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ABSTRACT 

RAPID DEVELOPMENT OF TORNADO-LIKE VORTICES BY SIMULATED 

SUPERCELLS 

The Regional Atmospheric Modeling System (RAMS) is used to examine the evolution 

of low-level vorticity beneath a modeled supercell thunderstorm. The simulations are per-

formed using seven-species bulk microphysics in a horizontally-homogeneous domain, and 

are initialized through the use of a warm bubble. A mesocyclonic circulation becomes 

apparent a kilometer above the ground after 45 minutes of simulation time, and vertical 

vorticity of similar magnitude develops along the gust front near the surface by 55 min-

utes. Approximately five minutes later a transition occurs; the maximum vorticity beneath 

cloud base becomes vertically co-located, and translates with nearly constant grid-relative 

velocity. The vorticity increases by a factor of five during the five minutes following the 

co-location of the vorticity. An intense pressure deficit develops within the region of closed 

streamlines. 

It is shown that the concentration of vorticity is not dynamically forced by vertical 

pressure gradients or buoyancy, but occurs in a quasi-horizontal framework. The process is 

similar to models of non-supercell tomadogenesis in the literature that invoke the non-linear 

pooling of vorticity by barotropic processes, but with modification due to the presence of 

large-scale plane convergence. Specifically, the plane convergence allows the vorticity 

to concentrate at much faster time scales and without need of the coalescence of several 
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discrete vorticity centers. The relevance to observed tomadic vortices and the implications 

for future modeling work are discussed. 
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Chapter 1 

INTRODUCTION 

'And I looked, and, behold, a whirlwind came out of the north, a great cloud, and a fire 

infolding itself, and a brightness was about it, and out of the midst thereof as the colour of 

amber, out of the midst of the fire.' 

Ezekiel 1:4 

Tornadoes are neither the most damaging, nor deadliest, nor most common of weather 

hazards today. Yet perhaps no weather phenomenon evokes such awe and wonder at the 

power of the atmosphere, or shear terror for those who are unfortunate enough to not have 

the luxury of casually observing from a distant vantage point. The extreme power of tor-

nadoes coupled with their diminutive size (median diameter of 50 m)1 and transient nature 

(few last as long as an hour, have made them extremely resistant to study until recently 

(Grazulis 1993). 

In March 1948 Air Force Weather officers Ernest Fawbush and Robert Miller, having 

seen a tornado strike Tinker Air Force Base five days previously under similar weather 

conditions, issued the first modern tornado forecast , which proved remarkably prescient 
1Strong tornadoes (Fujita scale F3 or higher) are a small subset of all tornadoes, but when they do occur 

tend to be associated with supercells. For these tornadoes the median diameter i closer to 200 m (Grazulis 
1993). 
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(Grice et al. 1999). Soon the basic climatology of tornadoes was discovered (Fawbush and 

Miller 1954): they tend to occur in environments with very warm, moist air near the surface, 

capped beneath an inversion that separates it from a layer of very dry, nearly statically-

neutral air. The low level winds are usually from near the southeast but veer sharply with 

height, and usually the upper level winds are quite strong (Darkow and McCann 1977). 

With the aid of radar studies, Browning and Donaldson (1963) and Browning (1964) 

were able to deduce that a particular type of large, long-lived, and vigorous storm, the 

supercell , was associated with a large fraction of reported severe weather, including torna-

does. It was soon realized that the tornado climatology was essentially a climatology of the 

conditions which Browning had shown were favorable for supercells. 

Soon after numerical modeling of storm-scale phenomena began in the 1970s, the mod-

els were applied to modeling the supercell. These models had great success in reproducing 

the features of supercells (Klemp and Wilhelmson 1978a; Weisman and Klemp 1982), and 

facilitated the creation of physical analytical models to explain their behavior (Rotunno 

and Klemp 1982). The observational data base also grew substantially through damage 

track studies (Fujita 1970), 'storm chasing' (Bluestein 1999), and Doppler radar (Donald-

son 1970). 

Eventually observational studies (Lemon and Doswell 1979) conceptual models (Davies-

Jones 1982), and numerical models (Klemp and Rotunno 1983) all suggested that low-level 

rotation beneath supercells had different origins than the rotation of the supercell storm 

itself. It was increasingly suggested that the interaction between the updraft and the down-

draft of the storm is critical to the formation of the low-level mesocyclone. 

The actual process of tornadogenesis occurs at scales even smaller than the low-level 

mesocyclone. Recently observations of the tornadogenesis process and tornadoes have 
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been obtained in detail not previously seen (Wakimoto and Liu 1998; Bluestein and Paz-

many 2000). The collapse of the low-level mesocyclone into the tornado is still not well 

understood however. Tornadic-like vortices in modeled supercells have been documented 

in the literature and show intriguing similarities to real tornadoes (Wicker and Wilhelmson 

1995; Grasso and Cotton 1995; Grasso 1996; Finley 1997), but because of the limits of 

model resolution are still generally too large to be equated with real tornadoes . 

It also has been recognized in the past couple of decades that not all tornadoes derive 

from supercells (Brady and Szoke 1989; Mccaul 1993), nor do all tornadoes form in the 

same manner (Burgess and Donaldson 1979; Trapp et al. 1999). Model studies also re-

flect this disparity; some studies point to upward pressure gradient forces as the trigger to 

forming intense 'tornado-like' vortices (Wicker and Wilhelmson 1995; Grasso and Cotton 

1995), others portray the vortices as being surface based (Grasso 1996; Finley 1997), and 

others explicitly model non-supercell vortices (Lee and Wilhelmson 1997a-c). 

In this study idealized supercells will be modeled using the Regional Atmospheric 

Modeling System (RAMS), and will be shown to develop low-level mesocyclones that 

can rapidly collapse to form concentrated vortices. This collapse process will be analyzed 

in some detail in order to suggest the physical mechanism of the collapse and from where 

it originates. Chapters 2 and 3 will present conceptual and historical background, respec-

tively. Chapter 4 will contain an overall description of a supercell simulation that produced 

a particularly strong collapse of vorticity. Chapter 5 contains a qualitative and quantitative 

description of a model of the collapse process, and it is argued that the process is related to 

the conceptual models of Neu (1984a,b). The ultimate source of the low-level vorticity is 

investigated in Chapter 6, whereas some tests of the dependencies of the low-level vorticity 

are found in Chapter 7. Finally, conclusions and implications for future work follow. 
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Chapter 2 

ANALYTICAL FOUNDATIONS 

In this chapter there are a series of derivations that are used to provide some background 

for the discussion of supercell and tornadic research that follows. 

2.1 Thermodynamic Variables 

For gases that obey the ideal gas equation, the pressure, density, and temperature are related 

by: 

p = pRT, (2.1) 

where p is pressure, pis density, Tis absolute temperature, and R is the gas constant, which 

is essentially a function of the molecular weight of the gas. For a mixture of ideal gases, 

both the pressures (by Dalton 's law of partial pressures) and the densities simply add, while 

it is assumed that the temperature of all gaseous components is identical. 

For all components of air except water vapor, the relative proportions are nearly con-

stant, so one can simply perform a weighted average and relate the total air pressure to an 

effec tive gas constant, R d, and effective density, Pd, of air. The variability of the water 

vapor content of air introduces a natural variability to the density and effective gas constant 

of air. To take this into account one can write the total pressure of the mixture as: 

P =Pair+ Pvapar = PdR dT + PvflvT = PdRdT ( rv + l) , (2.2) 
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where rv = Pv/ Pd is defined as the mixing ratio of water vapor, Rd= 287 J K-1 kg- 1, and 

Meanwhile Pd= p - Pv = p- r Pd, so Pd= p/(1 + rv) and 

(2.3) 

since r v is small. 

Moist air is seen to obey the ideal gas law using a dry air gas constant, but with a mixing-

ratio dependent correction factor. For a given absolute temperature and pressure, the total 

density of moist air is less than that of dry air, because the molecular weight of water 

vapor (approximately 18 g mol- 1) is less than that of dry air (approximately 29 g mol- 1). 

Mathematically, we see that at a given temperature and pressure, the density of a mixture 

of air is inversely proportional to the factor [1 + (Rv/ Rd - l)rv], which is approximately 

O.61rv. In practice it is assumed that the gas constant for air is always Rd, but that air 

behaves as if it had a virtual temperature Tv = T(l + O.61rv)-

The equations of motion for the atmosphere can be expressed as: 

dv 1 -- = --Vp-gk+F 
dt p ' 

(2.4) 

where the first term is the pressure gradient acceleration (or 'pressure gradient force' in 

typical terminology), and the second term is the gravitational force. The third term repre-

sents the presence of any non-conservative forces, such as viscosity, as well as other forces 

distinct from the first two (most importantly, the Coriolis force). Because of the size of the 

gravitational term, the pressure must drop rapidly with height for approximate balance (see 

Section 2), and it can be shown that both temperature and density also decrease rapidly with 

height as a consequence (Dutton 1995). It is therefore convenient to define the potential 

temperature, 0, as: 

(Po)-}; 0=T - , 
p 

(2.5) 
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where p0 is a reference pressure normally taken as 1000 mb, and R/ ep is the ratio of the 

gas constant to the specific heat at constant pressure. It can be shown that this variable is 

conserved for air during adiabatic processes - when there is an absence of phase changes, 

radiation, and diffusive processes (Cotton and Anthes 1989; Holton 1992; Dutton 1995). 

Using (2.3) to substitute for Tin (2.5) gives: 

(2.6) 

with the virtual potential temperature 0v = 0(1 + O.6 l rv)- This allows a substitution of 0v 

for 1/ pin the pressure gradient force, giving: 

1 _ 0vRd ( P ) ~: _ 0vK,dCpd ( P ) ,,, -- v p- --- - v p- --- - v p, 
P P Po P Po 

(2.7) 

where /'i, = R / Cp and /'i,d = Rd/ cpd is the value of /'i, for dry air. The value of /'i,d is 

approximately 0.286, whereas /'i, for pure water vapor is approximately 0.241 (Fleagle and 

Businger 1980). However, it is almost always assumed that the actual value of /'i, for an air 

mixture can be approximated as /'i,d· When this is applied, /'i, is then a constant in space, and 

t e resultant pressure gradient force may be rewritten in the form 

1 
--V p= -0vV n 

p 
(2.8) 

with the Exner function 7f de.fined as Cpd(p/p0td, where Cpd = 1004 J K-1 kg- 1. There are 

advantages to using the RHS of (2.8) as opposed to the LHS for the pressure gradient term 

Cotton and Anthes 1989, Sec. 2.3.2), and this is the form used in RAMS. 

Finally, it should be noted that the virtual potential temperature takes into account water 

vapor but not condensed w ter species. These species can also be measured in terms of a 

mixing ratio r c = Pel Pd where Pc is the mass of the species per unit volume of air. This 

density makes no contribution to the gaseous pressure nor the ideal gas law1, but it does 
1 Condensate does however alter the net heat capacity of an air parcel. RAMS talces this effect into account 

by all wing certain condensed water species to possess a temperature distinct from the air temperature (Walko 
et al. 1995). 
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increase the density in the equations of motion. To take this into account (2.8) should be 

multiplied by p/(Pair + Pc) 1 - Pc/ p when Pc is small compared top. Approximating 

once more with p Pd gives a final momentum equation of: 

(2.9) 

2.2 Momentum Equation and Hydrostaticity 

As noted above, because gravity is the dominant force acting on the atmosphere, to first 

order the pressure gradient is directed vertically upwards to balance the gravitational force ; 

when the vertical component of the pressure gradient force exactly balances gravity, hy-

drostatic balance is achieved. Keeping this in mind, the Exner function can be decomposed 

into a mean state, 7ro( z) , and a horizontally-variable perturbation, 71'1• A mean state virtual 

temperature 0vo(z) can then be defined as that which creates hydrostatic balance with 7ro, 

i.e. 0vo07ro/ oz = -g (it is assumed the mean state has no condensed water). The sum of 

the vertical pressure gradient force and the gravitational force becomes: 

(2.10) 

Substituting -g / 0vo for 07l'o/ az produces: 

dw [ o7r' 0' o7r'] - = g- 0vo- + g~ - 0~- (1- re) - g. 
dt OZ 0vo OZ 

(2.11) 

One assumption is normally made at this point: that g is much larger than both the 

terms I and II in (2.11). We can substantiate this assumption for term II by noting that g 

9.8 m s-2 ; even for a 30 K temperature perturbation term II is~ 1 m s-2 for 0vo = 300 K. 
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Two consequences are: a) since g has been assumed to be much larger than g0~/ 0vo, then 

0~ / 0vo is much less than unity, so term III can be neglected in comparison with term I; and 

b) the term re multiplying the brackets can be neglected in comparison with gre. We are 

then permitted to approximate (2.11) by: 

dw 01r' 0' 01r' ( 0' ) - = -0vo- + g----3!_ - gre = -0vo- + g ----3!_ - re 
dt OZ 0vo OZ 0vo 

(2.12) 

Of the two terms that remain, the first is the vertical perturbation pressure gradient 

(VPPG) contribution to vertical acceleration (though here actually a 1r' gradient), whereas 

the second is the buoyancy contribution. Note that it is not possible uniquely to partition 

the vertical acceleration into the buoyancy and VPPG terms. The specification of 1r0 and 

0vo is arbitrary as long as the base state is hydrostatic, to the extent that the perturbation 1r' 

and 0~ are not such that terms I-III rival gin magnitude. 

In the horizontal equations of motion only 1r' is relevant to the horizontal gradient. In 

RAMS the horizontal pressure gradient force is simplified to Bvo V H 7f1 to be consistent 

with the VPPG. RAMS can be said to be 'Boussinesq' in that the horizontal pressure gra-

dient force is simply the horizontal gradient of the scalar 0vo7r1
• The modified momentum 

equation can now be written as: 

(2.13) 

where B = g(0~/0vo - re) is the buoyancy term. 

2.3 Vorticity Equation 

Vorticity, (, is simply defined as the curl of the velocity. For air parcels there is both relative 

vorticity, which is a function of the air velocity relative to the earth, and planetary vorticity, 

which is due to the rotatio of the earth. The planetary vorticity has a vertical component 
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given by f = 2n sin c/> where n = 7.27 x 10- 5 rad s- 1 is the rotation rate of the earth 

and c/> is the latitude. For midlatitudes f is around 1 x 10- 4 s- 1, suggesting that it takes 

on the order of a few hours for its effects to become significant. Because the focus of this 

study is tomadogenesis, it will be assumed that planetary vorticity acts too slowly to play 

a major role in the process, so only relative vorticity will be considered in this chapter. In 

component form, the relative vorticity is given by V x v= (aw/ay - av/az, au/az -
aw/ax, av/ax - au/ay). 

Let us return for the moment to the non-Boussinesq atmospheric momentum equation, 

(2.9). The vorticity tendency equation can be derived by taking the curl of (2.9). First, 

using a vector identity to expand the LHS of (2.9) gives: 

dv av (V. V) -- = - + V - - v x ;- = -0 (1- r )Vn - gk + F . dt at 2 " V C 
(2.14) 

Proceeding now with taking the curl gives: 

d( 
dt = -((V · v) + (( · V )v + Vn x V0v(l - re)+ V x F . (2.15) 

The third term is called the baroclinic term because it is nonzero when surfaces of con-

stant pressure and constant temperature ( or other thermodynamic field) intersect, indicating 

that the two surfaces are inclined to each other (Holton 1992). The term represents, for ex-

ample, the differential forcing of parcels with different values of 0v in the direction of the 

negative 1r-gradient. The first two terms are referred to as the barotropic terms, and the last 

term is the non-conservative force contribution to the vorticity tendency (to be referred to 

as the diffusion term for brevity). 

Lines in the fluid that are everywhere tangent to the vorticity vector are called vortex 

lines. It can be shown that in the absence of baroclinity or non-conservative forces, vortex 

lines must move with the fluid (Helmholtz 1858; Dutton 1995). In other words, if at some 
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initial time a vortex line segment is composed of a set of fluid parcels, at all later times 

the set of fluid parcels will still be a vortex line segment if the fluid is always barotropic 

(i.e., there is no intersection of pressure and temperature surfaces) and there are no non-

conservative forces acting. 

We will now consider the Boussinesq modified momentum equation (2.13). Taking the 

curl gives: 

(2.16) 

With respect to tomadogenesis, the vertical component of this equation is most relevant: 

(2.17) 

Because of the Boussinesq approximation, vertical vorticity cannot be generated directly 

from baroclinic effects. Remaining are the vertical component of the diffusive term and the 

barotropic terms. The quantity -(zaw I az in the first barotropic term cancels (zaw I az in 

the second, leaving: 

(2.18) 

The first term can be referred to as the convergence term. When vertical vorticity is 

already present, horizontal convergence will lead to a further increase in vertical vorticity. 

When the horizontal convergence is constant following an air trajectory, the air parcel's ver-

tical vorticity will increase exponentially. This is the most general and basic explanation for 

the rapid formation of extreme vorticity values in tornadoes (the details will be addressed 

in this study); what is not explained is how vertical vorticity is generated where none had 

existed previously. Also, because the derivative occurs in a parcel-following framework, 

it does not necessarily follow that the vertical vorticity at a fixed point will exponentially 

increase because of the presence of constant horizontal convergence at that fixed point. 
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The second term is referred to as the 'tilting' term. Essentially it shows that when hori-

zontal vorticity exists in the presence of a horizontal gradient in w, the horizontal vorticity 

will be 'tilted ' into the vertical direction. This term is the one generally invoked to explain 

tomadogenesis; it then becomes necessary to explain the presence of the updraft gradient 

and the horizontal vorticity. Once vertical vorticity is generated, the convergence term can 

explain the subsequent increase in vertical vorticity to tomadic values. It should be noted, 

however, that when the vorticity vector is neither completely vertical nor completely hor-

izontal, the convergence term also contributes to changing the vorticity vector direction, 

and the tilting term contributes to changing the vorticity vector magnitude; thus care must 

be taken in the interpretation of these processes. (Davies-Jones 1982; Grasso 1996; Finley 

1997). 

The horizontal vorticity equation derived from the modified momentum equation (2.13) 

has the form: 

The first two terms are the barotropic terms, and the last is the diffusion term. The third term 

becomes zero when a base stare 0vo is chosen to be independent of height, which is a valid 

option provided 0v/0vo is not much different from unity. If 0v/ 0vo is significantly different 

from unity, either a new reference state should be chosen, or the assumptions leading to the 

Boussinesq modified momentum equation (2.13) are questionable. The fourth term is the 

baroclinic contribution to horizontal vorticity; in the Boussinesq modified system, it acts in 

a direction perpendicular to and to the right of the buoyancy gradient. 
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2.4 Compressibility 

If one assumes that the model is incompressible such that V • v = 0, then the vertical 

vorticity equation (2.18) can be written as: 

(2.20) 

Thus the presence of vertical divergence, increasing w with height, can exponentially in-

crease vertical vorticity. Hence the convergence term is usually referred to as the 'stretch-

ing' term. 

RAMS is not an incompressible model , but generally the three-dimensional divergence 

of the motion field is small. To find out how RAMS treats three-dimensional divergence, 

one can take the divergence of the equations of motion (2.13): 

d - (V · v) dt 
_ -(au) 2 

_ (av)2 
_ (aw)2 

- 2 [avau + awau + awavl + aB ax ay az ox ay ax az ay oz oz 
- V · (0voV 1r1

) + V · F. (2.21) 

Even if one assumes that the three-dimensional divergence is zero at a particular time, the 

terms on the first line of the RHS show that the effects of advection and buoyancy can 

create three-dimensional divergence. It is also seen how 1r and diffusion can cause V · v to 

become non-zero. 

Meanwhile the three-dimensional divergence causes a change in the density througJi 

the continuity equation: 

D( . cv D ) D ( ) - V · v = - lnp) = --(ln1r - - ln0 Dt RDt Dt V 
(2.22) 

in terms of the conventional thermodynamic variables of RAMS (see Appendix A). The 

treatment of this equation is simplified in RAMS and other numerical models by neglect-

ing the horizontal n' advective terms and the local 0~ tendency term on the RHS, leaving 
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cv/(R1ro)81r'/ot as the most significant term (Klemp and Wilhelmson 1978).2 A local 1r' 

tendency equation results, given by 

a I 2 
_!!__ = -2(V. v) at 0vo ' (2.23) 

where c; = rpRTvo/ Cv is the square of the adiabatic speed of sound, and Tvo = 1r00vo/ rp. 

When the three-dimensional divergence in (2.23) is substituted into (2.21), the equation 

produced resembles a forced wave equation for 1r', with Cs as the wave speed. 

In the limit as the speed of sound approaches infinity, the change in 1r' becomes arbi-

trarily large for any three-dimensional divergence over a given spatial and temporal scale. 

Acoustic waves rapidly propagate outward, and tend to eliminate both V • v and its ten-

dency over advective time scales. In this state the atmosphere behaves as an incompressible 

fluid, and 1r' satisfies the relation: 

V . (evo V1r') = _ (aaux ) 
2 (ov) 2 

(aw) 
2 

2 [8v Bu+ 8w Bu+ 8w &v l 
&y 8z &x &y Bx 8z By &z 

(2.24) 

This is a Poisson partial differential equation that may be inverted for 1r' given the terms on 

the RHS and the appropriate boundary conditions. This equation is useful for explaining 

the formation of strong pressure gradients by supercells . While it is not an exact relation 

for a compressible fluid, it will be approximately true when the terms on the RHS of (2.24) 

exist for long timescales compared to the time required for sound waves to propagate from 

the region. For computational efficiency purposes Cs is artificially reduced by RAMS, but 

is still generally over 150 m s-1 in these simulations.3 

2When there is a vertical variation in the density and 0vo basic states, another term is retained in numerical 
models, relating to the vertical advection of these basic states (Grasso, personal communication) 

3Like Klemp and Wilhelmson (1978) , RAMS also uses a time-splitting technique to maintain stability in 
the horizontal dimensions, discussed in later chapters. Even with these modifications stability in the vertical 
direction is not assured and often violated, so an implicit scheme is used to update the pressure from the 
vertical velocities. 
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If one assumes heuristically that the 1r' Laplacian term is proportional but opposite in 

sign to 1r' itself (normally true for localized disturbances away from the boundaries) , then 

positive terms on the RHS of (2.24) tend to create low pressure, and negative terms tend 

to create high pressure (Rotunno and Klemp 1982). Because of the linear nature of the 

Laplacian operator, each RHS term can be considered to cause a contribution to 1r' , and the 

sum of these contributions gives the total 1r'. All the terms except the last two reflect the 

effects of advection on the Exner function ; these are referred to as the dynamic forcing on 

1r'. The next two terms are the buoyant and diffusive forcings, respectively. 

The dynamic terms in (2.24) are in a form such that the magnitude of the individual 

terms is dependent on the choice of orientation of the x and y axes. It is possible to rewrite 

them so that this is not the case. When this is done, the result is (see Appendix B): 

(2.25) 

where incompressibility has been assumed, o is (ou/ox + ov/ay), and 1) is the magnitude 

of the horizontal deformation, 

v 2 = (av+ 8u)2 
+ (au - av) 2 

ax oy ax oy (2.26) 

Therefore, regions of vertical vorticity of either sign tend to be associated with low pres-

sure; regions of convergence/divergence and deformation are associated with high pressure. 

One-dimensional shear lines in a two-dimensional fluid motion have equal magnitude vor-

ticity and deformation, and so they are not associated with dynamic pressure perturbations. 

On the other hand, an axisymmetric region of constant vertical vorticity and no radial ve-

locity possesses zero horizontal deformation in its interior, and doe tend to be associated 

with negative dynamic pressure perturbations. 
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2.5 Circulation 

One disadvantage of only considering vorticity in connection with low-level mesocyclones 

and tornadoes is that it is defined at a point. Along a near-discontinuity in the wind field 

vorticity may reach large values. A better distinguishing mark of tornadoes might be an 

area-averaged vorticity. Such a measure is the circulation, which is defined for a particular 

closed curve C as 

C= f v-dl. (2.27) 
C 

By Stokes ' theorem, we have, equivalently, 

C = J J (; · ftdA, (2.28) 
s 

where S is the open surface enclosed by C. Thus the circulation measures an integration 

over S of the component of the vorticity vector normal to S at each point. It is convenient 

to work with because to compute the circulation around an area S all that is needed is the 

value of v along the boundary of S. 

Suppose one wants to find the material derivative of the circulation. The time integra-

tion of the material derivative of the circulation is the circulation around the curve formed 

at all times by connecting the same fluid elements that composed the original curve (i.e, the 

material curve). It can be shown that (Dutton 1995): 

dC = f dv . dl + f v . ( dl = f dv . dl + f v . dv = f dv . dl 
dt dt dt dt dt ' 

(2.29) 
C C C C C 

since v • dv = d( v2 /2) which gives zero after integration around a closed contour. So the 

circulation tendency equation can be found by simply substituting (2.9) into (2.29): 

!~ = f [-ev( l - rc)Vn - gk + F_ · dl = J J [Vn x V0v( l - re)+ V x F) · ftdA. 
C S 

(2 .30) 
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The barotropic terms do not appear- only the baroclinic and diffusion terms can change 

the circulation. In the Boussinesq version of the circulation tendency equation, 

ff [ 80vo A A l = VH1r' x f)z k + VHB x k + V x F · iidA, (2.31) 

s 

circulation cannot be generated over purely horizontal surfaces, except possibly through 

the diffusion term (Grasso 1996; Finley 1997). If we neglect V x F, and the 0vo gradient 

term is neglected as in .... (2.19), circulation can only be generated when there are horizontal 

gradients of buoyancy along portions of S that extend in the vertical. 

2.6 Eulerian Vorticity 

The parcel-following or Lagrangian derivative of vertical vorticity is given by (2.18) for a 

Boussinesq atmosphere. The time derivative of vertical vorticity at a fixed point in space 

(Eulerian derivative) in this framework is thus: 

itz = -(v · V)(z - (z(V · Vtt) + ((H · V)w + V X Fl z• (2.32) 

This can be rewritten as : 

fJ(z A fJvH [ fJvH l A - = -(vH · V )(z - wk · (V X -) - (z (V · Vtt) + - X V HW + V X F · k. at f)z f)z .. 
(2.33) 

The advection term has been separated into a horizontal and a vertical contribution, and the 

tilting term ((H •V )w = (8w/fJy-fJv/fJz)(fJw/fJx) + (fJu/fJz-fJw/fJx)(fJw/fJy) 

(fJv/oz)(fJw/fJx) + (fJ·u/8z)(8w/8y) = k · [8vtt/8z x V Hw]. 

It has been noted that the RHS of (2.33) can be expressed as the convergence of a two-

dimensional vector (Haynes and McIntyre 1987; Weisman and Davis 1998). The first and 
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third terms in (2.33) can be immediately combined into -V • ((z vH) by a vector identity 

(Lewis and Ward 1989). Another vector identity involving the curl of the product of a scalar 

and a vector reveals that V x (wfJv8 /fJz) = w(V x 8v8 /8z) + V w x 8v8 /8z. Taking the 

dot product with k gives k-V x (w8v 8 /8z) = wk-(V x 8v8 /8z)+k- (V H W x 8v8 /8z). 

Using these results, we can write (2.33) as: 

(2 .34) 

Using the useful relation: 

V · (a x k) = k · (V x a) (2.35) 

allows the conversion of the curl terms into divergences (in fact, horizontal divergences): 

fJ(z [ ( OVH - ) (- )] at = - V H . (z VH + Waz X k + k X F ' (2.36) 

The first vector on the RHS is a flux of vertical vorticity by the horizontal wind; it combines 

the stretching and horizontal advection terms. The second vector is perpendicular to the 

vertical shear vector, and is also proponional to the vertical velocity; it combines the tilting 

and vertical advection terms. The third vector is perpendicular to the horizontal component 

of any remaining force. 

There are advantages and disadvantages to using the Eulerian as opposed to the La-

grangian method of describing vorticity evolution. The Lagrangian vorticity equation 

definitively describes how an air parcel at a particular location acquired vorticity when 

the equation is integrated backwards in time (provided all the assumptions are appropri-

ate). Using the Eulerian equati n at a particular point might only provide the information 

that the vorticity was advected from somewhere else. However, obtaining the values of the 

terms in the Lagrangian equation requires knowledge of the position of the parcel versus 
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time, which requires that one also perform a backward integration of the velocity versus 

time. In an Eulerian numerical model such as RAMS, information at each time is only 

stored for discrete points rather than for discrete parcels, so interpolation and approxima-

tion in determining the velocity and vorticity fields for a parcel are inevitable. The Eulerian 

equation is more consistent with how vorticity is actually generated by an Eulerian model. 

2. 7 Eulerian Circulation 

The circulation tendency around a horizontal Eulerian contour enclosing an area S can 

simply be found by integrating (2.36): 

= - J j V · [ (z Vtt + ( W 8;; X k) + ( k X F)] dA. (2.37) 
s 

One can use this equation to describe how circulation is increasing around a region of a 

storm, but if this is the case one should make sure that the horizontal velocities used are 

with respect to a reference frame moving with the storm region in question. 

It is also possible to write (2.37) in terms of a line integral about the boundary of C. 

Relation (2.35) can be used to convert the cross product divergences in (2.37) back into the 

vertical component of a curl. For the term involving ( z Vtt, we can use the similar relation: 

- [ - ] - [ - &al k · V x ( a x k ) = k · -k(V · a) + oz = - V · a, (2.38) 

with the last equality valid if a is horizontal. Therefore, the integrand in (2.37) can be 

written as: 

OC ff [ A OVH ] A at = V X ( z VH X k + -w oz + F . kdA , (2.39) 
s 

and after applying Stokes' theorem: 

(2.40) 
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In a discrete numerical model vorticity cannot strictly be computed at a point; what one 

does in practice is compute the circulation around the appropriate planar grid cell, divide by 

the area of the grid cell to find the average vorticity perpendicular to the grid cell plane, and 

use this value as the vorticity component in that direction. So (2.40) has the advantage of 

being applicable to finding the change in circulation around a horizontal grid cell, although 

the component terms need to be interpolated to the horizontal grid cell circuit depending 

on the model grid staggering scheme. 

2.8 Diffusion 

To this point the diffusive force F has not been treated in detail, mainly because its treat-

ment is not as mathematically clear as that of the other terms. In RAMS, this term can 

include surface drag, vertical diffusion, and horizontal diffusion - the latter two may be 

quite different because of the difference between the horizontal and vertical grid spacings. 

If we assume an incompressible Newtonian gas, the fluid experiences a viscous force 

Fvm given by: 

1 a [ (8um 8un )] Fvm = --8 pv -8 + -8 , 
p X n Xn Xm 

(2.41) 

where v is the coefficient of kinematic viscosity, and m, n are generalized indices in the 

Einstein summation notation, such that Fvm represents a viscous force vector with compo-

nents m = 1, 2, 3, and the quantity within the brackets is the viscous stress tensor. 

Generally the viscous stress is neglected for atmospheric motion because it is negligible 

on the scales of interest. But the Reynolds' stress due to turbulent motion is often not 

negligible. Numerical models such as RAMS often model subgrid-scale momentum fluxes 

by representing them as: 

(2.42) 
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where Kn is the coefficient of 'eddy viscosity ', and is a function of the atmospheric kine-

matics. It is subscripted by n to indicate that its treatment might be different for different 

coordinate axes. 

In the limit of a constant-K, constant-density fluid, the second term in (2.42) becomes 

proportional to the gradient of the three-dimensional divergence, which would be zero in 

this case. This term is neglected in a commonly-used version of the RAMS diffusion 

scheme, based on that of Smagorinsky (1963); if we make this simplification, diffusion 

becomes: 

(2.43) 

Let us also assume that the density is only a function of the vertical coordinate, and that for 

n = l , 2, the coefficient of eddy viscosity has the constant value of KH. We are left with: 

(2.44) 

where l = l , 2, and K v is the vertical coefficient of eddy viscosity. 

In (2.44) the first term can be termed horizontal diffusion; for a signal in the U m field 

where the horizontal Laplacian of Um is roughly proportional to the negative of U m , the 

signal will be exponentially decayed. The second term acts as vertical diffusion when the 

variation of p and K v with height is neglected. 

Taking the curl of (2.44) gives the diffusive tendency on vorticity. Considering the curl 

of the horizontal diffusion term using vector algebra reveals that: 

(2.45) 

So the horizontal diffusion term simply diffuses vorticity of any orientation. Thus the terms 

viscosity and horizontal diffusion coefficient will be used interchangeably in this chapter. 
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2.9 Burgers Sheet and Vortex 

Following Saffman (1992), assume that we have a zone of vertical vorticity in a region 

where there is no large-scale variation of any quantity in the y direction, and where the 

horizontal velocities do not vary in the z direction. We permit horizontal diffusion of the 

form (2.45) , and air is converging in the x direction into the vortex sheet. There is no 

generation of vertical vorticity by either tilting or vertical advection because there is no 

vertical shear of the horizontal velocity. If a steady state is achieved, the vertical vorticity 

balance is between horizontal advection of vertical vorticity, convergent production, and 

diffusive destruction, according to: 

(2.46) 

For constant KH , this equation can be rewritten: 

(2.47) 

which suggests that 

(2.48) 

where C ( z) = 0 if the net vorticity flux is zero at infinity. 

This is a first-order differe tial equation in x that can be solved for ( z if u is given as 

a function of x . Consider the case of uniform convergence into the vorticity sheet; then u 

can be expressed as -ax where a is a positive constant. The solution is then just 

(
-ax2

) (z =(zoexp 2KH . (2.49) 

This is Burgers vortex sheet (Burgers 1948). The vorticity has a maximum value along the 

y-axis and follows a Gaussian distribution away from the axis . The characteristic e-folding 
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width of the vorticity band is given by be = (2KH /,) 1/ 2 . As the diffusion constant goes to 

zero, the width of the band also goes to zero, becoming a tangential velocity discontinuity 

in the limit of zero diffusion. 

Of course, in the real atmosphere turbulent transport cannot in general able to be rep-

resented by the eddy diffusion equation (2.42). However, when convergence is continually 

acting on a band of vorticity, some process must be invoked to explain why the vorticity 

does not collapse into an infinitesimally narrow sheet. At times, it will be assumed in this 

discussion that turbulent diffusion along vorticity bands in the real atmosphere can be ad-

equately described by horizontal diffusion of the form in (2.45) provided that the implied 

characteristic Burgers vortex s eet width is of the same order of magnitude as the width of 

the vorticity band in the real atmosphere. 

One can also speak of the axisymmetric Burgers vortex, which is found in the same way 

as the Burgers vortex sheet, with r, z replacing the dependent variables x, z . Here the radial 

velocity component for uniform axisymmetric convergence I is given by -,r /2, and the 

vorticity obeys: 

(-,r2) 
(z = ( zo exp 4KH , (2.50) 

with characterisstic radius (4KH /,) 112 . 

Both of these idealized models presuppose a source for the vertical vorticity. The Burg~ 

ers vortex possesses a finite but nonzero circulation rat large distances, which can be found 

by integrating the vorticity over all space to infinity: the result is: 

(2.51) 

It is generally assumed that r, like 1 , can be determined by the conditions in the large-

scale environment. The maximum vorticity (z0 then becomes inversely proportional to the 
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square of the characteristic Burgers vortex radius. For a given large-scale environment (zo 

is only a function of the diffusion coefficient; in the inviscid limit, a point vortex with finite 

constant circulation is achieved. 

Similarly, the Burgers vortex sheet can be integrated to infinity in the x direction to 

provide a finite circulation per unit y-direction length, O", of (Neu 1984a): 

_ (21rKH) ½, 
O" - --- ',, z O, a 

(2.52) 

where O" is specified by the environment. 

2.10 Barotropic Instability 

It was first demonstrated by Kelvin (1871) that if an infinitesimal wave-like perturbation 

is introduced to an infinitesimally-thin vortex sheet in a two-dimensional, inviscid, incom-

pressible domain, the disturbance amplitude wil] grow exponentially. Hence a discontinuity 

in the tangential velocity is unstable. This phenomenon is generally known as Kelvin-

Helmholtz instability (Helmholtz 1868; Kelvin 1871).4 In fact, it can be shown the smaller 

the wavelength of the perturbation, the faster the growth rate (Saffman 1992). 

Rayleigh (1880) considered the stability to wavelike perturbations of a long band of 

vorticity of finite width, and no variation of the mean state along its length. He found 

that a necessary condition for instability to infinitesimal disturbances was that an inflection 

point must exist in the mean state tangential velocity profile, or equivalently, the mean 

state vorticity gradient must change sign in the fluid. Because this process can occur with a 

constant-density fluid, it is often referred to in atmospheric science as barotropic instability, 
4The theory can also be extended to cover a discontinuity in fluid density. In atmospheric science, the 

term Kelvin-Helmholtz instability is primarily used to describe the breakdown of a vertical shear layer in 
the presence of thermal stability, which inhibits the instability unless the vertical shear reaches a certain 
threshold. 
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to distinguish it from baroclinic instability, which requires the presence of density gradients 

(e.g., Hoskins et al. 1985). 

The case of a thin band of constant vorticity surrounded by irrotational fluid can be 

considered to be the limit of a case that satisfies Rayleigh 's criterion, such that there is a 

large negative gradient of vorticity at the right edge of the band (when the band extends 

lengthwise in the y direction), and a large positive gradient of vorticity at the left edge of 

the band. It was found by Rayleigh (1880) that short-wavelength infinitesimal disturbances 

were stable, but that exponential instability occurred under the influences of disturbances 

with wavelengths greater than approximately 56x, where 6 x is the width of the band of 

vorticity. There is also a wavelength of maximum instability, at approximately 86x, with 

an e-folding growth time near 5/ ( 2 , where (z is the vorticity of the band. 

It is possible to model this problem as the effect of two Rossby waves generated along 

the vorticity discontinuities at each edge of the vortex band (Guinn and Schubert 1993; 

Montgomery and Kallenbach 1997). When the wavelength is large enough compared to the 

width of the band, each Rossby wave is capable of inducing motion in the other wave such 

that each wave is in turn amplified. In the latter stages of this process linear perturbation 

theory no longer applies, but vorticity is seen to pool towards discrete centers, leaving thin 

spiraling vorticity streams to connect the centers (Guinn and Schubert 1993; Schecter et al. 

2000). (See Figure 2.1). 

It should be noted that in this barotropic instability model there is no vertical motion , 

and no way to generate vorticity. Thus vorticity can only change at a point by horizontal 

advection. Because the horizontal advection at a local maximum in the vorticity is zero, 

the value of the maximum vorticity does not change within this model (Schubert, personal 

communication). 
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Figure 2.1 : Vorticity bands in nondivergent simulation of intertropical convergence zone 
(ITCZ) breakdown. From Guinn and Schubert (1993). 
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2.11 Stretched Vortex Sheet Collapse 

Coreas and Lin (1984) used numerical studies to examine the behavior of narrow vortex 

bands with low viscosity subject to unidirectional uniform convergence, as in the Burgers 

vortex sheet. They found that strong bands of vorticity showed a tendency to collapse into 

a point (Figure 2.2). Neu (1984a) developed an analytical model of the collapse process, 

and proved that the collapse occurs for a converged elliptical vortex region in the inviscid 

limit (i.e., infinitesimally thin) , and more generally for vortex sheets when the lengthwise 

variation of CJ is small compared to the convergence ex . The collapse occurs because the vor-

tex region tends to rotate under its self-induced velocity until the large-scale convergence 

advects all the vorticity of the s eet towards its axis of rotation (Figure 2.3). 

When finite viscosity was taken into account, Neu found that the collapse of a converged 

narrow vortex band was not assured, but only occurred when 

(2.53) 

If it is assumed that to first order the narrow vortex band obeys the steady-state Burgers 

vortex sheet relation for ( zo, then we can express the instability criterion as: 

(2.54) 

Yet another representation of the instability condition comes from eliminating the viscosity 

in (2.53) using the Burgers vortex sheet e-folding width: 

(2.55) 

Generally, the collapse occurs when the maximum vorticity within the vortex band exceeds 

the large-scale convergence (multiplied by a constant on the order of unity), or when the 

large-scale circulation density exceeds the product of the large-scale convergence and the 
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Figure 2.2: Collapse of a pair of counter-rotating vortices in a flow of uniform plane con-
vergence. From Corcos and Lin (1984). 
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(a) 

Figure 2.3: Depiction of vortex collapse process, according to Neu (1984a). The x-axis 
denotes the axis of the vortex sheet. The top schematic shows the focusing of circula-
tion density, O' , at three successive times. The middle schematic shows the correspond1ng 
displacement of the vorticity strip from the x-axis , rJ . The bottom schematic shows the 
resultant velocity from the vect r sum of the ambient convergence into the x-axis and the 
self-induced rotation for an elliptical vortex patch . 
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characteristic width of the vortex band. The end result of the collapse in the viscous case is 

a Burgers axisymmetric vortex with its radius specified by the values of a and v, or equiv-

alently a and Oi/e · The circulation of the final vortex according to Neu is the circulation 

excess of the vortex sheet, where the circulation excess is the difference between the actual 

circulation density and the threshold circulation density given in (2.53), integrated over the 

length of the vortex sheet that physically collapses. 

Neu (1984b) showed that another factor that can hinder the collapse of an inviscid ellip-

tical narrow vortex region in convergent flow is the presence of two-dimensional straining 

flow, i.e. a positive av/oy in the setup of (2.46). He found that collapse generally occurred 

when the semi major axis length a was less than [r / ( 1r ( a, ') 112) ]112 , where , ' is av/ fJy in 

our formulation , and r is the total circulation of the ellipse. Except for a few specific ellipse 

orientations, when a exceeded this threshold the ultimate result would be the extension of 

the ellipse into an infinitely-long vortex sheet. 

For these ellipses the vorticity is constant, and the circulation of the ellipses is given 

by 1rab(z, where b is the serniminor axis length. So the criterion for the collapse of the 

circulation can be written: 

(2.56) 

which can be rearranged to give: 

(2.57) 

This resembles the vise us collapse condition in that the vorticity must be large compared 

to the convergence. Two aspect ratios appear, the ratio of the long axis of vorticity to the 

small axis, and the square root of the ratio of the divergence along the long axis to the 

convergence along the short axis. Roughly, collapse is facilitated when the convergence 

field is more uniaxial than the shape of the vorticity patch. 
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Multiplying both sides by b provides an equation in terms of O": 

(2.58) 

Apparently, when the convergence is uniaxial such that , ' is zero, collapse is assured pro-

vided that a is finite, which reproduces the Neu (1984a) result. Conversely, any along-axis 

divergence is sufficient to prevent the collapse of an infinitely long vortex band. The quan-

tity a, '1/ 2 , like v112 in (2.53), serves to hinder the collapse process. If , ' < 0 (both au/ ax 

and av/ ay are negative), then again collapse is assured. 

Kalan (2001) showed in numerical simulations that an axisymmetric vortex in the pres-

ence of axial convergence is considerably more stable to perturbations than the same vortex 

in an environment without axial convergence. This result, though somewhat idealized, sug-

gests that the concentrated stretched vortex is quite stable to dissipation once it forms. 

2.12 Time-dependent Stretched Vortex Sheets 

Consider a large scale, two-dimensional, viscous, irrotational flow with au/ ax = -a and 

fJw / az = , , where a and I are positive constants. By continui ty, 8v/8y = a - 1 . If 

a = 1 , as in the Burgers vortex sheet, the flow can be referred to as plane strain; for 

a < 1 , such as the Burgers axisymmetric vortex, we have unia.xial strain; for a > 1 , 

as in the non-collapsing ellipses of Neu (1984b), we have biaxial strain (Moffatt et al. 

1994). Assume that the flow possesses a superimposed vertical vorticity and corresponding 

vorticity-induced velocity, but that neither is a function of either z or y . The governing 

vorticity equation is (Saffman 1992; Sec. 13.3): 

(2.59) 

If we substitute w = (z exp(-,t), the equation reduces to 

8w 8w 82w 
Ft - ax ax = +v fJx2 . (2.60) 
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Using a change of variables and the Green's function for the time-dependent diffusion 

equation, Kambe (1983) found the time-dependent solution to (2.60) given any sufficiently 

bounded initial condition w(x, t = 0). Substituting for the original vorticity in his solution 

gives: 

(2.61) 

where (zo(x) = (z(x , t = 0), ( = xe0 t, and T = (e20t - 1)/2a. 

In particular, if the initial vorticity has constant initial value of (0 for -R < x < R, 

and zero otherwise, the integration can be performed to yield (in terms of x and t): 

(2.62) 

Here erf( x) is the error function, defined by: 

2 r -z2 2 [ x3 XS l erf(x) = ..fir Jo e dz= fa x - 3 + 10 - ... . (2.63) 

If we consider the limit as t becomes large compared to 1/2a, so that the exponential 

terms dominate in the denominators, we get a solution for large times of: 

(2.64) 

If we also assume that t is large compared with ln( R/ x) / a, a more stringent requirement 

near the y-axis, we can expand the error functions as Taylor series about ±x~. From 

theintegralof(2.63), wehaveerf(u+a);:::; erf(u)+a(2/..fir)e-u2 when a<< u. Therefore, 

we obtain: 

(2.65) 
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The two error function terms cancel because they are odd functions , leaving: 

( ) {2a (-ax2
) (z(x, too)= (oe -r-o. t Ry ;;; exp , (2.66) 

Note that even along the y-axis where ln( R/ x) is infinite, this equation is still valid at all 

t provided that R in (2.64) is much larger than o1;e = (a/2v)½, the characteristic Burgers 

vortex sheet width (this can be seen by applying the first term on the RHS of (2.63) to the 

small argument of the error functions). 

For a = 1 it is seen that at long times a steady state is approached, corresponding to the 

Burgers vortex sheet. The significance is that any initial unidirectional zone of vorticity, if 

subjected to plane strain, will tend to form a Burgers vortex sheet, if it is not one already. 

A finite segment of the Burgers vortex sheet may then break down into vortices by the Neu 

(1984a) mechanism. If a =I- 1 the vorticity dependence on x is the same, but no steady-

state is achieved; the amplitude grows exponentially for uniaxial strain (, > a ), and decays 

exponentially for biaxial strain (, < a). 

Now consider the case when tis small compared to 1/ 2a . In this case, the denominators 

of the error functions in (2.62) are near zero. Unless we are near x = ± R, the vorticity is 

simply 

(2.67) 

Until is on the order of 1/ 2a, exponential growth in vorticity will occur when , > O; the 

actual value of a is not involved before this characteristic time. 

The following scenario is thus suggested for the behavior of a unidirectional band of 

vorticity with width 2R in a constant straining field. If aw/ fJz is positive, the band will 

contract towards the axis while the vorticity exponentially increases. This will continue 

at least until time on the order of 1/ 2a From the large time equation (2.66), we have a 
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maximum vorticity of ( 0R (2CY,/-rrv)½ if we allow t = 0. It is suggested, then, that the 

vorticity will continue to increase in the vortex patch for 1 > 0, until the maximum vorticity 

along the axis of convergence has increased by a factor of R(2a/1rv) ½, or (2/ ,,fir) (R/ 8e)-

After that value has been reached, the vorticity will continue to exponentially increase in 

uniaxial strain, though at a reduced rate. In biaxial strain, however, the vorticity will begin 

to exponentially decrease from the maximum value - its maintenance would depend on 

vorticity being continuously supplied from the lateral boundaries. 
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Chapter 3 

HISTORICAL BACKGROUND 

3.1 Observations 

The search for the source of the extreme values of velocity and vorticity (up to 2 s- 1 ac-

cording to Lemon and Doswell 1979) found in tornadoes has occupied atmospheric science 

researchers for decades. As early as the 1940s, Brooks (1949) noted that a number of torna-

does were accompanied by regions of significant reduced pressures on scales much larger 

than the actual tornado. He introduced the concept of the tornado cyclone, and surface 

observations have since confirmed the presence of rotating cloud features on a scale of 

several kilometers prior to tornadogenesis (Burgess and Donaldson 1979; Bluestein and 

Golden 1993). Brooks theorized that the contraction of a tornado cyclone could account 

for the vorticity found in a severe tornado even if frictional losses to the ground removed 

half of the angular momentum in the process. Fujita (1963) used the term mesocyclone to 

refer to circulatory features on a scale larger than that of the tornado but too small to be 

represented in synoptic analyses. 

Browning (1964) noted that a significant fraction of severe storms in the northern hemi-

sphere (including tornadic storms) differed from conventional convection in qualitative 

ways, particularly in that they essentially consisted of large single cells (now denoted as 

supercells) that continuously propagated to the right of the mean wind at all levels in the 
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mid-troposphere, persi "ting for hours. Using radar reflectivity data, he was the first to de-

velop a model of the supercell thunderstorm. His Severe Right (SR) storm develops in an 

environment with strong wind shear and a hodograph that veers with height, and moves 

to the right of the mean tropospheric wind. This behavior causes warm, moist, low-level 

air to exit and drop precipitation ahead of the storm, with cyclonically turning streamlines 

existing within the updraft. Dry mid-level air tends to have a component towards the right 

rear flank of the storm (see Fig re 3.1). This air evaporatively cools and forms a downdraft 

that descends on the left rear flank of the storm. As this air diverges near the ground it lifts 

warm, moist air ahead of it, enhancing the inflow towards the storm. However, since the 

storm-relative component of the downdraft flow, as well as the location of the precipitation, 

is well away from the inflow sector, the inflow is generally not interrupted and the cell can 

become nearly steady-s.tate. Features of this storm identifiable on radar include a weak 

echo region (WER) within the updraft at low and mid-levels, and a precipitation-caused 

hook-shaped echo at low levels. The WER is the result of the updraft being so intense that 

precipitation particles d not have time to grow to significant size until they have reached 

high levels in the storm. The hook echo is located near the edge of downdraft in a region 

of large hail, with rain becoming more prominent towards the forward flank of the storm. 

Tornadoes had been recognized as occurring in association with hook echoes (Garrett and 

Rockney 1962); the development of the supercell model explained the association as the 

result of the supercell structure being the origin of both. 

Barnes (1970) was one of the first to propose an explanation for the origin of the su-

percell rotation. He invoked the concept of vortex lines, which are tangent to the vorticity 

within the fluid; their density is proportional to the magnitude of the vorticity. Under cer-

tain conditions (see Chapter 2), vortex lines merely advect with the fluid. In the supercell 

environment, the vertical wind shear implies the presence of horizontal vortex lines; when 
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Figure 3.1: Depiction of airflow in a supercell. From Browning (1964) 
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these lines are advected into the supercell by the updraft, they are tilted upwards and create 

vertical vorticity. 

The development of Doppler radar made possible the detection of mesocyclones from 

a distance and confirmed their existence within the thunderstorm well above cloud base 

(Donaldson 1970). Actual tornadoes were too small to be resolved by operational Doppler 

radar at any typical range. However, a distinctive Doppler signal known as the Tornado Vor-

tex Signature (TVS) was found to nearly coincide with the 1973 Union City, OK tornado at 

ground level (Burgess et al. 1975). The TVS contains strong wind shear across successive 

azimuthal gates (20 m s- 1 ) , no more than 1 km in range depth and several kilometers in 

height, persisting for aro nd ten minutes. It was found that the TVS originated at midlevels 

(3-7 km) within the storm mesocyclone and then built both upwards and downwards. The 

descent of the TVS to the surface nearly coincided with the initiation of tornadic damage 

(Brown et al. 1978). 

Using these and other observations, Lemon and Doswell (1979) further refined the pic-

ture of the supercell. They found that the model proposed by Browning (1964) is typical 

of the first stage of the supercell storm. In the next stage, the storm develops a bounded 

weak echo region (BWER), in which a region of low reflectivity is completely surrounded 

at a given height by regions of high reflectivity. The BWER represents the core of the 

updraft possessing the greatest updraft velocities of the storm at that level; the hydromete-

ors in this region have had less time within the storm to grow than those on the periphery 

of the updraft core, resulting in lower reflectivities . Meanwhile a mesocyclone becomes 

apparent in the region of the B\\'ER, from 5-8 km above ground level. The mesocyclone 

appears to Doppler radar as a region of solid body rotation 5-10 km across with vorticity 

values near 0.01 s- 1 (Burgess et al. 1982; Brandes 1984). At this time the storm often 

produces its largest output of hail to the surface. The final stage in supercell development, 
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the collapse phase, is associated with strengthening downdrafts and weakening updrafts 

and BWER. But this is also the time that significant tornadoes are most likely to develop. 

During the collapse phase, the mesocyclone tends to migrate upwind from the updraft core 

to the boundary between the updraft and a region known as the rear-flank downdraft (RFD), 

in proximity to the hook echo. In their schematic of the supercell thunderstorm near the 

time of tornadogenesis (Figure 3.2), Lemon and Doswell clearly distinguish between the 

precipitation-cooled forward flank-downdraft (FFD) and the cooler, drier RFD. The RFD 

and 'divided mesocyclone' are seen to descend towards the surface together, and it is spec-

ulated that this process is closely associated with the formation of the hook echo and tor-

nadogenesis. The descent of the TVS was also linked to that of the divided mesocyclone. 

This picture suggested that, while the original midlevel updraft mesocyclone might 

intensify due to convergence, the formation of the tornado itself might be due to a com-

pletely different mechanism, probably involving tilting because it tends to occur along the 

updraft/downdraft gradient. 

3.2 Supercell Modeling 

In the mid-1970s, the growing sophistication of computer cloud models made it possible 

to attempt simulations of supercell thunderstorms. The model of Schlesinger (1975) was 

one of the first cloud models used for three-dimensional simulations, which is necessary 

to the proper simulation of supercells. His model was of coarse resolution (horizontal 

grid spacings of 3.2 km), did not include precipitation microphysics, and was anelastic. 

In an anelastic model v' · (p0v) = 0 where p0 is generally a function of z only; sound 

waves cannot exist in such a model. A density-weighted divergence of the momentum 

equations leads to an elliptical equation for the pressure perturbation similar to (2.24). The 

elimination of sound waves was an advantage because it allowed the model to use relatively 
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Figure 3.2: Plan view of tornadic supercell. Thin dots denote regions of updraft whereas 
thick dots denote regions of downdraft. Thick line is region of radar echo. The location of 
the tornado is marked by a T. From Lemon and Doswell (1979). 
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long time steps that normally would have produced sound wave instabilities, which would 

have crashed the model. 

Schlesinger was able to create a vortex couplet a few kilometers above the surface by in-

troducing a thermal plume in an environment with unidirectional wind shear. This showed 

that vertical vorticity could be produced by the presence of an updraft in an environment 

with vertical wind shear. However, it was not consistent with observations of supercells 

with an updraft dominated by the presence of vorticity of only one sign, usually positive. 

Another of the early three-dimensional computer models developed to investigate the 

evolution of convection was that of Klemp and ,Wilhelmson (1978a). Their model was not 

anelastic, which required them to use a smaller time step with the pressure equation to 

prevent sound wave instability. However, the fact that the model was fully compressible 

made possible the explicit prediction of the pressure and the simplification of many of the 

numerical algorithms. They performed a number of simulations with Kessler rain micro-

physics at 1 km horizontal grid spacing and 500 m vertical grid spacing; these were the 

first simulations capable of producing storms with supercellular features. Klemp and Wil-

helmson used horizontally-homogeneous simulations; an atmospheric sounding conducive 

to convection was assumed to represent the vertical profile of the atmosphere throughout 

the model domain. Actual model convection was initiated by introducing a 'warm bubble' 

(a region of elevated temperature) in the center of the domain at the simulation start. 

In an initially unidirectional shear environment Klemp and Wilhelmson were able to 

simulate convection that subsequently split into two members. Storm-splitting was a phe-

nomenon that had been observed and documented in the literature (Fujita and Grandoso 

1968). In the numerical model, the weakening of the updraft that led to the splitting was 

caused by the presence of water loading in their Kessler microphysics scheme. The two 

updrafts were mirror images of each other when the Coriolis force was not included, and 
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rotated in opposite senses. The cells separated from each other while demonstrating devi-

ate motion; the right-mover displayed many of the characteristics of the severe right-mover 

model of Browning, including a cyclonic updraft, counterclockwise hooked-shaped down-

draft , off-hodograph movement, and long lifetimes. 

In an accompanying paper (Klemp and Wilhelmson 1978b), the authors were able to 

demonstrate that when the environmental hodograph turned clockwise with height, the de-

velopment of the right member storm was favored, whereas a counterclockwise hodograph 

favored the left member's development; the Coriolis force was not a significant factor in 

producing asymmetries between the two storms. Thus the preference for cyclonic super-

cells in the Northern Hemisphere was shown to be due to the predominance of clockwise 

hodographs and not directly due to the rotation of the Earth. 

Based on the Klemp and Wilhelmson simulations, Rotunno (1981) was able to explain 

how tilting could produc an updraft possessing vorticity predominantly of one sign. Con-

sidering for simplicity an environment with unidirectional westerly wind shear, the initial 

buoyant bubble bulges vortex lines upwards such that positive vorticity is found on the 

south side of the updraft whereas negative vorticity is found to the north. After a downdraft 

splits the convection, two storm result, each with positive vorticity to the south and nega-

tive vorticity to the north. But at low levels convergence occurs beneath the inflow in the 

updraft whereas divergence occurs in the central downdraft. Thus the positive vorticity of 

the southern storm is preferentially enhanced, while the northern storm's negative vorticity 

is enhanced. 

Davies-Jones (1984) would give a more rigorous treatment of the rotation of supercells 

in the isentropic case. He defined a displacement parameter that represents the vertical 

distance the (horizontal) environmental isentropes are displaced upwards; the displacement 

is positive in a buoyant plume. The vertical velocity and vorticity are proportional to the 
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dot products of the displacement gradient with the horizontal plume-relative velocity and 

horizontal vorticity, respectively. Thus supercells with strong correlations between vertical 

velocity and vertical vorticity occur in environments where the storm-relative wind and 

horizontal vorticity vectors are nearly parallel in the inflow. A disadvantage of using this 

method to forecast supercells is that the storm motion relative to the ground either must be 

known or estimated from the environmental conditions a priori. 

Meanwhile Schlesinger (1980) investigated the splitting process in more detail using a 

version of his model with rain rnicrophysics. He found evidence that downdrafts initiating 

the splitting developed on the flanks of the cloud condensate field, and trajectory analy-

ses of parcels within these downdrafts showed that they possessed low equivalent potential 

vorticity, not typical of surface-based parcels. Thus, it was suggested that, in addition to 

condensate loading, an important component to the storm splitting process was the evap-

orative cooling of midlevel air1 . But, most importantly, each nascent vorticity center of 

the unsplit storm was associated with a low pressure region. These low pressure regions 

produced a number of effects: the low pressure centers dynamically induced a downdraft 

between them, and kinematically the vorticity centers caused a flow field that brought low 

0e between them. Furthermore, the low pressure centers created upward pressure gradient 

forces beneath them. The net effect was a tendency to convert the initial storm updraft into 

two updrafts that propagated away from each other. 

The elliptic pressure equation was then written as: 

(3.1) 

1Clark (1979) also found in his simulations that entrainment also could be a cause of storm splitting. 
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where P = T0p'/00p0 , ,o = cp/ Cv, Fis the frictional force, a= 0.61, q~ is the water vapor 

mixing ratio, and q1 is the liquid water mixing ratio. The terms within the large brackets on 

the right-hand side are referred to as the dynamic, hydrostatic, and drag-induced forcings, 

respectively. Because it is linear in P, it is possible to invert the equation for P using 

each of the forcings separately and then to add the three solutions to obtain the total P. 

Thus one can define P = PnYN +PH+ PnRAG and determine which term, if any, is 

making the dominant contribution to a given pressure feature. By following this procedure, 

Schlesinger found that the low pressure centers associated with the vortices were dynamic 

in origin (associated with the vorticity squared term (2.25)). 

Rotunno and Klemp (1982) used a similar procedure to develop the theory for why 

the right-moving storm member possesses the stronger development in environments with 

clockwise-turning wind shear vectors, even at the earliest stages. They derived the follow-

ing version of (3.1): 

'v21r = _ 2 (dU aw+ dV aw) _ (au) 
2 

_ (av) 
2 

_ (aw) 
2 

dz ax dz ay ax ay a z 

_ 2 (aua-iu + av aw+ au av )+ aB 
az ax az ay ay ax az ' (3.2) 

where it has been assumed that the model wind field can be decomposed into a base state en-

vironmental wind (U( z), V(z), 0) and a perturbation wind (u , v, w) caused by the thermal 

bubble. Non-conservative forces have been neglected, so all the terms are dynamic terms 

except the last, which Rotunno and Klemp termed the buoyancy term. The dynamic terms 

have been decomposed into the non-linear terms that are second-order in the perturbation 

variables, and the linear term -2((dU/dz)(aw/ax) + (dV/dz)(aw/ay)) that involves the 

environmental shear vector. It is expected at least in the initial stages of convection that the 

linear term should be dominant in determining the pressure. 
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The nonlinear term suggests that a localized, axisymmetric region of vorticity is asso-

ciated with low pressure, regardless of the sign of the vorticity. This is consistent with the 

results of Schlesinger (1980). The linear term suggests that the pressure is lower downshear 

of an updraft. Thus, if the environmental shear turns clockwise with height, the pressure 

will tend to decrease with height on the flank of the updraft to the right of the low-level 

shear vector. This normally corresponds to the right-mover in the case of storm splitting. 

The decrease in perturbation pressure with height adds an additional vertical acceleration 

that may be enough to sustain the storm along this flank. The left-mover, however, finds 

its growth inhibited by a downward perturbation pressure force. Rotunno and Klemp were 

able to invert the pressure equation in a numerical simulation and show that the linear term 

was indeed critical to the dynamics of their simulation. 

3.3 Low-Level Vorticity 

Davies-Jones (1982) noted th t, whereas the origins of the mesocyclone coincident with 

the updraft core of supercells seemed well explained by the tilting of horizontal environ-

mental vorticity by the updraft, this explanation was not sufficient to explain the origin of 

tornadic vertical vorticity near the ground because the vertical velocity gradients there are 

weak (prior to the existence of the tornado of course). Either vertical vorticity would have 

to be diffused towards the surface in an updraft, or low-level vertical vorticity would have 

to be transported to the surface somehow in a downdraft. Davies-Jones also showed in an 

idealized case that the magnitude of the vorticity vector would tend to increase exponen-

tially in the direction of the primary axis of dilatation; in the case of a purely axisymmetric 

horizontally-convergent flow, the primary axis of dilatation is vertical. 

The simulation of tornadic supercell case studies using a storm-resolving numerical 

model began with Klemp et al. (1981), who used the same model and setup as Klemp and 
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Wilhelmson (1978a) in order to investigate the Del City tomadic storm of 20 May 1977. 

A composite of two hodographs observed in the vicinity of the Del City storm was chosen 

to initialize the model. They succeeded in modeling the evolution of a supercell that rea-

sonably resembled the Del City storm. Significant vorticity was generated near the 'triple 

point' of the storm close to the surface, at the boundary between updraft and downdraft. 

Klemp and Rotunno (1983) then decided to repeat the simulation with a 250 m fine grid 

introduced at 3600 seconds encompassing the surface vorticity maximum. The low-level 

vorticity (reaching values of 0.06 s-1) was found to develop separately from the mid-level 

mesocyclone, suggesting that its formation was due to a different process. Klemp and Ro-

tunno proposed that the low-level vorticity was generated as air parcels approached the 

vortex along trajectories near and parallel to the forward flank gust front. Streamwise hori-

zontal baroclinic vorticity thus was acquired by the air parcels, and was converted by tilting 

into vertical vorticity when the updraft was reached. Convergence beneath the storm's up-

draft would further enhance the vertical vorticity. One limitation of the simulation was that 

the vertical grid spacing remained at 500 m, so that a free slip lower boundary condition 

was required and a detailed analysis of near-surface dynamics was precluded. Another 

limitation was that the nested grid was one-way interactive, so the fine grid could only be 

integrated a limited amount of time before the fine grid conditions diverged significantly 

from those of the surrounding coarse grid. While the low-level vorticity was intensifying, a 

downdraft surged counterclockwise from the RFD around the low-level mesocyclone to its 

east side. This was termed the occlusion downdraft, and its origins were linked to dynamic 

forcings induced by the strong low-level rotation near the ground. 

To test their hypothesized mechanism of low-level vorticity formation, Rotunno and 

Klemp (1985) performed an idealized horizontally-homogeneous simulation with a straight-

line hodograph. By removing the effect of hydrometeor evaporation they were able to 
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demonstrate that an evaporatively-cooled downdraft was necessary to form low-level vor-

ticity. They also explicitly performed a backwards-trajectory analysis of a material contour 

enclosing the vorticity center, and showed how the change in circulation around the contour 

was consistent with the integrated baroclinity about the contour. 

Davies-Jones and Brooks (1993) performed another investigation of the formation of 

low-level vorticity in a supercell simulation because, while the importance of storm-generated 

baroclinity to generating horizontal vorticity was acknowledged, the authors did not see 

how this process could result in significant vertical vorticity because of the argument of 

Davies-Jones (1982). They performed a material curve analysis of the supercell simula-

tion of Brooks et al. (1993). This simulation involved a version of the Klemp-Wilhelmson 

model with 1 km horizontal grid spacing, 200 m vertical grid spacing, and an idealized 

hodograph formed by joining a low-level semicircular hodograph and an upper-level straight 

line hodograph. The authors confirmed that the largest values of horizontal vorticity, five 

times larger than the environmental values, were found in the vicinity of the storm gust 

front. The trajectory analyses showed that parcels acquired negative vorticity as they de-

scended in the downdraft, but then the sign of the vorticity switched to positive at the 

lowest model level. This was explained by Figure 3.3. If parcels possessing streamwise 

environmental vorticity enter a downdraft, tilting induces negative vertical vorticity. In the 

absence of baroclinity, the vortex lines would simply follow the trajectories, but because 

of baroclinity the horizontal vorticity vectors make less of an angle towards the ground 

than the trajectories. Once the parcels approach the ground, a positive updraft gradient ex-

ists in the direction of the trajectory (because the vertical velocity increases from negative 

values towards zero). This tilts horizontal vorticity (which has been continually produced 

by baroclinity during descent) into positive vertical vorticity. The key difference between 
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this scenario and that of Rotunno and Klemp (1985) is that parcels obtain positive vertical 

vorticity within the downdraft, rather than after they begin ascending the updraft. 

Brooks et al. (1994) performed more idealized supercell simulations to examine the life 

cycle of the low-level mesocyclone. They found a link between the low level and midlevel 

mesocyclone, but only an indirect one. They argued that when the midlevel vertical wind 

shear was weak compared with the midlevel mesocyclone, precipitation would be wrapped 

around the mesocyclone nd fall in the vicinity of the updraft. Low level vertical vorticity 

would at first rise rapidly due to tilting of baroclinically-generated horizontal vorticity. 

However, because of the volume of evaporated precipitation, the supercell would become 

outflow dominated: the gust fronts would rapidly surge ahead, cutting off the inflow to 

the storm and disrupting the steady-state nature of the Browning (1964) conceptual model. 

Thus, the low-level mesocyclone would not be persistent in this case. A persistent low-level 

mesocyclone required the more midlevel wind shear compared to midlevel mesocyclone 

strength. Under the proper conditions precipitation would be distributed farther from the 

storm updraft, leading to a delay in the development of low-level vorticity, but a more 

steady-state storm, and persistent low-level mesocyclone, would also result. 

At the same time Walko (1993) performed idealized simulations of a vortex using the 

Regional Atmospheric Modeling System (RAMS). Instead of a supercell, a zone of heating 

was used to initiate dry convection. Three grids were used with horizontal grid spacings of 

1600 m, 400 m, and 100 m; the vertical grid spacing was 20 m near the surface. A semi-slip 

lower boundary condition was utilized - the horizontal wind at the lowest model level is 

used to compute a surface stress, and this surface stress is in tum used in the computation 

of the vertical stress gradient that decelerates the wind. The environment was varied to 

incorporate cases with both ambient horizontal and vertical vorticity. Walko found that a 

strong axisymmetric vortex could form near the surface because of convergence, but only 
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Figure 3.3: Depiction of the tilting of baroclinically-generated horizontal vorticity into 
positive vertical vorticity within a downdraft. From Davies-Jones and Brooks (1993). 
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in the cases where low-level vorticity was introduced in the initialization. Otherwise the 

generation of a significant vortex at the ground required the presence of downdrafts. This 

supported the arguments of Davies-Jones (1982) and Davies-Jones and Brooks (1993) that 

updraft tilting alone was not sufficient to generate significant low-level vorticity. However, 

baroclinity was not a positive contributor to the vorticity in these simulations; the role of 

the downdrafts was to tilt environmental horizontal vorticity into the vertical along the 

boundary between updraft and downdraft. 

3.4 Tornadic Scales 

Also using a descendant of the Klemp-Wilhelmson model, Wicker (1990) followed the 

procedure of Klemp and Rotunno (1983), and introduced a fine grid into the supercell 

simulation of Wilhelmson and Klemp (1981). The horizontal grid spacing was now 70 

m, and the vertical grid spacing was stretched upwards from a minimum of 50 m near 

the ground. It was found that the near-ground vorticity could reach values of 0.35 s- 1 if 

a semislip lower boundary condition was used, and a vortex persisted for a few minutes. 

Near-surface friction had prevented the tangential wind from achieving cyclostrophic wind 

balance, and the induced radial inflow concentrated and increased the strength of the vortex. 

Wicker and Wilhelmson (1995) introduced a two-way interactive nesting scheme into 

their model, which allowe them to begin a fine grid nest tens of minutes before the low-

level vorticity peaked in the corresponding one-grid simulation. This reduced the sensitivity 

of the vorticity evolution to the actual spawning of a nested grid. This and other refinements 

enable the authors to analyze in some detail the evolution oflow level vorticity within a fine 

grid of 120 m horizontal grid spacing (the coarse grid possessed 600 m grid spacing). The 

minimum vertical grid spacing was 120 m, but still not fine enough to justify deviating 

from a free-slip boundary condition. The sounding used at initialization was a composite 
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of three tornadic cases. The s orm produced the characteristic rear flank downdraft and 

hook echo. The fine grid was spawned after 70 minutes of simulation; within the next 40 

minutes two successive tomadic-strength vortices (ground-relative wind speed 60 m s- 1, 

pressure deficit 15 mb) developed. The tornadoes lasted approximately ten minutes each 

and formed as the low-level mesocyclone contracted. It was found that for at least the 

second vortex the contraction was associated with a dynamically-induced vertical pressure 

gradient force associated with an initial increase in circulation at a height of 1.5 - 3 km, 

which is slightly above cloud base. The near-surface circulation remained nearly constant 

during the contraction phase. 

Wicker and Wilhelmsen also performed backward trajectory analyses from the tornado. 

Similar to Rotunno and Klemp, they found that the baroclinic generation of vorticity along 

the forward-flank downdraft, and subsequent tilting into the vertical, was crucial. Unlike 

Davies-Jones and Brooks (1993), however, they found no evidence that vertical vorticity 

became positive before the parcels entered the updraft, to the limit of their model's vertical 

resolution. 

At about the same time Grasso and Cotton (1995) used RAMS to perform a three-

grid simulation using the Del City, Oklahoma sounding. The horizontal grid spacings for 

the grids were 1 km, 333 m, and 111 m. The vertical grid spacing was 25 m near the 

ground, and the lower boundary condition was semislip. At a semislip lower boundary 

the horizontal velocity is no constrained to zero, but is subject to retarding force due to 

parameterized turbulent momentum transfer. The model also possessed bulk mixed-phase 

microphysics. The resultant supercell developed similarly to previous modeling studies, 

and eventually a vortex was formed with 51m s-1 storm relative winds at the surface and 

a pressure deficit of 12.6 m . The maximum press re deficit occurred at a height of 365 

m. Near the surface, the wind field was mostly convergent towards the vortex due to the 
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presence of surface friction. The low pressure deficit seems to first become apparent near 

cloud base along the updraft/downdraft boundary in response to an increase in the total 

vorticity there. The decreased pressure aloft will cause an increased convergence beneath; 

this subsequently amplifies the low-level vorticity and decreases pressure at this new level. 

In this manner the pressure deficit region descends towards the surface. 

For this process to occur there initially must be a source of low-level vorticity. Parcels 

possessing low-level vorticity were found to descend cyclonically in the precipitation down-

draft, suggesting that the vorticity was generated baroclinically within the downdraft, but 

more detailed trajectory analyses were not performed. 

Although there are some differences in the descriptions, tomadic vortices of similar 

strengths at similar resolutions are formed in the Wicker and Wilhelmsen and Grasso 

and Cotton simulations. In both cases a source of low-level vorticity is required, pre-

sumably downdraft- produced baroclinity, but the precise location of vorticity generation 

either could not be determined or occurred too close to the surface to be adequately re-

solved. Once low-level vorticity was spawned, the actual generation of the tomadic vortex 

was initiated by dynamical y-induced convergence beneath a mesocyclonic feature located 

near cloud base; thus it was required that this mesocyclonic feature and the near-surface 

baroclinically-generated vorticity be in close proximity to each other. 

3.5 Horizontally-Heterogeneous Simulations 

Grasso (1996) next applied RAMS to the simulation of a couple of tomadic case studies 

using the model's horizontally-heterogeneous mode. The coarse grid encompassed most of 

the continental United States, and was initialized with synoptic data at 75 km resolution. 

Four nested grids, including grids that were allowed to follow the movement of convection, 

permitted the simulation of supercell thunderstorms at 1 km grid spacing, and six nested 
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grids permitted the simulation of tornadic vortices at 111 m grid spacing. In this manner it 

wa hoped to examine the formation of the tornadic cases of 1991 May 15 in Luverne, Ok-

lahoma and 1991 Apr 26 in Redrock, Oklahoma. No warm bubble was required to initiate 

the storms, as the synoptic forcings and surface characteristic gradients (soil moisture, land 

use type, etc.) accomplished this. In the Redrock case, the successive nestings did produce 

a tornadic vortex with wind speeds at the surface exceeding 100 m s- 1, which was compa-

rable to what was observed in the actual tornado (Bluestein 1993). There were differences 

in evolution between the observed and modeled parent storms, however; the modeled storm 

stayed in the vicinity of the dry line whereas the observed storm became tornadic well away 

from the dryline. 

For both vortices, the maximum vorticity values developed first at the surface, and then 

built upwards. A circulation analysis wa attempted for the tornadoes but complicated by 

the movement of the modeled grids. It was found that the main source of low-level vertical 

vorticity was the tilting of horizontal vorticity in the downdrafts within a few hundred 

meters of the surface. 

Finley (1997) also performed two horizontally-heterogeneous simulations using six 

nested grids with the same grid spacings as those of Grasso (1996). The cases simu-

. ated were the May case of the Grasso study and the 30 Jun 1993 HP supercell case of 

Kansas that was associated with weak tornadoes. The first case produced a tornado on the 

finest grid that developed secondary vortex circulations within the parent vortex, similar 

to a larger version of the secondary vortices often observed with observed tornadoes (Fu-

jita 1970; Forbes 1978). T e 30 Jun 1993 simulation produced two weak tornadoes that 

developed from near the surface upwards; the first was located along the gust front but 

away from the midlevel mesocyclone. A circulation analysis was performed on the 333 m 

fifth grid for a material curve that was advected backwards in time until it encountered the 

53 



grid boundary at 18 minutes. During this period of time the baroclinic contribution to the 

circulation around the curve was negligible, and, if anything, slightly negative. Evidently 

the tornado formed by the convergence of circulation already present in the environment 

at the earliest time attainable in the circulation analysis. The second model tornado in the 

June case formed near the mesocyclone in a bow-echo-like structure, and was also sub-

jected to a circulation analysis for 18 minutes. It was revealed that, because of surface 

stresses, the circulation around the material curve actually decreased as it converged to-

wards the tornado. Again, this demonstrated that the low-level circulation already existed 

at the beginning time of the analysis. Trajectory analyses of individual parcels showed that 

both tilting and convergence were important to increasing the vertical vorticity of parcels 

reaching the tornado. The vorticity increases occurred for parcels entering the tornado from 

both the updraft and downdraft sectors; as in Wicker and Wilhelmson (1995), the source of 

vertical vorticity immediately above the surface remained unexplained. 

3.6 Recent Observations 

The Verification of the Origins of Rotation in Tornadoes EXperiment (VORTEX) was a 

field project that took place in the southern Great Plains over the 1994 and 1995 severe 

storm seasons (Rasmussen et al. 1994). For the project observational platforms were 

poised to converge on potentially tornadic supercells to follow their evolution in unprece-

dented detail. These included a mobile mesonet (Straka et al. 1996), the airborne ELectra 

DOppler RAdar (ELDORA) (Wakimoto et al. 1998), and mobile 3-cm (Wurman et al. 

1996) and 3-mm (Bluestein et al. 1995) Doppler radar. The goals of the experiment were 

cast in terms of scientifically verifiable hypotheses concerning tornadogenesis and related 

processes; therefore, the documentation of otherwise promising supercells that failed to 

produce tornadoes was also important. Though the 1994 season was notable in its lack of 
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tornadic storms over the field project region, a number of tornadic supercells were captured 

by the VORTEX platforms in 1995. 

Rasmussen and Straka (1996) were able to use the mobile mesonet to achieve kilometer-

scale resolution of the surface conditions during the formation of the powerful Dimmitt 

tornado of 2 June 1995. Immediately prior to the formation of the tornado, they noted the 

presence of an intense low-level mesocyclone that had already been ' occluded' by an ex-

tension of the RFD. Most of the downdraft had near-surface 0e values, suggesting that it 

was evaporatively-cooled low-level air, except for a core of low-0e air with origins near 700 

mb. An inflow low (caused by the interaction of the updraft and environmental wind shear) 

was present in advance of the storm; the low-level mesocyclone was nearly encircled by a 

ring of high pressure. During the tornado, the RFD surged eastward, and high temperatures 

were found in the RFD to the south-southeast of the tornado, suggesting that air parcels 

been dynamically forced to descend dry-adiabatically. The dissipation stage was associated 

with the arrival of the low-0e air at the tornado vortex. In a proposed synthesis, the authors 

suggest that the occlusion of the tornado cyclone by downdraft preceded tornadogenesis , 

but it was suggested that the origins of the occluding downdraft was dynamically-driven 

by the already extent low-level mesocyclone, similar to the Klemp and Rotunno (1983) 

hypothesis. Because of the occlusion, inflow air could not reach the region of tornadogen-

esis, so the vorticity had to be generated elsewhere. It was first proposed that the occluding 

downdrafts carried the vorticity needed for tornadogenesis. During the entire lifetime of 

the storm there were almost no gradients of temperature at the surface ( except for those in 

the dynamically-driven occlusion downdraft), in contrast to the scenario of Rotunno and 

Klemp (1985). However, temperatures were l0°C warmer at Lubbock to the south. It 

was later found that a surface thermal boundary was present 15-25 km south of the storm, 

and that the storm had in fact crossed the boundary about thirty minutes prior to the first 
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analysis time (Rasmussen et al. 2000). So, it was then suggested that the baroclinity of 

the boundary could have generated horizontal vorticity that could after tilting serve as the 

source of vorticity needed for tornadogenesis. 

Wakimoto et al. (1998) used ELDORA to capture in dual-Doppler analysis the hour-

long evolution of a low-level mesocyclone into a tornado near Garden City, KS on 16 

May 1995. They clearly showed that the low-level mesocyclone and midlevel mesocyclone 

developed separately 8-10 km apart, but then merged into the main updraft. A dynamically-

forced occlusion downdraft began to form within and just to the east of the mesocyclone 

twenty minutes later. After another twenty minutes, the occlusion downdraft had reached 

30 m s- 1 , and tornadogenesis occurred. Wakimoto and Liu (1998) observed the tornado 

form in a ring of vorticity surrounding the occlusion downdraft, and propose that the tor-

nadogenesis process was analogous to 'vortex breakdown' occurring in the low-level meso-

cyclone (Rotunno 1984), caused by sufficient 'swirl ' in the outer flow. 2 

Also notable were the null cases: significant supercell thunderstorms that showed evi-

dence of strong low-level mesocyclones, but failed to produce tornadoes . Three such cases 

were documented by Trapp (1999); they all possessed strong mesocyclones within a few 

hundred meters of the ground that persisted at least fifteen minutes, but none produced 

a tornado. He speculated that some reasons for tornadogenesis failure include the devel-

opment of an outflow-dominated storm, too great a stability in the boundary layer, and 

the absence of a lifting force such as a favorable dynamic pressure gradient or sufficient 

buoyancy. 

Blanchard and Straka (1998) had used ELDORA, DOW (Doppler On Wheels), and 

mobile mesonet data to examine a supercell that formed in Beaver County, OK on 8 June 
2It has since been noted that true vortex breakdown is not necessary to explain the descent of a 

dynamically-induced downdraft within the mesocyclone (Trapp 2000). 
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1995. This was the first storm that formed (1845 UTC) on a day that would later see 

powerful tornadoes develop in the Texas Panhandle. This particular storm produced large 

hail? and an intense low-level mesocyclone, but only a brief funnel cloud developed during 

its lifetime. Blanchard and Straka postulated that the low level buoyancy in the environment 

may have been too weak to generate the vertical accelerations needed for tomadogenesis. 

Wakimoto and Cai (2000) examined a powerful supercell that developed on 12 May 

1995 near Hays, KS that never underwent tomadogenesis despite the presence of a low-

level mesocyclone with vorticity values exceeding 0.04s- 1. There was even an occlusion 

downdraft, and a comparison between this storm and the Garden City storm revealed few 

differences (Cai and Wakimoto 1998). Greater precipitation amounts in the Hays storm 

may have led to the deeper cold pool reported for that storm (2.3 km vs. 1.4 km for the 

Garden City storm), but a strong inflow kept the storm steady state, instead of outflow-

dominated (Brooks et al. 1994). The Hays low-level mesocyclone was slightly larger and 

possessed a tangential wind speed that decayed less rapidly with radius than the Garden 

City mesocyclone, which more closely followed the 1/ r profile of a potential flow far field. 

They also noted that both storms exhibited a pressure minimum near 2 km, but only in the 

tomadic Garden City storm did the pressure minimum descend to the surface. However, 

it was not clear how either of these differences were related to the presence or absence of 

tomadogenesis . 

These results suggested that the kinematical differences between the tornadic low-level 

mesocyclone and the non-tomadic one might be extremely subtle, possibly not resolv-

able by either existing observational platforms or cloud-scale numerical models. Thus 

efforts were intensified to try to find some observable environmental parameters that could 

distinguish between toma · c and non-tomadic storms and make the forecasting problem 

tractable. 
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forward-flank downdraft itself. Both baroclinity and pre-existing vertical vorticity along 

the boundary were important to the subsequent generation of strong vertical vorticity in 

these simulations . Interestingly, though, it was found that neither varying the boundary 

temperature gradient nor the cross-boundary horizontal wind shear had much of an effect 

on the vorticity evolution as long as they exceeded certain minimum thresholds. 

Adlerman et al. (1999) performed a simulation with 500 m horizontal grid spacing and 

as small as 100 m vertical grid spacing near the ground. The model used was the Advanced 

Regional Prediction System (ARPS), with warm Kessler-scheme microphysics. Free slip 

boundary conditions were applied at the surface. The initialization was from the Del City 

sounding used by the Klemp and Rotunno and Grasso and Cotton studies. They found 

that their low-level mesocyclone dynamically initiated an occlusion downdraft; once this 

downdraft reached the surface, it enhanced convergence and led to a rapid intensification of 

the mesocyclone. The modeled storm was seen to produce a peak in low-level vorticity after 

6600 seconds, which subsequently decayed, but re-intensified by 11400 seconds. The more 

rapid intensification of the second vorticity maximum was explained by noting that initially 

the cold pool 0 contours were oriented so that little of the horizontal vorticity generation 

was streamwise, until cyclonic trajectories and low-level acceleration developed; after the 

first occlusion, however, the 0 contours remained in a position well suited to the creation 

of streamwise vorticity. 

3.8 Models of Tornadogenesis - DPE and NST 

Trapp and Davies-Jones (1997) used an idealized axisymmetric model to investigate how 

a vortex would form in the presence of ambient convergence and vorticity fields. They 

found that when convergence of vorticity was strongest aloft, a vortex descended to the 

surface via the 'dynamic pipe effect' (DPE) mechanism (Leslie, 1971). In this process, 
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radial convergence into the vo ex continues to increase the vorticity until the winds are 

in cyclostrophic balance with t e pressure deficit associated with the vortex. At this point 

radial convergence stops, and air is drawn up into the pressure deficit from below. This 

causes horizontal convergence of vorticity to begin below the vortex, and the process con-

tinues at progressively lower levels. The significance of the Trapp and Davies-Jones study 

is that they found that when the vorticity convergence is greater near the ground, or nearly 

constant throughout the depth of the column, the vortex spins up nearly simultaneously 

across its depth, without the slow descent associated with the dynamic pipe effect. 

Trapp et al. (1999) have since classified observed tornadic events into those with a de-

scending tornado vortex signature (TVS), and those without descending TVSs. Trapp and 

:Mitchell found that about half of the tornadoes studied were not accompanied by descend-

ing TVSs. If these are associated with the two modes of tomadogenesis described in Trapp 

and Davies- Jones, then the implication is that a large fraction of tornadoes form rapidly 

and little or no radar warning may be possible. 

Lee and Wilhelmson (1997a) had investigated non-supercell tornadogenesis (hence-

forth referred to as NST) using a dry sernislip numerical model. They simulated a north-

south old pool boundary with 100 m grid spacing in both the horizontal and the vertical 

directions. Winds were southerly on the warm side of the boundary, with speeds increas-

ing with height; the cool side was motionless initially. A transition zone in 0 and winds 

existed between the two. As time progressed, the cool air propagated towards the warm air 

as a density current. A vortex sheet with (max = 0.025 s-1 developed. Random thermal 

perturbations were introduced into the transition zone. 'Lobe-and-cleft' instabilities were 

een to form underneath the head of the density current due to unstable stratification; these 

served as triggers for barotropic horizontal shearing instability to begin. Vortices were 

apparent by 1000 s approximately every 2-3 km, though some would later merge. By 
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around 2000 s, the vortices were highly occluded, and began to dissipate. The differen-

tial velocity across the vortices reached 25 m s- 1, and circulation reached 55000 m2 s- 1. 

Near the ground stretching also was significant towards intensifying the vortices, and even 

nearer the ground surface friction caused significant horizontal vorticity that was tilted into 

the vertical by the conve gence into the vortex. Without surface friction, the vortices were 

more elongated and occluded. 

3.9 Tornado Climatologies 

Rasmussen and Blanchard (1998) used over six thousand 0000 UTC soundings from 1992 

to determine which sounding forecast parameters such as mean shear, storm relative helic-

ity, CAPE, etc. , could best distinguish between three categories: ordinary thunderstorms, 

non-tomadic supercells, a d tomadic supercells.3 As expected, parameters such as storm-

relative helicity served well to distinguish supercell soundings from ordinary thunderstorm 

soundings, but were less effective at distinguishing tomadic from non-tomadic supercell 

soundings. The most effective parameters at distinguishing between tomadic and non-

tomadic supercells were various combinations of CAPE and vertical shear (especially the 

energy-helicity index (EHI)), and measures of low-level buoyancy such as the lifting con-

densational level (LCL) and convective inhibition (CIN). Tornadoes were associated with 

large values of both CAPE and SRH; furthermore, the mean LCL height was considerably 

less for tomadic supercells (800 m) than for non-tomadic supercells (1200 m). Tomadic 

supercells had average CTh- values of 12, compared with 35 for non-tomadic supercells. 

However, CAPE immediately above the LFC was not a good discriminant between the two. 

The implication is that the thermodynamics below cloud base (e.g, the potential negative 
3 Actually, the criteria for distinguishing the categrories were the presences of significant cloud-to-ground 

lightning but no severe weather, large hail but no significant tornadoes, and significant tornadoes. 
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buoyancy of the downdrafts) are more important to tornado genesis than the thermodynam-

ics above cloud base, where dynamic forcing might be more important. 

Markowski et al. (2000) performed a climatology of 30 storms possessing hook echoes 

from 1994-1999. Eighteen of these were associated with tornadoes; of the other twelve, 

eleven had mesocyclones at the surface. The mobile mesonet was u ed to sample the 

thermodynamic field of the RFDs accompanying these hook echoes. It was found that 

non-tornadic RFDs generally had large deficits in both 0v and 0e when compared to the 

low-level environmental air (about 8 K and 12 K, respectively). Tornadic cases had aver-

age 0v and 0e deficits of 3 K and 7 K, and tended to have positive CAPE values for the 

lifting of the RFD air. Otherwise, little difference was noticeable between tornadic and 

non-tornadic low-level mesocyclones. As in Rasmussen and Straka (1996), it was found 

that occlusion occurred prior to tornadogenesis. Tornadogenesis failure in cold-RFD cases 

seemed less associated with the surging of the occluding downdrafts ahead of the storm, 

and more associated with the resistance of the downdraft air to being lifted by the storm. 

3.10 Current Research Goals 

As can be seen much has been learned and accomplished already in terms of understand-

ing the formation of tornadoes. But there are still some difficult questions. As might be 

expected, the final transition from low-level mesocyclone is still poorly understood. This 

stage occurs on a scale to small to have been resolved by essentially any numerical storm 

simulation, and by any observational study until very recently. It is not clear if the fairly-

well answered question of the origin of the low-level mesocyclone is also the answer to the 

question of the origin of the tornado. The close similarity of the low-level mesocyclones be-

tween certain tornadic and non-tornadic supercells, however, would lead one to conclude 

that something more is involved. The Markowski et al. and Rasmussen and Blanchard 
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studies would suggest a thermodynamic influence. The Trapp and Davies-Jones study em-

phasizes the role of dynamical vertical pressure gradients, which are also implicated in the 

Wicker and Wilhelmson and Grasso and Cotton modeling studies. However, the Grasso 

and Finley studies produced powerful vortices with little apparent forcing from above. 

The goal of this study is to increase understanding of how a powerful vortex might 

be generated using the RAMS model, or at least how a powerful model vortex might be 

generated. It is hoped that the factors that favor the development of a strong vortex are 

identified. In order to ace mplish this, the modeling studies of Grasso (1996) and Finley 

(1997) will be simplified considerably, so that only a supercell in idealized environments 

will be discussed. Of course, the problem cannot be simplified to the extent that a powerful 

vortex does not develop. We also do not have the resources to perform simulations with 

grid spacings adequate to resolve a typical tornado, although we have come close (55 m 

horizontal grid spacing, 40 m vertical grid spacing). Therefore, like all previous studies 

we will have to use arguments of plausibility to relate modeled vortices to atmospheric 

tornadoes. Fortunately, in our simulations we have found a qualitative difference between 

a low-level mesocyclone and a distinctly more axisymmetric, concentrated vortex. 

A second question is inherently contained in this procedure: can the intensity of the 

Grasso and Finley vortices be reproduced by an idealized model, or are the specific mesoscale 

features in their horizontally-variable simulations required to explain the strength, or even 

the existence, of the vortices? Finally, there is the question of whether any of the means that 

a numerical model may develop a 'tornado-like vortex' (there may be several) are related 

to real tornadoes, or if they are artifacts of the numerical algorithm (such as grid nesting). 

We will address these issues in later chapters. 
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Chapter 4 

BASELINE SIMULATION 

In this section one particular simulation that produced a fairly-strong low-level vorticity 

center will be analyzed in some detail. This simulation generated a right-moving supercell 

thunderstorm that resembled those in the literature, and under the influence of baroclinity 

exhibited a persistent low-level mesocyclone along the gust front. However, the low-level 

mesocyclone exhibited a stage in which the vorticity rapidly increased in magnitude and 

became concentrated into a closed circulation with a sharply decreased central pressure and 

vertical continuity. The analysis of this process will also serve as a basis of comparison for 

other experiments to be presented. 

4.1 RAMS Model 

R..A.MS is a non-hydrostatic, compressible model of the primitive equations which com-

bined the modeling efforts of a non-hydrostatic cloud model (Tripoli and Cotton 1982) and 

a hydrostatic mesoscale model (Mahrer and Pielke 1982). The model contains predictive 

equations for u, v, w, the Exner function 7r, ice-liquid potential temperature 0il, and various 

species of water substance (see for example Pielke et al. 1992). The ice-liquid potential 

temperature is a potential temperature that includes the presence of hydrometeors and is 

conserved in the absence of radiation, diffusion, or hydrometeor sedimentation (Tripoli 
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and Cotton 1981 ). The horizontal coordinates are either Cartesian or polar-stereographic, 

and in the vertical a terrain-following az coordinate is utilized (Gal-Chen and Sommerville 

1975). An Arakawa-C grid (Arakawa and Lamb 1981) defines the variables; the u, v, and 

w wind components are staggered one-half positive grid length from the scalar variables. 

Two-way interactive nested grids (Clark and Farley 1984) may be spawned within any other 

grid. 

These simulations use a subgrid parameterization based on that of Smagorinsky (1963), 

using modifications to the vertical diffusion introduced by Lilly (1962) and Hill (1974). In 

the Smagorinsky scheme the diffusive flux of a quantity is proportional to its gradient, so 

that the diffusive forcing involves a second derivative. The characteristic of the Smagorin-

sky scheme is that the constant of proportionality, the eddy diffusion coefficient, is propor-

tional to the magnitude of the velocity deformation. There is also a factor that is a function 

of the grid spacing. 

In the horizontal direction a certain minimum value of the eddy diffusion coefficient 

regardless of deformation is specified by the user, in order to minimize numerical noise. 

For this simulation, the horizontal diffusion coefficient was simply made a constant in 

order to simplify the analysis. There was no significant difference found when compared 

with simulations performed using the standard RAMS diffusion. 

The microphysics scheme used i that of Walko (1995). The scheme uses seven cate-

gories of condensed water species: cloud water, rain, pristine ice, snow, aggregates, graupel 

and hail. These species are assumed to follow size distributions which obey gamma func-

tion with a user-specified width parameter v. For v = l, the distribution is exponential 

with size, whereas higher values of v create increasingly narrower modes in the size dis-

tribution. Mixing ratios for all species except cloud water are predicted by microphysical 

equations. The mixing ratio of total water is also predicted. The mixing ratio of cloud water 
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is diagnosed by assuming that condensation occurs until 100% water saturation is reached. 

The number concentration for pristine ice is predicted by nucleation equations (Meyers et 

al. 1992). The number concentrations for other species are determined in this study either 

by specification (cloud water) or by diagnosis from the mixing ratio and the specification 

of the mean hydrometeor diameter (rain, snow, aggregates, graupel, hail). 

These simulations are highly idealized. The effects of radiation and surface fluxes were 

switched off. The experiment to be presented is also free slip. As discussed in the back-

ground section, previous simulations of low-level mesocyclones in the literature have been 

predominantly free slip. It has been found difficult to use model surface drag to produce 

a noticeable effect on a supercell's cold pool and not adversely affect the model environ-

mental winds (Wicker and Wilhelmsen 1995). Furthermore, it has been argued that in the 

presence of a strong pressure gradient the logarithmic surface wind profile used to compute 

the stress in a semislip model is only applicable very near the surface (Lewellen 1993). 

Nonetheless it is freely acknowledged that the absence of surface effects is a shortcoming 

of the simulation. 

4.2 Initial Convection 

The simulation described here was horizontally-homogeneous within a domain consisting 

of 150 x 150 grid points at 333 m horizontal grid spacing. In order to eliminate the spawning 

of fine grids as a possible trigger for the concentration of vorticity, only one grid was used 

in the initial simulation. However, at a later point in the analysis a simulation containing a 

lllm fine grid was performed. There were 35 vertical grid levels whose spacing increased 

away from the ground, increasing from 40 m to a maximum of 2 km. Because the lowest 

level model quantities ( except for w) are defined below the 'surface' , for most variables the 
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Figure 4.1: Skew-T log-p iagram showing vertical sounding used in model initialization, 
based on Grasso (2000). 

lowest level is at a height f 19 m. A timestep of 2 seconds was used for the coarse grid 

and 0.5 seconds for the subsequent fine grid. 

The vertical atmospheric structure was derived from a sounding used by Grasso (2000) 

in his idealized supercell simulations (Figure 4.1). The sounding is highly unstable and 

possesses great amounts (over 4000 J) of Convective Available Potential Energy (CAPE). 

There is a moist layer near 800 mb; above this the atmosphere rapidly becomes much drier. 

The hodograph neither poss~ses pure speed shear or directional shear, but some character-

istics of both; above approximately three kilometers the shear increases in magnitude and 

becomes largely westerly. The surface pressure is given as 990 mb. 

Convection was initialized through the introduction of a warm bubble in with a tem-

perature perturbation of 2 K and additionally a 20% increase in water vapor content. The 

extent of the bubble was 10 km x 10 km in the horizontal and 1500 m in the vertical. In 
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order to keep the convective activity from translating out of the domain , a constant storm 

velocity of u = 6 m s- 1 , v = 13 m s- 1 was subtracted from the hodograph at the time of 

initialization. 

Full bulk microphysics was used, but because the simulation was idealized and on short 

time scales, neither radiation schemes nor surface fluxes were incorporated in the simu-

lation. Furthermore, for simplicity and to facilitate comparisons with previous idealized 

modeling studies, surface drag was not used in these simulations. 

The convection that formed split into two member storms, a right-mover and a left-

mover. Consistent with previous simulations in the literature (e.g., Klemp and Wilhelmson 

1978a), the right-moving member displayed a strong correlation between positive vertical 

vorticity and vertical velocity, whereas in the left-moving storm they are anti-correlated 

(Figure 4.2). The correlation between vertical vorticity and vertical velocity has now been 

proposed as the best defining characteristic of the supercell (Doswell and Burgess 1993). 

Attention was focused on the right-moving storm for the remainder of the simulation, 

and the left-moving storm gradually propagated out of the model domain. 

4.3 Low-Level Vorticity Intensification 

By 2700 s the low-level vorticity has reached mesocyclonic strength along the gust front 

(Figure 4.3), usually defined co be 0.01 s- 1 (Brandes 1984). Figure 4.4 shows that this 

region possesses a strong gradient in 0 and noticeable deformation in the wind field. The 

low 0e values indicate that the air behind the gust front has origins near 3 km. Horizontally, 

the midlevel air is centered about two regions associated with the two member storm down-

drafts. To the north of the right-mover storm the zone of deformation continues along the 

boundary of the low-level and midlevel 0e air. However, to the east of this zone there is a 
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Figure 4.2: Vertical velocity (thin contours) and vertical vorticity (thick contours) at 2700 
s and 5116 m above surface within Grid 1. Domain is 50 km x 50 km. Contour increments 
are 10 m s- 1 for vertical velocity and 0.01 s-1 for vertical vorticity. 

region of near-surface 0e values but with depressed 0, suggesting that the air here originates 

near the surface, but is evaporatively-cooled by precipitation. 

The horizontal vorticity field (Figure 4.5) indicates that in the region of maximum low-

level vertical vorticity the horizontal vorticity is mainly directed towards the northwest due 

to the wind shear in the environment. The horizontal vorticity that is induced baroclinically 

by the cold pool is easy to identify because it is significantly larger in magnitude and rotates 

clockwise around the cold pool. The location of vertical velocity also suggests where 

convergence along the gust front is most intense (figures showing gust front convergence 

will be shown later) . 

Model code was written to output the location of the maximum vertical vorticity at 

each timestep after 2700 s for four different heights, as well as the value of that vorticity 

maximum. The four levels used were k = 2, 6, 10, and 14, with model heights of 19 m, 234 
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Figure 4.3: Potential temperature (thin contours), rain mixing ratio (medium contours) 
and vertical vorticity (thick contours) at 2700 s and 19 m above surface within Grid 1. 
Contour increments are 1 K for potential temperature, 1 g kg- 1 for rain mixing ratio, and 
5 x 10-3 s- 1 for vertical vorticity. 

Z = 19 m , 2700 s 
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bloc" -- tflelo-e (K) 

1treomlit1H -- ¥0fln- relotive velocity (m/1) 

295 296 297 298 299 300 301 l02 303 304 J05 

Figure 4.4: Equivalent potential temperature (shaded), potential temperature (contoured in 
1 K increments), and vortex-relative streamlines at 2700 sand 19 m above the surface. The 
meaning of vortex-relative is given in the text. 
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Figure 4.5: Vertical velocity (contoured in 1 m s-1 increments) and horizontal vorticity 
vectors at 2700 s and 234 m above the surface. The unit of the reference horizontal vorticity 
is s- 1 . 

m, 608 m, and 1263 m, respectively. As an example, a plot of the j coordinate of the 234 

m vorticity maximum is shown in Figure 4.6. During some periods the vorticity maximum 

simply translates with a relatively constant velocity, suggesting that it is a single entity. At 

other times, the location experiences a discrete 'jump' to a new location, indicating that a 

new location of vorticity has amplified and exceeded the vorticity value of the old location. 

Such a jump occurs at 3202 s. 

Figure 4.7 is a plan view where the vorticity maximum location is plotted for each 30 

s increment at the four heights, beginning with 2700 s. All the maxima generally move 

eastward with time; this can be used to determine the temporal sequence of the marked 

locations. Initially the maxi a at the different heights are scattered across the grid, and 

the largest 1263 m value is even located in the downdraft of the left-mover for a while. 

However, eventually the maximum vorticity at all heights jumps to a single location that 
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234 m Vorticity Maximum Position 

2800 3000 3200 3400 3600 
Time (s) 

Figure 4.6: North-south location of 234 m vorticity maximum in single grid simulation 
versus time. 
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height I time of jump j 

1263 m 3062 s 
608m 
234m 

19m 

3154 s 
3202 s 
3222 s 

Table 4.1: Simulation time when maximum domain vorticity becomes located at the verti-
cally co-located vorticity center shown in the later stages of Figure 4.7, for 19 m, 234 m, 
608 m, and 1263 m above the surface. 

translates steadily to the southeast relative to the grid. This location is near the northern tip 

of the inflow sector, which is typically the region that supercell tornadoes develop (Lemon 

and Doswell 1979). The time that this final jump occurs for each level is shown in Table 

4.1 ; it is seen that the jump first occurs at the highest levels, and by 3225 s has reached the 

surface. 

The value of the maximum vorticity experiences drastic changes during this period, 

as is apparent from Figure 4.3. The vorticity, already well above the standard mesocy-

clonic threshold, increases fivefold in 300 s. The vorticity 'surge' occurs at all levels but is 

strongest near the surface, reaching values of 0.14 s-1. 

4.4 Vorticity Jump 

What is the reason for the j mps in vorticity? Figure 4.9 shows the t = 3100 s vertical 

vorticity at 608 m, near the time of the vorticity jump at this level. At this time there 

are two discrete vorticity centers of approximately equal magnitude, the northernmost of 

which will eventually dominate. From the plot of convergence (Figure 4.10) it can be seen 

that the convergence (and hence the stretching tendency on vertical vorticity) is no greater 

at the northernmost center than at the southern, so some other mechanism must account 

for this center's later predominance. A clue is provided by Figure 4.11, which shows the 

vertical motion field and the horizontal vorticity vectors. The southern vorticity center is 
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Figure 4.7: Grid position o · maximum domain vertical vorticity, in 50 s increments after 
2700 . open squares - 19 m; crosses - 234 m; closed squares - 1263 m. Motion is to the 
east with time. 
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Figure 4.8: Maximum vorticity within model domain versus simulation time for 19 m, 234 
m, 608 m, and 1263 m above the surface. 
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Figure 4.9: Vertical vorticity at 3100 s and 608 m above surface. Contour increment is 
3 X 10- 3 S- 1. 

located in the most favorable position for positive tilting of the environmental vorticity 

vectors directed towards the orthwest, assuming that the center obtains its vorticity from 

easterly inflow. However, much larger is the magnitude of the vorticity vectors associated 

with baroclinic generation along the gust front. These vectors are positioned for positive 

generation of vorticity to the northeast of the northern center, and negative generation to the 

southwest. However, the vortex-relative inflow1 is from the northeast, so presumably tilting 

is a positive source of vorticity for this location. A plot of the vortex- relative streamlines 

and tilting term (Figure 4.12) confirms that there is positive tilting in the inflow of the 

northern vortex but not in the southern, assuming that streamlines can serve as a surrogate 

for trajectories. By 3300 s, the northern vorticity center has clearly become dominant 

(Figure 4.13). 

Thus, we have a scenario where the appearance of significant baroclinically- produced 
1The vortex-relative velocity is found by subtracting the grid-relative northern vortex velocity from the 

grid-relative velocity at a point. The vortex velocity is assumed to be u = 13 m s- 1 , v = -8 m s- 1 
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Figure 4.10: Same as Figure 4.9, but for two-dimensional velocity divergence. Contour 
increment is 5 x 10- 3 s- 1. 

.... 2 ..... 

·5~\\t i ~?: · 

Figure 4.11: Same as Figure 4.9, but with vertical velocity contoured and horizontal vor-
ticity vectors (s- 1) superimpooed. Contour increment is 2 m s- 1 for vertical velocity. 
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Figure 4.12: Same as Figure 4.9, but with the tilting contribution to the vertical vorticity 
tendency contoured and vortex-relative streamlines superimposed. Contour increment is 
1 X 10-4 S- 2. 

: ("\. 
-).~ 

1..:~~~006······-··· __ / 
. ...--JI·, 

Figure 4.13: Vertical vorticity at 3300 s and 608 m above the surface. Contour increment 
is 3 x 10- 3 s-1 . 
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Figure 4.14: Same as Figure 4.9, but at 62 m above the surface. Contour increment is 
3 X 10- 3 S- 1. 

horizontal vorticity leads to the production of a new vertical vorticity center. Why does the 

vorticity jump begin aloft and then progress to the surface? Figure 4.14 shows the vertical 

vorticity for 3100 s but at the 62 m level, where the vorticity jump has not yet occurred. 

Two distinct vorticity centers are still apparent, but the northern one is considerably weaker 

than the southern one. Figure 4.15 shows the inflow streamlines and tilting term at the 62 

m level. As at the higher lev 1, there is positive tilting in the inflow region to the northern 

vorticity center, but the magnitudes are lower by about a factor of five (the contouring 

interval has been reduced by a factor of ten). The reason for this is neither the direction 

nor the magnitude of the horizontal vorticity vectors, which is actually larger at the 62 m 

level than the 608 m level (Figure 4.16), but rather the magnitude of thew-gradient, smaller 

at the 62 m level simply because w itself is smaller. Thus the vertical vorticity jumps to 

the northern location at higher levels first because the w-gradient and the tilting terms are 

greater there. 
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Figure 4.15: Same as Figure 4.12, but at 62 m above the surface. Contour increment is 
1 x 10- 5 s- 2 . 
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Figure 4.16: Same as Figure 4.11, but at 62 m above the surface. Contour increment for 
vertical velocity is 2 m s- 1. 
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4.5 Fine Grid Vorticity Initialization 

With it being established that the rapid vorticity intensification at the surface is not an 

artifact of grid nesting, a nested grid with 111 m grid spacing was introduced at 3300 s 

around the northern vorticity center, after the vorticity centers become co-located but prior 

to the most rapid intensification. The fine-grid domain contains 119 x 119 grid points, a 

region approximately 13 km square. 

At the initial time of the fine grid (Figure 4.17) the band of vorticity is concentrated in 

a strip within the gust front convergence zone, extending approximately 1 km across. The 

maximum value of the vorticity is 0.04 s-1 . The perturbation pressure field and vortex-

relative velocity vectors are shown in Figure 4.18 . No pressure deficit is apparent at the 

vorticity maximum; in fact, there is a relative pressure maximum associated with the gust 

front. The center of the high pressure associated with the downdraft is located just to the 

northwest of the fine grid. There are a couple of low pressure features visible on the grid. 

In the surface air just east of the gust front there is a broad region of lower pressure that 

resembles the inflow low sometimes reported with supercell thunderstorms (Barnes 1978; 

Rasmussen and Straka 199 ), and will be referred to as such in this section for simplicity. 

To the northwest of the vorticity maximum is another low-pressure feature. A west-east 

cross-section through the ce ter of the low pressure (Figure 4.19) reveals that this feature 

is most intense at a height of 1500 m near the height of the undisturbed cloud base. In 

the vicinity is a tilted band of vorticity located on the boundary between the updraft and 

downdraft in the lowest three kilometers (Figure 4.20). This is similar to the divided meso-

cyclone of Lemon and Doswell (1979), and will henceforth be referred to as the 'divided 

'mesocyclone'. The lowest pressure is located where the divided mesocyclone penetrates 

into the main cloud; beneath this level the divided mesocyclone is on the interface between 
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Z 19 m, 3300 s 

thin lines - - the to (K) 
thick lines - - vorticity (s- 1

) 

streamlines -- vortex-relative velocity (m/s) 

Figure 4.17: Potential temperature, vertical vorticity, and vortex-relative streamlines for 
Grid 2 at 3300 s and 19 m above the surface. Potential temperature is represented by 
thin contours in 1 K increments; vertical vorticity is represented by thick contours whose 
values double every increment beginning with 5 x 10-3 s-1 . For reference, a line segment 
indicating a distance of 1 km is provided. 
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Z = 1 9 m, 3300 s 
contours - - perturbation pressure (Po) 

vectors -- vortex-relative velocity (m/s) 

-30 

Figure 4.18: Perturbation pres~ure and vortex-relative velocity vectors for Grid 2 at 3300 
and 19 m above the surface. Contours of perturbation pressure have an increment of 50 Pa 
(0.5 mb ). Magnitude of reference vector has units of s- 1 . 

84 



the lowered cloud base and clear air. The pressure is lowered at the ground directly beneath 

the divided mesocyclone at cloud base even though the strongest vorticity itself is located 

a couple kilometers to the east. 

Figure (4.21) shows the perturbation pressure at 1493 m and the combined magnitude 

of the vorticity, deformation, and divergence terms to the Exner-function equation (2.25) 

for regions where the combination is positive (i.e., heuristically producing low pressure). 

A very good correlation is found, indicating that the vertical vorticity forcing (the only 

positive contribution to the Laplacian here) is mainly responsible for the location of the 

mesolow. However, the vertical shear contribution is also not negligible here ( compare 

Figure 4.22). A notch of lowered pressure within the cold pool to the rear of the storm is 

also due to the vertical shear term. The vertical vorticity is significant along the gust front 

in the south of the domain, but here the deformation and divergence terms are enough to 

eliminate any lowering of the pressure. In fact, generally pressures are high along the gust 

front (see Figure 4.18). 

The inflow low is fairly constant with height but gradually disappears above cloud base, 

as is apparent in Figure 4.19. There is no strong Laplacian function at the location of the 

inflow low, but Figure 4.23 shows a good correlation between a weak signal in the shear 

term and the lowest pressure (the contributions from the other terms are even smaller). 

What the figure is showing is the interaction between the environmental vertical wind shear 

and the updraft gradient to the east of the storm; essentially the ' inflow low' is simply the 

linear term associated with the lowered pressure downshear of a storm. 

The center of the strongest downdraft is near the highest pressure of the cold pool; this 

is not located in the region of lowest 0, which is to the south (Figure 4.24). A simple 

derivation of a pressure relation follows . The vertical Boussinesq momentum equation can 
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Figure 4.19: West-to-east cross section through 'divided mesocyclone' at 3300 s. White 
dashed contours are perturbation pressure in 50 Pa (0.5 mb) increments. Increasingly darker 
shading represents increasing relative humidity, with darkest shade representing over 90% 
relative humidity. Labels on y-axis represent height above surface in meters. Labels on 
x-axis represent horizontal distance in kilometers. 
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Figure 4.20: West-to-east cross section through 'divided mesocyclone' at 3300 s. Light 
contours are vertical velocity (5 m s- 1) and dark contours are vertical vorticity (0.01 s-1 ) . 

Labels on y-axis represent height above surface in meters. Labels on x-axis represent 
horizontal distance in kilometers. 

········•-1~---·············· 
-aoo ..... 

. ·· .. -· -·· -e~--
__ . .. --900. __ 

Figure 4.21: Combined two-dimensional vorticity, deformation, and divergence contribu-
tions to the Laplacian equation (2.25) in regions where positive, at 3300 sand 1493 m above 
the surface. Light contours are perturbation pressure in 50 Pa increments; dark contours 
are Laplacian contributions in 2 x 10- 4 s- 2 increments. 
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Figure 4.22: Same as Figure 4.21, but including the vertical shear contributions to the 
Laplacian. 
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Figure 4.23: Close-up of ' infl w low' in fine grid at 3300 s and 1263 m above surface. 
Thin contours show perturbation pressure in 20 Pa increments while thick contours show 
the vertical shear Laplacian contribution in 1 x 10- 5 s- 2 increments. 
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be written: 

_ 0 81r' B = dw = dw dz = ( 2) 
vO fJ z + dt dz dt dz w ' (4.1) 

with z the height of a parcel following the parcels ' motion. If we integrate from the ground 

(z = 0, w = 0) to the height H where the parcel began its descent (w = 0), then: 

1H 1H fJ1r' Bdz - 0v0 -d-dz = 0, 
0 0 uz 

(4.2) 

where the variation of the basic-state virtual potential temperature has been neglected. The 

pressure integral strictly cannot be integrated directly because the partial derivative keeps x 

and y fixed while the integration is over a trajectory. But if we neglect horizontal variations 

then 

1 1H 7r'(z = 0) = -
0 

Bdz, 
vO 0 

(4.3) 

when 7r1 = 0 at the start of descent. 

Even though 0 is not noticeably different at the pressure maximum from its value to 

the south, the downdraft originates far higher at the pressure maximum, which is located 

to the north of the main cloud base, underneath the lower surface of the anvil. If the 

buoyancy is integrated over the region of the pressure maximum to a height of 4000 m, a 

value approximately 400 J kg- 1 less than that of the inflow is obtained, which translates 

to an Exner function of approximately 1.3 J kg- 1 K- 1 greater using (4.3) ; using dp' 

eppdrr' / R7r this corresponds to 4.4 mb at the surface pressure. This closely corresponds to 

the difference in pressure between the peak downdraft at the surface and the ambient air 

away from the influence of the inflow low in Figure 4.18. 

This downdraft consists of very dry, low 0e air (Figure 4.25) that has been evaporatively 

cooled by hydrometeors falling into it, predominantly hail. In co trast, the region to the 
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Figure 4.24: South-north cross section at i = 5 through fine grid at 3300 s. Shading is 
potential temperature in Kelvin while contours show vertical velocity every 10 m s-1 . 

south is located beneath the main updraft. Significant quantities of hail are generated above 

this location as well, but within the cloud most of the hydrometeors beneath 4000 m are in 

the rain category. 

As apparent in Figures 4.17 and 4.18, the pressure maximum is a region of divergent 

streamlines. The velocity magnitude increases away from the cold pool towards the divided 

mesocyclonic low. Consider the Bernoulli function: 

B J'i = p' + lvH l2. 
Po 2 

(4.4) 

This function is conserved for two-dimensional steady-state motion provided there is no 

vertical vorticity or friction. The Bernoulli function does incorporate the effect of pres-

sure work on accelerating or decelerating the flow. As Figure 4.26 shows, the variations 

in vortex-relative wind speed are well explained by invoking the pressure work performed 

by the high and low pressure centers. So divergence tends to occur between the high pres-

sure and the divided mesocyclonic low, and convergence occurs when the velocity vectors 
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Figure 4.25: Same as Figure 4.24, but with shading representing relative humidity, thin 
contours representing rain mixing ratio every 1 g kg- 1 , and thick contours representing 
hail mixing ratio every 1 g kg-1 . 

' overshoot' the low pressure and are directed towards higher pressure. Near the ground, 

convergence is associated with positive vertical motion while divergence is associated with 

negative vertical motion; thus there is a band of low-level uplift between the two low pres-

sure centers. 

Because the center of the main downdraft and the location of the most negatively buoy-

ant air are not co-located, the horizontal vorticity vectors show a significant streamwise 

component (Figure 4.27) in the vicinity of the divided mesocyclone. (If the downdraft and 

theta contours were parallel, one would expect divergent flow from the downdraft but baro-

clinic generation of vonicity in the cross-flow direction, and the vortex-relative velocity 

and horizontal vorticity vectors should be nearly perpendicular. This can in fact be seen to 

occur near the gust front near the north and south boundaries of the domain in Figure 4.27). 

Because of the streamwise horizontal vorticity component, there is upward tilting of this 

91 



3 6 9 12 15 18 21 24 27 

Figure 4.26: Vortex-relative horizontal wind speed (shaded), vertical velocity (thin sold 
contours), and perturbation pressure (thick dashed contours) at 3300 s and 19 m above 
surface. Contour increments are 3 m s-1 for horizontal wind speed, 0.2 m s- 1 for vertical 
velocity, and 50 Pa for pressure. 
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Figure 4.27: Vertical velocity (contours with increment 0.4 m s- 1 ), vortex-relative velocity 
(thin vectors), and horizontal vorticity (thick vectors) at 3300 sand 19 m above surface. 

vorticity and positive vertical vorticity production as parcels diverge from the downdraft. 

(Actually, upward tilting occurs whenever w increases in the direction of the horizontal 

vorticity vector, so positive vertical vorticity production occurs even before the updraft is 

reached, i.e. when w is still negative.) This is consistent with the findings of Grasso (1996) 

and Grasso and Cotton (1995) that baroclinic vorticity is generated in the downdraft and 

henceforth tilted into vertical vorticity even before the parcel has ceased descending. 

Looking at the coarse grid at 3300 s gives a larger scale view of the vorticity band. 

Most of the vorticity is located in a north-south region approximately 6 km long (Figure 

4.28). Also shown in the figure is 8v/8y, which represents the stretching deformation 

along the axis of the vorticity band. It is seen that significant vorticity largely resides in 

the region where 8v / 8y is negative. The magnitude of 8u/ 8.x, the stretching deformation 

in the cross-band direction, is uniformly negative along the gust front, as expected (Figure 

4.29), though it is larger in the region of the strongest vorticity. So intense vorticity forms 
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Figure 4.28: Vertical vorticity for Grid 1 at 3300 sand 19 m above surface. Thick contours 
represent vertical vorticity in increments of 5 x 10- 3 s- 1• Thin contours represent the value 
of ov / fJy with increments of 3 x 10-3 s- 1 . 

in a band whose length seems determined by the presence of uniaxial stretching. This is 

consistent with the theoretical result found in the previous chapter that vorticity in a linear 

band should eventually decay when there is biaxial stretching, but continue increasing in 

uniaxial stretching. 

4.6 Fine Grid Vorticity Evolution 

By 3360 s (one minute later), the rapid vorticity intensification has begun (Figure 4.30). 

The maximum vorticity in the vortex band has now reached near 0.1 s- 1 ; this leads the 

development in the single-grid simulation by 40 seconds. The band itself has approximately 

the same north-south extent as before but has narrowed, to approximately 600 m. There 

is a noticeable bowing of the line of vorticity, with a wavelength on the order of 2-3 km. 

The maximum vorticity occurs in the segment of the band that has tilted into a northwest-

southeast configuration, pointing towards the outflow from the downdraft. 
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Figure 4.29: Sarne as Figure 4.28, except shows contours of ou/ ox in increments of 5 x 
10-3 s-1 . 

However, despite the vorticity increase at low levels, the pressure still has only barely 

dropped at the vorticity maximum (Figure 4.31). The other pressure features have shown 

little change. 

At 3420 s (Figure 4.32) the low level vorticity has reached 0.18 s- 1 and has become 

more concentrated. Vorticity trails off from the maximum in two north-south bands with 

an elliptical WNW-ENE core; the whole structure resembles a barred-spiral galaxy. At this 

time a large surface pressure drop has occurred at the location of the vortex (Figure 4.33), 

with a 5 mb pressure difference between the vortex core and the nearby gust front. Notably, 

at the 1263 m level (Figure 4.35) the pressure deficit apparent at low levels is absent (Fig-

ure 4.34); the vorticity maximum at this level is only one-third of the surface value at this 

time. This is strong indication that the vortex concentration does not form in response to a 

drop of pressure aloft, but rather begins near the surface. The dynamic contributions to the 

Laplacian equation at the surface at this time (Figure 4.36) show that the only significant 
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thick lines - - vorticity (s1
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streamlines - - vortex-relative velocity (m/s) 

Figure 4.30: Same as Figure 4.17, but at 3360 s. Contour levels for vertical vorticity double 
every increment beginning with 5 x 10- 3 s- 1. 
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Z = 19 m, 3360 s 
contours - - perturbation pressure (Po) 

vectors - - vortex-relative velocity (m/s) 
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Figure 4.3 1: Same as Figure 4.18, but at 3360 s. 
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Z 19 m, 3420 s 

thin lines - - theta (K) 
thick lines - - vorticity (s- 1) 

streamlines - - vortex-relative velocity {m s- 1) 

Figure 4.32: Same as Figure 4.17, but at 3420 s. Contour levels for vertical vorticity double 
every increment beginning with 5 x 10-3 s-1. 
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Z = 19 m, 3420 s 
contours - - perturbotion pressure (Po) 
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Figure 4.33: Same as Figure 4.1 8, but at 3420 s. 
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streamlines - - vortex-relative velocity (m s- 1
) 

Figure 4.34: Same as Figure 4.32, but for 1263 m above the surface. 
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Z = 1263 m, 3420 s 
contours - - perturbation pressure (Po) 

vectors -- vortex-relative velocity (m s-') 
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Figure 4.35: Same as Figure 4.33, but for 1263 m above the surface. 
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Figure 4.36: Contributions to the Laplacian equation ( 2.25) from all dynamic terms at 
3420 s and 19 m above the surface. Contour interval is 3 x 10- 3 s- 2 • 

positive terms at the surface are in fact located in a compact region at the vorticity maxi-

mum, whereas surrounding regions along the gust front have a negative contribution to the 

Laplacian. The same plot at 3300 s (Figure 4.37) shows that the Laplacian contributions are 

much weaker (the contour interval is ten times less), and furthermore that they are nowhere 

significantly positive. 

By 3600 s, the surface vortex is near its peak (Figure 4.38). The maximum vorticity 

has concentrated into a circular region that has migrated to the southwest away from the 

gust front into the cold pool. The vorticity structure shows some resemblance with that of 

the non-linear pooling of vorticity in a two-dimensional barotropic framework (Guinn and 

Schubert 1993), where vorticity is seen to concentrate into discrete centers that are con-

nected by spiraling filaments. The maximum surface vorticity is 0.27 s- 1, which is compa-

rable to values found in past idealized tornadic simulations with grid spacings near 100 m 

(Wicker and Wilhelmson 1995; Grasso and Cotton 1995). However, 100 m grid spacing is 
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Figure 4.37: Same as Figure 4.36, but at 3300 s. Contour interval is 3 x 10- 4 s-2 . 

still coarse to represent all but the largest tornadoes, and the vortex-relative tangential wind 

velocities are still only around 30 m s-1 (Figure 4.39), although the grid-relative velocities 

approach 50 m s- 1 on the southwest side of the vortex. There is now a 12-mb pressure 

difference between the center of the vortex and the neighboring flow, and a 7 mb difference 

between the vortex center and the 200-m radius of the 0.1 s- 1 vorticity region. Kossin 

and Schubert (2001) also noted the sudden pressure drop that can accompany the sudden 

concentration of vorticity into an axisymmetric region. 

At the 1263 m level (Figure 4.40), there is also a concentrated vorticity center at this 

time, although it is located due west of the 19 m vorticity maximum, and has less than half 

the magnitude (0.12 s-1 ). Nonetheless, there is a strong pressure drop at this level as well 

(Figure 4.41). Now we clearly have two distinct pressure centers at this level, in contrast 

to earlier times when only one center was present near this level (compare Figures 4.19 and 

4.21). The positive Laplacian contributions from the vertical shear and vorticity terms are 

shown in Figures 4.42 and 4.43 respectively. (Note that the increment is five times larger 
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thin lines - - theta (K) 
thick lines - - vorticity (S- 1) 

streamlines -- vortex-relative velocity (m/s) 

Figure 4.38: Same as Figure 4.17, but at 3600 s. Contour levels for vertical vorticity double 
every increment beginning with 5 x 10- 3 s- 1. 
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Z = 19 m , 3600 s 

contours - - perturbation pressure (Po) 
vectors - - vortex-relative velocity (m/s) 

-+-
40 

Figure 4. 9: Sarne as Figure 4.1 8, but at 3600 s. Minimum perturbation pressure in vortex 
is -1900 Pa (- 19 mb). 
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than in the 3300 s plots.) The divided mesocyclone low to the northwest is still apparent 

as a region of enhanced vorticity, although at this time the vertical shear contribution to 

lowering the pressure at the divided mesocyclone seems more important. Clearly though 

the new vortex has the dominant influence on the pressure, with nearly equal vertical shear 

and vorticity contributions; the divided mesocyclone remains a distinct feature. Figure 4.44 

confirms that the divided mesocyclone resides on the boundary between the main updraft 

and the downdraft to the northwest. However, a very intense downdraft is apparent just to 

the north of the main vortex, nearly encircled by strong updraft. This feature resembles the 

occlusion downdraft referred to in both observational (Barnes 1978; Lemon and Doswell 

1979; Wakimoto et al. 1998) and modeling studies (Klemp and Rotunno 1983; Wicker 

and Wilhelmson 1995) as a localized but intense extension of the RFD within or in the 

close proximity of a low-level vortex. In the observational studies the occlusion of the 

mesocyclone is often seen as a component of tomadogenesis (Lemon and Doswell 1979), 

and in detailed observational studies the occlusion downdraft has been observed prior to 

tomadogenesis (Wakimoto et al. 1998; Markowski et al. 2000). In modeling studies 

the development of occlusion downdrafts and the intensification of a low-level vortex are 

nearly simultaneous processes, and a modeled occlusion downdraft has been shown to 

be dynamically forced by intense vorticity at low levels (Klemp and Rotunno 1983). Of 

course, these two views may not be inconsistent if a distinction is made between an intense 

low-level mesocyclone capable of dynamically forcing a downdraft, and the subsequent 

tornado. Here, it is also found that what may be termed the 'occlusion downdraft' forms 

almost simultaneously with the intense vortex, and so like the vortex is first apparent at 

low levels (compare to Figure 4.34, which is while the concentrated vortex exists near the 

surface). 
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Z 1263 m, 3600 s 

thin lines - - theta (K) 
thick lines - - vorticity (s-') 

streamlines vortex-relative velocity (m/s) 

Figure 4.40: Same as Figure 4.34, but at 3600 s. Contour levels for vertical vorticity double 
every increment beginning with 1 x 10- 2 s- 1. 
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Z = 1263 m, 3600 s 

contours - - perturbation pressure (Po) 
vectors - - vortex-relative velocity (m S- 1

) 

-4 0 

Figure 4.41: Same as Figure 4.34, but at 3600 s. Contour increment is 100 Pa (1 mb). 
Minimum perturbation pressure in vortex is -19 mb. 
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Figure 4.42: Contributions to the Laplacian equation (2.25) due to vertical shear terms, in 
regions where they are positive, at 3600 sand 1263 m above surface. Contour increment is 
1 x 10- 3 s-2. Dashed contours show perturbation pressure with an increment of 100 Pa (1 
mb). 
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Figure 4.43: Sarne as Figure 4.42, but showing the vorticity contribution to the Laplacian. 
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Figure 4.44: Same as Figure 4.42, but showing vertical velocity, with increment of 5 m s-1 . 
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Figure 4.45: Same as Figure 4.44, but at 3420 s. 
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By 3900 s, the vorticity has peaked, although it still remains large. Large fluctuations 

occur in the vorticity values near the surface, while at 1263 m the vorticity has begun a 

noticeable decay (see Figure 4.3). At the surface, the vorticity now has a ring structure 

pendant on a strip of vorticity that is an extension of the forward-flank gust front (Figure 

4.46). Possibly with higher resolution this process would reveal the intensification of sec-

ondary vortices on the tomadic scale around the ring of vorticity, as has been observed in 

nature (Wakimoto and Liu 1998) and in modeling studies (Finley 1997). 

4.7 Summary 

In this chapter the evolution of a low-level mesocyclone, at both 333 m and 111 m grid 

spacing, is described. Near 3200 s the vertical vorticity beneath the cloud becomes nearly 

vertically co-located at a point along the FFD near its junction with the RFD. This feature 

forms in response to baroclinic processes along the FFD. Soon afterwards, the vorticity 

rapidly intensifies and forms a closed circulation with a depressed central pressure, be-

ginning near the surface. An occlusion downdraft becomes apparent at approximately the 

same time. This intensification is not an artifact of grid nesting (although on grids with 

finer resolution the maximum vorticity is greater), and also appears to be distinct from the 

formation of the baroclinic low-level mesocyclone. The latter is first apparent near cloud 

base whereas the former occurs first near the surface, and results in the formation of a 

pressure minimum distinct from the pressure minimum associated with a 'divided mesocy-

clone'. The cause of the rapid vorticity surge appears to be convergence from the pressure 

maximum associated with the cold pool; possibly the rotation of the vortex sheet along 

the gust front facilitates its convergence by the ambient wind field . These ideas will be 

assessed in a more quantitative fashion in the next chapter. 
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Figure 4.46: Same as Figure 4.17, but at 3900 s. Contour levels for vertical vorticity double 
every increment beginning with 2 x 10-2 s- 1 . 
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Chapter 5 

ANALYSIS - FOURIER MODES 

In this section a Fourier mode analysis will be performed on the circulation of the in-

tensifying vortex. The purpose of the analysis will be to determine the geometry of the 

intensification process, with an ultimate goal of quantifying the similarities between the 

current model simulation and other simulations of vortex dynamics in t e literature. 

5.1 Circular Eulerian curves 

Suppose we compute the circulation around a circular horizontal Eulerian curve. It is then 

convenient to use cylindrical coordinates, (r , 8 , z ), to express the circulation as: 

f r2tr 
C = v · dl = r Jo ved8 , (5.1) 

C 

and the circulation tendency equation as: 

ac f [ A OVH ] 12
1r at = ( zVH X k - W az + F · dl = r O (5.2) 

C 

where r is the radius of the contour. 

Consider the horizontal advection/convergence term (1) for now. It can be thought of as 

21rr times the azimuthal average of the product of -vr and ( z around a circle. The value of 
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both of these quantities around a circle when sufficiently well-behaved can be decomposed 

into a Fourier series of modes such as: 

Vr = Vro + Vrls sin 8 + Vrlc COS 8 + Vr2s Sin 28 + Vr2c COS 28 + ... 

( z = ( zo + ( zrls Sin 8 + ( zrlc COS 8 + (zr2s Sin 28 + (zr2c COS 28 + . .. (5.3) 

Because the sine and cosine functions of the series are orthogonal over the interval [O, 21r], 

the Vr ... and (z ... constants can be found using: 

f 0
21r Vr sin 8 d8 

V - ------
rls - f o27r sin2 8 d8 ' 

f0
21r (z sin 8d8 

(zls = r21r . 2 8d8 ' Jo sm - -

f 0
21r Vr sin 28 d8 

Vr2s = 2 , •·· fo 1r sin2 28d8 

j0
2

1r (z sin 28d8 
(z2s = f o21r sin2 28d8 , ... (5.4) 

The integrals of the squares of all the trigonometric functions above are 1r over the given 

interval. 

When one substitutes the Fourier representations of (5.3) into (5.2), only the products 

of the same trigonometric functions survive the integral. Thus one has: 

(5.5) 

What do the terms in (5.5) represent? Suppose that there is constant convergence and 

vertical vorticity within the circular contour, and that the convergence term is the only 

contribution to changing the vertical vorticity within the contour. The change in circulation 

about the contour would be: 

(5.6) 
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since ( z = (zo when it is constant. Thus the first term in (5.5) can be considered to be 

large-scale convergence over the curve. 

Now consider the case of pure horizontal advection of vorticity, where there is a con-

stant horizontal wind velocity and vorticity gradient. This will be the case if the wind 

vector is ( u0, v0) and the vertical vorticity is given by cx0x + CyoY, which produces a con-

stant gradient vector of (cxo, cy0). The radial component of any constant vector (a, b) at an 

angle 8 around a circle is given by a cos 8 + b sin 8; thus, the radial component of the ve-

locity is u0 cos 8 + v0 sin 8 . The vertical vorticity is Cxo ( r cos 8) + cyo ( r sin 8). Since the 

trigonometric functions are the only parameters that are a function of position around the 

circle, we can immediately write the Fourier decompositions Vr = Vr1c cos 8 + Vris sin 8 

and (z = ~z l c cos 8 + ( z i s sin 8. The circulation tendency is then: 

ac r2rr r2rr at = -r lo Vr(zd8 = -r lo (vrl c cos 8 + Vr1s sin 8 ) ((zlc cos e + ( z ls sin 8 ) d8. 

(5.7) 

Again, the products of sine and cosine terms vanishes upon integration, leaving 

(5.8) 

The first-order cosine and sine terms in (5.5) are revealed to be the large-scale x-direction 

and y-direction advection of vertical vorticity, respectively. 

The higher-order terms have no such simple interpretation as large-scale versions of 

terms in the vorticity equation. They can be considered to be 'eddy ' contributions to the 

circulation tendency, and are positive when there is a positive correlation between -vr 

and (z of a particular mode. An example of the second cosine mode consists of positive 

vorticity with radial inflow along the y-axis, and negative vorticity with radial outflow along 

the x-axis. 
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A similar decomposition can be performed on the vertical advection/ tilting term (2) in 

(5.2), with w replacing (2 and ov8 /oz replacing Vr - We then have: 

12
1r ove [ ove ove ove ove 

-r w~d8 = - r 2riwo ~ + 7rW1s ~ + 7rW1c ~ + 7rW2s ~ 
o uz uz O uz l s uz le uz 2s 

ove l +1rw2c~ + .... uz 2c 
(5 .9) 

In this instance the zeroth-order term represents large-scale vertical advection, and the first-

order cosine and sine terms represent the tilting of x-vorticity and y-vorticity into the ver-

tical, respectively. The higher-order terms are eddy correlations of w and ove/ oz around 

the circle. The second order terms are invoked by Rothfusz and Lilly (1989) to explain the 

formation of a laboratory vortex by convergence superimposed onto an environment with 

horizontal strearnwise vorticity. 

Other interpretations can be given to the zeroth-order terms. The zeroth-order term for 

(1) is: 

( f0
2

7r (zd8) 12
1r [ 1 O OVr l O 12

71" -21rrvro ---- = -rvro --(rve) - -- d8 = - Vro - rved8 
21r O r or roe or 0 

oc = - Vro -Or (5.10) 

if the velocity field is continuous. In a region of net radial inflow, a positive large-scale 

convergence term implies that the circulation increases with radius. Meanwhile the zeroth-

order term for (2) is simply: 

!'.l ( r21r ~ d8) uVe Jo 8z -2nw0r ~ = -2nw0r 
uz O 21r 

(5.11) 

and so is simply the advection of circulation by the azimuthally- averaged vertical velocity. 
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Furthermore, from Galilean invariance we know that we can subtract an arbitrary con-

stant vector ( a, b) from the velocity field without changing the physics of the problem 1. 

Thus, we may choose to subtract any a cos 8 + b sin 0 from the radial velocity around the 

circular contour where a and b are independent of position along the contour. The result 

will then correctly describe the change in circulation around a contour of the given shape 

translating at a velocity ( a, b) in the original reference frame. So if in particular we choose 

a = Vri c and b = Vris, then the Vr equation in (5.3) is unaltered except for the loss of the 

first-order terms, which cau es the large-scale horizontal advection in (5.5) to vanish. 

In summary, then, it is fair to consider the first order terms in (1) as representing an ad-

vection of circulation; they vanish in a reference frame moving at velocity ( Vr1c , Vris) , and 

one of the other terms in the circulation equation must be invoked to explain the creation of 

circulation where none existed before. Nevertheless, because the contour is not a material 

contour, there is no assurance that the velocity ( Vri c, Vr1c) will have a simple relationship 

to the veloci_ty of any particular air parcel or storm feature (in particular any vortex). So it 

is still important to consider this term in the circulation budget. 

5.2 Fourier Components - Uniform Two-Dimensional Strain 

Consider now the uniform two-dimensional straining flow problem in section 1.12 .... , where 

there is maximum convergence into the y-axis, and either divergence or convergence into 

the x-axis. Vorticity is neglected in the large-scale flow. The velocity is given by v = 

-axx - f]yy. The radial velocity in this case is 

. 2 . [ar /3r ] Vr = u cos 0 + vsm8 = -arcos 8- /3rsm2 8 = - 2 + 2 - [
ar f]r ] 
2 - 2 cos28 . 

(5 .12) 
1 An exception is surface drag, which as is normally treated is a function of the magnitude of the velocity 

specifi cally with respect to the ground. 
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For the case of uniform plane convergence, f3 = 0, and the radial velocity field consists 

of two equal, negative components, the zeroth-order and second order cosine. When the 

convergence is uniaxial, /3 > 0, and the zeroth-order component will be greater than the 

second-order cosine. For biaxial convergence, f3 < 0, and the second-order cosine term 

will be the greater. 

A graphical depiction of the superposition of the zeroth-order and second-order cosine 

azimuthal modes of equal negative magnitude is shown in Figure 5.1. If this is taken as 

a representation of the radial velocity, it can be seen that the maximum radial velocity is 

inward and along the x-axis. The radial velocity then decays to zero along the y-axis but is 

nowhere positive. 

The superposition of a positive unit zeroth-order mode and a negative unit second-order 

cosine mode is shown in Figure 5.2. In this case there is a positive concentration along the 

y-axis and values near zero in the vicinity of the x-axis. This can be a crude representation 

of the vortex band of section 2.12, which shows no variation in the y-direction and resides 

near the axis. It can be shown that the limit of an infinitesimally narrow band along the 

y-axis is achieved using the Fourier series : 

f(8) = C(l - cos 28 + cos 48 - cos68 + cos 88 - cos 108 ... ) (5.13) 

after proper normalization. 

What happens to the circulation tendency when the radial velocity field of (5.12) is 

combined with the vorticity eld of (5.13)? From (5.5), we see that only the zeroth-order 

and second-order cosine terms are non-zero. In fact, when f3 = 0, the products - Vro(zo and 

- vr2c(z2c are equal in magnitude but opposite in sign. The large-scale convergence term 

is positive because both the average radial inflow and average positive vorticity around 

a circular contour. But the second-order term is negative because the radial inflow and 
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Figure 5 .1: Depiction of the superposition of the zeroth-order and second-order cosine 
azimuthal modes of equal negative magnitude. Total magnitude is normalized to negative 
unity. 

119 



C:::::::: I I I 
0 0.1 0.2 0.4 0.5 0.6 0. 7 0.8 0.9 

Figure 5.2: Depiction of the superposition of the zeroth-order and second-order cosine 
azimuthal modes of equal magnitude but opposite signs. Total magnitude is normalized to 
unity. 
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positive vorticity peak in opposite quadrants. The large-scale convergence term in (5.5) 

has an extra factor of two: thus in our idealized framework the net circulation tendency 

is positive. Physically, this is due to the fact that away from the axes the quantity -vr(z 

is positive definite. The circulation will continue to increase unless other factors such as 

vertical motion or (in the Burgers vortex sheet) diffusion contribute negative circulation 

tendencies. 

Now, consider the uniform strain case where the axis of maximum radial convergence 

is not along the x-axis, but is rotated an angle 8 0 from it. If Q and /3 are defined as the 

derivatives of the velocity components parallel to and perpendicular to the 8 = 8 0 line, 

re pectively, then the expression for Vr becomes: 

[ar {3r l [Qr (3r l 
V = - - + - - - - - COS 2(8 - 80) 

r 2 2 2 2 

[Qr {3r l [Qr {3rl = - - + - - - - - (cos28coc::28 0 - sin28 sin280). 2 2 2 2 (5.14) 

So the presence of the second-order sine term simply represents a rotation of the Figure 

5.1 pattern; under this rotation the value of v;2s + v;2c remains constant at r 2 ( Q - /3) 2 / 4. 

However, the specific decrease in vr2c caused by rotation of the wind field would decrease 

the magnitude of the negative second-order term in (5.5) for our idealized framework; thus 

the circulation tendency would be enhanced. Similarly, the vorticity band can be rotated 

while the wind field is held fixed and would increase the vorticity tendency. This latter 

scenario is a mathematical argument consistent with the scenario described in Neu (1984a); 

when a Burgers vortex sheet segment is rotated from the y- axis, there is a better correlation 

between the radial inflow and the vorticity, which then acts to concentrate the vorticity into 

intense vortices. 
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5.3 Fourier Components - Baseline Simulation 

The various contributions to the horizontal convergence tendency to the circulation were 

found for the control simulation. A circular contour of radius 666 m was used for the 

calculations. Velocity values were interpolated to 4n points equally spaced on the circular 

contour, where nf::.x is the radius of the contour. 

Results are shown in Table 5.1 for the two-grid simulation at 3300 s, 3360 s, and 3420 

s at the lowest model level. These times represent, respectively, the fine-grid initialization, 

the peak of the intensification process, and the establishment of a low-level concentrated 

pseudo-circular vortex. The contours are centered about the location of the maximum 

circulation found within the domain. 

As mentioned previously, the first-order terms can be thought of as representing the net 

advection of the circulatio with respect to the model grid, and vanish when a velocity of 

( Vr i c, Vr i s) is subtracted out. The values of Vr1c and Vr i s in the table document the general 

southeastward movement of the circulation with respect to the grid. They compare well to 

the average speed of the vortex in Figure 4.7 of u = 11.4m s-1 and v = -6.9m s- 1 . If 

( Vr1c , Vr i s ) were to coincide with the instantaneous velocity of the vortex, then the circula-

tion of the material curve could be said to translate with the vortex. 

Examining the other terms reveals that the dominant ones are the zeroth-order term, 

which is positive, and the second-order cosine term, which is negative. Next in importance 

is the second-order sine term. It is seen that, at the initialization time, the zeroth-order 

and second-order cosine modes of the radial velocity are nearly equal; the zeroth-order 

and second-order cosine modes of the vorticity are nearly equal but opposite in magni-

tude. From the discussion in the previous section, it appears that we are looking at a close 

representation of a vortex sheet in uniform two-dimensional strain. The value of the v r 2s 
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3300s I 3360s I 3420s I 
-8.40 -8.22 -8.43 Vro 

0.0112 0.0115 0.0055 (zo 
394 396 194 - 27rTVrO(zO 

11.7 14.7 10.7 Vrlc 
-0.0017 0.0060 0.0055 (zlc 

42 -185 -123 -1T"TVr 1c(z1c 

-10.4 -12.9 -6.88 Vrls 
-0.0006 0.0007 0.0050 (zls 

-13 19 72 -1T"TVr 1s(zl s 

-7.26 -7.58 -7.52 Vr2c 
-0.0161 -0.0069 -0.0100 ( z2c 

-244 -110 -157 - 7rTVr2c(z2c 

3.49 2.03 -0.0357 Vr2s 
-0.0082 -0.0140 -0.0219 (z2s 

60 60 -2 - 1T"TVr2s(z2s 

0.162 -3.39 -0.919 Vr3c 
0.0070 -0.0006 0.0109 (z3c 

-2 -4 21 -7rTVr3c(z3c 

-0.774 -0.250 -1.76 Vr3s 
0.0049 -0.0088 0.0033 (z3s 

-5 12 - 7rTVr3s(z3s 

0.945 -2.50 0.325 Vr4c 
0.0008 -0.0088 -0.0159 (z4c 

-2 -46 11 -7rTVr4c(z4c 

-0.232 0.727 1.98 Vr4s 
0.0017 -0.0156 0.0006 (z4s 

1 24 -2 -7rTVr4s ( z4s 

Table 5 .1: Fourier components of radial velocity, vertical vorticity, and contributions to the 
circulation tendency for an Eulerian circle of radius 666 m on Grid 2. Only components to 
fourth order are shown. Values are shown at 60 minute increments. 
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term suggests that the axis of maximum radial convergence is rotated from the x-axis by 

0.5 arctan( - vr2s/ - Vr2c) = - 12.8°. The value of (v;2c + v;25 )0·5 of 8.05 is slightly less 

than the magnitude of Vro: from (5.12) we see that this implies that we nearly have plane 

convergence, but the flow is slightly uniaxial, as had been noted in the previous chapter. 

The vorticity modes reflect a concentration along the y-axis. For the vorticity the negative 

second-order cosine mode is actually larger in magnitude than the zeroth-order mode; this 

suggests that there is actually some negative vorticity along the circulation contour (not 

counting the contributions from the higher order terms). The vorticity band is rotated from 

the x-axis by an angle of 0.5arctan((z2s/(z2c) = -76.5°, which is a rotation of 13.5° 

from the y-axis. But higher order vorticity modes are non-negligible, suggesting that the 

vorticity structure is significantly more complicated than our idealized model. 

At 3360 s, the total circulation tendency from the modes listed in the table has increased 

by 50%. In large part this is due to the change in the second-order cosine contribution 

from -240 m2 s-2 to - 110 m2 s-2 • The zeroth-order terms have hardly changed. The 

most important difference is in the second-order vorticity terms, which have shifted from 

(z2c = -0.0161 s-1 , (z2s = -0.0082 s-1 to ( z2c = -0.0069 s- 1 , ( z2s = -0.0140 s- 1 . The 

vorticity band now lies at an angle of 0.5 arctan( (z2s/ (z2c) = -58.1 ° with respect to the x-

axis, or 31.9° with respect to the y-axis. The magnitude of the second-order vorticity mode 

has also decreased from 0.01 1 s-1 to 0.0156 s- 1 ; nonetheless even if the magnitude of 

this mode had not changed, the rotation of the mode would still change (z2c to -0.0080 s-1 

by 3360 s, a factor of two decrease. Thus the increase in circulation tendency is chiefly 

attributable to the rotation of the band of vorticity away from the y-axis to a position more 

favorable for radial convergence. The increase in circulation tendency could be even larger, 

but the radial inflow band also has rotated slightly counterclockwise, so that it is now 

inclined 0.5 arctan(-vr2s/ - Vr2c) = -7.7° from the x-axis. 
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Figure 5.3 presents a more continuous picture of the evolution of the angular separa-

tion between the vorticity band and the axis of maximum radial inflow. Whereas the two 

are largely perpendicular at the start, the angle decreases throughout the period of vortex 

strengthening, largely due to changes in the vorticity orientation. The vorticity band ap-

pears to rotate counterclockwise at an increasing rate, which bears little relation to the axis 

radial inflow after the time of greatest vortex intensification, near 3430 s. From Figure 5.4, 

it can be seen that at the end of the intensification period the magnitude of the second-order 

modes for both radial velocity and vertical vorticity decrease sharply. We can conclude 

that near the end of the vortex spinup process, the region loses its band-like geometry, and 

becomes more axisymmetric. 

Table 5.2 shows data for the vertical contribution to the circulation tendency. Most 

significantly, it shows that these terms are much smaller in magnitude than the dominant 

terms in the horizontal contribution at the location of the maximum circulation. Thus we 

can concentrate on the radial flux of vertical vorticity in explaining the development of 

large values of circulation. H wever, the ultimate source of the vertical vorticity must be 

due to the vertical contribution terms acting elsewhere in the domain. Near the vortex, the 

largest terms in this table are actually negative contributions to the circulation: the large-

scale vertical advection and tilting of y-direction vorticity. The largest single negative 

contribution is from the vertical advection of vertical vorticity after the vortex has already 

intensified. This is a strong indication that the vortex is not being transported to the surface 

in a downdraft but forms at the surface and is advected upwards. The higher order terms 

are not significant. 

Figure 5.5 shows the magnitude of the large scale tilting terms on Grid 2 at 3300 s. 

Significant values are found to the north of the circulation center along the 0e gradient, 

and in a narrow strip to the east of the vorticity center. The first order sine terms (large 
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Figure 5.3: Orientation angle of second-order for inward radial velocity, -vr, and vertical 
vorticity, (z, with respect to the positive y-axis. Results are for a circular contour with 666 
m radius centered at the location of maximum vertical vorticity on Grid 2. 
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Figure 5.4: Same as Figure 5.3, but depicting the magnitudes of the total second-order 
modes. 
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3300s I 3360s I 3420s I 
0.79 0.73 0.81 Wo 

0.0002 0.0109 0.0089 8ve/8zo 
-0.7 -33 -30 -21rrwo8ve / 8zo 
0.14 0.21 -0.12 W1c 

-0.0054 -0.0173 -0.0244 8ve/8z1c 
2 8 -6 -1rrw1c8ve/8z1c 

0.17 0.45 0.42 W1s 
0.0370 0.0251 0.0119 8ve/8z1s 

-13 -24 -10 -1rrW18 0Ve / OZ1s 
-0.30 -0.04 0.03 W2c 

0.0095 -0.0044 0.0176 8ve/8z2c 
6 -0.4 -1 -1rrv2cOVe / OZ2c 

-0.31 -0.33 -0.48 W2s 
-0.0123 -0.0063 0.0061 8ve/8z2s 

-8 -4 6 -1rrV2s8ve/ OZ2s 

Table 5.2: Same as Table 5.1, but for the Fourier components of vertical velocity and 
tangential wind vertical shear. Only components to second order are shown. 

scale tilting of y-directed vorticity) are responsible to the positive circulation tendency to 

the north (Figure 5.6). This term, in tum, is large because 8v0 / 8zlis is large (Figure 5.7), 

which is an indicator of strong vertical wind shear directed from east to west. This is 

consistent with the baroclinic generation of horizontal vorticity along the gust front. This 

vertical wind shear extends o the circulation center, and the tilting is positive as long as 

the vertical velocity derivative is southward (Figure 5.8). 

5.4 Nondivergent Vortex Patch Rotation 

Given that the rotation of the vorticity band with respect to the radial convergence is sig-

nificant towards increasing the circulation, we next should investigate the causes of the 

rotation. Two possibilities present themselves: 

• the rotation is due to the self-induced rotation of the vorticity patch and can be ex-

plained by the local vorticity field 
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Figure 5.5: Magnitude of first-order vertical contributions to the circulation tendency (thin 
contours) for a 666 m radius contour, at 3300 son Grid 2. Contours are in increments of 10 
m2 s- 2 . Thick contours represent circulation and are in increments of 5000 m2 s- 1 . Axes 
give distance in kilometers for reference. 
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Figure 5.6: Same as Figure 5.5, but showing only the first-order sine contributions. 
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Figure 5.7: Same as Figure 5.5, but showing magnitude of first-order sine component of 
ove/ oz (thin contours). Contours are in increments of 0.01 s-1 . 
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Figure 5.8: Same as Figure 5.5, but showing magnitude of first-order sine component of w 
(thin contours). Contours are in increments of 0.1 m s- 1. 
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• the rotation is not explainable locally, but is due to storm-scale processes. 

The self-induced rotation of a patch of vorticity is due to the fact that parcels near the 

tip of the patch are induced to move about the axis of the patch by the vorticity of other 

parcels that are closer to the axis. Rotation does not occur for an infinitely long strip of 

vorticity because parcels extend along the strip in each direction and their induced rotation 

cancel at a particular point. For the finite patch however there is insufficient vorticity away 

from the axis to counteract the rotation, and the patch rotates as a whole. 

It is well known that an ellipse possessing constant vorticity in its interior residing in a 

nondivergent, nonstraining fluid rotates with an angular velocity: 

d8 Tl 
dt = ((1 +r,)2' (5.15) 

where r, is the aspect ratio a/b of the ellipse, a and b being the semimajor and semiminor 

axes, respectively. This is the Kirchhoff vortex patch (Saffman 1992). 

Thus one option is to approximate the low-level mesocyclone as an elliptical vorticity 

patch, compute the rotation rate, and compare it to the rotation rate in the simulation. One 

problem with this approach is that the mesocyclone is not simply a patch of constant vortic-

ity with zero vorticity outside; the vorticity gradually decreases towards zero, particularly 

along the axis of the vorticity band, which is oriented nearly north-south. (This direction 

will henceforth be referred to as the along-band direction, as opposed to the across-band 

direction.) 

This concern was addressed through the use of a two-dimensional barotropic pseudo-

spectral vorticity model, described in Kossin and Schubert (2001). Because the model is 

incompressible and two-dimensional, vorticity is materially conserved in the model (ne-

glecting diffusion). The processes of stretching and tilting cannot be represented in such 

a model, but the self-rotation of vorticity patches can be. The spectral model can thus be 
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Figure 5.9: Vorticity at initialization of pseudo-spectral barotropic two-dimensional model. 
Shading is incremented every 4 x 10- 3 s-1 . 

initialized with an arbitrary vorticity patch, and the vorticity-induced movement in the ab-

sence of stretching can be compared to the movement in the fully three-dimensional RAMS 

model. 

The pseudo-spectral model was initialized with conditions designed to represent the 

main vorticity distribution of the Grid 2 initialization in the baseline simulation. The vor-

ticity distribution is shown in Figure 5.9; the central part consists of an ellipse with constant 

vorticity of 0.03 s- 1 and dimensions 2100 m x 600 m. Beyond each semimajor axis, the 

vorticity decreases towards zero over a distance of 2000 m; similarly, the vorticity de-

creases towards zero in 100 m beyond each semiminor axis. A cubic spline is used to set 

the vorticity in these regions, which wi11 be referred to as the vorticity tails. 

The pseudo-spectral model possesses 512 degrees of freedom for each grid point. The 

boundary conditions are cyclic, but the domain was made large enough so that interactions 
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Figure 5.10: Same as Figure 5.9, but at 120 s. 

with the boundary would be minimized. A slight negative vorticity exists in the far field 

region in order to keep the total domain circulation zero. For numerical stability purposes, 

numerical diffusion is used in the model, with a constant diffusion coefficient. For further 

details on the model the reader is referred to Kossin and Schubert (2001) 

After 120 seconds of simulation time, the vorticity distribution can be seen in Figure 

5.10. It is apparent that the central vorticity ellipse has rotated counterclockwise. The 

vorticity tails however are lagging the rotation of the ellipse. The ultimate fate of the tails 

is to become increasingly extended and thinned due to the rotation of the ellipse (Figure 

5.11); eventually the tails break off while the central ellipse undergoes axisymmetrization 

(Melander et al. 1987). 

Table 5.3 shows the orientation of the major axis of the central ellipse at various times 

in terms of the angular dis lacement from the x-axis . For the first 210 s of the model run, 
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Figure 5.11: Same as Figure 5.9, but at 660 s. 

the rotation rate is a relatively constant 12.9° per minute. We can compare this rate to that 

of a Kirchhoff's vortex patch with the dimensions of the central ellipse. Using (5.15), we 

obtain 17.8° per minute. Note from (5.15) that the greater the aspect ratio, the smaller the 

rotation rate. Furthermore, reducing the average vorticity decreases the rotation rate. So 

we might expect that an ellipse with 'tails' would rotate slower than one without tails. We 

also might expect that as the ellipse rotates ahead of its tails, this effect would be reduced, 

and the ellipse would increase its rotation rate. The table substantiates this expectation. 

How do these values compare to the RAMS simulation? Recall that at 3300 son Grid 

2 we determined that the second-order mode of the vorticity distribution about a loop of 

radius 666 m was oriented at an angle of - 76.5° to the model x-axis. The same method 

gave the maximal radial convergence (i.e., the axis of contraction) at an angle of -12.8°. 

At 3360 s, the vorticity orientation is -58.1 °, but the axis of contraction is now -7.7°. The 
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I time (s) I angle to x-axis (degrees) l 
0 0 

30 6 
60 12 
90 19 

120 24 
210 45 
390 90 

Table 5.3: Orientation of major axis of central vorticity ellipse in pseudo-spectral simula-
tion over time. 

vorticity band has rotated 18.4° degrees in an absolute sense, but 13.3° with respect to the 

axis of contraction. In this conceptual framework the rotation of the axis of contraction 

must be ascribed to storm-scale processes. However, the rotation of the vorticity band with 

respect to this axis seems we11 explained by its self-induced velocity. 

5.5 Divergent Vortex Patch Rotation 

Neu (1984b) considered the more general case of elliptical vorticity patches residing in any 

incompressible straining field of form v = axx + f3yy - (a+ {3)zz. The equations for the 

time rate of change of the two axis dimensions and the angle between the major axis of the 

ellipse and the x-axis are: 

da 
dt = a(acos2 8 - {3 sin2 8) (5.16) 

db 
dt = b(a sin2 8 + (3 cos2 8) (5.17) 

d8 'TJ a - {3 ry2 + 1 . 
dt = ( (1 + ry )2 - -2-T/2 - 1 sm28 , (5.18) 

where a is the major axis length while bis the minor axis length. 

If /3 is much smaller than a, we can simplify (5.16) - (5. 18) by neglecting the {3 terms, 

obtaining: 

da - = aacos2 8 
dt 

137 

(5.19) 



db 2 - = basin 8 
dt 

d8 77 a. 772 + 1 
dt = ( (1 + 77) 2 - 2 772 - 1 sin 28. 

(5.20) 

(5.21) 

To close this set of equations we can find the rate of change of the aspect ratio 77 = a/b 

to be: 

d77 1 da a db 2 2 - = -- - -- = o.77 (cos 8 - sin 8) = 0.77 cos 28. 
dt b dt b2 dt 

(5.22) 

We see from this set of equations that the presence of plane convergence reduces the 

rate of rotation of the vorticity band once 8 -=I= 0. This is due to the fact that the plane 

convergence is forcing the v rticity band to align with the axis of dilatation. The angle at 

which the rotation rate becomes zero is given by: 

. 77 772 - 1 2( 
sm28max = ( )2 2 . 1+77 77 + 1 a. 

(5 .23) 

How do we apply these equations to the RAMS simulation? Here, instead of deriving 

the Fourier modes from the strain as before, we will derive the strain from the Fourier 

modes. First define the x-axis as the planar axis of contraction; if the large-scale flow is 

given by -a.xx - f3yy, we s ould have lo.I > I.Bl- Using (5.14), we obtain: 

and 

-Vro + J v;2s + v;2c a = --------
r 

,B = -Vro - Jv;2s + v;2c 
r 

(5 .24) 

(5.25) 

if Vro < 0; the axes used to determine Vr2s and Vr2c are arbitrary. Applying these equa-

tions to the RAMS baseline simulation at 3300 s gives a. = 2.47 x 10- 2s-1 and f3 = 

5.18 x 10- 4s-1 . Clearly the environment is neither strongly uniaxial nor biaxial, and we 

are justified in neglecting /3 in a qualitative picture. 
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-Vro Vr2c Vr2s -Vro + v;2s + Vr2c - radius (m) 
6.30 -5.14 3.20 12.35 444 
8.24 -5.95 3.74 15.27 666 
9.54 -6.14 3.91 16.82 888 

10.52 -6.20 4.24 18.03 1110 
11.39 -6.42 4.72 19.36 1332 
12.1 2 -6.60 5.18 20.51 1554 
12.74 -6.71 5.59 21.47 1776 
13.26 I -6.81 5.95 22.30 1998 
13.70 -6.90 6.31 23.05 2220 

Table 5.4: Values of zeroth and second-order Fourier components of the radial velocity for 
circular contour of various radii , centered on the location of the maximum vorticity on Grid 
2 at 3300s. Velocity units are m s-1. 

However, there is one more requirement that should be satisfied by a field of uniform 

plane convergence: the quan ity -Vro + Jv';.25 + vr2c
2 

should be proportional to the radius 

of the circular contour. Table 5.4 shows the validity of this assessment. The radial velocity 

modes increase with radius, but much more slowly than one would expect from a linear 

function of radius. This is an indication that the convergence is largely confined to a narrow 

region. So it is not fully justified to speak of the plane convergence as being uniform, but 

to first order we will use the value of a computed above to determine the effect of the 

large-scale strain on the vorticity patch. 

The aspect ratio of the central ellipse in the spectral model simulation was 2100 / 600 = 

3.5. Using this value along with ( = 0.03 s- 1 and a = 0.0247 s- 1 gives 8 max = 10.4°. 

For angles greater than thi , the rotation rate becomes negative. During the rotation of 

the vortex patch 'r/ is changing as well, which must be considered. But dry/ dt is positive 

for angles between 0° and 45° . The quantity ( ry2 - 1) / ( ry2 + 1) is very nearly unity for 

ry2 > > 1, and ry / (1 + 'r/ )2 decreases as 'r/ increases. Thus the rotation of the vorticity band in 

the RAMS model to angles significantly greater than 10° from the axis of dilatation cannot 

be explained given the presence of the strong plane convergence field, though the rotation 

rate is well explained if one does not take the convergence field into account. We are thus 
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led to consider whether barotropic instability can be invoked to explain the deviation of the 

vorticity band from the axi of dilatation. This scenario will also be considered in a two-

dimensional inviscid framework; but now it is crucial that the geometry is predominately 

one-dimensional in the base state, with only small initial perturbations from this state. 

5.6 Barotropic Instability 

The instability of a vortex sheet of finite width to infinitesimal wave-like disturbances was 

first treated by Rayleigh (1 80). The instability can be seen to be the result of the phase 

locking between counter-propagating Rossby waves on each interface (Guinn and Schubert 

1993). The conceptual fra ework for the problem consists of a north-south mean state 

flow of magnitude V for x > x0 and -V for x < - x0 , with a zone of constant vorticity 

V / x0 in between; there is no other large-scale flow. The extreme vorticity gradient at x0 

generates a Ross by wave of speed - V/2kx0 where k is the wavenumber of the infinitesimal 

disturbance. Similarly a wave of speed V / 2kx0 is generated on the western interface. In 

addition, the influence of eac Rossby waves extends to the opposite influence, so that at 

x0 the Rossby wave at -x0 induces motion with speed (V/2kxo)e- 2kxo. It is this mutual 

interaction that can lead to phase-locking and an exponentially growing disturbance if kx0 

is small enough (i.e., if the wavelength is long enough compared to the width of the vorticity 

strip). It can be shown that disturbances with a wavelength greater than approximately 

10x0 will be unstable, and that the most unstable mode is one with a wavelength near 16x0 

(Guinn and Schubert 1993). Thee-folding time of the most unstable disturbance is given 

by 10x0 /V 

The presence of plane strain complicates the situation, however. Neu (1984a) states 

that the presence of uniform shear alters the growth rate of barotropic instability for an 

infinitesimal vortex sheet, although it doesn't eliminate the instability. Second, for a vortex 
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Figure 5.12: Isolines of perturbation pressure for most unstable mode of finite-width vor-
ticity layer. Base state mean wind profile is shown at the right. From Gill (1982) 

strip of finite width, the presence of plane strain will decrease the width of the strip unless 

some other force such as viscous diffusion is significant. As a vortex strip is converged in a 

process for which diffusion in insignificant, however, two things in particular will happen. 

The decreased width of the trip will increase the average vorticity of the strip, and hence 

decrease the timescale of the instability. Also, in plane convergence the speed towards the 

axis decreases towards the axis. Therefore, at some point during the contraction process 

we can expect that barotropic instability will eventually occur despite the presence of the 

uniform convergence. 

A heuristic way of determining the relative importance of the instability compared to the 

convergence is to take the ratio (V/2akx5) e-2kxo, which is the ratio of the speed induced 

by the Rossby wave at the opposite interface to the large-scale convergent motion. If we 

use V/ x0 = (z and assume that kx0 is that of the most unstable disturbance, we obtain: 

barotropic instability (z ------- 0.57- . (5.26) 
convergence a 

Note that this ratio is less than one if we use the parameters from 3300 s that initialized 

the ellipse ((z = 3 x 10- 2 s-1; a = 2.47 x 10-2 s-1). Thus we might expect the future 

evolution of the vorticity patch at this point to consist mainly of convergence towards the 

axis of contraction. However, because the ratio is not much different from unity, the actual 

evolution should show features of both processes. 
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A scaled view of the vorticity band at 3360 sis shown in Figure 5.13. It can be seen 

that the width of the vorticity band at this time has narrowed from 600 m to approximately 

400 m. The maximum instability half-wavelength is now 1600 m. This corresponds very 

well to the distance between the westward notch near the region of maximum vorticity 

and the maximum eastward surge of the gust front to the south. There is no evidence 

of a continuation of this wave pattern to the south. However, this could be a function 

of the reduced vorticity in this region, which is closer to 0.02 s-1 relative to the values 

of at least 0.04 s-1 in the heart of the wave. For the two regions we can calculate e-

folding times of 250 and 125 seconds respectively. Recall that the northern vorticity center 

becomes dominant near the ~urface at 3222 s. Thus the wave pattern seems consistent with 

barotropic instability occurring around the region of maximum vorticity. Using 0.03 x 

(600 m/ 400 m) = 0.045 s- 1 for a vorticity value gives the ratio in (5.26) a value of 0.94, 

suggesting that for the area in general the barotropic instability mechanism is becoming 

significant. 

The barotropic instability itself cannot increase the values of the vorticity, but it can 

reorient a segment of the vorticity band so that there is a greater net horizontal vorticity 

flux by the plane convergent flow, as described in previous sections. Vorticity rapidly con-

centrates into discrete centers as described in Neu (1984a), and the subsequent evolution 

differs considerably from classic two-dimensional barotropic instability. 

5. 7 Comparison to NST Tornadogenesis 

Because of the similarities of this process to the NST mechanism modeled by Lee and Wil-

helmson (1997a-c), a compari on is appropriate here. Their simulation is semislip with a 

drag coefficient (Cn = 0.06 in dry simulations to 0.002 in moist ones.). The domain is 

cyclic in the along-front direction. Because of the surface drag the cold pool is retarded 
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Figure 5.13: Potential temperature (thin contours) and vertical vorticity (thick contours) for 
Grid 2 at 3360 s. Potential temperature contours are every 1 K. Vorticity contour increments 
double every level beginning at 0.005 s- 1 . Scale on vertical and horizontal axes is distance 
in kilometers. 
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near the surface, creating thermal instability just ahead of the surface front. It is this in-

stability that serves as the focus point for vortex evolution, which then proceeds according 

to barotropic dynamics, eventually becoming nonlinear as vorticity pools into discrete re-

gions (see Figure 5.14). Their vorticity on a grid with 100 m horizontal grid spacing is 

of the same order of magnitude as ours with comparable grid spacing c~ 0.1 s-1). How-

ever, the ambient horizontal convergence is weak c~ 0.004 s-1) compared to ours, and 

frictional convergence into the developing vortices is essential to amplifying the vorticity 

in reasonable amounts of time. Still, it takes about 1000 s for their vortices to achieve 

vertical vorticity of 0.1 s- 1 by the frictionally-induced convergence (Lee and Wilhelmsen 

1997a). Of course, for a pre-existing thermal boundary, there is, so to speak, ample time 

to generate this vorticity before the formation of convection, and it is hypothesized that 

these misocyclonic vortices become the seeds of future NST after convection enhances the 

convergence beneath them. our simulation, however, the relatively limited extent of the 

front in the along-front direction would limit the possibility of vortex-merger processes, 

and interaction with the ambient convergent field would probably be required to produce a 

concentrated vortex. 

5.8 Strength of Vortex 

If the proposed mechanism properly describes the formation of the vortex, it is possible 

to draw some conclusions about its ultimate strength. Consider the Burgers vortex. It 

can be shown that the maximum tangential speed of the Burgers vortex is approximately 

0.72f /21rrmax (Davies-Jones 1986), where r is the total circulation and Tmax is the radius 

of maximum tangential speed. For the Burgers vortex r max is approximately 2.24( v / 1 ) ½, 

where v is the viscosity and I is the vertical divergence. 
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Figure 5.14: Development of misocyclones through barotropic interaction along a shear 
line. From Lee and Wilhelmson (1997a). Each panel represents a progression of 180 s, 
starting at 720 s of simulation time. Vorticity is contoured every 0.02 s-1, beginning with 
0.005 s- 1. 
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According to Neu (1984a), during the collapse process the circulation excess, given by 

(5.27) 

remains constant for the segment of the vortex band that is collapsing, and thus represents 

the circulation of the final Burgers vortex. Let r draw represent the initial radial distance 

of the vortex band segment that is drawn into the final vortex, such that if the final vortex 

position is at the origin, the limits of integration at the start of the collapse process are 

y = -r draw and y = r draw· We can express <7 as the constant value 2venv if we idealize 

the vortex band as the region between parcels with v = Venv in the positive x direction and 

parcels with v = -Venv in the negative x direction. Substituting all of these relations into 

(5.27) gives 

(5.28) 

In the current simulation the horizontal eddy diffusion coefficient, which we will use 

in place of v, has a value of 108 m s-2 . Using 1 = 2.47 x 10- 2 s- 1 , we get a value for 

(v,)½) of 1.57 m s-1. Meanwhile, the region of the band with vorticity 0.03 s- 1 and width 

600 m would correspond to a value of <7 of 0.03 x 600 = 18 m s- 1, which implies that 

Venv = 9 m s-1 . Using these values in (5.28) shows that we are relatively close to the 

inviscid limit, where the vortex band segment becomes a vortex sheet segment, the final 

vortex circulation is simply the vortex sheet segment circulation, and the final vortex is 

simply a point vortex. 

Substituting r c for r in the expression for the maximum Burgers vortex tangential 

velocity, Vmax , gives: 

1.44 r draw [ l] 
Vm= = ---- Venv - (v,) 2 • 

7r rmax 
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When the flow is nearly inviscid, the two determinants of the maximum vortex tangential 

velocity are the environmental vertical vorticity present along the vortex band, as repre-

sented by Venv, and the distance along the vortex band from which vertical vorticity can be 

pulled into the final vortex. Note, however, that even if the flow is nearly inviscid, some 

viscosity must be assumed in order to determine the scale of r max, unless an independent 

means of determining the final size of the vortex is used. 

For the mechanism described in this chapter, we can assume that the maximum length 

of the vortex band that can be drawn into the final vortex is one-half of the wavelength of 

maximum barotropic instability, i.e., the distance from a wave crest to a wave trough. The 

actual distance may prove t be less, resulting in a lower circulation and lower tangential 

wind. The half-wavelength of the most unstable barotropic mode is approximately 4~x for 

a band with width ~ x, and thus r draw should be 2~x. 

Thee-folding length of a Burgers vortex sheet is (2v /,) ½. If we approximate the width 

of the band is approximately two of these lengths, then we obtain 187 m. This however 

is con iderably less than the estimated width of the band at the time that waves become 

apparent (400 m at 3360 s). This confirms that during the vortex concentration process 

we do not begin with a Burgers vortex sheet, but rather with a band of vorticity that is 

in the process of converging into a Burgers sheet, as analyzed by Karnbe (1983). We had 

estimated that waves should first become apparent when (z , /0.57, or equivalently when 

the width ~ x 0.57afy . Using a = 18 m s-1 and ,= 2.47 x 10-2 s-1 , we get 415 m, 

which is very close to the observed value at 3360 s. If we use this general expression for 

the width of the vortex band, use rdraw = 2~x, and use rmax 2.24(v/,)½ for the circular 

Burgers vortex (Davies-Jones 1986), we obtain: 

(5.30) 
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Substituting (5.30) into the Vmax elation (5 .29) gives a final result of: 

(1.44)(1.02) Venv [ )l] Venv [ l] 
Vmax - - --- 1 Ver.v - (iry 2 0.47--1 Venv - (v-y) 2 , 

7f ( l/'-y ) 2 ( l/'-y ) 2 
(5.31) 

which yields Vmax 20 ms- 1 using model values. 

The actual maximum tangential velocity of the final vortex is around 25 m s- 1, which 

can be seen in the wind speed field in Figure 5.15 after the translational velocity has been 

subtracted out. The circular Burgers vortex has a pressure deficit of l.68pv~x in its core 

(Davies-Jones 1986); using p = 1.1 kg m- 3 and Vmax = 25 m s- 1 produces 6.p = 11.6 mb, 

which also compares favorably to the local pressure deficit in the simulation. 

Our predicted value for the tangential wind speed is a bit low. It should be noted, 

however, that r max using model values is 2.24(v/-y)½ = 148 m, which is not much larger 

than the grid spacing of 111 m. We could imagine that the final concentrated Burgers vortex 

is ' aliased' onto a vortex with radius 111 m because of the limitations of grid spacing. 

Since Vmax is proportional to the inverse of r m ax for the same circulation, the enforced 

contraction of the vortex would increase Vmax by 148/ 111 = 1.33 times, which would 

more than account for the value of Vm ax observed in the model. The aliased vortex would 

be overly concentrated for the values of diffusion and convergence, though, and eventually 

would be expected to diffuse circulation into the environment. In any event, a number of 

broad assumptions went into the derivation of (5.31), and it is best regarded as an order-

of-magnitude estimate for vortices and sheets with these characteristic length and velocity 

scales. 

We can attempt to estimate the maximum tangential winds that can be produced by 

this mechanism. The strongest tornadoes possess horizontal wind speeds well in excess of 

100 m s-1 . The strongest values of V env along environmental shear lines are on the order 

of 15 m s- 1 (Lee and Wilhelmsen 1997a). From (5.29), we would need rdraw/rmax to be 
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Figure 5.15: Vortex-relative speed at 3600 s on Grid 2. Vortex translational velocity is 
u = 19 m s- 1, v = -6 m s- 1 , and was found by removing the first-order modes from the 
velocity pattern of the vortex. 
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at least 14.5 in order to have a chance of generating a 100 m s- 1 vortex. Using the model 

data we found rdraw/rmax to be approximately (2 x 400)/148 = 5.4. There is reason to 

believe that this ratio should not much exceed 5.4. In our framework r draw/r max is equal to 

26.x/r max, where 6.x is the width of the vortex band at the start of the process. The model 

of Neu (1984a) applies to Burgers vortex sheets and circular vortices that have the same 

characteristic length scales. our study, 6.x is not quite twice as large as the diameter of 

the final vortex, 2r max · Although we would expect the width of the vortex band to continue 

to narrow at during the early stages, at later stages the central region has rotated such that 

its width is no longer being contracted by the plane convergence. We may surmise that 

a vortex band will not collapse into a concentrated vortex with a diameter much smaller 

than the width of the band via this mechanism. Therefore, for simplicity, we will make 

the assumption that rdraw/rmax 5.4 is close to the maximum value that we can expect. 

Using this assumption in (5.29) provides a maximum expected tangential wind speed of 

approximately 37 m s-1 , well short of the wind speeds of the most powerful tornadoes. 

Some mention will be made here of the thermodynamic speed limit method of esti-

mating the maximum tornadic wind speeds (Lilly 1969; Kessler 1970; Snow and Pauley 

1984). In this method it is assumed that the negative pressure perturbation of a tornado is 

determined by the CAPE of the environment with respect to an air parcel that represents the 

parent thunderstorm. The pressure deficit is basically determined by vertically integrating 

the parcel buoyancy and assuming hydrostaticity. Normally, the buoyancy of the convection 

would induce a vertical motion field, which would temporarily evacuate air from beneath 

the convection. Horizontal convergence would rapidly be induced to prevent the evacua-

tion of air, and the full hydrostatic negative perturbation pressure would not be apparent. 

However, if the air underneath the storm possesses sufficient circulation, conservation of 
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angular momentum will eventually prevent horizontal convergence from occurring. If hor-

izontal convergence is inhibited, the pressure will continue to drop due to the evacuation of 

mass until the vertical motion is inhibited by the adverse pressure gradient. At a level where 

vertical motion is inhibited, the pressure deficit must be the integrated buoyancy to the top 

of the atmosphere (assuming that the vertical motion and pressure deficit are both zero at 

the top of the atmosphere). The tangential wind speed is then calculated from the pressure 

deficit by assuming cyclostrophic balance, as well as a reasonable vorticity distribution. 

Using the thermodynamic method, Lilly (1969) found that the maximum expected 

CAPE of 3800 J kg- 1 implied a maximum pressure deficit of 45 mb and a maximum tan-

gential wind speed of 62 m s-1 for an assumed one-celled vortex. Note that this method 

alone also cannot account for the wind speeds of the most powerful tornadoes. Attempts 

have been made to explain the highest tomadic wind speeds by a variety of methods, in-

cluding assuming that the tomadic vortex contains a subsiding, adiabatic~lly-warmed core 

(Walko 1988), and explaining the enhanced wind speeds as the result of a strong axial jet 

dynamically induced by a no-slip boundary condition (Fiedler and Rotunno 1986; Lewellen 

1993; Nolan et al. 2000). Conceivably, these influences could also enhance a natural ver-

sion of the vortex modeled in this study. Or, it i ~ possible that the combination of storm 

buoyancy with the converged vortex mechanism can produce a tangential wind of the nec-

essary strength; larger storm buoyancy could induce convergence that would concentrate 

the circulation into a region even smaller than the circular Burgers vortex, with corre-

spondingly higher velocities. Of course, finer horizontal grid resolution would be required 

to model such a process. Or, larger storm buoyancy could draw in vorticity from a larger 

distance than r draw = 2.6.x, and hence increase the circulation for a final vortex of a given 

size. 
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The other way to generate a more intense vortex from a line of vorticity would be to 

have a mesoscale (or synoptic scale) source of convergence and vorticity, which could also 

draw in circulation from a di tance greater than is possible with the barotropic method. This 

explanation may apply to the strong 26 Apr 1991 tornado-like vortex of Grasso (1996). 

That study was horizontally- heterogeneous, and developed the tomadic supercell near a 

dryline that exhibited mesoscale vorticity. 

More on the relationship between pressure and vortex formation will be discussed in 

Chapter 7. 

5.9 Summary 

The Eulerian inviscid circulation tendency equation for a horizontal circular contour was 

separated into components using a Fourier decomposition. This decomposition provides 

large-scale versions of the convergence, tilting, and advection terms found in the Eulerian 

vertical vorticity equation, as well as higher-order terms that represent eddy correlations. 

The horizontal terms involve the radial velocity and vertical vorticity and involve the pro-

cesses of horizontal advection and convergence. The vertical terms involve vertical velocity 

and the vertical shear of the tangential wind, and involve the processes of vertical advection 

and tilting. 

This analysis was performed on Grid 2 of the RAMS baseline simulation during the 

time that the vortex was intensifying most rapidly. It was found that the horizontal terms are 

dominant during this process. The fact that both the zeroth-order and second-order terms 

were significant allowed some inferences about the geometry of the process. In particular, 

the spinup of the vortex is not xisymmetric, and the axes of the vorticity and large-scale 

radial convergence are largely perpendicular until the vortex has already fully developed. 

During the stage of rapid vorticity intensification, the axis of vorticity rotates so that there 
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is a greater component of the large-scale radial convergence along it. The vorticity then 

rapidly concentrates towards he axis of the band. 

The most likely scenario for the intensification is the following . Initially there is a 

thin band of vorticity situate in uniform plane convergence. The band becomes more and 

more concentrated at first because dissipation is insufficient to balance the convergence, 

but, in a manner consistent with the Kambe (1983) framework, is evolving towards the 

Burgers vortex sheet. However, before this state is reached, barotropic instability begins. 

This instability causes the rotation of the vorticity axis in a localized region. There is now a 

better correlation between vorticity and the large-scale radial convergence, and the vorticity 

begins to concentrate into a discrete center. Soon the presence of this center dominates 

the dynamics of the region. Time and length scales of this proce s correspond well to 

theoretical predictions. However, this process alone does not seem capable of generating 

wind speeds comparable to those of the strongest tornadoes. 
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Chapter 6 

TRAJECTORY ANALYSIS 

6.1 Average Vertical Vorticity 

Let us define the average vertical vorticity, (z, for a closed horizontal contour, C, through 

the use of the circulation: 

§ v · dl 
- C 
( z = --,-ff-,--d-x d- y . (6.1) 

C 

The average vertical vorticity is a function of the velocities and positions of all the fluid 

elements on C. We can use Stokes' theorem to find: 

§ v · dl f f[V x v]kdx dy 
- C C ( - --- - ------
z - ff dx dy - ff dx dy (6.2) 

C C 

which is simply an average value of the vertical component of the velocity curl within 

the contour, assuming that the velocity is smooth enough in the region for its curl to be 

computed. If we take the limit as the area goes to zero, we simply get: 

(6.3) 

which of course is the actual vertical vorticity component at the limit point of C. With the 

use of arbitrary planar contours, this procedure can in fact be used to define the normal 

component of the curl in a manner not dependent on the coordinate system (Lewis and 
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Ward 1989). In a continue s differentiable fluid we can take this limit as the contour size 

shrinks to zero, and the resultant average vertical vorticity can be considered a property of 

a single point in the fluid, dependent only on the velocity derivatives at that point, which 

are evaluated over arbitrarily small volumes. In particular, we can assign such an average 

vertical vorticity to each point on the forward (or backward) trajectory of any starting point 

in the fluid. Thus the average vertical vorticity in the limit of infinitesimal area can be con-

sidered a material property of fluid elements that evolves according to the local conditions 

at the fluid element (for example, as shown in (2.15)). 

6.2 Discrete Case 

We can apply the average ven ical velocity to the case of a discrete Eulerian grid to approx-

imate true vertical vorticity at a location. We can choose a horizontal contour that consists 

of the perimeter of a grid cell . 

For the Arakawa-C grid of RAMS, the grid cells formed by connecting the T-points on 

the grid possess U-points at the midpoints of the horizontal sides and V-points at the vertical 

side midpoints (Figure 6.1). Thus each side can be said to possess a velocity component 

parallel its direction, facilitating the computation of the f v • dl term in the average vertical 
C 

vorticity. 

In order to compute the line integral we need some way to relate v, which are defined at 

grid points, to finite-length sides around the integration contour. The most straightforward 

choice for the grid cell perimeter is to assume that J v • dl for each side is simply the 

tangential velocity defined at the midpoint of each side times the length of the side. This 

method gives for the average vertical vorticity of the grid cell with T point ( i, j) at the lower 

left corner: 

(v ·+1 · - v· ·) fi x+ (u· ·+1 - u · ·)fiy ( I . . = ' i ,J i,J i ,J i ,J 
z D i,J fi x fiy , (6.4) 
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Figure 6.1: Contour used to define grid cell discrete vertical vorticity for point at horizontal 
coordinates (I,J) . Solid circles denote model T points; open circles denote model V points; 
crosses denote model U points. Direction of contour integration is counterclockwise. 

where the quantity (zD will be referred to as the discrete vertical vorticity, which is depen-

dent on the grid staggering scheme and the chosen contour. Obviously, this equation gives 

the same result as that obtained by approximating the derivatives in the vertical component 

of the velocity curl by a finite differences across the grid cell. 

One disadvantage of this scheme is that the non-tangential velocity components on a 

side (e.g. , the value of v n the south perimeter) are undefined. These components are 

needed, however, if one is to perform a trajectory analysis of the contour. Either both u 

and v must be defined as being valid at the same locations, or some interpolation procedure 

must be used on the radial wind component. One possible scheme is to interpolate both u 

and v at all sides of the grid cell perimeter, using the four neighboring U and V points for 

the appropriate velocity component. For example, along the southern side the u velocity to 

the east of the midpoint would be a weighted average between ui,j and ui+l,j; to the west of 
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the midpoint the weighted average would be between u i-l ,i and u i,j· The resultant discrete 

vertical vorticity using this method will not be identical to the finite-difference vorticity of 

the grid cell because it will be dependent on the velocities of neighboring grid cells. But 

now both u and v for closed curves are continuous functions of position on the curve. We 

may thus decide that we wan more than four points with which to compute trajectories. We 

then can divide each side of the grid cell initially into a number of collinear line segments. 

The discrete vertical vorticity is now given by 

N 
LVmid · b.l 
1 

( zD = b.xb.y (6.5) 

where Y mid is the interpolated velocity at each segment midpoint, and v·b.l = utix, vtiy , -

utix, - vb.y for the south, east, north, and west sides, respectively. In the trajectory anal-

ysis we advect the N endpoints of the line segments, and then reconnect the endpoints in 

order to compute the new circulation. Note that in this approximation the line segments are 

not material lines, and the accuracy of the method is dependent upon the spacing between 

the adjacent material points along the contour. 

A key difference of all the average vorticities from the pointwise vorticity in a contin-

uous fluid is that we are not j stified in taking the limit as the contour size decreases to 

zero, because we have no information on scales smaller than the grid cell. Even if we were 

to interpolate to find model velocities and hence vorticities within a grid cell, these would 

still remain a function of at minimum the four grid point velocities along the perimeter. (If 

we use interpolation with neighboring grid points, all the velocities within the grid cell can 

be a function of up to twelve grid points.) The discrete vertical vorticity for the material 

contour corresponding to a grid cell perimeter will thus be a function of the forward ( or 

backward) trajectories from a set of points, which will not in general stay localized to a 

single grid cell. Thus (zD cannot be said to be locally deterministic in an Eulerian model 
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at all times along a trajectory 1, even if 'local' is allowed to include the whole grid cell 

perimeter surrounding an interpolated trajectory, or even any region of fixed size surround-

ing the trajectory. Analyses of the sources (or destinatjons) of the iliscrete vertical vorticity 

along a trajectory in an Eulerian grid most resemble a discrete version of the circulation 

equation for the material contour corresponiling to the initial horizontal contour. However, 

over a single timestep, it still remains true that the iliscrete average vorticity is a determin-

istic function of the velocity field over a fixed-size region, as given in (2.37). So it is still 

useful to talk about the vorticity tendency for a single grid cell over a timestep. 

6.3 Average Vertical Vorticity Tendency along Trajecto-
ries 

We now consider how the average vertical vorticity can be said to change following trajec-

tories. Vertical vorticity in an inviscid Boussinesq system can only change along a trajec-

tory by tilting or stretching, but neither of these processes appear in the circulation tendency 

equation. How can the average vertical vorticity be used to represent these processes? In 

general the trajectories of a horizontal material contour will not remain horizontal, so the 

definition of the average vertical vorticity for the material curve will have to be made more 

general than in the previous sections. 

First we need a general definition of the area of a three ilimensional curve in a plane 

whose normal unit vector is given by k. Define a position vector I extending from an origin 

to a point on the curve. The sector from the origin to an increment dl defines a planar 

triangle with area of magnitude (1 x dl)/2. The magnitude of the projection of this area 

onto the plane with normal k is found by taking the dot product with k. If we integrate 
1 Of course, in time the material contour may encompass the whole model domain; at this point, the model 

is locally deterministic in the sense that the behavior of the set of all model grid points is trivially only a 
function of those grid points themselves. 
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around the curve, we find that: 

(6.6) 

The areas A and Ai , which are projections onto planes normal to the other coordinate axes, 

can be defined by substituting the appropriate unit vector into (6.6), so in general 

Am = m · f ( x di) . (6.7) 
C 

For a closed curve, there will be two directions of integration, one of which will produce a 

negative area, the other a positive area. So, by convention, we can define the direction of 

integration as that which akes Ak positive. If we use this convention, Ai and Ai may or 

may not be positive. 

A more convenient form with which to work is found by applying a vector identity to 

the triple product in the integrand: 

(6.8) 

Now define the unit vector f as that which satisfies 1 = rf + zk, with r positive. Then 

k x 1 = r E> where 0 is defined as k x f. Thus the area can also be expressed as 

f rE> 
Ak = - · dl 2 . (6.9) 

C 

Since dl =Ctr+ r~~ E> )ds with s being the arc length, in the special case where 1 can be 

expressed as 1(8) the projected area can be rewritten as: 

271" 271" r 

A k =Jr; d8 = J J r'dr'd8. (6.10) 
0 0 0 

This is the standard form of the two-dimensional area integral in polar coordinates, and we 

also see that proper direction of integration is that for which 0 is an increasing function. 

160 



So now we are ready to define the general area average vorticity. To convert the total 

circulation into a total vorticity we can divide the circulation by (Az + A;+A~)°-5
. Next, we 

can take the vertical 'component' of this quantity by multiplying by Ak/ (Af + AJ + A~)°-5
. 

So, finally, the area average vorticity for a general curve is given by: 

(6.11) 

where A} = Az + AJ + A ~ with each Am given by (6.7). For a horizontal contour, (6.11) 

reduces to (6.1). 

It is straightforward to take the material derivative of (6.11). The result is: 

(6.12) 

The first term increases (z when the total curve area remains constant but the projection 

onto a horizontal plane increases. The second term increases (z when the orientation to the 

vertical remains constant but the total curve area decreases . Thus the first two terms are the 

average vorticity analogs to the tilting and stretching vorticity terms, respectively. Because 

of the factor of (z, both terms can lead to exponential growth, though the tilting term is 

self-limiting when the curve becomes completely oriented in the xy plane. 

The third term represents the (z tendency due the changes in circulation around a mate-

rial curve. So, for instance, .if we neglect diffusion and let dv / dt = - V ( 0vo1r' ) + Bk, the 

third term becomes: 

(6.13) 

where s is the arc length parameter from some reference point on the curve. We see that 

baroclinity can change the average vertical vorticity, but only when the curve is neither 

completely horizontal (when dz/ds is zero) nor vertical (when Ak is zero). 
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For a curve with zero projection into the xy plane, Ak and (z are zero, and both the cir-

culation and stretching terms in (6.1 2) are zero. However, the tilting term is not necessarily 

zero because the natural logarithm approaches negative infinity when Ak approaches zero. 

For Ak = 0 the tilting term can be written as: 

d(z § V · dl dAk 
dt A} Tt· (6.14) 

6.4 Discrete Vorticity Tendency Along Trajectories 

In analogy to (6.11), we can define the general discrete vertical vorticity: 

(6.15) 

where the area projections Am are given by 

(6.16) 

The summations are performed over all the segments in the material curve and defining 

1 as the position vector of the midpoint of each segment. The value of v is found by 

interpolating the vector field to the position of each segment midpoint. 

Similarly, we can use (6.12) to obtain the discrete vorticity tendency equation: 

d(zD d Ak d 1 Ak L dv - = ( n-(ln-) +( n-(ln -) + - - · ~l. dt z dt Ar z dt Ar A } dt 
(6.17) 

6.5 Material Contour Evolution in RAMS 

Here we perform a backwards trajectory analysis of a material contour on Grid 1 (333 m 

grid spacing) starting from 3600 s, which is close to the time when the vorticity reaches its 

maximum. The quantity ( zD as found in (6.15) is used to represent the average vorticity of 

this contour during the backwards trajectory. The contour at the initial time of the analysis, 
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3600 s (henceforth referred to as the reference time to minimize confusion), is simply the 

square perimeter of the grid cell of greatest vorticity at the reference time. The height of 

the initial contour is at the second model level above the ground (62 m) in order to allow 

freedom of movement both upwards and downwards. It is assumed that the vertical velocity 

is zero at the ground, and, consistent with the free-slip condition, there is no vertical shear 

of the horizontal wind at the surface. 

The grid perimeter is divided into 200 line segments of equal length, and their endpoints 

are subjected to backwards trajectory analysis. A Runge-Kutta method (accurate to fourth 

order) is used in the time integration of the trajectory. This method requires model output 

at each half-step. Thus model output every 6 s was used in the analysis, but the method 

produces trajectory information every 12 s. 

Linear interpolation is used for both u and v at all of the trajectory points. Let (x0 , y0 ) 

be the horizontal position of the T point ~.j· The interpolated velocity at any point (x , y) 

on or within the grid cell to the northeast of Ti ,j is given by: 

U = [1 - I0.5 - X Jae I] [1 - YJae] Ui,j + [1 - I0.5 - X fae lj [YJae] U i,j+l 

+ [I0.5 - XJac l] [1 - YJae] Ui±l,j + [I 0.5 - Xfael] [YJae] Ui± l ,j+l 

V = [1 - J0.5 -YJael] [1 - Xfae] Vi,j + [1 - J0.5 - YJae l] [XJae] Vi+l ,j 

+ [J0.5 - YJacl] [1 - Xjae] U i,j±l + [I0.5 - YJae l] [XJae] Ui+l,j±l, (6.18) 

where x Jae = (x - xo)/ ..6.x and YJae = (y - y0 )/ ..6.y. The positive choice in the± sign of 

the u equation is used when x Jae > 0.5, and of the v equation when YJae > 0.5. 

Figures 6.2a-d and 6.3 show the horizontal position of the material contour at t = -60 

s, -120 s, -180 s, -240 s, and -300 s relative to the reference time. It is seen that after only 
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five minutes the backward trajectory of the grid cell boundary acquires a greatly filamented 

structure, reminiscent of the forward trajectory of a grid cell shown in Figures 2 and 3 

of Welander (1955). At 3300 s the curve consists of a central hooked appendage with a 

long tendril that loops counterclockwise and nearly encircles it. The tip of the tendril is 

ill-defined in the xy plane, but Figure 6.5, which is a yz projection of the curve, reveals 

that the curve in this region extends to a height of over 150 m. Interestingly, the rest of the 

contour has descended to virtually ground level by this time. 

As the curve collapses in forward time from the 3300 s position, the inner hooked 

loop contracts as it rotates counterclockwise, following a path coinciding with the tendril. 

By 3480 s the hooked loop has reached and absorbed the crescent-shaped region at the 

easternmost portion of the curve in Figure 6.3. In the final two minutes the tendril is drawn 

inwards toward the rest of the contour. From Figure 6.3 it can be seen that both the hooked 

loop and crescent-shaped regions consist of points that make up the north and east sides of 

the contour at 3600 s. All of the points on the south and west sides of the contour are found, 

at 3300 s, in the tip of the tendril , well above the surface. The orientation of the curve in 

this area makes baroclinic generation of circulation possible. However, both sides of the 

vertical tip are in close horizontal proximity to one other; unless there is an extremely large 

horizontal temperature gradient here, it is not clear how baroclinic generation of circulation 

can be important at this time. 

Figures 6.4 and 6.6 show the 0e values of the parcels of the material curve at 3300 s. The 

parcels of the crescent-shaped region all consist of air with very large equivalent potential 

temperatures, indicative of low-level origins. This is consistent with the vertical elevation 

of these parcels at this time. The parcels in the tendril tip, on the other hand, have 0e values 

less than 331 K, again consistent with their location, elevated in a downdraft. The parcels 
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Figure 6.2: Material contour at: a) 3540 s, b) 3480 s, c) 3420 s, and d) 3360 s during Grid 
1 simulation. Contour consists of 200 points spaced 6 m apart in a square around grid cell 
of highest average vorticity at 3600 s, subjected to a backwards trajectory analysis. Open 
triangles denote points along the west side of the contour at initialization; open squares, the 
south side; crosses, the east side; and solid squares , the north side. 
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Figure 6.4: Same as Figure 6.3, but showing 0e values at 3300 s. Domain size is same as 
that of Figure 6.3. 
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of this time period, but then rises again. We can also see that the circulation is negative at 

times prior to 3444 s; at these times, the curve is highly filamented, and the resolution of 

the curve in these areas is poor, which lends a degree of uncertainty to the results . It is true, 

though, that there is some negative vorticity in the region between the hooked loop and the 

crescent-shaped region (Figure 6.7). 

Table 6.2 is a kinematic calculation of the (zn tendency terms using the information 

in Table 6.1. Temporal differences are computed over 12 s intervals while other quantities 

are averaged over that interval ; the value of the average stretching, tilting, and circulation 

tendency terms are then applied at the time midway through the interval. We see that the 

average stretching term for the curve completely dominates the average tilting term (the 

scale is 102 times smaller for the tilting term), and is the same sign as the circulation, 

which means that the stretching term is always acting to increase the magnitude of the 

circulation. The circulation tendency term does not show as systematic a pattern, but is 

roughly as significant as the stretching term at most times. The tilting term, when it is at 

its largest near the reference time, is actually negative, except for the last timestep, where 

it achieves its greatest absolute magnitude. 

We can use (6.12) to obtain a condition where the average stretching term must be 

greater than the average tilting term. Assume that Ak has any nonzero value. We can then 

directly write the expression for the stretching term minus the tilting term as: 

(6.19) 

For the case of positive circul tion ((z > 0), whenever the projection of the curve into the 

xy plane is decreasing in area, the average stretching is greater (i.e., more positive) than 

the average tilting for the curve. If furthermore Af + A; is not increasing fast enough to 

cause Ar to increase, the average stretching will be positive. We can see from the tables 
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3600 11688.17 0.00 0.00 110890.88 0.1054024 
3588 13624.75 -2682.97 -167.80 174485.78 0.0780666 
3576 12428.79 -3946.36 -669.05 279168.47 0.0445116 
3564 6811.73 -3911.92 -1577.55 392949.97 0.0173329 
3552 4953 .02 -3308.49 -628.75 505078.59 0.0098060 
3540 8295.51 -1786.62 1339.04 629109.81 0.0131859 
3528 10051.45 502.91 2957.33 768414.94 0.0130806 
3516 10592.15 3003.44 3267.51 918155.31 0.0115361 
3504 10191.87 5085.72 2262.89 1076757.25 0.0094651 
3492 9860.94 6341.89 148.88 1242545.12 0.0079359 
3480 9168.77 6760.25 -2450.58 1404990.50 0.0065257 
3468 6516.68 6423.04 -4834.52 1548935.12 0.0042071 
3456 3333.42 5666.80 -6241.89 1706481.62 0.0019533 
3444 1966.85 5239.59 -6710.18 1852592.00 0.0010617 
3432 -295 .57 5583.17 -7045 .19 2006061.75 -0.0001473 
3420 -744.13 6477.04 -7524.28 2181301.50 -0.0003411 
3408 -2433 .02 8043.41 -8270.93 2365245.50 -0.0010286 
3396 -5650.34 10129.39 -9506.75 2572230.50 -0.0021966 
3384 -9245.24 12691.22 -11034.21 2784603.25 -0.0033200 
3372 -9142.06 15746.09 -12703.88 3027187.75 -0.0030199 
3360 -6632.53 18951.67 -14318.52 3298011.75 -0.0020110 
3348 -4521.33 22200.63 -16009.49 3558586.50 -0.0012705 
3336 -6737.20 25688.51 -17925.20 3770205.00 -0.0017868 
3324 -7102.73 29405.42 -19887.10 3933750.50 -0.0018054 
33 12 -6889 .41 33706.70 -21793.92 4084518 .25 -0.0016866 
3300 -6779.78 38465.03 -23745 .94 4226613 .00 -0.0016039 

Table 6.1: Circulation, contour projection areas, and discrete vertical vorticity for mate:rial 
curve during backward trajectory analysis, beginning at 3600 s. Projection areas Ai, Aj, 
and Ak are areas of the projection of the curve onto planes normal to the x axis, y axis, and 
z axis , respectively. At 3600 s contour consisted of 200 equally spaced points about a grid 
cell with length 333 m centered about region of maximum vertical vorticity as found by 
finite-difference method. 
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Figure 6.7: Vertical vorticity at 3300 s on Grid 1 contoured every 0.005 s- 1 . Axis labels 
are distance in kilometers. 
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/ time (s) I tilting (1 x 10-6s-2) I stretching (1 x 10-4s-2) I circulation term (1 x 10- 4s-2) I 
3594 0.91 34.66 -11.90 
3582 -0.08 24.00 4.64 
3570 -0.12 8.81 14.34 
3558 -0.04 2.84 3.50 
3546 -0.02 2.10 -4.97 
3534 0.00 2.19 -2.12 
3522 0.00 1.83 -0.54 
3510 0.00 1.39 0.34 
3498 0.00 1.04 0.24 
3486 0.00 0.74 0.44 
3474 0.00 0.44 1.50 
3462 0.00 0.25 1.63 
3450 0.00 0.10 0.64 
3438 0.00 0.03 0.98 
3426 0.00 -0.02 0.18 
3414 0.00 -0.05 0.62 
3402 0.00 -0.11 1.09 
3390 0.00 -0.18 1.12 
3378 0.00 -0.22 -0.03 
3366 0.00 -0.18 -0.66 
3354 0.00 -0.10 -0.51 
3342 0.00 -0.07 0.50 
3330 0.00 -0.06 0.08 
3318 0.00 -0.05 -0.04 
3306 0.00 -0.05 -0.02 

Table 6.2: Magnitude of average tilting, average stretching, and circulation tendency con-
tributions to the discrete vertical vorticity tendency during the backward trajectory analysis 
of the material contour described in Table 6.1. Terms correspond to those found in (6.17). 
Note different scale for tilting terms. 

that these conditions do in fact apply at the times when the curve's circulation is positive. 

The same conditions but with a negative circulation will cause the average stretching term 

to possess a greater negative value than the average tilting term. 

The clustering of points in Figure 6.3 suggests that there may be a way to continue 

to trace the source of vorticity backwards in time even when the circulation of the entire 

material curve is (or appears to be) negative. It is apparent that along both of the north 

and east sides of the contour at the reference time there are at least two points from which 
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parcels on opposite sides ecome arbitrarily distant over the backwards integration. For 

each of the inner hook-shaped region, the crescent-shaped region, and the tendril tip region, 

the distance to other regions is growing much more rapidly than the size of the region itself. 

The difference in Be values between the crescent-shaped region and the other regions further 

indicates these parcels of air have greatly different source regions, and there is no reason 

not to expect the distance between the regions to continue to grow in (backwards) time. 

This implies the existence of at lease two unstable trajectories in reverse time on both the 

north and east sides of the eference contour, from which all points no matter how close 

will ultimately diverge some finite distance (Lorenz 1963). The presence of a mixture of 

Be values in the inner hook-shaped region suggests that in time an unstable trajectory may 

appear here as well. In fact , this region may be the remains of an earlier combination 

of high and low Be air that is simply rotating in place while the internal Be gradients are 

weakened by diffusion. But for now we will treat it as one region. 

We can imagine partitioning the original contour into three distinct subcontours as in 

Figure 6.8, where the subcontour lines within the grid cell are in close proximity to all the 

unstable backward trajectory points. Adjacent subcontours can be made arbitrarily close, 

but are located on opposite sides of the set of unstable points. The result of the backward 

trajectory analysis of the subcontours will then be three spatially- distinct material contours, 

but whose circulation at the reference time should sum to the circulation of the original 

contour. When our linear interpolation scheme is used, we find that if we map the original 

RAMS material curve onto the unit square, the unstable trajectory points on the curve 

are found near (0.20 , 1.00) , (0.35 , 1.00) , (1.00, 0.45), and (1.00, 0.61 ). We can assign the 

200 material points on the perimeter of the grid cell either to Region I (corresponding 

to the tip of the tendril), Region II (the crescent-shaped region), or Region ill (the inner 

hooked loop). Three points near the unstable trajectories and one in the northeast comer 
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Figure 6.8: Division of a circulation contour enclosing the unit square into three subcon-
tours. Dashed line indicates the set of unstable backwards trajectory points, which is as-
sumed to be a line segment within the unit square. Positions of unstable points on the 
perimeter correspond to those of the original RAMS material contour. 
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of the reference material contour were excluded in order to keep the remaining contours 

reasonably compact at 3300 s. The 3300 s distribution of points from all three regions 

(Figure 6.9) confirms that three well-segregated subcontours have been generated. No other 

unstable trajectories are obvious for this period, although the mixture of 0e in Region ill 

suggests that in (backwards) time it too may develop an unstable trajectory. 

Note that we have eliminated the need to calculate circulation over the longest and 

narrowest portions of the tendril. Furthermore, because the tendrils are narrowest near the 

unstable trajectories, the subcontour extensions within the original grid cell in Figure 6.8 

are precisely those portions of the subcontours that become pinched together and shrink to 

almost zero length. The implication is that we need not be concerned about determining the 

material points of the 'subco tour extensions' within the original grid cell; to compute the 

trajectories of the subcontours we may simply consider the points on the perimeter of the 

original grid cell, and then connect the endpoints with single line segments to close the loop. 

If these connecting segments are of a length on the order of the model grid spacing, then 

the precise location of the connecting segments is a function of the interpolation procedure 

anyway; and if the connecting segments are of lengths on the order of those of the other 

subcontour segments, then the accuracy of the circulation calculation over the connecting 

segments should be as accurate as that over the rest of the contour. 

However, it should be kept in mind that the total circulation contribution of the tendril 

regions is not necessarily negligible; if we find this in fact to be the case, we will be forced 

to examine these long, narrow regions. 

Also, while convenient, converting the material contour backwards trajectory problem 

into three subcontour backwards trajectory problems raises some questions of determinism. 

If we were to take the limit as the grid size approaches zero, we would expect the analysis 

to reduce to finding the circulation history in the neighborhood of a point's backwards 
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trajectory, which is unique. What are we to conclude, then, about sources of circulation 

when in the discrete case we three separate source regions? 

In order to address this question, first consider the original square contour at the refer-

ence time, where all velocity on and within the grid cell can be considered to be linearly 

extrapolated. Because of the linear interpolation, we have essentially assumed constant ve-

locity gradients and hence vertical vorticity within the grid cell. (In the current procedure 

this is strictly true only for a quadrant of the grid cell because of the influence of neigh-

boring grid cells in the average; we will assume this effect is small in the discussion that 

follows , although this is not necessary for the conclusion.) Thus, each subcontour should 

contain the same average vorticity, and the circulation of each subcontour should be propor-

tional to its enclosed area. During the backwards trajectory analysis the average vorticity 

of each contour will begin to differ from each other. Now consider analyzing the results of 

the backwards trajectory analysis in forward time, back towards the reference state. The 

fact that at the reference time the velocity fields must be linear within the grid cell imposes 

a constraint on the flow (including, in particular, that the final average vorticity for all sub-

contours must become identical) . This constraint will, in forward time, be perceived as a 

'forcing' . The forcing in fact will resemble diffusion, in that it removes any non-linear ve-

locity gradients and tends to equilibrate neighboring vorticity values. However, this forcing 

is entirely an artifact of the interpolation procedure. Furthermore, the numerical model dur-

ing the actual simulation possesses 'real ' diffusion, which will tend to remove non-linear 

velocity gradients on scales larger than the grid cell , with much the same effect. 

Thus, if when examining t e subcontours, it is apparent that one subcontour is losing 

circulation diffusively to the other subcontours, we may safely attribute the source of the 

circulation to the trajectory of that subcontour. If however all subcontours seem to be 
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gaining most of their circulation diffusively in ways that cannot be explicitly resolved, then 

it can be concluded that the extended tendril regions are the main source of circulation. 

6.6 Subcontour Evolution in RAMS 

Now we will attempt to divide the material contour into subcontours. The points on the 

perimeter of the grid cell at the reference time are assigned to Region I, Region II, and 

Region III as in Figure 6.9. We then close all the subcontours by connecting the points of 

each region across the grid cell using line segments, as described in the previous section. 

Tables 6.3-6.5 show the average vorticity and related quantities for the Region I, II, 

and III subcontours, respectively. We do in fact see that the average vorticity of each of 

subcontours are all nearly equal to each other and to the average vorticity of the whole 

contour. 

Consistent with the linear interpolation, the average vertical vorticity of all subcontours 

is the same at 3600 s, to within roundoff error. It is clear, though, that the average vorticity 

of Region I is of a very transient nature. This subcontour possesses no positive circulation 

at 3552 s; its circulation increases fivefold in the final 36 seconds, which of course is inde-

pendent of either large scale tilting or stretching. Recall that this subcontour corresponds 

to parcels within the vertical tip of the tendril at 3300 s, and contains fully 131 of the 200 

points on the perimeter of the original grid cell. 

Region III, in contrast, actually peaks in average vorticity at 3588 seconds, and loses 

a considerable portion of its circulation in the final time period. Otherwise, its circulation 

remains remarkably constant over the final hundred seconds, and the circulation is generally 

decreasing in forward time for the hundred seconds before that. Region ID, corresponding 

to the inner hook area, contains average vorticity in excess of 0.05 s-1 over the final three 

minutes. 
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Region II, corresponding to the crescent-shaped region at 3300 s, contains negative cir-

culation while it is crescent-shaped. The circulation becomes positive near 3444 seconds. 

Recall that near this time the crescent-shaped region is merging with the hook-shaped re-

gion. By 3492 the circulation has reached a value of 2000 m2 s- 1 that it will maintain until 

just before the reference time, when the circulation decreases in a manner similar to Region 

III. The average vorticity stays near 0.02 s- 1, but then sharply increases in the final minute 

due to a great contraction in horizontal area (nearly a tenfold decrease from 3528 s to 3600 

s. 

This analysis is quantified in Table 6.6. The circulation tendency term is generally 

negative at the final times for Regions II and III, but positive for Region I. Near 3474 

seconds, the circulation tendency term is positive for Region II, but still negative for Region 

III. Prior to 3570, the most significant positive average stretching occurs in Region III, from 

3402-3462 seconds. 

It thus appears clear that, if one is to attribute a specific trajectory to the average vor-

ticity, it would lie within Region III. However, it is instructive to compare the circulation 

of the entire contour with the sum of the circulation of the three subcontours (Figure 6.10). 

For the final minute there is close agreement between the two, but from 3460-3540 s the 

circulation for the whole contour is considerably larger than that of the subcontours. Prior 

to 3460 seconds, the whole contour circulation becomes negative whereas the circulation of 

the subcontours stays nearly constant. Since the connection between Region II and Region 

III, which contains negative vorticity, disappears near 3444 s, a reasonable explanation is 

that the negative circulation for the whole contour reflects that of the Region II - Region 

III connection, but that the Region I - Region II connection contains positive circulation. 

When Region II becomes absorbed into Region III the total circulation sharply increases 

and achieves a large positive value due in large part to the Region I -Region II tendril. The 
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3600 8889.07 0.00 0.00 84520.94 0.1051700 
3588 8514.27 -1595.80 80.90 132349.03 0.0643225 
3576 6755.55 -997.63 -207.06 213949.47 0.0315747 
3564 1654.59 943.28 -1301.04 295856.28 0.0055924 
3552 -282.91 1659.34 -2091.51 381951.59 -0.0007406 
3540 2419.61 2483.49 -2355.98 473786.66 0.0051067 
3528 2738.61 3095.34 -2672.91 564616.75 0.0048501 
3516 774.82 3452.71 -3086.06 645416.81 0.0012004 
3504 480.85 3735.01 -3435.11 707187.75 0.0006799 
3492 349.04 4021.92 -3715.71 750873.06 0.0004648 
3480 432.09 4390.30 -3991.66 774731.69 0.0005577 
3468 300.24 4847.20 -4295.36 777004.69 0.0003864 
3456 167.77 5431.47 -4598.91 757309.69 0.0002215 
3444 84.86 6227.50 -4969.87 718377.44 0.0001181 
3432 62.24 7404.99 -5602.50 664625.56 0.0000936 
3420 80.80 8860.04 -6400.84 601188.50 0.0001344 
3408 134.39 10569.33 -7386.05 533233.94 0.0002519 
3396 214.70 12547.75 -8491.25 465161.16 0.0004611 
3384 325.92 14753.33 -9713.40 400229.44 0.0008128 
3372 462.62 17372.03 -11 154.19 340352.66 0.0013542 
3360 599.79 20240.60 -12669.52 286403.16 0.0020798 
3348 704.63 23293.38 -14183.24 238824.66 0.0029124 
3336 788.61 26640.13 -15834.95 197113.12 0.0039043 
3324 869.61 30158.92 -17632.29 160704.02 0.0051671 
3312 947.16 34126.45 -19590.67 128836.93 0.0067244 
3300 1000.03 38427.78 -21771.69 100820.78 0.0083218 

Table 6.3 : Same as Figure 6.1, but for the Region I subcontour. 
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. 
3600 897.21 0.00 0.00 8716.28 0.1029355 
3588 1616.07 -361.64 -105 .97 14649.29 0.1102445 
3576 2140.45 -975.20 -158.26 24042.82 0.0888763 
3564 1578.73 -1616.61 -44.98 40161.33 0.0392461 
3552 2123.16 -1174.54 473.19 54621.46 0.0388495 
3540 1719.27 -949.32 799.49 69019.00 0.0249020 
3528 2360.02 -711.85 1186.73 85559.55 0.0275761 
3516 2108.22 -458.74 1393.36 105447.47 0.0199892 
3504 2265.48 -234.65 1384.68 131106.27 0.0172778 
3492 2229.96 -154.55 1167.45 163527.39 0.0136359 
3480 1728.91 -257.39 864.17 200766.28 0.0086114 
3468 1084.21 -5 0.34 608.65 242149.73 0.0044774 
3456 724.39 -744.23 450.06 285621.56 0.0025362 
3444 385.89 -932.99 389.43 327439.75 0.0011785 
3432 -78 .47 -1069.55 360.16 366166.25 -0.0002143 
3420 -408.25 -1158.22 324.41 403329.69 -0.0010122 
3408 -510.73 -1216.66 294.73 437695.94 -0.0011668 
3396 -488.68 -1261.56 270.97 469720.12 -0.0010404 
3384 , -353.50 -1300.65 262.59 499327.78 -0.0007079 
3372 -304.95 -1337.30 263.53 525536.56 -0.0005803 
3360 -311.95 -1371.96 267.76 5483l6.31 -0.0005689 
3348 -263.79 -1404.97 272.09 567351 .50 -0.0004649 
3336 -227.31 -1435.85 274.99 583193.88 -0.0003898 
3324 -197.89 -1465.15 276.74 595777.75 -0.0003322 
3312 -163.74 -1492.87 277.18 605458.19 -0.0002704 
3300 -138.58 -1519.29 274.19 612300.25 -0.0002263 

Table 6.4: Same as Table 6.1, but for the Region II subcontour. 
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3600 1314.82 0.00 0.00 12042.82 0.1091785 
3588 2450.04 -480.56 -67.67 18177.14 0.1346909 
3576 2170.66 -1356.95 -202.33 25890.34 0.0836058 
3564 2729.25 -2429.42 -134.13 31485.29 0.0861689 
3552 2048.56 -3021.67 845.70 33052.83 0.0614248 
3 40 2247.75 -2665.27 2487.35 34200.13 0.0649849 
3528 2366.46 -1464.16 3926.58 34545.43 0.0675092 
3516 2571.98 136.11 4557 .84 35107.14 0.0720455 
3504 2842.13 1601.19 4175.78 36425.38 0.0768674 
3492 3144.08 2478.48 2919.41 38176.18 0.0815366 
3480 3430.76 2636.25 1143.64 41306.62 0.0826559 
3468 3640.49 2138.23 -430.90 45991.96 0.0789773 
3456 3802.38 1077.22 -1214.03 53082.08 0.0715652 
3444 4653.75 21.28 -1294.95 64065.39 0.0726109 
3432 5377.98 -674.62 -1023.33 84699.02 0.0634819 
3420 7228.63 -1092.04 -683.71 118779.09 0.0608506 
3408 8255.46 -1022.76 -262.74 179354.36 0.0460272 
3396 6937.19 -661.19 -15.82 268504.31 0.0258363 
3384 4899.03 -156.75 18.59 374711.94 0.0130741 
3372 5127.11 267.88 -32.01 488944.53 0.0104861 
3360 6206.77 520.24 -74.89 617420.62 0.0100527 
3348 6478.52 662.87 -121.80 764259.62 0.0084769 
3336 6204.94 751.06 -181.43 927019.31 0.0066934 
3324 5911.96 801.36 -255.55 1101290.88 0.0053682 
3312 5488.35 840.48 -342.07 1283117.50 0.0042774 
3300 5223.26 873.11 -457.40 1462515.62 0.0035714 

Table 6.5 : Same as Table 6.1, but for the Region III subcontour. 
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time Region I Region II Region III 
tlt. I str. I circ. tnd. tlt. str. circ. tnd. tlt. I str. I circ. tnd. 

3594 0.01 31.68 3.03 0.03 46.15 -54.80 0.04 41.87 -65.28 
3582 0.00 19.19 8.96 0.04 41.15 -23.98 0.10 32.27 10.88 
3570 0.00 5.02 17.12 0.00 27.39 15.54 0.11 13.95 -16.3 1 
3558 0.00 0.52 4.84 -0.02 9.99 -9.79 0.09 3.08 17.46 
3546 0.00 0.39 -5.32 0.00 6.21 5.52 0.06 1.86 -4.89 
3534 0.00 0.73 -0.52 0.00 4.70 -6.99 0.09 0.65 -2.84 
3522 0.00 0.34 2.72 0.00 4.14 2.22 0.06 1.00 -4.84 
3510 0.00 0.07 0.36 0.00 3.38 -1.12 -0.05 2.23 -6.20 
3498 0.00 0.03 0.15 0.00 2.85 0.20 -0.16 2.94 -6.67 
3486 0.00 0.01 -0.09 0.00 1.90 2.32 -0.18 5.21 -5.98 
3474 0.00 0.00 0.14 0.00 1.02 2.45 -0.09 7.15 -4.00 
3462 0.00 -0.01 0.14 0.00 0.48 1.14 -0.04 8.95 -2.73 
3450 0.00 -0.01 0.09 0.00 0.21 0.92 -0.02 11.28 -12.21 
3438 0.00 -0.01 0.03 0.00 0.04 1.12 -0.01 15.83 -8.27 
3426 0.00 -0.01 -0.02 0.00 -0.05 0.72 0.00 17.52 -15.59 
3414 0.00 -0.02 -0.08 0.00 -0.07 0.20 0.00 18.35 -5.99 
3402 0.00 -0.04 -0.13 0.00 -0.06 -0.04 0.00 12.08 5.11 
3390 0.00 -0.08 -0.22 0.00 -0.04 -0.23 0.00 5.40 5.43 
3378 0.00 -0.15 -0.31 0.00 -0.03 -0.08 0.00 2.61 -0.45 
3366 0.00 -0.24 -0.37 0.00 -0.02 0.01 0.00 2.00 -1.65 
3354 0.01 -0.37 -0.33 0.00 -0.01 -0.07 0.00 1.65 -0.33 
3342 0.02 -0.53 -0.32 0.00 -0.01 -0.05 0.00 1.22 0.27 
3330 0.04 -0.73 -0.37 0.00 -0.01 -0.04 0.00 0.87 0.24 
3318 0.11 -0.99 -0.42 0.00 0.00 -0.05 0.00 0.61 0.30 
3306 0.27 -1.27 -0.34 0.00 0.00 -0.03 0.00 0.43 0.16 

Table 6.6: Same as Table 6.1, but for each of the three subcontours. 
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circulation of this tendril in tum decreases through diffusion into the other subcontours as 

well as its environment. 

So we are faced with the challenging situation that a large portion of the circulation of 

the original material contour at the reference time resides on a scale less than six meters 

wide in at least one dimension, and only remains manifest on a resolvable scale via the 

effects of diffusion, either physical or numerical. 

6.7 Vorticity Kneading 

It is still of value to continue the backward trajectory analysis for the parcels in the Region 

III contour. The circulation of Region ill from 3300 - 3600 s shows no sign of being 

acquired diffusively. The contribution of Region III to the total circulation in Figure 6.10 

is small simply because the total area of Region ill is small. Region III therefore is an 

opportunity to further trace the origins of the vertical vorticity that is much easier to work 

with than the extended tendril. 

The Region ill subcontour was integrated backwards in time for a further 300 s using 

the same procedure as in the previous section. It should be noted that the final time of 

3000 sis prior to the 'vorticity jumps' at any level, which appear to be caused by baroclinic 

effects along the gust front. 

Figures 6.11 a-d and Figure 6.12 show the configuration of the Region ill subcontour 

at successively earlier 60 s increments. As speculated earlier, the Region ill subcontour 

does possess a couple of unstable trajectory points , and seems to break down into two even 

smaller subcontours. The image resembles that of a medicine capsule being separated into 

two portions. The Region III subcontour seems to form from the combination of high Be 

air from the southeast and low Be air from the downdraft to the northwest (Figure 6.13); 
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Figure 6.10: Circulation of the whole material contour in Table 6.1, and of the three sub-
contour regions. 
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the subcontour then rotates 360° before combining again with air parcels from these source 

regions, namely Regions II and I. 

One difference between the backward-time evolution of the original contour and that 

of the Region III subcontour, owever, is that the width of long region connecting the two 

source clusters of air parcels for Region III is not much narrower than the width of the 

cluster regions themselves . The ends of the two source clusters of material points do not 

conveniently 'pinch' together. On the other hand, the shape of Region III itself, even when 

subject to extreme extension, is well-behaved and straightforward to calculate. 

Therefore we will divide Region III into further subcontours, Regions Illa, IIIb, and 

Ille, where Illa contains the low 0e source parcels, Ille contains the high 0e source parcels, 

and IIIb is the transition region in between, wholly contained between four points of the 

Region III set (Figure 6.14 ). This time, however, the subcontour boundaries within Region 

III will be explicitly translated as material curves, by creating 200 additional material points 

to surround Region IIIb. Region IIIb at 3300 s is a quadrilateral connecting the four points 

of Region III closest to the unstable trajectory; each side of this quadrilateral is decomposed 

into 50 equally-spaced points for the backwards trajectory analysis. The material points 

used for the remainder of Regions Illa and Ille are simply those of the original Region III. 

Tables 6.7 - 6.9 show t e circulation and average vorticity information for Regions 

IIIa-c from 3000 - 3300 s. It can be seen that onJy in Region IIIb is there mesocyclonic 

vertical vorticity by 3300 s. Both Regions Illa and IIIb make significant contributions to 

the circulation of Region ill while the high 0e parcels of Region Illa are not significant. 

The circulation in the other two regions remain relatively constant from 3120 - 3300 s, but 

the 3000 - 3120 s time period is when most of the circulation is generated. Circulation 

generation appears to occur slightly earlier for Region IIIb than for Region Illa. Because 

these areas are near a baroclinic zone, and because the circulation is generated when the 
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Figure 6.11: Region ill subcontour at: a) 3240 s, b) 3180 s, c) 3120 s, and d) 3060 s during 
Grid 1 simulation. 
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Figure 6.12: Same as Figure 6.11 , but at 3000 s. 
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Figure 6.13: Same as Figure 6.12, but showing a side view of the subcontour from the xz 
plane. 
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3300 2190.06 1278.35 -777.97 938192.69 0.0023343 
3288 2160.00 1446.21 -863.09 984954.19 0.0021930 
3276 2347.48 1625.18 -950.34 1008565.25 0.0023275 
3264 2395.82 1811.24 -1037.38 1009797.19 0.0023726 
3252 2339.82 2006.80 -1118.04 990178.44 0.0023630 
3240 2262.14 2206.50 -1198.18 952659.19 0.0023745 
3228 2276.88 2412.29 -1271.41 903265.88 0.0025207 
3216 2150.83 2621.19 -1332.82 842862.00 0.0025518 
3204 214S.87 2838.26 -1379.24 777442.50 0.0027640 
3192 2216.37 3059.23 -1410.23 707024.62 0.0031347 
3180 23 15.61 3288.02 -1423.22 636565.31 0.0036375 
3168 2416.12 3521.86 -1420.32 565680.75 0.0042710 
3156 2441.09 3763.07 -1399.76 496402.72 0.0049172 
3144 2387.49 4008.23 -1367.02 430782.88 0.0055417 
3132 2376.79 4263.82 -1322.13 368685.84 0.0064457 
3120 2217.05 4523.36 -1268.16 311389.66 0.0071182 
3108 1904.24 4801.26 -1217.28 259759.45 0.0073281 
3096 1746.24 5538.96 -1358.65 213330.80 0.0081797 
3084 1620.06 6811.78 -1675.66 172696.69 0.0093655 
3072 1330.22 8382.02 -2088.52 137132.36 0.0096620 
3060 1212.73 9967.59 -25 14.83 106728.60 0.0112583 
3048 1094.60 11222.95 -2778.05 81109.48 0.0132265 
3036 888.06 12753.28 -3136.00 60185.09 0.0140848 
3024 904.28 14699.39 -3586.84 42935.01 0.0187348 
3012 700.67 17132.15 -4173.63 28735.60 0.0177133 
3000 681.45 19454.51 -4758.25 17008.55 0.0167879 

Table 6. 7: Same as Table 6.1 , but for the Region IIIa subcontour over the time period 3000 
- 3300 s. 

subcontours have significant orientations perpendicular to the y-axis (i.e., they have tilt 

in the north/south direction), it is tempting to ascribe the origin of the circulation to the 

baroclinity term in the circulation equation. Yet it was found that the resolution of the 

material contour was insufficient to provide an adequate analysis of the circulation source 

terms. 

In Table 6.10 we display the large-scale stretching, tilting, and circulation tendency 

terms for subcontours Illa and IIIb. It can be seen how near 3000 s tilting is actually the 

greatest contribution to the average vertical vorticity of Region Illa; later, the circulation 
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3300 2721.33 -16.76 27.13 188560.41 0.0144321 
3288 2885.60 -32.83 21.82 261581.58 0.0110313 
3276 2986.21 -52.31 13.66 352148.88 0.0084800 
3264 2999.04 -71.87 3.27 459454.91 0.0065274 
3252 2963.58 -88 .84 -9.01 582159.88 0.0050907 
3240 2908.01 -102.61 -23.41 718635.00 0.0040466 
3228 2855.08 -113.87 -40.07 866611.38 0.0032945 
3216 2783.64 -122.95 -58.50 1023454.81 0.0027199 
3204 2704.58 -130.45 -78.90 1186154.38 0.0022801 
3192 2686.19 -136.03 -100.37 1352294.50 0.0019864 
3180 2487.30 -140.12 -123.15 1518727.25 0.0016378 
3168 2451.93 -142.89 -147.01 1682118.25 0.0014576 
31 ~6 2399.86 -144.13 -171.81 1840840.75 0.0013037 
3144 2258.19 -144.16 -197.65 1991640.62 0.0011338 
3132 2081.94 -142.74 -223.87 2133173.00 0.0009760 
3120 1916.48 -140.19 -251.16 2264995.50 0.0008461 
3108 1787.36 -136.27 -278.17 2384879.75 0.0007495 
3096 1618.73 -131.21 -305.51 2492819.75 0.0006494 
3084 1567.84 -124.83 -332.65 2589156.00 0.0006055 
3072 1367.62 -117.23 -359.68 2672649.75 0.0005117 
3060 1195.30 -108.45 -386.56 2744219.50 0.0004356 
3048 1133.68 -98.53 -413.25 2803574.25 0.0004044 
3036 660.51 -87.28 -439 .71 2851191.50 0.0002317 
3024 621.35 -74.75 -466.05 2887841.75 0.0002152 
3012 181.36 -61.02 -492.59 2913782.75 0.0000622 
3000 61.24 -46.19 -519.58 2929976.00 0.0000209 

Table 6.8: Same as Table 6.7, but for the Region IIIb subcontour. 
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3300 612.24 -388.50 293.41 335784.97 0.0018233 
3288 358.04 -447.15 295.47 393558.09 0.0009097 
3276 187.45 -487.07 297.40 450610.44 0.0004160 
3264 122.17 -514.16 298.04 506315.84 0.0002413 
3252 129.70 -534.29 296.79 559926.69 0.0002316 
3240 164.86 -551.42 293.05 610665.94 0.0002700 
3228 150.46 -566.95 287.38 657937.56 0.0002287 
3216 102.87 -580.68 280.79 701364.75 0.0001467 
3204 121.81 -593.40 272.90 740332.75 0.0001645 
3192 121.94 -605 .36 264.18 774840.56 0.0001574 
3180 91.63 -616.91 253.61 804380.50 0.0001139 
3168 94.95 -627.37 242.60 829220.06 0.0001145 
3156 85.10 -637.04 231.30 849458.62 0.0001002 
3144 85.08 -645.86 220.32 865709.06 0.0000983 
3132 81.09 -654.22 209.41 878180.12 0.0000923 
3120 75.31 -662.29 198.58 887284.81 0.0000849 
3108 82.07 -669.90 187.86 893496.44 0.0000919 
3096 66.18 -676.87 177.33 896936.00 0.0000738 
3084 60.29 -683.26 167.13 898295.75 0.0000671 
3072 54.00 -689.25 156.86 897735.62 0.0000602 
3060 59.22 -694.83 146.77 895686.19 0.0000661 
3048 61. 15 -699.80 137.05 892403.88 0.0000685 
3036 53.70 -704.04 127.71 888082.06 0.0000605 
3024 44.19 -707.64 118.77 883228.12 0.0000500 
3012 39.04 -710.63 110.15 877963.44 0.0000445 
3000 39.61 -713.20 101.80 872505.50 0.0000454 

Table 6.9: Same as Table 6.7, but for the Region Ille subcontour. 
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time Region ma Region IIIb 
tilting I stretching circ. tend. tilting I stretching I circ. tend. 

3294 0.00 0.09 0.03 0.00 3.47 -0.62 
3282 0.00 0.04 -0.16 0.00 2.42 -0.28 
3270 0.00 0.00 -0.04 0.00 1.66 -0.03 
3258 0.00 -0.04 0.05 0.00 1.15 0.06 
3246 0.00 -0.08 0.07 0.00 0.80 0.07 
3234 0.00 -0.11 -0.01 0.00 0.57 0.06 
3222 0.00 -0.15 0.1 2 0.00 0.42 0.06 
3210 0.00 -0.18 0.00 0.00 0.31 0.06 
3198 0.00 -0.23 -0.08 0.00 0.23 0.01 
3186 0.00 -0.30 -0.12 0.00 0.18 0.12 
3174 0.00 -0.39 -0.14 0.00 0.13 0.02 
3162 0.00 -0.50 -0.04 0.00 0.10 0.02 
3150 0.00 -0.62 0.10 0.00 0.08 0.06 
3138 0.00 -0.78 0.02 0.00 0.06 0.07 
3126 0.00 -0.95 0.39 0.00 0.05 0.06 
3114 0.00 -1.09 0.92 0.00 0.03 0.05 
3102 0.00 -1.27 0.56 0.00 0.03 0.06 
3090 0.00 -1.54 0.55 0.00 0.02 0.02 
3078 0.01 -1.82 1.58 0.00 0.01 0.06 
3066 0.02 -2.16 0.81 0.00 0.01 0.05 
3054 0.06 -2.74 1.05 0.00 0.01 0.02 
3042 0.15 -3.25 2.40 0.00 0.00 0.14 
3030 0.48 -4.14 -0.25 0.00 0.00 0.01 
3018 1.54 -4.56 3.90 0.00 0.00 0.13 

I 3006 3.96 -3.58 0.40 0.00 0.00 0.03 

Table 6.10: Same as Table 6.1, but for Regions ma and IIIb. 

tendency term is most important positive contribution. However, the expansion of the area 

of this circuit causes a general decrease in the average vorticity over time. For Region IIIb, 

there is significant contraction of the circuit near the end of the time period, resulting in the 

relatively high average vorticity. Tilting is of little significance for Region IIIb because this 

area remains near the surface. 
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6.8 Summary 

In this chapter we have found a way to represent the material derivative of vertical vortic-

ity on a discrete grid. Essentially the problem becomes that of performing a circulation 

analysis of an interpolated material contour normalized by the area of the curve. One con-

sequence of this procedure, however, is that the source of vertical vorticity for a grid cell 

is not necessarily traceable to a single trajectory, in particular the trajectory of the position 

assigned to the vertical vorticity of the grid cell by an interpolation procedure. 

A backwards trajectory analysis was performed on the region of maximum vorticity 

of Grid 1 in the baseline simulation at 3600 s. A square material contour of 200 points 

was used for this purpose. Three source regions of parcels were discovered; these regions 

advect as continuous curves but are connected by tendrils that undergo extreme contraction. 

One source region is of low-level, high Be to the east of the gust front; another consists of 

downdraft, low Be air. The third source region is found to be a combination parcels from 

the previous two source regions that has had time to diffuse and perform one revolution 

around the center of vorticity. 

The immediate source of the strongest low-level vorticity of the simulation is large-

scale stretching (material curve contraction) of parcels already present in the low-level 

mesocyclone; it is confirme that not only the streamlines but the trajectories curve cy-

clonically. The ultimate source of low-level vertical vorticity, however, appears to lie in the 

long, extended zones connecting the parcels from the two main source regions; this is not 

unexpected because within these zones lie the major Be gradients. These zones undergo ex-

treme contraction as the different Be air parcels rotate and combine near the mesocyclone. 

One region of circulation generation did appear in parcels from the downdraft source re-

gion. This would be consistent with the hypotheses of Davies-Jones and Brooks (1993) and 

Grasso and Cotton (1995) about the downdraft origin of the low-level vertical vorticity. 
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Past modeling studies using circuits of material contours to investigate the origins of 

low-level vorticity have found the presence of discrete source regions, in particular one 

located east of the storm featuring little vertical movement, and another northwest of the 

storm descending in the downdraft (Wicker and Wilhelmson 1995; Grasso 1996; Finley 

1997; Adlerman et al. 1999). It is suggested here that discrete source regions will result 

from backwards trajectory analyses of even a single grid cell, and that at least to some 

extent the source regions for parcels can be ' unfolded ' into a finite number of continuous 

curve segments with a common origin, which have since become intermixed by the rotation 

in the vortex. 

There has also been uncertainty expressed in the literature over the sources of near-

surface vorticity in trajectory analyses of parcels entering low-level vortices from the east, 

where there is little of the vertical movement that would be associated with tilting (Wicker 

and Wilhelmson 1995; Finley 1997). One possible explanation is offered here: the origin 

of the vertical vorticity of the low-level mesocyclone is not directly related to these parcels, 

but these parcels are seen to acquire vertical vorticity diffusively, either through explicit 

model diffusion or the mapping of the trajectories back onto an interpolated material curve. 

There was no evidence of significant circulation generation for any loop that rose to a height 

of 62 m from near the surface, except in close proximity to parcels from other regions . 
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Chapter 7 

SENSITIVITY STUDIES 

Here we perform a few sensitivity studies to learn more about influences on the evolution 

of the storm. 

7.1 Influence of LCL 

The observational studies of Rasmussen and Blanchard (1998) and Markowski et al. (2000) 

both imply that environments favorable for the generation of strongly negatively buoyant 

cold pools are not associated with tornadoes, even when they are associated with supercells. 

The most likely explanation is that the negative buoyancy resists the upward perturbation 

pressure gradient force that creates the convergence necessary for tornadogenesis. This 

assumes that the tornado is forced from above in a manner such as the DPE. Because our 

vortex is formed in an esse tially two-dimensional process, it might be expected that this 

sensitivity would not appear in our simulations. 

V..'e performed simulations to test the sensitivity of the vortex generation process to 

the lifting condensation level (LCL) of the initial sounding, which is the level at which 

a surface parcel appropriately determined becomes saturated upon adiabatic lifting in the 

environment. The objective was to test sensitivity to this parameter independently of the 

CAPE, which determines the energetics of the storm. As a way to nearly fulfill the desire, 
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we lowered the surface pressure of the sounding from the 990 mb of the basic simulation. 

The CAPE of a sounding is only a function of the LCL pressure, the temperature at the LCL 

pressure of the parcel, an the temperature profile of the environment above the LCL. In 

the special case where the potential temperature and mixing ratios are constant with height 

near the surface, none oft ese three factors are changed by lowering the surface pressure. 

However, the physical height of the LCL is lowered, and the wet bulb depression, which 

is related to the potential evaporative cooling of the low-level air mass, is decreased. The 

effect is the same as if one raised the level of the surface within the sounding. 

In our simulations the s unding is actually slightly unstable in potential temperature, 

and possesses a noticeable decrease in mixing ratio with height. Thus, simply lowering the 

surface pressure without changing the rest of our sounding would not be simply equivalent 

to raising the height of the ground, but would also change the characteristics of the surface 

parcel and the CAPE. Therefore, when we lowered the surface pressure we also truncated 

the lowest portion of the potential temperature and mixing ratio profiles up to a height given 

by 10 m 0. 9 mb. 

Figure 7 .1 shows a simulation where the surface pressure was lowered from the default 

990 mb to 950 mb. We can see the after 3600 s the surface vorticity is approximately the 

same as for the default simulation. If anything, the maximum vertical vorticity is slightly 

lower, though the temperature depression of the cold pool is in fact decreased. 

It was then realized that there is the question as to whether or not the wind field above 

40 x 10/ 0.9 = 444 m should also be truncated. We repeated the 950 mb experiment but 

this time also truncated the wind field (Figure 7.2). Now the maximum vertical vorticity 

barely reaches mesocyclonic strength (0.01 s- 1), and no closed vortex or pressure depres-

sion develops (Figure 7 .3 - note the change in vorticity contouring increment). 
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Figure 7.1: Potential temperature (thin contours) and vertical vorticity (thick contours) for 
950 mb simulation at 3600 s. Contour increments are 1 K for potential temperature and 
0.03 s-1 for vertical vorticity. 
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Figure 7 .2: Same as Figure 7 .1, but with the wind truncated as well. Contour increment for 
vertical vorticity is 0.005 s-1 . 
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Figure 7.3: Sarne as Figure 7.2, but showing perturbation pressure (dashed contours) in Pa. 
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To summarize, we find little sensitivity of vortex evolution to the temperature of the 

cold pool. To the extent that there is a sensitivity, it is not that suggested by Rasmussen and 

Blanchard (1998) and Markowski et al. (2000) - our strongest low-level vorticity occurs 

with the strongest cold pools, due to the enhanced convergence under those conditions (van 

den Reever 2001). These conclusions were anticipated because of the theorized nature of 

our vortices. However, it could still be argued that our failure to reproduce the suppression 

of vertical vorticity by negative vorticity is one of inadequate horizontal resolution with 

respect to the vertical resol tion. So a three-grid simulation was undertaken, with grid 

spacing on the finest grid down to 55m. 

7 .2 Three-grid Simulation 

The three-grid simulation co tained two nested grids both spawned at 3300 s. The second 

grid was identical to that in previous sections. The third grid had half the grid spacing as 

the second grid (55 m), and possessed 130 x 130 horizontal grid points. Note that for this 

domain size the vertical and horizontal grid spacings are nearly equal. 

The vortex now appears in great detail (Figure 7.4). It can be seen that the vortex has 

now receded well into the cold pool, but a core of warm air has been entrained into the vor-

tex. The vortex can be seen to possess concentrations of vorticity (Figure 7.5) reminiscent 

of the secondary vortices of Finley ( 1997). However, neither the maximum wind speed nor 

the central pressure deficit are much changed from the two grid simulation, suggesting that 

both of these are determined by the environment rather than the scale of the vortex (Figure 

7.6). 
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Figure 7.4: Grid-relative horizontal velocity vectors and potential temperature for Grid 3 at 
3600 sand 19 m. Contour increment is 1 K. Vector length is in m s- 1 
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Figure 7.5: Same as Figure 7.4, but showing vertical vorticity contoured every 0.05 s- 1 . 
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Figure 7 .6: Same as Figure 7.4, but showing grid-relative horizontal wind speed contoured 
every 5 m s- 1 (solid contours), and perturbation pressure contoured every 200 Pa (dashed 
contours). 
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7 .3 Tendencies to Convergence 

From the description of the evolution of the vortex and the theoretical arguments based 

on stretched vortex sheet dynamics and barotropic instability, there is certainly a strong 

indication that the vortex seen in these simulations, despite having vertical continuity in the 

subcloud layer, is not a manifestation of the dynamic pipe effect, but is essentially a two-

dimensional process having more in common with the vortex sheet breakdown modeled by 

Lee and Wilhelmsen (1997a) and observed in NST. Still, the rapidity of atmospheric and 

model adjustments to chang s in pressure can make it difficult to isolate cause-and-effect 

in the formation of these vortices - that is, does a rapid pressure drop induce the vortex, or 

does the vortex induce a rapi pressure drop? 

We will now attempt to quantify such a distinction. We first return to (2.21) in the 

following form: 

d I (: - 352 - 1)
2 [ <7VH] f)B d/ V •v) =-V -(0voV1r ) + 2 -2 VHw· oz + f)z + V •F, 

(7.1) 

which was formed by taking the divergence of the momentum equations. If we keep sepa-

rate the divergence of the horizontal momentum and the vertical momentum equations, we 

can derive two equations: 

d ow [ OVH] aw 2 a 81r' BB f)Fz - (-)=- VHW·- -(-) --(0vo-)+- + -=G1 
dt oz oz oz oz oz oz oz 

(7.2) 

d au av (: - 352 
- 1)

2 
[ OVH l 2 / --(-+-)= ------+ VHW·-- + 0voVH1r - V-FH =G2 

dt ox By 2 oz 
(7.3) 

We will refer to the G1 and G2 equations as the horizontal convergence and vertical 

divergence equations, respectively. The difference G1 - G2 gives (7.1). In an incompress-

ible model G1 and G2 must be made equal; if the momentum or buoyancy fields are such 
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that there is no equality, the perturbation Exner function 1r' must be assumed to change 

rapidly until the 1r' Poisson equation is satisfied. This process causes G1 and G2 to become 

equal. If this final common value is positive, both horizontal convergence and vertical di-

vergence are produced; a negative value indicates the production of horizontal divergence 

and vertical convergence. 

In the compressible model, if G1 and G2 are not equal, the acoustic equation, given 

approximately by (2.23): 

81r' c2 
- = --5 (V •v) at 0vo ' 

(7.4) 

is activated. For G1 > G2 there will be a negative tendency in 1r'. If the gradients of 1r' are 

specified at the boundaries, it can be expected that a local region of decreasing 1r' should 

be associated with a local region of both increasing vi1r' and 8 21r' / az2• Thus, whenever 

G1 > G2 we can expect G1 to decrease and G2 to increase and attempt to reach a common 

value (henceforth referred to as G), assuming that the other forcings stay constant. Because 

this is an acoustic process, the 1r' adjustment will occur rapidly. 

The formation of a significant vortex in the atmosphere requires the presence of suf-

ficient horizontal convergence to amplify vertical vorticity to large levels. So a necessary 

precursor to the formation of a vortex is the generation of horizontal convergence, which 

requires G > 0. The occurrence of G > 0 requires G1 > 0 and/or G2 > 0. Let us refer to 

the horizontal convergence generated when G1 > > G2 as vertically- forced convergence, 

and when G2 > > G1 as horizontally-forced convergence. Note that while convergence is 

being generated, the vertically-forced case is accompanied by a drop in pressure whereas 

the horizontally-forced case is accompanied by a drop in pressure. For the vertically-forced 

case, the immediate cause of the horizontal convergence is the increase in vi1r', probably 

associated with a decrease in 1r'; in the horizontally-forced case, the positive terms in G2 
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induce the horizontal convergence directly. An example of the latter is the convergence 

zone between two oppositely-surging cold pools, whose source is the convergence of mo-

mentum advection in the direction of the momentum; mathematically, the presence of {J in 

(7.3) induces a further increase in the horizontal convergence. 

Once significant convergence is generated, vertical vorticity can rapidly increase. Ver-

tical vorticity creates a negative tendency in G2, which tends to decrease both the pressure 

and the horizontal convergence. For the strongest vortices, the reduction in pressure by the 

vorticity may be enough to induce horizontal divergence and vertical convergence; this can 

be manifested as a dynamically-induced 'occlusion downdraft ' (Klemp and Rotunno 1983) 

or a two-celled vortex with subsidence in the center (Rotunno 1977). Because both (z and 

{J have tendency terms proportional to themselves times 6, the interaction between the two 

can become complicated, as evidenced by the sensitivity of vortex structure to changes in 

the circulation (Davies-Jones 1986; Lewellen 1993; Nolan and Farrell 1999). If a final 

steady-state is to be reached, not only the pressure tendency but the convergence tendency 

must become zero, through suitable adjustment of the pressure and dynamic terms in (7 .2) 

and (7.3). Indeed, in the case of an axisymmetric flow with no circulation, vertically-forced 

convergence will increase {Jin (7.3) to such an extent that the steady-state pressure near the 

surface along the axis will be increased, not decreased (Rotunno 1978). Nonetheless it 

remains true that the horizontal convergence present was generated by an instantaneous 

vertically-induced pressure deficit along the axis. 

We can speak of a vertically-forced vortex as one that is formed by vertically-forced 

convergence; a horizontally forced vortex is formed by horizontally-forced convergence. 

Thus a vertically-forced vortex is characterized by a reduction in pressure during the forma-

tion of horizontal convergence, a horizontally-forced vortex by an increase in pressure. In 

a vertically-forced vortex, the vorticity increase is in response to a decrease in the pressure; 
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in the horizontally-forced vortex, the decrease in pressure is in response to the vorticity 

increase. 

How does this relate to previous analytical models of tornado and vortex formation? In 

the dynamic pipe effect, the vortex at upper levels is vertically forced by an imposed body 

force, generally representing buoyancy. At progressively lower levels, the vortex is also 

vertically-forced, but through the 0v0821r' / az2 term. The non-OPE vortices of Trapp and 

Davies-Jones (1997) are also vertically-forced, but occur when buoyancy extends down to 

the surface, so that the influence of the 0v0 821r' / az2 term is not needed. 

The author is not aware of true horizontally-forced geophysical vortex analytical mod-

els in the literature. A number of numerical simulations of low-level mesocyclones display 

what have been termed 'occlusion downdrafts' (Klemp and Rotunno 1983), which are dy-

namically induced by strong rotation near the surface. This is a manifestation of the ver-

tical convergence/horizontal divergence associated with horizontally-forced vortices near 

the ground. In Klemp and Rotunno (1983) the strong horizontal convergence needed to 

generate the low-level mesocyclone is present along the gust front; during the formation of 

the occlusion downdraft, however, regions of positive w (and also 8w / az are replaced by 

regions of negative w. 

A related process is found in the numerous barotropic simulations of vortex axisym-

metrization, often representing hurricanes (Melander et al. 1987; Montgomery and Enag-

onio 1998; Kossin and Schubert 2001). Since these barotropic models conserve vertical 

vorti ity (other than by diffusion), the initial presence of the vertical vorticity is not explic-

itly modeled. However, two-dimensional processes can lead to the formation of a single 

concentrated vortex, as well as a sudden pressure drop (Kossin and Schubert 2001). The 

cause of the drop in pressure is the reduction of the V 2 term in (2.26); as previously men-

tioned, along a one-dimensional shear line ( z and V are equal, but within an axisyrnmetric 
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vortex with no radial motion, V is zero. The barotropic axisymmetrization case thus re-

sembles the horizontally-forced vortex in that its formation is due to processes within the 

horizontal plane, and that the drop in pressure follows the formation of the vortex. 

We may thus generalize our definition of a horizontally-forced vortex to include all 

vortices whose primary concentration process is not due to vertically-forced convergence; 

for all of these vortices the pressure decrease is a subsequent effect. 

7 .4 Pressure Forcing in Three-Grid Simulation 

If our hypothesis about the mechanism of vortex formation in these simulations is correct, 

then these vortices clearly are horizontally-forced according to the more general defini-

tion. The concentration of the vortex is due to a combination of axisymmetrization, which 

involves the loss of the 1) term, and the uniform plane convergence along the gust front, 

which exists long before vorticity begins to concentrate there. It was previously argued that 

convergence along the gust front is horizontally forced . To demonstrate this, suppose that 

the motion is purely in the x-direction, with velocity U at x = -t::..x/2 and -U at x = 

+t::..x/2. Let us also suppose that the velocity varies linearly for -t::..x/2 < x < +t::..x/2. 

In the absence of horizontal pressure gradient forces, the u-momentum equation within the 

interval is au I at = -u( au I ax); taking the divergence gives: 

a (au) (au) 2 

at ax = - ax (7.5) 

since ou/&x is constant. Since ou/ox is given by -2U / t::..x, we obtain 

a (au) 4U
2 

at ax = - t::..x2 ' 
(7.6) 

which acts to increase the convergence with time (i.e., the tendency on ou/ ox is negative). 

Mathematically, this term in the full horizontal convergence equation (7.3) is incorporated 
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into o and V ; physically, we simply have the result that two converging air streams will 

eventually increase the convergence between them. In the case of the model one of the 

convergent air streams is that created by the high pressure of the cold pool. 

Hmvever, we would still like to confirm that there is no vertically-forced convergence 

during the time that the vortex is concentrating and the pressure is dropping. To accomplish 

this we will now plot the G1 and G2 terms (other than the diffusion terms) for the finest 

grid of the three-grid simulation. We will examine the simulation at 3480 s, at which time 

the vortex at 19 m is concentrated but the pressure has not reached its minimum value yet 

(Figure 7. 7). However, this time is typical of the entire Grid 3 simulation period. It can be 

seen by comparing with Figure 7 .6 that the motion of the vortex is to the southeast. We 

would expect therefore to see a region of positive G1 - G2 to the southeast of the vortex. 

This is barely apparent in Figure 7.7, and not related at all to Figure 7.8, which shows G1. 

However, we can see a region of decreasing pressure to the southeast of the vortex in Figure 

7 .9, which plots -G2, although the region is not extensive. So at the lowest model level we 

have a horizontally-forced pressure drop according to the finite difference representation. 

The term containing the dot product of the horizontal w gradient with the vertical hor-

izontal velocity gradient in G1 will be referred to as the vertical shear term. It can be seen 

from (7.2) and (7.3) that this term contributes equally but oppositely to the horizontal con-

vergence forcing and the vertical divergence forcing. We can thus argue that the vertical 

shear term cannot be the ultimate source of either horizontal convergence or vertical diver-

gence. However, a negative value of the vertical shear term unequivocally causes G1 - G2 

to become more positive; thus a negative vertical shear term tends to decrease the pressure, 

but in manner neither characterizable as vertically-forced nor horizontally_-forced. One as-

pect of the presence of the vertical shear term is that differential vertical advection in the 
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presence of vertical wind shear of the horizontal velocity causes divergence in the horizon-

tal velocity and a low in the p essure field downshear of the region of maximum updraft- a 

non-linear version of the downshear low induced by convection. Another aspect of the ver-

tical shear term's presence is that differential horizontal advection of the vertical velocity 

causes divergence in the vertical velocity - which is also associated with low pressure. 

From Figure 7 .10 it is apparent that the vertical shear term is a major contributor to both 

G1 and G2. In order to determine whether or not the minimum in pressure is being forced 

vertically or horizontally, however, we should exclude the terms involving the vertical shear 

from G1 and G2. Figure 7.11 shows the sum of the remaining terms in G1 when G1 is 

positive, whereas Figure 7.12 shows the sum of the remaining terms in -G2 when -G2 is 

positive. (For either of these cases a positive value in the figure indicates a tendency towards 

lower pressure.) While in neither case are there very extensive areas of negative pressure 

forcing, it is seen that the negative pressure forcing in the vicinity of the vortex is associated 

with the terms in G2 . Thus we have evidence that the vortex contains a horizontally-forced 

pressure deficit at the surface. 

At 62 m above the surface, the magnitude of the pressure forcing G1 - G2 is approxi-

mately an order of magnitude greater (Figure 7.13; note increased contour interval). At this 

level, the vertical shear term is so dominant that G1 and -G2 are virtually indistinguishable 

(Figures 7.14 and 7.15). The significance of this unexpected result is not clear at present; it 

may indicate that the model does not have the re olution to reproduce the core of the vortex 

adequately, in contrast to the broad region of strong vertical shear in the horizontal velocity 

near the surface. However, it should be noted that Rotunno and Weisman (2000), examin-

ing basically the vertical integral of the G1 equation (7.2) for a simulation of propagating 

supercells, found that the vertical integral of a term associated with the vertical shear term 

(i.e., the v x ( term in the momentum equation) was more important in determining storm 
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propagation than the vertical integral of a term associated with ( 8w / 8z )2 (i.e., the gradient 

of the Bernoulli function term). Thus, Rotunno and Weisman found that the interaction be-

tween gradients in w and the vertical wind shear vector was most important in determining 

the pressure distribution, just as in this simulation. 

When the vertical shear term is excluded, the remainder of both G1 and -G2 produce 

regions of negative pressure tendency in the vicinity of the vortex, but the contribution from 

-G2 is greater (Figures 7.16 a9d 7.17). In any event, it is clear that the drop in pressure is 

not associated with a sudden increase in the horizontal convergence tendency, confirming 

the horizontally-forced nature f the vortex. 
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Chapter 8 

Summary and Future Work 

8.1 Summary 

It has been confirmed that modeled supercells can produce concentrated low-level vortices 

without the introduction of nested grids, though the introduction of nested grids does cause 

some concentration of tomadic features. There appear to be two distinct stages in the 

development of the modeled concentrated vortex. 

The first stage involves the generation of vertical vorticity along the forward-flank gust 

front. The picture is very similar to those of Davies-Jones and Brooks (1993) and Grasso 

and Cotton (1995) in that the vertical vorticity appears to be generated in the baroclinic 

region associated with a downdraft, and the strongest tilting of horizontal vorticity into the 

vertical is shown to occur in this region. A circulation trajectory analysis, however, was 

found to be unable to reveal a unique backward trajectory for the air parcel representing the 

maximum value of vertical vorticity. The baroclinic zone representing the earliest traceable 

source of vertical vorticity contracts to a region less than 6 m wide at the location of the 

maximum strength vortex, and as performed a complete revolution within the baroclinic 

zone. 

The second stage involves the collapse of the low-level vorticity band to a point, as best 

as can be resolved by the numerical model. The formation of these vortices can occur quite 
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rapidly, on a time scale of minutes, and is accompanied by a rapid decrease of pressure. 

A Fourier analysis of the components of the circulation budget revealed that the sudden 

concentration of the vorticity into a discrete vortex is not an axisymmetric process, but is 

related to the alignment of the axis of maximum radial inflow and the vorticity band. The 

radial inflow is associated with the convergent flow at the gust front and is predominantly 

planar. Under normal conditions these two axes would be perpendicular, and the horizontal 

vorticity flux would only be significant in a narrow region along the gust front. However, 

a counterclockwise rotation of a portion of the band of vorticity with respect to the axis of 

plane convergence allows the horizontal vorticity flux from a much more extended region 

to be converged to a point, the center of rotation of the vorticity band. 

The rotation of a portion the vorticity band against the plane convergence is best ex-

plained as a manifestation of barotropic instability for a finite-width vortex sheet, based 

on appearance and on consistency with theoretical predictions of length and time scale. In 

this respect the vortex appears similar to those that form along shear lines in studies of 

non-supercell tomadogenesis. One difference here is that the large-scale convergence asso-

ciated With the gust front allows the formation of discrete centers of vorticity concentration 

on time scales much smaller than those of purely two-dimensional barotropic instability, 

given an initial rotation of the vorticity band. Theoretical studies confirm the existence 

of this mode of vorticity collapse. Sensitivity studies indicate that the vertical momentum 

equation is secondary to the horizontal wind field in both initiating and determining the 

strength of the final vortex. 

8.2 Relation to Similar Supercell Studies 

In the study of van den Reever (2001), supercell simulations using RAMS were performed 

at 1 km resolution, but otherwise possessed nearly identical model parameters. The intent 
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of that study was to examine the sensitivity of the supercell evolution to mean hail diameter 

and other rnicrophysical parameters. A key result was that when the mean hail diameter 

was reduced, the maximum low-level vorticity increased. The cause was attributed to the 

greater evaporation and melting of the smaller diameter (3 mm) hail, in comparison to 

the larger diameter (2 cm) hail. The greater evaporation led to more negatively-buoyant 

downdrafts and greater convergence along the gust fronts, creating a faster exponential 

increase of low-level vertical vorticity. 

This framework is consistent with the low-level mesocyclone being horizontally-forced, 

as in the current study. As in this study, more negatively-buoyant cold pools were associ-

ated with stronger low-level vorticity, in contrast to the findings of the Markowski et al. 

(2000) observational study. The van den Reever study would suggest that the presence 

of large amounts of small hail could result in more rapid vortex development by the Neu 

mechanism. When there is little downdraft evaporative cooling, however, another mecha-

nism would be needed to explain tomadogenesis. 

8.3 Relation to Similar Vortex Studies -

Most models of tomadogenesis in the literature assume that the final concentration of the 

low-level mesocyclone into a tornado is vertically-induced, either by buoyant effects (Trapp 

and Davies-Jones 1997; Lee and Wilhelmson 1997b), or through OPE-induced dynamic 

pressure forces (Trapp and Davies-Jones 1997). The Markowski et al. (2000) and Ras-

mussen and Blanchard (1998) observational studies also suggest that tomadogenesis is 

vertically-forced. 

The closest model of tomadogenesis that is not vertically-induced in the literature ap-

pears to be that used to explain the misocyclones of Lee and Wilhelmson (1997a). These 
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vortices form by barotropic pooling of vorticity; subsequent vertically-induced conver-

gence created by moist convection converts the misocyclones into tornadoes. In the current 

study, however, convergence and vertical vorticity generated by the gust front permit a more 

rapid vortex development, as well as a stronger vortex, than for the misocyclones. 

The strong vortices of Grasso (1996) and Finley (1997), which developed in horizontally-

heterogeneous environments, were seen to appear first at the surface before being advected 

to higher levels. This suggests that these vortices are also horizontally-forced. The vor-

tices of Grasso and Cotton (1995) and Wicker and Wilhelmsen (1995), also stronger than 

the vortex of this study, developed in horizontally-homogeneous environments. For these 

latter two studies, it was suggested that vertical forcing generated the intense vortices . 

The necessary conditions for generating the vortex of this study would seem to be quite 

common in supercells (e.g., strong plane convergence, baroclinic generation of horizontal 

vorticity), and there doe not appear to be any reason that an actual gust-front supercell 

tornado could not form by this mechanism. However, we have argued that the maximum 

vortex intensity achievable by this mechanism is not sufficient to account for the strength 

of powerful supercell tornadoes. 

There would appear to be at least four explanations for this discrepancy. One is that the 

mechanism modeled here has nothing to do with the formation of major supercell torna-

does. Certainly if tornadoes with descending TVSs are associated with the dynamic pipe 

effect (Trapp et al. 1999) t en this first explanation would be the case. Tornadoes with non-

descending TVSs tend to form rapidly over their entire depth. Both the vertically-forced 

non-DPE vortices of Trapp and Davies-Jones (1997) and the vortices of this study involve 

the existence of convergence prior to vortex intensification; hence both can intensify vor-

tices rapidly along a vertical depth. Therefore, vortices formed by the Neu mechanism may 

plausibly account for some non-descending TVS weak tornadoes. 
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A second explanation is that some mechanism such as a near-surface vortex jump 

(Fiedler and Rotunno 1986; Lewellen 1993; Nolan and Farrell 1999) can intensify the 

maximum wind speeds of these vortices. It is not clear, however, how this mechanism 

would operate when the vortex is not vertically forced . Its simulation would also require 

the incorporation of at least surface drag, and possibly a full no-slip boundary condition. 

A third explanation is that a strong vortex can be generated by the Neu mechanism if 

the vortex can interact with the storm buoyancy or updrafts so that there is some vertically-

forced convergence. The resultant vortex would be even more compact, with higher tangen-

tial wind speeds. The climatological studies would suggest that vertical forcing is indeed 

strongly related to tomadogenesis. Furthermore, the Grasso and Cotton (1995) vortex was 

associated with very strong updrafts near cloud base (over 40 m s- 1 ), and the two main 

vortices of Wicker and Wilhelmson (1995) were associated with updraft pulses. However, 

the Grasso and Cotton (1995) vortex was no smaller in scale than the vortex in this study. 

Thus, if the vertical forcing is the missing factor for producing a stronger vortex, the rea-

son would have more to do with the amount of circulation converged, rather than with the 

amount of convergence of the same amount of circulation. 

A fourth explanation, which is not necessarily exclusive of the third, is that the mesoscale, 

or even synoptic scale, meteorological fields create large-scale convergence and vorticity 

fields , and that these fields can serve to concentrate large amounts of circulation on a super-

cell. This would explain the intensity of the strongest Grasso (1996) vonex, which formed 

near a dryline, and appeared to be horizontally-forced. It would also be consistent with 

the Markowksi et al. (1998) climatological study, which found that a preponderance of 

tornadoes in the VORTEX field project were in close proximity to surface boundaries. 

One problem with relating these Neu-like vortices to observed tomadogenesis is that 

a number of observational studies have emphasized that natural occlusion downdrafts are 
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--.:::::, 
observed prior to torna ogenesis (Lemon and Doswell 1979; Rasmussen and Straka 1996; 

Wakimoto et al. 1998; Markowski et al. 2000). If the vortex in this simulation is consid-

ered a representation of a tornado, then the occlusion downdraft follows tornadogenesis. 

This behavior has been found in other numerical simulations as well that have resolved 

the low-level mesocyclone but not a tornadic vortex (Klemp and Rotunno 1983). Perhaps, 

then, these Neu-like vo ices are most related to intense low-level mesocyclones, which 

indirectly lead to tornadogenesis by inducing an occluding downdraft that further concen-

trates vorticity along its perimeter (Wakimoto and Liu 1998). In fact, because the edge of 

the occluding downdraft should be characterized by strong convergence and a thin ring of 

vorticity, it may be speculated that a Neu-like process may be important on the scale of the 

occlusion downdraft perimeter, leading to the formation of the actual tornado. 

To summarize: the proposed vortexgenesis process in this study may be relevant to 

supercell tornadoes, but the formation of a vortex with strong tangential winds requires in 

addition some combination of the following: vertically-forced convergence interacting with 

the vortex, mesoscale convergence of circulation into the storm, strong radial convergence 

associated with the no-slip lower boundary condition, or a secondary Neu-like process that 

breaks down the vortex ring on the perimeter of the occlusion downdraft. 

8.4 Future Work 

There is still a lot more work to be accomplished here. The apparent LCL sensitivity 

of observed tornadoes is an encouraging lead to the tornado forecasting problem, but the 

proposed physical explanation is still in need of support by modeling studies that explicitly 

incorporate a realistic supercell. It is suggested that a vertically-forced vortex would be 

needed to reproduce this effect in a simulation. Thermodynamic sensitivity tests would 
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thus have to be performed with simulations such as Wicker and Wilhelmson (1995) and 

Grasso and Cotton (1995) where the importance of vertical forcing can be demonstrated. 

Of course, the ultimate dream of the mesoscale tornado modeler is to be able to contain 

an entire supercell and its environment within the grid domain, and simultaneously capture 

the development of a tornado-scale vortex from the low-level mesocyclone. Because the 

scales involve range from hundreds of kilometers to a hundredth of a kilometer, the com-

puting challenge is prohibitive at this time. Any tornadic studies will have to involve some 

plausible idealization of the environment and concentrate on establishing the feasibility of 

proposed tornadogenesis processes. 

The sensitivity of surface drag is another influence that needs to be explored, but one 

that has proven difficult to address in a mesoscale model. It is possible that a simple predic-

tive turbulent scheme would be needed to address this question adequately. One first-order 

effect that could be explored by RAMS model simulations would be the difference in near-

surface vertical momentum fluxes between the cold pool and the surrounding environment, 

due to thermal stability. This effect makes the low-level momentum field of the cold pool 

quite different than what would be expected in the inflow. 

Finally, heterogeneity in the model environment should be used to address the origins 

of the strongest tornadic vortices, in particular the incorporation of mesoscale or synoptic 

scale boundaries. The first step should be to use an idealized heterogeneous environment, 

such as a frontal region. The amount of circulation that can be concentrated by such an 

environment should be investigated. The use of horizontally- heterogeneous environments 

also permits the incorporation of temporal variability into the simulation, which may be 

important to the sudden development of low-level mesocyclones and tornadoes. 
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Appendix A 

Divergence Tendency Using 1r and 0v 

The cnntinuity equation in terms of the mass of the fluid is given by (e.g., Holton 1992): 

so 

1 dp --+ V · v = 0. 
p dt 

d - V · v = - (In p) . 
dt 

(A. 1) 

(A.2) 

From the ideal gas law p = p/ RTv, so ln p = lnp - In R - In Tv, and differentiating 

gives dlnp = dinp - d in Tv . We can eliminate dlnp in favor of dln1r through the 

defini:ion 7r = cp(P/Pol/cp : 

R 
din rr = -dlnp. (A.3) 

Cp 

A:so, 0v can be substituted for Tv by using 1r0v = CpTv: 

d In 0v + d In rr = d In Tv (A.4) 

Thus, substituting into the ideal gas law gives: 

d In p = d In rr - ( d In 0v + d In rr) = d In 1r - d In 0v (A.5) 

since I cP - R)/ R = cv/ R. So, finally, we obtain 

_ V . v = Cv d In 7r _ d In 0v . 
R dt dt 

(A.6) 
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AppendixB 

Poisson Equation in Rotation-Invariant Form 

The incompressible 1r' Poisson equation is given by (2.24): 

v' . (0vo v'1r' ) = - (8u)2 
- (ov)2 

- (ow)2 
- 2 [av OU+ ow OU+ ow av] 

ox oy oz ax oy ax oz oy oz 

oB 
+ - + v' -F oz 

Consider the u and v terms in (2.24): 

. ou ov ovou ( )2 ( )2 
honz. terms = - ox - oy - 2 ox oy , 

(B.1) 

(B.2) 

which are derived from the divergence of the horizontal momentum equations. Using the 

definitions (z = (ov/ox - ou/oy), H = (ov/ox + &u./oy) , 7 = (ou/ox - ov/oy), and 

b = (ou/ox + ov/oy), we can rewrite each term in (B.2) as: 

. ( b + 7" 2 
( b - 7) 2 

( H - (z ) ( H + (z) honz. terms = - -
2
- ) - -

2
- - 2 

2 2 
, (B.3) 

or 

. 262 + 272 + 2H 2 - 2( 2 62 + 7 2 + H 2 - ( 2 
honz. terms = -

4 
z = -

2 
z . (B.4) 

The quantity 7 2 + H 2 is the square of the deformation, V 2. Since 6, (z, and the divergence 

of the two-dimensional momentum equations are all invariant to rotation in the xy plane, 

so must be V 2• 
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Finally, if the fluid is incompressible, then the term - (8w/8z) 2 must be equivalent to 

o2• Combining this term with the two-dimensional terms in (B.l) yields: 

I (; - 3o2 
- 7)

2 
[ fJvH l 8 B V- (0vo V 1r)= ---- -2 VHw ·- +-+ V •F. 

2 fJz fJz 
(B .5) 
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