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ABSTRACT 
 

 

 

AUTONOMOUS LOW-COST OZONE SENSORS: DEVELOPMENT, CALIBRATION, AND 

APPLICATION TO STUDY EXPOSURE AND SPATIAL GRADIENTS 
 
 
 

Ozone (O3), a criteria pollutant and atmospheric oxidant, is not routinely measured in rural 

and remote environments and hence exposure to ozone pollution in these regions remains poorly 

understood. In this work, we built, calibrated, and deployed five low-cost, autonomous ozone 

sensor systems (called MOOS) in Northern Colorado, a region that is non-compliant for O3 during 

the summertime. Each MOOS included the following components: (i) an Aeroqual SM50, a heated 

metal oxide ozone sensor, mounted inside a custom sensor housing, (ii) a power system that 

consisted of a 30 W solar panel, 108 Wh lithium-ion battery, and charge controller, (iii) a Particle 

Boron to acquire, process, and transmit data to the Cloud, and (iv) an environmental sensor to 

measure temperature, relative humidity, and pressure. In a three-week long collocated study, we 

found that all MOOS, calibrated using 48 hours of reference data, compared well against reference 

monitors with a measurement error between 4-6 parts per billion by volume (ppbv). Manufacturer- 

and laboratory-based calibrations over- and under-estimated ozone levels at higher and lower 

ozone mixing ratios, respectively. When deployed in Northern Colorado for an additional three 

weeks to measure O3 exposure and study O3 trends across an urban-rural gradient, we found that 

the MOOS, calibrated using data from the collocated study and calibrated using 48 hours of 

reference data in the field, demonstrated good sensor performance (RMSE of 3.98 - 8.80 ppbv and 

MBE of 0.22 - 3.82 ppbv). Compared to the collocated study, the field study resulted in larger 

measurement errors for all five MOOS (RMSE of 3.66 - 4.00 versus RMSE of 3.98 - 8.80). 

Furthermore, there was modest variability in the field performance across the different MOOS 
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(RMSE < 5 ppbv) that could not be explained by environmental differences between the different 

sites (e.g., proximity of the MOOS to the reference monitor, land use type, temperature). We found 

that MOOS were able to capture 100% of non-compliant O3 days during the collocated study and 

between 25-87% of non-compliant O3 days during the field study depending on the calibration 

approach used. Furthermore, both reference monitors and MOOS deployed along the east-west 

corridor in Northern Colorado were able to capture the negative, west-east O3 gradients observed 

in previous aircraft and modeling studies. Overall, our study indicates that the MOOS shows 

promise as a low-cost O3 sensor that could be used to supplement routine ambient monitoring and 

characterize regional ozone pollution. 
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CHAPTER 1: INTRODUCTION 
 

 

 

1.1 Overview of Ozone Chemistry 

Ozone (O3) is a molecule formed by the reaction of free oxygen (O) and molecular oxygen 

(O2) and it exists in both the stratosphere and troposphere. While stratospheric O3 is formed 

naturally and plays an important role in blocking ultraviolet radiation, tropospheric O3 is heavily 

influenced by anthropogenic activity and is a toxic criteria pollutant. O3 is a highly reactive 

oxidizing gas and will react with most chemical constituents, including biological tissue. Acute 

exposure to O3 at concentrations >80 parts per billion by volume (ppbv) damages the epithelium 

of the respiratory tract, causing irritation and inflammation of the tissue and has been correlated 

with epidemiological events such as higher hospital admissions (Lippmann and Schlesinger, 2000; 

Iriti and Faoro, 2007). Individuals with existing respiratory conditions and those working or 

recreating outside with higher heart rate have also been shown to have acute and chronic O3 

symptoms exacerbated (Lin et al., 2008). Overall, O3 is estimated to be responsible for a global 

mortality burden of 1.23 million deaths, with many lower income areas being disproportionately 

affected by O3 pollution (Malley et al., 2017).  

The free oxygen (O) needed for O3 formation is produced via photolysis of nitrogen dioxide 

(NO2) into nitric oxide (NO) (collectively NO + NO2 = NOX). NO2 is regenerated from NO through 

the photooxidation of methane (CH4), carbon monoxide (CO), and volatile organic compounds 

(VOCs) (Jacob, 1999). O3 production requires NOX as a method for free oxygen production, CH4, 

CO, and VOCs to enable NO2 regeneration, and sunlight for NO2 photolysis. Anthropogenic 

sources such as power generation, oil and gas (O&G) extraction, traffic, and agriculture emit VOC 

and NOX as O3 precursors. In areas with high anthropogenic emissions of O3 precursors, high 

https://paperpile.com/c/5iTbQk/cPVFL+CEmHn
https://paperpile.com/c/5iTbQk/cPVFL+CEmHn
https://paperpile.com/c/5iTbQk/Uq03G
https://paperpile.com/c/5iTbQk/FsXP
https://paperpile.com/c/5iTbQk/hZDo
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available sunlight needed for photochemical reactions to take place, and meteorological 

phenomena causing the stagnation of O3 or high concentrations of precursors, O3 mixing ratios can 

frequently exceed safe levels (>70 ppbv as per National Ambient Air Quality Standards (NAAQS)) 

and spike to greater than 100 ppbv (Simon et al., 2015). Anthropogenic sources in urban centers 

are responsible for emitting large quantities of O3 precursors and have been the primary target of 

legislation to reduce precursor emissions and therefore O3 production. While legislation and 

regulation informed by these monitoring efforts have helped to reduce O3 pollution in many US 

urban areas (EPA, 2015), O3 pollution continues to be a pressing public health problem in areas 

with ideal conditions for O3 formation and numerous and varied precursor sources.  

 

1.2 Ozone Pollution in the Western United States 

All metropolitan areas in the United States impacted by O3 pollution have implemented 

dedicated monitoring efforts to inform air quality advisories and protect populated areas from acute 

O3 exposure. A major criterion for designating O3 monitoring efforts in the US is the nearby 

metropolitan population. O3 monitoring efforts in sparsely populated areas are dependent on state 

and community initiatives and many rural communities impacted by O3 may not have access to 

real time O3 data. Transported O3 precursors from both domestic sources and Asia are 

predominantly responsible for baseline rural O3 in the United States (Cooper et al., 2012), with 

local O3 precursors emissions potentially enhancing rural O3 above baseline levels (Carter and 

Seinfeld, 2012; Jaffe et al., 2013). O&G extraction is a well-documented source of local O3 

precursors including CO, CH4, NOX, and VOCs, and plays an important role in rural O3 pollution. 

As an example, O&G activity in the Uintah basin in Utah has caused winter O3 pollution to 

frequently exceed NAAQS during winter, despite the area's isolation from metropolitan activity 

https://paperpile.com/c/5iTbQk/KZRyo
https://paperpile.com/c/5iTbQk/AHXXL
https://paperpile.com/c/5iTbQk/aF3Na
https://paperpile.com/c/5iTbQk/FIRZm+i85FO
https://paperpile.com/c/5iTbQk/FIRZm+i85FO
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(Edwards et al., 2014). High wintertime O3 has been observed in many other basin areas where 

inversion layers, high snow albedo, and VOC emissions from O&G lead to high O3 (Field et al., 

2015). In the Colorado Front Range, VOC emissions from O&G have been demonstrated to 

enhance O3 mixing ratios (L. C. Cheadle et al., 2017), and similar studies have suggested that 

O&G extraction can increase O3 roughly 10 ppbv above baseline levels (Rodriguez, Barna and 

Moore, 2009). Rapid proliferation of O&G extraction efforts across the United States, increased 

prevalence of summertime wildfires, and transport of O3 and precursors from urban areas all 

provide mechanisms to enhance rural O3 and necessitate the development of dedicated monitoring 

solutions to provide real time O3 information to impacted communities. As the primary criteria for 

designating dedicated O3 monitoring efforts in the United States is population, a lack of dedicated 

O3 monitors in rural areas puts these communities at risk of exposure to high O3 pollution (ECFR 

:: 40 CFR part 58 -- ambient air quality surveillance).  

In addition to informing air quality advisories and regulation, dedicated O3 monitoring can 

better quantify the acute and long-term impact of O3 pollution. Epidemiological studies informed 

by ground-based, modeled, and satellite O3 data have been used to assess the impact of O3 on 

human health (West et al., 2006; Liu et al., 2018). To illustrate the importance of O3 monitoring 

outside of urban areas we will focus on an overview of studies in O&G adjacent regions in the 

Western United States. The Wyoming Department of Health’s implementation of dedicated O3 

monitors in the sparsely populated Sublette County was able to link O&G-influenced wintertime 

time O3 events exceeding NAAQS standards to a 3% increase in respiratory hospital admissions 

over a period of roughly 10 years (Pride et al., 2015). In many areas with enhanced O3 adjacent to 

O&G extraction, such as Sublette County, real time monitoring represents the most robust method 

of assessing local O3 pollution and public health outcomes. Research efforts attempting to 

https://paperpile.com/c/5iTbQk/N3oQL
https://paperpile.com/c/5iTbQk/X5NPL
https://paperpile.com/c/5iTbQk/X5NPL
https://paperpile.com/c/5iTbQk/2s8Hr
https://paperpile.com/c/5iTbQk/Fl3g
https://paperpile.com/c/5iTbQk/Fl3g
https://paperpile.com/c/5iTbQk/KJC3J
https://paperpile.com/c/5iTbQk/KJC3J
https://paperpile.com/c/5iTbQk/D1hf+7fHJ
https://paperpile.com/c/5iTbQk/EGPYE
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characterize O3 at other O&G adjacent regions such as Uintah Basin, Utah, and the Colorado Front 

Range have demonstrated that modeling and satellite imaging of ground-level O3 pollution 

exposure is extremely difficult to perform due the unique meteorology of these areas and diverse 

precursor sources (Neemann et al., 2015; Sullivan et al., 2016; Flocke et al., 2020). In the Uintah 

Basin study, modeled variation from snow albedo alone varied O3 estimates by up to ~20 ppbv. In 

the Colorado Front Range, strong O3 precursor point sources such as power plants, NOX and VOC 

emissions from traffic, and meteorological transport of emissions from wildfires, O&G, and 

agriculture make quantifying ground level O3 via modeling difficult. Likewise, quantifying O3 

using satellites requires O3 data from in-situ monitors due the complexity of vertical O3 

distributions. 

 

1.3 Motivations for Low-Cost Ozone Sensing  

Although the Western United States represents a small subset of O3 impacted regions, there 

are several key trends that are demonstrated by this region: 1) anthropogenic activity in rural areas 

can lead to unsafe O3 pollution despite isolation from metropolitan areas; 2) developing dedicated 

monitoring solutions in sparsely populated areas can enable air quality advisories and 

epidemiological studies (Pride et al., 2015; red, 2019); and 3) modeling and satellite approaches 

cannot estimate O3 with sufficient accuracy or spatial resolution to act as tools for air quality 

advisories. Oftentimes global epidemiological studies have relied on modeled and satellite based 

O3 data, which attribute a large portion of the global O3 mortality burden to underserved lower 

income regions (Malley et al., 2017). As an example, rapid industrialization in China led to 

extreme O3 pollution which remained unmonitored until the development of a national monitoring 

network in 2013 (Lu et al., 2018), with existing monitoring efforts still falling short compared to 

https://paperpile.com/c/5iTbQk/M3VY3+ZhGUs+26n5
https://paperpile.com/c/5iTbQk/sBc2A+EGPYE
https://paperpile.com/c/5iTbQk/FsXP
https://paperpile.com/c/5iTbQk/HXCIi
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Europe, America, Japan, and Korea as recently as 2018 (Gaudel et al., 2018). Epidemiological 

studies informed from model and satellite O3 estimates may not be able to accurately capture O3 

exposure, especially in regions with complex precursor emissions and meteorology. The 

substantial cost (>USD 10,000), power (>500 W), and operational constraints (operator training, 

dedicated computer interface, and air-conditioned facility) of reference analyzers makes deploying 

these instruments in rural and underdeveloped communities both logistically impractical and 

fiscally prohibitive. In contrast to reference analyzers, low-cost O3 sensors are characterized by 

their affordability (< USD 100), small form factor, and low power consumption (<10 W); these 

qualities allow for low-cost O3 sensors to be readily integrated into autonomous sensor systems 

and provide real time pollution information in regions that lack the capital or infrastructure to 

implement reference monitoring (Piedrahita et al., 2014). In addition to supporting disadvantaged 

communities, low-cost O3 sensor integration into research efforts can enable researchers to study 

pollution at higher spatiotemporal scales, provide in-situ data to validate model and satellite 

estimates, and better understand the relationship between O3 and health outcomes through higher 

spatial density and personal monitoring (Snyder et al., 2013).  

 

1.4 Calibration of  Low-Cost Ozone Sensors 

The cost, power, and form factor benefits of low-cost O3 sensing come at the cost of 

measurement reliability; environmental variables impact low-cost sensor performance and the 

development of robust low-cost O3 sensors represents a major hurdle in integrating these sensors 

into epidemiological and modeling efforts as in-situ monitors. Low-cost O3 sensors typically rely 

on either a metal oxide or electrochemical sensing element, with metal oxide semiconductor 

(MOS) sensors being predominantly used in ambient air monitoring efforts due to their reduced 

https://paperpile.com/c/5iTbQk/ZR3zr
https://paperpile.com/c/5iTbQk/InYc1
https://paperpile.com/c/5iTbQk/Otfu0
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sensitivity to NO2 interference (Idrees and Zheng, 2020). In MOS sensors the semiconductor is 

heated to increase binding affinity with O3, which results in a sharing of electrons between the 

MOS surface and reacting gas. This binding generates an electrical signal that is proportional to 

the O3 concentration (Zhang et al., 2017). Although the operating principle of these sensors is 

relatively simple, variation in MOS manufacturing and MOS sensitivity to interferants including 

temperature, relative humidity, and interfering gases introduces challenges in developing reliable 

low cost O3 sensors (Peterson et al., 2017). Innate variation in the MOS can induce measurement 

variation across “identical” sensors, humidity can alter the conductance of the MOS, ambient 

temperature fluctuation can influence MOS heating, and non-target gas species can bind to the 

MOS surface, inhibiting binding with O3 and leading to fouling of the sensor element over time.  

To mitigate the impact of these variables on MOS sensor performance, both low-cost O3 

sensor manufacturers and end-users have worked to develop more reliable sensor hardware and 

analytical methods to correct for interferants. However, the efficacy and consistency of these 

efforts to correct low-cost O3 sensors varies significantly across sensor manufacturers and studies 

and attempting to standardize low-cost O3 sensing efforts remains a very difficult endeavor. The 

vast majority of manufacturers apply proprietary, or “black box,” calibrations, meaning that 

replicating or comparing manufacturer efforts is extremely difficult (Karagulian et al., 2019). 

Likewise, research efforts to develop calibrations vary by site location, sensor choice, and 

calibration methodology; however, there are a number of key trends that are consistent across low-

cost sensor validation studies. Many low-cost O3 sensors perform poorly out of the box and require 

researchers to develop their own calibrations to more accurately estimate O3 pollution (Isiugo et 

al., 2018; Masey et al., 2018). These calibration approaches for low-cost O3 sensors typically 

involve the use of univariate linear regression, multivariate linear regression, and machine learning 

https://paperpile.com/c/5iTbQk/szl0p
https://paperpile.com/c/5iTbQk/TM0tt
https://paperpile.com/c/5iTbQk/iLybj
https://paperpile.com/c/5iTbQk/FHh8
https://paperpile.com/c/5iTbQk/mOeDp+rc9Mt
https://paperpile.com/c/5iTbQk/mOeDp+rc9Mt
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approaches to correct low-cost O3 sensor mixing ratio estimates against measurements from 

collocated reference monitors (Karagulian et al., 2019). Multivariate calibration approaches 

incorporate multiple explanatory variables to develop fixed correction factors for known 

interferants. Machine learning approaches correct for interferants by iteratively training a 

calibration algorithm using a portion of a dataset and then applying the calibration algorithm to 

uncorrected data. Multivariate and machine learning approaches typically demonstrate greater 

efficacy than univariate approaches due to their ability to correct for interfering factors and in the 

case of machine learning, sensor drift and sensor stability (Spinelle et al., 2015; Zimmerman et 

al., 2018; Sayahi et al., 2020). Research has demonstrated that purely laboratory-based approaches 

to calibrating low-cost O3 sensors are insufficient, as variation in ambient air conditions, 

interfering factors, and sensor fouling cannot be simulated in a laboratory environment (Karagulian 

et al., 2019). Likewise, collocated field calibrations can be ineffective if the final deployment 

region's climatology is not consistent with the initial test site (Schmitz et al., 2021). As low-cost 

sensors are intended to be deployed in a range of rural and urban settings with unpredictable 

ambient conditions, it is critical to understand how these sensors perform in real world 

environments.  

In addition to the low material costs that qualify a “low-cost sensor,” the personnel, 

computational, and logistical costs of implementing these sensors in research and monitoring 

efforts are important when considering the application of these sensors in air quality research and 

citizen scientist initiatives. Frequently re-calibrating low-cost sensors in a field setting or 

incorporating longer duration calibrations periods will increase the reliability of calibrated low-

cost sensors. However, these more robust calibration approaches are impractical due to potential 

infrastructure constraints, personnel costs, and equipment needed to perform multiple field 

https://paperpile.com/c/5iTbQk/FHh8
https://paperpile.com/c/5iTbQk/MT9Vc+Hwzf+WniD
https://paperpile.com/c/5iTbQk/MT9Vc+Hwzf+WniD
https://paperpile.com/c/5iTbQk/FHh8
https://paperpile.com/c/5iTbQk/FHh8
https://paperpile.com/c/5iTbQk/QoncW
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calibrations, especially in remote field sites. Developing calibration methodologies that can be 

realistically implemented into large-scale sensor networks and citizen scientist initiatives 

represents an important objective in low-cost air quality monitoring. As such, the goal of our study 

is to determine the efficacy of several realistic calibration and engineering approaches for 

correcting the performance of low-cost O3 sensors in the field. 

In this work, we describe the development of a low-cost O3 sensor system (MOOS) to 

evaluate the performance of the Aeroqual SM50 O3 sensor and assess the efficacy of several 

practical calibration approaches to estimate O3 mixing ratios. We deployed five MOOS in a 

collocated study and at field sites across Northern Colorado in order to evaluate MOOS mixing 

ratio estimates against collocated reference monitors and study spatial ozone trends. Overall, the 

MOOS demonstrated efficacy at estimating O3 pollution and NAAQS compliance, with the sensor 

network also capturing relevant spatial O3 trends. 
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CHAPTER 2: METHODS 
 
 
 

In this work, we developed and evaluated an autonomous, low-cost sensor system called 

the Metal Oxide O3 Sensor (MOOS) to measure ground-level O3 concentrations. In the sections 

below, we discuss the MOOS construction (Section 2.1), deployment (Section 2.3), and calibration 

approaches (Section 2.4). The reference measurements used for calibration and evaluation are 

described in Section 2.2.  

 

2.1 Metal Oxide Ozone Sensor (MOOS) 

 

Figure 1: Multi-panel figure that shows the MOOS electrical schematic and 3D cad drawing of 

the sensor housing. Components include: (a) Renogy Wander Charge Controller, (b) 108 W-hr 

LiFePo Battery, (c) Sensor housing Mounting Bracket, (d) 3D Printed Sensor housing, (e) Ambient 

Air Sampling Fan, (f) Fan Mount, (g) Ventilation Fan, (h) PTFE Sampling Tube, (i) Aeroqual 

SM50, (j) LTE Antenna, (k) Particle Boron, and (l) BME 280. 
 

BORON

LTE

B
M
E

(i)

(a)

(b)

(c)

(d)

(e)

(f)
(g)

(h)
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A diagram of the MOOS component details is shown in Figure 1 and photos of the system 

are shown in Figure S1. The primary components within the MOOS, their features, and 

approximate weights and costs are listed in Table S1. The primary sensor used to measure O3 is 

the SM50, a MOS sensor manufactured by Aeroqual (New Zealand). This sensor demonstrated 

the best performance across comparably priced low-cost O3 sensors evaluated by the South Coast 

Air Quality Management District and has demonstrated efficacy when implemented in O3 

monitoring efforts (Polidori, Papapostolou and Zhang, 2016; SQAMD). The SM50 was integrated 

into a sensor housing (described later) but all other components were placed in a sealed 

polycarbonate box (WQ-57; Polycase, OH), which was mounted on an extruded aluminum frame 

(25-4115; 80/20, IN) and clamped to an aluminum rod connected to a tripod. For all deployments, 

the tripod was secured with guywires. A 30 W solar panel (Renogy; RNG International, CA) was 

used as the primary source of power. The polycarbonate box housed a charge controller (Wanderer; 

RNG International, CA) to manage voltage and power flows between the power producing (solar 

panel, battery) and consuming (O3 sensor, environmental sensor, IoT, and battery) components, a 

microcontroller with cellular connectivity board (Boron; Particle Inc., CA) to perform data 

acquisition, real-time processing, and cloud transmission, a battery (BLF-1209WS; Bioenno Tech, 

LLC, CA) to store and provide power to all components, and an environmental sensor (BME 280; 

Bosch, Germany) to record temperature, relative humidity, and pressure inside the box. The solar 

panel and battery were sized using a solar irradiance simulator to comfortably meet the power 

demands for all months of the year in Colorado. The IoT was programmed to acquire data from 

the O3 and environmental sensors at 1 Hz which was averaged across 1-minute intervals before 

being uploaded to the Particle Cloud (https://www.particle.io/). A MATLAB-based user interface 

was built on ThingSpeak (https://thingspeak.com/) to request and process data from the Particle 

https://www.particle.io/
https://thingspeak.com/
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Cloud to monitor minute-averaged O3 concentrations and other diagnostics produced by the 

MOOS. MOOS data was post processed from ThingSpeak using the median interpolation function 

in MATLAB. 

To mitigate the impact of temperature and fouling on the SM50 O3 mixing ratio estimates, 

an actively cooled sensor housing was developed to maintain Aeroqual SM50 temperatures within 

1 C of ambient and pull ambient air into the sampling tube to minimize sensor exposure to rain 

and dust events. The body of the sensor housing and all interior mounting hardware were fabricated 

using 3D printed polyethylene terephthalate glycol (PETG). PETG filament is resistant to damage 

from ultraviolet light and chemically inert to O3  (Dutscher, n.d.; Leusink, n.d.), which minimized 

O3 wall losses when air was sampled through the sensor housing and prevented degradation of the 

sensor housing over long field deployments. The sensor housing was mounted to the tripod using 

aluminum brackets and pipe clamps. The lower half of the housing integrated with the SM50 was 

actively cooled using a 40 mm computer fan and allowed for ambient air flow through a number 

of ventilation ports. These ventilation holes were sufficiently covered by the housing overhangs to 

prevent ingress by rain. A second 40 mm computer fan pulled ambient air through slots in the top 

of the housing and pushed this through a PTFE tube which interfaced with the SM50 sensor inlet, 

allowing for the SM50 to sample ambient air without being directly exposed to the elements. A 

diagram of these gas flows is shown in Figure S2.  

 

2.2 Reference Monitors 

O3 mixing ratio measurements were collected using a combination of Colorado State 

University (CSU) and Colorado Department of Health and Environment (CDPHE) reference 

monitors. A Thermo Environmental Instruments Gas Analyzer (Model 49C, Franklin, MA; 

https://paperpile.com/c/l6xbZx/sc04+OIol
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Thermo hereafter) and two 2B 202 O3 Analyzers (Model 202, 2B Technologies, Boulder, CO; 2B 

hereafter) were used as reference instruments. The limit of detection of the Thermo is 1 ppbv with 

an accuracy of 1.5% and the 2B monitor limit of detection is 3 ppbv, with an accuracy of 1.5 ppbv 

or 2%, whichever is higher. Additional real time O3 data were obtained from CDPHE pollution 

monitors located at Weld Tower, Christman Field, and CSU through the CDPHE website. All O3 

measurements collected by these instruments were interpolated hourly using the median 

interpolation function in MATLAB. Laboratory calibrations for the MOOS and CSU monitors 

were performed using a 2B Ozone Calibration Source (Model 306, 2B Technologies, Boulder, CO, 

USA). Hourly averaged weather data was obtained from CDPHE monitors with weather data 

capability and the CSU Weather Station. Based on mixing ratio comparisons between both 2B 

monitors and the Thermo monitor over the collocated rooftop deployment, there was very high 

linearity (R2 = 0.99) between these reference instruments, and no bias between the 2B monitors 

and -2.14 ppbv of bias between the Thermo and the 2B monitors (Figure S3). The average of both 

2B monitors was used as the reference measurement for the collocated rooftop deployment.  
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2.3.1 Collocated Deployments 

Table 1: Overview of MOOS deployment duration and collocated reference monitors. 

MOOS Site Location Site Index Start Date End Date Collocated Monitor(s) 

A Powerhouse/CSU PWR Jul 21 Aug 11 

CSU (2×2B + Thermo) 

  

  

B Powerhouse/CSU PWR Jul 21 Aug 11 

C Powerhouse/CSU PWR Jul 21 Aug 11 

D Powerhouse/CSU PWR Jul 21 Aug 11 

E Powerhouse/CSU PWR Jul 31 Aug 11 

A Ft. Morgan FTM Aug 12 Sept 6 CSU-2B 

B Weld Tower TWR Aug 11 Sept 6 CDPHE 

C Powerhouse PWR Aug 11 Aug 23 CSU-Thermo 

D Ft. Collins West FCW Aug 11 Sept 6 CDPHE 

E Akron AKR Aug 12 Sept 6 CSU-2B 

 

All five MOOS were collocated on the rooftop of the Powerhouse facility at CSU in Fort 

Collins, CO. MOOS-A through MOOS-D were deployed for a period of roughly 20 days and 

MOOS-E was deployed for a period of roughly 10 days during the months of July and August 

(Table 1). All MOOS were deployed within ~15 m of each other and all sampled at a height of 

~1.75 m above roof level. Both CSU 2×2B + Thermo monitors were deployed in an air-conditioned 

office two floors below in order to accommodate the size and power requirements of these 

reference monitors. The 2B monitors operated continuously outside of a two-day downtime while 

the Thermo monitor had more frequent downtime due to use in other studies and instrumentation 
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issues. For the preliminary rooftop deployment, the reference O3 measurements were represented 

by the average of the two 2B analyzers.  

2.3.2 Field Deployments 

 

Figure 2: Rooftop and field deployment locations across Eastern Colorado. The Powerhouse 

was the location for the rooftop study and 1 field location, while all other sites were only 

locations for the field deployment (Google Earth). 

The location of MOOS and reference monitors deployed across Eastern Colorado are 

shown in Figure 2. The duration for the field deployments is listed in Table 1. The 2B monitors 

were placed in ventilated enclosures to prevent overheating. MOOS-A was deployed on the Fort 

Morgan CSU Extension (FTM) office rooftop using a modified tripod at ~4 m above ground level. 

One of the 2B monitors was placed in an adjacent garage, with the inlet of the sensor being placed 

~10 m from the MOOS-A at an elevation of ~3 m above ground level. MOOS-E was deployed at 

the USDA Central Great Plains Resources Management Research Center in Akron Colorado 

(AKR) at ~1.75 m above ground level. A 2B monitor was placed inside the building, with the inlet 

being directly collocated with the MOOS-E at ~1.75 m above ground level. MOOS B was 

deployed adjacent to the CDPHE Weld Tower monitoring station (TWR) at ~1.75 m above ground 

level and ~1 m from the inlet of the CDPHE monitor. MOOS-D was deployed ~20 m from the 

Powerhouse

Ft. Collins West:

Weld Tower:

Ft. Morgan:

Akron:

Rooftop:

Field:

: Location

: MOOS

: CDPHE

: 2B

: Thermo

25 mi. 50 mi.
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CDPHE Fort Collins West monitoring station at ~1.75 m above ground level (FCW). MOOS C 

remained on the Powerhouse rooftop (PWR) along with the Thermo monitor.  

All five field locations were exposed to similar ambient conditions, but industrial and 

motor vehicle activity varied across sites. FCW represented a spacious, dusty open field near a few 

small roads and the Front Range Foothills. TWR represented a similarly dusty area, however this 

site was located in an urban area roughly a mile away from a major thoroughfare. The FTM site 

was located in a dusty area near a railroad. This site had moderate vehicle traffic and was adjacent 

to several industrial and agricultural buildings. The AKR site was very sheltered, with minimal 

nearby dust or pollution sources outside of a country road. PWR was the most isolated from ground 

level across all of the sites, although this site was in an urban setting and near a major thoroughfare, 

likely experiencing more traffic than FTM and all other sites.  

2.4 MOOS Calibration, Evaluation, and Performance Metrics 

Four different calibration approaches were used to correct raw MOOS data, including the 

calibration developed by the manufacturer (MFR), an in-house laboratory calibration developed 

using a 2B O3 source (LAB), a linear regression collocated calibration (LCOL), and a multivariate 

linear regression collocated calibration (MCOL) that accounted for ambient temperature and 

relative humidity. These represent the predominant methods used to correct low-cost sensors in 

literature outside of machine learning calibrations (Maag, Zhou and Thiele, 2018).  

1. MFR: The MFR calibration represents the black-box laboratory calibration developed by 

Aeroqual. The SM50 modulates air flow and temperature to create a “zero O3” event where 

low airflow and temperature effectively eliminate binding to the MOS surface (Li, 2009) 

in order to correct for the bulk resistance of the MOS.  

https://paperpile.com/c/5iTbQk/0sTE
https://paperpile.com/c/5iTbQk/L2BAx
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2. LAB: A 2B ozone calibrator was interfaced with the SM50 sensor in order to evaluate 

SM50 performance and develop calibrations based off of known O3 mixing ratios. The 

LAB calibration represents a linear regression fit between MOOS and known 2B calibrator 

output, with O3 mixing ratios ramping in 20 ppbv increments from 0 to 100 ppbv. This 

calibration takes the form of y = B1x + B0 where x represents calibrator output and y 

represents MOOS estimates, the regress function in MATLAB was used to compute B1 and 

B0 for individual MOOS. 

3. The LCOL calibration was developed using a linear regression fit between MOOS O3 

estimates and the reference monitor O3 measurements in ambient air and takes the form of 

y = B1x + B0 where x represents the reference monitor measurements and y represents 

MOOS estimates. The regress function in MATLAB was used to compute B1 and B0. 

LCOL-Pre represents a calibration developed by taking the coefficients B1 and B0 

developed during the rooftop deployment and using them to correct field data. 

4. The MCOL calibration was developed using a first-degree multivariable polynomial fit 

between MOOS and reference monitor data including variables for ambient temperature 

and relative humidity and takes the form of y = B0 + B1x1 + B2x2 + B3x3 where x1, x2, and 

x3 represent reference measurements, ambient temperature, and relative humidity 

respectively and y represents MOOS estimates. Coefficients B0, B1, B2, and B3 were 

computed using the regress function in MATLAB. 

 

The LCOL and MCOL calibrations were developed using both all time-matched data and 

an n-fold cross-validation approach. Calibrations developed using all data, henceforth referred to 

as LCOL-Full or MCOL-Full, were used to develop the best available calibration between MOOS 
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O3 estimates and reference measurements. Calibrations developed using a cross-validation 

approach, henceforth LCOL-k or MCOL-k, were implemented to represent realistic calibrations 

strategies, as indefinitely collocating a reference monitor alongside a low-cost sensor is impractical 

and realistic field calibration efforts will occur over a fraction of the full deployment duration. For 

LCOL-k and MCOL-k, k represents the duration of the training periods (i.e. LCOL developed 

using a 48-hour training period is referred to as LCOL-48). Individual training periods spanned 

midnight to midnight local time, with the partial days at the beginning and end of the dataset being 

parsed out. The duration of training periods varied from 24 hours up to 240 hours, with period 

duration increasing in increments of 24 hours. Training periods greater than 24 hours in duration 

were overlapped in order to evaluate more calibrations. Missing data were included when 

establishing training periods and later removed if missing data comprised more than 25% of the 

training data; calibration performance did not appear to be impacted when less than 25% of the 

training data was missing. This was done because removing training periods with any missing data 

would greatly reduce the number of longer duration training periods. The performance of the 

LCOL-k and MCOL-k calibrations developed from training periods was assessed by testing against 

the rest of the dataset. As O3 measurements between MOOS and reference monitors are 

autocorrelated, continuous training periods will introduce bias compared to randomly sampled 

training periods. This bias allows us to develop a realistic understanding of MOOS performance 

when a collocated LCOL or MCOL calibration is carried over different training periods. Due to 

variation in meteorology, sensor performance, and other unknown factors, the performance of 

calibrations developed using individual periods varied and was graded based on the Root Mean 

Squared Error (RMSE). In the field deployment, we will be presenting the bottom 10th percentile 

performing calibration corrected using LOCL-k and MCOL-k calibrations approaches.  
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Several statistical metrics were selected to evaluate calibrated MOOS O3 mixing ratio 

estimates comparisons to O3 measurements recorded from reference monitors and CDPHE 

monitoring stations. These statistical metrics included: 1) Pearson’s correlation coefficient (r) 

between individual MOOS and reference; 2) RMSE and Mean Bias Error (MBE) between MOOS 

and reference; 3) slope and intercept between MOOS and reference. Pearson’s r was calculated 

using the corrcoef function in MATLAB (1), slope and intercept were calculated using the polyfit 

function in MATLAB, and RMSE (2) and MBE (3) were calculated using the equations below, 

where xi represents reference O3 measurements and yi represents MOOS O3 estimates.  

1) 𝑟 = ∑(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)√∑(𝑥𝑖−�̅�)2 ∑(𝑦𝑖−�̅�)2 

2) 𝑅𝑀𝑆𝐸 = √∑(𝑥𝑖−𝑦𝑖)2𝑛  

3) 𝑀𝐵𝐸 =  1𝑛 ∑ (𝑥𝑖 − 𝑦𝑖)𝑛𝑖=1  
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CHAPTER 3: RESULTS 
 
 
 

3.1 Collocated Rooftop Study to Evaluate Calibration Methods 

 

Figure 3: (a) Hourly averaged July and August 2021 MOOS-A O3 mixing ratio estimates using 

different calibration approaches compared to collocated reference measurements. Scatter plots 

for MOOS-A O3 mixing ratios from (b) MFR, (c) LAB, (d) LCOL-Full, and (e) MCOL-Full 

calibrations compared to reference measurements. Scatter plots for MOOS-A O3 mixing ratios 

from (b) MFR, (c) LAB, (d) LCOL-Full, and (e) MCOL-Full calibrations compared to reference 

measurements. MFR refers to the estimates based on the manufacturer’s calibration, LAB refers 
to the estimates based on laboratory calibrations performed with a Model 306 (2B Technologies), 

LCOL-Full refers to the estimates based on a linear calibration developed using the entire 

collocated dataset, and MCOL-Full refers to the estimates based on a multivariable calibration 

developed using the entire collocated dataset. Time series and scatter plots are shown in Figures 

S3 to S6 in the SI for the other MOOS.  

Results for the O3 mixing ratio from MOOS-A are compared against reference 

measurements in Figure 3 for different calibration approaches, with results for all other MOOS 

being shown in Figure S5 through Figure S8. In Figure 3(a), LCOL-Full and MCOL-Full results 
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are presented using the same-colored line since both estimates were nearly identical and therefore 

overlapped. As noted earlier, the reference measurements are based on the average of the CSU-

2Bs deployed during the collocated study. The reference measurements included a small amount 

of data when only one of the two Model 202s was running (<5% of the data) and excluded a small 

portion of data when neither of the CSU-2Bs were running (Table 2). All four calibration 

approaches - MFR, LAB, LCOL-Full, and MCOL-Full - resulted in strong correlations between 

MOOS-A and the reference measurements (Pearson’s r = 0.976; r, henceforth). However, both the 

MFR and LAB calibrations overestimated O3 at the higher O3 mixing ratios observed during the 

daytime and slightly underestimated the O3 when the mixing ratios were below 20 ppbv. The MFR 

and LAB calibrations overestimated the peak O3 by 22% and 28%, respectively. By design, both 

LCOL-Full and MCOL-Full calibrations appeared to correct the bias in high and low O3 estimates 

and significantly reduced the RMSE to 3.92 and 3.89 ppbv, respectively, with no change in r. 

RMSE and MBE for LCOL- and MCOL-full will also provide a benchmark for which to compare 

LCOL- and MCOL-k presented in Figure 4. Although there were some MOOS-to-MOOS 

differences, the MFR and LAB calibrations consistently overestimated O3 mixing ratios (Figure 

S5 through Figure S8) while LCOL-Full and MCOL-Full performed well across the other sensors. 

These results suggest that the laboratory-based approach used to calibrate low-cost O3 sensors in 

this study induced more measurement error and bias compared to linear collocated calibration 

approaches. While the SM50 does not directly correct for temperature and relative humidity, the 

similar performance of LCOL-Full and MCOL-Full approaches suggest that the SM50 sensors 

were minimally impacted by these interfering factors. The large temperature and relative humidity 

error terms (135 and 175 ppbv respectively) and small reference error term (15 ppbv) for the 

multivariate coefficients used to develop MCOL-Full further suggest that MOOS are minimally 
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impacted by temperature and relative humidity factors (Table S2).  Trends in the SM50 

performance observed during the rooftop study, which include the manufacturer calibration intra-

sensor variance, high linearity with reference measurements, and minimal sensitivity to 

temperature and relative humidity, were very consistent with existing literature on the SM50 and 

other similar Aeroqual O3 sensors (Jiao et al., 2016; Polidori, Papapostolou and Zhang, 2016; 

Mueller, Meyer and Hueglin, 2017). 

 

Figure 4: July and August 2021 MOOS-A O3 mixing ratio estimates corrected using an n-fold 

cross validation LCOL approach compared to collocated reference measurements as a time series 

(a) and scatter plot (b). ‘Train’ refers to the 48-hour interval used as the training period and ‘Test’ 
refers to the remainder of the data used to evaluate the calibration. The LCOL-48 approach shown 

in (a,b) represents the median performing calibration developed from one of the 17 training 

periods. Statistical metrics r (a), RMSE (b), and MBE (c) from the cross validation of 17 

independent LCOL-48 calibrations are shown as cumulative distribution functions. Time series, 

scatter plots, and CDFs for LCOL-48 are shown in Figures S8 to S11 in the SI for all other MOOS. 
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Results for the O3 mixing ratio from MOOS-A corrected using the LCOL calibration 

approach based on 48 hours of training are compared against reference measurements in Figure 4, 

with results for all other MOOS being shown in Figure S10 through Figure Figure S13. To remind 

the reader, the rooftop colocation study included nineteen days of continuous MOOS 

measurements which resulted in seventeen continuous 48-hour training periods after missing data 

was dropped. LCOL-48 calibrations developed from these seventeen 48-hour training periods were 

then individually tested against the remaining data. For example, the O3 results in Figure 4(a) show 

how the MOOS-A was calibrated or ‘trained’ on reference measurements from August 30-31 and 

then cross-validated or ‘tested’ against reference measurements from all other days. LCOL-48 

calibrations developed using these seventeen training periods were characterized by unique r, 

RMSE, and MBE, which describe how well the corrected O3 estimates compared to reference 

measurements. These metrics are for “test” data and exclude the training data used to develop 

LCOL-48. Variations in statistical metrics r, RMSE, and MBE across different training periods 

are shown using the cumulative distribution functions in order to compare the performance of all 

possible LCOL-48s (Figure 4c-e), with the individual LCOL-48 approach demonstrated in Figure 

4(a) representing the median performing calibration. r, RMSE, and MBE varied between 0.973 

and 0.981, 4.11 and 6.30, and -2.87 and 3.56, respectively, across all LCOL-48. RMSE and MBE 

appeared to vary more than r, with RMSE and MBE increasing by 0.5 and 1.2 ppbv respectively 

over the first 60% of training periods and then increasing by 2.1 and 2.6 ppbv over the remaining 

40% of periods. Correlation and error between LCOL-48-corrected MOOS O3 estimates and 

reference measurements did not appear to depend on the relative training period, or the ambient 

conditions of the training period used to develop LCOL-48. 
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While the MCOL-Full approach slightly outperformed LCOL-Full, MCOL calibrations 

developed using an n-period validation approach appeared to be slightly inferior to the LCOL 

calibrations. The median performing MCOL-48 had a slightly lower correlation and higher error 

compared to the median LCOL-48. Across all MCOL-48 r, RMSE, and MBE varied between 

0.907 and 0.977, 4.14 and 9.30, and -2.91 and 4.41 respectively (Figure S14 through Figure S18). 

MCOL-48 performed similar to LCOL-48 across 60% percent of training periods, but performed 

substantially worse than LCOL-48 across the remaining 40% of periods. Notably, the least 

performing MCOL-48 reduced r by 0.066 and increased RMSE by 3 ppbv compared to the least 

performing LCOL-48. 

The majority of low-cost O3 sensors described in the literature incorporate a multivariable 

regression or machine learning approach to develop calibrations, with these approaches typically 

outperforming linear calibrations (Karagulian et al., 2019). Multivariable and regression 

calibrations typically developed over multi-week time periods, which can be impractical when 

carrying out studies in remote areas without dedicated infrastructure to support reference 

instruments (Spinelle et al., 2015; Jiao et al., 2016; L. Cheadle et al., 2017; Ferrer-Cid et al., 2019; 

Miskell et al., 2019). We utilized substantially shorter training intervals to develop field 

calibrations, which may have been insufficient to train MCOL compared to LCOL. Furthermore, 

these results suggest that incorporating short term calibrations for interfering factors may 

deteriorate sensor performance. 

 

https://paperpile.com/c/5iTbQk/FHh8
https://paperpile.com/c/5iTbQk/3qBB+jxs2+vI0q+Yq0o+WniD
https://paperpile.com/c/5iTbQk/3qBB+jxs2+vI0q+Yq0o+WniD
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3.2 Field Deployment and Comparison to Reference Measurements 

 

Figure 5: MOOS O3 mixing ratio estimates corrected using LCOL-F, LCOL-Pre, LCOL-24, 

LCOL-48, and LCOL-96 approaches compared to reference measurements during the field 

deployment. LCOL-Full refers to estimates based on a calibration developed using the entire co-

located dataset, LCOL-Pre refers to estimates based on a calibration developed from the rooftop 

deployment, and LCOL-24, LCOL-48, and LCOL-96 refer to estimates based on a n- period cross 

validation approach that use 24, 48, and 96 hour training periods. LCOL-24/48/96 represent the 

bottom 10th percentile performing calibration based on RMSE. RMSE (a) and MBE (b) are shown 
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for each site/calibration combination, with all results being presented in units of ppbv. The number 

in the bottom right of each plot refers to the rank order for each calibration approach based on 

RMSE where #1 refers to the best-performing calibration and #4 refers to the worst-performing 

calibration. r was constant within ± 0.005 across all sites and calibration approaches and is shown 

as a single value in the leftmost plots. 

Results of MOOS O3 mixing ratio estimates from LCOL-Full, LCOL-Pre, and LCOL-

24/48/96 approaches compared to reference measurements are shown in Figure 5 for all field 

locations. After 96-hours, increased training duration did not appear to substantially improve 

correlation, measurement error, or bias error, with more in-depth discussion on calibration length 

being presented in Figure 6. The duration for the MOOS and reference monitor deployments across 

locations are shown in Figure 1 and Table 1; after removing data where only one instrument was 

running, 23, 20, 7, 24, and 23 training periods were developed for the FTM, TWR, PWR, FCW, 

and AKR sites, respectively. Results for LCOL-24/48/96 shown in Figure 5 are for the 90th 

percentile calibration for RMSE for LCOL-k, with a visual representation of the RMSE cutoff 

shown in Figure S19. We chose to present results for the 90th percentile LCOL-k calibration in 

Figure 5 as a lower bound on the MOOS performance. In other words, 10% of the calibrations 

would be inferior to and 90% of the calibrations would be superior to that shown in Figure 5. 

LCOL-Full is shown as a benchmark for the best possible linear calibration that can be developed 

at each site.  

MOOS deployed at the FTM, TWR, PWR, and AKR sites demonstrated strong correlation 

with reference measurements across all calibration approaches (r>0.94). At these sites, LCOL-Pre 

and LCOL-24/48/96 performed nearly as well as LCOL-Full, increasing RMSE and MBE by at 

most 1.64 and 3.61 ppbv. The LCOL-Pre and LCOL-24/48/96 calibration approaches all 

performed similarly, with RMSE and MBE across these approaches varying by at most 0.73 ppbv 

and 2.16 ppbv, respectively. The LCOL-Pre and LCOL-24/48/96 calibrations outperformed the 
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MFR calibration by 0.61 to 4.65 ppbv for RMSE and by up to 4.45 ppbv for MBE. The MOOS 

deployed at FCW demonstrated poorer overall correlation (r>0.800) and had high RMSE and MBE  

The LCOL-Pre and LCOL-24/48/96 calibrations outperformed the MFR calibration by 

0.61 to 4.65 ppbv for RMSE and by up to 4.45 ppbv for MBE. The MOOS deployed at FCW 

demonstrated poorer overall correlation (r>0.800) and had high RMSE and MBE (RMSE<10.2 

ppbv, MBE<6.8 ppbv) compared to the MOOS at the other sites. Overall, LCOL-96 performed 

marginally better than the shorter duration LCOL-24/48 calibration approaches and LCOL-Pre 

based on the relative ranking of the calibration approaches. LCOL-Pre and LCOL-48 performed 

similarly, and LCOL-24 was the least performing calibration overall. Outside of FCW, all of these 

calibration approaches improved MOOS O3 mixing ratio estimates compared to those based on 

MFR and LAB (not shown). 

LCOL-Pre was the 1st and 2nd best performing calibration based on RMSE at the TWR and 

FCW sites respectively, where MOOS were not directly collocated with the reference monitors. 

LCOL-Pre was also the 2nd best performing calibration at PWR, where the MOOS and reference 

configuration was not altered from the rooftop deployment. LCOL-Pre was outperformed by all 

LCOL-24/48/96 at FTM and AKR, where MOOS were directly collocated with reference 

monitors. In general, it appeared that the LCOL-k approach developed a more accurate calibration 

than LCOL-Pre when the MOOS and reference monitors were collocated at the same height, while 

the LCOL-Pre approach developed a more accurate calibration when MOOS were at a different 

elevation and spaced apart from reference monitors. Differences in the MOOS proximity and 

elevation compared to reference monitors may explain the variable performance of different 

calibration approaches across the five sites, with larger spatial differences between MOOS and 

reference monitors potentially introducing variation that could not be captured by our calibration 
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approach. If we had access to more reference monitors and were able to directly collocate a monitor 

with all five MOOS, it is possible that the relative efficacy of calibrations developed at TWR and 

FCW would be similar to those developed at FTM and AKR.  

Results shown for LCOL-24/48/96 are from the 90th percentile calibration, meaning 

calibrations developed using a median LCOL-24/48/96 approach will perform better than the 

results shown in Figure 5. In general, median LCOL-24/48/96 calibrations reduced RMSE by ~1 

ppbv compared to the 90th percentile LCOL-24/48/96 across all sites. This reduction in error 

allowed for the median LCOL-24 to outperform LCOL-Pre at all sites except TWR (where median 

LCOL-48 still outperformed LCOL-Pre), suggesting that calibrations developed from two days of 

in-situ calibration will outperform a longer preliminary collocated calibration (~3 weeks) 

developed in a different region. In real world calibration efforts, the training period selected to 

develop a calibration will likely depend on the logistics of the study, therefore it is prudent to 

present calibrations that are representative of all possible outcomes. MOOS exhibited higher 

correlation and lower measurement error compared to ground-level reference monitors than 

modeling approaches, which typically reported r <0.9 and RMSE <22 ppbv (Di et al., 2017; Requia 

et al., 2020; Wang et al., 2020). 

 

 

https://paperpile.com/c/5iTbQk/PNwL+DKfG+3qAs
https://paperpile.com/c/5iTbQk/PNwL+DKfG+3qAs
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Figure 6: Variation in statistical metrics comparing MOOS O3 mixing ratio estimates reference 

measurements across all 5 MOOS shown for the Rooftop Deployment (a) and the Field 

Deployment (b). Error bars represent 1 standard deviation of the statistical metrics. 

Statistical metrics for LCOL-k corrected MOOS O3 estimates varied depending on the 

duration of the training periods. To remind the reader, these metrics capture the performance of 

LCOL-k applied to “test” data and exclude the data used to “train” the LCOL-k calibration. r, 

RMSE, and MBE for all LCOL-k calibrations developed over 24- through 240-hour training 

periods are shown in Figure 6. Results for the 168- and 240-hour training periods are not shown 

for MOOS-E in the rooftop deployment due to the shorter deployment time (Table 1). Results are 

not shown for FCW in the field deployment, as this sensor performed substantially worse than all 

other MOOS and including results for FCW would have made it harder to draw conclusions for 

the four other MOOS (results for FCW are included in Figure S20). We will first look at trends in 
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the rooftop deployment. r increased slightly with training duration across all MOOS, while RMSE 

and MBE were less impacted by training period duration. Variability in RMSE decreased from 1.8 

ppbv for 24-hour training periods to 0.82 ppbv at 48-hour training periods and was just 0.3 ppbv 

for 96-hour training periods, while mean RMSE decreased by 0.6 ppbv up to 240-hour training 

periods. Variation in MBE improved from the 24- to 48-hour training periods by 0.6 ppbv and 

remained constant after 48-hour training periods, with mean MBE remaining at about 0 regardless 

of training duration. Overall, intra-sensor performance across training period durations appears to 

be very consistent, with all 5 MOOS exhibiting minimal intra-sensor variance across all statistical 

metrics. 

In the field deployment, variation in r across MOOS was more pronounced and increased 

with training duration, although this was likely due the fewer training intervals at longer durations. 

We saw similar trends in both RMSE and MBE compared to the rooftop deployment; variation in 

RMSE at FRM and AKR decreased from 0.42 ppbv to 0.19 ppbv and mean RMSE decreased by 

0.3 ppbv up to 96-hour training periods, and then appeared to either stay the same or slightly 

increase. Variation in RMSE at TWR and PWR was more impacted by training period duration, 

decreasing from 0.99 ppbv to 0.31 ppbv and 1.85 ppbv to 0.33 ppbv, respectively up to 96-hour 

training periods. After 96-hours, variation in TWR then increased up to 240-hour training periods 

while variation in PWR remained constant. FCW experienced the highest variation in RMSE 

across all sites of 4.3 ppbv as well as the highest mean RMSE. Variation in MBE decreased up 

until 240-hour training periods and mean MBE remained constant, although the magnitude of 

mean MBE varied across sensors. Overall, MOOS correlation (r) with reference monitors 

appeared to be minimally impacted by training period duration. These results suggest a training 
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period duration between 48 and 96 hours reduces variation in RMSE compared to a 24-hour 

training period, with >96-hour periods potentially introducing more variation in RMSE. 
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3.3 O3 Exposure and East-West Gradients 

 

Figure 7: MOOS O3 MDA8 estimates compared to reference MDA8 measurements across the 

rooftop and field deployments. Rooftop MDA8 estimates were corrected using the median LCOL-

48 approach (a) and field MDA8 estimates were corrected using LCOL-Pre (b), the 90% LCOL-

24 approach (c), and the 90% LCOL-48 approach (d). True positives (TP) represent >70 ppbv O3 

events (the NAAQS standard for O3 exposure) measured by the collocated reference monitor where 

MOOS estimates also exceed 70 ppbv. True negatives (TN) represent <70 ppbv O3 events where 

MOOS estimates also subseeded 70 ppbv. False positives (PN) represent <70 ppbv O3 events 

where MOOS estimates exceeded 70 ppbv and false negatives represent >70 ppbv O3 events where 

MOOS estimates subceeded 70 ppbv. 
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In addition to evaluating the MOOS performance based on statistical metrics, we also 

assessed the ability of MOOS to capture relevant regulatory metrics, specifically the maximum 

daily 8-hour average O3 (MDA8). To remind the reader, MDA8 is a metric used to determine 

compliance with regulation and inform air quality advisories, with MDA8s > 70 ppbv exceeding 

NAAQS standards and MDA8s < 70 ppbv being compliant with NAAQS standards. MOOS 

MDA8 estimates corrected using the median LCOL-48 approach shown in Figure 4(a,b) and 

Figure S5 through Figure S8(a,b), and the LCOL-Pre, LCOL-24, and LCOL-48 approaches shown 

in Figure 5 are compared to reference MDA8 values in Figure 7. It is important to note that MDA8 

estimates corrected using an LCOL-k approach includes both testing and training data, with 

training data making up roughly 5% and 10% of the full dataset for LCOL-24 and LCOL-48, 

respectively. MDA8 performance was graded based on the prevalence of Type I and Type II errors 

between the MOOS and reference measurements. Type I error (false positives) represents a 

scenario where the MOOS MDA8 estimates exceed > 70 ppbv while the true MDA8 is <70 ppbv. 

Type II error (false negatives) represents a scenario where the MOOS MDA8 estimates are <70 

ppbv while the true MDA8 exceeds 70 ppbv. Overall, with a Type II error, the MOOS could lead 

to unsafe O3 exposure in communities relying on these monitors for air quality advisories.  

MOOS performed well in estimating MDA8 during the rooftop deployment, capturing 

100% of >70 ppbv O3 days measured by the reference monitors and both compliant (<70 ppbv) 

and non-compliant (>70ppbv) days with an overall error of 6.2%. In the field deployment, MOOS 

had much higher instances of the Type II error. LCOL-48 captured 7/8 >70 ppbv O3 days measured 

by the reference monitors and classified compliant and non-compliant days with an overall error 

of 10.7%. LCOL-Pre captured only 3/8 of >70 ppbv O3 days measured by the reference monitor 

and classified compliant and non-compliant days an overall error of 11.6%, while LCOL-24 only 
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captured 2/8 >70 ppbv days measured by the reference monitor and classified compliant and non-

compliant days an overall error of 9.3%. Compared to the rooftop study, it is difficult to determine 

whether the MOOS’ inability to capture high O3 events in the field was due to poor sensor and 

calibration performance, or a relatively small sample size of high O3 events which could be 

captured by the MOOS. During both the rooftop and field deployment, reference monitors 

recorded eight >70 ppbv events, however in the field only one MOOS could capture each event 

while on the rooftop five (four when MOOS E was not deployed) MOOS could capture each event. 

Half of the >70 ppbv days that occurred during the field deployment were recorded at FCW, where 

the MOOS O3 demonstrated less measurement reliability than other sites. During the field 

deployment, only the MOOS deployed at PWR was able to capture 2/2 >70 ppbv days across all 

calibration approaches. MOOS at both TWR and AKR demonstrated high linearity and low RMSE 

compared to reference measurements, but were only able to capture 1/2 >70 ppbv events when 

corrected with LCOL-Pre, 1/2 >70 ppbv events when corrected with LCOL-48, and 0/2 when 

corrected with LCOL-24. 
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Figure 8:  Difference between reference monitors O3 measurements and MOOS O3 estimates 

compared to the CDPHE reference monitor located in FCW. The difference between hourly O3 

events for corresponding reference monitors was taken over the entire field deployment. These 

deltas were binned based on the O3 concentration measured at the FCW site, with bin medians at 

30 - 80 ppbv. Boxplot boxes and whiskers represent 1 and 2 standard deviations respectively. 

Trendlines were fitted to the mean of deltas to approximate this difference across all O3 events. 

We also examined the ability of the MOOS to study spatial O3 trends in Eastern Colorado. 

The field sites selected in this study represent a roughly 160 km span ranging from the metropolitan 

Front Range to rural Eastern Colorado, with collocated MOOS and reference monitors deployed 

at randomly spaced intervals across this gradient (i.e., 1 MOOS per 40 km). In Figure 8, we plot 

the absolute O3 between a MOOS site and a datum, where the datum was the westernmost location 

(i.e., FCW). Results are shown using box plots where the time matched absolute O3 mixing ratios 

were aggregated in decadal bins, with bin medians from 30 to 80 ppbv. O3 events in FCW are from 

the CDPHE reference monitor, and O3 events at all other sites were defined by either MOOS or 
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the collocated reference monitor. The difference between reference O3 measurements at FCW and 

the other four reference monitors demonstrated a strong spatial trend. When FCW experienced an 

80 ppbv O3 event, AKR, the easternmost site, experienced 25 ppbv lower O3, FTM experienced 

18 ppbv lower O3, TWR experienced 11 ppbv lower O3, and PWR experienced a 12 ppbv lower 

event, based on the median of the 80 ppbv reference bin. When FCW experienced a 70 ppbv O3 

event, AKR experienced 12 ppbv lower O3 while TWR experienced only 4.8 ppbv lower O3. 

Overall, the differences in absolute O3 between sites and FCW is statistically significant (p<0.05) 

and suggests there were spatial O3 differences as we moved East. The O3 gradient observed by our 

reference network, albeit for a very short period, has also been seen in the literature. Aircraft O3 

measurements taken at an elevation of ~2300 meters from July 26-28 and August 2-3 were 20 

ppbv higher over Fort Collins compared to flight path measurements approximately 100 km away 

near Akron Colorado (Vu et al., 2016). Modeled surface O3 also demonstrating a roughly 20 ppbv 

gradient moving from urban to rural regions (Sullivan et al., 2016). Overall, MOOS were able to 

capture this spatial gradient similar to the reference monitors. At all bins, FTM and AKR MOOS 

mean deltas were similar to those for the reference monitors. Variation in 1 and 2 standard 

deviations were very comparable between MOOS and reference monitors at these sites, with both 

MOOS and reference monitors also capturing outlier O3 events. At FCW and TWR, MOOS 

appeared to predict a sharper mixing ratio gradient than the collocated reference monitors, 

especially at higher O3 concentrations.  

The ability of MOOS to reliably estimate O3 mixing ratios demonstrates the potential for 

these sensors to be implemented as in-situ monitors. Overall, MOOS were able to capture relevant 

exposure and spatial O3 trends and compared favorably to modeling approaches. 

https://paperpile.com/c/5iTbQk/DE9m
https://paperpile.com/c/5iTbQk/26n5


 

36 

CHAPTER 4: CONCLUSIONS, UNCERTAINTIES, AND DIRECTIONS FOR FUTURE 

RESEARCH 
 
 
 
In this work, we developed an autonomous, low-cost sensor system (aka MOOS) based on 

the Aeroqual SM50 O3 sensor to evaluate the efficacy of several practical calibration approaches 

and study O3 trends across the Colorado Front Range. In a three-week collocated study, MOOS 

demonstrated good correlation with collocated reference monitors and minimal sensitivity to 

temperature and relative humidity, however manufacturer and laboratory corrected MOOS tended 

to overestimate O3 mixing ratios and exhibited substantial intra-sensor variance. These sensors 

were then deployed for a period of three weeks across Eastern Colorado to further evaluate the 

sensor performance and study urban and rural O3 phenomena. Linear calibration approaches based 

on both the collocated study and 24 to 96 hours of reference data in the field reduced measurement 

error compared to manufacturer calibrated MOOS and demonstrated the ability to capture spatial 

O3 trends. Notably, MOOS were able to capture 100% of noncompliant O3 events during the 

collocated deployment and were able to characterize up to 88% of NAAQS compliant and 

noncompliant O3 events. MOOS have potential to provide reliable ground level O3 data in order 

to better characterize regional O3 trends, inform air quality advisories, and complement existing 

monitoring efforts by enhancing spatial monitoring capabilities. However, additional research is 

needed to quantify the impacts of the sensor housing as well as environmental and ambient air 

impacts on sensor performance. 

Although MOOS demonstrated good performance and minimal sensitivity to temperature 

and relative humidity, additional work is needed to address MOOS sensitivity to interfering gases, 

possible impact of the sensor housing on O3 loss, long term drift, and consistency between MOOS 

and reference monitors. We were unable to test MOOS sensitivity to NOX (NO and NO2) and 
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deploying the MOOS alongside a NOX reference monitor could help study this issue in more detail. 

The sensor housing was developed to keep the Aeroqual SM50 sensor within its operating 

temperature range as the sensor demonstrated sensitivity to higher temperatures in tests performed 

in summer 2020. The sensor housing also served to minimize direct exposure of the SM50 sensing 

element to ambient air, which could cause O3 wall losses when ambient air contacts the fan and 

sensor housing. Furthermore, these losses could be exacerbated by the buildup of dust inside the 

sensor housing over time and should be quantified in future work. This study also did not address 

long-term sensor drift, useful lifetime of these sensors, and optimal frequency for calibration. The 

MOOS did not appear to substantially drift over the 2 months of deployment, with <5 ppbv of bias 

being introduced over this time period (Figure S21), however an increase in offset error will likely 

occur over time. For shorter deployments during peak O3 season, it appears that a pre- and post-

field deployment calibration approach could correct MOOS estimates, but long-term reliability 

remains a concern for these sensors and needs to be evaluated further. Finally, there was some 

inconsistency between the MOOS and reference monitors at some of the field sites. This was most 

particularly observed at the TWR and FCW sites, which we speculate is from the distance between 

the reference monitors and the MOOS. Another possible reason for this discrepancy is that FCW 

is frequently exposed to dust events which could have expedited fouling of the SM50 sensor, a 

phenomenon which was observed during preliminary tests in 2020. MOOS and the reference 

monitor height should be set to the minimum EPA O3 standard for inlet height of 2 meters and 

close proximity between MOOS and reference monitors should be implemented when possible.  

Likewise, it would be important for future work to test and incorporate different calibration 

approaches in order to further improve the measurement reliability of MOOS systems. LCOL-Pre 

and LCOL-24/48/96 approaches corrected MOOS estimates within 5 ppbv of reference 



 

38 

measurements, however other calibration approaches could be integrated further improve 

measurements MOOS. Augmenting these calibration strategies with additional calibrations such 

as buddy sensors (Miskell et al., 2019), night time proxy calibrations (Bart et al., 2014), and 

coupling LCOL-Pre and LCOL-k approaches could further improve sensor performance. “Buddy 

sensing” involves deploying an additional, calibrated low-cost sensor at field sites in place of a 

reference monitor, which can be useful when scaling up low-cost sensor initiatives in areas where 

using a collocated reference monitor for field calibrations would be impractical. During the night, 

O3 concentrations tend to normalize, allowing for real-time low-cost sensor bias corrections to 

nighttime reference measurements over much larger distances, without the need for a direct 

colocation. Finally, averaging LCOL-Pre and LCOL-k calibration approaches could reduce some 

of the bias we saw in field measurements. Incorporating machine learning approaches could 

potentially improve calibrations developed over poorly performing training periods and develop 

more sophisticated algorithms for correcting interfering factors (Zimmerman et al., 2018).  

Proliferation of O&G activity and increasing urbanization in the Colorado Front Range 

motivate the development of reliable and low-cost air quality monitoring networks in order to 

better inform the public on air pollution and capture spatiotemporal trends at high resolution. The 

autonomous, low-cost sensor developed in this work (MOOS) presents an ideal system to integrate 

into future air quality monitoring efforts due to the low system cost (<$1000), ease of assembly, 

autonomous operation, and demonstrated performance in measuring ground-level O3. These 

sensors could be incorporated alongside low-cost PM2.5, NOX, and VOC sensors to develop a more 

holistic understanding of spatial-temporal pollution trends and report real time air quality data to 

the local population. 

https://paperpile.com/c/5iTbQk/vI0q
https://paperpile.com/c/5iTbQk/bhbv
https://paperpile.com/c/5iTbQk/Hwzf
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Item Description Quantity Unit Cost (USD) Total Cost (USD)

Enclosure

Polycase WQ-57 Waterproof enclosure for housing power system and sensor 1 54.57 54.57

Polycase WQ-91 Mounting feet for connecting enclosure to mounting frame 1 8.25 8.25

Polycase WQ-57-p01 Backboard for electronics mounting 1 5.01 5.01

HARTING 19000005181 5-9 mm cable gland to allow for sealed cable routing 2 2.97 5.94

Pyle Audio Stand System stand 1 27.41 27.41

8020 Components Mounting bracket to allow for mounting of enclosure to pole 1 30.4 30.4

Power System

Renogy 30 W Panel Solar Panel 1 59.99 59.99

Bioenno 12V, 9Ah LFP Battery Battery 1 99.99 99.99

Renogy Wanderer 12V Charge Controller Solar Charge Controller 1 14.99 14.99

MC4 Solar Panel Cable MC4 solar panel cable 1 19.49 19.49

Electronics

SparkFun Level Shifting microSD Breakout 3.3V MicroSD card reader 1 5.5 5.5

Particle Boron LTE Enabled Microcontroller 1 59.99 59.99

BME 280 Temperature and relative humidity sensor 1 19.95 19.95

32 gb microSD card Data storage 1 7.47 7.47

Aeroqual SM50 Ozone Sensor 1 325 325

2.54mm MALE & FEMALE HEADER Socket Row StripMounting Electronics to through hole board 1 4.97 4.97

Radiation Shield

PTEG Fillament Spool Filament needed to print radiation shield 0.75 22.99 17.24

1" ODE PTFE Tube x 6" length Sampling tube 0.5 20.47 10.24

40 mm computer fan Cooling MOOS and pulling in sampling air 2 2.97 5.94

8020 Parts Mounting brackets for shield 1 15.67 15.67

Total 764.59 798.0075



 

45 

 

 

Figure S1: Photo of MOOS deployed in the field including sensor housing (a), interior electrical 

components (b), stand and solar panel (c), and guy wires (d).  



 

46 

 

 

Figure S2: Diagram showing active airflow in the sensor housing. Sampling air is pushed 

through a fan into the sampling tube where it is then sampled by the SM50. Ventilating air is 

pushed by a fan over the SM50 to keep the sensor at near ambient air temperature. 

Ventilating Air

Sampling Air

SM50 Sensor Inlet 
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Figure S3:  Scatter plot of 2B #2060 O3 analyzer and Thermo O3 analyzer compared against the 

other 2B #2061. 
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Figure S4: MOOS field deployments at Ft. Morgan (a), Weld Tower (b), Christman Field (c), the 

Powerhouse rooftop (d), and Akron (e).  

(a) (b) (c)

(d) (e)



 

49 

 

Figure S5: Same as Figure 3 but displaying results for MOOS B. 
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Figure S6: Same as Figure 3 but displaying results for MOOS C. 
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Figure S7: Same as Figure 3 but displaying results for MOOS D. 
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Figure S8: Same as Figure 3 but displaying results for MOOS E. 
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Figure S9: Relationship between the LCOL-Full/Reference ratio and ambient temperature and 

relative humidity during the rooftop deployment. 
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Table S2: Multivariable regression coefficients for MOOS A-E used to develop MCOL, model 

coefficient of determination (r2) terms for multiple regression and individual predictors, and model 

error (RMSE) for multiple regression and individual predictors.  

MOOS b0 b1 b2 b3 r2
all r2

1 r2
2 r2

3 RMSEall RMSE1 RMSE2 RMSE3 

A 14.43 0.75 -0.07 0.00 0.95 0.95 0.58 0.46 15.29 15.45 137.06 174.86 

B 17.13 0.73 -0.06 0.00 0.95 0.95 0.57 0.45 16.10 16.16 135.36 174.38 

C 21.85 0.72 -0.11 -0.02 0.95 0.95 0.58 0.46 15.91 16.17 137.06 174.86 

D 19.16 0.76 -0.10 -0.01 0.95 0.95 0.57 0.45 15.66 15.88 135.36 174.38 

E 16.58 0.85 -0.09 -0.01 0.96 0.96 0.71 0.55 13.66 13.66 109.51 169.02 
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Figure S10: Same as Figure 4 but displaying results for MOOS B. 
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Figure S11: Same as Figure 4 but displaying results for MOOS C. 
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Figure S12: Same as Figure 4 but displaying results for MOOS D. 
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Figure S13: Same as Figure 4 but displaying results for MOOS E. 
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Figure S14: MOOS-A O3 mixing ratio estimates corrected using an n-fold cross validation MCOL 

approach compared to collocated reference measurements as a time series (a) and scatter plot (b). 

‘Train’ refers to the 48-hour interval used as the training period and ‘Test’ refers to the remainder 
of the data used to evaluate the calibration. The LCOL-48 approach shown in (a,b) represents the 

median performing calibration developed from one of the 17 training periods. Statistical metrics 

r (a), RMSE (b), and MBE (c) from the cross validation of 17 independent MCOL-48 calibrations 

are shown as cumulative distribution functions. 

Reference O3 [ppbv]

M
O

O
S

 O
3

[p
b
b
v
]

O
3

M
ix

in
g

 R
a

ti
o
 [

p
p
b
v
]

Date

r = 0.968
RMSE = -4.14
MBE = 0.74

 Train    Test    Reference 

Median performing MCOL-48(a) (b)

Pearson’s r RMSE [ppbv] MAE [ppbv]

F
re

q
u

e
n

c
y

(c) CDFs of MOOS-A Statistical Metrics



 

60 

 

Figure S15: Same as Figure S12 but displaying results for MOOS B. 
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Figure S16: Same as Figure S12 but displaying results for MOOS C. 
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Figure S17: Same as Figure S12 but displaying results for MOOS D. 
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Figure S18: Same as Figure S12 but displaying results for MOOS E. 
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Figure S19: CDF plot demonstrating the 90% cutoff used to select LCOL-48.  
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Figure S20: Same as Figure 7 showing the full results for FCW. 
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Figure S21: MOOS O3 mixing ratio estimates corrected using LCOL-Full and LCOL-Pre, 

approaches compared to reference measurements during the post-field rooftop deployment which 

spanned roughly 1 week after the field deployment.  
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