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ABSTRACT 

REIATIONSHIP BETWEEN STORM STRUCTURE AND LIGHTNING 
ACTIVITY IN COLORADO CONVECTION OBSERVED DURING STERAO-A 

Concurrent measurements from the CSU-CHILL multiparameter Doppler radar, the 

ONERA VHF lightning interferometer, and the National Lightning Detection Network, 

obtained during Phase A of the Stratosphere-Troposphere Experiments: Radiation, 

Aerosols, Ozone (STERAO-A) field project, provided a unique data set with which to 

study the relationships between convective storm microphysics and associated lightning. 

Two events have been examined in detail: storms of 10 and 12 July 1996. Both storms 

underwent major organizational transitions during their lifetimes, identified by sharp 

changes in total lightning flash rates, dominant cloud-to-ground (CG) flash polarity, or 

dominant flash type (cloud-to-ground vs. intra-cloud) . Both storms also featured 

relatively high intra-cloud (IC) flash rates. 

The 10 July 1996 ·storm evolved from a multicellular line to an intense unicellular storm. 

The unicellular stage was marked by .a sharp peak in IC flash rate as identified by the 

interferometer. Cloud-to-ground flash rates were low throughout the storm's lifetime. 

Small hail was produced during the entire observation period, suggesting storm updraft 

speeds were significant. The storm of 12 July evolved from an intense multicellular, hail-

producing storm to a weaker rainstorm. Before this transition, hail was being produced 

and the CG flash rates were low. After the transition, hail was no longer being produced 
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and negative CG flash rates were significantly larger. Storm updraft speeds likely 

weakened during the transition. 

These observations are consistent with the elevated-dipole hypothesis to explain low 

CG production in convective storms, especially if the observed high IC flash rates mostly 

neutralized any charged core before it descended toward the ground. Alternatively, if 

significant charging does not occur during wet growth of hail and graupel, both these 

storms might have produced enough wet-growth ice to prevent the generation of a lower 

positive charge center that could act to stimulate CG production. However, the radar 

data, in particular the linear depolarization ratio (LOR) data, suggest that dry growth was 

more prevalent than wet growth. 
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1.1 Background Motivation 

CHAPTERl 

INTRODUCTION 

Intense or severe convective storms are sometimes characterized by low production of 

cloud-to-ground (CG) lightning flashes during all or a portion of their lifetimes ( e.g., 

MacGorman and Nielsen, 1991; Billingsley and Biggerstaff, 1994; Maddox et al. , 1997). 

This anomalous lightning signature can be associated with very high intra-cloud (IC) 

lightning flash rates, as well as a higher-than-normal percentage of positive CG lightning 

(Carey and Rutledge, 1997). Thus, it is possible for a storm to produce large hail, strong 

winds and tornadoes, but have a CG lightning signature similar to that of a non-severe 

convective cell. Hence, as CG lightning data become more available for the "nowcasting" 

of severe weather, it is important to document and develop physically based explanations 

for low CG rates in certain intense storms. 

Several hypotheses have been offered to explain this anomalously low production of 

CGs. One hypothesis invokes the non-inductive charging theory of cloud electrification 

(NIC). According to NIC, charge is separated through collisions between graupel and ice 

crystals in the presence of supercooled water. The sign of the charge transferred to the 

graupel particle depends on the environmental temperature, the liquid water content 

(LWC), and hydrometeor terminal velocities. For typical values of cloud LWC, however, 

the sign of the charge transferred to the graupel particle changes at a given temperature, 
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referred to as the charge-reversal temperature. Takahashi (1978) found this temperature 

to be approximately -10 °C. Other researchers (e.g., Saunders et al. , 1991) have found 

somewhat different, but still comparable, charge reversal temperatures. At temperatures 

lower than this, in the upper regions of the thunderstorm, the graupel charge negatively 

and the ice crystals charge positively. At temperature higher than this, near the base of the 

cloud, the graupel charge positively and the ice crystals charge negatively. This lower 

region of net positive charge has been discussed in Williams (1989), and is thought to 

provoke CG lightning (Clarence and Malan, 1957; Williams et al. , 1985; Williams et al. , 

1989a). However, based on the results of Saunders et al. (1991) and Saunders and 

Brooks (1992), significant charging should not occur during wet growth regimes, as the 

rebounding efficiency of collisions goes to zero in such situations. If substantial wet 

growth is not occurring in these lower regions of the cloud, above the charge-reversal 

temperature, then the lower positive charge region should not develop as strongly. Hence, 

CG lightning might be suppressed. Note, however, that the results of Saunders et al. 

(1991) and Saunders and Brooks (1992) are in contradiction to the results of Takahashi 

(1978), especially as interpreted by Williams et al. (1991), who found significant charging 

in regimes of probable wet growth. This conflict has not been resolved yet. 

A second hypothesis is that for intense storms with high precipitation rates, the 

electrical current associated with charged precipitation (precipitation current, Jp) may be 

large enough to offset charge carried to ground by the CG lightning current (h). Results 

vary widely, but the current state of research suggests that precipitation current (Rust and 

Moore, 1974; Moore, 1976; Moore and Vonnegut, 1977; Gaskell et al. , 1978, Marshall 

and Winn, 1982; Soula and Chauzy, 1996; Baranski, 1996) may be comparable to CG 

2 



lightning current (Livingston and Krider, 1978; Krehbiel, 1981), at least in an average 

sense. Hence, it may be possible that in certain intense convective storms, the 

instantaneous precipitation rates become high enough that JP is large compared to h. In 

this case the precipitation current may remove separated charge quickly enough that CG 

lightning is less favored. 

A final hypothesis is known as the elevated dipole hypothesis (MacGorman and Nielsen, 

1991). In this hypothesis, intense updrafts of severe storms loft the negative charge center 

and the upper positive charge region to greater heights. (See Williams, 1989, for a 

discussion of the tripole structure of thunderstorms.) Because of the increased distance 

between the negative charge center and ground, IC lightning should be preferred over CG 

lightning. In addition, such strong updrafts could enhance charging and hence flash rates. 

Thus, enhanced IC lightning could neutralize enough charge so that when the cores do 

descend as the cells decay, CG lightning still is not favored because of lower electric fields 

due to less space charge. 

Before a discussion on how these hypotheses will be examined, some background 

material on convective storm classification will be reviewed. Convective storms can be 

classified in terms of three major types: ordinary single cell, multicell, and supercell ( e.g., 

Weisman and Klemp, 1984). Ordinary single-cell storms are characterized by a single 

updraft in its developing stages, which is destroyed by evaporative cooling due to 

entrainment of dry air as well as by precipitation loading. The development of a 

downdraft in response to these processes signals the decay phase of the cell. When the 

downdraft strikes the ground it spreads out horizontally as a gust front. Should this gust 

front trigger the development of new cells, then a multicell storm can result. Such a storm 
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is characterized by the continued decay of old cells and the subsequent development of 

new cells, typically on a preferred flank. Supercells consist of a single long-lived cell 

which has a rotating updraft-downdraft couplet. The separation of the updraft and 

downdraft allows the storm to exist for a considerable period of time, as the updraft and 

downdraft mutually support one another. The major factors determining whether single 

cell, multicell, or supercell storms will develop in a given area are the Convective 

Available Potential Energy (CAPE) and the ambient wind shear (Weisman and Klemp, 

1982, 1984). 

Additionally, multicell storms may be further subdivided into two types: non-severe and 

severe, the latter defined according to United States National Weather Service (NWS) 

criteria as producing large ( 2 cm in diameter) hail or winds with speeds of 50 knots or 

more. Severe multicells typically are characterized by strong updrafts which tilt over the 

downdraft, so that precipitation falls out of the updraft into the downdraft, and thus 

loading is not as effective at weakening the updraft. The strong updraft allows for the 

development of large hail. 

Up to this point the discussion has focused on storms under the assumption that they 

remain the same type throughout their lifetimes. However, this need not be the case. 

During Phase A of the Stratosphere-Troposphere Experiments: Radiation, Aerosols, 

Ozone (STERAO-A) field project, which will be discussed in the next section, many 

storms could not be classified as a single type throughout their lifetimes. There was a case 

where a storm began as a multicellular line, but later became unicellular in character. 

There were many cases of multicell non-severe storms which became severe at some point 

in their life cycles. These transitions often were accompanied by major shifts in the 
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storms' lightning patterns. These included changes in the IC-CG lightning ratio, changes 

in IC flash rate, changes in CG flash rate, and changes in dominant CG lightning polarity 

(i.e., positive vs. negative CGs). 

Such storms provide an excellent opportunity to examine the hypotheses for the 

significant reduction of CGs in some intense convective storms. By examining a storm's 

lightning and microphysical structure before, during, and after a major transition, any 

changes in these features can be clearly documented. By noting what has changed and 

what hasn't as the storm undergoes a major evolution, a better understanding of the 

relationships between storm microphysics and lightning can be obtained. Knowledge of 

these relationships then can be used to test the aforementioned hypotheses. 

In addition, the study of these transitions provides an additional benefit for the 

"nowcasting" of severe weather. Documentation of any notable changes in lightning 

patterns during these transitions can assist forecasters in attempts to determine whether a 

given storm is transitioning from non-severe to severe, or from severe to non-severe. 

1.2 Overview of the STERAO-A field project and the case studies 

Phase A of the Stratosphere-Troposphere Experiments: Radiation, Aerosols, Ozone 

(STERAO-A) field project took place during the summer of 1996 over the plains of 

northeastern Colorado. The purpose of the project was to study trace gas production and 

transport by deep convection, especially nitrogen fixation by lightning. The project was 

centered around the CSU-CHILL multiparameter Doppler radar near Greeley. The radar 

was used to characterize the microphysical and kinematic structure of sampled storms. 

Also available was the Office National d'Etudes de Recherches Aerospatiales (ONERA) 
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VHF lightning interferometer (ITF), which maps VHF emissions from lightning in three 

dimensions. The National Oceanic and Atmospheric Administration (NOAA) WP-3D 

aircraft had several on-board instruments to make low- to medium-altitude concentration 

measurements of various trace gases, especially NOx (NO and NO2). The WP-3D also 

had a tail-scanning X-band Doppler radar to characterize the storm-relative wind field via 

dual-Doppler observations. Instruments on board the University of North Dakota (UND) 

Citation aircraft made high-altitude trace gas concentration and in situ microphysical 

measurements of several storms, and often worked in concert with the WP-3D. There 

was a network of three field change meters (FCM; also know as flat plate antennas) - one 

mobile, two fixed - to make measurements of total flash rate for storms within the nominal 

sensor range of 35-40 km. The fixed sites were the CSU-CHILL radar and the Fort 

Morgan Airport, approximately 75 km ESE of CHILL. The mobile field change meter 

was operated from a chase van that was deployed from CHILL. Additionally, an electric 

field mill was stationed at the Fort Morgan Airport. Finally, project participants had 

access to CG data from the National Lightning Detection Network (NLDN). 

Figure 1.1 is a schematic map of the area in which the STERAO-A project took place. 

Included are the positions of the CHILL radar which had a maximum range of 150 km 

during STERAO-A, the positions of the ITF receiving stations and the ITF's two best-

resolution lobes, and the positions of the fixed FCMs along with range rings. 

The presence of data from both the CHILL radar and the ITF provided a unique data 

set for which to study the relationships between convective storm microphysics and 

associated lightning. This research utilized data from the CHILL radar, the ONERA ITF, 

the NLDN, and the flat plates; and focused on two case studies of deep convective storms, 
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10 and 12 July 1996. (All dates and times are in terms of the local time, Mountain 

Daylight Time.) 

The 10 July 1996 storm began as a multicellular line but toward the end of its long 

lifetime it became unicellular in nature, with characteristics that are often displayed by 

supercells, such as mid-level rotation and a Weak Echo Region (WER). Throughout the 

storm's lifetime, CG rates were extremely low, peaking at only 9 CGs in a 5-minute 

period, but usually varying between 0 and 2 CGs per 5-minute period. The IC flash rate 

for this storm was relatively high, around 20 ICs per minute throughout much of the 

storm's lifetime. The radar-inferred precipitation fluxes, especially the hail flux, trended 

the IC rates well, but sometimes precipitation peaks lagged the IC peaks by up to several 

minutes. IC flashes peaked near 50 per minute during the storm's quasi-supercellular 

stage. During this stage there were almost no CGs. 

The storm of 12 July 1996 was a multicell storm which became severe before full 

volume radar scanning was initiated. This storm reverted to non-severe status during the 

course of detailed observations. Before this transition, radar-inferred hail fluxes were 

quite high, but afterward, hail fluxes were small. Before the transition, both negative and 

positive CG rates were relatively low, usually well under 5 per 5-minute period. Positive 

CGs made up a significant fraction of this small CG population. After the transition, 

however, positive CG rates remained low but negative CG rates exploded, varying 

between 10 and 25 per 5-minute period for over an hour. 

1.3 Scientific objectives and organization of the thesis 
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The primary objective of this research is to analyze a unique data set consisiting of 

concurrent measurements from the CSU-CHILL radar and the ONERA VHF 

interferometer, and during the course of this analysis to examine the validity of various 

hypotheses offered to explain the low production of CGs in some intense convective 

storms. To review, these hypotheses are: significant wet growth of graupel and hail that 

would suppress the development of a lower positive charge region (which normally could 

act to provoke CG lightning), removal of charge by large precipitation currents relative to 

lightning currents, and the elevated dipole mechanism acting in concert with enhanced IC 

flash rates. Offshoots of this objective are the presentation of detailed case studies of 

major transitions in convective storms and the documentation of additional cases of low-

CG intense convective storms. This information could have potential use in the 

"nowcasting" of severe weather. 

A secondary objective is to provide an intercomparison of the data from the various 

lightning sensors; in particular, to provide verification for the ITF flash rates. 

This thesis is organized into six chapters. After this introductory chapter, Chapter 2 

discusses the various sensors used in this research, and the methodology used to interpret 

their data. Chapter 3 presents results from an intercomparison of the various lightning 

sensors. The results are interpreted in order to determine a strategy for how best to 

include the ITF data in the research. Chapter 4 presents the first case study, the storm of 

10 July 1996. Chapter 5 presents the second case study, the storm of 12 July 1996. 

Chapter 6 presents conclusions and recommendations for future research. 
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Figure 1.1: Schematic map of the operational area of STERAO-A. Pictured are the locations of the CSU-CHILL radar, the VHF 
interferometer receiving stations (large dots), and the fixed flat plate antennas ( crosses). The best-resolution lobes of the ITF are 
marked by the dark solid circles, and the nominal ranges of the fixed flat plates (at CHILL and Fort Morgan) are marked by the dashed 
circles. FfM is the Fort Morgan Airport. 
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CHAPTER2 

DESCRIPTION OF INSTRUMENTATION AND METHDOLOGY 

The purpose of this chapter is to describe the instruments used in this research and to 

review the methodology used in the analysis of the data from these sensors. The four 

sensors that will be covered are the CSU-CHILL radar, the Office National d 'Etudes de 

Recherches Aerospatiales (ONERA) VHF lightning interferometer (ITF), the National 

Lightning Detection Network (NLDN), and flat plate antennas (FCM). 

2.1 CSU-CHILL multiparameter Doppler radar 

2.1.1 Description of CSU-CHILL radar and measured variables 

Table 2.1 lists the operational characteristics of the CSU-CHILL radar. It is a dual 

linearly polarized S-band Doppler radar. The radar alternately transmits horizontally 

polarized and vertically polarized microwave radiation, and simultaneously detects both 

polarization states via dual receivers. 

For the STERAO-A project (including the two case studies to be discussed in Chapters 

4 and 5) a plan-position indicator (PPI) sector scanning strategy was used. Full volume 

coverage of storms with the preservation of good temporal resolution (~ 6 minutes or 

less) was the goal. Individual elevation sweeps typically were separated by 1 ° or less. 

Sector boundaries were set in order to contain most or all of the echo exceeding 30 dBZ. 

At times, however, the size or proximity of the storm forced certain compromises in the 
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scanning strategy in order to maintain good temporal resolution, including the following: 

decreased elevational resolution, particularly at high elevation angles; not scanning to the 

top of the storm echo (i.e., "topping" the storm); and more restrictive azimuthal 

boundaries so that the storm was not completely contained within the sector. 

Additionally, during the storm of 12 July 1996, two different and conflicting scanning 

strategies were alternately employed: the one described above, and a second one 

associated with another field project occurring at the same time. The latter field project 

was concerned mainly with sampling low elevation angles with PPI sectors, but also 

employed range-height indicator (RHI) scans. The STERAO-A scanning strategy had 

priority, but unfortunately (for the purposes of this study) during 12 July 1996 the second 

scanning strategy was employed at times. This decreased the temporal resolution of the 

full-volume sector scans around these times. 

The multiparameter variables measured by the radar included horizontal reflectivity 

(Zh), radial velocity (Vr), differential reflectivity (Zdr), linear depolarization ratio (LOR), 

correlation coefficient at zero lag (Phv), and differential phase ('l'dp). These variables give 

information on the size, shape, orientation, thermodynamic phase, and radial velocity of 

hydrometeors in a bulk sense. Through the use of these variables, it is possible to map 

regions of hail, rain, and mixed-phase precipitation, as well as to distinguish large (~ 2 cm 

diameter) hail from other hydrometeor types and to determine rain and hail rates with 

good accuracy ( e.g., Doviak and Zrnic, 1993; Balakrishnan and Zrnic, 1990a,b; Zrnic et 

al., 1993). 

A brief discussion of the radar variables used in this study is necessary in order to 

understand how they can be used to distinguish between precipitation types and to 
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determine precipitation amounts. This discussion is in large part adapted from Carey and 

Rutledge (1996, 1997). 

Horizontal reflectivity measures the amount of power backscattered by individual radar 

volumes. For scattering by spherical targets with diameters much smaller than the 

wavelength of the incident radar beam (i.e., the Rayleigh scattering regime; r s;; 0.07A, 

where A is the wavelength of the radar), reflectivity depends on the sixth power of the 

hydrometeor diameter. Hence, this reflectivity factor is most sensitive to the largest 

particles. 

The radial velocity variable measures the speed of the targets, but only along the radial 

direction (i.e., away from or toward the radar). This variable is determined through 

standard Doppler radar techniques. (See Doviak and Zmic, 1993, for a review of these.) 

Differential reflectivity measures the reflectivity-weighted mean axis ratio of 

hydrometeors. It is defined, in decibels ( dB), as 

(2.1) 

where Z, is the reflectivity from the vertically polarized wave. Because Zdr is reflectivity-

weighted, it is also sensitive to the dielectric factor and the size of the scattering 

hydrometeor. For example, water particles have a higher dielectric constant than ice 

particles, so a raindrop with the same size and axis ratio as a graupel particle will have a 

higher differential reflectivity than the graupel particle. Raindrops with diameters greater 

than 1 mm are deformed into oblate spheroids by aerodynamic drag as they fall. 

Furthermore, they tend to fall with their maximum dimension oriented horizontally 

(Pruppacher and Beard, 1970). Thus, Zh > Z, and Zdr is positive in rain. Also, Zdr 

increases with drop size. Hail tends to be spherical in shape, or if it is not, it tends to 
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tumble as it falls (Aydin et al. , 1984). Thus, regions of hail tend to have a differential 

reflectivity near zero. Rain and hail mixtures can also have Zdr near zero provided the hail 

is large enough to dominate the reflectivity. It is possible to have negative Zdr in regions 

where the hail is prolate in shape (i.e., the vertical axis is longer than the horizontal axis -

Zrnic et al., 1993; Hubbert et al., 1997). Also, for S-band radars like the CHILL, non-

Rayleigh scattering by large, wet, oblate hail can drive differential reflectivity negative 

(Aydin and Zhao, 1990). Differential attenuation also is capable of driving Zdr negative 

(Bringi et al., 1990). 

Linear depolarization ratio measures the ratio of the cross-polar signal power to the co-

polar power. It is defined as 

(2.2) 

where Z, the reflectivity factor, has units of mm6 m-3, hand v represent the horizontal and 

vertical polarizations, respectively, and the first subscript stands for the backscattered 

electric field and the second stands fo r the incident electric field. If the vertically 

(horizontally) polarized incident electric field is aligned with either the major or minor axis 

of an oblate target, then there can be no horizontally (vertically) polarized backscattered 

field. Thus, for such a situation, LDR approaches negative infinity. However, the CHILL 

radar's integrated cross-polarization isolation limits the lowest value of LDR to 

approximately -35 dB (Mueller et al., 1995). In thunderstorms, most oblate hydrometeors 

tend to wobble as they fall , so there is a distribution of canting angles which raises LDR. 

Irregularly shaped hydrometeors (i.e., hail with lobes) increases LDR as well. Also, LDR 

increases as precipitation particles become more oblate (provided they are canted) or their 
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dielectric factor increases (Frost et al., 1991). For rain, canting is generally negligible, so 

LDR varies between -27 dB and -30 dB. Low-density graupel has a smaller dielectric 

factor than rain, so it has a lower LDR than rain, typically less than -30 dB (Frost et al., 

1991). Wet aggregates in the radar bright band exhibit very high depolarization. 

Depolarization in hail also can be very significant because hailstones often exhibit complex 

motions (e.g., tumbling) as they fall (Knight and Knight, 1970). Tumbling wet hailstones 

can exhibit LDR values around -20 dB, with maximum values approaching -10 dB (Aydin 

and Zhao, 1990). 

Differential phase is defined as 

(2.3) 

where cj>dp is the differential propagation phase, and b is the backscatter differential phase, 

both in degrees. The differential propagation phase is defined as cj>dp = cj>hh - cl>vv, where cj>hh 

is the cumulative phase shift for horizontally transmitted and received polarized radiation 

during the round trip from radar to resolution volume and back, and cl>vv is the same for 

vertically polarized electromagnetic waves. Differential propagation phase results from 

propagation through an anisotropic medium such as rain. Backscatter differential phase 

results from backscatter in a radar resolution volume containing particles large enough so 

that they scatter in the non-Rayleigh regime. At S-band, hail is often large enough to 

cause such non-Rayleigh scattering (especially when wet), sob must be separated from cj>dp 

through the use of filtering techniques. This study used the filtering technique of Hubbert 

et al. (1993). 

The specific differential phase, K,ip, was used in this research. It is calculated from the 

range derivative of cj>dp• After filtering 'P dp to remove the contribution from b, :Kip can be 
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estimated using finite difference techniques. Given measurements of <j>dp at two different 

ranges, r1 and r2, :Kip can be estimated as 

(2.4) 

Specific differential phase is not sensitive to isotropic scatterers, such as quasi-spherical or 

tumbling hail. It is, however, extremely sensitive to anisotropic scatterers such as oblate 

raindrops. Thus, in a mixed phase environment, :Kip will be sensitive only to the rain 

portion. From theoretical considerations, Jameson (1985) showed that specific differential 

phase is linearly related to the liquid water content of precipitation, which allows for 

accurate rainfall measurements, especially in heavy rain(~ 60 mm h-1; Chandrasekar et al., 

1990). Because :Kip is basically insensitive to hail, this variable provides accurate rain rate 

estimates even in mixed-phase environments. Specific differential phase can be used in 

conjunction with Zh to separate the contributions of rain and hail to total reflectivity, and 

thus allow for estimates of the hail rate (hail mixing ratios) in addition to the rain rate (rain 

mixing ratios - Balakrishnan and Zmic, 1990b; Carey and Rutledge, 1997). 

The correlation coefficient at zero lag between the horizontally and vertically polarized 

backscattered radiation depends on the distributions of sizes, shapes, and canting angles of 

the hydrometeors, as well as on the phase shift upon backscatter. The correlation 

coefficient is high (~ 0.97) in rain. It decreases in mixed-phase hydrometeors because the 

size, shape, and canting angle distributions, as well as the differential backscatter phase, 

broaden or increase as the ice particle size increases. Correlation decreases are maximum 

if the reflectivity factors from the ice and water hydrometeors are similar. If either 

hydrometeor dominates the reflectivity, then the correlation coefficient is weighted toward 
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that hydrometeor type. Several researchers (Balakrishnan and Zrnic, 1990a, Kennedy and 

Rutledge, 1995; Carey and Rutledge, 1997) have used the correlation coefficient to infer 

regions of large(~ cm) hail and/or to distinguish between large and small ( < 2 cm) hail. 

2.1.2 Multiparameter radar data analysis methods 

CSU-CHILL radar data were edited using the Research Data Support System (RDSS) 

software developed at the National Center for Atmospheric Research (NCAR; Oye and 

Carbone, 1981). Most ground clutter and unwanted clear air echo (including anomalous 

propagation) were removed by thresholding on Zh ( removing data with Zh < 0 dBZ) and 

-
Phv (removing data with Phv < 0.7). The threshold value for horizontal reflectivity does not 

impact any of the precipitation measurements, since according to the reflectivity-rain rate 

relationship (Jones, 1955) used for light rain in this study, it corresponds to a rain rate 

much less than the 1 mm h-1 threshold used in the precipitation analyses, to be discussed 

later in this section. The threshold value for the correlation coefficient is well below any 

value seen in real precipitation data ( e.g., Carey and Rutledge, 1997), so it too will not 

impact the analysis in a negative fashion. Additional clutter and clear air echo were 

removed manually. All radial velocity folds were corrected using RDSS. Differential 

phase was filtered using the technique of Hubbert et al. (1993), as mentioned previously. 

This filter attenuates gate-to-gate fluctuations while preserving physically meaningful 

trends. Specific differential phase was then calculated by the finite differencing 

approximation in Eq. 2.4. 

All variables were interpolated to a Cartesian grid using the REORDER software 

package, which also was developed at NCAR. The gridding scheme used a Cressman 
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filter (Cressman, 1959), with a variable radius of influence. For the filtering process, 

azimuthal spacing was assumed to be 1 °, the half-power width provided by the CHILL 

antenna. Elevational spacing was set at 1 ° as well, because most elevation sweeps were 

spaced 1 ° or less apart. However, during part of the 12 July 1996 storm's lifetime, when 

it was closest to the radar, high-elevation sweeps were spaced greater than 1 ° apart. For 

these volumes, the elevational spacing in the gridding routine was set at 1.5°. Grid 

resolution for both storms was set at 1.0 km in both horizontal directions and 0.5 km in 

the vertical direction. However, the grid resolution should not impact the analysis to any 

depth, since the variable radius of influence for the Cressman filter takes into account 

effects of beam widening with distance, and is the major factor in determining the 

interpolated data values. The choice of grid resolution merely affects how those 

interpolated values are averaged and distributed. 

Storms were gridded so as to include, as best as possible, all echo of 10 dBZ and 

greater from the cells of interest. After reviewing all of the radar volumes for each case 

study, cells which did not seem related to the main storm were removed before gridding 

the data if they couldn't be excluded through choice of grid geometry. During the 10 July 

storm, the radar volume scans sometimes did not extend far enough in the azimuthal 

direction to include related cells, but were opened up at a later time to include these cells. 

During the 12 July storm, some cells were far from the main storm at one time, but later 

merged with the main storm. Unfortunately, including these cells in the grid when they 

were distant was not possible because of computer resource limitations, but they were 

included later when they were closer. This artificial exclusion of cells from both storms 
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will have an effect on the radar data analysis, in particular the precipitation analyses. This 

will be taken into consideration when these data are interpreted in Chapters 4 and 5. 

The multiparameter variables Zdr, LDR, and Phv are often corrupted in areas of strong 

reflectivity gradients because of the effect of mismatched sidelobe patterns. Herzegh and 

Carbone (1984) found that when the main beam sampled a region of weak reflectivity in 

the vicinity of a high reflectivity gradient, measurements of differential reflectivity can be 

dominated by large sidelobe contributions from a more reflective region. A typical 

method of dealing with this problem is to filter out possibly bad Zdr data by thresholding 

on azimuthal and elevational reflectivity gradients. (Radial gradients do not contribute to 

this problem.) Often these thresholds are range-dependent, becoming more restrictive at 

greater ranges. In the case of Carey and Rutledge (1996), these thresholds were set by 

one-dimensional calculations of Zdr bias using CSU-CHILL antenna patterns and 

horizontal reflectivity profiles as input. Unfortunately, such thresholding can often remove 

good data along with the corrupted data, since a given threshold does not always hold true 

throughout the data. That is, the actual reflectivity gradient threshold which signals the 

onset of data corruption by sidelobe contributions frequently varies throughout the data 

(L. Carey, private communication, 1997). Thus, a single filtering threshold, even a range-

dependent one, is unsatisfactory. 

The approach adopted in this work was not to perform this thresholding duri g the 

editing stages of data analysis. Instead, the unthresholded data were gridded, and any 

analysis software which use Zdr, LDR, and/or Phv first calculated the local reflectivity 

gradient in Cartesian space. Then, based on a gradient threshold, a decision was made to 

include or exclude the particular data from the analysis. In this manner, sensitivity tests 
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with different thresholds could be performed more easily than the previous method. 

Calculating the reflectivity gradient in Cartesian space is not strictly correct, however, as 

the natural coordinates of the radar are spherical, and gradients in spherical coordinate 

space are what cause the sidelobe contamination problem. A more rigorous approach 

would be to calculate the gradients in spherical coordinates before gridding the data, 

perhaps creating a separate data field for reflectivity gradient which then can be gridded 

along with the other data for easy comparison and sensitivity testing. This approach will 

be explored in future work. 

In this thesis there are two objectives focused on the radar data analysis: 1) calculate 

near-surface rain and hail rates, and thus make estimates of the storm-total mass flux for 

each precipitation type, and 2) distinguish between regions of different hydrometeor types 

in a bulk sense. 

Rain and hail rates are calculated through the following algorithm, which is summarized 

in Table 2.2. If the specific differential phase at a grid point is above the noise level, 0.25 

0 km-1, then it is used to calculate the rain rate at that point following the method of 

Sachidananda and Zrnic (1987). If l<cip < 0.25 ° km-1, then a reflectivity-rain rate 

relationship (commonly known as a Z-R relationship) from Jones (1955) is used to 

calculate the rain rate. If this rain rate is between 1 and 20 mm h-1, then this rain rate is 

used in the flux calculations described below. If the Z-R relationship gives a rain rate 

higher than 20 mm h-1, then it is assumed that the reflectivity is almost entirely due to hail 

(Kcip < 0.25 ° km-1) , and no rain rate is calculated at the grid point. Differential reflectivity 

also could be used to assess the possibility of hail contamination (Golestani et al., 1989), 
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but ~uch analysis would be subject to possible errors due reflectivity gradients, as well as 

other problems which will be discussed later. 

The hail rate is calculated by first using ~P to determine the reflectivity factor (in mm6 

m-3
) due to rain at a grid point by substituting the ~p-R relationship from Sachidananda 

and Zrnic (1987) into the Z-R relationship from Jones (1955), then subtracting this rain 

reflectivity factor from the horizontal reflectivity factor. The difference is the reflectivity 

factor due to hail, which is . then input into the hail reflectivity-hail rate relationship of 

Carey and Rutledge (1997), which is based on the Cheng and English (1983) hail size 

distribution, to determine hail rate in mm h-1 liquid equivalent. However, if Z1iau is not 

within 7 dB of Zrain, then the hail rate is assumed negligible, after Balakrishnan and Zrnic 

(1990b) . Note that this method assumes Rayleigh scattering by hail, which may not be 

valid for S-band radars like the CHILL, especially in large hail. 

There are some important sources of error in these radar-derived precipitation rates. 

Differential phase provides superior estimates of rain rate, especially at high rain rates (> 

60 mm h-1
), but is still subject to errors on the order of 10-20% based on raindrop size 

distribution variation and radar estimation errors alone (Chandrasekar et al., 1990). Radar 

reflectivity-rain rate relationships provide comparable errors, but only when rain rates are 

low ( < 20 mm h-1
) - otherwise they are much larger (Chandrasekar et al. , 1990). Thus, 

10-20% serves as a lower bound for errors in rainfall estimates, with an upper bound 

around 30-40% for those times when assumptions are grossly violated. These errors will 

affect rain rate calculations as well as the hail rate calculations. In addition, hail rate 

calculations are subject to further errors. After the initial rain rate calculation, the 

computation of reflectivity factor due to rain is subject to errors on the order of a few 
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dBZ . (Doviak and Zrnic, 1993). The choice of the Cheng and English (1983) hailstone 

size distribution may not be valid at any specific time during hailfall, and furthermore as 

mentioned above the assumption of Rayleigh scattering for hail is not always valid either, 

especially for large hail. Hail rate is inherently difficult to measure properly via in situ 

methods, so it is difficult to accurately quantify the magnitude of the error associated with 

these radar-inferred hail rates. However, estimates of error magnitudes on the order of 

50% or more probably are not unreasonable, especially in regions where the assumptions 

about hail size distribution and Rayleigh scattering are not valid. For example, the given 

algorithm could significantly overestimate hail rate during those times that hail reflectivity 

is caused mostly by a few large hailstones, rather than the broader distribution predicted 

by Cheng and English (1983). 

Precipitation fluxes are computed by summing all the precipitation rates over the whole 

horizontal grid at a specific vertical level (usually the lowest level - 0.5 km above ground 

level, or AGL - in this case). Fluxes are calculated for the entire storm complex, not 

individual cells. While a cell-by-cell precipitation analysis may be preferable, in practice it 

would be difficult to do properly due to the possibility of the choice of analysis region 

geometry improperly influencing results. That is, it is often difficult to clearly distinguish 

between two or more cells in multicellular convection, especially on the outskirts of cores 

and when cores are merging or splitting. In these situations it is obvious that analysis 

geometry could play a major role in precipitation flux computations, making the analysis 

results more an artifact of the geometry than real precipitation rates. Though the 

possibility of quantitative cell-by-cell analysis is lost, computing fluxes for the entire storm 
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complex removes this potentially large source of error. However, qualitative cell-by-cell 

analysis of radar reflectivity structure and lightning will be performed. 

These precipitation analyses are similar to the methods employed by Carey and 

Rutledge (1997). However, there are some differences. Carey and Rutledge (1997) split 

the rain rate calculations into three parts, one for light rain (1 $ R $ 20 mm h·1), one for 

moderate rain (20 < R < 60 mm h·1), and one for heavy rain (R 60 mm h"1
). For light 

rain they used the Z-R relationship of Jones (1955), and for heavy rain they used the R-KciP 

relationship of Sachidananda and Zrnic (1987), but for moderate rain they used a 

reflectivity-differential reflectivity relationship, which is also from Sachidananda and Zrnic 

(1987). However, this relationship can be prone to hail contamination, so they used a Zdr 

correction method based on the results of Golestani et al. (1989) when the probability of 

hail contamination was deemed high. This method was tested on the data for the 10 July 

storm. The results will be discussed in Chapter 4, but it appears that the flux calculation 

method of Carey and Rutledge (1997) still may be prone to hail contamination despite the 

correction methods, at least for the 10 July storm. 

The precipitation calculation method employed m this thesis avoids this hail 

contamination problem by not using differential reflectivity in any way. It is especially 

desirable to use only l<cip and Zh for the precipitation calculations for 10 July, as this storm 

was at a very long range from the radar. At long ranges the other multiparameter 

variables are more easily susceptible to sidelobe contamination, and thus are less useful. 

Table 2.3 lists the multiparameter variable matrix employed in order to distinguish 

between different bulk hydrometeor species .. This study employed Zh, Zdr, LDR, l<cip, and 

Phv to determine regions of large hail, small hail, large hail mixed with rain, small hail 
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mixed with rain, and rain only. This matrix is identical to the one used by Carey and 

Rutledge (1997). The matrix itself, which is applicable only when the environmental 

temperature is at or above freezing (i.e., near the surface), is a modified form of the one 

proposed by Doviak and Zrnic (1993). Carey and Rutledge (1997) adjusted these values 

in order to incorporate more recent modeling and observational results, and to maximize 

agreement with surface reports of precipitation type and size. Note that in this study the 

main concern is to distinguish between large and small hail, whether they are mixed with 

rain or not. Note that multiparameter radar measurements are not unique, in that more 

than one hydrometeor mix could give the same set of multiparameter radar measurements. 

Thus, this matrix is only valid as long as its assumptions are valid, and when they are not, 

large errors (which are difficult to quantify) could result. Thus, this matrix is best used to 

infer the main hydrometeor types present, and to gain a sense of the basic trends 

occurring. 

2.2. ONERA VHF lightning interferometer 

This discussion of the ITF is adapted from Mazur et al. (1997), Laroche et al. (1994), 

and private communications between the author and ONERA researchers, notably E. 

Defer and Dr. P. Laroche. The ITF uses interferometric techniques to map VHF 

emissions from lightning in three dimensions. 

Several researchers (e.g., Warwick et al. , 1979; Richard and Auffray, 1985; Rhodes et 

al., 1994) have used interferometric lightning mapping in the past with good success. In 

radio interferometry, the difference in arrival times of electromagnetic waves at two 

different antennas is translated into a differential phase, which can then be used to 
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calculate the angle to the radiation source. Through the use of several antenna pairs, the 

source can be located in three-dimensional space. The baselines connecting the antenna 

pairs are measured in wavelengths and half-wavelengths in order to resolve ambiguities in 

the arrival angle. 

The ONERA ITF system itself consists of two main receiving stations. One station 

consists of two separate antenna sets - the elevation sensor, which measures the elevation 

angle of the sources; and the azimuthal sensor to determine the azimuthal direction to the 

source. The second receiving station senses only azimuthal information. Each antenna set 

consists of circular, vertically polarized electric dipole arrays. The operational 

characteristics of the ONERA ITF are listed in Table 2.4. Figure 2.1 shows a schematic of 

the combined azimuth and elevation receiving station. The azimuth-only receiving station 

is similar in appearance, though it is shorter and lacks the elevation sensor. Figure 2.2 

demonstrates how the two stations combine to give reconstruction of a VHF source in 

three-dimensions. 

During the STERAO-A project, the two receiving stations were separated by a baseline 

approximately 40 km in length, oriented roughly northwest to southeast. (The 

southernmost receiving station was the azimuth-only sensor.) A spatial resolution f 1-2 

km is obtained in the two lobes (east and west) whose boundaries are defined by a 

distance of approximately 50 km off the baseline. (See Figure 1.1 for a schematic 

representation of the ITF lobes during STERAO-A.) The ITF cannot unambiguously 

resolve the positions of VHF sources along or near the baseline, so the best ITF ases 

occurred when storms were situated within one of the high-resolution lobes. 
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The three basic types of discharges identified by the ITF are the recoil streamer, the 

negative leader, and the spider discharge. See Uman (1987) for a detailed review of these 

types of discharges. Recoil streamers and spider discharges generally are associated with 

intra-cloud (IC) lightning, whereas negative leaders are associated with cloud-to-ground 

(CG) lightning. It is important to note that these discharges do not exhaust the list of 

possible lightning discharges, only those that emit significant VHF radiation within the 

ITF's band (110-118 MHz). In particular, events involving positive breakdown -C e.g., 

positive leaders associated with positive CGs) do not emit much VHF radiation, nor do 

return strokes associated with CG lightning. (They are lower frequency emitters.) 

The ITF's elevational resolution is set to optimize the resolution of IC lightning data. 

At low elevation angles (i.e., less than 8°), the resolution degrades from the value listed in 

Table 2.4. Thus, the ITF does not resolve negative leader processes associated with CG 

lightning as well as say, recoil streamer processes associated with IC lightning. 

Additionally, after analysis of the ITF data from STERAO-A, it was found that the 

elevational resolution of the sensor was less than the value expected based on the results 

of past field projects involving the ITF (P. Laroche, private communication, 1997). Thus, 

the true elevational resolution of the ITF was coarser than the 0.5° value listed in Table 

2.4. This has an impact on the mapping of both IC and CG lightning, but it will affect the 

resolution of CG data the most since the low-elevation resolution is by nature more 

coarse. 

During post-processing of the data using the Analyse software developed by ONERA, 

flashes were identified and classified based on the criteria listed in Table 2.5. These 

criteria are based on current knowledge of the various VHF-emitting lightning discharge 
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processes (P. Laroche, private communication, 1997). The criteria govern how the 

software groups individual localizations (i.e., single VHF sources) into VHF radiation 

bursts, and how it groups these bursts into separate flashes. The software distinguishes 

between IC and CG lightning on the basis of an altitude threshold on negative leader 

processes. Related negative leaders occurring below a given altitude, set by observations 

from previous field experiments with the interferometer, are classified as CG flashes. 

Above this altitude they would comprise an IC flash. It is important to note that spider 

discharges associated with ICs often resemble negative leaders associated with CGs. 

Thus, a group of spider discharges occurring below the threshold altitude could be 

incorrectly classified as a CG flash. Thus, the known elevational resolution problems with 

the ITF during STERAO-A could have profound impacts on the proper classification of 

IC and CG lightning. This possibility will be explored in Chapter 3. 

2.3 National Lightning Detection Network 

The NLDN is comprised of a network of magnetic direction finder (DF) sensors and 

time-of-arrival (TOA) sensors that spans the contiguous United States. The purpose of 

the network is to accurately locate, in time and space, the ground strike locations of 

cloud-to-ground (CG) lightning flashes. The network also gives information about the 

multiplicity (i.e., number of return strokes) and approximate strength of each flash. This 

strength estimate can be converted to an estimate of peak current through the following 

relation (Orville, 1991): 

(2.5) 
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where IllP is the signal strength in Lightning Location and Protection (LLP) units, and 

Ipeak is the peak flash current (kA). 

Recently, the NLDN was upgraded to its current combination of DF and TOA 

technology (Cummins et al., 1996). This upgrade was reported by Cummins et al. (1996) 

to have improved detection efficiency in northeastern Colorado to approximately 90% or 

more, with a median location accuracy of 0.5 km. 

An unexpected result of this upgrade is the inclusion of a previously undetected 

population of weak positive flashes. These discharges may not be true positive CGs; 

instead, many could be intra-cloud (IC) discharges which are being falsely identified as 

positive CGs. It has been suggested that some detected positive discharges with peak 

currents under 7 kA may be IC discharges (P. Krehbiel, private communication, 1997). 

However, no positive CGs with peak currents under this threshold were observed in any 

of the NLDN data for the storms of 10 and 12 July. Therefore, for the purposes of this 

study, all detected NLDN CGs were considered to be true CG events. 

2.4 Field change meters 

During the STERAO-A field project, a network of three flat plate antennas, or FCMs, 

was maintained. Two were located at fixed sites, and one was mobile. The FCMs were 

essentially identical to the unit used by Carey and Rutledge (1996, 1997). Therefore, the 

following discussion is adapted from those papers. 

The purpose of the FCM is to measure the electrostatic field change associated with 

both IC and CG lightning (Uman, 1987). Thus, the total flash rate of storms can be 

estimated with these sensors. In this study, a FCM consisted of a disk-shaped conductor 
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with its long axis parallel to the ground. The disk was mounted on a stand with its 

accompanying electronics, and then inverted toward the ground to minimize precipitation 

contamination. Any change in the ambient electrostatic field was accompanied by a 

change in the voltage difference across the output. The time constant of the resistor-

capacitor network was 30 ms for the mobile FCM, and 25 ms for the fixed FCMs. These 

time constants are long enough to reproduce the field changes by most IC and CG 

lightning, yet short enough to bring the output voltage back to zero between flashes. 

Voltage and time data were sampled at approximately 1 kHz. These FCMs were not 

calibrated, so voltage data could not be used to estimate electrostatic field changes, 

though signal strengths could be inferred in a relative sense. 

The FCMs have a detection range of approximately 35-40 km (B. Rison, private 

communication, 1997) at the most sensitive gain setting (the only gain setting used during 

almost all project days, including 12 July). However, the detection efficiency of the 

instruments is not well known, but probably is a function of signal strength and range to 

flash. Also, the FCMs do not resolve direction or range to the flash, so it was important 

to ensure that only one storm was in range at a time, to avoid ambiguity in flash rate 

estimates for a single storm. 

The FCM data were post-processed using an equally weighted running mean filter 

designed to eliminate a known source of 60 Hz noise. Lightning flashes were then 

counted in the data by comparing signal amplitudes to the noise amplitude. The signal-to-

noise ratio threshold for counting a particular signal as a flash was set by using the flash-

counting algorithm on data from fair-weather days (i.e., days when no storms were in 

range), and determining an SNR ratio that was as low as possible, but would not be 
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susceptible to noise-induced false signals. Return strokes were treated by requiring 500 

ms to pass before the next signal could be counted as a flash. 

Because of the unknown detection efficiency and the nature of the flash-counting 

algorithm, the FCMs probably cannot be used to estimate the total flash rate very 

accurately. However, they can be used to examine trends in flash rates with reasonable 

confidence, as in Carey and Rutledge (1996, 1997). However, any trends in the data need 

to be analyzed with caution, as due to the limited range of the instrument and the fact that 

the detection efficiency itself is probably range-dependent, such trends may reflect storms 

moving into and out of range, and not necessarily any true changes in the total flash rate. 

FCM data wre obtained for part of the 12 July 1996 storm's lifetime. Unfortunately, no 

FCM data were obtained for the 10 July storm. The 12 July FCM data will be utilized in 

Chapter 3 in an intercomparison with the ITF. They will not be used in the case studies. 

The reason for this is because the data for this day generally reflect the influence of the 

movement of the storm into and out of range, and therefore not real trends in storm flash 

rate. Also, the FCM appears to detect far fewer flashes than the ITF, as will be shown in 

Chapter 3. 
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CSU-CHILL radar characteristic 
Wavelength (cm) 
Polarization 
Antenna diameter (m) 
3 dB beamwidth (°) 
1st sidelobe level ( dB) 
Integrated cross-polarization isolation (dB) 
Peak power (kW) 
(Pulse length)/2 (h/2, m) 
Pulse repetition frequency (Hz) 
Pulse per integration 
Receiver noise power (dBm) 
Maximum Range (km) 

Value during STERAO-A 
11 
Linear; Hand V 
8.5 
1.0 
< -27 
< -32 
800 
150 
1000 
128 
-115 
150 

Table 2.1: Characteristics of the CSU-CHILL radar during the STERAO-A field project 
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0 vervaew o prec1p1 100 ra e ca cu a aons f . itaf t I If 
If~ 0.25 ° km·1

: 

R(K ) • 40 683 • (K }°-866 dp • dp (Sachidananda and Zmic, 1987) 

If~< 0.25 ° km"1 and 1 mm h-1 < R(Zi,) < 20 mm h"1: 

z,. .. 486 • R(Z,.f37 (Jones , 1955) 
Hail (mm h"1 liquid equivalent): 

n(Kdp,z,.ail)-
88.0 

[ 6 { t0.297] (Carey and Rutledge, 1997) 
exp 538 x 10- z,.ail Kdp 

Table 2.2: Overview of algorithm used to calculate rain and hail rates from CSU-CHILL 
multiparameter radar data. 
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B drometeor t e (f ~o 0 C) zb (dBZ zd, dB LDR(dB K.i (0 km"') V 

Small hail (D < 2 cm) ~50 s;0.5 < -18 < 0.5 > 0.96 
Small hail and rain ~50 < 1.0 -27 to -20 ~0.5 s: 0.98 
Large hail (D 2 cm) ;;::55 s: 0.5 2::-18 < 0.5 s: 0.96 
Large hail and rain ;;::55 < 1.0 2::-20 ;;::0.5 s; 0.96 
Rain < 60 > 0.5 < -27 ;;::0.5 ;;::0.97 

Table 2.3: Hydrometeor identification matrix, based on multiparameter radar data, used in 
this study to distinguish between bulk precipitation types below the freezing level. 
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VHF Interferometer Characteristic 
Frequency band (MHz) 
Bandwith (MHz) 
Time resolution (µs) 
Elevational resolution (0

) 

Azimuthal resolution (0
) 

Value durin2 STERAO-A 
110-118 
1 
23 
0.5 
0.25 

Table 2.4: Characteristics of the ONERA VHF lightning interferometer during the 
STERAO-A field project. 
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ITF Flash Classification Criteria 
Maximum burst velocity (m s"1

) 

Minimum duration of a leader/spider discharge (µs) 

Minimum altitude of a leader (m) - above this 
altitude it's a spider discharge, below it's a leader 

Maximum number of sampling periods (23 µs each) 
between two successive points of a burst 

Maximum duration of a flash (µs) 

Maximum distance between two bursts of the same 
flash (m) 

Maximum time between two bursts of the same flash 
(ms) 

Value for Analysis 
100,000,000 

800 

1,500 

10 

1,000,000 

25,000 

250 

Table 2.5: Criteria used by the ITF analysis software to separate and classify flashes. 
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GPS antenna 

Azimuth sensor 

Elevation sensor 

. 76111« JGJ,---=~----
Data· processing unit 

Data storage unit 

Figure 2.1: Schematic representation of the combined elevational and azimuthal receiving 
station for the ONERA VHF interferometer. The azimuthal-only receiving station is 
similar in appearance, but lacks the elecation sensor and hence is somewhat shorter. 
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Figure 2.2: Schematic illustration of how the two VHF interferometer receiving stations 
combine to give the three-dimensional location of a VHF source. The combined azimuthal 
and elevational receiving station, ITF1, gives an elevation angle, cp1, and an azimuthal 
angle, 81, to the source. The azimuthal-only station, ITF2, gives an additional azimuthal 
angle, 82, to the source. The projection of the three-dimensional VHF source onto the 
horizontal plane, H, gives the two-dimensional location of the source, M(x,y). 
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CHAPTER3 

INTERCOMPARISON OF LIGHTNING SENSORS 

In this chapter the data from the different lightning sensors used during the STERAO-A 

field project - specifically the VHF lightning interferometer (ITF), the National Lightning 

Detection Network (NLDN), and the flat plate antennas (FCM) - are compared. The 

objective of this intercomparison is to develop a strategy for interpreting the ITF data, so 

that it can be used properly in the case studies (Chapters 4 and 5). 

3.1 VHF lightning interferometer vs. the National Lightning Detection Network 

3.1.1 Introductory material 

Before commencing with the intercomparison of the ITF and the NLDN data, it is 

important to note that these platforms measure different aspects of lightning. To 

summarize, the ITF maps VHF emissions from lightning, both intra-cloud (IC) and cloud-

to-ground (CG). However, as was noted in the last chapter, only certain parts of a 

lightning discharge are expected to radiate strongly in the VHF band. For example, the 

negative stepped leader process of a CG discharge is associated with VHF emissions, but 

return strokes and positive discharges emit only weakly at VHF frequencies. Thus, the 

ITF is expected to map the leader stages of a CG well, but will have a difficult time 

mapping return strokes and positive CGs. The ITF is additionally hampered by its reduced 

vertical resolution at low elevation angles, as discussed in Chapter 2. Furthermore, the 
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added vertical resolution degradation that occurred during STERAO-A (also discussed in 

Chapter 2) compounds the task of properly detecting, classifying, and mapping CG 

lightning with the ITF. 

In contrast, the NLDN detects only the return stroke stages of a CG. It is not intended 

to detect or locate IC lightning, though it is possible that some ICs are falsely identified as 

CGs by the NLDN, as discussed in Chapter 2. In contrast to the ITF, which locates the 

positions of the negative leaders (i.e., the flash channels), the NLDN only locates the 

ground strike positions of CG lightning, not the positions of the flash channels themselves. 

For the purposes of this intercomparison then, CG data from the two sensors will be 

compared. Note that flashes are not classified as CGs by the ITF in real time. Instead, 

they are classified during post-processing with the use of an altitude threshold on negative 

leader processes, as mentioned in Chapter 2. This classification algorithm is still in testing 

at ONERA. Later versions of ITF data from 10 and 12 July 1996 (received from 

ONERA) need not have flashes classified the same. The NLDN data are not expected to 

change in the future, however. 

3.1.2 Intercomparison of ITF and NLDN data from 10 July 1996 

The storm of 10 July 1996 began as a multicellular line, but late in its lifetime one cell 

dominated and became supercellular in character, with mid-level rotation and a Weak 

Echo Region (WER). For much of its lifetime it stayed within the highest resolution 

eastern lobe of the ITF, making it an ideal case for comparing CG data from the ITF and 

NLDN. The storm was very isolated, with few unrelated cells nearby, so it was easy to 

remove CG data from these unrelated cells for the intercomparison. Five-minute CG rates 
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were calculated for the remaining data from both sensors and the results are plotted in 

Figure 3.1. CG rates for each 5-minute period are plotted at the start of their respective 

time periods. Both sensors appear to capture the CG burst between 1600 and 1645 

MDT, and the subsequent dearth of CGs in the approximately 1-hour period following this 

burst. Then after 1745, CG rates from both sensors begin to diverge, with significant 

disagreement after 1830 through the end of the storm. After 1830, ITF CG rates became 

quite large, but NLDN CGs were almost nonexistent. Also, the NLDN CG burst around 

1810 MDT was not captured by the ITF. Overall, the ITF detects and classifies 

significantly more CGs than the NLDN. 

This disagreement between the CG data from the two sensors becomes even greater 

when an attempt is made to match individual CGs from the two sensors, in order to gain a 

sense of which "CGs" are being detected by only one sensor, and which are being detected 

by both. When matching individual CGs between the two sensors, two problems arose. 

One was that, at the time the intercomparison was done, only 1-second resolution data 

were available for the two sensors, so it was difficult to estimate the time difference 

between the two sensors' clocks. The second problem was that the ITF data contained 

the mean horizontal position of the radiating flash channel, whereas the NLDN data of 

course gave the ground strike location of the flash. CG lightning is known to travel 

horizontally, sometimes on the order of several km, before striking the ground. Thus the 

mean horizontal flash channel position and the ground strike location need not be 

identical, especially when the inherent location errors of the two sensors are considered. 

Thus, the criteria used to judge whether a given NLDN CG and a given ITF CG were the 

same were that they occurred at the same time, to the nearest second ( due to the time 
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resolution of the data, and keeping in mind the fact that the two clocks were not 

synchronized during STERAO-A), and that their horizontal positions be within 10 km of 

one another. In practice it was found that the time criterion was the strongest; that is, 

when an NLDN CG and an ITF CG were coincident, they were almost always very close 

to one another, from a distance perspective. Thus, the distance criterion for flash 

matching was not very important; increasing the distance to greater than 10 km would not 

change the results significantly. 

Using this flash matching algorithm, the following were identified: CG flashes which 

were detected by both sensors, CG flashes which were detected and classified by the 

NLDN only, and CG flashes which were detected and classified by the ITF only. The 

results are plotted in the form of 5-minute flash rates in Figure 3.2. As can be seen, during 

the early period of the storm's lifetime, when Figure 3.1 appeared to show rough 

agreement between the two sensors, Figure 3.2 demonstrates this agreement in bulk flash 

rates to be misleading. During this time there is a significant number of CGs that are being 

detected and classified by only one sensor; the other sensor is either not detecting 

anything, or it is not classifying any detected flash as a CG. This problem only becomes 

worse after 1745 MDT. For the entire storm, the number of CG flashes detected and 

classified by both sensors is quite low, especially compared to the number of CGs detected 

and classified by only one sensor. After 1830, the number of CGs detected and classified 

by the ITF only is especially high, as might be expected based on Figure 3.1. 

There is a small population of flashes detected and classified as CGs by the NLDN, but 

not by the ITF. An attempt was made to match these NLDN CGs to ITF ICs using the 

same algorithm for matching NLDN and ITF CGs. Interestingly, all of these NLDN CGs, 
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save one, corresponded to a detected and classified ITF IC. If the CG intercomparison is 

specialized to only NLDN positive CGs, then 1 of 13 NLDN positive CGs corresponded 

to an ITF CG. Most of the remainder corresponded to ITF I Cs. 

3.1.3 lntercomparison of ITF and NLDN data from 12 July 1996 

The same CG data intercomparison performed on 10 July data also was performed on 

the 12 July data. The storm of 12 July 1996 began as a cluster of several cells over the 

Cheyenne Ridge in southeastern Wyoming. As the storm moved to the southeast and 

entered Colorado, the storm remained multicellular. Substantial reflectivity (> 40 dBZ) 

continued to cover a large area throughout the remainder of the time of radar sector 

coverage. With such large areas of contiguous echo, the storm was not very isolated, so 

the ITF data were not edited to exclude unrelated cells. The NLDN data were edited to 

exclude flashes outside the ITF lobes, however. This intercomparison was done using 

older ITF data, like the 10 July intercomparison. These data covered the time period from 

1730 to 1910 MDT. After this time span, the storm moved out of the lobes, so later data 

were impacted by these lobe effects. Figure 3.3 is a plot of 5-minute CG flash rates for 

both sensors throughout the intercomparison time period. Much like 10 July, overall the 

ITF detects and classifies many more CGs than the NLDN, but unlike 10 July this occurs 

throughout the analysis period, not just during a portion of it. 

Individual CGs were matched using the method employed with the 10 July data. The 

result is Figure 3.4, which is the same as Figure 3.2 except now for 12 July. In general, 

very few CGs are detected and classified by both sensors. CGs detected and classified by 

only the ITF dominate the plot. 
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Of the 21 CGs that were detected and classified by only the NLDN for this time period, 

12 matched up with detected and classified ITF ICs. Sixteen of these 21 NLDN-only CGs 

were positive CGs. 

3.2 VHF lightning interferometer vs. flat plate antennas 

For 12 July 1996, concurrent data from the flat plate fixed at the CHILL radar and from 

the ITF exist from 1747 to 1910 MDT. One-minute total flash rates were calculated 

during post-processing of the PCM data for this time period. By combining the ITF CG 

and IC data, one-minute ITF total flash rates can be computed. However, in order to 

properly compare these two estimates of storm total flash rate, the issue of the flat plate's 

limited range must be addressed. As stated in Chapter 2, the CHILL flat plate had a range 

of 35-40 km at the most sensitive gain setting, which is what it was set at during this time 

period. However, recall that the flat plate 's detection efficiency is a function of both range 

to flash and flash strength. Thus, the ITF data were filtered to exclude, from the flash rate 

calculations, flashes beyond a certain distance from CHILL. Because of the uncertainties 

about flat plate range and detection efficiency, this filtering distance was varied and 

sensitivity tests were performed. 

Figure 3.5 shows 1-minute total flash rates from both the ITF and the CHILL PCM. 

The filtering distance in this case was 35 km, the lower limit of the flat plate maximum 

range estimate. Note that any trends seen in these data do not necessarily reflect true 

trends in storm flash rate. The large increase in flash rates from both sensors toward the 

end of the period is mostly due to the storm moving into range for the PCM, and moving 

into the 35 km filtering circle for the ITF. In general, the ITF detects many more flashes 
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than the CHILL FCM, though the two flash rates seem to trend one another fairly well, 

especially toward the end of the intercomparison period. 

Table 3.1 lists the square of the correlation coefficient, p2
, for the two flash rates 

throughout this intercomparison period, for different filtering distances ranging from 20 

km to 40 km. The correlation between the two flash rates increases as the filtering 

distance becomes more restrictive, with p2 reaching a maximum of 0.935 when ITF flashes 

with mean positions more than 20 km away from CHILL are excluded. A minimum of 

0.774 occurs when ITF flashes with mean positions more than 40 km away from CHILL 

are excluded. This is strong evidence that the detection efficiency of the FCM. is range 

dependent, if we assume that the ITF has a detection efficiency near 100% ( or at least is 

mostly independent of range from CHILL). Correlations improve as the ITF range filter 

becomes more restrictive because distant flashes are detected by the FCM less often than 

closer flashes. 

There is the possibility of some minor precipitation contamination of the CHILL FCM 

during the time period 1845-1900 MDT as the main storm grazed the radar site. Thus, 

FCM flash rates during this time may be artificially elevated, with an unknown but 

probably minor effect on the correlation analyses. 

Despite its limitations, and assuming that the ITF has a very high detection efficiency, it 

appears that the FCM is a good tool for estimating total flash rate trends, based on this 

intercomparison. However, it is preferable that the storms sampled by the flat plate move 

slowly or be nearly stationary, in order to control false trends created by storm movement 

into and out of range. 
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3.3 Short-duration flashes in the VHF lightning interferometer data 

Figure 3.6 shows normalized frequency distributions of ITF-derived flash durations for 

the storms of 10 and 12 July. These are the durations of the VHF emissions from each 

flash, and thus may not necessarily reflect the true flash durations (i.e., the time for which 

the lightning channel is ionized and current is propagating). Flash data have not been 

edited in any way. The plot limits extend from the lowest possible time resolution of the 

ITF, 23 µs, to the maximum allowed duration of a flash, 1 second (set by the flash-

classification criteria). The distributions for both days are very similar. Why this is so is 

not certain. Both days ' data contain several thousand flashes each, so whatever is forcing 

the similarity of the two distributions is likely common to both days. The distribution 

shapes may be caused by the ITF or its classification algorithm, making the distributions 

entirely or partly instrument-related artifacts. Or, the spectra could be due to the physics 

of the lightning, which also would be common to both days, as long as the processes 

governing the electrification and electrical discharging of these two storms were the same. 

It is not known which of these two possibilities, if any, are true. However, ONERA 

researchers have no idea how the ITF or its flash classification algorithm could force the 

distributions presented here (P. Laroche, private communication, 1997). 

The distributions themselves appear to be bimodal. The first mode which will be 

considered is centered around 10-0·6 s, or 250 ms. This mode is distributed roughly 

lognormally, and appears consistent with other observed lightning duration spectra (Uman, 

1987). 
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The second mode is a bit more complex, and is less easily understood. The maximum 

occurs at 104
·
6 s, or 23 µs, the temporal resolution limit of the ITF. In fact, over 20% of 

flashes on either day last 23 µs or less, more than any other bin in the entire distribution. 

This corresponds to a single localization of VHF radiation as seen by the ITF. There are 

also a few gaps in the distributions for this particular mode, where no flashes with the 

given durations occur on either day. This is a curious phenomenon as the surrounding 

bins contain relatively large numbers of flashes. 

The tails of the two modes appear to meet somewhere in the vicinity of 10-3-
0 s, or 1 ms. 

This duration, 1 ms, was chosen as the boundary between the two modes. While this 

decision is somewhat arbitrary, it is apparent from the spectra that, because so few flashes 

occupy the region from 10-3-
0 s to 10-2-

0 s, or 1 ms to 10 ms, choosing a different boundary 

between these two durations will not change the results significantly. Thus, the ITF flash 

duration frequency spectra were considered to be comprised of two different populations 

of flashes: a more standard flash population with approximately lognormally distributed 

durations, centered near 250 ms in this case; and a population of "sub-millisecond" flashes 

with durations on the order of individual strokes in a flash (Uman, 1987). The former 

population is probably what most researchers consider lightning flashes (Uman, 1987); the 

nature of the latter population is in question, but it is important to understand this nature 

as these sub-millisecond flashes make up close to one-third of the flash populations for 

either day. Maier et al. (1996) have reported observing similar short-duration "flashes" 

with the Lightning Detection and Ranging (LDAR) ·system, a time-of-arrival (TOA) VHF 

mapping system at the Kennedy Space Center in Florida. 
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There are a few possible explanations for these sub-millisecond (hereafter referred to as 

sub-ms) flashes. One is that they actually are components (i.e., individual strokes) of 

longer flashes - perhaps flashes that also are detected and classified by the ITF, and are 

part of the more standard flash population - but are being falsely classified as separate 

flashes by the ITF classification algorithm. The flash classification algorithm is very likely 

not perfect, and so some errors in flash classification are expected. Some of these sub-ms 

flashes do appear to be quite close, in space and time, to other, longer flashes. However, 

many sub-ms flashes are isolated in both time and space. 

Another explanation is that, while the VHF emissions from these sub-ms flashes may 

last less than 1 ms, the actual flashes themselves last much longer. That is, perhaps many 

of these sub-ms flashes actually are longer flashes which do not radiate strongly in the 

VHF, like positive flashes and return strokes, so only a few VHF radiation localizations 

can be attributed to them, giving the false appearance of a short duration for the entire 

flash. 

A final possibility is that these sub-ms flashes may be in fact true short-duration flashes 

lasting on the order of tens of microseconds, perhaps a subset of IC discharges. This 

possibility has been examined before, by Taylor et al. (1984), who used a VHF mapping 

system in a single storm to distinguish between long-duration (i.e., standard) IC flashes, 

which occurred near the middle of the thunderstorm, and short-duration IC flashes which 

were centered near the top of the storm, in the vicinity of the positive charge region 

(Williams, 1989). Unlike the sporadic long-duration IC events, the short-duration ICs 

occurred on a near-continuous basis. In a private communication, P. Krehbiel (1997) 

mentioned that these sub-ms flashes instead may be what he called "positive bi-polar 
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discharges". These discharges last on the order of 10-20 µs, and can be considered a kind 

of failed upward-propagating leader from the region of negative charge near cloud mid-

levels (Williams, 1989). The "failed leader" does not reach the upper positive charge 

region, and thus no return strokes or recoil streamers occur. 

In order to understand how to best interpret these sub-ms ITF flashes, a more detailed 

intercomparison of the ITF and FCM data was performed. Figure 3.7 is the same as 

Figure 3.5, except that ITF flashes with durations less than 1 ms also have been excluded 

from the analysis. Not surprisingly, ITF flash rates have been reduced, but the ITF still 

counts many more flashes than the CHILL FCM. Table 3.2 lists the results of correlation 

analyses of flash rates from the two sensors. The format is the same as Table 3.1, except 

now ITF flashes lasting less than 1 ms have been excluded. In all cases, correlations have 

improved over those presented in Table 3.1, which includes the sub-ms flashes. 

As mentioned in Chapter 2, the CHILL FCM data are sampled at 1 kHz. Thus, the 

FCM cannot possibly resolve events associated with electrostatic field changes lasting less 

than 1 ms. Indeed, undersampling of events lasting longer than 1 ms, say up to 10 ms, will 

also be a problem with this sensor. Because the correlations improve when the sub-ms 

ITF flashes are excluded from the analyses, the sub-ms flashes likely are not being 

detected with good efficiency by the FCM. The FCM cannot detect anything shorter than 

1 ms, so this implies that the sub-ms flashes also tend to be associated with electrostatic 

field changes lasting less than 1 ms. Another possibility is that these events may last 

lionger than 1 ms but are not associated with substantial electrostatic field changes, so that 

they do not register well on the flat plate. 
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If. the sub-ms ITF flashes were actually parts of longer flashes that do not radiate 

strongly in the VHF, then these flashes probably should register electrostatic field changes 

lasting significantly longer than 1 ms, on average. Recall from previous discussions that 

such flashes could consist of positive discharges and return strokes. These events 

commonly are registered on this type of FCM (Carey and Rutledge, 1997), so a significant 

percentage of them should be detectable in the FCM data. A fellow member of the radar 

meteorology group at Colorado State University, J. Ryan, looked for evidence of sub-ms 

ITF flashes that were isolated in time and space in the CHILL FCM data from 12 July 

1996. He considered 80 such ITF flashes, lasting between 23 and 500 µs, and having 

mean horizontal positions within 35 km of the CHILL FCM. He found no signals 

corresponding to these flashes, which is what would be expected if such flashes were 

associated with electrostatic field changes lasting less than 1 ms (J. Ryan, private 

communication, 1997). This, along with the observed trend of improved correlations when 

the sub-ms ITF flashes are excluded, implies that these sub-ms ITF flashes are not parts of 

longer, non-VHF emitting flashes, so this possibility is ruled out on a tentative basis. 

If the sub-ms ITF flashes are actually parts of longer, detected discharges, and thus are 

being falsely classified as separate discharges by the ITF, then removing them from the 

correlation analyses should improve the correlations, as the ITF would be counting 

individual flashes twice or more, whereas the FCM, if it detects the flashes, would count 

them only once. Thus, this possibility cannot be ruled out because it is consistent with the 

observed improvement in flash rate correlations when the sub-ms ITF flashes are 

excluded. 
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If the sub-ms ITF flashes are in fact true short-duration discharges with electrostatic 

field changes lasting less than 1 ms, then the FCM could not detect them. Thus, when 

they are removed from the ITF/FCM intercomparison, correlations should improve, as is 

observed. Thus, this hypothesis is consistent with the data analysis results as well. 

So there are two possible hypotheses consistent with the observed increase in 

correlations when the sub-ms ITF flashes are excluded from analysis. Note, however, that 

the hypothesis that these sub-ms flashes are parts of longer, detected and classified ITF 

flashes does not explain the large number of observed sub-ms flashes which are isolated in 

both time and space. These isolated flashes probably can be interpreted only as true 

individual short-duration IC flashes. Non-isolated flashes could be explained by either 

hypothesis, or perhaps a combination of both. 

3.4 How the ITF data will be interpreted in this study 

There are two issues to consider when interpreting the ITF data in terms of flash rates. 

The first is the IC/CG classification problem discussed in Section 3.1. The second is the 

sub-ms ITF flashes which were examined in Section 3.3. 

The NLDN is reported to have close to a 90% detection efficiency in northeastern 

Colorado (Cummins et al., 1996). Additionally, no positive CGs with peak currents less 

than 7 kA were observed, so all NLDN CGs from both days are likely true CGs and not 

mis-classified ICs. In addition, the NLDN is generally accepted by most researchers to be 

the current "industry standard", having been used in a large number of published research 

studies which are too numerous to mention here. 
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In contrast, the ITF to a certain extent is still under development, particularly its flash 

classification algorithm. The algorithm used to classify a given flash as a CG is essentially 

an altitude threshold on a leader process. Recall that the CG leader stroke resembles a 

spider lightning discharge to a VHF interferometer like the ITF. Spider discharges, being 

IC flashes, typically have higher mean altitudes than CG leaders. Thus, an altitude 

threshold would work to distinguish the two provided the ITF does a good job in 

resolving altitude differences. However, as discussed in Chapter 2, the ITF had unusually 

poor elevational resolution during STERAO-A. Compounding this problem is the 

generally poor low-elevation angle resolution of the ITF, regardless of any adc:litional 

problems. Thus, it is best to suspect the ITF of error in classifying CGs rather than the 

NLDN. 

The sub-ms ITF flashes, as stated before, are probably either components of longer, 

detected and classified ITF flashes, or they are individual short-duration flashes in their 

own right, or perhaps some combination of the two. In any case, eliminating them from 

consideration reduces the possibility of counting the same flash twice ( or more), and 

reduces the possibility of counting short-duration flashes as part of the standard (i.e., long-

duration) IC flash rate. Given the large uncertainty regarding the nature of these short-

duration discharges, it is probably best to disregard them for the purposes of this study 

since it is geared toward using the ITF data to compute IC flash rates, not looking at the 

physics of the lightning discharge itself, or exploring the natures of the different types of 

lightning discharges. Also, removing these discharges from consideration leaves a flash 

duration spectrum more in accord with past studies involving IC lightning (e.g., Uman, 

1987), so flash rates are more comparable to previous studies. 

50 



These short-duration flashes, if they exist in reality, are certainly worth studying in their 

own right, though they will not be the focus of this thesis. However, in order to better 

examine the implications of removing them from consideration, Figure 3.8 was developed 

using the latest version of the ITF data, the version used in the radar/lightning case studies 

(though not the same version used in the lightning sensor intercomparisons in this 

chapter). It shows IC and sub-ms 5-minute flash rates for 10 July 1996. No editing of the 

flashes has occurred ( except for removing from consideration those flashes classified by 

the ITF as CGs); they have merely been categorized by flash type. The sub-ms category 

contains all flashes lasting less than 1 ms, and the IC flash category contains all IC flashes 

lasting 1 ms or more. Note that all sub-ms flashes were classified as ICs by the ITF. In 

general, the sub-ms flash rate trends the IC flash rate fairly well. The square of the 

correlation coefficient for these flash rates is 0.610. This is consistent with the sub-ms 

flashes being, at least in part, components of longer detected flashes, as they would be 

very related then. However, if the sub-ms flashes are, at least in part, individual short-

duration IC discharges, this result is still consistent provided the short- and long-duration 

flashes are related somehow. Thus, the truth of either possible explanation for the sub-ms 

ITF flashes cannot be discerned completely. However, it is apparent that the relatively 

high correlation between the sub-ms and regular IC flash rates implies that removing the 

sub-ms flashes from consideration will not change IC flash rate trends significantly, though 

absolute flash rates will change. As this study is most interested in flash rate trends, 

removing the short-duration discharges from consideration will not make a major impact 

on results. 
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Thus, based on this chapter's analyses and discussion, the following method will be 

used in this study to determine IC and CG flash rates. Flashes lasting less than 1 ms will 

be removed from the processed ITF flash data. Then, NLDN CGs will be individually 

matched to remaining ITF flashes, regardless of whether the ITF classified them as CGs 

or /Cs, following the method outlined in Section 3.1. Those ITF flashes matching NLDN 

CGs in time will be removed from the /TF data as well. The remaining ITF flashes will 

be considered /Cs, and the NLDN CGs will form the CG data set. 

This algorithm thus removes the sub-ms flashes from any further consideration. 

Though this eliminates the ability to consider any possible individual short-duration ICs, it 

also avoids the problem of possibly overcounting ICs because some of the sub-ms ITF 

flashes may be components of longer, detected flashes. This algorithm also avoids relying 

on the suspect CG flash classification method of the ITF. Another problem that the 

algorithm avoids is cases where CGs are detected and classified by the NLDN, but are not 

detected at all by the ITF. The algorithm ensures that these NLDN-only CGs will remain 

in the CG data set. 

One possible source of error in this algorithm is the fact that the NLDN 's detection 

efficiency is not 100% in northeastern Colorado. Thus, the NLDN may fail to detect a 

CG, but that CG may be detected by the ITF. Such a flash, by this algorithm, would be 

falsely considered an IC. However, the NLDN's detection efficiency in northeastern 

Colorado is around 90% or more (Cummins et al. , 1996), so it is quite high. However, 

this estimate has never been independently verified in this specific region, so any possible 

error in this estimate, or whether such an estimate is storm-dependent, is unknown. 
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However, there is no other estimate available, and there is no reason - beyond healthy 

skepticism - to suspect this estimate to be in error. Hence, it must be used. 

Based on this detection efficiency estimate, the error associated with this algorithm is 

not likely to be much more than 10% of the CG population, which should not seriously 

impact CG flash rate trends. Because both storms in question were very poor producers 

of CGs in the first place, this should not impact the ( often high) IC flash rates significantly. 

Any error associated with this algorithm is probably minuscule compared to the ·error 

associated with applying the ITF CG classification method used by ONERA. Figures 3.1 

through 3.4 show that fact very clearly. 

This approach is different than that of Lang et al. (1997), who computed total flash rate 

for the 10 July 1996 storm by editing out of the ITF data only those flashes that were not 

associated with the storm of interest. Sub-ms flashes and ITF "CGs" were included in the 

total flash rate. However, as will be seen in Chapter 4, the flash rates computed by Lang 

et al. trend the results of this study quite well, mainly because the sub-ms flashes trend the 

long-duration ICs so well, and because NLDN CG rates were not high enough to impact 

total flash rates significantly. 
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ITF Flash Filterin2 Distance (Ian) 
20 
25 
30 
35 
40 

0.935 
0.912 
0.853 
0.786 
0.774 

Table 3.1: Square of the correlation coefficient, p2
, between one-minute ITF and CHILL 

FCM flash rates for the 12 July 1996 storm as a function of the filtering distance (from 
CHILL) applied to the ITF data. Flashes outside this distance are not considered in the 
ITF flash rate calculations. 
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ITF Flash Filtering Distance (km) 
20 
25 
30 
35 
40 

0.952 
0.934 
0.897 
0.856 
0.851 

Table 3.2: Same as Table 3.1 except that ITF flashes lasting less than 1 ms have been 
excluded from flash rate calculations. 
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Figure 3.5: One-minute ITF and CHILL FCM total flash rates as a function of time for the 12 July 1996 storm. ITF flashes farther than 
35 km from the CHILL radar have been excluded from ITF flash rate calculations. 
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CHAPTER4 

ANALYSIS OF THE 10 JULY 1996 STORM 

The storm of 10 July 1996 represents an excellent example of a major transition in 

storm structure, as the storm evolved from a multicellular line, to a single-cellular storm 

with characteristics common to supercells. Cloud-to-ground (CG) lightning rates were 

low throughout its lifetime, making it a good case for which to study low CG production 

by intense storms. 

4.1 Atmospheric conditions 

Figure 4.1 shows data from a mobile ClASS sounding launched from the Fort Morgan 

Airport at 1450 MDT on 10 July 1996. Plotted on the Skew~T/Log-p diagram are vertical 

profiles of temperature, dewpoint, and winds. The sounding appears to be relatively dry. 

The CAPE is 792 J kg"1, the shear over the lowest 6 km is 14.4 m s·1, and the Bulk 

Richardson Number (BNR) is 7.7. The BNR is very low but is suggestive of p ssible 

supercellular development (Weisman and Klemp, 1982). It is so low because the CAPE is 

also low. The ambient wind shear is weak as well. However, the Lifted Index is -2.8, 

which implies that convection was at least possible. But overall, the atmospheric 

environment did not appear conducive to the development of intense convection. 

However, this sounding may not have been entirely representative of the storm's 

environment, since the storm initially developed on the order of 80-90 km north of the 
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sounding launch location. Also, conditions could have changed between the time of the 

sounding and the time of storm development (i.e., a short wave may have propagated 

through the region after the sounding was taken). Note the relatively weak northwesterly 

winds at mid-levels. These may have been responsible for the storm's slow propagation to 

the south and east after it developed. 

4.2 Overview of storm evolution and major transition 

Figure 4.2 (a-i) shows a series of horizontal cross-sections of reflectivity (dBZ) 

obtained from the CSU-CHILL radar at 0.5 km AGL for the 10 July 1996 storm. The 

cross-sections are spaced approximately 30 minutes apart . When full-volume coverage of 

the storm began at 1629 MDT, the storm consisted of three cells, arranged in a line from 

northwest to southeast. At this point the storm was in southwestern Nebraska, near the 

town of Kimball. Because of its initial proximity to this town, the storm also shall be 

referred to as the Kimball storm. At 1629 (Figure 4.2a), the northwest cell (Cell 1) is 

separated from the other two cells by approximately 20 km. The other two cells (Cells 2 

and 3) are enclosed by a common border of 30-40 dBZ reflectivity. However, the 

strongest cell is Cell 2, with low-level reflectivities peaking at greater than 50 dBZ. By 

1701 MDT (Figure 4.2b), the Cell 1 was nearly gone, and Cell 2 had absorbed Cell 3. At 

this time, another cell had developed between Cells 1 and 2. This cell (Cell 4) had reached 

over 40 dBZ in low-level reflectivity at this time. Cell 2 was quite intense, with greater 

than 50 dBZ reflectivities encompassing a relatively large area, as well as a well-defined 

low-level notch in the core. Thirty minutes later, at 1731 MDT (Figure 4.2c), Cell 1 was 

completely absent, and Cell 4 had developed to greater than 50 dBZ reflectivity at 0.5 km 
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AGL. Cell 2 was still strong, though the reflectivity notch was gone. Both cores (Cells 2 

and 4) were enveloped by a common 40-50 dBZ border, giving the appearance of a short, 

but intense squall line segment. 

By 1803 MDT (Figure 4.2d), significant growth of new cells had occurred on the 

northwestern flank of the aggregate storm, and the azimuthal boundary of the radar scan 

was increased to scan these developing cells. Thus, Cells 2 and 4 from 1731 now 

comprised the southeasternmost cells of the line. Here there were still two separate 

reflectivity cores, but of these two cells, Cell 4 had decreased in intensity, while Cell 2 was 

still intense, and had elongated to a length of approximately 20 km. The developing cells 

(Cells 5 and 6) comprised the northwestern flank of the storm, and of these cells Cell 6 

was the most intense in terms of low-level reflectivity at this time. Note the weak echo 

well to the southeast of the main line. This is a manifestation of the huge ( radar-detected) 

anvil of this storm, which was advected to the south and east of the main line. This anvil 

was present in many low-elevation scans, indicating the presence of a significant area of 

stratiform rain/virga. 

By 1834 MDT (Figure 4.2e), major changes had occurred in the storm complex. Cell 2 

in the line from 1803, which at that time seemed quite intense, had dissipated, and the 

strongest reflectivity core was now Cell 4, which at 1803 seemed rather weak The 

northernmost cells (Cells 5 and 6) had weakened as well, with Cell 6 absorbing 5. 

Another cell, Cell 7, formed behind Cell 6. 

At 1900 MDT (Figure 4.2t), the storm complex had redeveloped on its northern flank, 

and the strongest cell at 1834, Cell 4, was now quite weak Cell 6 was the most intense in 

terms of low-level reflectivity. By 1932 MDT (Figure 4.2g), the radar scan continued to 
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scan a larger sector to the west, in order to obtain data for a weak cell, Cell 8, that formed 

on the northern flank after 1900. The strongest cell complex from 1900, Cell 6, now had 

a large area of greater than 50 dBZ reflect ivity at 0.5 km AGL. There was also a well-

defined notch on its eastern flank, suggesting strong near-surface inflow. It was around 

this time that the storm exhibited characteristics of a supercell, including being single-

cellular, having mid-level rotation (as indicated by Doppler velocity data), having a low-

level reflectivity notch, and having a Weak Echo Region (WER). This similarity to a 

supercell will be discussed in more detail later. 

Between 1932 and 2001 MDT, the weak northern cell (Cell 8) dissipated, and the main 

cell (Cell 6) split into two main reflectivity cores, a northern one (Cell 9) and a southern 

one (Cell 6). Because the storm was moving mostly southward during this period, the 

southernmost cell would be considered the "right-mover", and the northernmost offshoot 

the "left-mover". This kind of storm splitting is typical of supercells (Weisman and 

Klemp, 1982, 1984), and usually the right-mover survives because the storm dynamics 

forced by the ambient shear profile favors the development of the right-mover and the 

dissipation of the left-mover. Similar behavior was observed in this case. By 2001 MDT 

(Figure 4.2h), the right-mover (Cell 6) was still above 50 dBZ at 0.5 km AGL, but the 

left-mover (Cell 9) was dissipating. Cell 6 redevelops one last time, but by 2030 MDT 

(Figure 4.2i) it was well into its dissipating stage. In fact, this storm, which appeared 

supercellular only a few minutes earlier, dissipated so quickly that radar coverage was 

terminated after the 2039 MDT volume scan due to a lack of ITF-inferred lightning and 

because maximum near-surface retlectivities were under 40 dBZ. 
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Figure 4.3 (a-b) shows a vertical cross-section of reflectivity (Figure 4.3a) and single-

Doppler velocity (Figure 4.3b) constructed from the radar volume begun at 1932 MDT. 

The cross-section is taken along the 45° azimuth. In Figure 4.3a, a Weak Echo Region 

(WER) is clearly visible at approximately 80 km from CHILL and 2 km AGL. The high 

reflectivities above this WER are suggestive of a strong updraft in this region suspending 

large precipitation particles aloft. From Figure 4.3b, strong convergence along this radial 

exists in the vicinity of the main precipitation shaft. (Negative velocities are toward the 

radar and positive velocities are away.) The low-level outbound velocities on the radar 

side of this shaft are suggestive of significant inflow to the WER/updraft region. Note the 

significant divergence aloft, above the core. The zero velocities in the areas of deleted 

reflectivity data are a consequence of the ~P calculation program used on the radar data 

after it has been edited. The program unfortunately sets missing or deleted velocity data 

values to zero. Note, however, that in Figure 4.3a, the white pixels in the reflectivity core 

are not due to missing data but instead due to the reflectivities being higher than the given 

scale can represent. The existence of a WER and the significant mid-level convergence 

are suggestive of a supercell. 

Figure 4.4 (a-b) show a horizontal cross-section of reflectivity (Figure 4.4a) and single-

Doppler velocity (Figure 4.4b) at an elevation angle of 3.5° for the radar volume starting 

at 1932 MDT. As can be seen from Figure 4.3a, the main core of the storm resides along 

the 45° azimuth, justifying the choice of this azimuth in Figure 4.3. Note that Figure 4.4 

uses the same magnification as Figure 4.3, and distances are in km. In the velocity data, 

there appears to be a pair of cyclonic couplets in the general vicinity of the core. The first 

resides at a distance of approximately 80 km, at an azimuth just less than 45°. The second 
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exists at about the same distance, but further to the west along the 40° azimuth, and is 

more sharply defined than the first. These velocity couplets are suggestive of mid-level 

(approximately 5 km AGL at this distance and elevation angle) rotation. Such mid-level 

rotation, known as a mesocyclone, is present in all supercells by definition. 

To summarize storm evolution, this storm complex began as a multicellular line, but late 

in its life it became single-cellular, and even displayed aspects common to supercells. 

However, this "supercellular" stage was very short-lived, and thus could not be described 

as quasi-steady. Since longevity and steadiness of strength are requirements for storms to 

be identified as supercells, this storm probably was not a true supercell during this stage. 

Thus, it shall be called a "quasi-supercell" at this time. This type of ambiguity in storm 

classification has been noted by other researchers ( e.g., Burgess and Lemon, 1990). In 

fact, Foote and Frank (1983) have suggested the creation of an intermediate category 

between multicell and supercell : the Westplains storm. Regardless of what it should be 

classified as, it is clear that this storm underwent a major transition during its long lifetime, 

which makes it a prime candidate for study in this thesis. 

4.3 Comparison of lightning and bulk precipitation rates 

Five-minute IC flash rates from the ITF were calculated following the method outlined 

in Chapter 3. Five-minute NLDN CG rates also were calculated for this storm complex. 

The result is Figure 4.5, which shows these rates as functions of time. There are several 

notable features in this plot. The first is that the entire storm complex, throughout its 

lifetime, produced relatively few CGs ( and the overwhelming majority of these were of 

negative polarity, so CG rates were not separated into positive and negative CG 
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components). The peak flash rate was 9 in a 5-minute period, which is not very high 

(Uman, 1987), especially given the magnitude of this storm as viewed by radar. This peak 

flash rate occurred near 1805 MDT. Before and after this time, CG rates were quite low, 

generally varying between 0 and 2 per 5-minute period. After 1835 MDT, CGs were 

almost nonexistent. Throughout the storm's lifetime, there were several time periods, 

lasting anywhere from 10 to 30 minutes, where CGs were not produced at all. The most 

striking examples of these are the periods of 1640-1710 MDT and 1920-1945 MDT. 

Turning to the ITF data, this second time period coincided with a maximum in the IC flash 

rate, with IC flash rates during this time often 200 or more per 5-minute period. This is 

also the time when the storm exhibited the most supercellular characteristics, with mid-

level rotation and a Weak Echo Region (WER). Before this time, when the storm 

complex was more multicellular, IC flash rates were approximately half these peak values. 

Indeed, between 1810 and 1910 MDT, IC flash rates were remarkably steady, averaging 

near 20 per minute throughout the hour, with only minor fluctuations. Before 1810, IC 

rates were much less steady, undergoing two major peaks with a major lull in between. 

After the IC flash rates reached their maximum values around 1930, they fell off rapidly 

and then underwent another major surge, centered on 2005 MDT. After this time the IC 

rates decreased quickly as the final cell in the storm complex (based on radar observations) 

collapses. 

Figure 4.6a shows NLDN CG ground strike locations overlaid on low-level reflectivity 

for the 1803 MDT volume scan. CGs shown are those that occurred during the volume 

scan period (approximately 6 minutes in duration). Note that from Fig. 4.5, this time 

period nearly coincided with the CG rate peak for the storm. It is apparent that most of 
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the CGs were not associated with the most intense cells along the line. Instead, the 

northernmost cells, which were approaching maturation as their cores descended toward 

the ground, were producing the most CGs during this time. The southernmost cells are 

associated with a single positive CG. Figure 4.6b is the same as Fig 4.6a, except for the 

1809 MDT volume scan, also a time representative of the storm's peak CG output. The 

cores of the northernmost cells appeared to have reached the ground, as low-level 

reflectivities had risen in these cells. The southernmost cells were still intense. Again, 

most CGs were associated with the weaker cells (in terms of low-level reflectivity), while 

a single positive CG was associated with the southernmost cells. So it appears that even 

during the peak CG production period of this storm, CGs were associated with cells just 

reaching maturation, not with the most intense cells along the line. 

Figures 4.7a and 4.7b are similar to Figures 4.6a and 4.6b, respectively, except that 

mean horizontal positions of ITF ICs are plotted instead of NLDN ground strike locations. 

It is clear that the more intense southern cells are producing more I Cs than the maturing 

northern cells. 

To gain a better sense of the vertical extent of each cell around this time, Figure 4.8 ( a-

d) was created. Each plot is a vertical cross-section of reflectivity for the 1809 MDT 

volume taken along the given distance north of the CHILL radar. Figure 4.8a is for the 

northernmost cell in the line from Figure 4.7, Figure 4.8b is for the next cell to the south, 

and so on through Figure 4.8d, which is for the southernmost cell along the line. From 

Figure 4.8 it is apparent that, although the vertical extents of the 30 dBZ contours for all 

cells are similar ( approximately 10.5 km AGL or slightly greater), the vertical extents of 

the 50 dBZ contours for the two southernmost cells, the ones which produced very few 
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CGs around this time, are much greater than the northern two cells, which accoun ed for 

most of the CGs. The low-CG cells show 50 dBZ up to 6 km AGL or more, whereas the 

CG-producing cells either lack 50 dBZ altogether (as in Figure 4.8b), or it extends to a 

significantly lower altitude ( 4 km in Figure 4.8a). This is strong evidence that the low-CG 

cells were much more intense than CG-producing ones, and that the internal structures of 

the two types of cells were different, even though both cell types extended to similar 

heights. Thus, throughout the lifetime of this storm, very few CGs can be attributed to the 

most intense cell(s) at any specific time. 

Using the methods detailed in Chapter 2, low-level (0.5 km AGL) rain and hail mass 

fluxes were calculated for each CHILL radar volume obtained during this storm. Total 

radar-inferred precipitation mass fluxes, along with 5-minute ITF IC flash rates, are 

plotted versus time in Figure 4.9. Note that these values are for the entire storm complex, 

not any individual cell. ITF IC rates are plotted at the start of each 5-minute period, and 

total mass fluxes are plotted at the start of each volume scan. Note that this mass flux 

includes both rain and hail. Following the method of Chapter 2, these rates were 

determined separately for each precipitation type, then were added together to create 

Figure 4.9. Recall that the ITF IC flash rates exclude all flashes lasting less than 1 ms. 

Before any trends are inferred from this figure, it is important to note two times when 

radar volume scan coverage was opened up to the west to include more storm-associated 

cells that were in their developing stages. These times were 1751 MDT and 1907 MDT. 

For several minutes before these times, precipitation rates are artificially low because the 

radar was not scanning the entire storm complex, but not excessively low since the 

excluded cells were still in their developing stages and probably would not have made 
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major contributions to the total precipitation flux. Thus, the trends around these times are 

not necessarily corrupted, but the magnitudes of the trends may be misleading. The dip in 

precipitation flux around 1745 probably is somewhat more severe than it was in reality, 

because the developing cells to the northwest were not being scanned at this time. Also, 

the peak that occurs at 1907 is more sharply defined than it should be, because the 

immediately previous volumes excluded another developing cell to the northwest. Despite 

these issues, the overall trends should be correct, and there probably is little risk in 

interpreting them more in terms of storm-related phenomena, rather than the effects of 

radar scanning strategies. 

From Figure 4.9, IC flash rates and near-surface precipitation mass fluxes appear to be 

highly correlated at times, and at other times the low-level precipitation flux appears to lag 

the IC flash rate by up to several minutes. The most notable example of the precipitation 

flux lagging IC flash rate occurs early in the analysis period, when IC flash rate peaks near 

1720 MDT and precipitation flux doesn't peak until just before 1730 MDT. Subsequent 

peaks in IC flash rate and precipitation flux - around 1810, 1825, and 1840 MDT -

appear to line up roughly in time. Precipitation flux again lags IC flash rate from roughly 

1915 MDT through the end of the observational period. Note, however, that the final 

peak in the storm's IC flash rate, around 2005 MDT, is associated with a very small peak 

in the precipitation mass flux. At this time the storm consisted of a single cell, so it is 

perhaps not surprising that the peak should be smaller than earlier times when there were 

more cells. Recall that flash rates and precipitation fluxes are for the entire storm 

complex, not just individual cells. The minima in both IC flash rates and precipitation 

mass flux that occur between 1930 and 2000 MST coincide with the storm splitting, which 
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was discussed earlier. The final peak in the precipitation flux and flash rate coincides with 

the right-mover redeveloping while the left-mover dissipated. 

Figure 4.10 shows the storm's separate rain and hail mass fluxes as functions of time. 

This plot was created by separating the contributions of the two classes of hydrometeors 

to the total precipitation mass flux, as detailed in Chapter 2. By comparing Figures 4.9 

and 4.10, it is obvious ( and not surprising) that the rain flux contributes the most to the 

total precipitation mass flux, with the hail contribution approximately one-tenth the rain 

contribution. Thus, no further discussion of the rain flux trends will be presented since 

these trends are nearly identical to the total precipitation flux trends, which have already 

been discussed. Turning to the hail flux trends, it is apparent that they are more variable 

than the rain (and hence total precipitation flux) trends. However, the hail fluxes are still 

relatively well-correlated with the rain fluxes, with some exceptions. · The major exception 

occurs just after 2000 MDT, when the rain flux achieves its last major peak, but the hail 

flux is at a minimum. Also, the relative amplitudes of the hail and rain maxima and minima 

do not match well. For example, a minor, perhaps insignificant (in terms of radar 

estimation error) peak in rain flux at1827 MDT is coincident with a relatively sharp peak 

in hail flux. 

By comparing Figures 4.9 and 4.10, it can be seen that IC flash rates and low-level hail 

fluxes are well correlated, though there is a tendency for the low-level hail flux to lag the 

IC flash rate at times, especially near the beginning and end of radar coverage. 

Recall, however, that rainfall estimates are subject to at least a 10-20% error, and hail 

rate estimates are subject to errors on the order of 50%, possibly more. Thus, some of the 
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smaller peaks and troughs in the flux plots are likely within the error bars of this analysis, 

though it is interesting that the variations still trend the IC flash rate well. 

This precipitation flux calculation algorithm was compared with the one described by 

Carey and Rutledge (1997), to gain a better sense of how it compares to that technique. 

The method of Carey and Rutledge (1997) was applied to flux calculations for all volumes 

from the Kimball storm and compared to the present study's method in Figure 4.11, which 

shows the time history of total precipitation flux at 0.5 km AGL according to each 

method. Note that both algorithms use the same methods to calculate hail fluxes, but their 

rain flux calculation techniques differ. Carey and Rutledge (1997) utilize Zdr as well as ~P 

and reflectivity, whereas our method uses only the latter two. It is apparent that Carey's 

and Rutledge's method almost always produced higher rain (and hence higher 

precipitation) fluxes than this method. Going back to Figure 4.10, the periods of greatest 

disagreement tend to coincide with the periods of greatest hail flux. In addition, during 

the approximately 20-minute period after 1900 MDT when agreement between the two 

methods is best, hail fluxes are low. This is consistent with hail contamination if the 

reflectivity field, upon which rain rate calculations based on Zh and Zdr critically depend, is 

affected by the presence of hail. Carey and Rutledge (1997) used the results of Golestani 

et al. (1989) to correct these calculations for hail contamination, but based on this simple 

comparison, it appears that this method still may be subject to significant hail 

contamination in certain cases. 

4.4 Identification of bulk precipitation types 
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Following the method outlined in Chapter 2, bulk hydrometeor identification was 

performed on each radar volume from this storm. To review, the following categories of 

bulk hydrometeors below the freezing level are identified by the algorithm: small ( < 2 cm) 

wet (i.e., melting) hail, small wet hail mixed with rain, large (~ 2 cm) wet hail, large wet 

hail mixed with rain, and rain alone. See Table 2.3 for a synopsis of the hydrometeor 

identification matrix. 

Based on the afternoon (1450 MDT) CLASS sounding launched from the Fort Morgan 

airport on this day, the freezing level was determined to be 3.29 km AGL (where AGL is 

defined from the elevation of the CHILL radar - 1432 m MSL). 

As mentioned in Chapter 2, the algorithm makes use of a reflectivity gradient threshold 

to avoid the possibility of Zd, bias in the gridded data. This threshold eliminates from 

consideration those grid points that have excessive reflectivity gradients. This threshold 

was set at some typical reflectivity gradients values - 10, 15, and 20 dBZ km-1• 

Additionally, sensitivity tests were performed in order to better estimate the proper 

threshold setting. For this storm, it was found that the most grid points (below the 

freezing level) fell under the category of small hail. Figure 4.12 shows the time history of 

the volume of small hail below the freezing level, as determined using the three different 

thresholds, for the 10 July storm. Clearly, agreement is superb between the different runs, 

except for some minor discrepancies at a few times. However, due to the possible errors 

in this estimation method, these differences are probably insignificant. Regardless, the 

most restrictive reflectivity gradient, 10 dBZ km-1, was used in further analysis. This more 

restrictive threshold is also appropriate because of the long range to the storm throughout 
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the obseivational period, as estimation errors caused by reflectivity gradients are more 

like I y to occur at farther ranges. 

Figure 4.13 shows the volume of small wet (i.e., melting) hail alone (i.e., not mixed 

with rain) below the freezing level as a function of time for this storm. Note that, 

although the relative magnitudes of the minima and maxima are different, the volume of 

small hail below the freezing level very closely trends the low-level radar-inferred hail flux 

in Figure 4.10. Figure 4.14 shows time histories of the volumes of small hail mixed with 

rain and rain only, below the freezing level. These volumes are much lower than the 

volumes of small hail only, suggesting that most of the significant precipitation below the 

freezing level is small hail. Large hail, and large hail mixed with rain, were not detected by 

the algorithm. Again, although the relative magnitudes are different, in general the peaks 

and troughs in small hail mixed with rain match up well with the peaks and troughs in 

small hail only. The rain-only volume trend does not line up well with either of these 

trends, but the rain-only volume is quite low, so whether any significance should be given 

to its trend is uncertain. 

Figure 4.15 shows radar-inferred areal coverage at 0.5 km AGL for small hail, small 

hail mixed with rain, and rain. Interestingly, here the overall trends in the areas of small 

hail only and rain only match up better than the trends in small hail only and small hail 

mixed with rain. 

In order to better understand the sensitivity of this precipitation identification algorithm 

to changes in category requirements, some tests were performed on a single volume, 1726 

MDT. At this time the small hail category is at its peak, both in volume below the 

freezing level (167 km3
) and areal coverage at 0.5 km AGL (19.5 km2

). The ~P threshold 
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to determine between regions of hail only, and regions of hail and rain, is 0.5 ° 1an·1• This 

threshold was lowered to 0.25 ° 1an·1• The result was that a significant portion of the 

small hail category was shifted over to the small hail and rain category. The volume of 

small hail below the freezing level dropped to 123 lan3
, while the volume of small hail 

mixed with rain grew from 20.5 to 52.5 lan3
• A similar trend was seen in the areal 

coverage of the two categories at 0.5 Ian AGL. This suggests that a significant portion of 

the small hail category may be more properly placed in the small hail and rain category. 

This would tend to increase agreement between this precipitation identification method 

and the precipitation flux method of Section 4.3, since the precipitation identification 

method found most classifiable precipitation areas to be small hail, even though the flux 

method found significant rain fluxes. However, the precipitation identification algorithm 

was not rerun for the entire storm using this lower specific differential phase threshold, 

mainly because it would have not changed the result that there was little or no radar-

detectable large hail in this storm, so that small hail accounted for most of the hail fall. 

This is perhaps the most important result of this precipitation identification study. Due to 

the subjective nature of the precipitation identification matrix, the strongest trends are 

probably real, but absolute values should be taken with less faith, as the preceding 

sensitivity study and comparison with the more quantitative flux method show. 

According to the results of Saunders et al. (1991) and Saunders and Brooks (1992) , 

extensive charge separation should not occur during collisions in a wet growth regime, 

since the rebounding efficiency goes to zero. If one accepts these results, then charge 

separation may not be very active in the cloud region above the freezing level but below 

the level of charge reversal (found to range from approximately -10 °C to -20 °C 
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depending on the laboratory study). This could suppress the development of a lower 

positive charge region that normally could provoke CG lightning. 

The radar data were examined in order to determine whether or not wet growth may 

have occurred over an extensive region in this storm. Based on several studies (Bringi et 

al., 1986; Holler et al., 1994; Waterman, 1969), it is believed that LDR values in excess of 

approximately -26 to -25 dB (at S-band frequencies) above the freezing level may be 

indications of hail; in particular, hail in a wet growth mode. Note that these enhanced 

LDR values should be co-located with an extended region of high radar reflectivity(~ 40-

50 dBZ or greater) in order to avoid artifacts caused by low signal-to-noise ratios and 

large reflectivity gradients. These results have been used by researchers ( e.g., Kennedy et 

al. , 1997) to identify probable regions of wet growth hail above the freezing level. 

In the present study, mid-level elevation angle scans from radar volumes preceding each 

major peak in the hail flux (1726, 1809, 1827, 1925, and 2019 MDT) were examined for 

extended regions of enhanced LDR values that could be signatures of wet growth hail. In 

particular, since the radar volumes were spaced typically on the order of 6 minutes apart, 

the second to last radar volume before each major flux peak was examined since the high-

elevation scans from this volume were spaced on the order of convective time scales (6-10 

minutes) from the low-elevation scans (which were the most influential in the hail flux 

calculations) from the volume occuring during the hail flux peak. 

In general, few extended regions of enhanced (i.e., -25 dB) LDR above the freezing 

level (3.29 km AGL in this case, though it may have been slightly higher inside the storm 

itself) were found. Sometimes there were a handful of contiguous gates of enhanced LDR 

that were coincident with a high reflectivity region, but overall no significant signatures 
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were found, save for the radar volume beginning at 2357 MDT (which preceded the 

second major hail flux peak at 1809 MDT). 

Figure 4.16 (a-b) shows a vertical cross-section of radar reflectivity in dBZ (Figure 

4.16a) and LDR in dB (Figure 4.16b) taken along the 50° azimuth in the 2357 MDT 

volume. This cross-section passes through the northern end of Cell 2 in Figure 4.2. 

Approximately 95 km from the radar, at a height of approximately 5 km AGL, an elevated 

high-reflectivity core is centered (indicated by the arrow in Figure 4.16). Co-located with 

this core is a an extended region of enhanced (-25 dB and greater) LDR. Note that the 

LDR scale is set such that values less than -26 dB are not displayed. The other regions of 

enhanced LDR are likely due to low signal-to-noise ratio or reflectivity gradients, but the 

region of interest probably is real since it is situated in an area of high reflectivity which 

extended significantly in both the vertical (as seen here) and horizontal (not shown) 

directions. Peak LDR values approach -21 dB here, though most values range between -

25 and -22 dB. Since this core is centered at 5 km, according to the sounding in Figure 

4.1 much of it exists above the freezing level, and below the lower limit for the charge 

revesal temperature (-20 °C). Thus, it appears that, at least at this time, significant wet 

growth could have been occuring, which may have led to reduced charge separation in the 

vicinity of the usual location of the lower positive charge region (Williams, 1989). 

4.5 Discussion and summary 

Given the uncertain and possibly large errors in hail estimation using multiparameter 

radars like the CHILL, care needs to be taken when interpreting any trends seen in the 

precipitation data. This is especially true because the storm was far from the radar (> 50 
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km throughout its lifetime) and multiparameter observations are less reliable at this 

distance. However, some general observations can be made about this case. 

When this storm was in its most supercell-like stage, around 1930 MDT, its IC flash 

rate was maximum and CGs were not detected by the NLDN. In addition, even when CG 

rates were modest, after 1800 MDT, the CGs were almost exclusively associated with 

maturing cells along the multicellular line, not with the most intense cells. 

Based on data obtained from the National Weather Service, there was one report of 1 

inch (2.5 cm) hail around 2010 MDT. This is near the time the storm complex reached its 

peak in low-level reflectivity. However, based on the radar data, large hail was likely not 

present in great quantity with this storm, and most of the precipitation could be described 

as being small hail, small hail mixed with rain, or rain. Small hail and small hail mixed with 

rain were present throughout the storm's lifetime, though amounts fluctuated with the 

growth and decay of individual cells. The trends in the output of small hail, whether alone 

or mixed with rain, tended to follow the low-level hail flux relatively well - which along 

with the lack of detected large hail suggests that, when the storm produced hail, it was 

almost exclusively small ( < 2 cm) hail. 

IC flash rates and low-level precipitation fluxes ( either rain or hail, or both) are well-

correlated, though sometimes there is a tendency for the low-level precipitation flux to lag 

IC flash rate by up to several minutes. Lags between IC flash rates and low-level 

precipitation fluxes is what would be expected from precipitation-based charging theories. 

According to these theories, as precipitation develops aloft, charge separation occurs 

which would lead to IC discharges. As the cores descend, IC discharges should decrease 

( due to increased distance between the upper positive and lower negative charge centers -
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Williams, 1989) and low-level precipitation flux should increase. This is seen in the 

Kimball storm at certain times, but normally the IC flash rates and low-level precipitation 

fluxes trend well, with little or no lag. Due to errors in the precipitation estimation 

method, as well as the IC flash rate calculations, it is unclear how much significance 

should be placed on the changes in the existence or non-existence of lag between these 

two trends. Also, these changes in lag times to some extent may be artifacts of the 

superposition of many cells, all in differing states of growth and decay, since precipitation 

fluxes and flash rates were for the entire storm complex. What is clear, however, is that 

correlation between the two trends exists, which is expected based on precipitation-based 

charging theories. 

This correlation also is consistent with the convective theory of cloud electrification 

(Vonnegut, 1963, 1982; Moore, 1977). According to this theory, strong updrafts should 

enhance the entrainment and mixing of ambient space charge, while also enhancing 

precipitation development. Thus, charge separation and subsequent IC flashing still 

should be correlated to precipitation development in some way, even though according to 

this theory charge separation need not occur during collisions between precipitation 

particles. 

Thus, to summarize, it is clear that this storm had at least one intense, active cell 

throughout almost its entire lifetime. It also featured strong enough updrafts to produce 

at least small hail throughout its lifetime, though such hail production was clearly highly 

variable. Very low production of CGs occurred throughout this storm's lifetime, but 

when CGs did occur in (modest) numbers, they were associated with cells of less intensity 

(based on comparisons of vertical cross-sections of reflectivity), while the most intense 

82 



cells favored IC discharges. In addition, at this storm's most intense stage, the quasi-

supercellular stage, IC flash rates were maximum and CGs were non-existent. All of these 

facts are consistent with the elevated dipole hypothesis of MacGorman and Nielsen 

(1991). The apparently strong updrafts of this storm were perhaps enough to loft the 

negatively charged core to a higher altitude, so that ICs were preferred over CGs. 

However, this does not explain why, when cell updrafts collapsed and the cores 

approached ground, CGs were not favored over ICs. This is perhaps where the observed 

high IC flash rates could become important. 

The IC flash rate for this storm was relatively high, averaging near 100 flashes or more 

per 5-minute period for much of the storm's lifetime. It could be possible that these high 

IC flash rates neutralized most of the charge before it began to descend, so that CGs were 

not favored even as the cores approached ground. 

It appears that, at least around 2357 MDT, significant wet growth of hail and graupel 

may have occurred. According to the results of Saunders et al. (1991) and Saunders and 

Brooks (1992), this could have reduced charge separation and suppressed the 

development (or maintenance) of a lower positive charge region, and thus may have 

suppressed CG lightning. However, extended regions of possible wet growth were not 

found at other times. Also, based on the available data, it appears that dry growth 

( corresponding to reduced LOR values) probably occurred more often than wet growth, 

due to the paucity of enhanced LOR signatures. Thus, it seems doubtful that wet growth 

could have significantly affected the charge distribution within this storm. 

Radar-inferred precipitation fluxes for this storm are not especially high, considering 

that all cells in the grid are included in the calculations, and that other severe storms have 
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exhibited higher fluxes (Carey and Rutledge, 1997). However, for precipitation current to 

substitute for lightning current, instantaneous precipitation rates may be more important, 

rather than the area- and time- averaged rates used to calculate the fluxes. However, 

throughout the storm's lifetime, peak rain rates for each radar volume are almost always 

below 60 mm hr-1
, and do not even exceed 40 mm hr-1 in many volumes. Hail rates are 

similarly low ( especially when compared to other severe storms - Carey and Rutledge, 

1997). Though these estimates are made from gridded and averaged radar data, it seems 

likely that, because of the predominance of relatively low precipitation rates throughout 

the storm's area and lifetime, instantaneous precipitation rates probably were not much 

higher than the peak values observed in the gridded data. Furthermore, similar 

precipitation rates can be observed in different storms which produce more CGs. So the 

precipitation current hypothesis, too, seems unlikely based on the available data. 

Thus, based on the available data, a reasonable explanation of the low CG production 

by this storm would be the following. For many cells in the Kimball storm, strong 

updrafts loft the negative-charge region to higher altitudes than normal. This te ds to 

favor ICs over CGs. In addition, the strong updrafts also enhance charging and 

subsequent IC flash rates. The high IC flash rates act to neutralize the separated charge, 

so that when the updrafts weaken and the cores descend, little charge is available to force 

CG flashing. This hypothesis appears to be consistent with the available data. However, 

because the other hypotheses have not been adequately tested, they cannot be ruled out 

completely. 

The implications of these results and inferences will be examined in light of the results 

of Chapter 5 (the case study of the 12 July storm), and explored further in Chapter 6. 
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Figure 4.1: Data from the mobile CLASS sounding launched from the Fort Morgan, CO, Airport at 1450 MDT on 10 July 1996. 
Plotted in skew-T/Log-p format are vertical profiles of temperature, dewpoint, and winds. 
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Figure 4.2a: Horizontal cross-section of radar reflectivity ( dBZ) at 0.5 km AGL, for 1629 
MDT on 10 July 1996. 
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Figure 4.2b: Same as Figure 4.2a except for 1701 MDT. 
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Figure 4.2c: Same as Figure 4.2b except for 1731 MDT. 
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Figure 4.2d: Same as Figure 4.2c except fo r 1803 MDT. 
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Figure 4.2e: Same as Figure 4.2d except for 1834 MDT. 
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Figure 4.2f: Same as Figure 4.2e except for 1900 MDT. 
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Figure 4.2g: Same as Figure 4.2f except for 1932 MDT. 
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Figure 4.2h: Same as Figure 4.2g except for 2001 MDT. 
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Figure 4.2i: Same as Figure 4.2h except for 2030 MDT. 
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Figure 4.3a: Vertical cross-section of radar reflectivity (dBZ) at 45.2° azimuth, for the 
radar volume beginning at 1932 MDT. Vertical scale is in km AGL; horizontal scale is in 
km from the radar. 
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Figure 4.3b: Same as Figure 4.3a except the plotted field is Doppler velocity (m s-1). 

Negative velocities are toward the radar, positive are away. 
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Figure 4.4a: Horizontal sweep of radar reflectivity ( dBZ) at 3.5° elevation, from the radar 
volume beginning at 1932 MDT. Distances are in km and azimuthal angles are in degrees. 
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5-minute period. 

99 



120 

110 

100 

90 

]' 80 

'-" ... 70 
"'O ... 60 
0 

Cl) 50 I z 
40 u 

C: 
tf8 -Cf.l 30 ·-Q 

20 

10 

0 

-10-=mmmmm'ITfflffl'll'mmmmmm'ITfflffl'll'mmmmmmnmnmmmmmmmnmmTrmmmmmmmmnmmt"" 
20 30 40 50 60 70 80 90 100 110 120 130 140 150 

Distance E-W of radar (km) 
rnna 

10 20 30 40 50 60 70 
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Figure 4.6b: Same as Figure 4.6a except for the 1809 MDT volume scan. 
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Figure 4.7a: Horizontal cross-section of radar reflectivity (dBZ) at 0.5 km AGL for the 
1803 MDT radar volume. Also shown are mean horizontal positions (marked by plus 
signs) of all ITF-detected IC lightning that occurred during the duration of the volume 
scan. 
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Figure 4.7b: Same as Figure 4.7a except for the 1809 MDT volume scan. Marked by 
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Figure 4.8a: Vertical cross-sections of radar reflectivity (dBZ) at 88 km north of the 
CHILL radar, for the 1809 MDT volume scan. 
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Figure 4.8b: Same as Figure 4.8a except at 75 km north of CHILL. 
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Figure 4.8c: Same as Figure 4.8b except at 67 km north of CHILL. 
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Figure 4.8d: Same as Figure 4.8c except at 55 km north of CHILL. 
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Figure 4.9: Time histories of radar-inferred storm complex total precipitation mass flux (rain + hail) at 0.5 km AGL and 5-minute IC 
flash rates. Fluxes are plotted at the start of each radar volume, and flash rates are plotted at the start of each 5-minute period. 
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Figure 4.10: Time histories of radar-inferred storm complex total rain and hail mass fluxes at 0.5 km AGL. Fluxes are plotted at the 
start of each radar volume. 
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Figure 4.11: Comparison betwt!en radar-inferred storm complex total precipitation fluxes at 0.5 km AGL, calculated via the method of 
the present study and via the method of Carey and Rutledge (1997). 
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Figure 4.12: Comparison of radar-inferred volumes of small ( < 2 cm) hail below the freezing _level, for three different reflectivity 
gradient filtering thresholds. 
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Figure 4.13: Time histories of radar-inferred volume of small, wet hail below the freezing level for the 10 July 1996 stonn. 
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Figure 4.14: Time histories of radar-inferred volumes of small hail mixed with rain and rain only, below the freezing level. 
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Figure 4.15: Time histories of the areal coverage at 0.5 km AGL of small hail only, small hail mixed with rain, and rain only. 
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Figure 4.16a: Vertical cross-section of radar reflectivity (dBZ) along the 50° azimuth for 
the volume beginning at 2357 MDT. The horizontal scale ( distance from the radar) is in 
km, and the vertical scale ( distance AGL) is in km. The arrow denotes the region of 
probable wet growth. 
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Figure 4.16b: Same as Figure 4.16a except for LDR (dB). Note that LDR values below 
-26 dB are not displayed. 
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CHAPTERS 

ANALYSIS OF THE 12 JULY 1996 STORM 

The storm of 12 July 1996 provides another example of a major transition in storm 

structure, as the storm evolved from an intense, multicell, hail-producing storm to a weak 

rainstorm, and eventually to stratiform precipitation. This transition was also clearly 

distinguishable in the cloud-to-ground (CG) lightning data, with CG flash rates rising 

sharply after the storm transitioned to the less intense form. Before this, CG flash rates 

were low, and comparable to the 10 July 1996 storm. 

5.1 Atmospheric conditions 

Figure 5.1 shows data from a mobile CLASS sounding launched from the Fort Morgan 

Airport at 1356 MDT on 12 July 1996. Plotted on the Skew-T/Log-p diagram are vertical 

profiles of temperature, dewpoint, and winds. The sounding appears to be somewhat 

more moist than the 10 July 1996 sounding. The CAPE is only 441 J ki1. the shear over 

the lowest 6 km is 13.6 m s-1, and the Bulk Richardson Number (BNR) is 4.7. The BNR 

is even lower than 10 July. It is suggestive of possible supercellular development 

(Weisman and Klemp, 1982), but again it is so low because the CAPE is also low. The 

ambient wind shear is weak as well. However, the Lifted Index is -3.45, which is greater 

than 10 July and implies that convection was at least possible. But overall, the 

atmospheric environment did not appear conducive to the development of intense 
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convection. However, this sounding may not have been entirely representat ive of the 

storm's environment, since it initially developed on the over 100 km northwest of the 

sounding launch location. Also, conditions could have changed between the time of the 

sounding and the time of storm development ( e.g., a short wave may have propagated 

through the region after the sounding was taken). The steering winds appear to be mostly 

westerly, whereas the storm itself traveled to the southeast. This is perhaps further 

evidence that the sounding was not representative of the storm environment. 

5.2 Overview of storm evolution and major transition 

Figure 5.2 ( a-h) shows horizontal cross-sections of radar reflectivity ( dBZ) obtained 

from the CSU-CHILL radar at 0.5 km AGL for the 12 July 1996 storm. The cross-

sections are approximately 30 minutes apart. Full radar volume coverage of the storm 

began at 1647 MDT. At this time the storm was over the Cheyenne Ridge in extreme 

southern Wyoming. It then moved to the southeast toward the CHILL radar, passing just 

east of the radar site, and continued moving to the southeast away from the radar. In its 

early stages it was relatively well-positioned in the western lobe of the interferometer 

(ITF). However, as it approached CHILL, its eastern extent crossed the baseline of the 

ITF into the eastern lobe, while the western half of the storm remained in the western lobe. 

After the storm passed CHILL it moved beyond the southern boundaries of either ITF 

lobe. 

At 1658 MDT (Figure 5.2a), the storm mainly consisted of five distinct cells or groups 

of cells. (Cell groups will be referred to as "cells" for simplicity.) The southern central cell, 

Cell 1, was the most intense, in terms of the areal extent of its low-level reflectivity. The 
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cell immediately north of Cell 1, Cell 2, also was strong. The other cells in the storm 

complex - Cells 0, 3,- and 4 - were much less intense. 

By 1730 MDT (Figure 5.2b), Cell 4 had intensified, while Cells 1 and 2 had decreased 

in strength. The other cells from the 1658 MDT observation period had predominantly 

dissipated, or were not easily distinguishable within the large area of contiguous echo. 

Between this time and 1804 MDT (Figure 5.2c), Cell 4 continued to strengthen, and an 

additional cell, Cell 5, had developed on its forward flank (to the southeast) and began to 

merge with Cell 4. To the east of these cells a large contiguous echo region persisted, 

with maximum dimensions of approximately 40-50 km in either direction. Many weak 

cells continued to be embedded within this region of echo. 

From this time until 1832 MDT (Figure 5.2d), Cell 5 completed its merger with Cell 4, 

and another cell, Cell 6, formed on the forward flank of the main cell. Within the large 

contiguous echo region, a weak cell - Cell 7 - began to form and dominate the area. At 

1855 MDT (Figure 5.2e), the storm complex was divided into two main parts, the western 

and the eastern. The western region was comprised of Cells 4 and 6, . which were 

undergoing a merger. These cells were quite intense, with extended areas of 60 dBZ and 

greater reflectivity at 0.5 km AGL. The eastern region was comprised mostly of 

stratiform echo with some embedded weak cells (Cell 7) which had not yet reached 50 

dBZ in the low-level reflectivity. 

By 1931 MDT (Figure 5.2f), Cells 4 and 6 had merged, and weakened. Cell complex 4, 

which comprised the western region of the storm, consisted of three distinct (> 50 dBZ) 

cores. The eastern region had continued to shrink in areal coverage, but Cell 7 had 

intensified and was now above 50 dBZ at 0.5 km AGL. 
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After this time, at 1959 MDT (Figure 5.2g) and 2031 MDT (Figure 5.2h), the storm 

complex (i.e., both Cells 4 and 7) weakened, though by 2031 Cell 4 had re-intensified to 

some degree on its western flank. The eastern region of the storm complex, the region 

once occupied by Cell 7, featured much weaker convection by 1959 and appeared to be 

comprised largely of stratiform echo with some very weak embedded convection (by 2031 

MDT). After the volume scan starting at 2057 MDT radar coverage was terminated 

because peak low-level reflectivities were below 50 dBZ throughout the storm, and the 

storm was well south of the ITF lobes. 

To summarize storm evolution, when full radar volume coverage was begun, the storm 

complex was very large and multicellular. Throughout its lifetime, the storm complex 

remained multicellular, usually with one cell dominating much of the reflectivity pattern, 

though there also were other intense cells at times. After 1900 MDT the storm complex 

continued to persist in some form for over 2 hours, even though it featured lower peak 

reflectivities, over a smaller area, than before this time. This transition in storm structure 

will be examined in greater detail in the next few sections. 

5.3 Comparison of lightning and bulk precipitation rates 

Figure 5.3 shows 5-rninute CG lightning rates as functions of time for the entire storm 

complex, separated into positive and negative CG components. The lifetime of this storm 

can be separated into two relatively distinct phases of CG lightning. In the first phase, CG 

flash rates for either polarity were quite low, typically less than 5 per 5-rninute period. 

During this phase a large percentage of the CGs were of positive polarity, on the order of 

50% (although total CG flash rates were low). However, after 1900 MDT, positive CG 
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rates remained similar for less than an hour and then declined to 0 until near the end of 

radar coverage. Negative CG flash rates rose sharply, peaking at 25 per 5-minute period 

at 1935 MDT, then declined to more modest values late in the storm complex 's lifetime. 

Following the method of Chapter 2, hail and rain mass fluxes were calculated at 0.5 km 

AGL for all radar volume scans of the storm complex. However, because this storm came 

so close to the radar, the azimuthal boundaries of the radar volumes had to be limited, 

especially during 1830-1930 MDT. Thus, the entire storm was not always included in 

these volumes, even at low levels, so precipitation fluxes will be underestimates during this 

time period. However, because effort was made to include as much significant (i.e., > 30 

dBZ) echo as possible, the flux trends should not be adversely affected. 

In addition, following the method of Chapter 3, intra-cloud (IC) flash rates were 

extracted from the interferometer (ITF) data. However, this storm was not well-placed in 

relation to the ITF lobes. After 1800 MDT, the eastern extent crossed from the western 

lobe into the eastern lobe. However, until 1920 MDT, the main cell cores were well-

placed in either ITF lobe, with the main western cores within the western lobe and the 

main eastern cores in the eastern lobe, with only weak echo actually in the vicinity of the 

baseline. As will be shown later, IC lightning was well-correlated in position with high 

reflectivity cores, so flash rates should not be affected significantly. However, the IC rates 

that were calculated are likely to be underestimates after 1800 MDT, though trends should 

not be affected appreciably because the high reflectivity cores - that is, the cores that were 

most likely to produce IC lightning - were still well-positioned. After 1920 MDT, the 

storm began moving out of the southern boundaries of both lobes, so flash rate 

calculations were not done for later times, nor were they computed for times prior to 1700 
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at which time the northern part of the storm complex extended beyond the northern ITF 

boundary. 

Figure 5.4 shows precipitation fluxes and 5-minute IC flash rates as functions of time 

for the entire storm complex. Note the significant change in hail fluxes around 1900 

MDT. Before this, hail fluxes were significant, though of a pulsing nature related to 

individual cell growth and decay. After this time, however, hail fluxes were largely 

insignificant. This change in storm complex hail fluxes is well-correlated with the change 

in storm complex negative CG rates. The drop-off in hail fluxes after 1900 MDT also 

seems correlated with a similar, yet not as severe, reduction in rain fluxes from a peak just 

before 1900. 

When full radar coverage began at 1647 MDT, the low-level precipitation fluxes 

appeared to be declining rapidly from an earlier peak. Both the rain and hail flux trends 

seem in phase at first, but the rain flux recovers from its reduction earlier than the hail flux. 

By 1720 MDT, though, both fluxes have recovered and peaked again, albeit at much 

smaller values than before. ITF IC flash rates seem to peak earlier than either of the 

precipitation fluxes, at 1705, and actually achieved a minimum by 1720. After 1720 

MDT, IC flash rates began a sharp rise, but the low-level rain and hail fluxes declined to 

minima at 1730 MDT. They recovered after this time, and then an interesting series of 

events occurred, with IC flash rate peaking at 1740 MDT, hail flux peaking after this at 

1759, and then the rain flux reaching a maximum at 1812. This implies, in a total storm 

complex sense, that the IC rate peaks before the fallout of significant hail, which itself 

precedes the fallout of significant rain. The tendency for IC lightning to lead the low-level 
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hail fluxes is consistent with what was seen in the 10 July storm, though the lag between 

the hail and rain fluxes was not observed in that storm as it is in the present case. 

After this time, all three variables began another decline and subsequent recovery. 

Once again, hail flux led the rain flux, but the IC flash rate took a much longer time to 

reach its next peak at 1905 MDT, which occurred after the hail peak at 1849 and the rain 

peak at 1855. Thus, whereas before IC flash rate led the precipitation fluxes, it now 

lagged both. The decline in IC rates after 1905 again continued lagging the precipitation 

flux reductions, though IC rate calculations were terminated after 1920 MDT. After 1900 

MDT, hail fluxes remained largely negligible, while rain fluxes were lower than their peak 

at 1855, but continued to be fairly significant. The rain flux made a small recovery at 

1918, and remained very steady until 1937 when it underwent a sharp decline. After 

reaching a minimum around 2000 MDT, the rain flux recovered to one final peak, around 

2020. This last rain flux peak was roughly coincident with a slight increase in hail flux, 

though the hail flux was still very low compared to earlier times. After this time, the 

fluxes again declined. Radar coverage was terminated after 2057 MDT. 

Note, in general, that the fluxes and IC rates are much higher than the storm of 10 July 

1996. This is likely due to two causes. One is that the 12 July storm complex itself was 

larger, both in volume and areal extent. The second is that it appearedmore intense, based 

on the gridded reflectivity data seen in Figure 5.2, with higher peak reflectivities and larger 

areal extent of high reflectivity regions. 

There are two main questions to be posed regarding Figures 5.3 and 5.4. The first is: 

Why do the negative CG rates and the storm complex hail fluxes seem so anti-correlated, 

in a bulk sense? The second is: Why did the IC flash rate lead the low-level precipitation 
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flux~s early in the storm's lifetime, yet lag them later? These questions will be examined in 

order in the following discussion. 

From Figures 5.3 and 5.4, it can be seen that around 1804 MDT, CG flash rates were 

quite low, and storm complex hail and rain fluxes were near their maxima. Figure 5.5 

shows a vertical cross-section of reflectivity at 11 km west of CHILL at this time. 

Referring to Figure 5.2c, this cross-section cuts through the center of Cell 4. Based on 

this cross-section, the cell appears intense, with the 30 dBZ contour extending to 11 km 

AGL, and the 50 dBZ contour extending to 7.5 km AGL. Figure 5.6 shows a horizontal 

cross-section of reflectivity at 0.5 km AGL for the radar volume starting at 1937 MDT. 

Also shown are the ground-strike positions and polarities of NLDN-detected CG lightning 

that occurred during this volume (approximately 6 minutes in duration). At this time the 

negative CG rates were at their peak, and the storm was divided into two main regions, 

Cell 4 and Cell 7. (Refer to the discussion of Figure 5.2.) Likewise, CG lightning around 

this time was divided nearly equally between the two major cell complexes. Figures 5.7a 

and 5.7b show vertical cross-sections of reflectivity at this time at 24 km east of CHILL 

and 56 km east of CHILL, respectively. These two cross-sections cut through the 

approximate centers of the major cells. Contrasting these vertical cross-sections with 

Figure 5.5, it is apparent that cell structure is radically different between the two times. 

The 30 dBZ contours at 1937 MDT extend to only 9.5 km AGL for either cell complex. 

The 50 dBZ contours extend to 4 km AGL or less. There is no region of 60 dBZ and 

greater reflectivity like there was at 1804 MDT, when the 60 dBZ contour extended to 4 

km AGL. Overall, the storm complex at 1937 MDT appears much less intense, based on 

both horizontal and vertical structure, compared to the storm at 1804. Thus, marked 
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diffe.rences in storm intensity between the two times correspond well to the marked 

differences in CG rates. This is further confirmation of what was seen in the hail flux data, 

where significant hail fluxes - even though they underwent major fluctuations -

corresponded to low CG production, but very low hail fluxes corresponded to significant 

production of negative CGs. It appears that, for this storm at least, storm intensity - as 

determined by the existence of hail and the maximum heights of the 30 and 50 dBZ 

reflectivity contours - is inversely correlated with negative CG lightning, at least in a bulk 

sense. This will be discussed further in Section 5.5. 

The second question deals with why IC lightning led low-level precipitation fluxes at 

first, but lagged them later. The answer to this question relates to the multicellular nature 

of the storm complex. Figure 5.8 (a-b) shows horizontal cross-sections of reflectivity at 

0.5 km AGL at 1741 and 1855 MDT, respectively. The mean horizontal positions of IC 

flashes occurring during each radar volume ( approximately 6 minutes in duration) are 

overlaid on these plots of reflectivity. At both times IC lightning rates were near their 

maximum values, and it appears that the western half of the storm was producing the most 

!Cs. Note, however, that especially at 1855, the storm complex is straddling the ITF 

baseline. However, the two main cell regions were still well-positioned in the ITF lobes. 

At 1741 MDT, there was mainly one cell producing IC lightning. The same was basically 

true at 1855 MDT, but note the large area of 50 dBZ and greater echo north of the main 

IC lightning centroid. This was an older cell, which due to its areal coverage and intensity 

likely was contributing significantly to the low-level precipitation fluxes, even though it 

was producing little IC lightning. At 1741 MDT there was no other major cell to 

contribute to the low-level precipitation fluxes. Thus at this time IC rates and 
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precipitation fluxes were largely dominated by one cell, but at 1855 MDT the IC lightning 

was still dominated by one cell, but the fluxes had an additional major cell contributing to 

their total values. 

Thus, the apparent change in the IC flash rate trend relative to the low-level 

precipitation flux trend (Refer to Figure 5.4.) probably is due to the multicellular nature of 

the storm. The precipitation fluxes and IC rates are for the entire storm complex. Near 

both major IC flash rate peaks, only one cell was contributing significantly to the IC flash 

rate. But during the second peak, two major cells were contributing to the low-level 

precipitation fluxes, whereas during the earlier peak there was only one major cell. The 

superposition of the flux contributions from these two cells around the time of the second 

IC peak are probably what caused the apparent phase change between the fluxes and IC 

lightning. This superposition of cells also probably was causing the slow increase in IC 

rate toward its final peak. On an individual cell basis, based on the available data, IC 

lightning preceded the development of significant precipitation. This is seen with the first 

major IC peak, when only one major cell was in existence. The same pattern likely 

repeated itself in subsequent cells, but because of the superposition of two major cells this 

pattern is not evident. 

5.4 Identification of bulk precipitation types 

Following the method of Chapter 2, bulk hydrometeor identification was performed on 

the radar volumes from this storm. Unfortunately, unlike the storm of 10 July, this storm 

came extremely close to the radar. Due to its proximity to the radar for much of its 

lifetime, the storm was not "topped" and medium- to high-altitude data were not obtained 
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for the entire storm complex. Thus, trends in bulk precipitation volumes below the 

freezing level will not be examined in detail, as such trends will be corrupted by the lack of 

data from a significant percentage of the radar volumes. Instead, areal coverage of bulk 

precipitation types at 0.5 km AGL will be examined, as such trends will not be affected by 

the loss of higher altitude data. 

The freezing level based on the afternoon (1356 MDT) CLASS sounding launched from 

the Fort Morgan airport was determined to be 3.42 km AGL, CHILL relative. · The 

reflectivity gradient thresholds again were set to the values of 10, 15, and 20 dBZ km-1
• 

Sensitivity tests were performed to better estimate the proper threshold setting. For this 

storm complex, most low-level (0.5 km AGL) grid points were split between rain only and 

small ( < 2 cm) hail mixed with rain. Small hail only, and any form of large (~ 2 cm) hail, 

were not diagnosed to be present at the lowest grid level except perhaps once or twice, 

and at those times their areal coverage was quite small (1-2 km2 at the most) . When 

higher altitude small hail calculations were available, typically small hail mixed with rain 

was most predominant closer to the surface, and small hail only was predominant closer to 

the freezing level. This suggests that significant melting of hail occurred as it passed 

below the freezing level and approached the surface. Figure 5.9 shows the time history of 

the low-level areal coverage of small hail mixed with rain for all three reflectivity gradient 

thresholds. The general pattern is quite similar to the hail flux time history in Figure 5.4, 

and is independent of the reflectivity gradient criteria. In both plots, there are indications 

of a few major pulses of hail before 1900 MDT, and afterward there was little to no hail. 

Figure 5.10 is the same as Figure 5.9, except for the low-level areal coverage of rain 

only. Note that for rain, all three reflectivity gradient thresholds produced the same 
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values. The general trends are similar to the rain flux trends in Figure 5.3 - the relative 

maxima around 1815, 1900, 1930, and 2020 MDT match up between the plots, though 

relative magnitudes do not necessarily match. Note that before 1800 MDT the areal 

coverage of rain at 0.5 km AGL was small, especially when its relative magnitude is 

compared to the relative magnitude of the rain flux at this time. However, recall that 

Figure 5.9 shows small hail and rain mixed together. These areas also will contribute to 

the rain flux to some extent. 

Based on this limited precipitation identification analysis, it appears that the storm -

when it produced hail - produced mostly small hail, and also had few hail-only or hail-

dominated precipitation shafts. However, at 1749 MDT and again at 1759 MDT, the 

National Weather Service reported the occurrence of hail with a diameter of 1.75 inches 

( 4.5 cm) near the town of Carr, Colorado, 50 km NNW of the CHILL radar. This 

suggests that even though the bulk of the frozen precipitation was in the form of small ( < 

2 cm) hail (according to the radar) this does not mean that larger hailstones did not 

develop and reach the surface. Based on the precipitation flux data as well as the areal 

coverage data, it appears that the storm produced vast quantities of rain. After 1900 

MDT, nearly all the precipitation was in the form of rain. 

Following the method of Chapter 4, searches for regions of probable wet growth of hail 

and graupel were done for the volumes preceding the major hail flux peaks at 1759 and 

1832 MDT. Indications of small regions of enhanced LDR above the freezing level were 

found in the radar volumes starting at 1741 and 1753 MDT (which preceded the first 

peak), as well as 1818 MDT (which preceded the second peak). However, these regions 

(not shown here) were small compared to the one plotted in Figure 4.16. So, while wet 
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growth seems to have occurred in this storm, it probably did not occur to any significant 

extent. 

5.5 Discussion and summary 

Based on the available data, some general observations can be made about this case. 

The time of 1900 MDT serves as a turning point in the storm's evolution. Before this 

time, hail fluxes and areal coverage were significant, high-reflectivity (50 dBZ and greater) 

regions extended to high altitudes, and CG production (especially that of negative CGs) 

was at a minimum. After this time, hail was nearly non-existent, high-reflectivity regions 

extended to lower altitudes, and negative CG production was at a maximum. 

Unfortunately, IC flash data do not extend far into this high CG production phase, but 

the available data show that high IC flash rates occurred during the most intense portions 

of the storm's lifetime, when significant precipitation was developing aloft. Following the 

typical pattern, the first time the IC flash rate peaked it did so before the fallout of 

significant precipitation. This is consistent with the observations of other researchers 

(Williams et al., 1989a,b; Changnon, 1992; Carey and Rutledge, 1996). Note also that, 

during this first major pulse, the peak in the fallout of significant hail preceded the peak in 

the fallout of significant rain. This is reasonable since the hail will have a larger terminal 

fall speed, so the hail should reach the ground in bulk before the rain. The second major 

IC peak occurred after the fallout of significant precipitation. However, this second pulse 

involves the superposition of the outputs of two distinct and strong cells, so this second 

peak is not necessarily inconsistent with the typical pattern. However, even though there 
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was a superposition of two major cells, the fallout of significant hail still led the fallout of 

significant rain, as was observed for the previous storm pulse. 

After 1900 MDT, the storm evidently lost its ability to produce significant hail. It also 

featured a weaker vertical structure, in terms of radar reflectivity. This implies that, at 

least in an average sense, the cell updrafts after 1900 MDT were weaker than they were 

before this time. Thus, the increase in negative CG production after this time appears to 

be consistent with the elevated dipole hypothesis of MacGorman and Nielsen (1991). 

Because IC data only extend to 1920 MDT, corroborative evidence cannot be found in 

them. However, before 1920, IC flash rates - though still high - are decreasing. Thus, 

there is rough consistency, based on the elevated dipole hypothesis, between the 

decreasing IC flash rates with the rising CG flash rates after 1900 MDT - keeping in mind 

that these are all storm complex, and not individual cell, quantities. However, whether 

this is truly the collapse of the postulated elevated dipole cannot be verified. 

Like the storm of 10 July, the high IC flash rate of this storm may explain why CG flash 

rates do not change appreciably after the first IC flash rate peak. The large number of ICs 

may have helped to neutralize the charged core before it began descending after this time. 

However, it appears that comparable flash rates did not cause a similar reduction in CGs 

after 1900 MDT. After this time, though, the available evidence implies that the average 

updraft strength in the storm complex had decreased. Perhaps this decrease in updraft 

strength allowed the negatively charged core to descend before it was largely neutralized 

by IC flashes. 

Wet growth of hail and graupel probably did occur during this storm, though the 

available LDR data seems to indicate that, not unlike 10 July, wet growth was 
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overshadowed by dry growth, and thus may not have played a significant role in this 

thunderstorm's charge distribution. 

Rain fluxes were high for this storm, especially compared to 10 July. In addition, peak 

rain rates were high. Peak rates in the gridded data typically exceeded 150 mm hr-1 from 

1730 to 1930 MDT. Before and after this period, peak rates generally varied between 60 

and 90 mm hr-1• These averaged rates imply that instantaneous rates could have been 

significantly higher. High precipitation rates conceivably could allow the precipitation 

current to substitute for the CG lightning current, provided the rain was negatively 

charged. However, it does not necessarily explain why there is a dearth of CGs before 

1730 and a relatively large number of CGs after 1930, even though peak rain rates and 

fluxes were comparable during the two different time periods. 

Alternatively, the anti-correlation between the hail fluxes and the negative CG rates 

could imply that - if the hail were charged negatively - it may have been able to substitute 

for the CG lightning current. This hail current hypothesis seems to explain the CG 

lightning pattern better than the rain current hypothesis. Non-inductive charging theory 

( e.g., Takahashi, 1978) predicts that, for conditions near storm mid-levels, net negative 

charge is transferred to large ice particles like graupel and possibly small hail, while net 

positive charge is transferred to small ice crystals (if there is no charge-reversal process 

active). However, as the large ice (i.e., graupel and hail) falls to the ground, it should 

begin to melt and form rain, which would still carry net negative charge. Thus, based on 

non-inductive theory, both hail and rain should be carrying net negative charge. Thus, this 

apparent inability of the rain current hypothesis to explain the observed CG pattern seems 

to detract from the likelihood of the precipitation current hypothesis to be true. 
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Because precipitation currents were not measured during STERAO-A, the precipitation 

current hypothesis and the charge reversal hypothesis cannot be dismissed completely. 

However, the elevated dipole mechanism, acting in concert with the high IC flash rates, is 

an explanation most consistent with the available data. 

The implications of these results and inferences will be examined in light of the results 

of Chapter 4 (the case study of the 10 July storm), and explored further in Chapter 6. 
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··---- Figure -5.1: Data· frorii"the mobile· CLASS sounding launched from ·the Fort Morgan, CO, Airport at 1356 MDT on 12 July 1996. 
Plotted in skew-T/Log-p format are vertical profiles of temperature, dewpoint, and winds. 
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Figure 5.2a: Horizontal cross-section of radar reflectivity (dBZ) at 0.5 km AGL, for 1658 
MDT on 12 July 1996. 

134 



110 

100 

90 

80 

70 
,,-.... 
] 60 

--- 50 
M 
cd 40 "'O 
cd 30 M 

0 20 
Cl) 

10 I z 
Q) 0 
u -10 c:= 
cd - -20 00 ·-0 -30 

-40 

-50 

-60 

-70"""1ffl"""'IIIIIIIIJ'IIIIIIIJlfflrllll!'lllllffllffll'lnplllllllllJllll!'l'nllllllll'lp'l'llllllllfl'IIIIIIJ'lfflllllJllllllmplll'lll!'l~lfflllTlnpnnllllJllnmn!--

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 

Distance E-W of radar (km) 

10 20 30 40 50 60 70 

Figure 5.2b: Same as Figure 5.2a except for 1730 MDT. 
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Figure 5.2c: Same as Figure 5.2b except for 1804 MDT. The line denotes the position 
along which the vertical cross-section in Figure 5.5 is taken. 
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Figure 5.2d: Same as Figure 5.2c except for 1832 MDT. 
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Figure 5.2e: Same as Figure 5.2d except for 1855 MDT. 
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Figure 5.2f: Same as Figure 5.2e except for 1931 MDT. 
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Figure 5.2g: Same as Figure 5.2f except for 1959 MDT. 
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Figure 5.2h: Same as Figure 5.2g except for 2031 MDT. 
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Figure 5.3: Five-minute NLDN CG flash rates for the entire 12 July 1996 storm complex, broken down by polarity. 
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Figure 5.4: Five-minute ITF IC flash rates and radar-inferred rain and hail fluxes at 0.5 km AGL for the entire 12 July 1996 storm 
complex. 

143 



,-..._ e c 8 

C, 
< 
u = 5.5 
.,_ 
00 ·-Q 

3 

10 20 30 40 50 60 70 

Distance N-S of radar (km) 

10 20 30 40 50 60 70 

80 90 
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the radar volume beginning at 1804 MDT. 
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Figure 5.6: Horizontal cross-section of radar reflectivity ( dBZ) at 0.5 km AGL for the 
radar volume beginning at 1937 MDT. Also plotted are the ground strike locations of 
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Figure 5.7a: Vertical cross-section of radar reflectivity (dBZ) at 24 km east of CHILL for 
the radar volume beginning at 1937 MDT. 
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Figure 5.8a: Horizontal cross-section of radar reflectivity ( dBZ) at 0.5 km AGL for the 
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Figure 5.9: Comparison of radar-inferred areal coverages at 0.5 km AGL of small hail mixed with rain, computed using three different 
reflectivity gradient thresholds. 
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Figure 5.10: Radar-inferred areal coverage of rain at 0.5 km AGL for the 12 July 1996 storm. 
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CHAPTER6 

DISCUSSION AND CONCLUSIONS 

6.1 Analysis of possible mechanisms for low CG production in intense storms 

Two case studies of the relationships between the multiparameter radar-inferred 

microphysics of convective storms and associated lightning have been presented. Both 

case studies involved thunderstorms which underwent major transitions in structure and 

intensity sometime during their lifetimes. Emphasis was placed on examining these major 

transitions to better understand the relationships between microphysics and lightning, 

especially to examine hypotheses to explain low cloud-to-ground (CG) flash rates in 

certain intense convective storms. The case studies utilized data from the CSU-CHILL 

multiparameter Doppler radar, the ONERA VHF lightning interferometer (ITF), and the 

National Lightning Detection Network (NLDN). The CHILL radar was used to 

characterize storm structure and to infer both rain and hail rates, and also to differentiate 

between regions of different bulk precipitation types. The ITF was used to infer intra-

cloud (IC) flash rates, while the NLDN provided CG flash rates and ground strike 

locations. 

The storm of 10 July 1996 underwent a major transition approximately halfway through 

the observation period, evolving from a multicellular line to an intense unicellular storm 

which featured some characteristics common to supercells, such as mid-level rotation and 

a Weak Echo Region (WER). Throughout this storm's lifetime CG flash rates were 
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extremely low, averaging 0-2 CG flashes per 5-minute period. During the peak CG flash 

rate period flashes typically were associated with less intense (in terms of vertical radar 

reflectivity structure) cells along the line, while the most intense cells were associated with 

the bulk of the IC flashes. During the storm's intense unicellular stage, CG production 

was zero, while IC flash rates peaked near 50 per minute. In general, IC flash rates 

trended the low-level precipitation fluxes well, although occasionally these fluxes lagged 

the IC flash rates. Small ( < 2 cm) hail was produced throughout the storm's lifetime, 

though overall precipitation fluxes were significantly lower compared to other intense 

storms (Carey and Rutledge, 1997). 

The storm of 12 July 1996 underwent a major transition from an intense, hail-producing 

multicellular storm to a weaker multicellular rainstorm with little or no hail production. 

Before this transition, CG flash rates were low ( for both positive and negative polarity 

flashes) , averaging less than 5 per 5-minute period. Afterward, negative CG flash rates 

rose significantly, to 25 per 5-minute period at their peak. IC flash rate led the fallout of 

significant precipitation early in the storm's lifetime, but afterward it lagged the low-level 

precipitation fluxes. This may be due to the superposition of the contributions from 

multiple cells to these parameters, which could obscure the usual single-cell trend of IC 

flash rates leading the fallout of significant precipitation (e.g., Williams et al., 1989a,b). 

When hail was produced by this storm, it was predominantly small hail. Overall, 

precipitation fluxes seemed comparable to the fluxes seen by Carey and Rutledge (1997). 

However, Carey and Rutledge (1997) studied a storm that produced significant quantities 

of radar-detected large hail, unlike 10 and 12 July 1996. 
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There are some interesting features common to both of these storms. One is that when 

hail was produced by either storm, even if such production underwent significant pulsing, 

CG flash rates were low. Another common feature is that CGs were most often 

associated with weaker cells, in terms of the vertical structure of radar reflectivity and the 

lack of hail production. The most intense cells typically were associated with the bulk of 

the IC production. A final common aspect is that, especially when CG flash rates were 

low, these storms did not seem to follow the common pattern, established by ·other 

researchers (Williams et al., 1989a,b; Carey and Rutledge, 1996; Changnon, 1992), of CG 

flash rates peaking when significant precipitation reached the ground. In fact, CG 

production was so low during these times that it was difficult to resolve any trends at all. 

CG flash rates remained low regardless of whether individual cells were developing or 

collapsing. Only when hail production was largely terminated, on 12 July, did CG rates 

increase. On 10 July, when hail production was terminated the storm itself collapsed, and 

no final burst of CGs occurred. 

Based on this evidence, the elevated dipole hypothesis (MacGorman and Nielsen, 1991) 

seems to be a reasonable explanation for the low production of CGs. In cells producing 

the most CGs, the available proxy data imply weaker updrafts than in cells producing little 

or no CGs. In the CG-producing cells, vertical reflectivity structure was weaker, in that 

high radar reflectivity contours either did not exist or extended to lower altitudes than the 

most intense, low-CG cells. The existence of hail is another proxy for updraft strength, in 

that intense updrafts are needed for hail production to occur. Thus, if there is little or no 

hail being produced - as during the latter half of the 12 July storm's lifetime - this implies 

weaker updrafts, on average, than a hail-producing storm. 
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Recall that the elevated dipole mechanism involves intense updrafts shifting the negative 

charge region of the storm (e.g., Williams, 1989) to higher altitudes than average updrafts 

would suspend this charge region (MacGorman and Nielsen, 1991). This higher altitude 

should then disfavor CGs, due to the reduced ( on average) electric field between the 

negative charge region and ground. However, based on either convective or precipitation-

based charging theories, substantial charging should still be occurring, owing to the 

intense updraft. Thus, IC flash rates should be higher than an ordinary (i.e., single-cell or 

non-severe multicell) storm, especially since the charge neutralization process provided by 

CG flashing is reduced. 

These enhanced IC flash rates may be the reason that CGs still are not produced in even 

moderate quantities when individual cells reach maturation in the storms of 10 and 12 

July. High IC flash rates could have served to neutralize most of the produced charge 

before it began its descent. With reduced charge on the descending precipitation, CGs 

could be suppressed. 

It may be illustrative to view these two storms as points on a continuum of updraft 

speeds. On one end there are the cells with very weak updrafts and which produce little 

or no lightning of any type. Then, further along the updraft scale, there would be the 

"garden-variety'' storms, whose individual cells favor average IC lightning flash rates in 

their developing stages, but once their cores reach ground the production of CG lightning 

occurs. These are the type of thunderstorms that Williams et al. (1989a,b) and others 

studied. They may or may not produce hail, but if they do so, it would be only a very 

small component of the precipitation flux . Then there would be storms like those of 10 

and 12 July, with strong updrafts and high IC flash rates, but relatively low CG lightning 
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prod.uction. These storms produce mostly small hail. Then, at the most extreme end, 

there are the intense severe storms which produce significant quantities of large hail and 

positive CG lightning, such as those studied by Carey and Rutledge (1997) and others. In 

these storms, updraft strengths may be so high that large quantities of positive charge are 

created and then deposited in the upper levels of the storms. This enhanced region of 

positive charge would provide a source for positive-polarity CGs, despite the high IC flash 

rates observed in these cases. 

This continuum idea is especially consistent with the present cases, since positive CG 

lightning was present in both storms, though in smaller quantity than the storms studied by 

Carey and Rutledge (1997) and others. In the storms of 10 and 12 July, positive CGs, 

when they occurred, were typically associated with the most intense cells, which made the 

fraction of positive CGs produced by the most intense cells very high (- 50% or more), 

even though their overall CG production was low. Perhaps, with somewhat stronger 

updrafts and greater longevity in the severe phase, these storms could have become 

significant positive CG producers themselves. 

If one accepts the results of Saunders et al. (1991) and Saunders and Brooks (1992), 

and significant charging does not occur in wet-growth regimes, then the storms of 10 and 

12 July might have produced enough wet-growth hail to prevent the production of a lower 

positive charge region (below the main negative charge region), whose existence is 

thought to stimulate CG lightning activity (Clarence and Malan, 1957; Williams et al., 

1985; Williams et al., 1989a). Hence this is another mechanism that may account for the 

paucity of CGs in these storms. In even stronger storms such as the one studied by Carey 

and Rutledge (1997), wet growth may be more prevalent, and this mechanism would act 
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more efficiently. Though the available observations imply that hail undergoing wet growth 

was certainly a possibility - indeed a likelihood - in these two storms, the observations also 

imply that the dry growth regime was more prevalent, due to the paucity of extended 

regions of enhanced LDR. Note that, because the identification of hail above the freezing 

level with multiparameter radar data is still in an exploratory stage ( e.g., Kennedy et al. , 

1997), and because there are no in situ data available, this mechanism cannot be totally 

ruled out. If this mechanism were operating, no significant lower positive charge region 

should have formed, which could account for the low CG production of these storms. It 

would be consistent with the rise in CGs after hail fall ended in the 12 July storm, since 

then there should be little or no wet growth occurring, as hail was not present in bulk. 

Thus, during the latter half of the 12 July storm, a lower positive charge region could have 

formed and CGs once again would have been favored. 

Note that this wet growth mechanism is compatible with the elevated dipole 

mechanism, and in fact could act in concert with the latter mechanism to suppress CGs. 

However, the lack of charging during wet growth observed by Saunders et al. (1991) and 

Saunders and Brooks (1992) is in contradiction with the laboratory results of Takahashi 

(1978), especially as interpreted by Williams et al. (1991), who found significant charging 

during probable wet-growth regimes. The debate over which results are correct is still 

ongoing. 

It is difficult to rule out the possibility that the precipitation current could provide a 

feasible substitute for the CG lightning current, since charge on precipitation was not 

measured during STERAO-A. However, as noted in Chapter 1, several researchers have 

made estimates of the magnitudes of both precipitation currents (Rust and Moore, 1974; 
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Moore, 1976; Moore and Vonnegut, 1977; Gaskell et al., 1978, Marshall and Winn, 1982; 

Soula and Chauzy, 1996; Baranski, 1996) and CG lightning currents (Livingston and 

Krider, 1978; Krehbiel, 1981). Given the wide range of estimates for both types of 

current, it seems possible that precipitation current could become high enough (provided 

precipitation fluxes are high) to transfer significant charge to ground and suppress CG 

lightning. Precipitation fluxes were relatively high for the storm of 12 July, but were much 

lower during the 10 July storm. For both of these storms the major contributor to the 

precipitation flux was rain. The rain probably is not contributing enough to the 

precipitation current to cause suppression of CGs, as rain rates for 12 July were significant 

both before and after the major transition in the storm. Also, these rain rates were much 

higher than those that occurred during 10 July, which also featured low CG flash rates. 

Thus, any hypothesis that invokes the precipitation current due to rain to account for low 

CG rates faces these counterpoints. 

However, what if the hailstones were charged? As noted before, negative CG 

production is negatively correlated, in a bulk sense, with the production of hail. If the 

hailstones themselves were negatively charged, then the observed hail fluxes may be large 

enough that the precipitation current due to hail would help suppress CG lightning. The 

hail fluxes from either storm are typically within a factor of two of one another, so given 

the possible error involved in these flux calculations there may not be so much difference 

between the two days. However, note that this hypothesis requires that the hailstones be 

charged, in contradiction to the hypothesis based on the results of Saunders et al. (1991) 

and Saunders and Brooks (1992) which contend that hail which underwent significant wet 

growth would not be charged. Thus, resolving this contradiction would require that the 
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bulk of hail growth for these storms occur in the dry regime. Based on the available data 

this probably occurred. However, note that hail probably is not a significant contributor to 

the overall precipitation current because of its typically low number concentrations (Cheng 

and English, 1983). Graupel should be the dominant charge carrier because it usually is in 

higher concentration. Note that if most of the graupel melted before reaching the ground, 

this charge would be carried by the subsequent rain. This perhaps is an argument for rain 

being the principle charge carrier in these types of storms (i.e., storms like 10 and 12 July 

wherein most of the precipitation appears to be in the form of rain, regardless of whether 

hail is produced or not). 

Based on this research, it appears that the exact mechanism(s) responsible for low 

production of CG flashes in certain intense convective storms is still unclear. The elevated 

dipole mechanism, in conjunction with increased IC flash rates, is perhaps the simplest 

explanation available, in that it does not require precipitation to carry any specific charge 

or lack thereof. It also is entirely consistent with the available evidence. However, other 

mechanisms may be active, either instead of or in concert with the elevated dipole 

mechanism. 

Nevertheless, this study provides additional documentation of the phenomenon of low 

CG production in intense storms. It also establishes that the production of negative CGs 

can be inversely correlated - in a bulk sense - with the production of significant quantities 

of hail and probably also with the potential for severe weather, in these types of storms. 

6.2 Recommendations for future research 
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The main limitations of the present study include the small number of case studies, the 

lack of direct data on updraft speeds, the lack of measurements of net charge on 

hydrometeors, and uncertainties in the interferometer data. 

To better establish ( or perhaps to refute) the results of the present study, more 

combined radar and lightning case studies of major transitions in convective storm 

structure are needed. Alternatively, case studies involving a spectrum of different 

convective storm types and strengths could be examined and contrasted, to provide more 

insight into what is causing any observed differences in lightning patters. Critical to such 

studies is the existence of IC flash data, since these data help to establish the extent to 

which a storm is electrified, and also provide evidence as to what portion of its life cycle 

( e.g., initial development, maturation, decay) a given cell is occupying. It is especially 

useful to have either interferometric ( as in the present study) or time-of-arrival ( e.g., 

Proctor, 1981) VHF lightning mapping systems, as these sensors locate lightning in three 

dimensions This allows for discerning the individual contributions of existing cells to the 

total storm flash rate. 

Future studies also would benefit from direct data on updraft speeds, such as those 

provided by dual-Doppler radar syntheses. The NOAA WP-3D aircraft which flew during 

STERAO-A gathered dual-Doppler data for a number of storms, including 10 and 12 July. 

Currently, however, analyses of these data have not been completed so they were not 

included in the present study. Such data provide a more direct method of ascertaining 

updraft speeds, without relying on proxy data like vertical reflectivity structure and hail 

production. 
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A way to determine the relative magnitudes of the precipitation currents would be to 

make in situ observations of the net electrical charge on individual precipitation particles, 

to gain a sense of the average charge carried per hydrometeor. Using precipitation fluxes 

and size distribution information, estimates of precipitation currents could be made based 

on these individual charge measurements. Alternatively, a method to measure 

precipitation current in a bulk sense - perhaps along the lines of Soula and Chauzy (1996), 

Baranski (1996), or others - could be used . Data on precipitation currents could be used 

in conjunction with parameters such as lightning currents, displacement currents, and 

others to develop complete electrical budgets for a selection of low CG production 

storms. These budgets could be used to ascertain the relative magnitudes of the lightning 

and precipitation currents, to better understand if precipitation current could act to 

suppress CG lightning. 

There are still several unknowns regarding the observations of the ONERA VHF 

lightning interferometer during STERAO-A. The most important of these is how the 

reduced vertical resolution during STERAO-A impacted the flash identification and 

classification algorithm, since this algorithm reconstructs individual flashes in three 

dimensions. The reduced resolution conceivably could impact the estimated VHF burst 

velocities and separation distances, which could cause the algorithm to produce corrupted · 

flash statistics. This issue will be examined in the future. Also, the nature of the short-

duration ( < 1 ms) discharges is unknown. They may be a misclassification of individual 

lightning strokes, or a sub-class of IC discharges, or a combination of both. If they are at 

least in part a subset of IC discharges, it is not clear what role they would play in either the 

electrical or chemical budgets of thunderstorms. 
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