can determine these moduli through a deformation, or utilize the thermodynamic

equations summarized in Eqns. (2.6-2.7) for the whole system, i.e. when the system is only parti-

tioned into one box. Here, we partition the system into several boxes and determine distributions

of the moduli. We expect that the averages of these distributions should be equal to the values of

the moduli obtained from deformation. To check this, we calculated the averages of the moduli

for different box sizes w and compared these results to the shear and bulk moduli obtained from

deformation.
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Figure 2.1: Macroscopic shear (red line) and bulk (black line) moduli obtained by deforming the zero tem-
perature (quenched) configurations as functions of the parent temperature. The symbols show the averages
of the local shear and bulk moduli for different box sizes. The errorbars for the local moduli averages, not
shown here, are smaller than or comparable to the size of the symbols.

Shown in Fig. 2.1 are the shear modulus (left axis) and the bulk modulus (right axis) obtained

from deforming the system (lines) and from the averages of the distributions of the local moduli

(symbols) for different box sizes. Up to the mode coupling temperature TMCT the global shear

modulus G changes very little with decreasing parent temperature Tp. Below TMCT it increases with

decreasing Tp, reaching a value approximately 27% larger at the lowest parent temperature used. In

contrast, the global bulk modulus K monotonically decreases with decreasing Tp, reaching a value

7% smaller at the lowest parent temperature than at TMCT. The averages of the local shear Gm and

bulk Km moduli for different box sizes are very close to the moduli obtained from deformation. We

do find, however, that at the largest parent temperature the averages of the shear moduli are slightly

larger than the value obtained from deformation, with the difference increasing systematically with

decreasing box size.

We note that, as shown in Fig. 2.2, for both of the global shear and the global bulk moduli

the Born and fluctuation terms in Cαβγδ decrease with decreasing Tp. For the shear modulus,

the fluctuation term decreases faster with decreasing Tp than the Born term, and this leads to the

increase in the shear modulus since the two terms are the same order of magnitude. However, for
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the bulk modulus the fluctuation term is an order of magnitude smaller than the Born term, and

thus a decrease in the Born term leads to a decrease of the bulk modulus.

Figure 2.2: The dependence of the Born and fluctuation terms on the parent temperature. Inset: rescaled
data for the bulk fluctuation term. Both Born and fluctuation terms decrease with decreasing parent temper-
ature, for both shear (a) and bulk (b) moduli.

Although the average shear and bulk moduli are approximately independent of the box width

w, one would expect to find some box width dependence of the width of the moduli distributions.

The dependence of the width of the distribution relative on the box size is an important parameter

in the fluctuating elasticity theory. Mizuno et al. found that the distributions of the individual shear

moduli are almost identical and presented distributions averaged over the individual components.

We found that the same fact is true for our system and also present distributions of the shear moduli

averaged over the individual components.

Shown in Fig. 2.3 are probability distributions of the local shear modulus Gm calculated for (a)

w = 12.114, (b) w = 6.057, (c) w = 4.543, and (d) w = 3.303 for three parent temperatures Tp =

0.062 (circles), 0.085 (squares), and 0.2 (triangles). We note that we observe no finite size effects,

which we demonstrate in the inset to Fig. 2.3(d) by calculating the distribution for N = 48000

and N = 192000 for a box of the same size. However, as discussed in Ref. [79], the
〈

σm
αβσγδ

〉

term converges very slowly for large systems. To characterize the width we fit the distributions to
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a Gaussian distribution, A exp{−0.5(G − G0)
2/σ2}, where G0 is the average shear modulus and

σ is the standard deviation. The fits are shown as continuous lines in the figures. For all box sizes,

including the smallest one with w = 3.303 that only contains ≃ 36 particles, the shear moduli

distributions are well described by Gaussian distributions.

We can see two trends. First, with increasing stability the distribution becomes narrower. This

is easily seen since the peak of the distribution increases with decreasing width due to normaliza-

tion of the distributions. Therefore, with increasing stability the glass becomes more uniform, in

the sense that the local shear moduli vary less between different boxes. The other trend is that the

width becomes broader with decreasing box size. This result is intuitively expected.

One noticeable property of some of these distributions is the appearance of regions with nega-

tive moduli. The regions with negative moduli are characterized as domains where the deforming

force and the resulting response are in opposite directions114, which suggests that these domains

are unstable. However, with such small domains it is questionable if continuum elasticity is a valid

description113. Overall, at each box size the distributions with higher averages and smaller standard

deviations (i.e. the distributions of Tp = 0.062) represent the more stable structure101.
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Figure 2.3: Distributions of local shear moduli for different box sizes: (a) w = 12.114, (b) w = 6.057, (c)
w = 4.542, (d) w = 3.303. Each panel shows distributions for three different parent temperature, circles,
Tp = 0.062, squares, Tp = 0.085 and triangles Tp = 0.200. The solid lines show Gaussian fits to the
distributions.

We also examined the distribution of the bulk modulus Km, Fig. 2.4 for the same three parent

temperature Tp and box sizes w. We also find that the width of the distribution of Km decreases

with decreasing parent temperature and increases with decreasing box size. The lines in the figures

are fits to a Gaussian distribution. Again, these results points to the bulk modulus becoming more

uniform with an increase of the stability. Since the bulk modulus is 3.5 to 5.5 times larger than

the shear modulus (depending on stability), the change in the relative size of the distribution σΓ/Γ,

where Γ = G or K is much less for the bulk modulus.
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Figure 2.4: Distributions of local bulk moduli for different box sizes: (a) w = 12.114, (b) w = 6.057, (c)
w = 4.542, (d) w = 3.303. Each panel shows distributions for three different parent temperature, circles,
Tp = 0.062, squares, Tp = 0.085 and triangles Tp = 0.200. The solid lines show Gaussian fits to the
distributions. Insets: the same distributions as the main panels plotted on a different y-scale for clarity.

We summarize the parent temperature and box size dependence of the standard deviation of the

distributions of the local moduli in Fig. 2.5. The closed symbols are the results for the shear moduli

and the open symbols are results for the bulk modulus. The increase in σGm upon decreasing the

box of size from w = 12.114 to w = 3.303 is a factor of 5.5 for Tp = 0.2 and 5.8 for Tp = 0.062.

Similarly, the decreases of σGm with parent temperature for a fixed box size is 31% for w = 12.114

and 35% for w = 3.303.

Within fluctuating elasticity theory74,76,80, the heterogeneity of local shear modulus is charac-

terized by the disorder parameter γG, γG = ρw3σ2
Gm/ 〈Gm〉2. We calculated this parameter for the

different box sizes. We found that the disorder parameter varies with box size. For our most stable
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glass, Tp = 0.062, γG = 1.24 for w = 12.1 and γG = 0.90 for w = 3.3. These two values of

the disorder parameters differ by approximately 38%. This box size dependence of the disorder

parameter originates from slower than w−3 decay of the variance σ2
Gm upon increasing the box

size w. It makes it unclear if γG is a proper parameter to be used as input to a theory of sound

attenuation in glasses. We note that Lerner107 found that a quantity which should be equivalent to

the square root of the variance (see Eq. (18) of Ref. [107]) of the sample-to-sample fluctuations

of the shear modulus decreases with the size of the system as N−1/2. The difference between our

results and those of Ref. [107] suggests that the distribution of local shear modulus calculated for a

given sample might be different from the distribution of sample-to-sample fluctuations of the shear

modulus calculated for the whole system.

The disorder parameter does increase dramatically with decreasing stability for a fixed box

size. The disorder parameter increases by a factor of 3.4-3.9, depending on box size, when we

compare our most stable glass, Tp = 0.062, to our least stable glass, Tp = 0.2. For our least

stable glass, disorder parameters are of similar magnitude as those found by Mizuno, Ruocco, and

Mossa115 in their T = 0 glass.

We note that the change in the variation of the local elastic moduli, i.e. of the heterogeneity of

the local elasticity, with the changing stability found in this work is much larger than that estimated

by Pogna et al. for hyperaged amber. In the latter study a decrease of only 5% was estimated upon

a very large increase in the stability. We note that the change in the variation of the elastic constants

reported by Pogna et al. was obtained indirectly, by fitting measured vibrational densities of states

to the predictions of the fluctuating elasticity theory. Thus, the accuracy of their inferred change

of the variation of the local elastic moduli depends on accuracy of the fluctuating elasticity model

that they used. We find that there is probably a stronger dependence of the variation of the elastic

constants on the glass’ stability than that inferred from fluctuating elasticity theory.
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Figure 2.5: Dependence of the standard deviation of the local shear, σGm , and bulk moduli, σKm , on the
parent temperature. The solid lines and filled symbols show σGm and the dashed lines and open symbols
show σKm . The standard deviation σGm increases by 67% for our smallest box size w = 3.303 and 50% for
our largest box size w = 12.114. The standard deviation σKm increases by 33% for our smallest box size
and 7.1% for our largest box size. Since K > G, this signifies a much larger relative change in σGm than
σKm .

To characterize the spatial correlations of local shear moduli, which also enter into the fluctu-

ating elasticity theory21, we calculated the correlation function

gGG(r) =
∑

m

∑

n

(〈GmGn〉 − 〈Gm〉 〈Gn〉) δ(r − |rm − rn|), (2.8)

where rn is the coordinate for the center of a box used to calculate the elastic moduli. We used

3000 particle systems to calculate gGG(r) and checked that the calculation was consistent with

results for 48000 particle systems. It is important to recognize the fact that the boxes used in this

calculation may overlap (in order to get results for distances r smaller than the box size). Thus,

boxes may share some of the same particles and their elastic moduli are necessarily correlated.

Therefore, there are trivial correlations in gGG(r) due to overlapping boxes. We show gGG(r) for

our most stable glass, Tp = 0.062, for four different box sizes w. We find that gGG(r) decays to
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near zero at the size of the box, which is indicated by the vertical lines in the figure. This implies

that only the trivial correlations exists.

To explore further if there are spatial correlations for the shear modulus and the bulk modulus

at every temperature and every box size, we calculate the cross correlations of neighboring non-

overlapping boxes. To this end we calculate the correlation parameter

Ψm,n
Γ =

〈(

Γm − Γ

σΓm

)(

Γn − Γ

σΓn

)〉

m

(2.9)

where, 〈· · · 〉m denotes an average over all the boxes and box n is one of the six nearest neighbors

of box m and Γ = G or K. A correlation parameter close to 0 indicates no significant correlation

and a value of 1 indicates perfect correlation. In Fig. 2.6(b) we show ΨG (circles) and ΨK (squares)

for box sizes of w = 6.075 (black), 4.542 (red), and 3.028 (blue). The values of ΨΓ are all close

to zero and there are no noticeable trends with box size or parent temperature. This leads us to

conclude that the elastic moduli, calculated using this fully local approach, do not exhibit any

spatial correlations. We also examined correlations of Gm
n where n = 1...5 found in Equation 2.7

and found the same trends, i.e. only trivial correlations. We note that there are other methods to

calculate local elastic moduli79, and these other methods may indicate that the moduli are spatially

correlated.
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Figure 2.6: Panel (a) shows the spatial correlations of the shear modulus G for a 3000 particle system and
for our most stable glass, Tp = 0.062. The vertical lines indicate the box sizes. At these points the trivial
correlations disappear. Panel (b) illustrates the correlation parameter Ψm,n

G (circles) and Ψm,n
K (squares)

for the box sizes w = 6.075 (black), 4.542 (red), and 3.028 (blue) as a function of parent temperature
(N = 48000). The correlation parameter is small and there is no clear box size or parent temperature
dependence.

This conclusion is at odds with the result of Gelin et al.100 who reported that the elastic cor-

relations decayed as r−2 for a two dimensional glass-forming system different from the system

used here. We note that Gelin et al. used a different way to define local elastic moduli. How-

ever, Mizuno and Ikeda105 utilized the same method as Gelin et al. for yet another, different two

dimensional system and found that the stress correlations decay as r−2, but the elastic moduli cor-
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relations does not show the same long range correlations. We note that power-law decay of spatial

correlations of the coarse-grained stress field is generally expected to follow 1/rd, where d denotes

the spatial dimension116.

2.5 Conclusions

We examined the structural heterogeneities, including local and global elastic moduli, of glassy

systems prepared from parent systems equilibrated at different initial temperatures. Our calcula-

tions showed that the glass has a rather mild 27% increase of the local shear modulus, and a

smaller 7% decrease on local bulk modulus compared to their values at the mode-coupling tem-

perature with decreasing parent temperature. More importantly, we found that the local shear and

the local bulk moduli become more uniform with decreasing parent temperature and thus stability

of the glass. This finding is consistent with the recent report on the stability and sound attenu-

ation of stable glasses34. Sound attenuation increases with an increase in the fluctuations of the

local elasticity, and hence with a decrease of the stability. Our results are in qualitative agreement

with fluctuating elasticity theory74,76,80, which predicts an increase of sound attenuation and the

observed Rayleigh-like k4 scaling for small wavevectors34,105.

Our results are also qualitatively consistent with recent experimental work by Pogna et al.

on hyperaged amber104, which showed that the elastic matrix becomes more homogeneous with

increased stability, corresponding to a smaller Tp and a narrower moduli distribution in our study.

However, we find that the local moduli are not spatially correlated. Pogna et al. inferred a 22%

increase in the length scale characterizing elastic correlations. The same work reported on an

increase of the elastic moduli fluctuation length scale in the more stable amorphous medium. This

result, however, remains at variance with the findings of our study, where there is no discernible

length scale associated with elasticity and there is no long range decay of elastic correlations.

The lack of long range decay is also at odds with the study of Gelin et al.100, but agrees with the

conclusions of Mizuno and Ikeda105.
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Our results suggest that the current version of fluctuating elasticity theory is not a quantita-

tively accurate description of sound attenuation and the boson peak in amorphous solids, even

though it makes qualitatively accurate predictions. A similar conclusion was drawn by Caroli and

Lamaître17, who developed a full tensorial fluctuating elasticity theory and found that it under-

estimates the sound attenuation by about two orders of magnitude. Further theoretical work is

warranted to properly describe the interplay of sound attenuation and elastic heterogeneities. Ad-

ditionally, Mizuno and Ikeda found that elastic moduli correlations may be system dependent105.

Therefore, different systems should be examined to establish the universality of the results reported

here and in other papers. In particular, we note that the polydisperse system studied here is de-

signed to suppress crystallization, and hence some fluctuations may be suppressed compared to

more standard binary mixtures.
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Chapter 3

The Einstein effective temperature can predict the

tagged active particle density.†

3.1 Overview

We derive a distribution function for the position of a tagged active particle in a slowly varying

in space external potential, in a system of interacting active particles. The tagged particle distri-

bution has the form of the Boltzmann distribution but with an effective temperature that replaces

the temperature of the heat bath. We show that the effective temperature that enters the tagged

particle distribution is the same as the effective temperature defined through the Einstein relation,

i.e. it is equal to the ratio of the self-diffusion and tagged particle mobility coefficients. This result

shows that this effective temperature, which is defined through a fluctuation-dissipation ratio, is

relevant beyond the linear response regime. We verify our theoretical findings through computer

simulations. Our theory fails when an additional large length scale appears in our active system. In

the system we simulated, this length scale is associated with long-wavelength density fluctuations

that emerge upon approaching motility-induced phase separation.

3.2 Introduction

Equilibrium statistical mechanics provides us with explicit expressions for many-particle prob-

ability distributions for systems that are either isolated or in contact with one or more reservoirs117.

Probably the most often invoked distribution is the Boltzmann distribution ∝ exp (−H/T ) de-

scribing an equilibrium system with Hamiltonian H at a temperature T (here and in the following

we use units such that the Boltzmann constant is equal to 1, kB = 1). A lot of effort, analytical

†This chapter was previously published and is reproduced here with minor modifications. See: A. Shakerpoor,
E. Flenner, and G. Szamel, The Einstein effective temperature can predict the tagged active particle density, J. Chem.

Phys. 2021, 154, 081100.
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and/or numerical, is required to obtain from this distribution explicit results for measurable proper-

ties of a system of interacting particles, but at least we are provided with an explicit starting point

for such an effort.

In contrast, for out-of-equilibrium stationary states we do not have such a starting point. If we

were to follow the same route as in equilibrium statistical mechanics, we would need to derive an

exact or approximate expression for a non-equilibrium steady-state many-particle distribution and

then use it to calculate measurable properties of the non-equilibrium system considered. It is rather

unlikely that a general formula for such a distribution exists. Conversely, it is very likely that if it

were to be found it would be more complicated than the many-particle equilibrium distribution.

On the other hand, it is not clear that we need the full many-particle distribution. Most of the

interesting properties of many-particle systems can be expressed in terms of reduced distribution

functions, i.e. pair distribution g(r) and its generalizations to groups of more than two particles. To

calculate these properties one can attempt to derive approximate formulas for the reduced distribu-

tion for specific non-equilibrium steady states. We note that in some cases the reduced distributions

in non-equilibrium steady states can be measured directly. For example, in the iconic scattering

experiment of Clark and Ackerson118 the static structure factor, i.e. the Fourier transform of the

pair distribution function, of a sheared colloidal suspension was measured. This experiment in-

spired a number of other experimental, computational, and theoretical studies of the pair structure

in colloidal systems under shear.

In the present paper we focus on a class of non-equilibrium systems that have attracted a lot of

attention in the last decade, active matter systems40,42,45,47,48,70,119. The constituents of these systems

consume energy and as a result move in a systematic way. Examples include assemblies of bacteria

or of cells, suspensions of Janus colloidal particles, swarms of insects and flocks of birds. These

constituents are often modeled as active or self-propelled particles, which move in a systematic

way on short-time scales and in a diffusive way on long-time scales. Importantly, their dynamics

breaks detailed balance, and thus their stationary states are profoundly different from equilibrium

states. Needless to say, many-particle probability distributions describing these stationary states
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are not known explicitly. Several different approximate expressions for such distributions have

been proposed and tested120–122. In spite of a considerable body of work it is not yet clear which

approximate method is the most promising.

In some limits the problem of finding the many-particle stationary distribution for systems of

interacting active particles may simplify. For example, in a recent remarkable contribution de

Pirey et al.123 showed that in the large dimensional limit, higher-than-two-particle correlations are

negligible and used this finding to derive an exact expression for the pair distribution function.

Here we are interested in a more restricted problem. We consider a system of interacting

active particles in the presence of an external potential that varies slowly in space and acts on

one particle only, the tagged particle. The question we want to answer is, what is the spatial

distribution of tagged particle’s position? For an equilibrium system at constant temperature this

problem has a simple answer; the tagged particle distribution is the Boltzmann distribution for a

single particle in an external potential at the temperature of the system. Remarkably, this answer

is valid irrespectively of the spatial dependence of the external potential.

We show that for a system of interacting active particles in the limit of a slowly varying in space

external potential the tagged particle distribution also has a form of the Boltzmann distribution.

However, in this case the role of the temperature is played by a variable that is a ratio of two

quantities for which we derive exact albeit formal expressions. Importantly, we show that these

quantities are two well-known parameters describing tagged particle dynamics, the self-diffusion

coefficient and the tagged particle mobility. Thus, the role of the temperature in our tagged particle

distribution is played by the ratio of the self-diffusion and mobility coefficients, which has long

been recognized as one of the so-called effective temperatures124, the Einstein relation temperature.

Recall that in equilibrium statistical mechanics the temperature appears not only in equilibrium

probability distributions but also in other relations125. In particular, it appears as a proportionality

constant in fluctuation-dissipation relations, which connect fluctuations in equilibrium and linear

response functions due to weak external perturbations117,126,127. The derivation of these relations

relies upon the equilibrium form of the many-particle distribution, and in out-of-equilibrium sys-
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tems these relations are generally not valid. In the nineties Cugliandolo, Kurchan and Peliti128

realized that the violation of fluctuation-dissipation relations can be used to define temperature-

like quantities, which they called effective temperatures. These temperatures are defined through

the fluctuation-dissipation ratios, i.e. the ratios of the properties characterizing fluctuations and lin-

ear response/dissipation in non-equilibrium states. Importantly, Cugliandolo, Kurchan and Peliti

showed that in a slowly relaxing model system, the effective temperature determines the direc-

tion of the heat flow. Following this work, a number of different effective temperatures and their

properties have been investigated in globally driven non-equilibrium stationary states129,130 and

non-stationary aging systems131,132. Remarkably, in driven glassy systems it was found that several

seemingly different temperatures had the same value129, which hinted that there might be a unique

effective temperature, at least in this case.

More recently, the Einstein effective temperature, which is defined as the ratio of the self-

diffusion and tagged particle mobility coefficients, has been used to characterize some properties

of active matter systems133–136. In particular, some of us argued that the difference between the

Einstein temperature and the so-called active temperature, which characterizes the strength of the

self-propulsions, is a good measure of the departure of an active system from equilibrium137.

Since effective temperatures are defined through the ratio of fluctuations in a steady state to

a function describing linear response of this state to a weak external perturbation, it is not clear

whether these temperatures can also describe any non-linear response of steady states. Two studies

showed the usefulness of the Einstein effective temperature for non-linear response. First, Hayashi

and Sasa138 showed that the Einstein temperature determines the large scale distribution of a single

Brownian particle moving in a tilted periodic potential. Second, Szamel and Zhang139 showed that

the Einstein temperature determines the tagged particle density distribution in a slowly varying in

space external potential in a system of interacting Brownian particles under steady shear. In both

cases the important assumption was the slow variation in space of the external potential, but there

was no restriction on its strength.
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The present result is similar to that of Ref. [139] in that we assume that the external potential

acting on the tagged particle is slowly varying in space and we show that the density distribution

is determined by the Einstein temperature. The important difference with this earlier work is in

that the present system is athermal, locally driven by self-propulsions of individual particles, and

isotropic.

We verify our theoretical results by performing computer simulations of an active system with

an external potential. We show that the theory is valid as long as the spatial scale on which the

tagged particle density distribution varies is the longest relevant length scale in the problem. When

the density correlation length becomes large, due to the incipient motility-induced phase separa-

tion, the assumption behind our theory becomes invalid and numerical results show that the theory

fails.

The paper is organized as follows. In Sec. 4.3 we present our theoretical derivation. In Sec. 3.4,

we describe our computer simulation model and describe our numerical procedures in Sec. 4.4.1,

and then we present the results and discuss the limitations of our theory in Sec. 4.4.2. Finally, we

conclude the paper with an overview of our results in Sec. 3.5.

3.3 Theoretical Derivation

To derive the equation describing the tagged active particle density distribution in a slowly

varying in space external potential we use a gradient expansion. Specifically, we use a version of

the celebrated Chapman-Enskog expansion that was originally introduced to derive hydrodynamic

equations and the expressions for transport coefficients from the Boltzmann kinetic equation140.

The specific implementation of the Chapman-Enskog procedure that we use is inspired by Titu-

laer’s141 derivation of the generalized Smoluchowski equation from the Fokker-Planck equation.

Here we follow the nomenclature used by Titulaer (and also adopted in the classic review article of

Hess and Klein142) and use the name Smoluchowski description/equation to refer to the description

of dynamics of colloidal particles on the time scale much larger than the velocity relaxation time,

using as dynamic variables only the positions of the particles. In contrast, we use the name Fokker-
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Planck description/equation to refer to the description of the dynamics of colloidal particles on a

much shorter time scale, on which particles’ velocities are relevant. The Fokker-Planck description

uses as dynamic variables both positions and velocities of the particles. Thus, Titulaer’s derivation

amounts to an elimination of the particle’s velocity or, in other words, a contracted description of

the particle’s dynamics, which is possible on the longer time scale. Our present derivation is also

a contracted description of the tagged particle distribution, which is possible if the external poten-

tial is slowly varying in space. It is similar to the derivation used earlier139 to obtain an equation

describing the tagged particle distribution in a sheared colloidal suspension.

To make the derivation concrete we need to specify the active particle model. We consider a

system of active Ornstein-Uhlenbeck particles (AOUPs)83,120,143. These particles move in a vis-

cous medium, without inertia (i.e. with overdamped dynamics), under the combined influence of

the inter-particle forces and self-propulsions, with the latter evolving according to the Ornstein-

Uhlenbeck stochastic process. The equations of motions read

ṙi = µ0 [Fi + fi] , (3.1)

τpḟi = −fi + ηi. (3.2)

In Eq. (3.1) ri is the position of particle i, µ0 is the mobility coefficient of an isolated particle,

which is the inverse of the isolated particle’s friction coefficient, µ0 = ξ−1
0 , Fi is the force acting

on particle i due to all other particles,

Fi =
∑

j 6=i

F(rij), (3.3)

where rij = ri − rj and F(r) = −∂rV (r) with V (r) being the two-body potential, and fi is the

self-propulsion. In Eq. (3.2) τp is the persistence time of the self-propulsion and ηi is the internal

Gaussian noise with zero mean and variance 〈ηi(t)ηj(t
′)〉noise = 2ξ0kBTaIδijδ(t − t′), where

〈. . .〉noise denotes averaging over the noise distribution, Ta is the “active” temperature, and I is the
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unit tensor. The active temperature characterizes the strength of the self-propulsion. In addition, it

determines the long-time diffusion coefficient of an isolated AOUP, D0 = Taµ0 ≡ Ta/ξ0.

We assume that there is a slowly varying in space external potential, Φ(r1), acting on particle 1.

This particle will be referred to as the tagged particle. The external potential results in an additional

term, −∂r1Φ(r1), in the equation of motion for the tagged particle,

ṙ1 = µ0 [F1 − ∂r1Φ(r1) + f1] , (3.4)

τpḟ1 = −f1 + η1. (3.5)

We assume that the systems described by equations of motion (3.1-3.4) can reach a stationary

state. The N -particle stationary state distribution of positions and self-propulsions, PΦ
s , satisfies

the following equation,

[Ωs + ∂r1 · µ0 (∂r1Φ(r1))]P
Φ
s (r1, f1, . . . , rN , fN) = 0. (3.6)

Here Ωs is the evolution operator that corresponds to the unperturbed equations of motion,

Ωs (r1, f1, . . . , rN , fN) = −µ0

N
∑

i=1

∂ri · (Fi + fi) +
N
∑

i=1

∂fi ·

(

1

τp
fi +

Ta

µ0τ 2p
∂fi

)

. (3.7)

To make it an explicit assumption that the external potential acting on the tagged particle is

slowly varying we write it as Φ(ǫr1), where ǫ is a small parameter. As described before139, we will

use ǫ as an expansion parameter and then, at the end of the derivation, we will set it to 1.

Our goal is to derive from Eq. (3.6) a closed equation for the stationary tagged particle density

distribution, ns(r1),

ns(r1) =

∫

df1dr2 . . . dfNdrNP
Φ
s (r1, f1, . . . , rN , fN) . (3.8)
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The tagged particle density is non-uniform due to the external potential Φ. Due to the slow variation

of the external potential, we assume that the tagged particle density will also be slowly varying.

Again, to make this assumption explicit we write the tagged particle density as ns(ǫr1).

Due to the inter-particle interactions the N -particle distribution is not a slowly varying function

of the tagged particle position if the positions of all other particles are kept constant. However, it

should be a slowly varying function of r1 if it is written in terms of the tagged particle position

and the positions of all other particles relative to the tagged particle position, i.e. in terms of r1

and r21, r31 etc. To make this assumption explicit we change the variables and write the stationary

state equation in terms of R1 = ǫr1, R2 = r21, . . . , RN = rN1,

[

Ω(0)
s + ǫΩ(1)

s + ǫ2∂R1 · µ0 (∂R1Φ(R1))
]

PΦ
s (R1, f1, . . . ,RN , fN) = 0, (3.9)

where we separate contributions to the evolution operator of different orders in ǫ,

Ω(0) = −µ0

[

−
N
∑

i=2

∂Ri
·

(

N
∑

i 6=j=2

F (−Rj) + f1

)

+
N
∑

i=2

∂Ri
·

(

N
∑

i 6=j=2

F (Ri) + fi

)]

+
N
∑

i=1

∂fi ·

(

1

τp
fi +

Ta

µ0τ 2p
∂fi

)

, (3.10)

Ω(1) = −µ0∂R1 ·

(

N
∑

i=2

F (−Ri) + f1

)

−

N
∑

i=2

∂Ri
· µ0 (∂R1Φ (R1)) . (3.11)

Following Refs. [141] and [139], we now look for a special perturbative solution of Eq. (3.9)

PΦ
s (R1, f1, . . . ,RN , fN) = ns (R1)P

(0)
s (f1,R2, f2, . . . ,RN , fN)

+ ǫP (1)
s (R1, f1,R2, f2, . . . ,RN , fN) + ǫ2P (2)

s (R1, f1,R2, f2, . . . ,RN , fN) + . . . . (3.12)
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We use the solution postulated in Eq. (3.12) to derive perturbatively an equation for the tagged

particle density distribution,

(

D(0) + ǫD(1) + ǫ2D(2) + . . .
)

ns (R1) = 0. (3.13)

Eq. (3.13) is obtained by the integration of Eq. (3.9) over the self-propulsion of the tagged particle

and the positions of all particles other than the tagged particle. For example, the first two terms in

Eq. (3.13) read

D(0)ns (R1) =

∫

df1dR2df2 . . . dRNdfNΩ
(0)ns (R1)P

(0)
s , (3.14)

D(1)ns (R1) =

∫

df1dR2df2 . . . dRNdfNΩ
(1)ns (R1)P

(0)
s

+

∫

df1dR2df2 . . . dRNdfN Ω(0)P (1)
s . (3.15)

We note that the second term in Eq. (3.15) vanishes due to integration by parts.

Following the standard Chapman-Enskog procedure140,141, the tagged particle density ns (R1)

is not expanded in ǫ. Moreover, as in the standard Chapman-Enskog procedure140,141, there is some

freedom in choosing higher order functions P (i)
s , i ≥ 1. This freedom is eliminated by imposing

the usual conditions,

∫

df1dR2df2 . . . dRNdfNP
(i)
s = 0 ∀ i ≥ 1. (3.16)

Conditions (3.16) imply that the tagged particle density is completely determined by the zeroth

order term in expansion (3.9).

To find the special solution for the stationary state probability distribution we substitute Eq.

(3.12) into Eq. (3.9) and solve order by order. The terms of zeroth order give

Ω(0)P (0)
s (f1,R2, f2, . . . ,RN , fN) = 0. (3.17)
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Thus, P (0)
s is the translationally invariant steady state distribution of the positions and self-propulsions

in the absence of the external potential. The combination of expansion (3.12) and conditions (3.16)

implies that this distribution should be normalized to 1,

∫

df1dR2df2 . . . dRNdfNP
(0)
s = 1. (3.18)

The first order terms give an equation for P (1)
s in which nsP

(0)
s plays the role of a source term,

Ω(0)P (1)
s + Ω(1)ns (R1)P

(0)
s = 0. (3.19)

We can formally solve Eq. (3.19) for P (1)
s ,

P (1)
s = −

[

Ω(0)
]−1

Ω(1)ns (R1)P
(0)
s . (3.20)

We recall that P (0)
s does not depend on R1 and we get

P (1)
s = µ0

[

Ω(0)
]−1

[

N
∑

i=2

F (−Ri) + f1

]

P (0)
s · ∂R1ns (R1)

+ µ0

[

Ω(0)
]−1

(

N
∑

i=2

∂Ri

)

P (0)
s · (∂R1Φ (R1))ns (R1) . (3.21)

We then use these results to derive successive terms in the stationary state equation for the

tagged particle distribution, Eq. (3.13). We note that D(0), Eq. (3.14), involves Ω(0)P
(0)
s , and thus

it vanishes. Then, we note that D(1), Eq. (3.15), consists of two terms and, as we stated earlier, that

the second term vanishes due to integration by parts. In turn, the first term, involving Ω(1), consists

of two contributions that originate from the two contributions to Ω(1), Eq. (3.11). The first one is

proportional to the following integral,

µ0

∫

df1dR2df2 . . . dRNdfN

(

N
∑

i=2

F (−Ri) + f1

)

P (0)
s , (3.22)
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which involves the sum of the total inter-particle force acting on that tagged particle and of the self-

propulsion of the tagged particle. We note that integral (3.22) is equal to the tagged particle current

in the unperturbed stationary state. We assume that there are no average stationary currents in the

stationary state, and thus integral (3.22) vanishes. The term contributing to D(1) that originates

from the second contribution to Ω(1), Eq. (3.11), vanishes due to integration by parts.

The lowest order non-vanishing contribution to stationary state equation (3.13) originates from

D(2),

D(2)ns (R1) =

∫

df1dR2df2 . . . dRNdfN∂R1 · µ0∂R1Φ(R1)ns (R1)P
(0)
s

+

∫

df1dR2df2 . . . dRNdfNΩ
(1)P (1)

s +

∫

df1dR2df2 . . . dRNdfN Ω(0)P (2)
s . (3.23)

The first term on the right-hand-side gives ∂R1 · µ0∂R1Φ(R1)ns (R1) and the last term vanishes

after integration by parts. The second term is a sum of two contributions that originate from the

two contributions to Ω(1), Eq. (3.11). The second one vanishes after integration by parts and the

first one can be re-written as

∂R1D · ∂R1ns (R1) + ∂R1µ̄ · (∂R1Φ (R1))ns (R1) , (3.24)

where

D = −
µ2
0

d

∫

df1dR2df2 . . . dRNdfN

(

N
∑

i=2

F (−Ri) + f1

)

[

Ω(0)
]−1

[

N
∑

i=2

F (−Ri) + f1

]

P (0)
s ,

(3.25)

µ̄ = −
µ2
0

d

∫

df1dR2df2 . . . dRNdfN

(

N
∑

i=2

F (−Ri) + f1

)

[

Ω(0)
]−1

(

N
∑

i=2

∂Ri

)

P (0)
s . (3.26)

We note that while writing Eqs. (3.25-3.26) we used the rotational invariance of the d-dimensional

stationary state without the external potential.
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Combining all non-vanishing contributions to D(2), setting ǫ = 1, and re-writing the resulting

stationary state equation in terms of the original coordinate r1 we get the following equation for

the tagged particle distribution,

∂r1 · [D∂r1 + µ (∂r1Φ (r1))]ns (r1) = 0, (3.27)

where, rewritten in terms of the original coordinates r1, . . . , rN , D and µ read

D = −
µ2
0

d

1

V

∫

dr1df1 . . . drNdfN (F1 + f1) [Ωs]
−1 (F1 + f1)P

(0)
s (r1, f1, . . . , rN , fN) , (3.28)

µ = µ0 −
µ2
0

d

1

V

∫

dr1df1 . . . drNdfN (F1 + f1) [Ωs]
−1 ∂r1P

(0)
s (r1, f1, . . . , rN , fN) . (3.29)

Eq. (3.27) implies that the tagged particle distribution has the Boltzmann form,

ns (r1) ∝ exp
(

−Φ (r1) /T
eff
)

, (3.30)

where the effective temperature is the ratio of D and µ,

T eff = D/µ. (3.31)

The final step in the derivation is to assign some physical interpretation to D and µ. This

interpretation has already been hinted by our choice of the symbols we used for these quantities.

First, we note that since µ0 (F1 + f1) is the tagged particle velocity, D can be formally interpreted

as the integral of the velocity auto-correlation function,

D = d−1

∫ ∞

0

〈ṙ1(t) · ṙ1(0)〉 , (3.32)

which in turn is the standard expression for the self-diffusion coefficient117. Second, we note that

if, for a system initially in a stationary state, a weak spatially uniform external force Fext
1 is applied

to the tagged particle, the tagged particle will start moving. Initially, since the distribution of the
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other particles around the tagged particle is isotropic, its velocity will be equal to µ0F
ext
1 but after

some time the distribution of the other particles will become slightly anisotropic and they will be

exerting an additional friction force on the tagged particle. It can be shown that due to the change of

the probability distribution the long-time limit of the tagged particle velocity will be (µ0 + µ̄)Fext
1 .

Thus, µ = µ0 + µ̄, Eq. (3.29), is the tagged particle mobility coefficient.

To summarize, we showed in this section that for a slowly varying in space external potential

acting on the tagged particle the tagged particle density has the Boltzmann form with the tem-

perature determined by the ratio of the self-diffusion and mobility coefficients, i.e. the Einstein

effective temperature.

We note that although the derivation was performed for the AOUPs model, it did not use any

features of the Ornstein-Uhlenbeck dynamics of the self-propulsion and the same derivation could

be carried out for the athermal Active Brownian particles model.

3.4 Numerical Verification

3.4.1 Methods

To test Eq. (3.30) for the probability distribution and Eq. (3.31) for the effective tempera-

ture, we performed a series of computer simulations of interacting AOUPs in an external potential

Φ, evolving according to equations of motion (3.1-3.5), and a parallel series of computer simu-

lations of unperturbed particles, evolving according to equations of motion (3.1-3.2). We used

the finite range Weeks-Chandler-Andersen (WCA) purely repulsive pair potential V WCA(r) =

4ε
[

(

σ
r

)12
−
(

σ
r

)6
]

+ ε, for r < rc ≡ 21/6σ and zero otherwise (we note that ε, which appears

in this paragraph only, is different from small parameter ǫ introduced and used in Sec. 4.3). We

present the results in standard LJ units where ε is the unit of energy, σ is the unit of length, and

σ2/(µ0ε) is the unit of time. We simulated N = 104 particles at a number density of ρ = 0.6751.

The corresponding packing fraction can be calculated in two ways, using either σ or potential

cutoff rc as the characteristic length associated with the potential: πρσ3/6 = 0.3535 whereas
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πρr3c/6 = 0.4999. We note that at low active temperatures the present system resembles a hard

sphere system and the latter volume fraction is the proper measure of the excluded volume.

We simulated AOUP systems at two different active temperatures, Ta = 0.01 and Ta = 1.0 and

a range of persistence times τp. The values of Ta were chosen to roughly represent two different

dependencies of the self-diffusion coefficient on the persistence time, which we identified in an

earlier investigation137,144. At the lower temperature we expected D either to increase with τp or to

have a non-monotonic dependence on τp. In contrast, at the higher temperature we expected D to

decrease with τp.

For simulations without the external potential we used a time step dt = 0.001 for τp ≥ 0.02

and dt = 0.0002 for τp = 0.002. For the perturbed systems we used dt = 0.001 for Ta = 0.01 (at

which τp ≥ 0.02) and dt = 0.0001 for Ta = 1.0.

Evaluation and analysis of the tagged particle distribution

To induce a slowly varying, non-uniform density distribution of the tagged particle we used a

potential that is periodic over the simulation box length L, and varying along the x, y or z axis,

Φ(α) = Φ0 sin (2πα/L) α = x, y, z. (3.33)

Since for the N = 104 particle system L is much larger than the particle size, this potential is

indeed slowly varying. However, we will see that if the parameter characterizing the strength of

the potential, Φ0, is large enough, the tagged particle density can vary on a smaller length scale.

Without the external potential, the tagged particle distribution is uniform and equal to 1/V . We

are primarily interested in the non-linear response regime, i.e we chose Φ0 such that the tagged

particle distribution is strongly non-uniform. Specifically, we chose Φ0 = 0.1 for Ta = 0.01 and

Φ0 = 1.0 and 10.0 for Ta = 1.0.

To improve the statistics we applied the external potential to 1.0% of the particles for Ta = 0.01

and 0.2% of the particles for Ta = 1.0. We note that while selecting the percentage of particles to

which the external potential is applied one has to make sure that these particles are dilute enough
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in the whole system to be non-interacting. To check for this we calculated steady state structure

factors for the particles on which the external potential acts in the plane perpendicular to the direc-

tion of the external force, and we confirmed that with these percentages the particles were dilute

enough.

To further improve the statistics, we applied the external potential to different particles along

each Cartesian coordinate within the same system. The distributions presented are averaged over

all three Cartesian coordinates.

We evaluated tagged particle distributions due to external potential (3.33). We fitted Boltzmann

distributions (3.30) to the numerical results treating the effective temperature as a fit parameter145.

The resulting values are shown in the following as T fit.

Evaluation of the Einstein temperature

The Einstein effective temperature is defined as the ratio of the self-diffusion and tagged parti-

cle mobility coefficients146,147,

T E = D/µ. (3.34)

To calculate the self-diffusion coefficient we simulate unperturbed systems of AOUPs de-

scribed before and use the standard relation,

D = (2dN)−1 lim
t→∞

1

t

∑

i

〈

(ri(t)− ri(0))
2〉 (3.35)

where d is the dimensionality of the system.

To evaluate the tagged particle mobility coefficient for our out-of-equilibrium systems we use

the approach presented in Ref. [134], which involves the application of Malliavin weights. We

define the mobility coefficient in terms of a time-dependent response function χ(t)134,

µ = lim
t→∞

1

t
χ(t). (3.36)

In turn, the response function is calculated through averages involving weighting functions134,
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χ(t) = (Nd)−1
∑

α,i

[〈αi(t) (qiα(t)− qiα(0))〉+ τp 〈α̇i(t) (qiα(t)− qiα(0))〉] , (3.37)

where α = x, y, z and the weighting function qiα(t) obeys the equation of motion,

q̇iα = µ2
0/ (2Ta)

−1 ηiα, (3.38)

where ηiα is the α component of the Gaussian noise acting on particle i.

3.4.2 Results

For the external potential Φ varying along α axis, α = x, y, z, the tagged particle distribution

varies along the same direction and is uniform along the remaining two directions. In Fig. 3.1 we

show tagged particle distributions averaged over the three directions of the perturbation. More pre-

cisely, we show L2n̄s(α) where L = 24.56 is the box size and the over-bar denotes averaging over

three directions of the perturbation. We use the standard normalization condition
∫

V
drn̄s(r) = 1.

The distributions shown in Fig. 3.1 are significantly different from the tagged particle density in

the absence of the external potential, when L2V −1 = 1/L = 0.0407.

The important qualitative information that can be obtained from a quick look at Fig. 3.1 is that

the tagged particle densities depend strongly on the persistence time of the self-propulsion.

To further verify that we are in the non-linear response regime in Fig. 3.2, we show the tagged

particle mean squared displacements (MSDs) along the axis of the external potential (solid curves)

compared to the mean squared displacement along an axis perpendicular to that of the external

potential (dashed curves, for clarity shown for the longest persistence time only). We see that

the MSDs along the axis of the external potential are significantly different from those along a

perpendicular axis. In fact, for Ta = 0.01 and Φ0 = 0.1 the tagged particle is localized at the

external potential minimum on the time scale of the simulation.
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Figure 3.1: The tagged particle density distribution along the direction of the external potential, L2n̄s,
averaged over three different directions of the potential. α is the coordinate along the direction of the
external potential. The box extends from α = −12.28 to α = 12.28. The minimum of the external potential
is located at α = −6.14 and for particles localized around the potential minimum, (a) and (c), we focus
on the part of the box near the minimum. (a) Ta = 0.01, Φ0 = 0.1 and τp ∈ [0.02, 20]. (b) Ta = 1.0,
Φ0 = 1.0 and τp ∈ [0.002, 20]. (c) Ta = 1.0, Φ0 = 1.0 and τp ∈ [0.002, 20]. Solid lines indicate Boltzmann
distributions fitted to the data. The unperturbed distribution would be L2 × V −1 = L−1 = 0.0407.
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Figure 3.2: Tagged particle mean squared displacement along the direction of the external potential. (a)
Ta = 0.01, Φ0 = 0.1 and τp ∈ [0.02, 20]. The strong external potential leads to a localization of the tagged
particle on the time scale of the simulation. (b) Ta = 1.0, Φ0 = 1.0 and τp ∈ [0.02, 20]. Weaker external
potential slows down the tagged particle motion but does not localize it on the time scale of the simulation.
Dashed lines show the tagged particle mean squared displacement in the direction perpendicular to the
external potential for τp = 20. The motion in the perpendicular direction is unperturbed by the external
potential.

The tagged particle density distributions shown in Fig. 3.1 can be fitted very well to the Boltz-

mann distribution ∝ exp(−Φ(r)/T fit) using T fit as the fit parameter145. The resulting values T fit

are shown in Fig. 3.3. We observe that the fitted temperatures decrease with increasing persis-

tence time, which could have been anticipated from the persistence time dependence of the tagged

particle densities.
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Figure 3.3: Comparison of the temperatures obtained from fitting Boltzmann distributions to the tagged
particle density distributions and the Einstein relation effective temperatures. (a) Ta = 0.01, Φ0 = 0.1 and
τp ∈ [0.02, 20]. (b) Ta = 1.0, Φ0 = 1.0, and Φ0 = 10.0, and τp ∈ [0.002, 20]. All temperatures are shown
relative to the active temperature Ta.

To verify our theory presented in Sec. 4.3 we need to check whether temperatures obtained

from the fits, T fit, are the same as the Einstein temperatures obtained from the ratios of the self-

diffusion and tagged particle mobility coefficients. Even before calculating the latter temperatures

we can infer from Fig. 3.3 that the theory does not work for the two longest persistence times for

Ta = 1.0. The reason is that the Einstein temperature describes an unperturbed system and thus

does not depend on Φ0 whereas for the two longest persistence times for Ta = 1.0 the temperatures

obtained from the fits depend on Φ0. We will return to this issue at the end of this section.
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Figure 3.4: Mean squared displacement in unperturbed systems. (a) Ta = 0.01 and τp ∈ [0.02, 20]. (b)
Ta = 1.0 and τp ∈ [0.02, 20]. Insets: persistence time dependence of the self-diffusion coefficient. D is a
non-monotonic function of τp at Ta = 0.01 and decreases monotonically with increasing τp at Ta = 1.0.

In Figs. 4.5(a-b) we show the MSDs 〈δr2(t)〉, where δr2(t) = (r1(t)− r1(0))
2, for unperturbed

systems. The self-diffusion coefficients are calculated from these MSDs according to Eq. (3.35)

and are presented in the insets. As anticipated and in agreement with earlier investigations137,144,

we get two different behaviors of the self diffusion coefficient at the two active temperatures in-

vestigated. For the lower active temperature, Ta = 0.01, we observe a non-monotonic dependence

of the self-diffusion coefficient on the persistence time, and for the higher active temperature,

Ta = 1.0, we observe that the self-diffusion coefficient decreases monotonically with increasing

persistence time.
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In Figs. 3.5(a-b) we show the persistence time dependence of the time-dependent response

function χ(t)134 at the two active temperatures investigated. The insets show the mobility coeffi-

cients calculated from the long time limit of χ(t) according to Eq. (3.36). We note that at the lower

active temperature, Ta = 0.01, the mobility monotonically increases with increasing τp, in contrast

to the non-monotonic behavior of the self-diffusion coefficient. At the higher active temperature,

Ta = 1.0, the mobility monotonically decreases with increasing persistence time, and thus exhibits

the same τp dependence as the self-diffusion coefficient.
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Figure 3.5: Time dependent response functions that characterize the response to a weak external potential
in unperturbed systems calculated using Eq. 3.37. (a) Ta = 0.01 and τp ∈ [0.02, 20]. (b) Ta = 1.0
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Comparing insets in Figs. 4.5(a-b) and in Figs. 3.5(a-b) we can see that at the smallest persis-

tence times D ≈ Taµ. This behavior is expected since in the limit of the vanishing persistence

time at constant active temperature, the present model active systems becomes equivalent to Brow-

nian systems at temperature equal to the active temperature, T = Ta. For a Brownian system the

fluctuation-dissipation theorem holds and D = Tµ.

In Fig. 3.3 we compare the Einstein temperatures T E defined as the ratios D/µ to the tempera-

tures obtained from fits to the Boltzmann distribution, T fit. As mentioned in the previous paragraph,

in the limit of small persistence times our active system becomes equivalent to the Brownian sys-

tem and both T fit and T E become equal to the active temperature. With increasing persistence

time, while keeping the active temperature constant, both T fit and T E decrease. We note that the

decrease of the ratio of the Einstein temperature and the active temperature, T E/Ta, was observed

before in active matter systems134,137. We recall that the ratio of the Einstein effective tempera-

ture to the bath temperature increases with increasing shear rate for colloidal suspensions under

steady shear139. Qualitatively similar behavior is observed in quenched glassy systems undergoing

aging148,149. However, the opposite behavior, i.e. an effective temperature smaller than the bath

temperature, was observed in glassy systems upon a sudden increase of the bath temperature150.

For the lower active temperature, Ta = 0.01, we observe a very good agreement between T fit

and T E for all persistence times investigated. In contrast, for the higher active temperature, Ta =

1.0, we initially see a very good agreement between T fit and T E but then, for longer persistence

times we observe that temperatures obtained from the fits deviate from the temperatures from

the Einstein relation. Notably, it happens first for T fit obtained for the more confining potential,

Φ0 = 10.0, and then for T fit obtained for the less confining potential, Φ0 = 1.0.

We recall that our theoretical derivation in Sec. 4.3 relied upon the assumption that the spa-

tial variation of the potential and of the tagged particle density occurs on the longest relevant

length scale. On the other hand, we know that with increasing persistence time systems of self-

propelled particles may undergo a motility-induced phase separation and that upon approaching
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such a transition they can exhibit long-range density fluctuations. To investigate the existence of

such fluctuations we evaluated steady state structure factors of the unperturbed systems.

In Fig. 3.6 we show steady state structure factors S(k),

S(k) = 1 +
1

N

〈

N
∑

i=1

N
∑

j 6=i

exp [−ik · (ri − rj)]

〉

, (3.39)

for unperturbed systems at both active temperatures. We observe that for the lower active temper-

ature, Ta = 0.01, only a modest increase of S(k) is observed for small wavevectors at the longest

persistence times. This suggests that at this active temperature and in the range of the persistence

times investigated density correlations are relatively short-ranged.

In contrast, for the higher active temperature, Ta = 1.0, we observe a large small-wavevector

increase of S(k) for the two longest persistence times. This suggests that at this active temperature

at these persistence times there are long-ranged density fluctuations. To make this statement more

quantitative we simulated a larger system consisting of 8 × 104 particles at τp = 2.0. The small

wavevector behavior of the steady state structure factor for this system is shown in the inset to

Fig. 3.6. To quantify the range of the density correlations we fitted the numerical results to the

Ornstein-Zernike form f(k) = a/[1 + (bk)2]. We recall that the parameter b in the Ornstein-

Zernike fit is a measure of the density correlation length. We obtained b = 2.19 which is perhaps

moderate but is larger than the length on which the tagged particle density varies for Φ0 = 10.0

at Ta = 1.0, τp = 2.0. Thus, in hindsight, it is not surprising that our theory is not applicable for

these parameters.
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Figure 3.6: Stationary state structure factors of unperturbed systems. (a) Ta = 0.01 and τp ∈ [0.02, 20].
(b) Ta = 1.0 and τp ∈ [0.02, 20]. The upturn at small wavevectors indicates increasing correlation length.
Inset in (b): small wavevector behavior of the structure factor calculated using 8 × 104 particle system for
Ta = 1.0 and τp = 2. The solid line shows an Ornstein-Zernike function, f(k) = a/[1+ (bk)2], fitted to the
data.

3.5 Conclusions

We derived an expression for the tagged particle density distribution in a slowly varying in

space external potential in a system of interacting athermal active particles. The tagged particle

distribution has the Boltzmann functional form, but the role of the temperature is played by the

ratio of the self-diffusion and tagged particle mobility coefficients. We used computer simulations

to verify the theoretical result. The theory works well if the characteristic length of the tagged

particle density variation is the longest relevant length in the system. The theory is inapplicable

57



if the characteristic length of the density fluctuations is longer than the the characteristic length of

the tagged particle density variation.

The ratio of the self-diffusion and tagged particle mobility coefficients has long been known

as the Einstein temperature, one of several effective temperatures obtained for non-equilibrium

systems from the fluctuation-dissipation ratios. We emphasize that in our calculations D and µ de-

pend only on the properties of the system and, unlike parameters of the Einstein temperature, are

insensitive to the strength of the external potential. Our result shows that the Einstein temperature

determines the large spatial scale tagged particle density distribution beyond the linear response

regime. This resembles earlier results that established that the Einstein temperature plays a similar

role for a single Brownian particle in a tilted periodic potential138 and for a tagged particle in a

colloidal suspension under steady shear flow139. These three results obtained for very different

systems suggest that the Einstein temperature may be generally relevant for the large spatial scale

tagged particle density distribution in any stationary non-equilibrium system in which the large

scale motion is diffusive. We note that the significance of the Einstein temperature was also in-

vestigated in driven granular media, see, e.g., Refs. [151, 152] and references therein, but mostly

in the linear response regime. It would be interesting to check whether the Einstein temperature

determines the large scale tagged granular particle distribution beyond the linear response, along

the lines of Refs. [138, 139] and the present work.

Finally, we note that our result, which is exact in the limit of slow varying tagged particle

density, may serve as a test case for approximate theories for active matter in external potentials.
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Chapter 4

A systematic deviation from the exact theory of

Brownian motion: density distribution, current, and

self-diffusion of an active particle in a tilted periodic

potential.†

4.1 Overview

The giant enhancement of diffusive motion of a Brownian particle in a tilted periodic potential

is a phenomenon that was theoretically predicted by Reimann et al. [153]. Here, we consider the

similar problem of studying the active motion in a tilted periodic potential where the motion of

the particle is deterministically directed to the right. In our active system, we vary the persistence

time τp as a control parameter that quantifies the distance from a Brownian system. We pursue two

goals: (a) whether Reimann’s results are recovered in a system of active Ornstein-Uhlenbeck parti-

cles and (b) whether the formulation of a theory within the unified colored noise approximation can

predict the computer simulations. In accordance with the observed effects in a Brownian system,

our numerical simulations show a monotonic enhancement of the particle current with an increase

in the amplitude of the tilting force and a giant enhancement of diffusion coefficient at a threshold

tilting force. We further derive approximate expressions for the stationary probability distribution

and the current. A comparison with our numerical simulations shows that the theoretical expres-

sions quantitatively predict the particle distribution and current in the range of τp ∈ [0, 1.0]. Within

the same range of persistence times, however, the theory for the stationary probability distribution

breaks down at higher amplitudes of the tilting force.

†Alireza Shakerpoora, Grzegorz Szamela; a Department of Chemistry, Colorado State University, Fort Collins,
CO, USA.
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4.2 Introduction

Transport phenomena in spatially periodic systems have been widely investigated due to their

relevance to many phenomenological models as well as physical systems. They describe different

phenomena in condensed phase systems including transport on crystalline surfaces154,155, fluctua-

tions of currents in Josephson junctions156, superionic conductance157, transport through confined

spatially periodic geometries158,159, as well as their role in the theories of chemical reaction rates

and jump events160.

One major application of transport in spatially periodic systems is their extension to the study

of ratchet systems, i.e. periodic systems which lack the spatial inversion symmetry. Such systems

have attracted much interest since they can induce stationary currents on the microscale where

stochastic motion of particles is transformed into a directed transport. A stationary current through

the stochastic dynamics of a system in thermal equilibrium is prohibited by the second law of ther-

modynamics. One can achieve a directed transport, however, when two conditions are met161–163.

First, the system has to be driven out of the thermal equilibrium state by additional deterministic or

stochastic perturbations. The existence of a periodic potential as an external perturbation suffices to

force the system out of the equilibrium state. Second, the spatial inversion symmetry of the system

has to be broken. Out of many available options, one common way to achieve a broken symmetry

is by imposing a tilting force on the periodic potential which leads to the so-called ratchet poten-

tial. In this setup, the energy required for a directed transport is provided by thermal noise, external

time-dependent modulation, or a non-equilibrium energy input163. The noise-induced transport in a

periodic potential landscape that lacks inversion symmetry gives rise to a Brownian ratchet system.

While there is a rich literature focusing on the Brownian ratchets161,164–169, the ratchet effects

of a class of intrinsically non-equilibrium systems known as active particles have been the subject

of a limited investigation170,171. The constituents of an active system are able to turn the ambient or

stored energy into autonomous, self-propelled motion. This energy dissipation at an individual unit

level drives the system out of the equilibrium state48,65,119. Thus, as intrinsically non-equilibrium
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systems with spontaneous directed motion, it will be interesting to investigate active systems from

the perspective of a ratchet system.

This work is motivated by theoretical153,172, numerical166,173, and more recent experimental

results174–176 which have reported a monotonic enhancement of the current with an increase in the

amplitude of the tilting force and a giant enhancement of the diffusion coefficient at a threshold

tilting force161.

Here we examine an active Ornstein-Uhlenbeck particle (AOUP) under the influence of a peri-

odic potential tilted by a static force. This class of particles have been used to model the collective

motion of cells as well as the motion of passive tracers in an active bath68. For such a system of

AOUP and within the unified colored noise approximation, we derive expressions for the probabil-

ity density distribution and the particle current/velocity. We further examine the analytical results

by running numerical simulations. For the density distribution and regardless of the amplitude of

the persistence time, our analytical and numerical results predict a more diffused stationary dis-

tribution with an increase in the amplitude of the tilting force. Counterintuitively, we observe a

smaller particle current with an increase in the persistence time of the AOUP at all tilting forces

studied here. Finally, our numerical results show an enhanced diffusion coefficient whose amplifi-

cation becomes stronger with an increase in the persistence time.

This chapter is organized as follows. In Sec. 4.3 we present our theoretical results for the

stationary density distribution and particle current. In Sec. 4.4 we discuss our numerical simula-

tions and compare the theoretical predictions with numerical results. Our overview and concluding

remarks are presented in Sec. 4.5. Lastly, we detail the derivations of the stationary density distri-

bution and the current in Sec. 4.6.1 and Sec. 4.6.2, respectively.

4.3 An Active Particle Under the Influence of a Non-Conservative

Force

The following stochastic equations describe the motion of an overdamped, athermal active

Ornstein-Uhlenbeck particle in an external potential, V (x).
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ẋ =−
1

γ
∂xV (x) + η,

η̇ =−
η

τp
+

(

D
1/2
0

τp

)

Γ(t). (4.1)

Here, x is the position of the 1-d particle, γ is the friction coefficient, η is a Gaussian colored

noise with the persistence time τp, D0 is the free diffusion coefficient (i.e. D0 = kBTa/γ with

kB being the Boltzmann coefficient and Ta being the active temperature which characterizes the

strength of the self-propulsions), and Γ is a zero-mean, Gaussian white noise with correlation

〈Γ(t)Γ(s)〉 = 2δ(t− s). The tilted periodic potential takes the form V (x) = Φ(x)− Fx, where F

is a non-conservative force that modifies the periodic potential Φ(x).

We recall that the problem of a Brownian particle moving in a tilted periodic potential has been

shown to have exact solutions for the distribution function, current, and diffusion coefficient153,177.

In the present work, we will use the unified colored-noise approximation (UCNA) to derive exact

expressions for the stationary state density distribution and current of active systems with finite

persistence time. The UCNA is an extension of the adiabatic elimination procedure (AEP) where

the latter provides a systematic and rigorous approach to construct Fokker-Planck equations for

the slow space variables of the system via the elimination of fast variables178. The UCNA was

originally proposed to describe the nonlinear dynamical systems with a moderate to strong intensity

of the stochastic force η. It extends the AEP to systems with finite relaxation times of fast varying

variables (i.e. τp 6= 0)91.

The application of the UCNA to our problem leads to the following equation for the stationary

state probability distribution (see Sec. 4.6.1),

Ps(x) = Ae−β
∫ x

0 dx′N−1(∂x′V (x′))
∣

∣N−1
∣

∣

(

∫ x

0

dx′eβ
∫ x′

0 dx′′N−1(∂x′′V (x′′))
∣

∣N−1
∣

∣

+

∫ L

0
dxeβ

∫ x

0 dx′N−1(∂x′V (x′)) |N−1|

eβ
∫ L

0 dxN−1(∂xV (x)) − 1

)

. (4.2)
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In this equation, A is the normalization constant, β = (kBTa)
−1, N(x) involves the second deriva-

tive of the potential with the form N(x) = [1 + τpγ
−1 (∂2

xV (x))]
−1

, L indicates the size of the

system, and | · · · | denotes an absolute value. We note that the form of the function in Eq. 4.2

results from a non-vanishing current that originates from the non-conservative force tilting the

periodic potential. In this form and in the limit of τp → 0, the stationary state density function

approaches the distribution of a Brownian particle moving in the same external potential.

Furthermore, we use the stationary state density distribution to derive the following expression

for the particle current within the UCNA (see Sec. 4.6.2),

v =
D0L (1− exp(−βFL))

∫ L

0
dx
∫ L

0
dy (N(x)N (x+ y))−1 exp [−G(x) +G (x+ y)]

. (4.3)

where G(x) = β
∫ x

0
dx′N−1(x′) (∂x′V (x′)). As for the stationary state probability distribution, we

test the validity of Eq. 4.3 by running numerical simulations at varied state points of temperature,

persistence time, and the strength of the tilting force.

4.4 Numerical Simulations

4.4.1 Methods

We simulate an AOUP system of athermal particles whose motions evolve according to Eq. 4.1.

For such a system, the thermal Brownian fluctuations are negligible compared to the random Gaus-

sian force η. While our goal is to study a single AOUP, to improve the statistics it is advantageous

to run many simulations of one particle in parallel. To this end, we prepare a system of N = 100

non-interacting particles with a uniform random initial distribution. The particles have a unit

mass and they are bound to a 1-d box of length L. The external potential used in simulations,

V (x) = − sin(2πx/L) − Fx, is periodic over the box length and is tilted by the static force F .

To highlight the departure from a Brownian system, we additionally simulate independent sets of

passive Brownian particles (PBPs) where they can be modeled by,
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ẋ = −
1

γ
∂xV (x) +D

1/2
0 Γ(t). (4.4)

In our simulations, we adopt a system of units such that the Boltzmann constant kB and the friction

coefficient γ are unity. The time step in all simulations is dt = 0.01.

Two quantities of interest in our simulations, the mean velocity and self-diffusion coefficient,

are defined as follows

v = lim
t→∞

〈x(t)〉

t
, (4.5)

D = lim
t→∞

〈x(t)− 〈x(t)〉〉2

2t
, (4.6)

where 〈· · · 〉 denote an ensemble average. For an active system, we show that when the periodic

potential is effectively tilted, these quantities are enhanced compared to a particle in an unbiased

periodic potential.

4.4.2 Results and discussion

For a particle trapped in a potential energy well, a sufficiently strong tilting of the washboard

potential can reduce the potential energy barrier and set the particle at a running state until it is

trapped into the next local minimum. This reduced potential barrier allows the particle to run

freely downhill the potential landscape175. As shown in Fig. 4.1, the Brownian and active systems

have a more diffused density distribution with an increase in the amplitude of the tilting force

due to the particles being more likely to overcome the potential barrier. Besides, a comparison of

distributions calculated at different F shows that with increasing the amplitude of the tilting force,

the density distributions of active and Brownian systems become more similar.
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Figure 4.1: Stationary state distribution of active particles calculated with different static external force F .
As a reference, the dotted lines show the distribution of a PBP moving under the influence of the same static
force. The results here are shown for systems at Ta = 0.1 and active particles with τp = 2.0.

Fig. 4.2 shows the excellent agreement of the major result of this chapter (expressed in Eq. 4.2)

with the numerical simulations. When F = 0, the approximate probability density quantitatively

predicts the density distribution of the active particles across systems with different active temper-

atures and persistence times. We note that a similar agreement has been reported for the density

functions derived within the UCNA for single and interacting active particles in a repulsive force

field120. Similarly, the same agreement is observed for the smaller values of the tilting force as

illustrated in Fig. 4.3 for F = 0.5. The theory, however, breaks down for active systems with

stronger tilting force of F = 1.5 where the deviation from the simulation is only observed at the

longer persistence time of τp = 1.0. By comparing Fig. 4.2 and Fig. 4.3 we also note that the

tilting force makes the Gaussian-like spatial distribution of the particles more asymmetric. This

asymmetry in distribution is however overestimated by the theoretical prediction whose deviation

from the simulation becomes more pronounced for systems with a stronger tilting force and longer

persistence time.

Finally, we emphasize that the calculations presented in this section are limited to τp ≤ 1.0

while for longer persistence times the theory gives unphysical results.
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Figure 4.2: Stationary state distributions of active particles in a confining periodic potential shown in the ab-
sence of a static external force. As a reference, the Boltzmann distributions illustrate systems in equilibrium
(τp = 0).
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Figure 4.3: Stationary state distributions of active particles in a periodic potential tilted by a static external
force F . The solid and dotted lines (with a similar color coding to the solid lines) belong to systems with
F = 0.5 and F = 1.5, respectively.

To further investigate the dependence of dynamical variables of the active system on a tilted

periodic potential, we numerically calculated the mean velocities and self-diffusion coefficients in

a range of the tilting force F . Fig. 4.4 illustrates the dependence of mean velocities calculated
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at Ta = 0.1 and 0.01 on τp and F . While at both active temperatures the tilting force leads to

a monotonic increase of mean velocities, it is difficult to distinguish between the velocities of

active and Brownian particles at the lower active temperature. At the higher active temperature

of Ta = 0.1, however, the accelerating effect of the tilting force is stronger for Brownian and

active particles with smaller τp. This is a rather unexpected result since the particles with a longer

persistence time are expected to maintain a more consistent motion on the potential landscape

regardless of the depth of the potential well implying a higher likelihood of making a jump over a

potential barrier. Nonetheless, we observe a higher velocity for particles with a smaller persistence

time. We also note that the split in velocities is mostly evident around F = 1.0 and it disappears at

the extremes of the higher and lower F . It is noteworthy that for the range of tilting forces studied,

the velocities at both active temperatures maintain approximately the same magnitude for most F .

The insets compare our numerical results with the theoretical predictions for the velocity. The

results, which are obtained at τp = 1.0, show that Eq. 4.3 can quantitatively predict the velocity

within the interval of small to moderate persistence times. Nonetheless, as for the stationary proba-

bility density obtained within the UCNA, the theory for the velocity breaks down beyond τp = 1.0.

This marks the limitation of the UCNA applied to our system of active particles with longer noise

correlation times.

On a broader note, we summarize the application of the UCNA to the present problem as being

limited to τp ≤ 1.0. Within this range of persistence time, the theory gives quantitative results for

the stationary density distribution when F = 0. For small F , the theory predicts the numerical

calculations quantitatively while for large F , it fails to provide a qualitative agreement with sim-

ulations. Likewise, the theory for the mean velocity remains in quantitative agreement with the

numerical simulations within τp ∈ [0, 1.0] yet, not shown here, a comparison between the mean

velocities calculated at different persistence times shows that the theory fails to correctly predict

the trend observed in Fig. 4.4 where the particles with a longer persistence time demonstrate a

stronger enhancement of the mean velocity.
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Figure 4.4: Enhanced mean velocities of Brownian and active particles under the influence of a static
external force. Shown in the top panel, the velocities calculated at Ta = 0.1, are more strongly enhanced
for a PBP while for an active particle the enhancement becomes weaker with an increase in τp. The bottom
panel, however, shows that the split in velocities at the lower active temperature of Ta = 0.01 disappears
while the enhancement in velocities retains the same magnitude as that of Ta = 0.1 for most F . The lines
are guides to the eye. Insets: comparison between the theoretical prediction and numerical results calculated
for τp = 1.0 at the corresponding active temperature.

In Fig. 4.5 we show the dependence of self-diffusion coefficients calculated at two active

temperatures on τp and F where the self-diffusion coefficient is normalized to the free diffusion

coefficient D0 (proportional to the temperature). Unlike the monotonic dependence of the mean

velocities on the tilting force, we observe a giant enhancement of the diffusion coefficient at a

threshold tilting force. The restricted interval of the enhanced diffusion coefficients, which is
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approximately centered around a critical tilting force Fc, becomes considerably narrower at the

lower active temperature. At the higher active temperature, the enhancement in this interval of F

becomes stronger for active particles with higher τp while their distribution of D over F becomes

narrower. Conversely, outside this interval, the enhancement at both temperatures is more effective

for the PBP and active particles with smaller τp. We also find that the force Fc is relatively insen-

sitive to the temperature while the enhancement of the diffusion coefficient is strongly dependent

on the temperature.
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Figure 4.5: Giant amplification of the self-diffusion coefficient observed in a finite range of the static force
evaluated at Ta = 0.1 (top panel) and Ta = 0.01 (bottom panel). The lines are guides for the eye.
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4.5 Conclusions

As intrinsically non-equilibrium systems with autonomous directed motion, active systems are

likely to make the design of a ratchet system richer by adding to the degrees of freedom of such

systems. In this work we have explored the motion of an overdamped AOUP in a so-called ratchet

potential. In the absence of a tilting force, our theoretical density distribution function successfully

predicts the numerical results for systems with τp ≤ 1.0. When the tilting force is turned on, it

has an added effect of distorting the particle’s spatial distribution whose impact is overestimated

by our theoretical expression at higher amplitudes of the tilting force.

Our calculations for the particle current show that active particles with a longer persistence time

have a smaller particle current at all tilting forces investigated. This suggests that active particles

with shorter persistence times are more likely to make jumps spanning local minima. However,

this gap between the currents of particles with different persistence times disappears at lower active

temperatures. Furthermore, we observe a similar to Brownian particles’ giant enhancement of self-

diffusion coefficient, where a stronger enhancement is only observed at the higher temperature for

active particles with a longer persistence time. The giant enhancement of self-diffusion lends itself

to applications such as particle sorting resolution175 yet it degrades the coherent motion of the

particles.

In conclusion, our theoretical results derived for an overdamped AOUP within the UCNA prove

quantitatively accurate for small to moderate colored noise correlation times (τp ≤ 1.0). Here, by

comparing our results to that of a Brownian system, we observe that in the limit of an overdamped

system and strong tilting force, the source of the driving fluctuations becomes rather irrelevant in

determining the dynamics of the system.
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4.6 Theoretical Derivation

4.6.1 Approximate density function of an AOUP in a tilted periodic poten-

tial

To derive an approximate density function for an AOUP in a tilted external potential, we follow

the standard adiabatic elimination procedure to obtain the Langevin equation by eliminating the

fast varying Gaussian noise η from the equations of motion described in Eq. 4.191,120,178. The

elimination of η yields the following equation,

ẍ =−
1

γ

(

∂2
xV (x)

)

ẋ−
1

τp

[

ẋ+
1

γ
(∂xΦ(x)− F )

]

+
D

1/2
0

τp
Γ(t),

=−

(

1

τp
+

1

γ

(

∂2
xV (x)

)

)

ẋ−
1

τpγ
(∂xΦ(x)− F ) +

D
1/2
0

τp
Γ(t). (4.7)

Next, to obtain the Langevin dynamics we adopt the conventional adiabatic approximation in an

overdamped system by setting ẍ = 0,

ẋ = −
1

γ
N(x) ((∂xΦ)− F ) +D

1/2
0 N(x)Γ(t), (4.8)

where we have introduced N(x) = [1 + τpγ
−1 (∂2

xV (x))]
−1

which has a non-singular limit as

τp → 0. Then, the Langevin equation can be transformed to the Fokker-Planck dynamics for the

density function to give179,

∂tP (x, t) = −∂x

[

−
1

γ
N(x) ((∂xΦ)− F )

]

P (x, t) +D0∂xN(x)∂xN(x)P (x, t). (4.9)

The external potential, which is tilted by the non-conservative force F , yields a finite current. Thus,

the stationary form of the equation with the probability current A0 reads,

1

γ
N(x) ((∂xΦ)− F )Ps +D0N(x)∂xN(x)Ps = A0. (4.10)
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We multiply this equation by N−1(x) from the left-hand side and then further expand it to obtain,

[

1

D0γ
((∂xΦ)− F ) + (∂xN(x))

]

Ps +N(x) (∂xPs) =
A0

D0

N−1(x). (4.11)

Another left-hand side multiplication by N−1(x) yields the following exactly solvable differential

equation,

∂xPs +

[

1

D0γ
N−1(x) ((∂xΦ)− F ) + ∂x lnN(x)

]

Ps =
A0

D0

N−2(x). (4.12)

The solution to this equation then reads,

Ps(x) = e−β
∫ x

0 dx′N−1(∂x′V (x′))
∣

∣N−1
∣

∣

[

A0

D0

∫ x

0

dx′eβ
∫ x′

0 dx′′N−1(∂x′′V (x′′))
∣

∣N−1
∣

∣+ C

]

. (4.13)

Finally, we determine the constant C by applying the periodic boundary condition Ps(0) = Ps(L),

which gives the general solution described in Eq. 4.2 with the normalization constant A = A0/D0.

4.6.2 Particle current within UCNA

Let us assume that the particle described in Eq. 4.9 evolves according to the operator Ω. We

assume that the particle starts at x = x0 and then evolves. Thus, its distribution follows,

P (x | x0; t) = exp (Ωt) δ (x− x0) . (4.14)

We are interested in the displacement of the particle from its position at x0, i.e. in the distribution

Pdispl (y | x0; t) = P (y + x0 | x0; t) =

∫ ∞

−∞

dxδ (y − x+ x0)P (x | x0; t) . (4.15)

It is convenient to assume that the initial position is distributed according to the stationary distribu-

tion, Ps. In other words, we want to average expression 4.15 over the stationary state distribution

of x0,
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Pdispl (y; t) =

∫ L

0

dx0P (y + x0 | x0; t)Ps (x0) , (4.16)

=

∫ ∞

−∞

dx

∫ L

0

dx0δ (y − x+ x0) exp(Ωt)δ (x− x0)Ps (x0) . (4.17)

We expect that in the long-time limit, on large spatial scale Pdispl (y; t) will satisfy a drift -diffusion

equation. I.e. we expect,

∂tPdispl (y; t) ≃ −∂y (v −D∂y)Pdispl (y; t). (4.18)

The standard problem is what are the velocity v and diffusion coefficient D. In this section we

focus on finding an expression for the former by considering the equation of motion for the Fourier

transform of Pdispl (y; t) in the limit of large times and small wavevectors k. Among the various

approaches to this problem, we choose the projection operator method to derive the exact but

formal expression for v. We show that this solution can be reduced to the corresponding quadrature.

Let us introduce Fourier transform,

F (k; t) =

∫ ∞

−∞

dye−ikyPdispl (y; t),

=

∫ ∞

−∞

dye−iky

∫ ∞

−∞

dx

∫ L

0

dx0δ (y − x+ x0) exp(Ωt)δ (x− x0)Ps (x0) ,

=

∫ ∞

−∞

dx

∫ L

0

dx0e
−ik(x−x0) exp(Ωt)δ (x− x0)Ps (x0) =

∫ L

0

dxe−ikx exp(Ωt)eikxPs(x),

=
〈

e−ikx exp(Ωt)eikx
〉

,

(4.19)

where in the last line 〈. . .〉 denote averaging with respect to the stationary state probability dis-

tribution over the period of the external potential, i.e. over [0, L]. Here, the operator Ω acts on

everything to its right, including the stationary state distribution.

We note that in the limit of small wavevectors and large times, i.e. within the limit that approx-

imation 4.18 holds, we expect to get

∂tF (k; t) ≃ −ik (v − iDk)F (k; t). (4.20)
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Now, Laplace transform of F (k; t) is

F (k; z) =
〈

e−ikx (z − Ω)−1 eikx
〉

, (4.21)

and Laplace transform of the time derivative Ḟ (k; t) gives

zF (k; z)− F (k; t = 0) =
〈

e−ikxΩ (z − Ω)−1 eikx
〉

. (4.22)

For the Laplace transform and in the limit of small wavevectors and small z we expect to get

zF (k; z)− F (k; t = 0) ≃ −ik (v − iDk)F (k; z). (4.23)

We introduce the projection operator and orthogonal projection that obey,

PB = eikx
〉 〈

e−ikxB ,

Q = I − P ,
(4.24)

where B is an arbitrary state, Q denotes the orthogonal complement of the projection operator P ,

and I is the identity. Now, we take the following standard steps

〈

e−ikxΩ(z − Ω)−1eikx
〉

=
〈

e−ikxΩ(P +Q)(z − Ω)−1eikx
〉

,

=
〈

e−ikxΩeikx
〉 〈

e−ikx(z − Ω)−1eikx
〉

+
〈

e−ikxΩQ(z −QΩQ)−1QΩeikx
〉 〈

e−ikx(z − Ω)−1eikx
〉

.

(4.25)

Let us consider small wavevector limit of
〈

e−ikxΩeikx
〉

.

〈

e−ikxΩeikx
〉

=−
〈

e−ikxD0∂x
[

N(x) (−βV ′(x) + βF +N ′(x))− ∂xN
2(x)

]

eikx
〉

,

=− iD0k
〈

e−ikx
[

N(x) (−βV ′(x) + βF +N ′(x))− ∂xN
2(x)

]

eikx
〉

,

=− iD0k 〈N(x) (−βV ′(x) + βF +N ′(x))〉 −D0k
2
〈

N2(x)
〉

,

(4.26)
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where we used the fact that the stationary state probability distribution is periodic over the period

of the external potential. By comparing Eq. 4.26 with the anticipated Eq. 4.23, we identify the

velocity as

v = D0 〈N(x) (−βV ′(x) + βF +N ′(x))〉 . (4.27)

Next, we reduce this formal expression to the corresponding quadrature. Integration by parts

and the periodicity of the stationary state probability distribution and N(x) yield

v = D0 〈N(x) (−βΦ′(x) + βF )〉 −
1

2
D0

∫ L

0

dxN2(x) (∂xPs) . (4.28)

We note that

∂xPs = −βN−1(x)V
′

Ps +N(x)
(

∂xN
−1(x)

)

Ps + AN−2(x). (4.29)

Substitution of the latter expression in Eq. 4.28 yields

v = D0

(
∫ L

0

dxN2(x) (∂xPs)−

∫ L

0

dxN3(x)
(

∂xN
−1(x)

)

Ps − A

∫ L

0

dx

)

−
1

2
D0

∫ L

0

dxN2(x) (∂xPs) ,

=
1

2
D0

∫ L

0

dxN2(x) (∂xPs)−D0

∫ L

0

dxN3(x)
(

∂xN
−1(x)

)

Ps − AD0L,

= −AD0L,

(4.30)

where in the third line, the first two terms on the right hand side cancel out due to integration by

parts. Next, by using the normalization condition
∫ L

0
dxPs = 1 we determine A and obtain

v = −
D0L

∫ L

0
dxe−β

∫ x

0 dx′N−1(∂x′V (x′))|N−1|

(

∫ x

0
dx′eβ

∫ x′

0 dx′′N−1(∂x′′V (x′′))|N−1|

+
∫ L

0 dxe
β
∫ x
0 dx′N−1(∂x′V (x′))|N−1|

eβ
∫L
0 dxN−1(∂xV (x))−1

)

, (4.31)
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=
D0L (1− exp(−βFL))

∫ L

0
dxe−β

∫ x

0 dx′N−1(∂x′V (x′))|N−1|
(

(exp(−βFL)− 1)
∫ x

0
dx′eβ

∫ x′

0 dx′′N−1(∂x′′V (x′′))|N−1|

+
∫ L

0
dxeβ

∫ x

0 dx′N−1(∂x′V (x′))|N−1|
)

,

(4.32)

where the last line follows from the fact that β
∫ L

0
dxN−1 (∂xV (x)) = −βFL. To further simplify

Eq. 4.32, we introduce the shorthand notation

G(x) = β

∫ x

0

dx′N−1(x′) (∂x′V (x′)) , (4.33)

and we note that exp(−βFL)eG(x) = eG(x+L). Thus, the denominator of Eq. 4.32 is simplified to

read

∫ L

0

dxN−1(x)e−G(x)

∫ L

x

dx′N−1 (x′) eG(x′)

+ exp(−βFL)

∫ L

0

dxN−1(x)e−G(x)

∫ x

0

dx′N−1 (x′) eG(x′),

=

∫ L

0

dxN−1(x)e−G(x)

∫ L

x

dx′N−1 (x′) eG(x′) +

∫ L

0

dxN−1(x)e−G(x)

∫ x

0

dx′N−1 (x′) eG(x′+L).

(4.34)

Then, due to N(x) being periodic, i.e. N(x) = N(x+ L), one obtains

∫ L

0

dxN−1(x)e−G(x)

∫ L

x

dx′N−1 (x′) eG(x′) +

∫ L

0

dxN−1(x)e−G(x)

∫ x

0

dx′N−1 (x′) eG(x′+L),

=

∫ L

0

dxN−1(x)e−G(x)

∫ L

x

dx′N−1 (x′) eG(x′)

+

∫ L

0

dxN−1(x)e−G(x)

∫ x+L

L

dx′N−1 (x′ − L) eG(x′),

=

∫ L

0

dxN−1(x)e−G(x)

∫ L

x

dx′N−1 (x′) eG(x′) +

∫ L

0

dxN−1(x)e−G(x)

∫ x+L

L

dx′N−1 (x′) eG(x′),

=

∫ L

0

dxN−1(x)e−G(x)

∫ L+x

x

dx′N−1 (x′) eG(x′),

=

∫ L

0

dxN−1(x)e−G(x)

∫ L

0

dx′N−1 (x′ + x) eG(x′+x).

(4.35)

76



Lastly, this leads to our final expression for v

v =
D0L (1− exp(−βFL))

∫ L

0
dx
∫ L

0
dy (N(x)N (x+ y))−1 exp [−G(x) +G (x+ y)]

. (4.36)
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Chapter 5

Concluding remarks and future work

In the studies presented in Chapters 2-4, we addressed three problems in amorphous systems.

Chapter 2 focused on the interplay between the stability of a glass and the fluctuations in its elastic

matrix in the low-frequency regime180, Chapter 3 was mainly concerned with the formulation of the

probability density of a tagged active particle beyond the linear response regime181, and Chapter

4 discussed the problem of active motion in the context of a ratchet potential with a focus on

the density distribution, particle current, and self-diffusion coefficient of a non-interacting active

particle.

In the second chapter we numerically investigated spatial fluctuations of elastic moduli of com-

puter glasses via coarse-graining of the elastic field. Numerical simulations are an ideal tool for

studying the low-frequency structural and vibrational properties of amorphous solids because on

one hand approaching the near-zero temperatures in an experimental setup is quite challenging. On

the other hand, performing any experiment at a finite temperature would have not been accurate

enough due to the role of anharmonic effects which add to the uncertainty of results interpretation.

Furthermore, the numerical simulations are essential at the level of system preparation where using

effective numerical techniques such as swap Monte Carlo algorithm allows for the preparation of

ultra-stable glasses in a reasonable amount of time.

In this work we calculated the local shear and bulk moduli of glasses prepared by quenching

from a supercooled liquid reference state. We determined that the Gaussian spatial distributions of

elastic moduli become more uniform with increasing the stability. Furthermore, we were interested

to examine the finite-range spatial correlations in the elastic matrix of the solid. We calculated the

correlations for our most homogeneous/stable glass and found that the correlations decayed to

zero at the size of the local box, indicating that only trivial correlations existed. To investigate

the existence of any short-range correlations, we iterated a similar calculation for non-overlapping

neighboring domains where again we did not detect any finite length scale associated with elastic
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correlations. Notably, we found our calculations at odds with a recent experimental work whose

results were interpreted within the context of the FET104. Contrary to our results, they found a

significant correlation in the elastic matrix of their most stable amorphous solid. Our result was also

at variance with a study by Gelin et al. which showed a long-range, power-law correlation in elastic

matrix responsible for a logarithmic enhancement in Rayleigh scattering of amorphous solids100.

Our calculations, however, were in agreement with other studies including the calculations by

Mizuno and Ikeda where they detected long-range correlation in stress field but not any long-

range correlation in elastic modulus field105. Here, we note that a recent study on disorder-induced

wave attenuation in amorphous solids emphasizes that coarse-grained local elastic moduli fields

fail to characterize long-range correlations in the elastic matrix182. Instead, to feature the elastic

correlations, the study replaces spatial averages of the disorder parameter defined in Rayleigh

scaling with ensemble averages. This argument, however, is contrary to previous studies which

have used coarse-grained stress fields to demonstrate power-law correlation in deeply supercooled

liquids183.

Lastly, in this work we were interested to determine whether there was a finite size effect

associated with our numerical calculations. To this end, we compared our results of systems with

3k, 48k, 96k, and 192k particles and determined that there was no discernible finite size effects.

Besides, we observed that our smallest local domain box with approximately 36 particles still

follows Gaussian elastic moduli statistics.

In short, it would be difficult to overestimate the entanglement of the structural, vibrational,

and thermal features of amorphous materials to their elastic properties. Many studies on vibrational

peculiarities of amorphous structures such as the excess of the low-frequency modes (i.e. the boson

peak) and anomalous Rayleigh scaling in amorphous materials have pointed to the local and global

elastic properties of amorphous solids98,102,184,185. However, it is the microscopic foundations of

elasticity and its formulation that remain the subject of a lively debate17,182,186.

In the research presented in Chapter 3, we were interested to determine an analytical expression

for the distribution function of a tracer particle in a system of interacting active Ornstein-Uhlenbeck
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particles. We recall that because active motion is not thermal, the stationary probability density

cannot be written as Ps ∝ exp[−H/kBT ], with H being the Hamiltonian of the system, and

thus a distinct treatment of such a non-equilibrium problem is required. Here, we considered

a system of interacting AOUPs where a slowly varying in space external potential exclusively

acted on a selected (i.e. tagged) particle. Given the non-uniform density of the tagged particle

in an external potential, we considered the use of Chapman-Enskog’s perturbative expansion as

an appropriate choice to describe the diffusive motion of the tagged particle. This led us to the

successful derivation of an exact but formal expression for the tagged particle’s stationary density

distribution. Notably, our analytical results showed that the distribution function of tagged particle

followed the same form as that of the equilibrium system with an effective temperature replacing

the heat bath temperature in the expression of the distribution function.

We note that in equilibrium statistical physics, temperature appears as a proportionality param-

eter that correlates the inherent fluctuations of an observable to the mean response of the system

(to an external perturbation). More precisely, for small and transient perturbing field and within

the limits of a linear response, temperature is defined by the fluctuation-dissipation relations126,127.

The notion of an effective temperature is, however, presented in the context of non-equilibrium

systems with slow dynamics as a quantity that captures deviations from the equilibrium fluctuation-

dissipation theorem124,187. The identification of an effective temperature obtained through the vio-

lation of the time-independent Einstein relation, T Eµ = D, allowed us to further test the validity

of tagged particle’s density distribution beyond the linear response regime. To this end, we sim-

ulated different sets of strongly perturbed and unperturbed systems of AOUPs. A comparison of

the effective temperature, obtained from the spatial distribution of the tagged particles, and the

Einstein temperature showed that the effective temperature matched the Einstein temperature in a

wide range of systems from near-equilibrium to far-from-equilibrium states.

Furthermore, we showed that our theory holds as long as the longest length scale in the system

is associated with the variation of the external potential. I.e., when the motility-induced phase

separation causes long-wavelength density fluctuations in the system, the theory breaks down as
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our theoretical derivation relied on smooth variation of the external potential and tagged particle’s

density on the length scale of the inter-particle distance. Through the calculation of the steady state

structure factors, we demonstrated the violation of the latter in case of an inconsistency between

the Einstein temperature and the effective temperature.

To sum up, our analytical results can be regarded as a successful application of the concept of

effective temperature in the context of non-equilibrium systems in general and active systems in

particular. Accordingly, we would expect that our derivation could effectively be extended to other

active systems including the active Brownian system. While it remains as a future work, it would

also be interesting to additionally investigate the variation of the internal pressure of the system

with the effective temperature to determine an equation-of-state for the current active system.

The study in Chapter 4 addressed the problem of active motion in a tilted washboard poten-

tial. We derived analytical expressions for the stationary density distribution and current of an

overdamped AOUP within the unified colored noise approximation (UCNA) and determined that

such expressions are quantitatively accurate for small to moderate correlation times of the colored

noise. In particular, we found that within the range of τp ∈ [0, 1.0], our theoretical expression for

the density distribution accurately predicted the numerical results while the expression overesti-

mated the asymmetric effect of the tilting force on the density distribution at higher values of F .

By considering the current of active particles within a range of tilting force F , we also reported

the non-intuitive behavior of particles with longer persistence time that showed a smaller rate of

potential barrier crossing. Besides, our numerical calculations at the higher temperature showed

a stronger enhancement of self-diffusion coefficient for active particles with a longer persistence

time. We found that the critical tilting force at which the giant enhancement of diffusion coefficient

happened, remained relatively insensitive to temperature.

The discussion presented in Chapter 4, however, leaves space for some unanswered questions

and interpretations: what would be the effect of the shape of the piecewise potential on the ac-

celeration of the self-diffusion coefficient. A study by Heinsalu et al. which centered around the

dependence of diffusive and coherent motion of overdamped Brownian particles on the shape of
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the external potential, found that diffusion coefficient and coherence level to be extremely sensitive

to the asymmetry and the shape of the periodic potential188. Their results supports the idea that

large values of the asymmetry parameter favors the amplification of diffusion. Besides, more re-

cent theoretical and numerical calculations have shown that tiny, time-independent deviations from

a strictly spatially periodic potential can effectively amplify the diffusion peak even compared to

previously reported amplifications of the diffusive motion169,189. Together, these findings empha-

size the impact of the shape and symmetry of the external periodic potential on the accelerating

effects of the tilted potential.

Another idea is to discuss the same problem for an underdamped particle where the conven-

tional adiabatic approximation does not apply. We anticipate that a similar derivation will be more

challenging as the transition in the underdamped regime is characterized by an excess diffusion of

the particle or similarly, by an excess noise in the response of the system166.
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